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Abstract

Deterministic diffusion is studied in simple, parameter-dependent dy-

namical systems. The diffusion coefficient is often a fractal function of

the control parameter, exhibiting regions of scaling and self-similarity.

Firstly, the concepts of chaos and deterministic diffusion are intro-

duced in the context of dynamical systems. The link between deter-

ministic diffusion and physical diffusion is made via random walk the-

ory. Secondly, parameter-dependent diffusion coefficients are analyti-

cally derived by solving the Taylor-Green-Kubo formula. This is done

via a recursion relation solution of fractal ‘generalised Takagi func-

tions’. This method is applied to simple one-dimensional maps and

for the first time worked out fully analytically. The fractal param-

eter dependence of the diffusion coefficient is explained via Markov

partitions. Linear parameter dependence is observed which in some

cases is due to ergodicity breaking. However, other cases are due to

a previously unobserved phenomenon called the ‘dominating-branch’

effect. A numerical investigation of the two-dimensional ‘sawtooth

map’ yields evidence for a possible fractal structure. Thirdly, a study

of different techniques for approximating the diffusion coefficient of a

parameter-dependent dynamical system is then performed. The prac-

ticability of these methods, as well as their capability in exposing a

fractal structure is compared. Fourthly, an analytical investigation

into the dependence of the diffusion coefficient on the size and posi-

tion of the escape holes is then undertaken. It is shown that varying

the position has a strong effect on diffusion, whilst the asymptotic

regime of small-hole size is dependent on the limiting behaviour of

the escape holes. Finally, an exploration of a method which involves

evaluating the zeros of a system’s dynamical zeta function via the
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weighted Milnor-Thurston kneading determinant is performed. It is

shown how to relate the diffusion coefficient to a zero of the dynam-

ical zeta function before analytically deriving the diffusion coefficient

via the kneading determinant.
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Chapter 1

Introduction

‘For want of a nail the shoe was lost; for want of a shoe the horse was
lost; and for want of a horse the man was lost.’

Old English proverb discussing S.D.I.C.1

The work presented in this thesis is a product of the interaction between

non-equilibrium statistical mechanics and dynamical systems theory. The goal

of statistical mechanics is to understand the macroscopic properties of compli-

cated systems with many degrees of freedom such as gases, whilst taking into

account the microscopic behaviour of the constituent elements. Typically, such

systems have a huge number of elements, rendering standard mathematical tools

used to treat physical, mechanical problems like differential equations ineffec-

tive, even if one had a thorough understanding of the equations of motion of

each element. Naturally therefore, probabilistic or statistical (hence ‘statistical

mechanics’) methods were developed to answer questions about systems with

many particles in the pioneering work of the founders of statistical mechanics

(Boltzmann [1964]; Gibbs [1960]; Maxwell [1965a,b]). An alternative approach

to building a full understanding of statistical mechanics uses the mathematics of

dynamical systems theory to take into account the microscopic complexity (see

1The Oxford Dictionary of English Proverbs. O.U.P.
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for example Ruelle [1977, 2004]). In this setting, the assumption of stochasticity

is replaced by the chaotic properties of a deterministic dynamical system and

concepts borne out of statistical mechanics like ergodicity, can be studied in a

rigorous mathematical setting (see for example Khinchin [1949]).

At the heart of this interaction between statistical mechanics and dynamical

systems theory lies the study of transport processes (Cvitanović et al. [2010];

Dorfman [1999]; Gaspard [1998]; Klages [2007]). Transport processes can include

the study of viscous flow in which momentum transport occurs. This process

being described by Newton’s law of viscosity. Radiation, heat conduction and

convection give rise to the transport of energy, which is described by Fourier’s

law of heat conduction. We also have diffusion which involves mass transport

and is governed by Fick’s law of diffusion. What these laws have in common is

transport from a region of high concentration to a region of low concentration

controlled by transport coefficients. In momentum transport this coefficient is

called viscosity, in energy transport we have thermal conductivity whilst in mass

transport we have simply the diffusion coefficient. See Bird et al. [2007] for an

in-depth discussion of transport processes.

Diffusion and the diffusion coefficient form the focus of the work in this thesis.

In the framework of statistical mechanics, the source of diffusion is often modelled

as the microscopic random movement of the individual molecules, caused by the

presence of thermal energy. We will abstract the physical process of diffusion

from statistical mechanics and place it in the setting of dynamical systems. This

abstraction involves simplifying the physical setting as far as possible by restrict-

ing the dimension of a system under study and considering simple equations of

motion. This simplification allows us to study ‘toy models’ based upon simple

dynamical systems. This setting allows us to analytically study diffusion with-

out any statistical assumptions. The ultimate goal of such a project is to learn

something in this simplified, abstracted setting that can then be transferred back

into the physical world in the form of predictions or suggestions of possible lines

of research. Before describing how this is achieved in detail, we will look at the

object of our investigation.
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1.1 Deterministic diffusion

Here we will briefly introduce the concept of diffusion and show how it can be

related to dynamical systems.

1.1.1 Diffusion as a physical phenomenon

One common setting for diffusion is the movement of particles from a region of

high concentration to a region of low concentration. One can imagine placing a

drop of ink into a clear glass of water and observing that, over time, the ink has

managed to colour the entire glass of water uniformly, without the need to stir

or introduce turbulence into the glass. Restricting this set up to one-dimension,

this process is described by the diffusion equation (Reif [2008]),

∂ρt(x)

∂t
= D

∂2ρt(x)

∂x2
, (1.1)

where ρt(x) describes the concentration of points (or the drop of ink) at time

t and x is the one-dimensional coordinate. D is the diffusion coefficient which

measures the rate of diffusion. Eq.(1.1) can be derived by combining the simple

concept of continuity of matter, which states that any rise or fall in concentration

is caused by the current density Fx, that is the movement of particles into or out

of a region,

∂ρt(x)

∂t
= −∂Fx

∂x
, (1.2)

with Fick’s first law of diffusion, dating back to 1855, which states that the current

density is proportional to the concentration gradient,

Fx = −D
∂ρt(x)

∂x
. (1.3)

When one solves the diffusion equation in Eq.(1.1) with the assumption that the

initial distribution is given by a Dirac delta function at the point x0 = 0,

ρ0(x) = δ(x− x0), (1.4)

one finds that the Green’s function is given by a Gaussian distribution,
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Figure 1.1: Evolution of a density of points under the diffusion equation. In this
figure we see the evolution of a density of points under the diffusion equation
taking a Gaussian form. Illustrated is the distribution at time t1 given by the
sharpest peaked distribution and the distribution at later times t2 < t3 < t4 < t5
which are given by the less sharp peaks respectively. The initial Dirac delta
distribution at 0 spreads out as the time t increases and the distribution moves
towards an equilibrium state. The rate of this spreading process is controlled by
the diffusion coefficient.

ρt(x) =
e−

(x−x0)
2

4Dt

√
4πDt

. (1.5)

The variance, or second moment is then given by

∫

ρt(x)(x− x0)
2dx = 2Dt. (1.6)

See figure 1.1 for an illustration of the evolution of a density under Eq.(1.1). In

order to show how we can study Eq.(1.1) within dynamical systems theory, and

in particular the diffusion coefficient D, we will first need to take a random walk.
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1.1.2 A random walk

In 1905, Karl Pearson described the following ‘problem of considerable interest’

in Nature (Pearson [1905]),

‘...A man starts from a point O and walks l yards in a straight line;
he then turns through any angle whatever and walks another l yards
in a second straight line. He repeats this process n times. I require
the probability that after these n stretches he is at a distance between
r and r + δr from his starting point, O...’

From a reply of Lord Rayleigh (Strutt [1905]), Pearson concluded that

‘...The lesson of Lord Rayleigh’s solution is that in open country the
most probable place to find a drunken man who is at all capable of
keeping on his feet is somewhere near his starting point! ’

The process that Pearson was describing is that of a random walk (see for example

Weiss [1994]). In one-dimension we can think of the man in Pearson’s problem

as taking steps of length ∆ to the left or right with equal probability at discrete

time intervals of length τ . The common analogy is that of the ‘drunken sailor’

attempting to return home after a heavy night (see for example Klages [2007];

Reif [2008]). The drunkenness means that the steps are ‘uncorrelated’ in that

the sailor retains no memory of the direction of his previous step.. This equates

to randomly choosing the direction of each step at each time interval τ . Hence

‘random walk’.

Following Pearson, we let our man start at the point 0 and ask what the

probability is of being found at a distance k = r∆ at a time nτ , where r ∈ Z and

n ∈ N, written as Pnτ (r∆). Using the conservation of probabilities we can derive

a simple solution to this problem as (Wax [1954]),

Pnτ (k) =
1

2

[

P(n−1)τ (k −∆) + P(n−1)τ (k +∆)
]

, (1.7)

which simply states that the probability Pnτ (k) is equal to the sum of the proba-

bilities of arriving from the nearby points k−∆ and k+∆. Subtracting P(n−1)τ (k)

from each side, dividing by τ and multiplying the right hand side by ∆2/∆2 we

can rewrite Eq.(1.7) as,
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Pnτ (k)− P(n−1)τ (k)

τ
=

∆2

2τ

[

P(n−1)τ (k −∆) + P(n−1)τ (k +∆)− 2P(n−1)τ (k)
]

∆2
. (1.8)

In the continuous time limit, that is letting ∆ and τ go to zero, Eq.(1.8) reduces

to the familiar partial differential equation given by Eq.(1.1) (Wax [1954]). That

is, this drunken sailor taking a random walk is undergoing a diffusion process.

Therefore if we were to take a crew of drunken sailors and start them from the

same point, we would expect them to spread out according to the Gaussian dis-

tribution given by Eq.(1.5). Karl Pearson’s response to Lord Rayleigh’s solution

can now be interpreted by examining the form of Eq.(1.5) and noting that the

peak centres on the starting point 0, see figure 1.1. This continuous time limit

of the random walk is a process known as ‘Brownian motion’ after the botanist

Robert Brown who in 1827 observed pollen particles moving randomly whilst

suspended in water (Brown [1866]). Einstein placed this process into the realm

of physics in one of his 1905 papers (Einstein [1905]) by using Brownian motion

to give empirical evidence for the atomic theory of matter, the theory which had

previously formed the basis of statistical mechanics. From this work we obtain

Einstein’s formula for the diffusion coefficient D,

D = lim
n→∞

〈(xn − x0)
2〉

2n
, (1.9)

where the angular brackets represent an average taken over an ensemble of initial

conditions x0. In this case the mean-square displacement of an ensemble of points

grows linearly with time and the diffusion coefficient is a measure of the rate of

this growth. Of course we could consider more general situations like including

a bias into the random walk, for example it may take place on a hill. This will

introduce a current into the diffusion process and the centre of the Gaussian

distribution will move accordingly. For a review of this material see for example

Wax [1954]; Weiss [1994]. We can now introduce the idea of diffusion taking

place in a deterministic dynamical system. In this setting we have a deterministic

generalisation of the random walk.
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1.1.3 Chaotic dynamical systems

Dynamical systems theory began with Newton’s paradigmatic 1687 work on the

laws of motion that form the basis of classical mechanics. Newton’s laws equipped

scientists with the philosophy that if they knew the current state of a system,

they could then, in principle, work out the state at any future time. However, this

is a big ‘if’ as in order to ascertain the current state of a system, one must take

measurements, and inherent in any physical measurement will be some level of

inaccuracy, even if only very small. This inaccuracy was famously discovered to

have drastic consequences by Poincaré in his work on the ‘Three-body problem’ of

celestial mechanics (Poincaré [1899]) and later by Edward Lorenz in his work on

simple models of the weather system (Lorenz [1963]). The latter work gave rise

to the term ‘butterfly-effect ’ which poetically captures the concept of ‘sensitive

dependence on initial conditions’ (S.D.I.C.). This is the concept that a small

change in the initial conditions of a system, eg. a flap of a butterfly’s wings,

could have a big effect, eg. the occurrence of a tornado. If a system exhibits the

property of sensitive dependence on initial conditions, then the errors in one’s

measurements grow as the system evolves in time. This is, for example, why

current weather forecasts only yield around five days worth of useful information.

Dynamical systems theory is essentially the study of such systems. For good

accounts of the history and development of chaos theory and the underlying ideas

see for example Gleick [1988] or Ruelle [1993]. For comprehensive, mathematical

introductions to the ideas of chaos and also dynamical systems theory see for

example Cvitanović et al. [2010]; Devaney [1989]; Katok and Hasselblatt [1995];

Ott [1993]. A very good set of lecture notes introducing dynamical systems theory

can be found in Klages and Howard [2008].

A dynamical system in a mathematical sense, basically consists of a ‘phase

space’ X , which is a set of all the possible states of the system, a deterministic

rule M which describes how the system evolves in time and a ‘measure’ µ which is

a function that acts on the elements of X and generalises distance. The measure

describes how far apart any two states of a system are which allows one to quantify

the growth in the error over time. The evolution rule can either be defined in

continuous time which leads to the study of nonlinear differential equations or
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Figure 1.2: Chaos in a simple dynamical system. In this figure the property
of sensitive dependence on initial conditions is illustrated in the doubling map
modulo one. We see that two points which are initially very close, separate as
they are iterated. Their orbits take completely different paths as they become
uncorrelated from their starting point.

discrete time which gives rise to the study of nonlinear maps. The movement

of a state under the evolution rule is called an ‘orbit’. We will follow the latter

route and consider discrete-time dynamical systems. As an illustrative example

we can consider the doubling map modulo one or ‘Bernoulli shift’ map (see figure

1.2). The phase space for this dynamical system is given by the unit interval

X = [0, 1) with the endpoints 0 and 1 identified so that we consider the dynamics

on a circle. The elements of X or possible states of the system are then given by

the real numbers between 0 and 1. The measure on this system we can simply

take as ‘Lebesgue’ measure which gives the difference between two numbers. That

is the distance between two states of the system x and y is given by,

µ(x, y) = |x− y| . (1.10)

The equations of motion for this system are given by M(x) : [0, 1) → [0, 1),
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M(x) =

{

2x 0 ≤ x < 1
2

2x− 1 1
2
≤ x < 1

. (1.11)

But in what sense can the dynamics created by Eq.(1.11) be described as chaotic?

There is no universally agreed definition of chaos, (for a discussion of the various

definitions of chaos and the links between them see Klages and Howard [2008])

but there are three main elements which underpin the idea. The first of these

that we have discussed is sensitive dependence on initial conditions. We see

that two points that are separated by an infinitesimally small amount δ are after

one iteration separated by 2δ, then 4δ and after n iterations are separated by

2nδ = en ln 2δ. Therefore the distance between points grows exponentially with n,

the rate of growth in this case given by ln 2. This growth rate is quantified with

the local Lyapunov exponent λ(x0), defined by,

λ(x0) = lim
k→∞

1

n

k−1
∑

n=0

ln |M ′(xn)| . (1.12)

In Eq.(1.12), x0 is an initial point and xn is the nth iterate of x0 under Eq.(1.11).

ForM(x), M ′(x) is equal to two for all x so we recover the result that λ(x0) = ln 2.

This however is not enough, if we had the simple doubling map we would also

have sensitive dependence on initial conditions, but we would not describe the

dynamics generated by a doubling map as chaotic. We also need a system to

exhibit some sort of irregular behaviour, not simply have all orbits diverge off to

infinity. This is captured by the concept of topological transitivity which implies

that there exists a point in your phase space whose orbit is dense. This loosely

means that it comes arbitrarily close to any other point in phase space. This

implies that there is an element of recurrence in the dynamics which is provided

by the modulo one action in Eq.(1.11) which folds the space back onto itself after

stretching. The third property is an element of regularity in the dynamics. This is

provided by the periodic orbits of M(x). These are the points which get iterated

back onto themselves or onto another point in their orbit. The periodic orbits

are dense in Eq.(1.11) which means you can find them anywhere you look. This

dense set provides a skeleton of regular behaviour mixed in with the irregular

behaviour of topological transitivity and exponential separation of points. It is
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this mixture which we call chaotic.

1.1.4 Diffusion in dynamical systems

In the early 1980s, simple, discrete-time, chaotic dynamical systems were con-

structed which exhibited random walks (Geisel and Nierwetberg [1982]; Gross-

mann and Fujisaka [1982]; Schell et al. [1982]). That is, although the dynamics

are controlled by deterministic equations of motion, the orbits of the individual

points in phase space can be mapped onto random walks. This leads to the study

of an evolution of a density of points in a dynamical system rather than individual

orbits and leads to the concept of ‘deterministic diffusion’. What sets determin-

istic (or chaotic) diffusion apart from the simple random walk process is that the

dynamics is fully correlated, meaning the diffusion coefficient is dependent on all

the higher-order correlations in the system.

The ratio between the uncorrelated random walk solution for diffusion and

the actual diffusion coefficient due to higher order correlations is known as the

‘correlation factor’ in the physics literature, (Beijeren and Kehr [1986]; Chen

and Dunham [2011]; Kaisermayr et al. [2001]; Kärger and Ruthven [1992]) and

can be linked to ‘persistence effects’ in diffusion. This is for instance where

particles diffusing in lattice structures such as metals Bardeen and Herring [1952]

leave a lattice space vacant behind them when they ‘jump’ between sites. The

particles are then more likely to jump back into these spaces leading to low

order correlations between the jumps. This physically motivated effect called

‘persistence’, was first studied in the context of Brownian motion (Fürth [1920])

and hydrodynamics (Taylor [1922]). See Weiss [1994] and Haus and Kehr [1987]

for reviews of this material.

Studying transport in the fully-correlated setting of deterministic dynami-

cal systems became a very important topic (Wiggins [1992]). In particular, the

parameter-dependence of the diffusion coefficient attracted much interest as the

higher-order correlations are often very sensitive to variation of a control param-

eter in even simple systems, in some cases it was shown to introduce anomalous

diffusion via intermittency (Fujisaka and Grossmann [1982]; Geisel and Thomae

[1984]; Geisel et al. [1985]; Grossmann and Thomae [1983]). Anomalous diffusion
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is the nonlinear growth of the mean square displacement with time, see Klages

et al. [2008] for a review of this area.

A concentrated effort to fully understand the parameter-dependence of deter-

ministic diffusion came from the area of dynamical systems. In particular, ‘cycle

expansion’ techniques based on using the skeleton of periodic orbits to derive the

diffusion coefficient were developed and applied to periodic one-dimensional dy-

namical systems (Artuso [1991]), Lorentz gases (Cvitanović et al. [1992]; Vance

[1992]) and sawtooth maps (Artuso and Strepparava [1997]). However, these

cycle expansion techniques are hampered by the very complicated structure of

the periodic orbits, this being caused by the topological sensitivity of the higher

order correlations under parameter variation. For a comprehensive introduction

to these methods see (Cvitanović et al. [2010]). In Klages and Dorfman [1995],

using techniques from the escape rate formalism developed in Gaspard [1992];

Gaspard and Nicolis [1990], which explicitly linked transport coefficients to fun-

damental properties of dynamical systems, the diffusion coefficient of a simple,

piecewise-linear map of the real line was shown to behave very irregularly un-

der parameter variation. It was conjectured in Klages and Dorfman [1995] that

the diffusion coefficient was a ‘fractal’ function of the control parameter, which

led to the conjecture that higher dimensional, more physically realistic systems

such as the sawtooth maps (Dana et al. [1989]) may also exhibit fractal diffusion

coefficients.

It is worth remarking that the term ‘fractal’, introduced to describe the ‘rough’

or ‘broken’ geometry of the natural world (Mandelbrot [1982]), as opposed to the

smooth, regular geometry of the Euclidean world, is another concept that has

no strict mathematical definition. It is used to describe objects that exhibit

self-similarity and non-trivial fine scale structure. They may also have strange

properties like non-integer dimensions, see Falconer [2003] for a mathematical

discussion of fractals and associated concepts of generalised dimension. An at-

tempt to understand the nature of the fractality observed in Klages and Dorfman

[1995] was made in Klages and Klauß [2003] where it was conjectured that the

parameter-dependent diffusion coefficient has a non-integer dimension that itself

varies with the parameter. In Koza [2004], a mixture of analytical and numer-

ical techniques led to the alternative conjecture that the parameter-dependent
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diffusion coefficient has a dimension of one along with logarithmic corrections.

This conjecture was made analytically rigorous in Keller et al. [2008] where it

was shown that the dimension is one and that the fractality of the function is

captured in the logarithmic corrections.

In Klages [1996], it was observed that the structure exhibited by the parameter-

dependent diffusion coefficient in a simple, piecewise-linear, periodic map of the

real line, resembled a set of fractal functions defined by functional ‘de Rham’

equations (de Rham [2003]), these functions previously being linked to deter-

ministic diffusion in Tasaki and Gaspard [1994]; Tasaki et al. [1993a,b]. These

observations led to the development of powerful analytic methods based upon

recursion relations which derive the diffusion coefficient via fractal functional

equations in Klages [1996]. In an attempt to understand the fractal structure in

the parameter-dependent diffusion coefficient, these methods were applied to a

simple piecewise-linear map and yielded a series of analytical and numerical ap-

proximations to the diffusion coefficient, which systematically took into account

the higher order correlations in the dynamics.

This thesis represents the culmination of this line of research. By application

to a set of one-dimensional, piecewise-linear, periodic maps of the real line, the

methods developed in Klages [1996] are explored to their full analytical capa-

bility. This permits the analytical evaluation of the diffusion coefficient at any

parameter value to (practically) any desired accuracy. This analysis leads to a

full understanding of the origin of the fractal structure in these simple systems.

Of course there are still many fundamental unanswered questions in deter-

ministic diffusion. The nature of the structure of parameter-dependent diffusion

coefficients in more physically realistic, higher-dimensional dynamical systems re-

mains an open question. In particular, area preserving Hamiltonian systems like

the sawtooth maps have received a lot of attention, see for example Dana et al.

[1989], and references therein or more recently Venegeroles and Saa [2008]. Again

the higher order correlations are sensitive to variations in a control parameter

called the ‘stochasticity’ parameter K. It has only been possible to analytically

calculate the diffusion coefficient at integer values of K where one can show that

all higher-order correlations vanish, (Cary and Meiss [1981]). This is because

the map becomes a linear automorphism at integer values of K (at K = 1 this
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is Arnold’s CAT map (Arnold and Avez [1968])). Despite the development of a

good knowledge of the underlying periodic orbit structure in the sawtooth maps

in Percival and Vivaldi [1987a] and Percival and Vivaldi [1987b], the fractality

remains an open question with some conjectures claiming it to be smooth (Sano

[2002]). Parameter-dependent diffusion in Hamiltonian particle billiards such as

the periodic Lorentz gas (Lorentz [1905]) also receives much interest (see Klages

[2007] and references therein). The irregularity of the diffusion coefficient in this

system was observed to exist only on very fine scales (Klages and Dellago [2000]),

which meant that making conclusions about the fractality was very difficult. In-

deed it was conjectured that the parameter-dependent diffusion coefficient may

be a C1 function but not a C2 function, the fractality existing in the higher

derivatives. This led to the deliberate construction of billiard systems which dis-

play more irregular diffusion coefficients (Harayama et al. [2002]), and also to

the study of billiard systems subject to an external field where irregularities are

clearer (Harayama and Gaspard [2001]), yet fully analytical answers are still far

off.

1.2 Structure and summary of results

In chapter 2 we will realise the full potential of the functional recursion relation

method for deriving the diffusion coefficient developed in Klages [1996]. This

will involve the exploration of a family of parameter-dependent, piecewise-linear,

periodic maps of the real line. We will fully analytically derive the parameter-

dependent diffusion coefficient for each of the maps and observe a mixture of

fractal and also linear behaviour. We will explain the fractality by associating ex-

treme points in the diffusion coefficient to particular behaviour in the orbit of the

critical points of the map. This allows us to pinpoint the extrema precisely when

explaining the source of the fractality. The linear behaviour is in some cases linked

to the breaking of the ergodicity of the map. Along with this full understanding

also comes some new questions and observations. We observe certain parameter

regions where the linearity of the diffusion coefficient can not be explained in

terms of ergodicity-breaking, rather there is a microscopic ‘dominating-branch’

effect which causes the diffusion coefficient to withstand drastic changes in the
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microscopic dynamics. How ubiquitous in dynamical systems is this newly ob-

served phenomenon, is left as an open question. We then numerically explore the

diffusion coefficient for the two-dimensional sawtooth map (Dana et al. [1989]),

in an attempt to understand the parameter-dependent diffusion coefficient. We

show that in analogy with parameter-dependent diffusion coefficients in other

higher dimensional systems like the Lorentz gas, (Klages [2007]), the irregular-

ities in the diffusion coefficient exist on a very fine scale making it difficult to

draw concrete conclusions as to the nature of the diffusion coefficient.

Inspired by the exploration of the sawtooth map in chapter 2 and by criticism

of an approximation method based on the functional recursion relation approach

explored in chapter 2 (Klages and Knight [2011]), in chapter 3 we will look at

three different approximation procedures for the parameter-dependent diffusion

coefficient in a simple one-dimensional map. The goal is to critically explore the

individual capabilities and weaknesses at exposing fractal structures of the indi-

vidual methods. The results we obtain are very different for each method. The

first method is based on truncating the Taylor-Green-Kubo formula for diffusion

which forms the basis of the functional recursion relation approach from chapter

2. This leads to a series of converging approximations which contain points that

converge in finite time. In this way one can see the fractal structure emerge as

the approximations are built up. The second method is based on the ‘persistent’

random walk discussed above. We analytically and numerically include mem-

ory effects persistently, thereby obtaining a series of approximations. The third

method is based on the escape rate theory of diffusion (Gaspard [1992]; Gaspard

and Nicolis [1990]) and consists of approximating the Markov transition matrix

of a system by truncating the associated ‘generating orbit’ (the orbit of a criti-

cal point which yields the Markov partition points). Again we analytically and

numerically build up a series of approximations whose functional form points to

regions of self-similarity.

In chapter 4 we are inspired by the recent surge of interest in open systems

(Altmann and Endler [2010]; Altmann and Tél [2009]; Bunimovich and Yurchenko

[2011]; Demers and Young [2006]; Dettmann [2011]; Keller and Liverani [2009])

to explore a novel form of parameter-dependence in deterministic diffusion. We

again consider a simple, piecewise-linear, periodically copied map of the real line
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but we derive the diffusion coefficient as a function of the size and the position of

the ‘escape holes’ (regions in phase space that couple the individual copies of the

map) rather than as a function of a continuous parameter. We find non-trivial

dependence of the diffusion coefficient on the position of the holes in analogy

with corresponding results on the escape rate (Bunimovich and Yurchenko [2011];

Keller and Liverani [2009]) and observe that the diffusion coefficient decreases

non-monotonically with the size, as opposed to results for the escape rate. We

also explore the small-hole asymptotic behaviour of the system which we find

to be dependent on the limiting point of the hole. This result generalises the

simple random walk result for small hole asymptotic behaviour (Fujisaka and

Grossmann [1982]; Klages [1996]; Klages and Dorfman [1997]; Schell et al. [1982]).

