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Abstract 

Cytokine based therapies can be targeted to the sites of active inflammation by modifying a given 

cytokine as a LAP-cytokine. IL-17A has been shown to directly contribute to pathogenesis of 

rheumatoid arthritis (RA). IL-17F, another member of the IL-17 cytokines family shares structural 

homology, receptor binding and biological properties with IL-17A but is 30-100 times less potent 

than IL-17A. (H161R) IL-17F mutant, a natural variant of IL-17F was shown to be protective against 

asthma in Japanese population. In vitro, IL-17F mutant competitively inhibited wild-type IL-17F and 

lacked the ability to activate downstream signaling pathways. I hypothesized that (H161R) IL-17F 

mutant is an additional inhibitor of IL-17A and if modified as LAP-IL-17F mutant, would be an 

effective targeted therapy for RA. 

(H161R) IL-17F mutant was created by substituting nucleotide A at position 485 in the wild type IL-

17F by G. In vitro assays showed that the IL-17F mutant could bind to IL-17RC but lacked the ability 

to stimulate IL-6 secretion in HFFF2, 3T3 and HeLa cells and phosphorylate ERK1/2 in HeLa cells. IL-

17F mutant also inhibited IL-17A induced secretion of IL-6 in all these cell lines. 

In order to assess in vivo therapeutic efficacy of LAP-IL-17F mutant in collagen induced arthritis mice, 

three mouse analogues of human IL-17F mutant were developed. Of these, (Q158R) IL-17F mutant 

displayed IL-17 agonistic properties, (H157R) IL-17F mutant could not be expressed in vitro and the 

truncated IL-17F mutant could not bind to mouse IL-17RC.  

Investigation of in vivo expression and pharmacokinetics of intravenous hydrodynamically delivered 

human full-length and LAP-IL-17 plasmid DNAs in naïve SCID and C57BL/6 mice showed that human 

IL-17 transgene expression was detectable in mouse serum at 48 hours post-delivery. The transgene 

expression however declined rapidly over the next two weeks. The local expression of transgene in 

C57BL/6 airpouch lavage fluid was less than 5% of its systemic levels.  

Taken together, the findings of the study warrant an investigation of in vivo therapeutic efficacy of 

human (H161F) IL-17F mutant in a suitable preclinical RA model, such as RA synovium/SCID mice. 
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1.1 Rheumatoid arthritis 

RA is a systemic autoimmune disease characterised by chronic synovial inflammation, cartilage 

damage and bone destruction. It is the most common inflammatory arthritis that affects adults with 

a remarkably consistent worldwide prevalence of approximately 1%. RA usually affects people in 

their fourth and fifth decades and women are three times more commonly affected than men. RA 

classically presents as symmetrical polyarthritis affecting both the small and large joints of upper and 

lower extremities. The arthritis although principally affects synovial joints, is truly a systemic disease 

and may affect many other organ systems (Fig. 1.1). Some of the extra-articular manifestations of RA 

include fever, anorexia, weight loss, fatigue, subcutaneous nodules, dry eyes, lung fibrosis, pleuritis, 

pericarditis and vasculitis. RA is associated with an increased prevalence of co-morbid conditions 

such as cardiovascular disease, infections and lymphoproliferative disorders (1). RA patients are at 

risk of premature mortality and the life expectancy of the patients is shortened by 3-10 years (2). 

  

 

 
 

Figure 1.1 Clinical manifestations of RA. RA characteristically affects small and large joints in a 
symmetrical distribution. Although predominantly affecting joints, RA is truly a systemic disease 
and can involve many other organ systems. The extra-articular manifestations of RA include 
fatigue, weight loss, anaemia, dryness of eyes or mouth, pleural and pericardial effusions, 
pulmonary nodules, fibrosis, lymphadenopathy, splenomegaly and small vessel vasculitis. 
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RA is diagnosed clinically on the basis of clinical features of inflammatory arthritis that affects three 

or more joint and is of more than 6 weeks duration in association with radiology and blood findings. 

Using the most recent American College of Rheumatology and the European League Against 

Rheumatism (ACR/EULAR) classification criteria, last revised in 2010 (Table 1.1), a definite diagnosis 

of RA is established if the combined score  in four individual domains (the number and site of joints  

involved, positivity of rheumatoid factor (RF) or anti-citrullinated peptide antibody (ACPA), raised 

erythrocyte sedimentation rate or C-reactive protein and symptom duration of at least six weeks)  in 

the absence of an alternative diagnosis is 6 (from the  maximum possible of 10). 

Although the course of RA is variable, most patients suffer a progressive disease. The overall 

outcome of RA is dependent upon the degree of disease activity, joint damage, the physical  

function and psychological health of the patient and the presence of comorbid illness. Much of the 

joint damage that ultimately results in disability begins early in the course of the disease. Two thirds 

of patients with RA of less than two years duration have joint erosions on plain radiographs of the 

hands. The key to prevent serious disease outcomes is instituting disease modifying anti-rheumatic 

drug (DMARD) therapy as soon as possible. With such a shift in the strategy, the goal of treatment 

now is to achieve remission or at least the lowest possible level of disease activity.  
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Table 1.1 2010 ACR/EULAR classification criteria for RA 

     Domain Score 

A Joint involvement* 
 Large joints 
 1 0 
 2-10 1 
 Small joints 
 1-3 2 
 3-10 3 
 >10 joints (at least 1 small joint) 5 
B Serology ** 
 RF/ACPA negative 0 
 RF/ACPA low positive 2 
 RF/ACPA high positive 3 
C Acute phase reactants 
 CRP/ESR normal 0 
 CRP/ESR abnormal 1 
D Duration of symptoms 
 < 6 weeks 0 
  6 weeks 1 

 
The criteria are aimed at classification of newly presenting patients. The scores in categories A-D are 

added; the patient is classified to have definite RA if the total score is 6. * Joint involvement refers 
to any swollen or tender joint on examination, which may be confirmed by radiology evidence of 
synovitis; **At least one test result is needed. ACR, American College of Rheumatology; EULAR, 
European League Against Rheumatism; RF, rheumatoid factor; ACPA, anti-citrullinated protein 
antibody; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate. 
 
 
 
 
1.1.1 Pathogenesis of RA 

RA is not just a single disease, instead a common end result of activation of different pathways, 

depending on the genetic makeup of the patient, leading to autoreactivity and chronic synovial 

inflammation. Exogenous or endogenous environmental triggers cause repeated activation of innate 

immunity, which leads to gradually increasing. The exact trigger or the cause of RA is not known. 

Amongst the genetic factors, RA is strongly linked to the major histocompatibility class II antigens 

HLA-DRB1*0404 and HLADRB1*0401(3, 4); HLA alleles that contain the shared epitope (QKRAA) 

particularly confer susceptibility to RA (4). Likewise PTPN22, STAT4, CTLA4, TRAF1-C5, c-REL, which 

aggregate around immune regulatory functions are the other identified risk alleles (5-9). These single 

nucleotide polymorphisms increase the risk for RF or ACPA positive disease whereas HLA-DRB1*03, 
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interferon regulatory factor 5 and C-type lectin domain family 4 member A, some of the less 

established genetic risk factors are associated with ACPA negative RA (10-12). 

Of the environmental stimuli, the best defined is smoking, which in association with susceptible HLA-

DRB1 alleles, synergistically increases the risk of having ACPA and RA (13, 14). Although no causative 

infectious agent has ever been isolated from RA patients, infections such as Parvovirus, Rubella, 

Epstein Barr virus, Cytomegalovirus, Proteus species, Escherichia coli and Borrelia Burgdorferi have 

been associated with arthritis (15). Porphyromonas gingivalis, the predominnat pathogenic organism 

in chronic periodontitis expresses the enzyme, peptidyl arginine deiminase, type IV (PADI 4), which is 

capable of promoting citrullination of mammalian proteins (16). Endogenous antigens such as 

human cartilage glycoprotein 39 and heavy-chain-binding protein have also been ascribed as 

possible triggers RA (17). Although RF and ACPA are often positive even before the onset of RA, a 

pathogenic role for these has not been established.  

Whatever the trigger, very early during the course of RA, the synovium undergoes hyperplasia, 

neoangiogenesis and cellular infiltration. Once initiated, the chronic synovial inflammation is self-

perpetuated and propagated via activated resident (macropahges, fibroblasts, endothelial cells) and 

infiltrated cells (T lymphocytes, B lymphocytes, monocytes, plasma cells, mast cells and dendritic 

cells), which in turn secrete cytokines, chemokines, growth factors, matrix degrading enzymes, PGE2 

and NO. The hyperplastic synovium ultimately expands and forms finger-like projections termed 

pannus, which invades and destroys the adjacent cartilage and bone resulting in the characteristic 

joint damage of RA (18). Once initiated, the chronic synovial inflammation in RA is self-perpetuated. 

Distinct mechanisms regulate inflammation and destruction of matrix, cartilage and bone. 

 

1.1.1a Cellular mediators of inflammation and joint damage (Fig. 1.2) 

Macrophages are central effectors of synovitis. The rheumatoid synovium is predominantly 

infiltrated by monocytes and macrophages. Clinically effective biologic agents consistently reduce 

macrophage infiltration in the synovium (19). Macrophages are responsible for antigen presentation, 
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phagocytosis, production of various cytokines (TNF-α, and IL-1, 6, 12, 15, 18, and 23), prostanoids 

and matrix-degrading enzymes, release of reactive oxygen and nitrogen intermediates, stimulation 

of angiogenesis and maturation of osteoclasts (20, 21). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Cellular mediators of inflammation and joint damage in RA. RA synovitis is characterised 

by activated resident and infiltrated cells which secrete cytokines, chemokines, growth factors, 

matrix degrading enzymes, prostaglandins, nitric oxide , thus playing a crucial role in the propagation 

and maintenance of self-perpetuating chronic synovitis accompanied by matrix, cartilage and bone 

damage. 
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Fibroblasts are the other principal cells in RA synovium and mainly involved in effecting the 

destructive response. Fibroblasts in RA synovium demonstrate properties of anchorage 

independence, loss of contact inhibition, inability to undergo apoptosis, invade cartilage and 

stimulate differentiation and activation of osteoclasts (22-26). Additionally, RA synovial fibroblasts 

promote expression of proinflammatory cytokines, chemokines, adhesion molecules and MMPs and 

directly contribute to the chronic synovial inflammation (27).  

T cells constitute approximately 50% or more of RA synovial cells, the majority of which are memory 

type Th1 and Th17 CD4+ cells. T cell activated by the inciting and other autoantigens in association 

with costimulatory molecules initiate a pathogenic chronic synovial immune response. Antigen-

activated CD4+ T cells stimulate monocytes, macrophages and synovial fibroblasts cells to produce 

cytokines and matrix-degrading enzymes, activate B cells to produce autoantibodies, and express 

ligands that stimulate osteoclastogenesis. T cell activation in RA can also take place without specific 

antigen and results in self-perpetuating cycles of T cell proliferation sufficient to sustain 

autoimmunity (28). Although T cells modulate synovial inflammatory responses, a direct role of T 

cells has not been confirmed in RA (29-31). Abatacept or CTLA4-Ig, which restricts T cell activation 

via inhibition of T cell costimulation has proven to be effective in the treatment of RA. 

B cells have a multifaceted role in the pathogenesis of RA having the ability to maintain synovial 

ectopic germinal centres, to mediate pathological immune responses and to drive the humoral 

autoimmune process. B cells in RA produce RF, APCA, anti-nuclear antibody and also specific 

autoantibodies against collagen II, human cartilage gp39, matrix components in cartilage and 

cartilage link protein. These cells exhibit an increased expression of IL-1β, IL-6, IL-7, IFN-γ and G-CSF, 

and have been recently identified to have novel functions such as participation in angiogenesis (32). 

Rheumatoid B cells show evidence of inappropriate proliferation, oligoclonality, autoreactivity and 

self-perpetuation. Although the naïve B cells can be activated in a T cell-dependent or independent 

manner, they themselves are crucial in T cell activation (33).  
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Neutrophils contribute to synovitis by synthesizing prostaglandins, proteases, and reactive oxygen 

intermediates (34). Mast cells are activated at the very onset of RA and secrete cytokines such as 

TNF-α, IL-1β and IL-17, chemokines and produce high levels of vasoactive amines and  

proteases (35, 36). The activated macrophages, lymphocytes and fibroblasts, and their products 

stimulate angiogenesis. Endothelial cells in the synovium are activated and express adhesion 

molecules such as E-selectin, P-selectin, LFA-1, ICAM-1, VLA-4, and 4β7. The adhesion molecules, in 

association with IL-8 promote the recruitment of inflammatory cells into the joint. Anti-ICAM-1, an 

anti-adhesion molecule therapy, prevented synovial inflammation and disease development in 

animal models and humans (37).  

 

1.1.1b Soluble mediators of inflammation and joint damage 

The cells in RA synovium secrete numerous cytokines, chemokines, growth factors and other 

mediators of inflammation (20, 38). Of these, cytokines particularly TNF, IL-1, IL-6 and IL-17 are 

fundamental to both chronic inflammatory and the destructive phases of RA; their role in RA 

pathogenesis is summarised in Table 1.2. 

IL-6 drives local leukocyte activation and autoantibody production, mediates systemic effects that 

promote acute phase responses, inhibits bone formation and stimulates bone resorption (39, 40). Its 

critical role in RA is demonstrated by the positive outcomes in the patients after treatment with IL-6 

receptor inhibiting antibody (41). 

TNF-α plays the most important role in mediating and sustaining the chronic inflammatory response 

in RA. It activates expression of other cytokines, chemokines and endothelial cell adhesion molecules 

and promotes protection of synovial fibroblasts, angiogenesis and suppression of regulatory T cells 

(42, 43). The significance of TNF- in the pathogenesis of RA is evidenced by the fact that the TNF 

inhibitors are the most widely used biologics in the treatment of RA. 

IL-1 promotes activation of leukocytes, endothelial cells, chondrocytes, and osteoclasts (44, 45). 

However, benefits of IL-1 inhibition in the treatment of RA have only been modest (46).  
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Despite substantial lymphocytic infiltration, activated T cells secreted cytokines such as IFN-γ, IL-2 

and IL-4 except IL-17 are sparsely expressed in RA (47).   

Proinflammatory cytokines such as IL-7, IL-15, IL-18, IL-21, IL-23, IL-33 (48-55) are also upregulated in 

RA and play a role in the pathogenesis. Other proinflammatory cytokines such as IL-20, IL-22, IL-32, 

TNF-like weak inducer of apoptosis (TWEAK) and macrophage chemoattractant protein (MCP)-1 (56-

61) also contribute to the pathogenesis of RA.  

Inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2) 

are upregulated in RA and their inhibition reduces pain and inflammation in arthritic joints (62-66). 

Enzymatic factors such as matrix metalloproteasaes (MMPs), cathepsins, aggrecanases-1 and 2 (also 

called ADAMTS-4 and -5 respectively) (67-70) are overexpressed in RA and are predominantly 

responsible for inducing cartilage damage. Endogenous enzyme inhibitors such as TIMPs fail to 

reverse this destructive cascade due to their lower expression levels. 

Synovial cytokines, particularly macrophage colony stimulating factor (M-CSF) and receptor activator 

of NF-κB ligand (RANKL) promote osteoclast differentiation and invasion of the periosteal surface 

adjacent to articular cartilage (71). Cytokine-induced mediators such as dickkopf-1 and frizzled-

related protein 1 potently inhibit the differentiation of mesenchymal precursors into chondroblasts 

and osteoblasts (72).  