Conjectures are made that it should be ubiquitous in dynamical systems and also

potentially observable in experiment. Lastly we calculate the escape rate in the

corresponding open system in order to compare the two transport phenomena.

In chapter 5 we look at an alternative method for analytically deriving the

diffusion coefficient. This method is based on a generalisation of the work in

Milnor and Thurston [1988], in which the determinant of a ‘kneading matrix’ was

related to the zeros of a topological zeta function. The entries of the kneading

matrix are determined by the orbits of the critical points of the map, these orbits

are called ‘kneading orbits’ (Devaney [1989]; Katok and Hasselblatt [1995]). The

generalisation in Baladi and Ruelle [1994] extended this result to weighted dy-

namical zeta functions, from which the diffusion coefficient can be derived, this

generalisation being used in Cristadoro [2006] to derive the parameter-dependent

diffusion coefficient of a simple, piecewise-linear map of the real line. We begin

by showing how the zero of a weighted dynamical zeta function can be related to

the diffusion coefficient via the generating function for diffusion, in order to give

some theoretical background for the method. We then fully analytically employ

the method to compute the diffusion coefficient to again any (practically) desired

accuracy. This leads to the observation of a set of increasingly complex step-

functions which converge to the diffusion coefficient. Chapter 6 is a summary

and outlook.

This thesis is largely based upon published work. In particular chapters 2,

3 and 4 follow closely papers which can be found in the publication list near
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the end of this thesis. Chapter 5 contains results which will form part of a

future publication. Each chapter is therefore motivated individually and contains

individual conclusions. The intention is that each chapter can be read separately

as a stand-alone piece. This has the side-effect that some ideas are repeated which

may be noticeable to the more dedicated cover-to-cover reader. The references are

given at the end of the thesis in alphabetical order along with the page numbers

where they are referenced. In the colour version of this thesis the references are

highlighted in red, the pdf version contains links which take you to the relevant

part of the references. Objects in the text highlighted in blue link to internal

sections within the thesis whilst blue text in the references are linked to external

websites for the corresponding publications where available. All of the figures in

this thesis were created using Maple 15 software whilst the numerical experiments

on the sawtooth map in chapter 2 were performed using Fortran 77 software.
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Chapter 2

Linear and fractal diffusion

coefficients in a family of one

dimensional chaotic maps

Deterministic diffusion is analysed in a family of four parameter dependent,

chaotic maps of the real line. When iterated under these maps, a probability

density function spreads out and one can define a diffusion coefficient. Of par-

ticular interest is how the diffusion coefficient varies across the family of maps

and under parameter variation. Using a technique by which Taylor-Green-Kubo

formulae are evaluated in terms of generalised Takagi functions, we derive exact,

fully analytical expressions for the diffusion coefficients. Typically, for simple

maps these quantities are fractal functions of control parameters. However, this

family of maps exhibits both fractal and linear behaviour. This mixture is ex-

plained by looking at the topology of the Markov partitions and the ergodic

properties of the maps. This analysis exposes a new phenomenon (‘dominating

branch effect’) in dynamical systems theory in which the diffusion coefficient is

very robust to changes in the microscopic dynamics.
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2.1 Introduction

One of the most prominent problems in statistical physics and dynamical systems

theory is to understand non-equilibrium transport from first principles, that is,

starting from the nonlinear equations of motion of many-particle systems (Cvi-

tanović et al. [2010]; Dorfman [1999]; Gaspard [1998]; Klages [2007]). Such a

theory aims at explaining the origin of macroscopic transport in terms of the

chaotic and fractal properties of the underlying microscopic deterministic dynam-

ics. Unfortunately, physical many-particle systems are typically far too complex

to allow for exact analytical solutions of this problem. A common strategy is

therefore to first study solvable toy models, such as deterministic random walks

defined by one-dimensional chaotic maps (Geisel and Nierwetberg [1982]; Gross-

mann and Fujisaka [1982]; Schell et al. [1982]) before applying the knowledge

gained to more difficult dynamics.

An interesting and surprising result when studying a simple piecewise linear

model of this type was that the diffusion coefficient was found to be a fractal

function of a control parameter (Klages and Dorfman [1995]). That this result

was not an artefact of the model used was confirmed by studying other transport

processes, such as biased diffusion (Groeneveld and Klages [2002]) and reaction-

diffusion (Gaspard and Klages [1998]) in other (nonlinear) maps (Cvitanović et al.

[2010]; Korabel and Klages [2004]) and in physically more realistic systems like

periodic particle billiards (Gaspard [1998]), which in turn can be linked to exper-

iments (Klages et al. [2004]), see Klages [2007] for a review of this material and

references therein.

Unfortunately, even for the simplest piecewise linear deterministic models ex-

act solutions for transport coefficients are rare (Dorfman [1999]): for specific

values of control parameters analytical results are available by cycle expansion

techniques (Cvitanović et al. [2010]) or by first passage methods (Klages [1996];

Klages and Dorfman [1999]). Numerical extensions of these methods include

stability ordering of periodic orbits (Dettmann and Morriss [1997]) and tran-

sition matrix methods (Gaspard and Klages [1998]; Klages [1996]; Klages and

Dorfman [1995, 1999]). As methods yielding exact formulae for fractal transport

coefficients, there is the ‘twisted eigenstate’ method based on kneading theory
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described in Groeneveld and Klages [2002] and Klages [2007] whose extension to

maps that have more than one ‘lap’ per unit interval, such as we will consider

in this chapter, is currently an open question and there an alternative technique,

also based on kneading theory (Cristadoro [2006]) that we will discuss in chapter

5.

In order to better understand existence and properties of fractal transport co-

efficients in chaotic dynamical systems, it is vital to develop both more powerful

tools for calculating these quantities, and to enlarge the set of systems studied.

Correspondingly, in this chapter we will introduce a new family of deterministi-

cally diffusive models which define the simplest class of systems exhibiting fractal

diffusion coefficients. We then calculate these quantities using the Taylor-Green-

Kubo formula (Dorfman [1999]; Gaspard [1998]; Klages [2007]) in combination

with generalised Takagi functions (Gaspard and Klages [1998]; Klages [1996]).

This approach is for the first time explored analytically to its full power and will

allow us to obtain an accurate insight into the complicated, fractal structures we

observe in the diffusion coefficient. The main results are exact analytic expres-

sions for the parameter dependent diffusion coefficients for the whole family of

maps and the discovery that there is a mixture of linearity and fractality in the

diffusion coefficients. The linearity is non-trivial, because in the regions of linear-

ity the maps are either non-ergodic or topologically unstable. The latter property

typically generates fractal parameter dependencies, however, our method reveals

a subtle mechanism of ‘dominating branches, which can stabilise diffusion coeffi-

cients under parameter variation in maps whose microscopic symmetry is broken.

In section 2.2 we will introduce the family of parameter dependent maps and

then analytically derive the diffusion coefficient as a function of the parameter

for each map via a functional recursion relation. In section 2.3 we will anal-

yse the structure of the diffusion coefficients and explain the features that we

observe. Most importantly, we explain why we observe a mixture of fractality

and linearity. We then employ a method based on the Markov partitions of the

maps to pinpoint exactly where the local extrema will be in these fractal dif-

fusion coefficients (Klages [1996]; Klages and Dorfman [1995, 1999]) which will

lead to an explanation of the fractal structure. In addition, we will explore the

fact that in certain parameter regions the diffusion coefficients are very stable
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to dramatic changes in the microscopic dynamics of the maps, this property be-

ing interestingly opposed to the fact that the diffusion coefficients are extremely

sensitive to parameter variation in other areas of the parameter space. This

phenomenon leads to the discovery of the ‘dominating branch effect’. In section

2.4 we will explore the limitations of the functional recursion relation method

when we apply it to a pseudo-two-dimensional system, namely the sawtooth map

(Dana et al. [1989]). We will attempt to apply the method analytically before

resorting to numerical computations to explore the diffusion coefficient. This nu-

merical exploration reveals non-trivial dependence of the diffusion coefficient on

the parameter, although this non-trivial dependence appears on very fine scales.

This result matching those found in other higher dimensional systems such as the

Lorentz gas (Klages [2007]; Klages and Dellago [2000]). Section 2.5 forms a con-

clusion. This work was done in collaboration with Dr. Rainer Klages of Queen

Mary University of London and was published in Knight and Klages [2011b].

2.2 A functional recursion relation

In this section we will define the family of one-dimensional maps that we will

study. Then, starting from the Taylor-Green-Kubo formula we will derive the

parameter dependent diffusion coefficient of these maps via the solutions of some

fractal generalised Takagi functions.

2.2.1 The family of maps

For h ≥ 0 let Mh(x) : [0, 1] → R be a parameter dependent variant of the well

known Bernoulli shift map. The parameter lifts the first branch, and lowers the

second branch i.e.

Mh(x) =

{

2x+ h 0 ≤ x < 1
2

2x− 1− h 1
2
≤ x < 1

. (2.1)

In order to create an extended system for diffusion, we define Mh(x) : R → R by

periodically copying Eq.(2.1), with a lift of degree one such that
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Mh(x+ n) = Mh(x) + n, n ∈ Z. (2.2)

This map was first studied in Gaspard and Klages [1998] as a projection of

a generalization of the diffusive-reactive multibaker map. We call it the lifted

Bernoulli shift map. This process of periodically copying a map with a lift of

degree one is a common way to create a diffusive map (Geisel and Nierwetberg

[1982]; Grossmann and Fujisaka [1982]; Schell et al. [1982]). The use of the lift

parameter h ensures that the invariant probability density function (p.d.f) re-

mains a constant function throughout the entire parameter range. This helps

simplify the derivation of the diffusion coefficient as an invariant p.d.f is an es-

sential ingredient in the Taylor-Green-Kubo formula that is used to derive the

diffusion coefficient (Dorfman [1999]; Klages [1996]). The remaining members

of the family are created by changing the sign of the gradient in Eq.(2.1). Let

Wh(x) : [0, 1] → R

Wh(x) =

{

−2x+ h+ 1 0 ≤ x < 1
2

−2x+ 2− h 1
2
≤ x < 1

, (2.3)

which we call the lifted negative Bernoulli shift map. Let Vh(x) : [0, 1] → R

Vh(x) =

{

−2x+ 1 + h 0 ≤ x < 1
2

2x− 1− h 1
2
≤ x < 1

, (2.4)

which we call the lifted V map. Let Λh(x) : [0, 1] → R

Λh(x) =

{

2x+ h 0 ≤ x < 1
2

−2x+ 2− h 1
2
≤ x < 1

, (2.5)

which we call the lifted tent map. Again we apply the lift of degree one condition

of Eq.(2.2) to Eq.(2.3), Eq.(2.4) and Eq.(2.5) to create spatially extended systems

defined over the real line. See figure 2.1 for an illustration.

2.2.2 The Taylor-Green-Kubo formula

We begin with the discrete version of the Taylor-Green-Kubo formula which gives

the diffusion coefficient as an integral over the velocity correlations of a system.

38



Figure 2.1: The family of maps. In this figure, a section of each of the four maps
in our family is illustrated at a parameter value of h = 0.5. In (a) the lifted
Bernoulli shift, so-called because the Bernoulli shift is recovered when h = 0 on
the unit interval. In (b) the lifted negative Bernoulli shift, so-called because a
version of the Bernoulli shift with a negative gradient is recovered when h = 0.
In (c) the lifted V map, so-called because a V map is recovered when h = 0. In
(d) the lifted tent map, so-called because a tent map is recovered when h = 0.
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This formula is often referred to simply as the Green-Kubo formula after deriva-

tions of the continuous version in Green [1954] and Kubo [1957]. However, a

derivation was already given in Taylor [1921] so ‘Taylor-Green-Kubo’ formula, as

it is referred to in Klages [2007] seems more appropriate. In order to derive the

Taylor-Green-Kubo formula (see Dorfman [1999] for a similar derivation) we be-

gin with Einstein’s formula in one-dimension which gives the diffusion coefficient

D directly in terms of the mean square displacement (Einstein [1905]),

D(h) = lim
n→∞

〈(xn − x0)
2〉

2n
, (2.6)

where we are evaluating the diffusion coefficient as a function of the parameter

h. The angular brackets 〈...〉 represent an average taken over the invariant p.d.f,

ρ∗(x) where xn is the position of a point x at time n

〈...〉 =
∫ 1

0

dxρ∗(x)... . (2.7)

The first step to derive the Taylor-Green-Kubo formula is to telescopically expand

the numerator in Eq.(2.6),

D(h) = lim
n→∞

1

2n

〈

(xn − xn−1 + xn−1 − xn−2 + xn−2 − xn−3 + ...− x0)
2
〉

. (2.8)

We then define a ‘velocity function’ ṽk(x) : [0, 1] → R

ṽk(x) = xk+1 − xk, (2.9)

which gives the displacement of a point x at time k. We substitute Eq.(2.9) into

Eq.(2.8) which gives a sum,

D(h) = lim
n→∞

1

2n

〈(

n−1
∑

k=0

ṽk(x)

)2〉

. (2.10)

We can simplify Eq.(2.10) by replacing Eq.(2.9) with the simpler function (Klages

and Korabel [2002])
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vk(x) = ⌊xk+1⌋ − ⌊xk⌋, (2.11)

where ⌊...⌋ denotes the ‘floor’ function. Eq.(2.11) gives the integer displacement

of a point x at time k. We can see that this substitution is possible if we let

∆xn = xn − x0 in Eq.(2.6), and further we let ∆xn = ∆Xn +∆x̃n. Where Xn is

the integer part of the displacement and x̃n ∈ [0, 1) is the fractional part of the

displacement,

D(h) = lim
n→∞

〈(∆Xn +∆x̃n)
2〉

2n

= lim
n→∞

〈(∆X2
n + 2∆Xn∆x̃n +∆x̃2

n)〉
2n

. (2.12)

The second term in the numerator of Eq.(2.12) is bounded by the ‘Cauchy-Hölder

inequality’ (Lasota and Mackey [1994]), and the third term is also bounded, hence

in the limit as n goes to infinity, only ∆Xn contributes to D(h). The next step

is to multiply out the square in Eq.(2.10) and collect together the diagonal terms

and the off-diagonal terms,

D(h) = lim
n→∞

1

2n

〈(

n−1
∑

k=0

(vk(x))
2 + 2

∑

k 6=k′

vk(x)vk′(x)

)〉

. (2.13)

As we are taking an average over an invariant density, we have translational

invariance in the velocity correlation functions, that is

〈vm(x)vn(x)〉 = 〈vm−n(x)v0(x)〉 . (2.14)

Using this property of Eq.(2.14) in Eq.(2.13) we arrive at the Taylor-Green-Kubo

formula

D(h) = lim
n→∞

(

n
∑

k=0

〈v0(x)vk(x)〉
)

− 1

2

〈

v0(x)
2
〉

(2.15)

41



2.2.3 Deriving the diffusion coefficient

In order to evaluate Eq.(2.15) for our family of maps, we first make use of the fact

that the invariant density is a simple constant function, ρ∗(x) = 1. This means

we can rewrite Eq.(2.15) as

D(h) = lim
n→∞

(

∫ 1

0

v0(x)
n
∑

k=0

vk(x) dx

)

− 1

2

∫ 1

0

v0(x)
2dx . (2.16)

The second integral is simple enough to evaluate as it is simply taken over a

step function. For example for the lifted Bernoulli shift map Mh(x) the velocity

function is

v0(x) =























⌊h⌋ 0 ≤ x < 1−ĥ
2

⌈h⌉ 1−ĥ
2

≤ x < 1
2

−⌈h⌉ 1
2
≤ x < 1+ĥ

2

−⌊h⌋ 1+ĥ
2

≤ x < 1

, (2.17)

where ⌊...⌋ and ⌈...⌉ are the floor function and ceiling function respectively. The

function ĥ : R → [0, 1] is defined as

ĥ =

{

1 h ∈ {Z}
h modulo 1 otherwise

. (2.18)

Eq.(2.18) is simply a corrective function that ensures Eq.(2.11) is correct at the

points of discontinuity. The first integral in Eq.(2.16) poses a greater problem.

To solve it we first define a cumulative ‘jump function’ Jn
M(x) : [0, 1] → R as

Jn
M(x) =

n
∑

k=0

vk(x), (2.19)

which gives the integer displacement of a point x after n iterations. The subscript

M tells us we are considering the jump function for the lifted Bernoulli shift map

Mh(x). We substitute Eq.(2.19) into Eq.(2.16) to obtain

DM(h) = lim
n→∞

(
∫ 1

0

v0(x)J
n
M (x) dx

)

− 1

2

∫ 1

0

v20(x) dx. (2.20)
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In order to extract the information we need from (2.20), we define the cumulative

function TM (x) : [0, 1] → R,

TM(x) = lim
n→∞

T n
M (x) = lim

n→∞

∫ x

0

Jn
M(y)dy. (2.21)

Eq.(2.21) defines the ‘generalised Takagi functions’ discussed above and in Klages

[1996]. Due to the chaotic nature of the maps, and in particular, the sensitive

dependence on initial conditions, the jump function behaves very erratically for

large n, see figure 2.2 for an illustration of this. This is reflected in TM(x) which

becomes fractal in the limit n → ∞. We call these functions ‘generalised Takagi

functions’ because for the lifted Bernoulli shift map with parameter h = 1, one

reproduces the function first studied in Takagi [1903]. This special case of the

‘De Rham’ function (de Rham [2003]), was presented as a simple example of a

function that is both continuous and non-differentiable. In order to control the

chaotic nature of the jump function, we derive a functional recursive relation

Klages [1996]. For the lifted Bernoulli shift map

Jn
M(x) = v0(x) + Jn−1

M

(

M̃h(x)
)

, (2.22)

where M̃h(x) is Eq.(2.1) taken modulo one. In turn, we define a functional recur-

sive relation for the generalised Takagi functions, by substituting Eq.(2.22) into

Eq.(2.21)

TM(x) = lim
n→∞

(

tM(x) +
1

2
T n−1
M

(

M̃h(x)
)

)

, (2.23)

where tM(x) : [0, 1] → R is an integral over v0(x),

tM(x) = xv0(x) + ci i ∈ {1, 2, 3, 4} . (2.24)

Where ci is a constant of integration which we must solve on each interval in

M̃h(x). Using Eq.(2.17) in Eq.(2.23) gives
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Figure 2.2: Building the generalised Takagi functions. In this figure the ‘jump
function’ Jn

h (x) is illustrated for the lifted Bernoulli shift map at parameter value
h = 0.5 at time n = 1, 2, 3, 4 and 10 in (a),(b),(c), (d) and (e) respectively. Due
to the sensitive dependence on initial conditions in the map, the distance be-
tween points increases exponentially. This property is reflected in the increasing
complexity of the step function of Jn

h (x) as n increases. In figure (f) the corre-
sponding cumulative integrals over Jn

h (x); T
n
h (x) are illustrated for n = 1, 2, 3, 4

and 10 in (decreasing from x = 3/16 respectively) black, grey, blue, green and red
respectively. In the limit n to infinity the points of discontinuity become dense
in Jn

h (x) resulting in a ‘fractal’ function Th(x).

TM (x) =































1
2
TM

(

2x+ ĥ
)

+ ⌊h⌋ x+ c1 0 ≤ x < 1−ĥ
2

1
2
TM

(

2x+ ĥ− 1
)

+ ⌈h⌉ x+ c2
1−ĥ
2

≤ x < 1
2

1
2
TM

(

2x− ĥ
)

− ⌈h⌉ x+ c3
1
2
≤ x < 1+ĥ

2

1
2
TM

(

2x− 1− ĥ
)

− ⌊h⌋ x+ c4
1+ĥ
2

≤ x ≤ 1

, (2.25)

The constants of integration ci, are evaluated by using the two conditions
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1. TM(0) = TM(1) = 0.

2. The Takagi functions are continuous.

Condition 1 follows from the definition of TM(x) in Eq.(2.21) combined with the

fact that we have no mean drift. Condition 2 simply follows from Eq.(2.21). For

example, from Eq.(2.25), using TM(0) = 0 gives

1

2
TM

(

ĥ
)

+ c1 = 0, (2.26)

which yields

c1 = −1

2
TM

(

ĥ
)

. (2.27)

We can apply the continuity condition at the points of discontinuity of M̃h(x) to

get the remaining constants. That is for example

lim
x→((1−ĥ)/2)−

TM(x) = lim
x→((1−ĥ)/2)+

TM(x). (2.28)

From Eq.(2.25) and Eq.(2.27) we have

lim
x→((1−ĥ)/2)−

TM(x) = ⌊h⌋ 1− ĥ

2
− 1

2
TM

(

ĥ
)

, (2.29)

and from Eq.(2.25) we have,

lim
x→((1−ĥ)/2)+

TM(x) = ⌈h⌉ 1− ĥ

2
+ c2. (2.30)

Combing Eq.(2.29) with Eq.(2.30) via Eq.(2.28) we have

c2 =
ĥ− 1

2
− 1

2
TM

(

ĥ
)

. (2.31)

We can similarly evaluate c3 and c4 to finally obtain
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TM (x) =































1
2
TM

(

2x+ ĥ
)

+ ⌊h⌋ x− 1
2
TM (ĥ) 0 ≤ x < 1−ĥ

2

1
2
TM

(

2x+ ĥ− 1
)

+ ⌈h⌉ x+ ĥ−1
2

− 1
2
TM(ĥ) 1−ĥ

2
≤ x < 1

2

1
2
TM

(

2x− ĥ
)

+ 1+ĥ
2

− ⌈h⌉ x− 1
2
TM(ĥ) 1

2
≤ x < 1+ĥ

2

1
2
TM

(

2x− 1− ĥ
)

+ ⌊h⌋ (1− x)− 1
2
TM(ĥ) 1+ĥ

2
≤ x ≤ 1

,

(2.32)

where we have taken the limit n → ∞. We now have the ingredients that we

need to derive the parameter dependent diffusion coefficient. Using Eq.(2.17) in

Eq.(2.20)

DM(h) = lim
n→∞

∫ 1−ĥ
2

0

⌊h⌋ Jn
M(x) dx+

∫ 1
2

1−ĥ
2

⌈h⌉ Jn
M(x) dx

−
∫ 1+ĥ

2

1
2

⌈h⌉ Jn
M(x) dx−

∫ 1

1+ĥ
2

⌊h⌋ Jn
M(x) dx (2.33)

− 1

2

(

∫ 1−ĥ
2

0

⌊h⌋2 +
∫ 1

2

1−ĥ
2

⌈h⌉2 +
∫ 1+ĥ

2

1
2

⌈h⌉2 +
∫ 1

1+ĥ
2

⌊h⌋2
)

.

Evaluating the integrals, simplifying using Eq.(2.32) and gathering relevant terms

we obtain

DM(h) = (⌊h⌋ − ⌈h⌉)
(

⌊h⌋ − ĥ ⌊h⌋ − TM

(

ĥ
))

+ ⌈h⌉
(

⌈h⌉+ ĥ− 1
)

− 1

2

(

⌊h⌋2
(

1− ĥ
)

+ ⌈h⌉2 ĥ
)

,

which after some wrangling can be rewritten as

DM(h) =
⌈h⌉2
2

+

(

1− ĥ

2

)

(1− 2 ⌈h⌉) + TM

(

ĥ
)

. (2.34)

Eq.(2.34) is an exact analytic expression for the parameter dependent diffusion

coefficient of the lifted Bernoulli shift map. The first two terms in this equation
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form a piecewise linear function that is equal to h2/2 for large h, which defines the

asymptotic growth of the diffusion coefficient in this parameter regime. Interest-

ingly, our shifted map thus belongs to a different universality class compared to

the maps studied in Klages [1996]; Klages and Dorfman [1997] where the gradient

was varied as a control parameter yielding a coefficient of 1/6 for the quadratic

scaling in this regime. The last term TM(ĥ) in Eq.(2.34) tells us about the fine

structure of DM(h), which is periodic modulo one as it is a function of ĥ, see

figure 2.3 for an illustration. For small h we get a different region of asymptotic

behaviour where the diffusion coefficient is given by

DM(h) =
h

2
+ TM(h) 0 ≤ h ≤ 1 . (2.35)

In this regime Eq.(2.32) yields TM (h) = 1
3
TM(3h), that is, if we make h smaller

by a factor of 3 the deviation from h/2 in the diffusion coefficient is also reduced

by a factor of 3. This explains why the fine structure that we observe in the

inset of figure 2.3.(a) becomes smaller and smaller in the limit of h → 0. The

diffusion coefficient thus behaves asymptotically like h/2 corresponding to the

simple random walk result for diffusion in this map for small parameter values.

In other words, higher order correlations of our system are negligible as h → 0, in

agreement with the findings in Klages [1996]; Klages and Dorfman [1997]. Such

a change between two different types of asymptotic random walk behaviour for

small and large parameter values was denoted as a ‘crossover in deterministic

diffusion’ (Klages and Dorfman [1997]).

Although the calculations have been presented for the lifted Bernoulli shift,

the method is essentially the same for the other three maps. If we turn our

attention to the lifted negative Bernoulli shift map Wh(x) the Takagi function is

TW (x) =































−1
2
TW

(

−2x+ ĥ
)

+ ⌈h⌉ x+ 1
2
TW (ĥ) 0 ≤ x < ĥ

2

−1
2
TW

(

−2x+ ĥ+ 1
)

+ ⌊h⌋ x+ ĥ
2
+ 1

2
TW (ĥ) ĥ

2
≤ x < 1

2

−1
2
TW

(

−2x+ 2− ĥ
)

− ⌊h⌋ (x+ 1) + ĥ
2
+ 1

2
TW (ĥ) 1

2
≤ x < 1− ĥ

2

−1
2
TW

(

−2x+ 3− ĥ
)

+ ⌈h⌉ (1− x) + 1
2
TW (ĥ) 1− ĥ

2
≤ x ≤ 1

(2.36)
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Figure 2.3: Large scale structure and asymptotic behaviour. In this figure, the dif-
fusion coefficients for the lifted Bernoulli shift (a) and the lifted negative Bernoulli
shift (b) are illustrated. Also included in both is f(h) = h2/2 to show how the
function grows for large h. Note the periodicity of the fine scale structure. Inset
in both is an illustration of the asymptotic behaviour as h → 0.The dashed lines
are h

2
to show the different behaviour in the two maps.

and the corresponding expression for the parameter dependent diffusion coeffi-

cient is,

DW (h) =
⌊h⌋2
2

+
ĥ

2

(

⌈h⌉2 − ⌊h⌋2
)

+ TW (ĥ). (2.37)

The first two parts of Eq.(2.37) form the same piecewise linear function found in

Eq.(2.34) so as h → ∞ we observe the same asymptotic behaviour found in the

lifted Bernoulli shift map, see figure 2.3.