Although multiple anti-inflammatory molecules such as IL-10 (73), TGF-β (74), soluble p55 and p75 

TNFR (75-77) and IL-1 receptor antagonist (IL-1ra) are also upregulated in RA, their levels are 

insufficient to counterregulate the on-going chronic synovial inflammation. In RA, the cytokine 

homeostasis is imbalanced in favour of more pro-inflammatory than anti-inflammatory cytokines 

(42).  
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Table 1.2 Soluble protein mediators of inflammation and joint damage in RA 

Mediator                    Role played in the pathogenesis of RA 

 
Cytokines 

IL-6 Activates leukocytes and osteoclasts, promotes B-lymphocyte differentiation, 
mediates acute-phase response 

TNF- Activates leukocytes, endothelial cells, and synovial fibroblasts; induces production 
of cytokines, chemokines, adhesion molecules, and matrix enzymes; suppresses 
regulatory T-cell function; activates osteoclasts; and promotes resorption of 
cartilage and bone  

IL-1β Activates leukocytes, endothelial cells, and synovial fibroblasts; induces matrix 
enzyme production by chondrocytes; activate osteoclasts 

IL-17 Activates synovial fibroblasts, chondrocytes, and osteoclasts; stimulates secretion of 
cytokines, chemokines, growth factors, and matrix enzymes; suppresses regulatory 
T-cell function; and promotes resorption of cartilage and bone  

IL-21 Activates Th17 and B cell subsets 
IL-23 Expands Th17 cells 
IL-7 and 
IL -15 

Activate T and NK cells; promote and maintain memory T cells, and survival and 
activation of neutrophils and B cells; promote TNF production; drive activation of 
Th17 cells 

IL-18 Activates Th1, NK cells and neutrophils 
IL-32 Stimulates cytokine production by various leukocytes, promotes differentiation of 

osteoclasts 
IL-33 Activates mast cells and neutrophils 

 
Growth and differentiation factors 

GM- and 
M-CSF 

Enhance differentiation of granulocyte and myeloid-lineage cells in the bone marrow 
and synovium 

RANKL Promotes maturation and activation of osteoclasts 
BLyS and 
APRIL 

Activate B cells, promote maturation of B cells and production of autoantibodies 
 

Enzymatic factors 
MMPs Promote disassembly of the type II collagen network, degrade collagenous cartilage 

matrix 
Aggrecanases Degrade aggrecan 
Cathepsins Promote proteolysis of collagen in non-triple helical region, degradation of matrix, 

activation of other enzymes and amplification of destructive process 

 
GM-CSF granulocyte-macrophage colony-stimulating factor; M-CSF, macrophage colony-stimulating 
factor; BLyS, B-lymphocyte stimulator; APRIL, a proliferation-inducing ligand; RANKL, receptor 

activator of NF-B ligand; MMPs, matrix metalloproteases; Th1, type 1 helper T cells; NK cells, 
natural killer cells. 
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1.1.2 Current therapies for RA  

Patients are best managed using a multidisciplinary team approach and an early institution of 

DMARD therapy. The National Institute of Clinical Excellence (NICE) recommends use of combination 

DMARDs plus short-term glucocorticoids as soon as possible after the onset of RA. The treatment is 

escalated rapidly until an adequate disease control is achieved; biologics introduced if necessary. 

Patients receive additional analgesics, NSAIDs/COX2 inhibitors and intra-articular steroid injections 

as needed. RA disease activity is monitored using CRP and DAS 28, a composite disease activity 

score. The goal of therapy is to achieve total remission if possible or an acceptable ‘low-disease-

activity’ status. 

A number of therapies, both biologic and non-biologic as outlined below are effective in the 

treatment of RA yet atleast one third of patients remain unresponsive to the currently available 

therapies. Introduction of anti-TNFs, the first biologics in the treatment of RA two decades ago, 

almost revolutionised the management of RA but systemic side-effects such as increased risk of 

infections still remain major concerns. Since the advent of anti-TNFs, similar biologics targeting other 

cytokines or cell molecules such as IL-6, CD20 and CTLA-IgG have been developed and successfully 

used to treat RA. All these therapies are however based on the principle of inhibiting a 

proinflamamtory cytokine or downregulating B or T cells, either via use of monoclonal antibodies or 

receptor blockers. This approach results in non-selective inhibition of targeted cytokine or immune 

cell, which is also required for normal immune regulatory functions such as host defence against 

microbial infection. There is therefore still an unmet need for better and safer therapies in RA.  

Generalised immune suppression, the major limitation of currently available highly efficacious 

biologic therapies can be avoided if such a therapy is targeted to the actively inflamed RA joints, the 

actual site of pathology. Latent cytokines by allowing targeting of therapeutic biological activity of a 

given cytokine to disease sites where MMPs are overexpressed, such as actively inflamed joints in RA 

offer such an opportunity A cytokine if covalently fused to latency-asscoaited peptide (LAP) of TGF-β 

via a MMP-sensitive linker is unable to interact with its receptor and therefore becomes biologically 
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latent. The biological activity of a latent cytokine however can be released by the action of MMP, 

which is able to cleave the linker between LAP and a given cytokine, thus freeing the cytokine to 

exert its therapeutic actions. The latent cytokine approach was first pioneered in our laboratory 

using IFN-β and since then has been validated for a number of other cytokines and small moelcules. 

LAP-IFN-β was superior to naïve IFN-β in ameliorating CIA in mice and had a significantly prolonged 

half life in vivo. LAP-MSH- was more efficacious than naïve MSH- in a mouse peritonitis model.  

IL-17A (or IL-17), the prototype effector cytokine of Th17 cells, the recently discovered independent 

T helper cell lineage plays an important role in the pathogenesis of RA. Phase 1/2 clinical trials of 

inhibition of IL-17 in RA have demonstrated therapeutic efficacy without notable side-effects, thus 

confirming its previously reported beneficial effects in experimental arthritis. Exogenous 

admisnitration of IL-17 exacerbated arthritis whereas its neutralisation suppressed experimental 

arthritis. In vitro and in vivo preclinical studies have demonstrated that IL-17 works both in synergy 

as well as independently of TNF- and IL-1β in mediating joint inflammation and joint damage in 

inflammatory arthritis. A combined blockage of IL-17 and TNF- and IL-1β is therapeutically more 

efficacious in experimental arthritis than TNF- or IL-1β alone. Inhibition of IL-17 for the treatment 

of RA therefore is likely to be effective as an independent therapy as well as an adjunct to TNF- and 

IL-1β. Moreover, a given IL-17 antagonist if by using LAP cytokine approach is modified as latent IL-

17 antagonist would offer a highly efficacious therapy for RA, which would be targeted to the active 

arthritic joints and devoid of the side-effects ofgeneralised immune suppression and increased risk 

of infections. 

The therapies both non-biologics and biologics that are in the current use to treat RA are in brief 

described below. 

1.1.2a Non-biologic DMARDs 

Methotrexate  

MTX is the preferred first-line DMARD and often the ‘anchor drug’ for the most RA patients (78-80). 

MTX is the most effective and the best tolerated DMARD in the long-term and results in the 
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enhancement of therapeutic efficacy of other DMARDs (both non-biologic and biologic) when 

combined together (81-83).  

Sulfasalazine 

Sulfasalazine alone or in combination with Hydroxychloroquine is generally used in patients who are 

poor candidates for MTX or who lack poor prognostic factors (RF or ACPA positivity, extra-articular 

manifestations, radiographic erosions and functional limitations). 

Hydroxychloroquine 

Hydroxychloroquine may be appropriate for some patients with RA, particularly those who lack poor 

prognostic features and are at the milder end of the spectrum of disease activity. 

Leflunomide 

Leflunomide is effective for the treatment of early, moderate to severely active RA, regardless of the 

presence or absence of poor prognostic factors (84). Leflunomide is most commonly used in 

combination with MTX in patients who have an inadequate response to MTX but are not candidates 

for triple therapy with MTX, Hydroxychloroquine and Sulfasalazine. 