The parameter dependent Takagi functions for the lifted tent map and lifted

V map are different in character to the two Bernoulli shift maps discussed above.

In order to emphasise this difference we restrict the parameter to h ∈ [0, 1]. For

the lifted tent map the Takagi function is
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TΛ(x) =























1
2
TΛ(2x+ h)− 1

2
TΛ(h) 0 ≤ x < 1−h

2

x+ 1
2
TΛ(2x+ h− 1) + h−1

2
− 1

2
TΛ(h)

1−h
2

≤ x < 1
2

−1
2
TΛ(−2x+ 2− h) + h

2
+ 1

2
TΛ(1− h) 1

2
≤ x < 1− h

2

−x− 1
2
TΛ(−2x+ 3− h) + 1 + 1

2
TΛ(1− h) 1− h

2
≤ x < 1

.

(2.38)

Whilst the Takagi function for the lifted V map is

TV (x) =























x− 1
2
TV (−2x+ h) + 1

2
TV (h) 0 ≤ x < h

2

−1
2
TV (−2x+ 1 + h) + h

2
+ 1

2
TV (h)

h
2
≤ x < 1

2

−x+ 1
2
TV (2x− h) + h

2
+ 1

2
− 1

2
TV (1− h) 1

2
≤ x < 1+h

2
1
2
TV (2x− 1− h)− 1

2
TV (1− h) 1+h

2
≤ x < 1

. (2.39)

The important difference is the inclusion of the T (1−h) terms. In Eq.(2.32) and

Eq.(2.36) we used the symmetry of the Takagi functions about the point x = 0.5

to equate T (1 − h) with T (h). The Takagi functions for the lifted V map and

lifted tent map do not have this property. We will discuss the consequences of

this in subsection 2.2.4.

2.2.4 Evaluating the Takagi functions

In order to analyse the diffusion coefficient, we need to solve the functional equa-

tions of the generalised Takagi functions we have defined. We begin with the

Takagi functions for the lifted Bernoulli shift map given by Eq.(2.32). The idea

is to repeatedly apply the recursion relation from Eq.(2.23) in order to obtain an

infinite sum

TM(x) = tM (x) +
1

2
TM(M̃h(x))−

1

2
TM(h)

= tM (x) +
1

2
tM(M̃h(x)) +

1

4
TM(M̃2

h(x))−
1

2
TM(h)− 1

4
TM(h)

=

∞
∑

k=0

1

2k
tM

(

M̃k
h (x)

)

− TM(h), (2.40)
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Figure 2.4: The generalised Takagi functions. In this figure, the generalised
Takagi functions are shown for the four maps at a parameter value of h = 1.
In (a); the lifted Bernoulli shift, which one may recognise as the famous Takagi
function. In (b); the negative Bernoulli shift. In (c); the lifted V map. In
(d); the lifted tent map. Note the self similarity and ‘fractal’ structure. Note
also the asymmetry in (c) and (d) compared to (a) and (b), this is due to the
asymmetry in the evolution of the p.d.f for these maps. Also portrayed here is
TV (x) = TΛ(1− x), this is due to the symmetry between the two maps.

where explicitly,

tM (x) =























⌊h⌋ x 0 ≤ x < 1−ĥ
2

ĥ−1
2

+ ⌈h⌉ x 1−ĥ
2

≤ x < 1
2

1+ĥ
2

− ⌈h⌉ x 1
2
≤ x < 1+ĥ

2

⌊h⌋ − ⌊h⌋ x 1+ĥ
2

≤ x ≤ 1

. (2.41)

Eq.(2.40) can be simplified by removing the TM(h) term to obtain an infinite sum

involving only Eq.(2.41). The first step is to split the TM(h) term in two
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TM(x) =
∞
∑

k=0

1

2k
tM

(

M̃k
h (x)

)

− 1

2
(TM (h) + TM (h)) , (2.42)

and reapply Eq.(2.40) to one of the halfs to give

TM(x) =
∞
∑

k=0

1

2k
tM

(

M̃k
h (x)

)

− 1

2
TM (h)− 1

2

(

∞
∑

k=0

1

2k
tM

(

M̃k
h (h)

)

− TM(h)

)

.

(2.43)

The TM(h) terms in Eq.(2.43) now cancel leaving us with

TM(x) =
∞
∑

k=0

1

2k

(

tM

(

M̃k
h (x)

)

− 1

2
tM

(

M̃k
h (h)

)

)

. (2.44)

Eq.(2.44) allows us to solve Eq.(2.32) using only Eq.(2.41) which is simple enough

to obtain from Eq.(2.17). Taking Eq.(2.34) and Eq.(2.44) into account, we see

that we evaluate the diffusion coefficient as a function of the orbit of the point x =

h. Furthermore we see that the preimages of the point x = h are the critical points

of the map M̃h(x). So we remark that underpinning this method is kneading

theory. That is the study of the orbits of the critical points, called ‘kneading

orbits’ (see for example Devaney [1989] or Katok and Hasselblatt [1995]). In

section 2.3 we will look at how to use the kneading orbits, which we will call

‘generating orbits’ to understand the structure of the diffusion coefficient. In

chapter 5 we will look at a method for deriving the diffusion coefficient directly

from kneading theory.

The Takagi functions for the lifted negative Bernoulli shift map can be solved

in a similar way. We use the same recursive definition to obtain

TW (x) =

∞
∑

k=0

(−1

2

)k

tW (x) +

∞
∑

k=0

(−1

2

)k

TW (h)

=

∞
∑

k=0

(−1

2

)k

tW (x) +
1

3
TW (h) (2.45)

where
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tW (x) =























⌈h⌉ x 0 ≤ x < ĥ
2

ĥ
2
(⌈h⌉ − ⌊h⌋) + ⌊h⌋ x ĥ

2
≤ x < 1

2

⌊h⌋ + ĥ
2
(⌈h⌉ − ⌊h⌋)− ⌊h⌋ x 1

2
≤ x < 1− ĥ

2

⌈h⌉ − ⌈h⌉ x 1− ĥ
2
≤ x ≤ 1

. (2.46)

It is again possible to remove TW (h) to obtain an infinite sum in terms of

Eq.(2.46).

TW (x) =

∞
∑

k=0

(−1

2

)k (

tW

(

W̃ k
h (x)

)

+
1

2
tW

(

W̃ k
h (h)

)

)

. (2.47)

Things are not so simple when we try to evaluate the Takagi functions for the

lifted V map and the lifted Tent map. The fact that we have both a positive and

a negative gradient in Vh(x) and Λh(x) makes it harder to simplify the recursion

relation into one single sum. If we take the Takagi functions for the lifted V map

as an example and let

f(x) =

{

−1 0 ≤ x < 1
2

1 1
2
≤ x ≤ 1

, (2.48)

g(x) =

{

TV (h) 0 ≤ x < 1
2

−TV (1− h) 1
2
≤ x ≤ 1

. (2.49)

The sum for the Takagi function that we obtain is

TV (x) = tV (x) +
1

2
g(x) +

∞
∑

k=1

f(Ṽ k−1
h (x))

2k

(

tV (Ṽ
k
h (x)) +

1

2
g(Ṽ k

h (x))

)

(2.50)

where

tV (x) =























x 0 ≤ x < h
2

h
2

h
2
≤ x < 1

2
h+1
2

− x 1
2
≤ x < 1+h

2

0 1+h
2

≤ x ≤ 1

. 0 ≤ h ≤ 1. (2.51)
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See figure 2.4 for an illustration of a selection of generalised Takagi functions.

Note how figure 2.4.(a) reproduces the famous Takagi function (Takagi [1903]).

An additional interesting observation is the similarity between the generalised

Takagi function in figure 2.4.(b) with that of figure 4.(d) in Gaspard and Klages

[1998]. This generalised Takagi function in Gaspard and Klages [1998] is for a

different map where the gradient is varied as a parameter. The similarity between

the generalised Takagi functions indicates a similarity between the underlying

jumping process, despite the microscopic dynamics being different.

2.3 The structure of the diffusion coefficients

In this section the parameter dependent diffusion coefficients for the four maps

will be illustrated, and their structure explained.

2.3.1 The lifted Bernoulli shift map

Figure 2.5.(a) gives the diffusion coefficient for the lifted Bernoulli shift map. The

two striking features are the fractal region when h is between zero and a half,

and the linear plateau when h is between a half and one. These regions will be

explained in turn.

2.3.1.1 The fractal region

Firstly, the term ‘fractal’ has no strict mathematical definition so we use the term

loosely. In particular we use it to refer to the fact that the diffusion coefficient

exhibits non-trivial fine scale structure, and regions of scaling and self similarity,

see figure 2.6. For a discussion of the ‘fractality’ of diffusion coefficients see for

example Klages and Klauß [2003].

The topological instability of the map under parameter variation is reflected

in the fractal structure of the diffusion coefficient. So in order to understand the

fractality, we need to understand the topological instability. To this end, we take

Eq.(2.1) modulo one, and analyse the behaviour of the Markov partitions of the

interval map M̃h(x) : [0, 1] → [0, 1]
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Figure 2.5: The diffusion coefficients. In this figure, the parameter dependent
diffusion coefficients are illustrated. In (a) the lifted Bernoulli shift. In (b) the
lifted negative Bernoulli shift. In (c) the lifted V map. In (d) the lifted tent
map.

M̃h(x) =























2x+ ĥ 0 ≤ x < 1−ĥ
2

2x+ ĥ− 1 1−ĥ
2

≤ x < 1
2

2x− ĥ 1
2
≤ x < 1+ĥ

2

2x− 1− ĥ 1+ĥ
2

≤ x < 1

. (2.52)

The structure of the Markov partitions of (2.52) varies wildly under parameter
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Figure 2.6: Non-trivial fine-scale structure. In this figure, certain sections of
the parameter dependent diffusion coefficient in the lifted Bernoulli shift map
have been enlarged to exhibit the non-trivial fine-scale structure. In (b) the
highlighted region from (a) is illustrated, in (c) the highlighted region from (b)
and in (d) the highlighted region from (c).

55



variation. The method we employ to understand the Markov partitions involves

iterating the critical point x = 0.5 (Klages [1996]; Klages and Dorfman [1995,

1999]). The set of iterates of this point, along with the set of points symmetric

about x = 0.5, form a set of Markov partition points for the map. Hence we call

the orbit of x = 1
2
a ‘generating orbit’. Furthermore, if the generating orbit is

finite for a particular value of h, we obtain a finite Markov partition. We can

then use the finite Markov partition to tell us about the diffusive properties of

the map and hence the structure of the diffusion coefficient. For this purpose the

following proposition is crucial.

Proposition 1 The set of values of the parameter h which give a finite Markov

partition are dense in the parameter space.

Proof:

We show that when h is rational, the generating orbit is finite. This is achieved

by showing that the denominator of h fixes the number of possible iterates of the

generating orbit. Let h = a
b
where a, b ∈ N and a ≤ b

M̃a
b
(0.5) = 1− h

=
b− a

b
. (2.53)

Clearly, b − a ∈ {0, 1, 2, ..., b − 1}. If M̃a
b
( b−a

b
) is then evaluated, there are four

possibilities due to the four branches of (2.52). For all four possibilities

M̃a
b

(

b− a

b

)

=
c

b
, c ∈ {0, 1, 2, ..., b− 1}. (2.54)

So for n = 1 and n = 2

M̃n
a
b
(0.5) =

c

b
, (2.55)

with c ∈ {0, 1, 2, ..., b− 1}. Now we assume that

M̃m
a
b
(0.5) =

c

b
, (2.56)
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for all m ≤ n, and the result follows by induction that

M̃n
a
b
(0.5) =

c

b
, c ∈ {0, 1, 2, ..., b− 1} ∀n ∈ N. (2.57)

The result in (2.57) puts a limit on the size of the subset of values that the

orbit of x = 0.5 can hit at a given rational value of h. This size being equal to

|{0, 1
b
, ..., b−1

b
}| = b. Hence the orbit must be periodic or pre-periodic, and the

Markov partition of the map must have a finite number of partition points when

h is rational.

q.e.d.

The second important result is that the finite Markov partitions correspond

to the local minima and maxima of the diffusion coefficient (Klages [1996]; Klages

and Dorfman [1995, 1999]). If we extend our view back to the full maps, we see

that if the generating orbit is periodic, i.e.

M̃n
h (0.5) = 0.5, n ∈ N, (2.58)

then this corresponds to a relatively high rate of diffusion for the parameter value,

which is reflected in the diffusion coefficient as a local maximum. In contrast, if

the generating orbit is pre-periodic, this corresponds to a relatively low rate of

diffusion for the parameter value, which is reflected in the diffusion coefficient as a

local minimum. So given that we have a dense set of local maxima and minima,

we observe a fractal diffusion coefficient. Furthermore, Eq.(2.58) furnishes us

with the means of pinpointing the local maxima of the diffusion coefficient. In

Klages [1996] this technique gave an approximation of where the local extrema

were, but this model allows to find them precisely. Each n gives us a set of simple

linear equations for the variable h, the solutions of which are the local maxima

in the diffusion coefficient. In addition, the smaller values of n give the most

striking local maxima. One can apply a similar technique to locate the local

minima of the graph, see figure 2.7. However, it’s not a case of finding solutions

to one simple equation like Eq.(2.58). Rather, there are many ways to define

pre-periodic orbits as opposed to defining periodic orbits. In addition, the local
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Figure 2.7: Pinpointing the local extrema. In this figure, some of the local extrema
have been highlighted. At the points highlighted by squares we see the orbit of 0.5
is iterated to infinity resulting in a local maximum. At the points highlighted by
diamonds we see the orbit of 0.5 is in a closed loop resulting in a local minimum.

minima do not adhere to such a strict ordering that the local maxima do. This

is due to the fact that there are two components to a pre-periodic orbit, namely

the transient length and the periodic orbit length. In summary, for h between

zero and one half, there exists a dense set of points which correspond to either

local maxima or local minima. Hence a fractal structure is observed.

2.3.1.2 The linear region

The second feature of the diffusion coefficient is the linear region where h ∈
[0.5, 1]. Not only is it striking because it very abruptly changes from fractal to
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Figure 2.8: Nonergodicity. In this figure, the nonergodicity of the lifted Bernoulli
shift map at h = 0.75 is shown in (a), and in the lifted negative Bernoulli shift
at h = 0.25 in (b). For simplicity the dynamics have been reduced to the maps
modulo 1. One can see that the black areas get mapped into themselves as do
the grey areas. This splits up the phase space breaking ergodicity.

linear, it is also counter intuitive if we apply a simple random walk approximation

to the map. That is, we can obtain a first order approximation of the diffusion

coefficient by looking at the measure of the escape region of the map (the area

where a point can move from one unit interval to the next) (Klages [1996]; Klages

and Dorfman [1997]). This region clearly increases linearly with the parameter,

so based on a first order approximation one would expect to see a general increase

in the diffusion coefficient as the parameter increases. However, what is observed

defies this. We explain this feature by noting the non-ergodicity of the map in

this region.

When the parameter h reaches one half, a fixed point is born in the modulo

one map. As the parameter increases further, the fixed point bifurcates and the

two resulting fixed points split the phase space into two invariant sets, breaking

the ergodicity of the map, see figure 2.8. Consequently, the invariant density

ρ∗(x), can be interpreted as the sum of two invariant densities ρ∗1(x) and ρ∗2(x)

and the diffusion coefficient can be evaluated as
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DM(h) = lim
n→∞

1

2n

∫ 1

0

ρ∗(x)(xn − x0)
2dx

= lim
n→∞

1

2n

(
∫ 1

0

ρ∗1(x)(xn − x0)
2dx+

∫ 1

0

ρ∗2(x)(xn − x0)
2dx

)

.(2.59)

We can then use the Taylor-Green-Kubo formula and derive two separate gener-

alised Takagi functions, in order to evaluate the diffusion coefficient as

DM(h) = (1− h) + (h− 1

2
)

=
1

2
. (2.60)

2.3.2 The negative Bernoulli shift map

Figure 2.5(b) shows the diffusion coefficient for the lifted negative Bernoulli shift

map Wh(x). Firstly we note how radically different the structure of the diffusion

coefficient is from the lifted Bernoulli shift map. In addition, as h → 0 the

diffusion coefficient does not go to h
2
by reproducing the random walk solution

as in the lifted Bernoulli shift map. However, as h → ∞ the diffusion coefficient

goes to h2

2
as in the lifted Bernoulli shift. We also observe both a linear and a

fractal region. For 0 ≤ h ≤ 1
2
the diffusion coefficient is a simple linear function

equal to h. Again, the explanation for this is that the map is non-ergodic in this

parameter range, see figure 2.8. The phase space is split up into two invariant

regions, one of which does not contribute to diffusion as it is a trapping region, the

other of which grows linearly with h so we observe a linear, increasing diffusion

coefficient. When 1
2
≤ h ≤ 1, the map becomes topologically unstable under

parameter variation. Similar to the lifted Bernoulli shift map, this instability is

reflected in the behaviour of the Markov partitions of Eq.(2.4) taken modulo one.

We have that the finite Markov partitions are dense in the parameter space and

that these finite Markov partitions correspond to the local maxima and minima

of the diffusion coefficient. Hence we again observe a fractal diffusion coefficient.
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2.3.3 The lifted V map

Mercifully, we need not turn to infinite sums like Eq.(2.50) when we evaluate the

diffusion coefficient for the lifted V map. The diffusion coefficient for the V-map

is given by

DV (h) =
h

2
+

1

2
(TV (h) + TV (1− h)) , 0 ≤ h ≤ 1. (2.61)

Instead of evaluating the relevant Takagi function, Eq.(2.39), numerically we can

use the helpful property that for h less than one half

TV (h) = −1

2
TV (1− h) +

h

2
+

1

2
TV (h)

= −TV (1− h) + h. (2.62)

Using Eq.(2.62) in Eq.(2.61), the diffusion coefficient can be evaluated to

DV (h) =
h

2
+

1

2
(−TV (1− h) + h+ TV (1− h))

= h. (2.63)

Furthermore, for h greater than one half

TV (h) = −h+
1

2
TV (h) +

h

2
+

1

2
− 1

2
TV (1− h)

= −TV (1− h)− h + 1. (2.64)

Using Eq.(2.64) in Eq.(2.61), the diffusion coefficient can again be evaluated

DV (h) =
h

2
+

1

2
(−TV (1− h)− h + 1 + TV (1− h))

=
1

2
. (2.65)

See figure 2.5.(c) for an illustration. We will explain this linearity after looking
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at the diffusion coefficient for the lifted tent map.

2.3.4 The lifted tent map

For the lifted tent map Λh(x), we can not perform the same trick with the Tak-

agi functions, Eq.(2.38), that we did with the lifted V map in subsection 2.3.3.

However we still do not need to resort to numerical computations to analyse the

diffusion coefficient. We note that

Λh(x) = −Vh(−x). (2.66)

Eq.(2.66) is important because it serves as a topological conjugacy of the form

f(x) = −x. By using the Taylor-Green-Kubo formula Eq.(2.16) it was shown

in Korabel and Klages [2004] that the diffusion coefficient is preserved under

topological conjugacy, hence we observe an identical diffusion coefficient in the

two maps which can be seen in figure 2.5. We can see why this is the case with

this example by looking at Einstein’s formula Eq.(2.6) to prove the following

proposition:

Proposition 2 The diffusion coefficients for the lifted tent map is identical to

that of the lifted V map.

Proof:

We note that the diffusion coefficient for the lifted V map is given by

DV (h) = lim
n→∞

〈

(V n
h (x0)− x0)

2〉

2n
, (2.67)

and that the diffusion coefficient for the tent map (DΛ(h)) can be given by

DΛ(h) = lim
n→∞

〈

(Λn
h(−x0)− (−x0))

2〉

2n
, (2.68)

where the p.d.f is in the interval, [−1, 1] to make it symmetric about x = 0. By

substituting (2.66) into (2.68)

DΛ(h) = lim
n→∞

〈

(Λn
h(−x0)− (−x0))

2〉

2n
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= lim
n→∞

〈

(−V n
h (x0)− (−x0))

2〉

2n

= lim
n→∞

〈

(V n
h (x0)− x0)

2〉

2n
= DV (h). (2.69)

we arrive at the desired relationship that DΛ(h) = DV (h).

q.e.d.

From what we have seen in the lifted Bernoulli shift map and the lifted nega-

tive Bernoulli shift map, we would expect to find non-ergodicity in the lifted tent

and lifted V maps. Furthermore we would expect to find it across the entire pa-

rameter range given the linear diffusion coefficients. However, there is no obvious

non-ergodicity, and although a proof that the maps are ergodic across the entire

parameter range remains elusive, we can check for ergodicity at individual values

of the parameter by checking the reducibility of the transition matrices (Petersen

[1983]). So we can confirm ergodicity for some values of h. Furthermore, the be-

haviour under parameter variation of the Markov partitions of the maps Eq.(2.4)

and Eq.(2.5) taken modulo one indicate the presence of topological instability

in the parameter space. So, although all the ‘ingredients’ for a fractal diffusion

coefficient are present, we observe a linear one.

2.3.5 The dominating branch effect

In order to understand the linearity of the diffusion coefficient of the lifted V

map (and hence the lifted tent map also), we first note the similarity of the

linear regions in the diffusion coefficients of the two lifted Bernoulli shift maps,

see figure 2.5. This presents the question, why do these maps have the same

diffusion coefficients when they have such different microscopic dynamics?

We will explain the linearity of the diffusion coefficients of the lifted tent and

lifted V map by showing why they have the same diffusion coefficients as the two

Bernoulli shift maps in the relevant parameter ranges. We will take these ranges

in turn starting with 0.5 ≤ h ≤ 1. The diffusion coefficient for the lifted Bernoulli
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shift map is given by Eq.(2.34) which for h ∈ [0.5, 1] simplifies to

DM(h) =
h

2
+ TM(h) (2.70)

which using Eq.(2.44)can be rewritten as

DM(h) =
h

2
+

∞
∑

k=0

1

2k

(

tM

(

M̃k
h (h)

)

− 1

2
tM

(

M̃k
h (h)

)

)

. (2.71)

Now using M̃h(h) = h for h ∈ [0.5, 1] we can simplify Eq.(2.71) to

DM(h) =
h

2
+

∞
∑

k=0

1

2k

(

tM (h)− 1

2
tM (h)

)

. (2.72)

Which implies that our diffusion coefficient in this region is equal to

DM(h) =
h

2
+

∞
∑

k=0

1

2k+1
(tM(h)) . (2.73)

Now, keeping Eq.(2.73) in mind, we turn our attention to the lifted V map. The

diffusion coefficient for the lifted V map with h ∈ [0, 1] is given by Eq.(2.61).

From Eq.(2.39) we can derive the useful recursion relation

TV (h) = tV (h) +
1

2
TV (h)−

1

2
TV (1− h), (2.74)

which if we repeatedly apply leads to

TV (h) =

∞
∑

k=0

1

2k
tV (h)−

∞
∑

k=0

1

2k+1
TV (1− h). (2.75)

Substituting Eq.(2.75) into Eq.(2.61) the diffusion coefficient is given by

DV (h) =
h

2
+

1

2

(

∞
∑

k=0

tV (h)

2k
+ TV (1− h)−

∞
∑

k=0

TV (1− h)

2k+1

)

. (2.76)

We can see from Eq.(2.41) and Eq.(2.51) that tM (h) = tV (h) when h ∈ [0.5, 1]

and hence the two diffusion coefficients are equal despite Mh(x) being non-ergodic

and Vh(x) ergodic in this parameter range. However Eq.(2.76) and Eq.(2.73) tell
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Figure 2.9: The time dependent diffusion coefficients. In this figure we see how
the diffusion coefficient converges as n increases for certain parameter values. In
(a) h = 0.2 for the lifted negative Bernoulli shift map and the lifted V map,
in (b) h = 0.7 for the lifted Bernoulli shift map and the V map. We see that
the diffusion coefficients tend to the same value but at different rates, indicating
that the difference in the microscopic dynamics does not play a role in the limit.
Rather we observe a dominating branch process where the common branch of the
map determines the diffusion coefficient.

us that DM(h) and DV (h) converge at different rates, see figure (2.9) for an

illustration of this phenomenon, and are hence only equal in the limit n → ∞.

We also note that in the limit the diffusion coefficient is only dependent on tM (h)

or tV (h) and that these functions are only dependent on the branch of the map

in [0.5, 1], That is the microscopic effects of the other branch of the map in[0, 0.5]

cancel out in the limit and play no role in the final diffusion coefficient. We

interpret this phenomenon physically as the diffusion undergoing a dominating

branch process, i.e. the diffusion coefficient is only dependent on the contribution

of one branch of the map in the limit as n → ∞. Hence we see identical diffusion

coefficients despite the different microscopic dynamics.

We find a similar situation for h ∈ [0, 0.5], where the lifted negative Bernoulli

shift map and the lifted V map have the same diffusion coefficient. They have

the branch in [0, 0.5] in common in this parameter range and it is this which

creates the dominating branch process. Hence we also observe identical diffusion

coefficients between these two maps in this parameter range.
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2.3.6 Stability of the diffusion coefficient in the non-ergodic

regions

In this subsection we look at the two lifted Bernoulli shift maps in the non-

ergodic regions. We have already seen that changing the gradient of one branch

of the map (resulting in the lifted V map or lifted tent map) has no effect on the

diffusion coefficient in these regions, even though the microscopic dynamics are

affected greatly. We will explore this phenomenon further.

For h ∈ [0, 0.5] the lifted negative Bernoulli shift map has a linear diffusion

coefficient. By changing the gradient and ‘chopping up’ the second branch of the

map we obtain a map Ŵh(x) : [0, 1] → R

Ŵh(x) =











−2x+ 1 + h 0 ≤ x < 1
2

2x− 1 1
2
≤ x ≤ 1− h

2

2x− 2 1− h
2
≤ x < 1

. (2.77)

The Takagi function for this map with h ∈ [0, 1] is

TŴ (x) =























−1
2
TŴ (−2x+ h) + x+ 1

2
TŴ (h) 0 ≤ x < h

2

−1
2
TŴ (−2x+ 1 + h) + h

2
+ 1

2
TŴ (h) h

2
≤ x < 1

2
1
2
TŴ (2x− 1) + h

2
1
2
≤ x < 1− h

2
1
2
TŴ (2x− 1) + 1− x 1− h

2
≤ x < 1

(2.78)

and the diffusion coefficient can be evaluated as

DŴ (h) =
h

2
+

1

2
(TŴ (h) + TŴ (1− h)) , 0 ≤ h ≤ 1. (2.79)

Again for h ∈ [0, 0.5] we have that

TŴ (h) = −TŴ (1− h) + h. (2.80)

which implies that for h ∈ [0, 0.5] the diffusion coefficient is equal to h.