Glucocorticoids  

Short-term treatment with glucocorticoids is indicated as part of initial DMARD combination therapy 

and treatment of flares. Long-term treatment with glucocorticoids is used only when all other 

treatments have been offered and have failed. Both intra-articular and oral glucocorticoids are used 

depending on the clinical indication (85, 86). 

http://www.uptodate.com/contents/hydroxychloroquine-drug-information?source=see_link
http://www.uptodate.com/contents/leflunomide-drug-information?source=see_link
http://www.uptodate.com/contents/hydroxychloroquine-drug-information?source=see_link
http://www.uptodate.com/contents/sulfasalazine-drug-information?source=see_link
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Table 1.3 Non-biologic DMARDs 

Agent Usual dose Mechanism  of action Side-effects 
 

Methotrexate 7.5 – 20mg 
per week 

Blockage of tetrahydrofolate dependent cell 
metabolism via Inhibition of dihydrofolate reductase; 
accumulation of adenosine; induction  
of apoptosis and inhibition of immune/inflammatory 

cell proliferation; inhibition of IL-1, IL-6 and TNF- 
production 
 

Oral ulcers, bone marrow suppression, GI 
intolerance, hepatotoxicity, hypersensitivity 
pneumonitis, pulmonary fibrosis, alopecia, rash, 
dermatitis, lymphoproliferative disorders 

Sulfasalazine 1gm BD Inhibition of IL-8, MCP-1, TNF-, NF-B; increased 
production of adenosine; inhibition of osteoclast 
formation; apoptosis of macrophages; suppression of B 
cell function 
 

GI intolerance, headache, anorexia, hepatic 
toxicity, hematologic toxicity, haemolytic 
anaemia, DRESS syndrome** 

Hydroxychloroquine* 200mg BD Blockage of TLR9 and B cell antigen receptor 
costimulation; inhibition of TLR signaling; decreased 
inflammatory mediators and lymphocyte proliferation 
secondary to lysosomotropic actions; inhibition of TNF-

, phospholipase, metalloproteinase; blockage of 
superoxide release; antagonism of PG 
 

GI intolerance, skin rash, headache, light 
headedness, tinnitus, toxic neuropathy, skeletal 
myopathy, cardiomyopathy, corneal deposits, 
retinopathy. 
 

Leflunomide 20mg OD Reduced synthesis of rUMP via inhibition of dihydro-
orotate dehydrogenase; inhibition of memory T cells, 
dendritic cells; inhibition of leukocyte adhesion to 
endothelial cells and synovial infiltration of lymphocytes 

and macrophages; blocking of NF-B and JAK1 and JAK3 
signaling 
 

Diarrhoea, hypertension, hyperkalemia, 
hepatotoxicity, leukopenia, interstitial lung 
disease, peripheral neuropathy 

 
* Hydroxychloroquine is one of the safest DMARDs. Serious side-effects are rare. ** DRESS syndrome, drug rash with eosinophilia and systemic symptoms.
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1.1.2b Biologic DMARDs 

Biological agents represent a major advance for the treatment of patients who have inadequate 

response to non-biologic DMARDs.  

Biologic DMARDs are produced using recombinant DNA technology, and target cytokines or their 

receptors or are directed against other cell surface molecules. The current NICE approved biologics 

for the treatment of RA are listed in the Table 1.4 and include TNF inhibitors (Etanercept, Infliximab, 

Adalimumab, Certolizumab and Golimumab), T cell co-stimulation inhibitor (Abatacept), IL-6 

inhibitor (Tocilizumab) and B cell depleting agent (Rituximab).  

TNF inhibitors  

TNF antagonists have held to their place as the biologics of choice since being introduced two 

decades ago as the first biological therapy for RA. Targeting TNF by means of either monoclonal 

antibodies or TNF receptor-IgG fusion protein proved to be extremely effective in control of RA (87). 

The unprecedented success of TNF inhibiting biologics has translated into the development and 

availability of similar therapies targeting other mediators of inflammation. 

It has been well established that combination of an anti-TNF agent and MTX reduces disease activity 

to a greater extent and slows radiographic progression further than achieved by monotherapy with 

either of the agents (83). 

Etanercept is a soluble p75 TNF receptor fusion protein that consists of two p75 TNF receptor 

extracellular domains bound to the Fc portion of immunogloubulin G1 (IgG1). It is capable of also 

binding lymphotoxin. 

Infliximab is a mouse chimeric monoclonal antibody directed against TNF. Within infliximab, the VL 

and VH domains of the antigen-binding portion of the molecule are murine, and the constant Fc 

domain is human IgG1.  

Adalimumab is a recombinant fully human monoclonal antibody and therefore associated with a 

lower risk of anti-drug antibody formation compared with chimeric or humanised anti-TNF 

preparations. 
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Certolizumab pegol is a Fab’ fragment of a humanised IgG1 monoclonal anti-TNF antibody that is 

chemically linked to polyethylene glycol. It neutralizes membrane-associated and soluble TNF-. In 

contrast to other anti-TNFs, Certolizumab does not contain an Fc portion and therefore does not 

induce complement activation, antibody-dependent cellular cytotoxicity or apoptosis. 

Golimumab is a human monoclonal antibody that binds to both the soluble and transmembrane 

bioactive forms of human TNF-.  

IL-1 inhibitors 

By comparison to the TNF inhibitors, inhibition of IL-1 had a smaller impact on RA. Anakinra, a 

recombinant human IL-1Ra differs from the native human protein in that it is not glycosylated and 

has an additional N-terminal methionine. The effects of Anakinra were only modest in most RA 

patients (46) whereas effectiveness of other IL-1 inhibitors such as Rilonacept, an IL-1R fusion 

protein and Canakinumab, an IL-1β monoclonal antibody in RA has not been established. 

IL-6 inhibitor 

Tocilizumab is a humanized anti-human IL-6 receptor antibody having complementarity determining 

regions of a mouse anti-human IL-6 receptor monoclonal antibody grafted onto human IgG1. 

Tocilizumab competes for both the membrane-bound and soluble forms of human IL-6 receptor, 

thereby inhibiting the binding of the native IL-6 to its receptor and interfering with its effects. 

Abatacept 

Abatacept (also called CTLA4-Ig) is a soluble fusion protein comprising CTLA-4 and the Fc portion of 

IgG1. It prevents activation of T cells by competing with CD28 to bind to its counter-receptor, 

CD80/CD86, due to its higher affinity for CD80/CD86. Abatacept was initially available only for 

intravenous use but can also be administered subcutaneously (88).  

Rituximab 

Rituximab is a B cell mouse chimeric monoclonal anti-CD20 antibody. Rituximab causes B cell 

depletion through antibody dependent mechanisms (89), which include Fc receptor gamma-
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mediated antibody-dependent cytotoxicity, antibody-dependent complement mediated cell lysis, 

growth arrest and B cell apoptosis. Rituximab is given in combination with MTX (90). 

 

Table 1.4 Biologic DMARDs 

Agent Target Structure Usual dose Half-life 

Infliximab TNF- Chimeric monoclonal antibody IV – 3mg/kg in 
combination with MTX at 
0, 2, 4 weeks, thereafter 
every 8 weeks 
 

9 days 

Etanercept TNF- TNFRII-IgG fusion protein SC – 50mg/week with or 
without MTX 
 

4 days 

Adalimumab TNF- Human monoclonal antibody SC – 40mg/every 
fortnight with or without 
MTX 
 

14 days 

Certolizumab TNF- Pegylated humanised Fab’ 
fragment of monoclonal 
antibody 

SC – 400mg at 0, 2, 4 
weeks, thereafter 200mg 
every fortnight 
 

14 days 

Golimumab TNF- Human monoclonal antibody SC – 50mg every 4 weeks 
in combination with MTX  
 

14 days 

Anakinra IL-1 IL-1 receptor antagonist SC – 100mg/day 
 

4-6 

hours 

Abatacept T cell  CTLA4-IgG fusion protein IV – 500mg, 750mg or 
1gm for body weight 60, 
60-100 and >100kg at 0, 
2, 4 weeks, thereafter 
every 4 weeks 
SC – weight-based iv 
loading dose, thereafter 
125mg SC/week 
 

14 days 

Tocilizumab IL-6 Humanised IL-6 receptor 
antibody 

IV – 8mg/kg every 4 
weeks 
 

14 days 

Rituximab B cell Chimeric anti-CD20 antibody IV – 1gm infusion 
separated by 2 weeks, 
not to be repeated 
sooner than 16 weeks 

7 days 

TNF-, tumour necrosis factor-; MTX, methotrexate; SC, subcutaneous; IV, intravenous. 
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1.1.2c Targeting intracellular signaling pathways in RA 

Recent evidence suggests hierarchal importance of JAK pathways amongst the intracellular signalling 

pathways in the pathogenesis of RA. Tofacitinib, a JAK 3 and 1 inhibitor in phase 2 clinical trials 

demonstrated an acceptable safety and therapeutic efficacy, which was equivalent to the current 

biologics (91, 92). Inhibition of spleen tyrosine kinase by Fostamatinib, is effective in some 

subgroups of RA patients (93, 94). In contrast, despite a strong preclinical rationale, the targeting of 

p38 mitogen-activated protein kinase has been disappointing in clinical settings. 
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1.2 IL-17 family of cytokines 

IL-17 which was identified in 1995 lacked sequence similarity with any other known family of 

cytokines and was therefore classified as a new family of cytokines. The IL-17 family now includes 6 

members, IL-17A to IL-17F (Table 1.5). Amongst these IL-17A and IL-17F are best characterised and 

shown to play a role in host defence and autoimmunity.   

1.2.1 IL-17A  

IL-17A, also termed IL-17 is the prototype IL-17 cytokine. IL-17A is produced mainly by activated 

peripheral CD4+ T lymphocytes (95, 96) but also other cells such as CD8+ T lymphocytes (97), δ+T 

cells (98), natural killer T (NKT) cells , natural killer (NK) cells (99) , dendritic cells (100), mast cells 

(36) lymphoid-tissue inducer (LTi)-like cells, paneth cells and neutrophils (101). Human IL-17 mRNA is 

detected in neutrophils, eosinophils and monocytes (102, 103).  

IL-17 mediates predominantly proinflammatory and hematopoietic responses. IL-17A stimulates 

secretion of TNF-, IL-1, IL-6, IL-8, G-CSF, ICAM-1 and PGE2 from fibroblast, endothelial, epithelial 

and macrophage cells (96, 104-107). IL-17 mediates activation of neutrophils through promotion of 

granulopoiesis (108, 109) and expression of ELR-positive CXC chemokines CXCL1/KC/GRO and 

CXCL5/LIX in mice (110-113) and IL-8 in humans (96). The action of IL-17 is synergistic to both IL-1β 

and TNF- (114-116).  

IL-17 plays a critical role in host defence against extracelluar pathogens in epithelial and mucosal 

tissues such as the skin, lung and intestine.  IL-17R signalling is required for host defence against  

extracellular bacterial and fungal infection in the skin and lung (117). Th17 cell differentiation is 

promoted in response to muramyldipeptides from bacterial cell walls and β-glucans in zymosans and 

fungi (118). IL-17 promotes expression of various anti-microbial genes including acute phase 

reactant protein lipocalin 2/24p3 (119) and molecules with direct antimicrobial activity, such as β-

defensins, mucins and calgranulins (120-122). 
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IL-17A plays an important role in the initiation and/or maintenance of an inflammatory response in 

autoimmune conditions such as RA, multiple sclerosis, psoriasis and inflammatory bowel disease 

(123-126).  

Regulatory effects of IL-17A 

Although identified as a predominantly proinflammatory cytokine, IL-17A has also been shown to 

exert protective effects. In asthma, IL-17A although is required for antigen-sensitization, it plays a 

protective role in the effector phase of the disease (127).  

In GVHD, the weight loss and diarrhoea is accentuated in the absence of IL-17A, mainly due to 

increase in IFN-γ (128). In the dextran sodium sulfate-induced colitis model, IL-17A plays a protective 

role against epithelial ulceration, mainly due to decreased IFN-γ and osteopontin (129) in contrast to 

pathogenic IL-17F, which contributes to excessive tissue damage and wasting disease (130).  

 

 

Figure 1.3 Biological functions of IL-17. IL-17 mediates tissue inflammation and damage, leads to 
autoimmunity and protects the host against infections by inducing secretion of inflammatory 
cytokines, MMPs, RANKL, chemokines and growth factors in cell of target tissues, promoting the 
survival and expansion of B-cells and the differentiation of B-cells into antibody-producing plasma 
cells and acting directly on epithelial cells of peripheral tissues to promote release of peptides with 
antibacterial properties such as defensins, regenerating proteins and S100 proteins. 

 

 

IL-17 
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Table 1.5 IL-17 cytokine family 

Family 
member 

Size 
(aa) 

% Homology  
(to IL-17A) 

% Homology 
(mouse/human) 

Produced by Receptor 
complex 

Receptor Main functions 

IL-17A 155 100 62 Th17 cells, CD8+T cells, 

δ T cells, NK cells, NKT 
cells, LTi cells 
 

IL-17RA/RC Prefer IL-17RA 
to IL-17RC 
 

Promote autoimmune diseases 
and protect against extracellular 
bacterial and fungal infection 

IL-17F 163 55 77 T cells, innate immune 
cells, epithelial cells 
 

IL-17RA/RC Prefer IL-17RC 
to IL-17RA 
 

Drive inflammation and 
autoimmunity, neutrophil 
recruitment 

IL-17B 180 29 88 Cells of gastrointestinal 
tract, pancreas and 
neurons 
 

 
_ 
 
 

IL-17RB 
 

Activate TNF- and IL-1β release 
in THP-1 cells 

IL-17C 197 23 83 Cells of prostate, foetal 
kidney 
 

 
_ 

IL-17RE Activate TNF- and IL-1β release 
in THP-1 cells 

IL-17D 202 25 78 Cells of muscles, brain, 
heart, lung, pancreas, 
adipose tissue 
 

 
_ 

Unknown 
 

Promote proinflammatory gene 
profile in endothelial cells 

IL-17E 161 17 81 Th2 cells, mast cells, 
alveolar macrophages, 
eosinophils, epithelial 
cells, brain capillary 
endothelial cells 

IL-17RB/RA Prefer IL-17RB 
to IL-17RA 

Promote type 2 immune 
response and inhibit 
autoimmune diseases 

 
aa, amino acid; Adapted from Alcorn JF et al. Annu Rev Physiol 2010; 72:495-516 and Zhang X et al. Protein Cell 2011; 2: 26–40 
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1.2.2 IL-17F 

Amongst all IL-17 family members, IL-17F is most closely related to IL-17A sharing 55% structural 

homology, receptor binding and biological functions. The Il-17f and Il-17a genes are co-localised at 

6p12 into a tail-to-tail orientation, only 50kb apart (GenBank accession no. AL391221), which points 

towards a potential gene duplication event.  

Two different but functionally similar isoforms of human IL-17F have been identified (the longer and 

the shorter isoform) (131). The full-length IL-17F contains 163 amino acid residues and like IL-17A is 

secreted as a disulfide-linked homodimeric glycoprotein. The crystallographic structure of IL-17F 

revealed a cystine knot fold, which is similar to neurotrophin growth factors (132). 

IL-17F has a much wider expression than IL-17A suggesting that IL-17F has more biological functions. 

Rapid scan gene expression panel showed a strong expression of IL-17F in liver, lung, spleen, 

placenta, adrenal gland, ovary, and foetal liver. In addition, IL-17F expression was upregulated in 

activated PBMCs, activated Th0, Th1, and Th2 cells, activated basophils, activated mast cells, and 

activated peripheral blood CD4+ T but not CD8+ T cells and monocytes. In contrast, IL-17a gene 

expression is increased only in activated peripheral blood CD4+ T cells, Th0 clones and PBMCs.  

IL-17F is generally co-expressed with IL-17A in naive T cells under Th17 polarising conditions. The 

possibility of differential ratios of these two cytokines in different T cell states or in different tissues 

has been suggested (130). 

Like IL-17A, IL-17F induces many proinflammatory cytokines and chemokines. It induces TGF-β, IL-2 

in endothelial cells (133); ICAM-1, GM-CSF in airway bronchial epithelial cells (131, 134); and IL-6 and 

CXCL-1 in fibroblasts and epithelial cells (130). In lung fibroblasts, IL-17F induces CCL2, CCL7, TSLP 

and MMP-13 (130). IL-17F by stabilising mRNA transcript synergises with other cytokines (135). In 

combination with TNF-α, IL-17F induces G-CSF expression in human bronchial epithelial cells (136) 

and, together with IL-22, IL-17F induces antimicrobial-peptides, hBD-2, S100A7, S100A8 and S100A9 

(121). 
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IL-17F along with IL-17A is required for host defence to extracellular bacteria and fungi in skin and 

mucoepithelial tissues (137, 138). IL-17F, however, plays a less important role than IL-17A in 

systemic infection of C. albicans. It was shown that only Il17a-/-mice but not Il17f-/-mice, showed 

increased susceptibility to candidial infection (139).  