We can play a similar game with the lifted Bernoulli shift map which has a

linear diffusion coefficient for h ∈ [0.5, 1]. We can change the gradient and chop

up the first branch of the map to create M̂h(x) : [0, 1] → R
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M̂h(x) =











−2x+ 1 0 ≤ x < 1−h
2

−2x+ 2 1−h
2

≤ x ≤ 1
2

2x− 1− h 1
2
≤ x < 1

. (2.81)

The Takagi function for this map with h ∈ [0, 1] is

TM̂(x) =























−1
2
TM̂(−2x+ 1) 0 ≤ x < 1−h

2

−1
2
TM̂(−2x+ 1) + x− 1−h

2
1−h
2

≤ x < 1
2

1
2
TM̂(2x− h)− x+ 1+h

2
− 1

2
TM̂(1− h) 1

2
≤ x < 1+h

2
1
2
TM̂(2x− 1− h)− 1

2
TM̂(1− h) 1+h

2
≤ x < 1

(2.82)

and the diffusion coefficient for this map is

DM̂(h) =
h

2
+

1

2
(TM̂ (h) + TM̂(1− h)) , 0 ≤ h ≤ 1. (2.83)

We see that for h ∈ [0.5, 1] we have

TM̂(h) = −TM̂ (1− h)− h+ 1 (2.84)

which implies that for h ∈ [0.5, 1] the diffusion coefficient is equal to 0.5.

So we have again seen that the diffusion coefficients for these maps are very

stable in the relevant parameter ranges, i.e. the ranges where the maps are non-

ergodic. This allows to conjecture that the diffusion coefficient in these parameter

ranges is robust to changes that in the microscopic dynamics that leave the in-

variant density a constant function, despite the reintroduction of ergodicity.

2.4 Diffusion on the cylinder

In this section we will attempt to apply the functional recursion relation method

used above to the pseudo-two-dimensional sawtooth map. We will see that the

method fails to give the diffusion coefficient for all but a particular set of pa-

rameter values. We resort to numerical analysis to study the diffusion coefficient

which gives evidence for a fractal structure.
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2.4.1 The sawtooth map

We move away from simple maps on the real line and consider an area preserving,

two-dimensional, Hamiltonian system called the ‘sawtooth’ map (Dana et al.

[1989]), whose phase space X is the cylinder,

X = {x, y ∈ R : −0.5 ≤ x < 0.5,−∞ < y < ∞} , (2.85)

where the lines x = 0.5 and x = −0.5 are identified. The sawtooth map moves

points on the x axis according to

xn+1 = xn + yn+1, (2.86)

modulo the interval [−0.5, 0.5], where

yn+1 = yn +Kxn, (2.87)

where K ∈ R is our control parameter and n ∈ N gives the discrete time steps

where the lines x = 0.5 and x = −0.5 are identified. As the phase space is a

cylinder, diffusion only occurs along the y axis. That is in this setting we only

have diffusion in one-dimension. We can rewrite the dynamics for the sawtooth

map as the matrix equation,

ΓK

(

x

y

)

=

(

(K + 1) 1

K 1

) (

x

y

)

. (2.88)

We see that when K is an integer we have a family of ‘cat-maps’ (Arnold and

Avez [1968]).

2.4.2 The diffusion coefficient

As the density of points diffuses along the cylinder in one-dimension, the diffusion

coefficient for the sawtooth map is given by Einstein’s equation which in this

setting is

D = lim
n→∞

〈(yn − y0)
2〉

2n
(2.89)
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where

< ... >=

∫ 0.5

−0.5

∫ 1

0

...ρ∗(x, y)dydx (2.90)

is an integral over the invariant density of initial conditions ρ∗(x, y) located in

the unit square A = [−0.5, 0.5] × [0, 1]. The invariant density ρ∗(x, y) is simply

equal to 1.

We will attempt to evaluate the Taylor-Green-Kubo formula in order to derive

the diffusion coefficient, which is given by

D = lim
n→∞

(
∫ ∫

A

v0(x, y)J
n(x, y)dydx

)

− 1

2

∫ ∫

A

v20(x, y)dydx. (2.91)

where the velocity function is given by

vn(x, y) = yn+1 − yn

= (Kxn + yn)− yn

= Kxn, (2.92)

and the jump function by

Jn(x, y) =

n
∑

i=0

vi(x, y)

= v0(x, y) + Jn−1(Γ̃K(x, y)), (2.93)

with Γ̃K(x, y) equal to ΓK(x, y) taken modulo the initial unit square A. We can

define generalised Takagi functions as

T n(x, y) =

∫ y

0

∫ x

−0.5

Jn(s, t)dsdt

=

∫ y

0

∫ x

−0.5

Ksdsdt+

∫ y

0

∫ x

−0.5

Jn−1(Γ̃K(s, t))dsdt. (2.94)
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At this stage we would like to be able to rewrite the second integral in Eq.(2.94)

in terms of T n−1(x, y), that is derive a recurrence relation for T (x, y). However,

we see that this is not possible if we rewrite the integral as

∫ y

0

∫ x

0

Jn−1(Γ̃K(s, t)) =

∫ ∫

Γ̃K(a)

Jn−1(s, t)dsdt, (2.95)

where the integral is taken over the iteration under Γ̃K(x, y) of the square a =

[0, x]× [0, y]. As the sawtooth map is non-conformal, that is it does not preserve

angles, this integral is not taken over a simple square, so there is no way to define

a useable recurrence relation, as is possible in one dimension.

As we can not derive the diffusion coefficient analytically, we resort to a nu-

merical investigation of the Taylor-Green-Kubo formula, Eq.(2.91). Rather than

consider taking the limit n → ∞, we can truncate this formula at a given value

of n and define a ‘time-dependent’ diffusion coefficient.

Dn(K) =

∫ ∫

A

v0(x, y)J
n(x, y)dydx− 1

2

∫ ∫

A

v20(x, y)dydx. (2.96)

Then, starting from the zeroth order term D0(K), we can systematically add cor-

relations into the system and observe how the structure of the diffusion coefficient

builds up. The leading order term can be simply evaluated as,

D0(K) =
K2

24
, (2.97)

which is exact at the integer values of K. See figure 2.10.(a) for an illustration

of the parameter dependent diffusion coefficient. In this figure the diffusion co-

efficient appears to be a smooth function, which is the conclusion hinted at in

Sano [2002]. However, if we remove the leading order term given by Eq.(2.97) we

see that the picture is not so clear as there appears to be non-trivial fine-scale

structure which gives evidence for a possible fractal structure. As we increase

n, we see that Dn(K) becomes an increasingly complex function as the higher-

order correlations are added. See figures 2.10.(b), 2.10.(c) and 2.10.(d) for an

illustration. However, the situation may be more subtle, it could also be the case

that the diffusion coefficient lies between the ‘fractals’ that we saw in the one
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Figure 2.10: Diffusion in the sawtooth map. In figure (a) the numerically obtained
diffusion coefficient for the sawtooth map as a function of the parameter K is
illustrated for 0 ≤ K ≤ 3 (thick black line) along with the leading order term
K2/24 (thin grey line). In figures (b), (c) and (d) the ‘time-dependent’ diffusion
coefficient Dn(K), obtained from numerical evaluation of the Taylor-Green-Kubo
formula, is illustrated after being normalised by dividing out the leading order
term D0(K). In (b), Dn(K) is illustrated for n = 0, 2, 3 and 4 in black, blue,
red and green respectively. n = 1 is not visible. In (c) n = 5 and 6 in black and
red respectively. In (d) n = 7 and 8 in black and red respectively. Although the
diffusion coefficient appears smooth in (a), the increasingly complex functions
that we observe in (b), (c) and (d) suggest a potential fractal structure.
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dimensional case and simple smooth functions. Investigations into diffusion in

Hamiltonian particle billiards have led to conjectures of C1 but not C2 behaviour

(Klages [2007]; Klages and Dellago [2000]) which fit in with what we observe in

the sawtooth map.

2.5 Conclusion

In this chapter we studied four parameter-dependent, piecewise-linear, chaotic

maps of the real line. We derived precise analytical expressions for the diffu-

sion coefficients of these systems as a function of the parameter. These analytic

expressions were derived via the Taylor-Green-Kubo formula which we solved

using generalised fractal Takagi functions. The recursive solutions to these gen-

eralised Takagi functions allowed us to simply compute the diffusion coefficient to

arbitrary precision. We also looked at the two-dimensional sawtooth map and nu-

merically investigated the diffusion coefficient. This numerical investigation gave

evidence for a fractal structure via a systematic inclusion of higher-order corre-

lations, which produced an increasingly complex parameter dependent diffusion

coefficient.

Under parameter variation we observed a curious mixture of fractal and linear

behaviour in the diffusion coefficients across the family of one-dimensional maps.

The fractality was explained in terms of the topological instability of the maps

under parameter variation and this was understood by analysing the Markov par-

titions of the map. The linearity was explained in terms of the non-ergodicity of

the maps in certain parameter ranges, which splits the phase space up into two

separate ergodic components, each with their own diffusion coefficient. These in-

dividual diffusion coefficients complement each other to create a linear diffusion

coefficient. We also observed linear diffusion coefficients despite all the hallmarks

of the dynamics for generating fractality being present. In this case we found that

in the relevant parameter ranges, the ergodic maps have a set of branches in com-

mon with the non-ergodic maps which dominate the diffusion process in the long

time limit, hence we observe identical diffusion coefficients. Based on the study of

a variety of models, in previous literature it was conjectured that sufficiently low-

dimensional deterministically chaotic dynamical systems generating transport on
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periodic lattices would typically exhibit irregular or fractal transport coefficients

(Klages [1996, 2007]; Klages and Dorfman [1999]). Typicality does not exclude

that there exist specific counterexamples. Here we have identified a non-trivial

dynamical mechanism leading to piecewise linearity, despite the maps fulfilling

these assumptions and even the fact that the dynamics are topologically unstable

and ergodic under parameter variation. This also contradicts the intuition that a

linear diffusion coefficient would imply that the corresponding dynamical system

is topologically stable. The moral of this story is that if one observes a fractal

diffusion coefficient, this phenomenon can be explained in terms of the topological

instability of the dynamics under parameter variation. However, the converse is

not necessarily true; if one observes topological instability of the dynamics un-

der parameter variation, this does not necessarily imply the presence of a fractal

diffusion coefficient.

So far this mechanism has only been confirmed for two piecewise linear maps

whose microscopic symmetry is broken, which seems to be intimately associated

with the existence of a dominating branch. An interesting open question is finding

out under exactly which conditions we can manipulate the microscopic dynamics

of such maps and still observe identical diffusion coefficients, that is to explore how

strong the dominating branch process is. It would also be interesting to know

whether there exist any more physically realistic, possibly higher-dimensional

systems which display this dominating branch phenomenon. Also of interest is

the consequences of introducing a bias into the system generating a current. It

would be worthwhile to study whether analogous phenomena exist for this other

transport property and whether they can be revealed by similar techniques. In

addition, the true nature of the structure of the parameter dependent diffusion

coefficient in the sawtooth map remains an open question. Answering this ques-

tion will require the development of new, more powerful analytic techniques. We

will discuss one possible line of enquiry in this direction in chapter 5.
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Chapter 3

Capturing correlations

We investigate three different methods for systematically approximating the dif-

fusion coefficient of a deterministic random walk on the line which contains dy-

namical correlations that change irregularly under parameter variation. Captur-

ing these correlations by incorporating higher order terms, all schemes converge

to the analytically exact result. Two of these methods are based on expanding the

Taylor-Green-Kubo formula for diffusion, whilst the third method approximates

Markov partitions and transition matrices by using the escape rate theory of

chaotic diffusion. We check the practicability of the different methods by work-

ing them out analytically and numerically for a simple one-dimensional map,

study their convergence and critically discuss their usefulness in identifying a

possible fractal instability of parameter-dependent diffusion, in case of dynamics

where exact results for the diffusion coefficient are not available.

3.1 Introduction

Diffusion is a fundamental macroscopic transport process in many-particle sys-

tems. It is quantifiable by the diffusion coefficient, which describes the linear

growth in the mean-squared displacement of an ensemble of particles. The source

of this growth is often considered to be a Brownian or random process of collisions

between particles. However, on a microscopic scale the equations governing these

collisions in physical systems are deterministic and typically chaotic. By studying
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diffusion in chaotic dynamical systems we can attempt to take these deterministic

rules into account and understand the phenomenon of diffusion from first prin-

ciples (Cvitanović et al. [2010]; Dorfman [1999]; Gaspard [1998]; Klages [2007]).

Of particular interest is the study of the diffusion coefficient under parameter

variation in chaotic dynamical systems such as one-dimensional maps (Fujisaka

and Grossmann [1982]; Geisel and Nierwetberg [1982]; Korabel and Klages [2004];

Schell et al. [1982]), area preserving two dimensional maps (Cary and Meiss [1981];

Rechester and White [1980]; Venegeroles [2007]) and particle billiards (Harayama

and Gaspard [2001]; Harayama et al. [2002]; Machta and Zwanzig [1983]; Mátyás

and Klages [2004]). Where exact analytical results for chaotic dynamical systems

exist (Cristadoro [2006]; Groeneveld and Klages [2002]; Klages [1996]; Klages and

Dorfman [1995, 1999]; Knight and Klages [2011b]) one finds that the diffusion co-

efficient is typically a complicated fractal function of control parameters. This

phenomenon can be understood as a topological instability of the deterministic

diffusive dynamics under parameter variation (Klages [1996, 2007]; Klages and

Dorfman [1995, 1999]).

So far exact analytical solutions for the diffusion coefficient could only be de-

rived for simple cases of low-dimensional dynamics. In higher dimensions even

very fundamental properties of diffusion coefficients are often unknown, such as

whether they are smooth or fractal functions of control parameters (Harayama

and Gaspard [2001]; Jepps and Rondoni [2006]; Klages [2007]). For example,

much effort was spent two decades ago studying more complicated systems like

the two-dimensional sawtooth map (Cary and Meiss [1981]; Dana et al. [1989];

Eckhardt [1993]). However, despite a good understanding of the orbit struc-

ture (Percival and Vivaldi [1987a,b]) it was not possible to conclude whether

the diffusion coefficient is fractal or not (Sano [2002]). If one wishes to achieve

a microscopic understanding of diffusion in more realistic physical systems, one

therefore has to rely either on numerical simulations or on approximation meth-

ods. We saw in chapter 2 how an analytical method which is very powerful in

one dimension failed to yield the analytic diffusion coefficient of the sawtooth

maps, in this case we resorted to a systematic approximation procedure to obtain

evidence for a fractal structure.

In this chapter we compare three different methods for approximating pa-
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rameter dependent diffusion coefficients with each other by working them out

analytically and numerically for a simple one-dimensional map. This model has

the big advantage that it is very amenable to rigorous analysis. Its diffusion coef-

ficient has been calculated exactly in chapter 2 and in Knight and Klages [2011b]

and was found to be a fractal function of a control parameter. Our goal is to

assess the individual capabilities and limitations of these approximation meth-

ods in terms of practicability, physical interpretation, convergence towards the

exact result, and identification of an underlying fractal structure in the diffusion

coefficient.

In section 3.2 we define the deterministic dynamical system that provides our

test case, which is a simple piecewise linear one-dimensional map. In section 3.3

the first approximation method is introduced, called correlated random walk in

Klages and Korabel [2002], which consists of truncating the Taylor-Green-Kubo

formula for diffusion. This method enables us to analytically build up a series

of approximations which gives evidence for a fractal structure. In previous work

this approximation scheme has successfully been applied to understand param-

eter dependent diffusion in models that are much more complicated than the

one considered here (Harayama et al. [2002]; Klages [2007]; Korabel and Klages

[2004]; Mátyás and Klages [2004]). Motivated by the criticism of this method in

Gilbert and Sanders [2009] (see Klages and Knight [2011] for a discussion of this

criticism), in this paper we provide further insight into the functioning of this

method by working it out rigorously for our specific example. In section 3.4 the

persistent random walk method for diffusion is studied (Haus and Kehr [1987];

Weiss [1994]). Persistence effects in diffusion were first developed within stochas-

tic theory as a generalisation of simple Brownian motion in Fürth [1920] and in

hydrodynamics Taylor [1922]. The physical motivation is that after performing

one ‘jump’ a particle may have some momentum which means it is more likely to

continue in the same direction. Alternatively, in particle diffusion in lattice struc-

tures like metals (Bardeen and Herring [1952]), a particle will leave a lattice space

vacant behind it after jumping, meaning it is more likely to jump back. In both

cases this leads to correlations between jumps. The method consists of approxi-

mating the Taylor-Green-Kubo formula by including memory in a self-consistent,

persistent way. Recently this method has been worked out for chaotic diffusion
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in Hamiltonian particle billiards (Gilbert and Sanders [2009, 2010]; Gilbert et al.

[2011]). Here we apply this scheme to the different case of a one-dimensional map,

and we obtain a series of approximations analytically and then numerically. In

section 3.5 we look at a third method, defined within the framework of the escape

rate theory of chaotic diffusion (Dorfman [1999]; Gaspard [1998]; Gaspard and

Dorfman [1995]; Gaspard and Nicolis [1990]; Klages and Dorfman [1995, 1999]).

It consists of evaluating the diffusion coefficient in terms of the decay rate of the

dynamical system. The decay rate is in turn obtained by an approximation to

the relevant Markov transition matrix. By this method we are able to build up a

series of approximations which, through the functional form of the interpolation

that we find, gives very strong evidence for fractality. Basic ideas defining this

method have been sketched in Klages [2007], however, this is the first time that it

has been fully worked out to understand fractal diffusion coefficients. Section 2.5

forms the conclusion. This work was performed in collaboration with Dr Rainer

Klages of Queen Mary University of London and was published in Knight and

Klages [2011a].

3.2 A one-dimensional map exhibiting chaotic

diffusion

We use the simplest setting possible, where deterministic diffusion is generated

by a parameter dependent one-dimensional dynamical system. The equations of

motion are determined by a map Mh(x) : R → R so that

xn+1 = Mh(xn)

= Mn+1
h (x) x ∈ R, h ≥ 0, n ∈ N, (3.1)

with x = x0 (Fujisaka and Grossmann [1982]; Geisel and Nierwetberg [1982];

Klages and Dorfman [1995]; Schell et al. [1982]). In our case, the map Mh(x) is

based on the Bernoulli shift or doubling map, combined with a lift parameter h,
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which gives the simple parameter dependent map of the interval

Mh(x) =

{

2x+ h 0 ≤ x < 1
2

2x− 1− h 1
2
≤ x < 1

. (3.2)

This map exhibits ‘escape’, i.e., points leave the unit interval under iteration. It

is copied and lifted over the real line by

Mh(x+ z) = Mh(x) + z, z ∈ Z (3.3)

in order to obtain a map from the real line to itself, see figure 3.1(a). The

symmetry in this system ensures that there is no mean drift (Groeneveld and

Klages [2002]). Note that the invariant density of the map Eq.(3.2) modulo

one remains by construction simply uniform throughout the whole parameter

range. This is in contrast to the related piecewise linear maps studied in Klages

[1996, 2007]; Klages and Dorfman [1995, 1999], where the density becomes a

highly complicated step function under parameter variation, which profoundly

simplifies the situation. The model was first introduced in Gaspard and Klages

[1998], where its parameter dependent diffusion coefficient D(h) was obtained

numerically, while in Dorfman [1999]; Gaspard [1992] the diffusion coefficient

for a special single parameter value was calculated analytically. Exact analytical

solutions forD(h) for all h ≥ 0 of this and related models were derived in chapter 2

and in Knight and Klages [2011b]. Since there is a periodicity with integer values

of h, here we restrict ourselves to the parameter regime of h ∈ [0, 1] without

loss of generality. In Gaspard and Klages [1998]; Knight and Klages [2011b] and

chapter 2 it was found that D(h) displays both fractal and linear behaviour, see

figure 3.1.(b). This is one of the simplest models that exhibits a fractal diffusion

coefficient. Being nevertheless amenable to rigorous analysis, it thus forms a

convenient starting point to learn about the power of different approximation

methods for understanding complicated diffusion coefficients.
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Figure 3.1: The lifted Bernoulli shift map. A section of the map Mh(x), Eq.(3.2)
and Eq.(3.3), is illustrated in (a) for the value of the control parameter h =
0.5. The corresponding parameter dependent diffusion coefficient D(h), exactly
calculated in chapter 2 and Knight and Klages [2011b], is shown in (b).

3.3 Correlated random walk

The first approximation method starts with the diffusion coefficient expressed

in terms of the velocity autocorrelation function of the map, called the Taylor-

Green-Kubo formula, (Dorfman [1999]; Klages [2007]; Klages and Korabel [2002])

for derivations,

D(h) = lim
n→∞

(

n
∑

k=0

∫ 1

0

v0(x)vk(x)ρ
∗(x)dx

)

− 1

2

∫ 1

0

v20(x)ρ
∗(x)dx , (3.4)

where ρ∗(x) is the invariant density of the map Eq. (3.2) modulo one, this being

equal to one throughout the parameter range as we have a family of doubling

maps. The velocity function vk(x) calculates the integer displacement of a point

at the kth iteration,

vk(x) = ⌊xk+1⌋ − ⌊xk⌋ . (3.5)
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In order to create an nth order approximation we simply truncate Eq.(3.4) at a

given n (Klages and Korabel [2002]). Hence we obtain the finite sum

Dn(h) =
n
∑

k=0

∫ 1

0

v0(x)vk(x)dx− 1

2

∫ 1

0

v20(x)dx , (3.6)

which can physically be understood as a time dependent diffusion coefficient.

Looking at how the sequence of Dn(h) converges towards D(h) thus corresponds

to incorporating more and more memory in the decay of the velocity autocorre-

lation function and checking how this decay varies as a function of h for given

n. Note that the functional form of Dn(h) for finite n is to some extent already

determined by the choice of integer displacements in Eq. (3.5), however, it has

been checked that for the given model the deviations between using integer and

non-integer displacements for finite time are minor. Secondly, we remark that

by using this straightforward truncation scheme we have neglected further cross-

correlation terms that do not grow linearly in n, cf. Dorfman [1999]. Still, by

definition we have Dn(h) → D(h) (n → ∞). Going to lowest order, for n = 0 we

immediately see that

D0(h) =
h

2
, (3.7)

which is the simple uncorrelated random walk solution for the diffusion coeffi-

cient (Knight and Klages [2011b]). In figure (3.2) one can see that D0(h) is

asymptotically exact for h → 0.

Of more interest however are the higher values of n capturing the higher order

correlations that come into play. To evaluate these we define a jump function

Jn
h (x) : [0, 1] → R,

Jn
h (x) =

n
∑

k=0

vk (x) , (3.8)

which gives the integer displacement of a point x after n iterations. Equation

(3.8) can be written recursively as (Knight and Klages [2011b])

Jn
h (x) = v0(x) + Jn−1

h

(

M̃h(x)
)

, (3.9)

where M̃h(x) is Eq. (3.2) taken modulo 1. This recursive formula will help when
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we solve the integral in Eq. (3.6). Let T n
h (x) : [0, 1] → R be defined as

T n
h (x) =

∫ x

0

Jn(y)dy, T−1
h (x) := 0. (3.10)

Using Eq. (3.9) we can solve Eq. (3.10) recursively as

T n
h (x) = sh(x) +

1

2
T n−1

(

M̃h(x)
)

(3.11)

with

sh(x) =

∫ x

0

v0(y)dy = xv0(x) + c, (3.12)

where the constants of integration c can be evaluated using the continuity of

T n
h (x) and the fact that T n

h (0) = T n
h (1) = 0 as there is no mean drift in this

system. We obtain the following functional recursion relation for T n
h (x):

T n
h (x) =























1
2
T n−1
h (2x+ h) −1

2
T n−1
h (h) 0 ≤ x < 1−h

2
1
2
T n−1
h (2x+ h− 1) −1

2
T n−1
h (h) + x+

(

h−1
2

)

1−h
2

≤ x < 1
2

1
2
T n−1
h (2x− h) −1

2
T n−1
h (h)− x+

(

h+1
2

)

1
2
≤ x < 1+h

2
1
2
T n−1
h (2x− 1− h) −1

2
T n−1
h (h) 1+h

2
≤ x < 1

.