Studies in Il17a-/- mice and Il17f-/-mice indicated that in comparison to IL-17A, IL-17F plays a minor 

role in driving autoimmunity (130, 138). In experimental autoimmune encephalitis (EAE) while both 

the IL-17A and IL-17F contributed to the chronic inflammatory phase, IL-17A was more important 

initiating factor than IL-17F. 

IL-17F also may function differently than IL-17A in mediating allergy and autoimmunity.  IL-17F is 

more important than IL-17A in allergen-mediated immune response (130). Mice deficient in IL-17F, 

but not IL-17A show defective airway neutrophilia in response to allergen challenge. A sustained 

expression of IL-17F mediates tissue infiltration by lymphocytes and macrophages, and mucus 

hyperplasia in asthma suggestive of a regulatory rather than a pathogenic role for IL-17F in this 

condition (127, 130, 140). In the dextran sulfate sodium (DSS)-induced colitis model, IL-17F played a 

pathogenic as role as opposed to IL-17A, which plays a protective role (129, 130). 

Hymowitz et al. demonstrated that, in vitro, IL-17F induced cartilage matrix release and inhibited 

new cartilage matrix synthesis with an efficiency that was comparable to IL-17A (132). In vivo studies 

in IL-17F-deficient mice however, showed that the development of arthritis in Il17f-/-IL-1ra-/-mice 

was partially suppressed whereas CIA developed normally in the Il17f-/-mice (138). These findings 

suggest that IL-17F, although contributing to the development of arthritis in IL-1 receptor 

antagonist-deficient mice, is not required for CIA.  

 

1.2.3 IL-17A/F heterodimer 

As activated T cells from both mouse and humans co-express IL-17F and IL-17A (107, 133, 141), 

existence of IL-17A/IL-17F heterodimer appeared to be a strong possibility, which has now been 

confirmed (142, 143). While mouse Th17 cells secrete all the three isoforms IL-17A, IL-17F and IL-
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17A/F (142, 144), human CD4+T cells expressed IL-17A/F heterodimer and IL-17F homodimer but 

almost no IL-17A homodimer (143). In vitro functions of the IL-17A/F heterodimer are similar to IL-

17A and IL-17F (144). The activity of the IL-17A/F heterodimer was reported to be intermediate of IL-

17A and -17F by Wright et al. (143), whereas nearly equal to IL-17A homodimers but greater than IL-

17F by Liang et al. (144). 

 

1.2.4 Other IL-17 cytokine family members 

1.2.4a IL-17B and IL-17C 

IL-17B and IL-17C share 20-25% sequence identity with IL-17A. The absence of AU-rich repeats in IL-

17B resulting in a translation product of more stable message points towards the possibility of  a 

constitutive serum presence of the protein (145). IL-17C was detectable in CD4+ T cells in CIA mice, 

which suggests that besides IL-17A and IL-17F, expression of IL-17C also takes place at inflammatory 

sites. IL-17C-induced neutrophil responses were comparable to IL-17A and IL-17F (146) whereas the 

potency of IL-17B in inducing PMN infiltration was  about 10 times less than IL-17A (147). A study by 

Yamaguchi et al. demonstrated that IL-17B and IL-17C but not IL-17A is directly associated with in 

vivo production of TNF- (148). 

 

1.2.4b IL-17D 

IL-17D, similar to IL-17A and IL-17F, stimulates the production of IL-6, IL-8, and GM-CSF in 

endothelial cells. However, it inhibits the haematopoiesis of myeloid progenitor cells (149).  

 

1.2.4c IL-17E 

Human IL-17E, also called IL-25, is a 177 amino acid residues precursor protein (150). IL-17E 

promotes the expression of the prototypical Th2 genes (146, 151, 152) and appears to be an 

important mediator of allergic diseases.  
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1.2.5 (H161R) IL-17F mutant  

(H161R) IL-17F mutant is a natural variant of IL-17F, a result of substitution of Histidine by Arginine 

at amino acid 161 in the third exon. Homozygotes of the (H161R) IL-17F mutant were protected from 

asthma in a Japanese population (OR 0.06, 95% CI 0.01-0.43, p = 0.0039) (153). In vitro studies 

revealed that the (H161R) IL-17F mutant was a competitive inhibitor of the wild-type IL-17F and 

lacked the ability to activate upstream signaling pathways and induction of cytokine and chemokine 

secretion in bronchial epithelial cells. Studies in Chinese and European American populations, 

however, failed to find a similar association between asthma and the IL-17F mutant (154, 155). On 

the contrary, in a Chinese subpopulation of male asthma patients, the mutant allele was associated 

with increased risk of susceptibility to the disease. The lack of association in the European American 

population may be related to a much lower frequency of the mutant, which was only 4.5% as 

compared to 11.4% in Japanese population.  

The association of the (H161R) IL-17F mutant with the risk of susceptibility to various other diseases 

has been summarised in Table 1.6. In keeping with the observations in asthma, the (H161R) IL-17F 

mutant was inversely associated with susceptibility to idiopathic thrombocytopenic purpura (ITP) in 

Japanese; ulcerative colitis in Japanese and Chinese, albeit weakly but not in Caucasian population 

(156-159). In the Japanese population, there was no association between the mutant and overall 

susceptibility to psoriasis vulgaris, functional dyspepsia or gastric carcinoma (160-162).  

Similar to Japanese asthmatic patients, the (H161R) IL-17F mutant was protective against chronic 

fatigue syndrome in Europeans and Behcet’s disease in the Korean population (163, 164) 

whereas, studies in Chinese Han population showed that (H161R) IL-17F mutant was not a major 

contributor to the pathogenesis of myocardial infarction in men and it did not increase the 

susceptibility to breast carcinoma in women (165, 166). 

Paradowska-Gorycka et al. investigated association between (H161R) IL-17F polymorphism in 220 

Polish patients with RA and 106 healthy subjects and reported that, although the (H161R) IL-17F 

mutant did not increase the overall susceptibility to RA, it was associated with a higher number of 
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tender joints, higher DAS 28 and higher HAQ score implying that (H161R) IL-17F polymorphism might 

be associated with an increased disease activity in RA (167). 

 

Table 1.6 Association of (H161R IL-17F) mutant with the risk of susceptibility to various diseases 

Disease Population Disease 
Association 

OR Reference 

Asthma 
 
Asthma 
 
Asthma 
 

Japanese Inverse 
 

CC - 0.06(0.01-0.43), p=0.039 
TC - 1.32 (0.95-1.84), p= 0.08 

137 

Chinese 
male 

Direct 1.58 (106-236), p=0.0148 138 

White women None _ 139 

     
UC 
 
UC 

Chinese Weak 
Inverse 

TC - 0.96(0.94-0.96) 140 

Japanese 
 

Inverse  TT- 1.81(1.01-3.23), p=0.045  
 

141 

IBD 
(UC+CD) 
 

Caucasian None _ 142 

ITP Japanese Inverse TC/CC-0.48(0.27-0.84), p=0.016 143 
     
Ca-breast Chinese han 

women 
 
 

None _ 150 

FD Japanese None _ 144 
Ca-stomach Japanese None _ 145 
     
Behcet’s 
Disease 

Korean Inverse CC - 0% vs 8.3%, p<0.001 
TC - 9.6% vs 1.3%, p<0.001 
 

148 

CFS European Inverse TC/CC - 8.9% vs 28.5%,  
OR 4.05, p=0.0018 

147 

     
Psoriasis 
Vulgaris 

Japanese None _ 146 

     
MI Chinese Han None _ 149 
     
RA Polish None _ 151 

 
OR, odds ratio; CFS, chronic fatigue syndrome, IBD, inflammatory bowel disease; UC, ulcerative 
colitis; CD, Crohn’s disease; RA, rheumatoid arthritis; MI, myocardial infarction; FD, functional 
dyspepsia; ITP, idiopathic thrombocytopenic purpura. 
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1.2.6 IL-17 receptor family  

The IL-17 receptor family comprises five receptor subunits, IL-17RA to IL-17RE (Table 1.7). The genes 

encoding human receptors cluster on chromosome 3, except IL-17RA which is located on  

chromosome 22. All the receptor subunits are single transmembrane domain proteins and contain 

certain conserved structural motifs, an extracellular fibronectin III-like domain and a cytoplasmic 

similar expression of fibroblast (SEF)/IL-17R (SEFIR) domain (168). In addition, IL-17RA also contains 

two extra domains, a TILL [TIR (Toll/IL-1R) like loop] domain close behind the SEFIR domain and a 

Distal domain in the C-terminus. IL-17RA is a common subunit that forms heterodimeric complexes 

with other IL-17 receptors. 