(3.13)

Using Eq. (3.13) in Eq. (3.6) via Eq.(3.8) and Eq.(3.10) we can evaluate the

nth order approximation as

Dn(h) =
h

2
+ T n−1

h (h). (3.14)

So we see that the higher order correlations are all captured by the cumulative

integral functions T n
h (x). In order to evaluate Eq. (3.14) we construct a recursive

relation from Eq. (3.13),

T n
h (h) =

n
∑

k=0

1

2k
th

(

M̃k
h (h)

)

−
n
∑

k=1

1

2k
T n−k
h (h), (3.15)
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where

th(x) =























0 0 ≤ x < 1−h
2

x+ h−1
2

1−h
2

≤ x < 1
2

−x+ h+1
2

1
2
≤ x < 1+h

2

0 1+h
2

≤ x < 1

(3.16)

is sh(x) with the −1
2
T n
h (h) terms removed. In order to simplify Eq. (3.15) we

write it entirely in terms of Eq. (3.16). Let

τh(n) =

n
∑

k=1

1

2k
T n−k
h (h). (3.17)

We can write Eq.(3.17) recursively as

τh(n) =
1

2
T n−1
h (h) +

1

2
τh(n− 1). (3.18)

Substituting Eq.(3.17) and Eq.(3.18) into Eq.(3.15) we obtain

T n
h (h) =

n
∑

k=0

1

2k
th

(

M̃k
h (h)

)

− 1

2
T n−1
h (h)− 1

2
τh(n− 1). (3.19)

Then substituting Eq.(3.15) back into Eq.(3.19)

T n
h (h) =

n
∑

k=0

1

2k
th

(

M̃k
h (h)

)

− 1

2

(

n−1
∑

k=0

1

2k
th

(

M̃k
h (h)

)

)

+
1

2
τh(n− 1)− 1

2
τh(n− 1) (3.20)

we arrive at the final expression

T n
h (h) =

1

2n
th

(

M̃n
h (h)

)

+

n−1
∑

k=0

1

2k+1
th

(

M̃k
h (h)

)

. (3.21)

It is helpful to rewrite Eq.(3.15) in the form of Eq.(3.21) as it allows us to

show that under this method, Dn(h) converges exactly to D(h) in finite time for

particular values of h, see figure (3.2) for an illustration. This means that for
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Figure 3.2: Correlated random walk. In this figure the first four approximations
to the parameter dependent diffusion coefficient D(h) are illustrated in bold (red)
along with the actual diffusion coefficient. In (a) the zeroth order is shown, which
is simply the random walk solution, in (b),(c) and (d) the first, second, and third
order approximations, respectively. At each stage one obtains a set of extrema
with linear interpolation, which converge quickly to the exact diffusion coefficient
D(h). The amount of extrema increases exponentially with n, hence we see the
fractal structure emerging.
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a specific set of parameter values, we can fully capture the correlations of the

map with a finite time approximation. This convergence is dependent upon the

behaviour of the orbit of the point x = h under the map M̃h(x). In particular,

if this orbit is pre-periodic, and the values of the points in the periodic loop

correspond to 0 in Eq. (3.16), then the time dependent diffusion coefficient Dn(h)

will converge to the exact value D(h) on the nth step, where n is given by the

transient length of the orbit of h plus one. For example, let h = 2/5,

M̃2/5(2/5) = 1/5

M̃2/5(1/5) = 4/5

M̃2/5(4/5) = 1/5 . (3.22)

So h = 2/5 is pre-periodic of transient length one. In addition

th(2/5) = 1/10

th(1/5) = 0

th(4/5) = 0 , (3.23)

thus t2/5

(

M̃n
2/5(2/5)

)

= 0 for n > 1. Hence we see finite time convergence

to D(h). This finite time convergence at a certain set of points is helpful in

understanding the structure of D(h) as the fractal diffusion coefficient can be

seen emerging around these points in the same manner as an iterated function

system like a Koch curve, see figure (3.2). This set of parameter values, whose

number of elements becomes infinite for n → ∞, holds the key to understanding

the emergence of the fractal structure in the diffusion coefficient. There is a clear

physical interpretation of this set of parameter values in terms of the orbits of

the associated critical points of the map, as exemplified above. Under parameter

variation these orbits generate complicated sequences of forward and backward

scattering, which characterise the diffusive dynamics by physically explaining

the origin of the fractal structure in terms of the topological instability of the

associated microscopic scattering processes. This physical interpretation has been

discussed in chapter 2 and is also explained in Klages [1996, 2007]; Klages and

Dorfman [1995, 1999]; Knight and Klages [2011b].
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Being able to analytically expose the fractal structure of parameter depen-

dent diffusion coefficients is the main strength of this method. In addition, the

convergence of the series of approximations is very quick due to the finite time

convergence at certain values of h. Moreover, the fact that one only needs to

directly put in the map dynamics makes it very user-friendly. However, due to

the recurrence relation that this method is based on, applying it analytically is

restricted to one-dimensional systems or higher dimensional systems whose dy-

namics can be projected down to one-dimensional systems, such as baker maps

(Dorfman [1999]; Gaspard [1998]; Gaspard and Klages [1998]; Klages [2007]). In

order to answer questions about more realistic, physical systems one would need

to resort to numerical analysis. By using families of time and parameter depen-

dent diffusion coefficients such as defined by Eq.(3.6) this is, on the other hand,

straightforward, as has been demonstrated in Harayama et al. [2002]; Klages

[2007]; Korabel and Klages [2004]; Mátyás and Klages [2004].

3.4 Persistent random walk

The next method we look at again starts with the Taylor-Green-Kubo formula

for diffusion Eq. (3.4). However, rather than truncating it, we now approximate

the correlations in a more self-consistent way by including memory effects persis-

tently. The key difference to the previous method is that this approach models

an exponential decay of the velocity autocorrelation function beyond the lowest

order approximation. This method first emerged within stochastic theory as a

persistent random walk (Haus and Kehr [1987]; Weiss [1994]) and was recently

applied to understand chaotic diffusion in Hamiltonian particle billiards Gilbert

and Sanders [2009, 2010]; Gilbert et al. [2011]. It is physically motivated by

generalisations of simple random walk behaviour of diffusing particles. Diffusing

particles may be more inclined to continue in a given direction due to momentum

effects or to switch directions due to vacant lattice sites for example, giving rise

to correlations between jumps. These effects were first studied in the context of

Brownian motion in Fürth [1920] and in the setting of hydrodynamics in Taylor

[1922].

The main task of evaluating the diffusion coefficient with this method is to find
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an expression for the correlation function at the nth time step by only including

memory effects of a given length. We start by defining the velocity autocorrelation

function as a sum over all possible velocities weighted by the corresponding parts

of the invariant measure µ∗ of the system,

〈v0(x)vn(x)〉 =
∑

v0(x),...,vn(x)

v0(x)vn(x)µ
∗({v0(x), . . . , vn(x)}). (3.24)

The different parts of the invariant measure in Eq. (3.24) are approximated

by the transition probabilities of the system, depending on the length of memory

considered. These in turn are trivially obtained from the invariant probability

density function ρ∗(x). As a 0th order approximation of this method, no memory

is considered at all, that is, the movement of a particle is entirely independent of

its preceding behaviour. In this case the correlations evaluate simply as

〈v0(x)vn(x)〉 = 0 (n > 0), (3.25)

thus we need only consider 〈v20(x)〉. By Eq. (3.4) the approximate diffusion coef-

ficient is obtained as

D0(h) =
1

2

∫ 1

0

〈

v20(x)
〉

dx =
h

2
, (3.26)

which reproduces again the random walk solution, as expected. For the higher

order approximations, one must refine the level of memory that is used based

upon the microscopic dynamics of the map.

3.4.1 One step memory approximation

We now include one step of memory in the system, i.e., we assume that the

behaviour of a point at the nth step is only dependent on the (n − 1)th step.

In Gilbert and Sanders [2009] Eq.(3.24) was evaluated for approximating the

diffusion coefficient in a particle billiard. For this purpose it was assumed that a

point moves to a neighbouring lattice point at each iteration. Hence the velocity

function vn(x) could only take the values ℓ or −ℓ, where ℓ defines the lattice

spacing. In order to evaluate the one step memory approximation for the map
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Mh(x), we need to modify the method to include the probability that a point

stays at a lattice point and does not move, hence the velocity function can take

the values 1,−1 or 0. This is physically motivated in persistent random walk

theory by the presence of impurities in lattice structures. These impurities can

trap diffusing particles with the trap time being far greater than the escape time.

This has been observed experimentally in the case of hydrogen atoms diffusing

in metallic crystals, see Okamura et al. [1980] for a study of persistent random

walks in this setting.

Let P (b|a) be the conditional probability that a point takes the velocity b

given that at the previous step it had velocity a with a, b ∈ {0, 1,−1}. We use

these probabilities to obtain a one step memory approximation. We can write

the velocity autocorrelation function as

〈v0vn〉 =
∑

v0,...,vn

v0vnp(v0)

n
∏

i=1

P (vi|vi−1), (3.27)

where we let vk(x) = vk for brevities sake and p(a) is the probability that a point

takes the velocity a at the first step. We can capture the combinatorics of the

sum over all possible paths by rewriting Eq.(3.27) as a matrix equation,

〈v0vn〉 =
(

0 1 −1
)







P00 P01 P0−1

P10 P11 P1−1

P−10 P−11 P−1−1







n





0

p(1)

−p(−1)






(3.28)

where Pba = P (b|a). Eq.(3.28) can be simplified by using the fact that all the

paths with a ‘0’ state cancel each other out, therefore not contributing to diffusion,

and by using the symmetries in the system, i.e.,

P−1−1 = P11

P−11 = P1−1

p(−1) = p(1) (3.29)
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Hence Eq. (3.27) can be simplified to

〈v0vn〉 =
(

1 −1
)

(

P11 P1−1

P1−1 P11

)n (

1

−1

)

p(1), (3.30)

which is a simple quadratic form. By diagonalisation the expression for the nth

velocity autocorrelation function is obtained,

〈v0vn〉 = 2p(1) (P11 − P1−1)
n , (3.31)

yielding the exponential decay of the velocity autocorrelation function,

< v0vn >∼ exp(n log(P11 − P1−1)), (3.32)

referred to above. Substituting Eq.(3.31) into the Taylor-Green-Kubo formula

Eq.(3.4) by using the fact that p(1) = h/2 gives

D(h) =

∞
∑

n=0

〈v0vn〉 −
1

2

〈

v20
〉

= h

(

∞
∑

n=0

(P11 − P1−1)
n

)

− h

2

=
h

1− P11 + P1−1
− h

2
. (3.33)

The relevant parameter dependent probabilities can be worked out from the in-

variant density ρ∗(x) of the system and are

P11 =











0 0 ≤ h < 1
3

1− (1−h)
2h

1
3
≤ h < 1

2
1
2

1
2
≤ h < 1

(3.34)

and

P1−1 =











0 0 ≤ h < 1
3

0 1
3
≤ h < 1

2

1− 1
2h

1
2
≤ h < 1

. (3.35)
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Figure 3.3: Persistent random walk approximation. In this figure the first order
approximation Eq. (3.33) to the exact parameter dependent diffusion coefficient
D(h) is illustrated in (a), the second order Eq. (3.37) is shown in (b). Ap-
proximations are in bold (red) along with the diffusion coefficient. The major
topological changes in the dynamics are picked out by piecewise-differentiable
approximations.

Substituting Eq.(3.34) and Eq.(3.35) into Eq.(3.33) we obtain a persistent one-

step memory approximation for the diffusion coefficient of the mapMh(x). Figure

(3.3) shows a plot of the final result as a function of the control parameter in

comparison to the exact diffusion coefficient D(h).

3.4.2 Two step memory approximation

We now extend the approximation to include two steps of memory, i.e., the be-

haviour of a point at the nth step depends on what has happened at the (n−1)th

and (n− 2)th step. Let P (c|b, a) be the conditional probability that a point has

velocity c given that it had velocity b at the previous step and a at the step be-

fore that with a, b, c ∈ {0, 1,−1}. For this two step approximation, the velocity

autocorrelations are given by

〈v0vn〉 =
∑

v0,...,vn

v0vnp(v0, v1)
n
∏

i=2

P (vi|vi−1, vi−2), (3.36)
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where p(a, b) is the probability that a point takes velocity a at the first step

followed by b. Again we proceed by the method of Gilbert and Sanders [2010]

and rewrite Eq.(3.36) as a matrix equation in order to capture the combinatorics

of the sum,

〈v0vn〉 = r · An · s (3.37)

where r evaluates vn, s evaluates v0p(v0, v1) and A is the 9× 9 probability tran-

sition matrix for the system. However, we are unable to evaluate Eq.(3.37) an-

alytically (see Appendix A.1) so we resort to numerical evaluations. The result

is depicted in figure 3.3. We see that this method picks out the same topologi-

cal changes in the map dynamics that the previous method did and interpolates

between them, however, the convergence at these points is not as accurate.

The strength of this method is in modelling the exponential decay of correla-

tions that is often found in diffusive systems, particularly in Hamiltonian particle

billiards (Bálint and Toth [2008]). When applied to these systems the method is

not restricted by dimension making it very useful in this setting. However, gener-

ating by default an exponential decay of correlations is not an ideal approach for

diffusive systems in which correlations do not decay exponentially. In contrast

to the correlated random walk approach, this method is not designed to reveal

possibly fractal structures of parameter dependent diffusion coefficients. It also

requires a lot of input about the relevant transition probabilities (see Appendix

A.1), making it unpractical when it comes to analysing higher order approxima-

tions.

3.5 Approximating Markov partitions

The final method we will look at does not involve the Taylor-Green-Kubo formula.

Using the framework of the escape rate theory applied to dynamical systems

as pioneered in Dorfman [1999]; Gaspard [1998]; Gaspard and Dorfman [1995];

Gaspard and Nicolis [1990], we consider a truncated map Mh(x) defined on [0, L],

L ∈ N with periodic boundary conditions. The key quantity to understanding

diffusion in this setting is the parameter-dependent decay rate γdec(h), which

measures the convergence of some initial density to the invariant one. As was
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shown in Klages [1996]; Klages and Dorfman [1995, 1999], by this approach the

diffusion coefficient as a function of the decay rate is given by,

D(h) = lim
L→∞

L2

4π2
γdec(h). (3.38)

That is one must calculate the decay rate for the truncated map on [0, L] as

a function of L and then take the limit L → ∞. The decay rate can in turn

be calculated exactly if the Frobenius-Perron equation can be mapped onto a

Markov transition matrix. In case of Mh(x) the second largest eigenvalue χ1(h)

of this transition matrix determines the decay rate, (Klages [1996]; Klages and

Dorfman [1995, 1999]) and is given by

γdec(h) = ln

(

2

χ1(h)

)

. (3.39)

Unfortunately, constructing Markov transition matrices exactly for even the sim-

plest parameter dependent maps can be a very complicated task. Hence the

approximation method we employ here is based on approximating the transition

matrix.

The approximation method starts as follows (see also Klages [1996]; Klages

and Dorfman [1999] for details): For a given value of the parameter h, we restrict

the dynamics to the unit interval by using Eq. (3.2) modulo 1. We then consider

the set of iterates of the ‘generating orbit’ (see chapter 2), that is the orbit of

the critical point x = 0.5. The set of values of the generating orbit form a set of

Markov partition points for the map, yielding a finite partition if the generating

orbit is periodic or pre-periodic. This set of points is then copied and lifted back

onto the system of size L into each unit interval, defining a partition of [0, L].

By supplementing this partition with periodic boundary conditions, it defines a

Markov partition for the whole system on [0, L].

The key problem is that the behaviour of the orbit of the critical point un-

der parameter variation is very irregular. Therefore we approximate Markov

partitions by truncating this orbit for a given parameter value after a certain

number of iterations. Typically, the resulting set of points will then not yield

a Markov partition for this parameter value. In order to make up for this, we
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introduce a weighted approximation into our transition matrix to account for any

non-Markovian behaviour. For example, if partition part i gets mapped onto a

fraction of partition part j then the entry ai,j in the approximate transition ma-

trix will be equal to this fraction. See Appendix A.2 for the second and third

order approximations to the transition matrix of the modulo one map.

The motivation behind this method is that at each stage of the approximation,

whose level is defined by the number of iterates of the critical point, there will

be certain values of the parameter whose Markov partitions are exact. So at

least for these parameter values we will obtain the precise diffusion coefficient

D(h), with interpolations between these points as defined by the approximate

transition matrix. That way, we will have full control and understanding over

the convergence of our approximations.

We first work out the zeroth order approximation, for which we take the unit

intervals as partition parts; see figure 3.4 for an illustration of Mh(x) at system

size L = 3. The corresponding approximate transition matrix T (h) is cyclic and

reads

T (h) =



















2− 2h h 0 . . . h

h 2− 2h h . . . 0

0 h 2− 2h h . . .
...

... h
. . . h

h 0 . . . h 2− 2h



















, (3.41)

therefore the eigenvalues can be evaluated analytically (Klages and Dorfman

[1995, 1999]) as

χ1(h) = 2− 2h + 2h cos(2π/L)

≃ 2− 2h + 2h

(

1− 2π2

L2

)

(L → ∞) . (3.42)

By combining this result with Eq. (3.39), the decay rate is given as a function of

the parameter and length L to

γdec(h) = ln

(

1

1− h+ h cos(2π/L)

)

≃ h2π2

L2
(L → ∞). (3.43)
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T (h) =





2− 2h h h
h 2− 2h h
h h 2− 2h



 (3.40)

Figure 3.4: Approximate Markov transition matrix.Illustrated here is the map
Mh(x) truncated on [0, L] with L = 3 and periodic boundary conditions. The
map is given by the diagonal lines (red) and the zeroth order approximation to the
Markov partition is shown by the thick black lines. The partition parts are simply
the unit intervals. Note the periodic boundary conditions. The corresponding
transition matrix is shown below. Note that this partition is only Markov when
h = 0 or 1.

Using Eq. (3.43) in Eq. (3.38), the diffusion coefficient is finally given by

D(h) =
h

2
, (3.44)

which again yields the familiar random walk approximation.

The next stage of approximation involves two partition parts per unit interval,

and for this we simply include the critical point x = 0.5 as a partition point. So

our partition parts are the half-unit intervals on the real line. These approxima-

tions do not yield cyclic matrices so their eigenvalues are worked out numerically.

See figure 3.5 for an illustration of the eigenvalues for a selection of parameters

that yield Markov transition matrices at the first and second order approximation

(see Appendix A.2).

For the next iteration level we include the first iteration of x = 0.5, M̃h(0.5) =
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Figure 3.5: First and second order eigenvalues. In this figure the eigenvalues of
Markov transition matrices of size L = 120 are illustrated. The parameters have
been chosen such that the first and second order approximations are identical to
the actual transition matrix. That is, h = 1/2 (red diagonal cross), converges at
the first order approximation, and h = 1/6 (blue cross), h = 1/4 (green asterix)
and h = 1/3 (black squares) converge at the second order. We observe a relatively
simple structure in the eigenvalues, particulary at h = 1/2 and h = 1/4 who have
no complex values.

1 − h as a partition point and its mirror image about x = 0.5 which is h, and

for each higher approximations we include one more iterate. However, again

with these higher approximations we no longer obtain a cyclic matrix, so we

have to resort to numerics to evaluate the eigenvalues. See figure 3.6 for an

illustration of the eigenvalues of a selection of Markov transition matrices. The

parameter values are chosen such that the approximation procedure yields a fully

Markov transition matrix at the third order approximation. We observe a more

complicated structure in the eigenvalues than that of the first and second order

Markov transition matrices (see figure 3.5), this being related to the stronger

higher order correlations in the system.

The first three approximations obtained by this method are displayed in figure
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Figure 3.6: Third order eigenvalues. In this figure, the eigenvalues of Markov
transition matrices are illustrated at the set of parameter values which converge
at the third-order approximation. In (a), h = 1/14 (red diagonal cross), h = 1/10
(blue asterix) and h = 1/8 (green box), the system size is L = 120. In (b),
h = 1/7 (red diagonal cross), h = 1/5 (blue asterix) and h = 3/10 (green box),
the system size is L = 120. In (c), h = 5/14 (red diagonal cross) and h = 3/8
(blue asterix) the system size is L = 300. In (d), h = 2/5 (red diagonal cross)
and h = 3/7 (blue asterix) the system size is L = 300. We observe much more
complicated structure in the eigenvalues compared with the first and second order
case (figure 3.5).
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Figure 3.7: Approximating the transition matrices. In this figure, the first order
approximation to the parameter dependent diffusion coefficient D(h) obtained by
this method is illustrated in (a), and the second and third orders are illustrated
in (b) and (c), respectively, whilst a blow up of (c) is shown in (d). The ap-
proximations are shown in bold (red) along with the diffusion coefficient diffusion
coefficient. We see that the functional form of the interpolation in (a) is repeated
in (b) at a smaller scale (see the contents of the dashed line box). This functional
form is again repeated on a still smaller scale in (c) as illustrated in (d). This
self-similarity provides evidence that the final function D(h) is fractal.
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3.7. The main strength of this method is that we know, by definition, where our

approximations are going to converge exactly in finite time, namely at Markov

partition parameter values h picked out by each subsequent approximation. In

addition, the functional form of the interpolation between these points highlights

areas of self-similarity and therefore gives one evidence for fractal behaviour even

at low-level approximations, see figure 3.7. However this method quickly relies

on numerical computation and again requires considerable input from the user

making it unpractical at higher level approximations.

3.6 Conclusion

In this chapter, we studied three methods for approximating the parameter de-

pendent diffusion coefficient by applying them analytically and numerically to

a simple dynamical system that exhibits diffusion. For this model the exact

parameter-dependent diffusion coefficient was derived in chapter 2 (Knight and

Klages [2011b]). Using these results as a reference, the motivation was to learn

about the capabilities and the weaknesses of the individual methods. These are

of course not a comprehensive list of the many possible ways to approximate

the diffusion coefficient of a system, see Rechester and White [1980]; Venegeroles

[2007] for diffusion in sawtooth and standard maps. However, what they do illus-

trate is the fact that even in our simple model studied here, the results that one

obtains are very much dependent upon the individual method used, and these

results vary greatly between the methods.

By the first method, based on a systematic truncation of the Taylor-Green-

Kubo formula, we saw the fractal structure building up analytically over a series

of correlated random walk approximations, as we were able to exactly capture the

correlations of the system in finite time at certain parameter values. This yielded

in turn quick convergence to the exact results. Using a persistent random walk

approach, the second method retained an exponential decay of correlations even

in finite time approximations. However, for the model under consideration this

approximation yielded convergence that was significantly weaker than in case of

the other two methods. Based on the escape rate approach to chaotic diffusion and

approximate transition matrices, the third method had our attention focused on
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areas of self-similarity giving us particularly strong evidence for fractal structures

in the diffusion coefficient. This method generated again very quick convergence.

Comparing the three different methods with each other demonstrates that one is

able to tailor the approximate results one gets by applying a specific method to

the specific questions one wishes to answer, or to the specific setting.

Accordingly, the quest for a ‘unique’ way to approximate the diffusion co-

efficient of a dynamical system, as suggested in Gilbert and Sanders [2009], is

unnecessarily restrictive. Here we looked at a different class of systems than the

Hamiltonian particle billiards considered in Gilbert and Sanders [2009]. This had

the advantage that the different approximation methods could be studied more

rigorously. We can conclude that the persistent random walk method favoured

in Gilbert and Sanders [2009] may be more appropriate for dispersing billiards,

because an integral part of this method is modelling an exponential decay of cor-

relations, as it is quite common in these systems. However, one may question

the usefulness of this method for diffusive dynamical systems where exponential

decay is not guaranteed. Here other methods, such as the first and the third

one discussed above, may yield superior results in terms of speed of convergence

and identification of possible fractal structures in diffusion coefficients. Particu-

larly the first method has the advantage that it is conceptually very simple and

quite universally applicable, without making any assumptions on the decay of

correlations.

Each of the three approximation methods discussed here has, for a given

model, its own virtue. When one looks to understand, or display, a particular

property of a system and cannot achieve this analytically, resorting to one of

these approximation methods is thus a sensible course of action.

A final point worth emphasising is that the structure of the diffusion coef-

ficients in more physical systems such as Lorentz gases and sawtooth maps are

still not fully understood Klages [2007]; Venegeroles [2007]. Particularly, to which

extent these systems diffusion coefficients are fractal remains an open question.

Further refining approximation methods, such as the ones presented in this paper,

to highlight areas of self-similarity in parameter dependent diffusion coefficients

in these systems, or to show the emergence of fractal structures, would be of great

help in answering these questions.
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Chapter 4

Diffusion through different holes

The dependence of the diffusion coefficient on the size and the position of dynami-

cal channels (‘holes’) linking spatial regions in periodically lifted, one-dimensional

dynamical systems is considered. The system properties can be obtained an-

alytically via a Taylor-Green-Kubo formula in terms of a functional recursion

relation, leading to a diffusion coefficient varying with the hole positions and

non-monotonically on their size. Analytic formulas for small holes in terms of pe-

riodic orbits covered by the holes are derived. The asymptotic regimes observed

show deviations from a simple random walk approximation, a phenomenon that

should be ubiquitous in dynamical systems and could potentially be observed

experimentally. The escape rate of the corresponding open system is also cal-

culated. The resulting parameter dependencies are compared with those of the

diffusion coefficient and explained in terms of periodic orbits.

4.1 Introduction

Recently there has been a surge of interest from mathematicians and physicists on

dynamical systems with holes, that is, subsets of phase space that allow trajecto-

ries to escape. Work on the escape rate of such systems has revealed fundamental

results regarding its dependence on position, the small hole size limit (Bunimovich

and Yurchenko [2011]; Keller and Liverani [2009]) and the effect of noise in such

systems (Altmann and Endler [2010]) to name a few; for reviews of this work
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see for example Altmann and Tél [2009]; Demers and Young [2006]; Dettmann

[2011]. Here we pose the question: How do other system properties depend upon

the position and size of escape holes? In this chapter we answer this question for

the diffusion coefficient, interpreting the holes now as the links between spatially

separate regions. Diffusion is an essential process of many-particle systems, the

study of which cross-links transport theory in statistical mechanics with dynami-

cal systems theory (Dorfman [1999]; Gaspard [1998]; Klages [2007]). In addition,

diffusive systems provide a setting where the complex interaction between dif-

ferent holes can be studied, an area that has yielded interesting results regard-

ing escape rates from circular (Bunimovich and Dettmann [2005]) and diamond

(Bunimovich and Dettmann [2007]) billiards with two holes, and very recently

regarding transmission and reflection rates in stadium billiards (Dettmann and

Georgiou [2011]) and the bouncer model (Dettmann and Leonel [2012]). A gen-

eral relation between escape and diffusion has been established by the escape rate

theory of chaotic diffusion, which provides exact formulas expressing transport

coefficients in terms of escape rates in spatially extended systems with absorb-

ing boundary conditions (Dorfman [1999]; Gaspard [1998]; Gaspard and Nicolis

[1990]; Klages [1996, 2007]).

Much research has gone into studying the parameter dependence of the diffu-

sion coefficient in simple one-dimensional maps (Fujisaka and Grossmann [1982];

Geisel and Nierwetberg [1982]; Schell et al. [1982], see also chapter 2 of this thesis).

For low-dimensional, spatially periodic chaotic dynamical systems the diffusion

coefficient is often found to be a fractal function of control parameters, exhibiting

non-trivial fine scale structure even in apparently simple examples (Gaspard and

Klages [1998]; Klages [2007]; Klages and Dorfman [1995]). The source of this frac-

tality is typically explained in terms of topological instability under parameter

variation of the underlying dynamics (Cristadoro [2006]; Cvitanović et al. [2010]).

However there exist systems that display these hallmarks of fractality but never-

theless have a linear diffusion coefficient as we saw in chapter 2. Therefore there

is still work to be done explaining the phenomenon of fractal diffusion coefficients

in one dimension, let alone attempting to answer questions about higher dimen-

sional, more physical systems like sawtooth maps (Dana et al. [1989]), standard

maps (Rechester and White [1980]) or particle billiards (Harayama and Gaspard
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[2001]; Harayama et al. [2002]) where analytical results are lacking, as are answers

to basic questions about the structure of the diffusion coefficient. Previous work

has focused on deriving and understanding the diffusion coefficient under smooth

variation of control parameters of the dynamics (Klages [2007]). In this setting

the reduced, modulo one dynamics of a system will change with parameter vari-

ation (Cvitanović et al. [2010]). In this chapter we will switch focus and study a

system where the reduced dynamics does not change (Gaspard and Klages [1998];

Knight and Klages [2011a,b]).