1.2.6a IL-17RA  

IL-17RA mRNA is expressed in virtually all cells and tissues tested. The ubiquitous expression of IL-

17RA is consistent with its wide range of effects (169). The expression of IL-17RA is particularly high 

in hematopoietic tissues (95, 138). In contrast to most cytokines receptors, high levels of IL-17RA 

seem to be required for an effective response (119, 170). As the signaling strength of IL-17A 

correlates with cell surface expression levels of IL-17RA, a dynamic regulation of IL-17RA seems to be 

biologically important. IL-15 and IL-21 upregulate its expression while phosphoinositide 3 kinase 

(PI3K) limits the expression of IL-17RA in T cells (171, 172). The surface expression of IL-17RA rapidly 

decreases after it binds to IL-17A due to receptor internalisation. IL-17RA might therefore also limit 

the signalling by clearing itself from the inflammatory milieu (171). IL-17RA binds to IL-17A with a 

strong affinity (95), and although weakly to IL-17F, is necessary for signal transduction mediated by 

IL-17A, IL- 17F and IL-17A/F heterodimer.  

IL-17RA complex formation  

IL-17RA forms heteroreceptor complexes with other IL-17 receptors. It pairs with IL-17RC to induce 

responses to IL-17A and IL-17F (173). IL-17RA couples with IL-17RB to form IL-17A/B receptor 

complex (174) and forms a receptor complex with IL-17RD (175). However, no ligand for an IL-

17RA/IL-17RD receptor complex has yet been identified.   
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Studies using fluorescence resonance energy transfer (FRET) showed that formation of IL-17RA 

complexes is independent of its ligands (176-178). It is not known whether IL-17RC is pre-assembled 

with IL-17RA to any degree (173). It seems that IL-17RA dimers either dissociate after ligand binding 

and are replaced by IL-17RA/IL-17RC heterodimers or IL-17RC might be recruited to the IL-17RA 

dimer to create a trimer or a multimer. Like TNFR, IL-17RA also contains a fibronectin III-like pre-

ligand assembly domain (PLAD) (176).  

The crystallographic structure of IL-17RA bound to IL-17F showed that it binds to IL-17F in 1:2 

stoichiometry. IL-17RA forms an extensive binding interface with IL-17F with the major interaction 

taking place at three different sites (179). At the sites 1 and 2, IL-17RA D1 binds with strands 2 and 3 

of IL-17F whereas site 3 is formed between the IL-17RA D2 F G loop (Cys259–Arg265) and the C-

terminal regions of strands 3 and 4 of IL-17F chain A, and the N-terminal extension of IL-17F chain B. 

Site 3 is rich in charged interactions with nine potential hydrogen bonds and a salt bridge. Once IL-17 

is engaged by two fibronectin-type domains of IL-17RA, binding of the first receptor to IL-17 

modulates its affinity and specificity of the second receptor-binding event to promote a 

heterodimeric rather than homodimeric complex formation. 

IL-17RA as a common receptor 

IL-17RA is able to associate with other IL-17 family members and seems to act as a shared receptor, 

analogous to those in class I cytokine receptor complexes. IL-17RA is used as a common signaling 

subunit by at least four ligands. IL-17RA binds both IL-17A and IL-17F, and also IL-17E/IL-17RB 

receptor complex, and was shown to associate with IL-17RD to form IL-17RA/RD receptor complex. 

Mapping of the residues conserved among the IL-17 family members onto the IL-17RA-IL-17F 

complex showed that IL-17RA appears to use a strategy of cross-reactivity based on a subset of 

conserved and distinct binding sites amongst the several IL-17 family members. IL-17RA contacts the 

conserved residues with the N-terminal region of the D1 domain and the D2 FG loop domain 

whereas the IL-17RA C′–C loop interacts mainly with IL-17 residues that differ around the receptor-

binding pocket.  
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Table 1.7 IL-17 receptor family 

Family 
member 

Size 
(aa) 

% Homology 
(to IL-17RA) 

% Homology 
(mouse/human) 

Distribution Ligand Binding bias Main functions 

IL-17RA 818 100 69 Ubiquitous, high 
levels in 
haematopoietic 
tissues 
 

IL-17A, IL-17F, 
IL-17E 

Prefer IL-17A 
to IL-17F 

Necessary for signal 
transduction by IL-17A, IL-17F, 
IL-17E 

IL-17RC 791 22 68 Non haematopoietic 
tissues such as colon, 
small intestine, lung, 
prostate 
 

IL-17A, IL-17F Prefer IL-17F  
To IL-17A 

Complexes with IL-17RA to 
mediate IL-17 signaling 

IL-17RB 502 19.2 76 Th2 cells, various 
endocrine tissues, 
kidney, liver 
 

IL-17B, IL-17E Prefer IL-17B 
to IL-17E 

Pairs with IL-17RA to form a 
functional receptor complex for 
IL-17E 

IL-17RD 739 _ _ Kidney, heart, small 
intestine, colon, 
skeletal muscles, 
brain, lung, spleen 
 

IL-17A?,  
FGF? 

Interaction 
with IL-17RA  

Mediate IL-17 signaling, inhibit 
FGF signaling and facilitate EGF 
signaling 

IL-17RE 667 _ _ 
 

NA IL-17C Prefer IL-17C Might promote proliferation 

 
IL-17R, Interleukin-17 receptor; FGF; fibroblast growth factor; FGF-R, fibroblast growth factor receptor; EGF, epidermal growth factor; NKT, natural killer T; 
LTi, lymphoid tissue inducer; THP-1 cells, a human leukemia monocytic cell line; Th, T helper. 
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1.2.6b IL-17RC 

IL-17 receptor C (IL-17 RC, also known as IL-17 RL and IL-17R hom) contains 791 amino acids. The 

gene for human IL-17RC contains 19 exons and more than 90 splice isoforms of IL-17RC have been 

identified in human prostate cancer lines (180). The full length IL-17RC isoform occurs 10% of the 

time, while the three most common isoforms, as a group, occur about 50% of the time. Alternative 

splicing of IL-17RC appears to regulate ligand specificity. There is a ligand preference of IL-17RC 

splice isoforms as certain forms bind preferentially to IL-17A or IL-17F. Moreover, some isoforms do 

not bind either cytokine, suggesting that there might be additional ligands for this receptor subunit 

(181).  

IL-17RC contains a SEFIR domain but not an obvious TILL domain.  IL-17RC cannot induce signaling in 

the absence of IL-17RA and is required for both IL-17A- and IL-17F-mediated signaling. In humans, IL-

17RA binds with extremely low affinity to IL-17F but IL-17RC binds to IL-17F with an affinity higher 

than IL-17A (181). Soluble IL-17RA can efficiently block IL-17A-dependent but not IL-17F-dependent 

responses in human cells, providing an opportunity to selectively target individual cytokines (181). In 

mice, IL-17RA binds both IL-17A and IL-17F, whereas IL-17RC binds strongly only to IL-17F. These 

species dependent differences in receptor binding are important in evaluating IL-17-specific 

therapeutics in pre-clinical models. There is also species-dependent interaction between the IL-17R 

subunits. Only mouse IL-17RA can reconstitute IL-17A-dependent signaling in mouse Il17ra-/-

fibroblasts and co-operation of human but not mouse IL-17RC with human IL-17RA could induce 

signaling by human IL-17 in these cells (173). 