In section 4.2 we define the dynamical system that we will study. It is a simple

piecewise-linear chaotic map of the real line which is a deterministic realization of

a random walk. It is constructed by copying and periodically lifting the Bernoulli

shift or doubling map over the whole real line (Gaspard and Klages [1998]; Knight

and Klages [2011a,b]). We choose the doubling map so that we can compare

with the results on escape rates from Bunimovich and Yurchenko [2011]; Keller

and Liverani [2009] where the doubling map was also studied. In addition, the

invariant measure of the doubling map is simply Lebesgue, which helps make it

amenable to analysis with the method we will employ. The process of copying

and periodically lifting a map is the classical way to study chaotic diffusion in

one-dimension (Fujisaka and Grossmann [1982]; Geisel and Nierwetberg [1982];

Schell et al. [1982]). However we do not introduce transport into the system

through variation of a control parameter such as a shift or by varying the slope,

rather we dig escape holes into the map that serve as intervals where points can

be iterated to a neighbouring interval in analogy with the work in Bunimovich

and Yurchenko [2011]; Keller and Liverani [2009].

We then derive the diffusion coefficient as a function of the size and position

of the escape holes in this system via the Taylor-Green-Kubo formula (Dorfman

[1999]; Klages [2007]), in terms of a functional recursion relation. There are

various methods for analytically deriving diffusion coefficients Cristadoro [2006];

Cvitanović et al. [2010]; Groeneveld and Klages [2002]; Klages [2007] but the

method we use, developed in Gaspard and Klages [1998]; Klages [1996]; Knight

and Klages [2011a,b] and employed in chapter 2 of this thesis, is the best suited to

this setting. In section 4.3 we look at the analytical formulas derived in section

4.2 and find that the diffusion coefficient varies as the position of the escape
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holes is varied, in analogy with results on the escape rate. We also find that the

diffusion coefficient decreases non-monotonically as the size of the escape holes

decreases, a result that is different to the escape rate.

Following this, we analyze the diffusion coefficient for small hole size by deriv-

ing analytical expressions which capture the asymptotic regime. We find that the

asymptotic regime is dependent upon the orbit structure of the limiting point in

an escape region, a result which goes beyond a simple random walk approximation

(Fujisaka and Grossmann [1982]; Klages [1996]; Klages and Dorfman [1997]; Schell

et al. [1982]). We explain the results on position dependence, non-monotonicity

and asymptotic regimes by looking at the periodic orbit structure of the map.

Moreover, we build a periodic orbit expansion for small but finite holes giving a

more intuitive insight of the above. In section 4.4 we numerically calculate the

escape rate for the corresponding open system in order to compare with the dif-

fusion coefficient. Conclusions are made in section 4.5. The results presented in

this chapter are from collaborative work with Dr. Rainer Klages of Queen Mary

University of London, Dr. Carl Dettmann of the University of Bristol and Dr.

Orestis Georgiou of the Max-Planck-Institut für Physik Komplexer Systeme and

were submitted for publication in December 2011 (Knight et al. [2011]).

4.2 Diffusion coefficient as a function of the es-

cape holes

In this section we will introduce the particular dynamical system that we will

consider. It is a periodically lifted, piecewise linear map of the real line that

exhibits chaotic diffusion. We will explain the concept of ‘escape hole’ in this

context and then analytically derive the diffusion coefficient as a function of the

escape holes.
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4.2.1 Deterministic dynamical system

The dynamical system that we will study is based on the doubling map modulo

one M̃(x) : [0, 1] → [0, 1],

M̃(x) =

{

2x 0 ≤ x < 1
2

2x− 1 1
2
≤ x < 1

. (4.1)

The tilde in Eq.(4.1) will be used throughout to signify a self-map. We turn

Eq.(4.1) into a dynamical system that exhibits diffusion in two steps. Firstly, we

dig two symmetric holes into M̃(x). Let 0 ≤ a1 < a2 ≤ 0.5 ≤ a3 < a4 ≤ 1, with

a4 = 1 − a1 and a3 = 1 − a2. For simplicity we let h = a2 − a1 which is the size

of an escape hole. We lift the map dynamics by one for x ∈ [a1, a2] and we lower

the dynamics by one for x ∈ [a3, a4] to create a map M(x) : [0, 1] → [−1, 2],

M(x) =











































2x 0 ≤ x < a1

2x+ 1 a1 ≤ x < a2

2x a2 ≤ x < 1
2

2x− 1 1
2
≤ x < a3

2x− 2 a3 ≤ x < a4

2x− 1 a4 ≤ x ≤ 1

. (4.2)

We label the intervals IL = [a1, a2] and IR = [a3, a4] for convenience. We call

IL and IR escape holes as they allow points to escape from the unit interval to

a neighbouring interval. One can of course consider non-symmetric escape holes

and non-symmetric maps such as the tent map. The necessary calculations in

these cases are essentially no more complicated than shown here. The results for

the diffusion coefficient differ only quantitatively, so presented here is only the

case with symmetric escape holes in the doubling map. Secondly, we periodically

copy M(x) over the entire real line with a lift of degree one such that,

M(x + n) = M(x) + n, n ∈ Z, (4.3)

so that M(x) : R → R. A uniform distribution of points on the unit interval will

spread out when iterated under Eq.(4.2) and Eq.(4.3). The diffusion coefficient D,
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is defined as the linear increase in the mean square displacement of a distribution

of points and is given by Einstein’s formula in one-dimension as

D = lim
n→∞

〈

(xn − x0)
2〉

2n
, (4.4)

where xn is the position of a point x0 at time n which is given by Mn(x0) in the

system we consider. The angular brackets represent an average over a distribution

of points. In the setting we consider, this distribution is the invariant density of

the system ρ∗(x) = 1, and the average we interpret as an integral,

〈...〉 =
∫ 1

0

...ρ∗(x)dx. (4.5)

4.2.2 Deriving the diffusion coefficient

Eq.(4.4) can be rewritten in terms of the velocity autocorrelation function of the

system as the Taylor-Green-Kubo formula (Dorfman [1999]; Klages [2007]),

D = lim
n→∞

(

n
∑

k=0

〈v0(x)vk(x)〉
)

− 1

2

〈

v0(x)
2
〉

, (4.6)

where vk(x) = ⌊xk+1⌋−⌊xk⌋ gives the integer value of the displacement of a point

x0 at time k. Considering Eq.(4.2) vk(x) takes the form,

vk(x) =































0 0 ≤ xk < a1

1 a1 ≤ xk < a2

0 a2 ≤ xk < a3

−1 a3 ≤ xk < a4

0 a4 ≤ xk ≤ 1

. (4.7)

The leading order term of Eq.(4.6), Drw, is simply equal to

Drw =
1

2

∫ 1

0

v0(x)
2dx,

=
(a4 − a3) + (a2 − a1)

2
= h. (4.8)
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Eq.(4.8) is the simple random walk result for diffusion that one obtains if higher

order correlations are neglected (Fujisaka and Grossmann [1982]; Klages [1996];

Klages and Dorfman [1997]; Schell et al. [1982]). In order to fully evaluate Eq.(4.6)

we define a recursive function Jn(x) : [0, 1] → Z (Gaspard and Klages [1998];

Klages [1996]; Knight and Klages [2011a,b]),

Jn(x) =
n
∑

k=0

vk(x)

= v0(x) +
n−1
∑

k=0

vk(M̃(x))

= v0(x) + Jn−1(M̃(x)). (4.9)

We then define a cumulative function which integrates over Eq.(4.9) as in Eq.(4.6),

T (x) = lim
n→∞

T n(x) =

∫ x

0

Jn(y)dy. (4.10)

Due to the chaotic nature of the map M(x), Jn(x) will be a very complicated

step function for high values of n, hence in the limit n → ∞ T (x) will be a fractal

function exhibiting non-trivial fine scale structure (Dorfman [1999]; Klages [1996,

2007]; Knight and Klages [2011b]). By combining Eq.(4.9) and Eq.(4.10) we

can solve T (x) as a functional recursion relation. We use the conditions that

T (0) = T (1) = 0 and that the function T (x) is continuous to obtain

T (x) =











































1
2
T (2x) 0 ≤ x < a1

1
2
T (2x) + x− a1 a1 ≤ x < a2

1
2
T (2x) + a2 − a1 a2 ≤ x < 1

2
1
2
T (2x− 1) + a2 − a1

1
2
≤ x < a3

1
2
T (2x− 1) + 1− x− a1 a3 ≤ x < a4

1
2
T (2x− 1) a4 ≤ x ≤ 1

. (4.11)

Repeated application of the recurrence relation means we can solve Eq.(4.11) as

an infinite sum,

T (x) = lim
n→∞

n
∑

k=0

1

2k
t(M̃k(x)), (4.12)
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where

t(x) =































0 0 ≤ x < a1

x− a1 a1 ≤ x < a2

a2 − a1 a2 ≤ x < a3

1− x− a1 a3 ≤ x < a4

0 a4 ≤ x ≤ 1

. (4.13)

Eq.(4.6) can now be evaluated in terms of the functional recursion relation of

Eq.(4.11) as

D = lim
n→∞

(

∫ 1

0

v0(x)

n
∑

k=0

vk(x)dx

)

− 1

2

∫ 1

0

v20(x)dx

= lim
n→∞

(
∫ a2

a1

Jn(x)dx−
∫ a4

a3

Jn(x)dx

)

− h

= T (a2)− T (a1)− T (a4) + T (a3)− h. (4.14)

Finally, due to the condition that IL and IR are symmetrically positioned, T (x)

is a symmetric function. We can use this to simplify Eq.(4.14) to

D = 2T (a2)− 2T (a1)− h. (4.15)

Eq.(4.15) and Eq.(4.12) provide us with a very efficient way to evaluate the dif-

fusion coefficient for any choice of position or size of IL and IR. For a more

detailed discussion of this method see for example Gaspard and Klages [1998];

Klages [1996, 2007]; Knight and Klages [2011a,b] or chapter 2 of this thesis. We

will evaluate Eq.(4.15) for a series of choices in the following section.

4.3 Analyzing the diffusion coefficient

In this section we look at how the diffusion coefficient varies with the position of

the escape holes and the asymptotic behaviour as the hole size goes to zero.
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Figure 4.1: The diffusion coefficients In these figures the diffusion coefficient D is
illustrated for the doubling map M(x) as a function of the position of the escape
hole IL of size 1/2s. In (a), (b), (c), (d), (e) and (f) it is s = 2, 3, 4, 5, 6 and 12
respectively. D is given by the thick black lines whilst the escape intervals are
highlighted by the thin vertical lines. The thin horizontal lines are a guide to
show the average value 1/2s. The symbols in (f) refer to specific periodic orbits
as discussed in the text.
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4.3.1 Position dependence

We evaluate Eq.(4.15) in a specialised setting where we restrict IL and IR to

Markov intervals. That is, we choose the points ai, (i ∈ {1, 2, 3, 4}) to be dyadic

rationals, i.e., for some fixed integer s > 0 the points ai are of the form r/2s with

r ∈ Z and 0 ≤ r ≤ 2s. The points ai will then be pre-images of 1/2 under the

map M̃(x). As T (0.5) = a2 − a1, T (ai) can be evaluated with a finite sum rather

than the infinite sum of Eq.(4.12). For each value of s there are 2s−1 places to

position an interval IL of size 2−s, with IR being determined by the symmetry

condition. We can evaluate the diffusion coefficient at each of these choices via

Eq.(4.15) and compare the results as the choices vary. For example, when s = 1

there is only one choice for IL, namely a1 = 0, a2 = 1/2, exactly corresponding to

a simple random walk, with 1/2 probability of moving left or right at each step.

The diffusion coefficient for this system is well known to be 1/2, in agreement

with the more general expressions given here, Eq.(4.8) for h = 1/2 and Eq.(4.15),

as

D = 2T (1/2)− 2T (0)− (1/2)

= 1/2. (4.16)

For higher values of s the diffusion coefficient varies with the position of the

escape holes, see figure 4.1. We see a step function that behaves increasingly

erratically as the partition is refined and s is increased. We further note that the

average of this step function can be calculated to be 〈Ds〉 = 2−s = h for a given

s, which is the simple random walk solution of Eq.(4.8).

The structure of the step functions in figure (4.1) can be explained in terms of

the periodic orbits of the map M̃(x) which correspond to standing or running or-

bits of M(x) (Cvitanović et al. [2010]; Klages [2007]; Korabel and Klages [2004]).

For example, if an image of IL overlaps IR, one will find a lot of backscattering

in the system, i.e., points that escape the unit interval via IL find themselves

getting sent back via IR (and vice versa). This has the result of decreasing the

diffusion coefficient relative to the random walk solution derived in Eq.(4.8). In

order to find intervals where this overlap occurs, we look for standing orbits by

solving the simple equation M̃p(x) = x where M̃ q(x) = 1 − x for q < p. Due
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to the symmetry of the escape intervals, the image of IL containing the solution

of this equation will, after q iterations, overlap with IR and backscattering will

occur. The smaller values of p will correspond to values of x which give the most

overlap and hence the most backscattering. For example,

M̃(x) = 1− x, x ∈ [0, 0.5], ⇒ x =
1

3
. (4.17)

Therefore if one places IL so that x = 1/3 is in its interior, one will find the

system has a relatively small diffusion coefficient due to the backscattering. This

phenomenon is highlighted in figure 4.1 and is therefore due to standing orbits

(Klages [2007]; Korabel and Klages [2004]).

Alternatively, if the image of IL overlaps with itself consistently then one will

find a higher diffusion coefficient. This is due to the presence of running orbits

(Cvitanović et al. [2010]; Klages [2007]; Korabel and Klages [2004]) in such a

system. In order to find such orbits, we solve the simple equation M̃p(x) = x

where M̃ q(x) 6= 1− x for q < p. For example p = 1 gives

M̃(x) = x, x ∈ [0, 0.5], ⇒ x = 0, (4.18)

and we can see in figure 4.1 that when the escape interval contains the point

x = 0 one has a high diffusion coefficient relative to the simple random walk

result. When p = 2,

M̃2(x) = x, ⇒ x = 0,
1

3
. (4.19)

we can immediately throw the solution x = 1/3 away as this result corresponds

to M̃(x) = 1− x. However, for p = 3

M̃3(x) = x, ⇒ x = 0,
1

7
,
2

7
,
3

7
, (4.20)

and again we see in figure 4.1 that these values correspond to relatively high dif-

fusion coefficients when they are in the interior of IL. This process of pinpointing

standing and running periodic orbits can be continued for higher iterations with

relative ease as we are dealing with a full shift map and there is no need to prune

any solutions. This technique helps explain the increasingly complicated step

109



function that one obtains as s is increased.

At first sight, the step functions illustrated in figure 4.1 do not appear to

contain much interesting structure. However, upon closer inspection we notice

that every ‘parent’ hole of size 2−s and associated diffusion coefficient Ds splits

into two ‘child’ holes of size 2−(s+1) and associated diffusion coefficients D0
s+1 and

D1
s+1 respectively, such that

Ds = 2D0
s+1 + 2D1

s+1 − 2−s. (4.21)

where superscripts 0, 1 correspond to left and right child hole respectively. To

see this, one first needs to define cumulative functions T 0(x) and T 1(x) for the

respective left and right child holes. Now since the cumulative functions are

additive with respect to the holes we have that T (ai) = T 0(ai) + T 1(ai) for

i = 1 . . . 4. Moreover, since the iterate of the parent hole endpoint ai always

avoids both parent and child holes then T 0(ai) = T 1(ai). Finally, considering the

midpoint am = (a2 + a1)/2 of the parent hole which is also the right and left

endpoint of the left and right child holes respectively, it follows from Eq.(4.11)

that T 0(am)− T 1(am) = (a2 − a1)/2. Eq.(4.21) follows after expanding in terms

of T 0 and T 1 and substituting the above relations. Notice that recursive iteration

of Eq.(4.21) n times gives an expression for Ds in terms of the 2n child diffusion

coefficients

Ds = (1− 2n)2−s + 2n
∑

j∈{0,1}n

Dj
s+n, (4.22)

where the sum runs over all 2n binary permutations of length n. Rearranging

this we find
Ds − 2−s

2−s
=

∑

j∈{0,1}n

Dj
s+n − 2−s−n

2−s−n
(4.23)

that is, the relative deviation of each diffusion coefficient from its mean is exactly

additive.

The above scaling and self-similarity structure (often considered to be prop-

erties of fractal structures) of the step functions illustrated in figure 4.1 can be

further investigated by defining a set of continuous, cumulative functions which

integrate over the step function, in the same way that T (x) integrates over the
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step function Jn(x). In order to define such a function, Φs(x), for a given s, we

firstly subtract the average diffusion coefficient 〈Ds〉 = 1/2s, and integrate over

the resulting step function. We then normalise this integral by multiplying it

with 2s+1 so that it can be easily compared with other values of s. Let

Φs(x) = 2s+1

∫ x

0

(

D(y)− 2−s
)

dy, (4.24)

where D(y) refers to the diffusion coefficient of the dyadic interval IL containing

y. The solution to Eq.(4.24) is illustrated for several examples of s in figure 4.2.

We see that as s increases, Eq.(4.24) becomes a fractal function exhibiting non-

trivial fine scale structure and regions of scaling and self-similarity. This structure

is symptomatic of the dense set of periodic orbits which exists in M̃(x). In the

limit of s going to infinity, each periodic orbit makes the diffusion coefficient

deviate from the average hence one obtains a dense step function. When this

function is integrated over one sees a function that contains a dense set of maxima

and minima, hence a fractal.

4.3.2 Asymptotic behaviour

In this subsection, we will analyze the behaviour of the diffusion coefficient as

the hole size h = a2 − a1 goes to zero. By doing this, the hole will converge to a

point which could be a running orbit, a standing orbit, or a non-periodic orbit.

We derive equations which give the asymptotic behaviour in all three cases and

use them to obtain the diffusion coefficient in terms of all periodic orbits in a hole

of small but finite size. In order to do this, we first rewrite the (T (a2) − T (a1))

term from Eq.(4.15) with Eq.(4.12) to

T (a2)− T (a1) =

lim
n→∞

n
∑

k=0

1

2k

(

t
(

M̃k (a2)
)

− t
(

M̃k (a1)
))

. (4.25)

First consider the case that IL converges to a running orbit, that is, a periodic

point xp of period p, which does not enter IR under forward iteration. In this
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Figure 4.2: Cumulative integral function Φs(x). In this figure the self similarity
and scaling that one sees by integrating over the position dependent diffusion
coefficient for the doubling map is illustrated. In (a) the structure is seen emerging
as the hole size 1/2s is decreased. From (0.1, 0) upwards, s = 2 (grey), s = 5
(red), s = 8 (blue) and s = 20 (black). In (b) the region highlighted in (a) is
blown up whilst the inset shows the highlighted region in (b) blown up in order
to illustrate the self similarity and non-trivial fine-scale structure of the diffusion
coefficient.

112



case, from Eq.(4.13) we see that the only contributions to Eq.(4.25) come when

k = lp, l ∈ N

T (a2)− T (a1) ∼ lim
n→∞

h

(

n
∑

l=0

1

2lp

)

(h → 0)

= h

(

1

1− 2−p

)

(h → 0) . (4.26)

Evaluating Eq.(4.15) with Eq.(4.26) we get

D(xp) ∼ hJr
p = h

(

1 + 2−p

1− 2−p

)

(h → 0) , (4.27)

where the superscript r denotes a running orbit. Now consider the case where

IL converges to a standing orbit, that is, a periodic point xp of period p, which

enters IR under forward iteration. Note that due to the symmetry of the holes

this will always occur at time p/2 and hence standing orbits always have even

periods. In this case we get a positive contribution to Eq.(4.25) when k = lp, and

a negative contribution when k = lp/2,

T (a2)− T (a1) = lim
n→∞

h

(

n
∑

l=0

(−1)l

2
lp
2

)

(h → 0)

∼ h

(

1

1 + 2−
p
2

)

(h → 0) . (4.28)

In this case Eq.(4.15) evaluates as

D(xp) ∼ hJs
p = h

(

1− 2−
p
2

1 + 2−
p
2

)

(h → 0) . (4.29)

The final case to consider is where IL converges to a point which is non-periodic.

In this setting the only contribution to Eq.(4.25) comes from the k = 0 term and

therefore

D ∼ Jn
p h = h (h → 0) , (4.30)
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which reproduces the simple random walk result. In summary, we have

D ∼ J℘
p h =











h1+2−p

1−2−p ℘ = r

h1−2−p/2

1+2−p/2 ℘ = s

h ℘ = n

. (4.31)

Eq.(4.31) gives us a good explanation for the structure that we see in figure 4.1

with improved agreement for small holes (large s). As s is increased, the different

asymptotic regimes can be seen in the step function. For example, when IL is

placed on a running orbit such as x = 0 where p = 1, Eq.(4.27) tells us that

D = 3h for small h. When IL is placed on a standing orbit like x = 1/3 with

p = 2, Eq.(4.29) tells us that D = h/3 for small h. These deviations from the

average value of h are observed in figure 4.1.

A further consequence of Eq.(4.31) is the intriguing result that for small hole

size, one can not rely on the simple random walk approximation for an accurate

description of the diffusion coefficient (Fujisaka and Grossmann [1982]; Klages

[1996]; Klages and Dorfman [1997]; Schell et al. [1982]). Rather, one must go

beyond this theory and take into account the periodic orbit structure of the

system, and in particular, the periodic orbits contained in the escape holes. The

asymptotic regime that one obtains for small h will be dependent upon the type

of point that the escape holes converge to. The authors are aware of only one

other published result on a one-dimensional system in which the random walk

approximation theory is violated (Knight and Klages [2011b]). In this case the

phenomenon was explained in terms of ergodicity breaking, which is not the case

here.

We can now go beyond the small hole limit by combining the above results

with the parent-child hole relation of Eq.(4.22). For large n we have that

Ds+n = 2−s−nJ℘
p (n → ∞) , (4.32)

with ℘ ∈ {r, s, n} depending on the limiting point of the hole as in Eq.(4.31).

Hence, we may now express Ds in terms of all periodic orbits of period p which
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intersect the holes,

Ds = 2−s

(

1 +
∑

p

(J℘
p − 1)

)

(n → ∞) . (4.33)

Note that a periodic orbit that intersects the parent hole more than once just

gets added each time. Also, as discussed below, all periodic orbits are counted

as running if they occur at the end of the interval. Eq.(4.33) suggests that the

observed fluctuations of Ds from its average 〈Ds〉 = 2−s are due to the individual

fluctuations of the infinitely many periodic orbits which intersect the holes.

As expected from periodic orbit theory (Cvitanović et al. [2010]), a very large

number of periodic orbits is needed to trace the hole accurately. However, if the

periodic orbits are ordered appropriately the sum may be truncated to produce

good approximations to Ds (Dettmann and Morriss [1997]). Note that the opti-

mal ordering (for fast convergence) of periodic orbits is by a modified version of

the length of the orbit; Jr
p1

≈ Js
p2

for 2p1 ≈ p2. In other words backscattering is

much more dominant for orbits of equal period (see figure 4.3).

We can further study the asymptotic behaviour for the three different cases

derived above and the finite hole size result by reducing IL continuously. Figure

4.3.(a) illustrates these different regimes.

When using Eq.(4.31), care needs to be taken when IL converges to a point

from the left or the right, i.e., it is not centred on a point and reduced in size.

In this case a boundary point of the escape region, a1 or a2, is kept fixed. If the

boundary point is periodic, points near it in the interior of IL miss IR, and so it is

always a running orbit. For example, as illustrated in figure 4.1 and figure 4.3.(a),

x = 1/3 is a period two standing orbit when 1/3 is in the interior of IL and the

asymptotic regime for small h when IL converges to 1/3 is given by Eq.(4.29) as

h/3. However, if a1 = 1/3 is fixed and h goes to zero, we must use Eq.(4.27) to

evaluate the asymptotic regime as in this case 1/3 is a running orbit. Eq.(4.27)

tells us that the asymptotic regime is in fact 5h/3. This additional topological

subtlety that must be considered is illustrated in figure 4.3.(b).

Another interesting feature that we find in this system is that reducing the size

of the escape holes can sometimes have no effect on the diffusion coefficient. As
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Figure 4.3: The asymptotic regimes In (a) the diffusion coefficient D(h) for escape
holes centred on three different classes of points inM(x) is illustrated as a function
of the hole size h (from top to bottom); x = 1/3 a standing orbit (red), x =√
5/2 − 17/25 a non-periodic orbit (blue) and x = 1/7 a running orbit (green)

along with the different asymptotic regimes h/3, h and 9h/7 respectively shown
by dashed lines. These asymptotic regimes correspond to the result of Eq.(4.31).
In (b), the position of the left boundary of the hole a1 = 1/3 is fixed and h is
again decreased continuously. We observe that x = 1/3 becomes a running orbit
when a critical point, and the asymptotic regime of 5h/3 (black dashed, top)
illustrates this. The line h/3 (grey dashed, bottom) is what one would expect
if x = 1/3 was contained in IL yielding a standing orbit, and the random walk
solution is given by the blue dashed line (middle). The two symbols (squares)
identify parameter values where the right boundary point a2 of the hole generates
a standing orbit, respectively a running orbit.

we calculated in Eq.(4.16), if the escape holes are IL = [0, 0.5] and IR = [0.5, 1],

the diffusion coefficient is equal to 0.5. However, we can reduce the escape hole

so that IL = [0, 0.25] and IR = [0.75, 1] and the diffusion coefficient remains

equal to 0.5 as illustrated in figure 4.1.(a). We also see that if the escape holes

are IL = [0.25, 0.5] and IR = [0.5, 0.75], the diffusion coefficient is equal to 0.

This is due to a simple trapping mechanism in which no diffusion occurs. In

addition, reducing the size of the escape holes can result in an increase of the

diffusion coefficient, i.e., the diffusion coefficient decreases non-monotonically in

some regions as the size of the escape holes is decreased. One can check this by

comparing the figures in figure 4.1. One can also observe this phenomenon by
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looking at the fractal structure illustrated in figure 4.3.(b). While a1 = 1/3 is

fixed, the various maxima and minima that we see can be explained by looking

at the orbit of the point a2. We see that when a2 = 5/12 (corresponding to

h = 1/12), the orbit of a2 is a standing orbit and hence we see a striking minimum

in the diffusion coefficient. If we reduce h so that h = 1/15 with a2 = 2/5, the

orbit of a2 is now a running orbit and we observe a maximum in the diffusion

coefficient. These points are highlighted in figure 4.3.(b). This explanation in

terms of topological instability under parameter variation is discussed further in

Klages [1996, 2007]; Klages and Dorfman [1995]; Knight and Klages [2011b].

4.4 The escape rate

The escape rate theory of diffusion has established an exact analytical relation-

ship between the escape rate of a spatially extended diffusive dynamical system

with absorbing boundaries and its diffusion coefficient (Dorfman [1999]; Gaspard

[1998]; Gaspard and Nicolis [1990]; Klages [1996, 2007]). However, motivated by

Bunimovich and Yurchenko [2011]; Keller and Liverani [2009] where the com-

plicated dependence of the escape rate on position and size of a hole has been

studied, here we focus on the relationship between the open map M̃(x) on the

unit interval with the escape holes IL and IR serving as absorbing regions and

the diffusion coefficient of the corresponding coupled, spatially extended system.

That is, for calculating the escape rate any orbit that enters either of these inter-

vals is removed from the system, and in this way points from an initial density

escape, while for calculating the diffusion coefficient all points remain within the

system by performing ‘jumps’ when hitting these intervals, as defined by the lift

Eq.(4.3). An interesting question is to which extent the coupled diffusive ‘jump

dynamics’ of the spatially extended system is already captured by the escape rate

of the interval map that defines the unit cell of this lattice.

The main result from Bunimovich and Yurchenko [2011] concerning the escape

rate is that escape will occur fastest through a hole whose minimal period is

highest, or equivalently, the escape rate will be slowest through the hole which

has the smallest minimal period. By minimal period we mean the smallest period

of all the periodic points in a hole.
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Figure 4.4: Comparing the diffusion coefficient with the escape rate. In figure
(a)the diffusion coefficient for the doubling map is illustrated in black (bottom)
alongside the escape rate of the corresponding open system in red (top) as a
function of the escape interval IL. The thin horizontal lines illustrate the average
value to aid visual comparison of the fluctuations: < D >= 1/29 and < γ >≃
0.00393 (3s.f.) ≃ 1/28. There is a clear relationship between the structure of these
functions although intervals which give relatively high diffusion coefficients will
give relatively low escape rates. The calculation has been performed for intervals
IL of size 1/29. In (b) the corresponding cumulative integral function Ψs(x) for
the escape rate with s = 9 is illustrated, displaying the fractal structure of the
escape rate.

In order to calculate the escape rate of our system we look at the transition

matrix induced by the dynamics. The escape rate γ can be evaluated via the

largest eigenvalue ν of this transfer matrix (Gaspard [1998]; Gaspard and Klages

[1998]; Klages [1996, 2007]; Klages and Dorfman [1995])

γ = − ln ν. (4.34)

In figure 4.4.(a) solutions to Eq.(4.34) are illustrated for s = 9 and compared with

the diffusion coefficient in the corresponding extended system. In analogy with

Eq.(4.24), we can define a function Ψs(x) which integrates over the step-function

escape rate to give a cumulative function which exposes the self-similarity and

fractal structure, this is illustrated in figure 4.4.(b). In figure 4.4.(a) we observe

structural similarities between the escape rate and the diffusion coefficient, with
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deviations from the average occurring for both phenomena on the same intervals.

In order to quantify these deviations we can compare Eq.(4.31) with Theorem

4.6.1 from Bunimovich and Yurchenko [2011], which is a special case of Theorem

2.1 from Keller and Liverani [2009]. It gives the escape rate for small hole size in

the doubling map with one escape hole and can easily be generalised to escape

through two holes as is the case here. This theorem states that the escape rate

for small h with a running orbit (no iterate of the orbit reaches the second hole)

is given by
γ(xp)

h
→ 2

(

1− 1

2p

)

(h → 0) , (4.35)

where xp is the lowest period point in the escape interval with period p. For a

standing orbit (the periodic orbit is in both holes) the period is effectively halved

and we get
γ(xp)

h
→ 2

(

1− 1

2p/2

)

(h → 0) . (4.36)

When the escape interval converges to a non-periodic point, the theorem states

that the escape rate is given by

γ(x)

h
→ 2 (h → 0) . (4.37)

From Eq.(4.35) the relative deviation from the average escape rate 〈γ〉 = 2h is

given by

γ(xp)− 〈γ〉 = −2h

2p
. (4.38)

for a running orbit and

γ(xp)− 〈γ〉 = − 2h

2p/2
. (4.39)

for a standing orbit. Similarly, the relative deviation from the average diffusion

coefficient 〈D〉 = h, for a running orbit, can be obtained from Eq.(4.27) as

D(xp)− 〈D〉 = 2h

2p − 1
, (4.40)
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whilst for standing orbits, via Eq.(4.29), the relative deviation is given by

D(xp)− 〈D〉 = − 2h

2p/2 + 1
, (4.41)

Eqs.(4.38),(4.39),(4.40) and (4.41) help us explore the relationship between the

diffusion coefficient of the extended system with the escape rate of the open

system. An obvious difference is the absence of backscattering in the escape

rate. However a more striking one is that the average escape rate does not

equal the algebraic mean of all escape rates as for diffusion coefficients. That

is 〈γ〉 6= 1
2s−1

∑2s−1

j=1 γj
s which is obvious from figure 4.4 but is also suggested

by Eq.(4.35). The two symmetric holes are coupled differently for the escape

problem and in a much more complicated way than as in Eq.(4.21) by involving

the eigenvalues of 2s−1 × 2s−1 transfer matrices. However, for small holes this

coupling decays rapidly revealing the similarities which are seen in figure 4.4.

4.5 Conclusion

In this chapter we have analytically derived the diffusion coefficient for a one-

dimensional, piecewise-linear dynamical system as a function of the size and po-

sition of the coupling regions of the dynamics which we called ‘escape holes’. We

showed that the diffusion coefficient is a complicated function of the position and

a non-monotonic function of the size of the escape holes, despite the fact that the

underlying reduced dynamics is not changed, as is the case in previously studied

models (Gaspard and Klages [1998]; Klages [2007]; Klages and Dorfman [1995];

Knight and Klages [2011b]).

We found that the asymptotic regime that one obtains for small hole size is

a function of the type of periodic orbit that the escape holes converge to. This

result implies that the simple uncorrelated random walk approximation may not

always give accurate estimates for the diffusion coefficient of a system. We have

obtained an expansion for the diffusion coefficient of finite size holes in terms of

periodic orbits and discussed their relative importance. In our setting, a periodic

orbit can either be a running or a standing orbit. The presence of a standing

orbit has the effect of reducing the diffusion coefficient relative to the average
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value whilst the presence of a running orbit has the effect of increasing it relative

to the average value.

We numerically calculated the escape rate of the corresponding open system

and compared it with the diffusion coefficient. We found that the diffusion co-

efficient and escape rate are both dependent upon the underlying periodic orbit

structure of the map, although subtle differences arise which we explain as a

difference in the coupling between holes.

An interesting open question is to which extent the above effects can be ob-

served in computer simulations of diffusion in higher dimensional, more phys-

ically realistic systems such as suitably adapted periodic Lorentz gases (Gas-

pard [1998]; Klages [2007]) and related particle billiards (Harayama and Gaspard

[2001]; Harayama et al. [2002]). We conjecture that these phenomena may even

be observable in cold atom experiments on atom-optics billiards (Friedman et al.

[2001]; Milner et al. [2001]).
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Chapter 5

We knead the diffusion coefficient

In this chapter we look at an alternative method to the functional recursion

relation discussed in Chapter 2 for fully analytically evaluating the parameter

dependent diffusion coefficient of a periodically lifted one-dimensional map. The

method we employ is based upon finding the zeros of dynamical zeta functions

via the orbits of the critical points called the kneading orbits. We will look

at how the dynamical zeta function is related to the generating function for

diffusion before defining a ‘kneading determinant’ which in turn is related to

the dynamical zeta function via its zeros. We will then analytically evaluate

the kneading determinant for the full parameter range and from this obtain the

diffusion coefficient.

5.1 Introduction

In chapter 2 we saw how a physically intuitive method for determining the dif-

fusion coefficient via a functional recursion relation was essentially based upon

the orbits of the critical points of the dynamical system. These orbits called

‘kneading orbits’ (see for example Devaney [1989]; Katok and Hasselblatt [1995])

were encoded into the solutions of fractal ‘generalised Takagi functions’. In this

chapter we approach things the other way around and we will derive the diffusion

coefficient using the kneading orbits as a starting point.

In Milnor and Thurston [1988],the determinant of a certain kneading matrix of
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an interval map was related to the corresponding topological zeta function. The

elements of this kneading matrix are infinite order formal polynomials whose coef-

ficients are defined by the kneading orbits of the critical points. The ‘topological‘

or ‘Artin-Mazur‘ zeta function counts periodic points of a dynamical system and

encodes information about the topological entropy into its leading zero (see for

example Cvitanović et al. [2010]). Therefore, the result of Milnor and Thurston

permitted the evaluation of the topological entropy by considering only the tra-

jectories of a finite number of points rather than having to take into account the

evolution of the entire density. Before this result, one needed to resort to a pe-

riodic orbit expansion of the zeta function, a technique hampered by the rate at

which the number of periodic orbits of a dynamical system increases with orbit

length, this rate actually being given by the topological entropy itself. This topic

of expansion techniques is extensively discussed in the online ‘chaos book’, see

Cvitanović et al. [2010] and references therein.

The result of Milnor and Thurston was extended in Baladi and Ruelle [1994]

to zeta functions that take into account a constant weight function on the orbits.

Baladi and Ruelle were able to show that the determinant of a weighted kneading

matrix was equal to the dynamical zeta function multiplied by a certain rational

function. The dynamical zeta function is also known as the generalised dynamical

zeta function (Cristadoro [2006]), Ruelle zeta function (Baladi and Keller [1990]),

Ruelle dynamical zeta function (Baladi [1998]), weighted dynamical zeta function

(Baladi [1995]), zero-order Ruelle zeta function (Cvitanovic and Pikovsky [1993])

and probably other variants. We will stick with the terminology of Cvitanović

et al. [2010] and refer to it as the dynamical zeta function. The dynamical zeta

function is of interest in this current setting as it was shown in Baladi and Keller

[1990] that the zeros of the dynamical zeta function are related to the eigen-

values of the corresponding weighted transfer operator, a generalisation of the

Perron-Frobenius operator that includes a constant weight function. In turn, the

weighted Perron-Frobenius operator can be used to study the diffusion coefficient

of a dynamical system via the generating function for diffusion (Dorfman [1999]).

In Cristadoro [2006] the Baladi-Ruelle generalisation of Milnor and Thurstons

result was used to construct a weighted kneading matrix whose determinant could

be explicitly related to the parameter dependent diffusion coefficient of a one-
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dimensional map where the gradient is varied as a parameter (Klages and Dorf-

man [1995]). In this chapter we will apply the method used in Cristadoro [2006]

to the piecewise linear map studied in chapter 2 where the parameter lifts the

branches of the map. This map has the advantage that we can derive a relatively

simple expression for the parameter dependent diffusion coefficient. This allows

us to analyse the convergence of the diffusion coefficient under this method in

depth.

In section 5.2 we will look at how the diffusion coefficient of a dynamical

system is related to the zeros of a particular dynamical zeta function. We will

then look at how to analytically derive the weighted kneading determinant for a

simple piecewise linear map of the real line in section 5.3. Conclusions are drawn

in section 5.4.

5.2 Generating zeta functions

In this section we will look at how the dynamical zeta function is related to

the generating function for diffusion. The objective is to give the main ideas

underpinning the theory. A more detailed study of this material is covered in

Cvitanović et al. [2010] and relevant material can also be found in Artuso [2000];

Cvitanovic and Pikovsky [1993].

5.2.1 The generating function

Consider a one-dimensional hyperbolic map f(x) : R → R defined periodically

such that

f(x+ n) = f(x) + n n ∈ R (5.1)

As discussed in previous chapters, a density of points on a given interval will

spread out under iteration of Eq.(5.1) and can display diffusion, this phenomena

being first observed in Geisel and Nierwetberg [1982]; Grossmann and Fujisaka

[1982]; Schell et al. [1982]. The function

Q(β) = lim
t→∞

1

t
ln
〈

eβ(f
t(x)−x)

〉

(5.2)
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where the angular brackets represent an average taken over the initial density

of points is a diffusion ‘generating function’ because the derivatives with respect

to the variable β give the moments of the deterministic process generated by

the dynamical system of Eq.(5.1). In particular, the first derivative evaluated at

β = 0,

∂Q(β)

∂β

∣

∣

∣

∣

β=0

= lim
t→∞

1

t

〈

(f t(x)− x) eβ(f
t(x)−x)

〉

〈eβ(f t(x)−x)〉

∣

∣

∣

∣

∣

∣

β=0

= lim
t→∞

1

t

〈

f t(x)− x
〉

, (5.3)

gives the drift of the process. Whilst we can see that the second derivative

evaluated at β = 0,

∂2Q(β)

∂β2

∣

∣

∣

∣

β=0

= lim
t→∞

1

t

(〈

(

f t(x)− x
)2
〉

−
〈(

f t(x)− x
)〉2
)

, (5.4)

can be related to the diffusion coefficient via

D =
1

2

∂2Q(β)

∂β2

∣

∣

∣

∣

β=0

. (5.5)

5.2.2 The weighted transfer operator

In order to extract the required information from the generating function of

Eq.(5.2) we observe that

〈

eβ(f
t(x)−x)

〉

=

∫ 1

0

dx

∫ 1

0

dyδ(y − f̃ t(x))eβ(f
t(x)−x), (5.6)

where δ(...) is the Dirac-delta function which is equal to one when its argument

is zero and is equal to zero otherwise, whilst f̃ t(x) : [0, 1] → [0, 1] is the map

dynamics of Eq.(5.1) taken modulo one. Formally all we have done is insert the

identity

∫ 1

0

dyδ(y − f̃ t(x)) = 1, (5.7)
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into the left hand side of Eq.(5.6). Note that we only consider the dynamics of

the reduced map modulo one (represented by the tilde). This reduction from

considering the full phase-space trajectories to only considering the modulo one

trajectories will help greatly simplify the analytical evaluation of the diffusion

coefficient.

Eq.(5.6) allows us to define the operator

L
t = eβ(σx)δ(y − f̃ t(x)), (5.8)

where σx = ⌊f t(x)− x⌋ gives the integer displacement of a point x when its orbit

is taken over the whole real line. We observe that the operator in Eq.(5.8) reduces

to the Perron-Frobenius operator when we set β = 0. Therefore we can think

of the operator in Eq.(5.8) as a weighted Perron-Frobenius operator (Dorfman

[1999]). The underlying Perron-Frobenius operator evolves the density of points

on the unit interval according to the modulo one dynamics of the dynamical

system whilst the weight keeps track of how far points have been displaced when

their orbits are folded out onto the real line.

As Eq.(5.6) is an integral over exponentials, it too will grow exponentially

with time, with the rate of growth being controlled by the leading eigenvalue of

the relevant weighted Perron-Frobenius operator of Eq.(5.8) (Ruelle [2004]), that

is

〈

eβ(f
t(x)−x)

〉

⋍ a(eλ)t, (5.9)

where a is a constant and eλ is the leading eigenvalue of the transfer operator in

Eq.(5.8).

If we substitute the right-hand-side of Eq.(5.9) into Eq.(5.2)

Q(β) = lim
t→∞

1

t
ln
〈

eβ(f
t(x)−x)

〉

= lim
t→∞

1

t
ln a(eλ)t, (5.10)

and evaluate the right-hand-side of Eq.(5.10) we see that
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Q(β) = λ. (5.11)

Hence we can conclude that the leading eigenvalue of the weighted Perron-

Frobenius operator in Eq.(5.8) is equal to eQ(β). We immediately observe that

at β = 0 the leading eigenvalue is thankfully equal to one which is as expected

of the un-weighted Perron-Frobenius operator and corresponds to the invariant

density of the system, as stated by the Perron-Frobenius theorem.

5.2.3 The dynamical zeta function

In order to gain access to the information contained in the leading eigenvalue

and hence the generating function of Eq.(5.2) we look for the smallest root of the

equation

det(1− zL) = 0, (5.12)

which will be given by

z0(β) = e−Q(β), (5.13)

where the subscript zero represents the fact that this z is a zero of the determinant.

So we see that we can evaluate the diffusion coefficient by solving the eigen-

value problem of the relevant transfer operator. This can be done by rewriting

the determinant in terms of the trace of the operator via the matrix identity

det(1− zL) = etr(ln(1−zL)). (5.14)

We now expand the logarithm function in the right-hand-side of Eq.(5.14) as a

power series and obtain the relation

det(1− zL) = exp

(

−
∞
∑

n=1

zn

n
trLn

)

. (5.15)

The important result of Eq.(5.15) is that we have now obtained a relation between

the determinant of the operator on the left-hand-side and the periodic orbits of
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the dynamical system in terms of the trace of the operator on the right-hand-side.

trLn =
∑

x=M̃n(x)

eβ(f
t(x)−x)

|1− Λx,n|
, (5.16)

where

Λx,n =
n−1
∏

i=0

f̃ ′(f̃ i(x)), (5.17)

is the instability of the orbit of x after n iterations. Substituting Eq.(5.16) into

Eq.(5.15) we obtain

det(1− zL) = exp



−
∞
∑

n=1

zn

n

∑

x=M̃n(x)

eβ(f
t(x)−x)

|1− Λx,n|



 . (5.18)

We can expand the denominator in Eq.(5.16) as a geometric series and use the

subsequent relation

1

| 1− Λx,n | =
1

| Λx,n |Σ
∞
k=0Λ

−k
x,n, (5.19)

in Eq.(5.18) to express the determinant as a product over dynamical zeta func-

tions

det(1− zL) =
∞
∏

k=0

ζ−1
k (z, β). (5.20)

Where the kth order dynamical zeta function, introduced in Ruelle [1976] is given

by

ζ−1
k (z, β) = exp



−
∞
∑

n=1

zn

n

∑

x=M̃n(x)

eβ(f
t(x)−x)

|Λx,n|
Λ−k

x,n



 . (5.21)

In Baladi and Keller [1990] it was shown that the zeros of the zeroth order dy-

namical zeta function coincide with the eigenvalues of the corresponding weighted

transfer operator so in our setting we need only consider ζ−1
0 (z, β). That is, the

smallest zero of ζ−1
0 (z, β) (we will drop the 0 subscript in the following), is equal
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to the leading eigenvalue of weighted Perron-Frobenius operator 5.8, z0(β), this

eigenvalue being related to the generating function of Eq.(5.2) that we are in-

terested in by Eq.(5.13). There exists a vast literature on the study of these

interesting zeta functions, for surveys relating to this area see for example Baladi

[1998]; Parry and Pollicott [1990]; Ruelle [1994] and references therein.

Given Eq.(5.13), we can derive a formula for the drift J in terms of the smallest

zero of ζ−1(z, β)

J =
dz0(β)

dβ

∣

∣

∣

∣

β=0

. (5.22)

If we assume that J = 0, i.e. there is no mean drift in our system then the

diffusion coefficient is given by

D = −1

2

d2z0(β)

dβ2

∣

∣

∣

∣

β=0

. (5.23)

Rewriting Eq.(5.23) using the fact that z0(0) = 1 we can obtain an expression for

the diffusion coefficient in terms of ζ−1(z, β)

D =
1

2

(

∂2ζ−1(z, β)

∂β2

(

∂ζ−1(z, β)

∂z

)−1
)∣

∣

∣

∣

∣

z=1,β=0

(5.24)

One possible way to proceed from here is to rewrite ζ−1(z, β) using the Euler

expansion technique, that is in terms of only prime periodic orbits instead of

periodic orbits. A prime periodic orbit is one that can not be broken down into

a product of shorter period orbits. This is reminiscent of the way prime numbers

can not be factorised into a product of smaller numbers and leads to the name

prime periodic orbit,

ζ−1(z, β) =
∏

{p}

(

1− znpeβσp

|Λp|

)

, (5.25)

where the product is taken over all the prime periodic orbits and np is the cor-

responding period. Eq.(5.25) can now be expanded as a series and in the case

where one is dealing with a map that has a finite Markov partition, ζ−1(z, β) can

be written in terms of a finite polynomial. This is the cycle expansion technique
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that was pioneered in the early 1990’s in application to simple one dimensional

maps (Artuso [1991]), the Lorentz gas (Cvitanović et al. [1992]) and later on

in the sawtooth maps (Artuso and Strepparava [1997]). However, in even very

simple cases it is very hard to obtain a good understanding of the periodic orbit

structure due to the exponential increase in number as the period is increased,

this increase being given by the topological entropy, and the complicated prun-

ing rules that comes along with these longer orbits. That is, if one encodes the

orbits with symbolic sequences, it is hard to get a good understanding of which

sequences are allowed by the dynamics and which are not. In the next section we

will discuss a method which manages to bypass these problems and allows us to

obtain the crucial information about z0(β).

5.3 Generalised Milnor-Thurston kneading de-

terminant

In this section we will derive the parameter dependent diffusion coefficient for a

one dimensional map of the interval via a generalised Milnor-Thurston kneading

determinant, this construction being based upon the kneading orbits of the map.

5.3.1 Kneading orbits

The map we will study is Mh(x) : R → R defined by

Mh(x) =

{

2x+ h 0 ≤ x < 1
2

2x− 1− h 1
2
≤ x < 1

, (5.26)

along with the lift condition

Mh(x+ n) = Mh(x) + n, n ∈ Z, (5.27)

where h ∈ [0, 1] is a control parameter. We derived the diffusion coefficient for this

map in chapter 2 and found it to be a fractal function of h and that this fractal

structure is periodic over the integers. Therefore we will restrict the parameter

h to the interval [0, 1] for simplicity. The periodicity of the lift condition means
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that we need only consider the reduced dynamics of Mh(x), that is Eq.(5.26)

taken modulo one,

Figure 5.1: Kneading orbits. In this figure, the two kneading orbits of the point
x = 0.5 are illustrated for the lifted doubling map modulo one. The point x = 0.5
is split into two points 0.5+ and 0.5− corresponding to the two choices of iteration
induced by the discontinuity. See the text for definitions of these points. The
orbit of 0.5+ is given in blue (dash-dot-dashed line) whilst the orbit of 0.5− is
given in red (dashed line). Note the similarity between the kneading orbit and
the Markov partition ‘generating orbit’ discussed in chapter 2.

M̃h(x) =























2x+ h 0 ≤ x < 1−h
2

2x+ h− 1 1−h
2

≤ x < 1
2

2x− h 1
2
≤ x < 1+h

2

2x− 1− h 1+h
2

≤ x < 1

. (5.28)

For the points of discontinuity in Eq.(5.28) there is a choice for the possible

iterates. In order to remove this choice the points are split into two points and

we define the action of functions on these points of the form a+ or a− as

φ(a±) = lim
x→a±

φ(x), (5.29)
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where φ(x) is an arbitrary function. See figure 5.1 for an illustration of kneading

orbits. For an introduction to kneading theory see for example Devaney [1989];

Katok and Hasselblatt [1995]. As a side remark, in Groeneveld and Klages [2002]

the points a+ and a− are interpreted as positive and negative electrostatic charges

respectively. This interpretation is then used to derive the diffusion coefficient

via an alternative method to the one we will present.

5.3.2 Weighted kneading matrix

We will now look at how to construct the weighted kneading determinant for

M̃h(x). We will use similar terminology and notation from Baladi and Ruelle

[1994]; Cristadoro [2006] for ease of comparison. Let 0 = a0 < a1 < ... < aN = 1

be the points of discontinuity of a given one-dimensional map of the interval

where N ∈ N is finite. In our case with M̃h(x) this means

a0 = 0, a1 =
1− h

2
, a2 = 0.5, a3 =

1 + h

2
, a4 = 1. (5.30)

Furthermore, let ǫ(x) = ± give the sign of the gradient of the map at x, which for

M̃h(x), is equal to one for all x. We now introduce the specific constant weight

function t(x) : [0, 1] → {ti}, i = 1..N , which will be defined individually on each

interval [ai−1, ai] as ti = zeβσi/Λ where as before Λ is the Lyapunov exponent

of the map and hence equal to two in this setting whilst σi = ⌊Mh(x)− x⌋ for

x ∈ [ai−1, ai] gives the integer displacement of a point under iteration, σi is

essentially just the ‘velocity function’ from chapter 2, c.f. Eq.(2.11). For M̃h(x)

these weights are given by

t1 =
z

2
, t2 =

zeβ

2
, t3 =

ze−β

2
, t4 =

z

2
. (5.31)

In order to define the important ‘invariant coordinate’ of a point x, we give each

point x an ‘address vector’ ~α(x) : [0, 1] → Z
N−1. In our case N = 4 and ~α(x) is

defined as

~α(x) = [sgn(x− a1), sgn(x− a2), sgn(x− a3)]. (5.32)

This leads to the invariant coordinate of x
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~θ(x) =
∞
∑

n=0

[

n−1
∏

k=0

ǫ
(

M̃k
h (x)

)

t
(

M̃k
h (x)

)

]

~α(M̃h
n
(x)). (5.33)

For n equals zero the product is conventionally set to one. Eq.(5.33) defines an

N − 1 dimensional vector whose entries are infinite degree polynomials in z. The

coefficients of the polynomials are determined by the iterates of the point x and

the corresponding weight functions. We now define the ‘discontinuity vector’ of

the critical points ai. For each critical point a1, ..., aN−1 define the discontinuity

vector

~Ki(z, β) =
1

2

[

~θ(a+i )− ~θ(a−i )
]

. (5.34)

The (N−1)× (N −1) kneading matrix K(z, β) mentioned above is defined using

the N − 1 discontinuity vectors of size N − 1 from Eq.(5.34). The determinant

of this kneading matrix ∆(z, β) is the kneading determinant that we are after

and that will allow us to derive the diffusion coefficient. More specifically, it was

shown in Baladi and Ruelle [1994] that

∆(z, β) = R(z, β)ζ−1
0 (z, β), (5.35)

where R(z, β) is a rational function that depends upon the set of periodic points

p̃ that hit a critical point under iteration. For a system with N critical points

R(z, β) is defined as

R(z, β) =

[

1− 1

2
(ǫ1t1 + ǫN tN ))

]

∏

{p̃}

[1− tp̃]
−1 , (5.36)

where tp̃ is defined by the weight on the interval containing the point p̃. For our

purposes however we need not concern ourselves with R(z, β) as from Eq.(5.35)

we see that the smallest zero of the kneading determinant is equal to the smallest

zero of the dynamical zeta function. This means we can evaluate the diffusion

coefficient by only considering the kneading determinant.
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5.3.3 Evaluating the diffusion coefficient

Each entry of the kneading matrix K(z, β) is an infinite degree polynomial in

z, so working out the determinant may appear to be a daunting task. However,

due to the form of the parameter dependence, K(z, β) is a 3 × 3 matrix for all

parameter values h ∈ (0, 1). Hence the simplest way to evaluate the kneading

determinant is by brute force calculation.

Let ki,j(z, β) be the (i, j)th entry of K(z, β). The kneading determinant is

then equal to

∆(z, β) = k1,1k2,2k3,3+k1,2k2,3k3,1+k1,3k2,1k3,2−k1,1k2,3k3,2−k1,2k2,1k3,3−k1,3k2,2k3,1,

(5.37)

where the dependence on z and β has been dropped for convenience. In analogy

with Eq.(5.24), the diffusion coefficient as a function of the parameter h is then

given by

D(h) =
1

2

(

∂2∆h(z, β)

∂β2

(

∂∆h(z, β)

∂z

)−1
)∣

∣

∣

∣

∣

z=1,β=0

, (5.38)

where the subscript h indicates that the kneading determinant is dependent upon

the parameter.

5.3.4 A simple example

To illustrate the method, we look at the simplest case possible (other than h = 0

of course which is trivial). We set the parameter h = 1 and this means that

N = 2 as opposed to 3 for the other parameter values. At this value K(z, β) is a

1× 1 ‘matrix’ that is equal to its determinant. Therefore from Eq.(5.34) we have

∆1(z, β) = K
1
(z, β)

=
1

2

[

~θ(0.5+)− ~θ(0.5−)
]

. (5.39)

Furthermore the weights are given by
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t1 =
zeβ

2
, t2 =

ze−β

2
, (5.40)

and M̃1(x) is just the doubling map modulo one. The point 0.5+ gets mapped

onto the fixed point at x = 0 after one iteration. Hence from Eq.(5.33)

~θ(0.5+) = 1− t2

∞
∑

n=0

tn1

= 1− t2
1− t1

. (5.41)

Similarly, the point 0.5− gets mapped onto the fixed point at x = 1 after one

iteration so

~θ(0.5−) = −1 +
t1

1− t2
(5.42)

Substituting Eq.(5.40), Eq.(5.42) and Eq.(5.41) into Eq.(5.39) yields,

∆1(z, β) = 0.5

[

2− 0.5ze−β

1− 0.5zeβ
− 0.5zeβ

1− 0.5ze−β

]

. (5.43)

Differentiating we obtain

∂2∆1(z, β)

∂β2

∣

∣

∣

∣

z=1,β=0

= −2,
∂∆1(z, β)

∂z

∣

∣

∣

∣

z=1,β=0

= −2. (5.44)

From Eq.(5.38) we therefore obtain the required result that D(1) = 0.5.

5.3.5 Step-function convergence

Even though Eq.(5.37) may look daunting, we can solve Eq.(5.38) for the full

parameter range with a little help from a computer. It involves defining nine

polynomials whose coefficients are determined by the kneading orbits of the three

critical points 1−h
2
, 0.5 and1+h

2
. From Eq.(5.28) we have that

M̃h(0.5
+) = (1− h)+, M̃h(0.5

−) = h−
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M̃2
h

(

(

1− h

2

)+
)

= h+, M̃2
h

(

(

1− h

2

)−
)

= (1− h)−

M̃2
h

(

(

1 + h

2

)+
)

= h+, M̃2
h

(

(

1 + h

2

)−
)

= (1− h)−. (5.45)

Hence the orbits of the three critical points reduce to the orbits of the two

points x = h and x = 1 − h. In addition, as this map is symmetric about the

point x = 0.5 the orbit of x = 1 − h is just the mirror image of the orbit of

x = h. Therefore we see that the diffusion coefficient is a function of the orbit of

the point x = h. This result is in good analogy with the result for the functional

recursion method discussed in chapter 2 (cf. Eq.(2.34)) in which the diffusion

coefficient is also evaluated as a function of the orbit of x = h.

We can analyse the convergence of the diffusion coefficient by truncating the

sum in Eq.(5.33) and systematically adding terms to the polynomials in Eq.(5.37).

Firstly, we observe that the zeroth order truncation D0(h) = 0 does not reproduce

the random walk solution for diffusion Drw, i.e. the solution one would obtain

if one took no higher order correlations into account (Fujisaka and Grossmann

[1982]; Klages [1996]; Klages and Dorfman [1997]; Schell et al. [1982]), which in

this case is Drw = h/2. Secondly, we observe a series of increasingly complex

step-functions which converge to the diffusion coefficient as different parameter

regions pick up different weights through the orbit of x = h. See figure 5.2 for

an illustration of the convergence of the diffusion coefficient in the full parameter

range h = [0, 1]. The precise location of the discontinuities in the nth step function

are given by the discontinuities of the equation M̃h(h) which can be solved with

Eq.(5.28). For example for n = 1 we obtain

M̃h(h) =











3h 0 ≤ h < 1
3

3h− 1 1
3
≤ h < 1

2

h 1
2
≤ h < 1

, (5.46)

which is discontinuous at h = 1/3 and h = 1/2 as reflected in figure 5.2.(a). As

n is increased, M̃n
h (h) becomes increasingly discontinuous as reflected in figures

5.2.(b),..,(f). These step functions have the interesting additional property that

they pick out regions of self similarity through their functional form. For instance,

136



Figure 5.2: Step function convergence of the diffusion coefficient. In this fig-
ure, the convergence of the parameter dependent diffusion coefficient of the lifted
Bernoulli shift map is illustrated. It has been evaluated using a method based
upon the kneading orbits of the map. In (a), (b), (c), (d), (e) and (f) the diffu-
sion coefficient is illustrated at the first, second, third, fourth, tenth and thirtieth
order truncation of the kneading orbit respectively (see text for definition). We
observe an increasingly complex series of step functions which converge to the
diffusion coefficient.
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compare the region h ∈ [0, 0.5] in figure 5.2.(b) with that of the region h ∈ [0, 0.2]

in figure 5.2.(c). This phenomenon of self similarity on fine scales is indicative of

the fine scale structure found in D(h). Although in comparison with alternative

methods for ‘approximating’ a diffusion coefficient (Knight and Klages [2011a])

or chapter 3) the lower order approximations give us little information about the

structure of the diffusion coefficient due to their step-function form and we have

to go to relatively high order before we observe the diffusion coefficient.

5.4 Conclusion

In this chapter we showed how the zeros of dynamical zeta functions are directly

related to the diffusion coefficient of a corresponding dynamical system. Using

this background theory, we employed a method based on the generalisation of the

Milnor-Thurston kneading theory, by Baladi and Ruelle, to analytically derive the

parameter dependent diffusion coefficient for a piecewise linear map of the real

line. The classic way to derive information from the dynamical zeta function is the

cycle expansion method which has the advantage that it takes into account the

evolution of a density of points by using only the periodic orbits. The kneading

theory technique presented in this chapter has the added strength that it requires

only the information from a finite number of orbits of critical points, in order to

derive information about the entire density. We showed further that for the map

under consideration, this information is captured by the orbit of a single point,

in analogy with the recursive functional relation method discussed in chapter 2.

However, the convergence to the diffusion coefficient was shown to be drastically

different in that the random walk solution was not reproduced at any stage and

we observed a series of increasingly complicated step functions, this result being

different to the approximation methods discussed in chapter 3.

Although the kneading method we presented is powerful as we can fully an-

alytically derive the diffusion coefficient at any parameter value to very high

degrees of accuracy, it relies heavily on the assumption of hyperbolicity. Without

this assumption the analytic structure of the dynamical zeta functions is drasti-

cally changed and the dynamical systems exhibit power law decay of correlations

rather than exponential leading to anomalous diffusion where the mean square
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displacement no longer increases linearly, see for example Artuso and Crista-

doro [2004]; Artuso and Cristadoro [2005] or for a comprehensive introduction

see Klages et al. [2008]. We also saw in figure 5.2 that the structure of the con-

vergence to the diffusion coefficient is quite poor relative to other methods (see

Knight and Klages [2011a] or chapter 3 of this thesis). Little information can be

gleaned from the lower order approximations about the structure of the diffusion

coefficient.

An important open question is to what extent the method employed in this

chapter can be generalised to higher dimensions. Considerable research has gone

into extending the results of Baladi and Ruelle Baladi [2004]. Potentially ap-

plying this work to higher dimensional systems like the sawtooth maps (Dana

et al. [1989]), standard maps (Rechester and White [1980]) or particle billiards

(Harayama and Gaspard [2001]; Harayama et al. [2002]; Klages [2007]) and be-

ing able to analytically answer questions about the structure of the parameter

dependent diffusion coefficients presents an intriguing line of future research.
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Chapter 6

Concluding remarks and outlook

In this thesis we have explored the complicated, parameter-dependent diffusion

coefficients that are found in simple, one-dimensional dynamical systems. The

parameter-dependent diffusion coefficients we studied exhibit non-trivial, fine-

scale structure and regions of scaling and self-similarity leading to the term ‘frac-

tal’ diffusion coefficients. The fractality in these simple systems is a result of the

topological sensitivity under parameter variation in the microscopic, deterministic

dynamics.

In chapter 2, we employed a method which evaluates the Taylor-Green-Kubo

formula for diffusion in terms of the recursive solutions of certain fractal ‘gen-

eralised Takagi functions’ to analytically evaluate the parameter-dependent dif-

fusion coefficients of a family of piecewise-linear maps. The specific form of the

maps we looked at allowed us to fully explore the analytic capability of this

particular method for deriving the diffusion coefficient and allowed us to fully

explain the fractal structure we observed. This led to the observation of linear,

as opposed to fractal, diffusion coefficients which in some cases were caused by

ergodicity breaking. However in other cases the linearity is due to the newly

discovered ‘dominating-branch’ process. The dominating-branch process causes

ergodic maps, which at first-look one may expect to exhibit a fractal diffusion

coefficient, to mimic their non-ergodic cousins resulting in linear diffusion coef-

ficients. This leads to the important conclusion that topological instability does

not necessarily imply fractality. In addition we numerically explored the two-

dimensional sawtooth map to show how the recursion relation method fails in this
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higher-dimensional setting, and to illustrate the subtle behaviour of parameter-

dependent diffusion coefficients in higher dimensions.

Inspired by the work on higher-dimensional systems and the lack of analytical

results in this area (Klages [2007]), in chapter 3 we investigated various methods

for systematically approximating the diffusion coefficient in a dynamical system.

Approximation methods are, more often than not, the only tool available for

studying the diffusion coefficient, along with numerical experiments. Here we

showed that the approximations that one obtains, drastically vary between the

approximation methods that one employs, this being indicative of the fact that

there is no unique way to systematically approximate the diffusion coefficient.

Inspired by recent work on open systems, we took the powerful method used

in chapter 2 and applied it to a novel type of parameter-dependence in chapter

4. Here we looked at what effect the size and position of the coupling regions

in the dynamics called ‘escape holes’ has on the diffusion coefficient. This led to

the discovery of a fractal structure based upon the periodic orbits of the reduced

dynamics. We also discovered a variety of asymptotic regimes for small hole size

which are also dependent upon the periodic structure of the reduced dynamics.

This result generalises the random walk approximation for small hole size (Fu-

jisaka and Grossmann [1982]; Klages [1996]; Klages and Dorfman [1997]; Schell

et al. [1982]).

In chapter 5, we looked at an alternative method for fully analytically de-

riving the parameter-dependent diffusion coefficient of a dynamical system. This

method evaluates the zeros of the systems dynamical zeta function via the knead-

ing orbits which are the orbits of the critical points. The zeros can in turn be

related to the diffusion coefficient via the generating function. The power of

this method is that it bypasses the need to take full account of the periodic orbit

structure which is an alternative way to evaluate the dynamical zeta function and

diffusion coefficient (Cvitanović et al. [2010]). An interesting observation was the

behaviour of the convergence with this kneading theory method. We observed an

increasingly complex set of step functions which only reproduce the leading order

term in the limit, this being different to the alternative methods we studied in

the previous chapters.

We have seen what can be achieved analytically in terms of deriving and
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explaining the fractal structures found in simple dynamical systems, but there

are still many open questions. We saw in chapter 2 how the powerful recursion-

relation method fails analytically in the higher-dimensional setting, but one pos-

sible generalisation would be to use it to analytically derive the other moments of

the spreading process. Firstly, this could involve adapting the method to obtain

the first moment known as the ‘current’ or ‘drift’ in a system that exhibits a bias.

Secondly, the Taylor-Green-Kubo formula could be suitably adapted to evaluate

the higher-order ‘Burnett-coefficients’ (Burnett [1935]), which correspond to the

higher-order moments and attract much interest (Beijeren [1982]; Chernov and

Dettmann [2000]; Cvitanović et al. [2010]; Gaspard [1998]). It would be inter-

esting to see whether the above mentioned dominating-branch process can be

seen in the other moments or whether these moments can distinguish between

the microscopic dynamics. In addition it would be useful to know how common

the dominating-branch process is and if it exists in higher dimensional systems.

It would also be worthwhile to study the asymptotic regimes for small hole size,

mentioned above in reference to chapter 4, in the higher dimensional setting and

see whether corresponding results can be found here. Potential crosslinks with

experiment could also be made.

Of crucial importance in the research of parameter-dependence is the link

to experiment (Klages [2007]). In particular, to what extent these complicated

fractal structures can be observed in a physical setting remains an open question.

Along these lines the effect of introducing noise into the dynamics is an important

topic (Klages [2002a,b]) as with any experiment comes some level of noise. In

Klages [2002a,b] numerical investigations of the effect of noise on fractal diffusion

coefficients were performed, developing the methods used in this thesis could

put this work on a more rigorous footing. In addition, developing algorithms to

subtract the noise and expose an underlying fractal structure would be of great

help.

Understanding diffusion in higher dimensional, more physically realistic sys-

tems presents a challenging goal. Fundamental questions regarding the parameter-

dependent diffusion coefficient in area preserving maps (Dana et al. [1989]; Rech-

ester and White [1980]) and particle billiards (Harayama and Gaspard [2001];

Harayama et al. [2002]; Klages [2007]) in particular remain unanswered. Devel-
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oping suitable analytic techniques to derive these coefficients would be a big step

forward in answering these questions.

Finally, the process of ‘anomalous diffusion’, where the mean square displace-

ment grows nonlinearly, which can be observed in experiment (Barthelemy et al.

[2008]) and is used to explain a large number of physical phenomena is an im-

portant generalisation of normal diffusion (Klages et al. [2008]). Increasing the

understanding of anomalous diffusion in experiments through the development of

suitable mathematical techniques is currently a very active area of research (Seri

et al. [2011]).
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Appendix

A.1 Two-step transition matrix

The velocity correlation functions for the two-step persistent random walk are,

〈v0vn〉 = r · An · s (1)

where r evaluates vn, s evaluates v0p(v0, v1),

r =
(

0 0 0 1 1 1 −1 −1 −1
)

, (2)

s =
(

0 p(1, 0) −p(−1, 0) 0 p(1, 1) −p(−1, 1) 0 p(1,−1) −p(−1,−1)
)T

and A is the 9× 9 probability transition matrix for the system.





































P000 P001 P00−1 0 0 0 0 0 0

0 0 0 P010 P011 P01−1 0 0 0

0 0 0 0 0 0 P0−10 P0−11 P0−1−1

P100 P101 P10−1 0 0 0 0 0 0

0 0 0 P110 P111 P11−1 0 0 0

0 0 0 0 0 0 P1−10 P1−11 P1−1−1

P−100 P−101 P−10−1 0 0 0 0 0 0

0 0 0 P−110 P−111 P−11−1 0 0 0

0 0 0 0 0 0 P−1−10 P−1−11 P−1−1−1





































,

(3)
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The two-step parameter dependent transition probabilities associated with

Eq.(3) are,

P000 =























(1− 3h)/(1− 2h) 0 ≤ h < 1
7

(3− 5h)/(4− 8h) 1
7
≤ h < 1

5

(2− 5h)/(2− 4h) 1
5
≤ h < 1

3

1/2 1
3
≤ h < 1

, (4)

P001 =











1 0 ≤ h < 1
7

(1− 3h)/(4h) 1
7
≤ h < 1

5

1/2 1
5
≤ h < 1

, (5)

P101 =































0 0 ≤ h < 1
7

(7h− 1)/(4h) 1
7
≤ h < 1

6

1/4 1
6
≤ h < 1

3

(1− 2h)/(2− 2h) 1
3
≤ h < 1

2

0 1
2
≤ h < 1

, (6)

P101 =































0 0 ≤ h < 1
7

(7h− 1)/(4h) 1
7
≤ h < 1

6

1/4 1
6
≤ h < 1

3

(1− 2h)/(2− 2h) 1
3
≤ h < 1

2

0 1
2
≤ h < 1

, (7)

P010 =











1 0 ≤ h < 1
3

(2− 4h)/(1− h) 1
3
≤ h < 3

7

1/2 3
7
≤ h < 1

, (8)

P110 =











0 0 ≤ h < 1
3

(3h− 1)/(1− h) 1
3
≤ h < 3

7

1/2 3
7
≤ h < 1

, (9)

P011 =











1 0 ≤ h < 3
7

(1− h)/(6h− 2) 3
7
≤ h < 1

2

(1− h)/2h 1
2
≤ h < 1

, (10)
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P111 =











0 0 ≤ h < 3
7

(7h− 3)/(6h− 2) 3
7
≤ h < 1

2

1/2 1
2
≤ h < 1

, (11)

P1−11 =

{

0 0 ≤ h < 1
2

(2h− 1)/(2h) 1
2
≤ h < 1

, (12)

We also have the following properties of the transition probabilities which we can

use to simplify Eq.(3).

P100 = (1− P000)/2, P10−1 = 1− (P101 + P001),

P1−10 = 1− (P110 + P010), P1−1−1 = 1− (P111 + P011)

P−1−11 = P1−11, P01−1 = 0,

p(−1, 0) = p(1, 0), p(−1,−1) = p(1, 1). (13)

Let mn
ij be the ij

th entry of An. By splitting Eq.(3) into three vectors (000), (111)

and (−1 − 1− 1), Eq.(1) can be split into a sum involving three 3× 9 matrices.

The first of these terms cancels as it is multiplied by the vector (000) and we can

gather the remaining terms to obtain,

〈v0vn〉 =
(

1 1 1
)







(mn
41 −mn

71) ... (mn
49 −mn

79)

(mn
51 −mn

81) ... (mn
59 −mn

89)

(mn
61 −mn

91) ... (mn
69 −mn

99)






s. (14)

We can then remove the first, fourth and seventh columns in the matrix in Eq.(14)

corresponding to the zeros in s. We can then use the symmetries in p(a, b) to

reduce s to a 3 × 1 vector and rearrange the entries in the matrix of Eq.(14)

accordingly. Using the property that the symmetries of An are the same as those

of A we can reduce Eq.(14) to one involving a 3× 3 matrix,
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〈v0vn〉 =
(

2 2 2
)







(mn
42 −mn

43) (mn
45 −mn

49) (mn
48 −mn

46)

(mn
52 −mn

53) (mn
55 −mn

59) (mn
58 −mn

56)

(mn
62 −mn

63) (mn
65 −mn

69) (mn
68 −mn

66)













p(1, 0)

p(1, 1)

p(1,−1)






.

(15)

In order to obtain an analytical expression for the matrix in Eq.(15), we would

like to obtain a solvable recurrence relation, however, on inspection we see that

this matrix is equal to







P100 P101 P10−1

0 0 0

0 0 0













0 0 0

(mn−1
33 −mn−1

32 ) (mn−1
39 −mn−1

35 ) (mn−1
36 −mn−1

38 )

(mn−1
32 −mn−1

33 ) (mn−1
35 −mn−1

39 ) (mn−1
38 −mn−1

36 )







+







0 0 0

P110 P111 P−1−11

0 0 0













(mn−1
42 −mn−1

43 ) (mn−1
45 −mn−1

49 ) (mn−1
48 −mn−1

46 )

(mn−1
52 −mn−1

53 ) (mn−1
55 −mn−1

59 ) (mn−1
58 −mn−1

56 )

(mn−1
62 −mn−1

63 ) (mn−1
65 −mn−1

69 ) (mn−1
68 −mn−1

66 )







+







0 0 0

0 0 0

P1−10 P1−11 P1−1−1













(mn−1
43 −mn−1

42 ) (mn−1
49 −mn−1

45 ) (mn−1
46 −mn−1

48 )

(mn−1
53 −mn−1

62 ) (mn−1
69 −mn−1

65 ) (mn−1
66 −mn−1

68 )

(mn−1
63 −mn−1

52 ) (mn−1
59 −mn−1

55 ) (mn−1
56 −mn−1

58 )







and unlike for the one-step approximation, a recurrence relation is unobtainable.

A.2 Transition matrices

In this section we explicitly give the parameter dependent Markov transition

matrix approximations of the interval map M̃h(x). In order to transfer this to

the system on [0, L] one must use the following n × n matrices as the diagonal

elements of an Ln × Ln matrix and insert the periodic boundary conditions

appropriately. The elements that correspond to periodic boundary conditions are

given in brackets.
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A.2.1 Second order

h ∈ [0, 1/6] and h ∈ [1/6, 1/4]:













0 (1) 1 0
4h

1−2h
1−6h
1−2h

1 0

0 1 1−6h
1−2h

4h
1−2h

0 1 (1) 0













,













0 (1) 1 0

1 0 2−8h
1−2h

6h−1
1−2h

6h−1
1−2h

2−8h
1−2h

0 1

0 1 (1) 0













. (16)

h ∈ [1/4, 1/3] and h ∈ [1/3, 1/2]:













0 (1) 1−3h
h

4h−1
h

1 0 0 1

1 0 0 1
4h−1
h

1−3h
h

(1) 0













,













(

3h−1
h

) (

1−2h
h

)

0 1

1 0 0 1

1 0 0 1

1 0
(

1−2h
h

) (

3h−1
h

)













. (17)

h ∈ [1/2, 1] which is Markov:













(1) 0 0 1

0 (1) (1) 0

0 (1) (1) 0

1 0 0 (1)













. (18)

A.2.2 Third order

The third order parameter dependent transition matrices for h ∈ [0, 1/14] and

h ∈ [1/14, 1/10]:
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





















0 0 (1) 1 0 0

1 0 0 1 0 0

0 8h
1−6h

1−14h
1−6h

1 0 0

0 0 1 1−14h
1−6h

8h
1−6h

0

0 0 1 0 0 1

0 0 1 (1) 0 0























,























0 0 (1) 1 0 0

1 0 0 1 0 0

0 1 0 2−20h
1−6h

14h−1
1−6h

0

0 14h−1
1−6h

2−20h
1−6h

0 1 0

0 0 1 0 0 1

0 0 1 (1) 0 0























,

(19)

h ∈ [1/10, 1/8] and h ∈ [1/8, 1/7]:























0 0 (1) 1 0 0

1 0 0 1
2h

− 4 5− 1
2h

0

0 1 0 0 1 0

0 1 0 0 1 0

0 5− 1
2h

1
2h

− 4 0 0 1

0 0 1 (1) 0 0























,























0 0 (1) 1
h
− 7 8− 1

h
0

1 0 0 0 1 0

0 1 0 0 1 0

0 1 0 0 1 0

0 1 0 0 0 1

0 8− 1
h

1
h
− 7 (1) 0 0























,

(20)

h ∈ [1/7, 1/6] and h ∈ [1/6, 1/5]:























0
(

7h−1
h

) (

1−6h
h

)

0 1 0

1 0 0 0 1 0

0 1 0 0 1 0

0 1 0 0 1 0

0 1 0 0 0 1

0 1 0
(

1−6h
h

) (

7h−1
h

)

0























,























0
(

1−5h
h

) (

6h−1
h

)

0 1 0

1 0 0 0 1 0

1 0 0 0 0 1

1 0 0 0 0 1

0 1 0 0 0 1

0 1 0
(

6h−1
h

) (

1−5h
h

)

0























,

(21)

h ∈ [1/5, 1/4] and h ∈ [1/4, 3/10]:
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





















0 0 (1) 5− 1
h

1
h
− 4 0

1 0 0 0 1 0

1 0 0 0 0 1

1 0 0 0 0 1

0 1 0 0 0 1

0 1
h
− 4 5− 1

h
(1) 0 0























,























0 0 (1) 1 0 0

0 0 (1) 0 1 0

1 0 0 0 8h−2
1−2h

3−10h
1−2h

3−10h
1−2h

8h−2
1−2h

0 0 0 1

0 1 0 (1) 0 0

0 0 1 (1) 0 0























,

(22)

h ∈ [3/10, 1/3] and h ∈ [1/3, 5/14]:























0 0 (1) 1 0 0

0 0 (1) 0 1 0
4−12h
1−2h

10h−3
1−2h

0 0 1 0

0 1 0 0 10h−3
1−2h

4−12h
1−2h

0 1 0 (1) 0 0

0 0 1 (1) 0 0























,























0 (1) 0 0 1 0

0 0 (1) 0 1 0
12h−4
1−2h

5−14h
1−2h

0 0 1 0

0 1 0 0 5−14h
1−2h

12h−4
1−2h

0 1 0 (1) 0 0

0 1 0 0 (1) 0























,

(23)

h ∈ [5/14, 3/8] and h ∈ [3/8, 4/10]:























0 (1) 0 0 1 0

0 0 (1) 0 1 0

1 0 0 0 6−16h
1−2h

14h−5
1−2h

14h−5
1−2h

6−16h
1−2h

0 0 0 1

0 1 0 (1) 0 0

0 1 0 0 (1) 0























,























0 (1) 0 0 1 0

0 0 (1) 0 4−10h
1−2h

8h−3
1−2h

1 0 0 0 0 1

1 0 0 0 0 1
8h−3
1−2h

4−10h
1−2h

0 (1) 0 0

0 1 0 0 (1) 0























,

(24)

h ∈ [4/10, 3/7] and h ∈ [3/7, 1/2]:
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





















0 (1) 0 0 3−7h
3h−1

10h−4
3h−1

0 0 (1) 0 0 1

1 0 0 0 0 1

1 0 0 0 0 1

1 0 0 (1) 0 0
10h−4
3h−1

3−7h
3h−1

0 0 (1) 0























,























(

7h−3
3h−1

) (

2−4h
3h−1

)

0 0 0 1

0 0 (1) 0 0 1

1 0 0 0 0 1

1 0 0 0 0 1

1 0 0 (1) 0 0

1 0 0 0
(

2−4h
3h−1

) (

7h−3
3h−1

)























.

(25)

For h ∈ [1/2, 1] we saw above that the transition matrix is already Markov at

the second order approximation, therefore there is no need for a third order

approximation.
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