IL-17RA and IL-17RC subunits have reciprocal expression patterns, which indicate tissue-dependent 

activities (138, 181). In contrast to IL-17RA, expression of IL-17RC is low in haematopoietic tissues 

whereas seen predominantly in non-iimune cells such as prostate, liver, kidney, thyroid and joints 

(181, 182). Therefore cells with high IL-17RC expression could be highly responsive to IL-17F, 

whereas those with low IL-17RC expression and high IL-17RA expression might respond better to IL-

17A.  
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1.2.6c Other IL-17 receptors 

Recent evidence suggests that IL-17RB pairs with IL-17RA to form a functional receptor complex 

(174). IL-17 RB binds strongly to IL-17E (150), weakly to IL-17B and does not bind IL-17A, IL-17C and 

IL-17F.  

IL-17RD seems to be the most evolutionary ancient member of the IL-17R family (183). IL-17RD can 

interact with IL-17RA, although the biological importance of this association remains unclear (175).  

IL-17RD has no known ligand. 

IL-17RE is highly spliced; six isoforms have been identified in EST databases. Recent studies suggest 

that its ligand is IL-17C (184). 

 

1.2.7 IL-17-induced signaling pathways 

Both IL-17A and IL-17F bind to the IL-17RA and IL-17RC heterodimeric complex to transduce 

downstream signaling. IL-17 activates many common downstream signaling pathways including 

nuclear factor kappa light enhancer of activated B cells (NF-κB), mitogen-activated protein kinases 

(MAPKs), c-Jun N-terminal kinase (JNK), p38 and extracellular-signal regulated kinase (ERK), 

CCAAT/enhancer-binding proteins (C/EBPs), phosphoinositide 3-kinase /Janus kinase (PI3K/JAK) and 

signal transducer and activator of transcription (JAK/STAT) (Fig. 1.4). In addition, IL-17 stabilizes 

mRNA of some proinflammatory cytokines and chemokines induced by TNF- (185-188). 

The IL-17R family members encode a novel, conserved signalling motif termed: similar expression of 

fibroblast (SEF)/IL-17R (SEFIR) domain (168). The SEFIR domains of both IL-17RA and IL-17RC are 

required to activate NF-B, MAPK, and C/EBP pathways in response to IL-17A or IL-17F (189, 190).  

TRAF6, an adaptor and E3 ubiquitin ligase is essential for IL-17A signaling (191). A cytoplasmic 

protein, Act1, also known as CIKS (connection to IκB kinase and stress-activated kinase) contains 

both SEFIR (192, 193) and a TRAF6 binding motif (194). Act1 directly associates with IL-17RA and IL-

17RC via interaction with each SEFIR domain, resulting in the recruitment of TRAF6 and TGFβ-

activated kinase 1 (TAK1) to activate NF-B. In addition to NF-B activation, Act1 also mediates IL-
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17-induced MAPK activation and C/EBP induction pathways. One report has shown that IL-17 can 

activate the JAK1/2 and PI3K pathway, which co-ordinates with the NF-B-activating pathway of 

Act1/TRAF6/TAK1 (195). 

CXCL1 mRNA stabilization in response to IL-17A is dependent on Act1, but not TRAF6. Recently, 

inhibitor of B kinase I (IKKi) was shown to be important for IL-17-induced phosphorylation of Act1, 

which is critical for the formation of the Act1–TRAF2–TRAF5 signal complex required to mediate IL-

17-induced mRNA stability through dissociation of alternative splicing factor (ASF) from mRNA (186, 

187).  

IL-17R signaling activates ERK to phosphorylate Thr188 of C/EBPβ, which is required for Thr179 

phosphorylation of C/EBPβ by GSK3β (glycogen synthase kinase 3β). The dual phosphorylation of 

C/EBPβ inactivates itself, resulting in the suppression of IL-17-mediated downstream gene induction. 

TRAF3 in association with Act1 negatively regulates IL-17A-mediated NF-B and MAPK activation. 

(196, 197). A recent study showed that persistent stimulation with IL-17 resulted in β transducin 

repeat-containing protein (β- TrCP)-mediated ubiquitination of Act1 for its subsequent degradation, 

and consequently desensitization of IL-17R signaling for the prevention of persistent  

inflammation (198). 

At the downstream of the C-terminus of the IL-17RA, motif TIR-like loop (TILL) (170) bears homology 

to TIR (Toll/IL-1R) domain of the Toll-like receptor (TLR). The TILL domain is vital for signal 

transduction by IL-17. Mutations specific to this region, abrogate all IL-17-induced responses. 

Despite its similarity with TIR domain, IL-17 does not utilize myeloid differentiation primary response 

protein 88 (MyD88), TIR domain-containing adaptor inducing IFN-β (TRIF), IL-1R-associated kinase 4 

(IRAK4) or IRAK1 for cytokine induction (170, 196, 199).  
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Figure 1.4 IL-17-induced signaling pathways. (a) Both IL-17A and IL-17F bind to a heteroreceptor 
complex composed of IL-17RA and IL-17RC to transduce downstream signaling. Both IL-17RA and IL-
17RC encode SEFIR domains whereas IL-17RA also encodes additional TILL and distal units. IL-17RA 
and IL-17RC interact with SEFIR domain-containing adaptor Act1, which in turn recruits TRAF6 

required for the activation of the NF-B, MAPK pathways and induction of C/EBP. The TILL domain of 
IL-17RA is important for inducible phosphorylation of C/EBPβ on threonine 179, which is mediated 
by GSK3. IL-17 probably also activates the JAK/PI3K pathway. IL-17 mediates TRAF6 independent 
mRNA stability by formation of another complex Act1–IKKi–TRAF2–TRAF5–SF2 (ASF). In contrast, 
TRAF3 negatively regulates IL-17R by interfering with the formation of the IL-17R–Act1–TRAF6 

complex. TNFR 6, TNFR associated factor 6; IKKi, IB kinase i; SF2(ASF), splicing factor 2 (alternative 
splicing factor); C/EBP, CCAAT enhancer binding protein; GSK3, glycogen synthase kinase 3; CBAD, C-

enhancer binding protein activation domain; NF-B, nuclear factor kappa light chain enhancer of 
activated B cells; MAPK, mitogen activated protein kinase; PI3K/JAK, phosphoinositide 3 
kinase/Janus kinase; FN, fibronectin III-like domain; SEFIR, similar expression of fibroblast/IL-17R; 
TILL, Toll/IL-1R (TIR)-like loop. 
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1.3 Th17 cells 

Th17 cells are a subset of CD4+ effector T cells that are different from Th1 and Th2 cells (200). Th1 

cells mainly produce IFN-γ and are involved in immunity against intracellular pathogens while Th2 

cells produce IL-4, IL-10 and IL-13 and are responsible for immunity against parasites and mediation 

of allergic responses. In contrast to Th1 and Th2 cells, Th17 cells preferentially secrete IL-17A, IL-17F, 

IL-21, IL-22 and IL-26 (201-203). In healthy individuals, approximately 1% circulating CD4+ T cells 

produce IL-17. Th17 cells play a role in defence against extracellular pathogens (137, 204, 205) and 

along with Th1 cells are implicated in autoimmune diseases. More recently, a regulatory role of Th17 

cells in the form of protection against tissue damage during inflammation has been identified. 

Evidence now suggests that depending on the microenvironment of various diseases, naïve CD4+ T 

cells can differentiate into either proinflammatory or protective Th17 cells to mediate a diverse set 

of responses in infection, autoimmunity and immunodeficiency. 

 

1.3.1 Differentiation of Th17 cells 

TGF-β and IL-6 are critical for mouse Th17 cell differentiation (204, 206, 207). IL-21, IL-23, IL-1β and 

TNF- provide additional amplificatory signals (204, 206-210). However, IL-6 signaling was 

dispensable for the induction of pathogenic Th17 cells and induction of EAE in mice lacking Treg cells 

(211) and more recently, a TGF-β independent differentiation of naïve murine T cells was 

demonstrated in the presence of IL-6, IL-1β1 and IL-23 (212).  

Production of IL-17 in humans is dependent on IL-23, IL-1, IL-1β, IL-6 and TGF-β. The combined 

activity of IL-1β and IL-23 (or IL-6) is critical in the development of Th17 cells (212, 213). In the 

absence of IL-1, IL-23 and IL-6 are unable to induce IL-17. It was demonstrated that human IL-17A-

producing cells originated from CD161+CD4+ T cell precursors from human umbilical cord blood 

(UBC) and post-natal thymus in the presence of both IL-1β and IL-23 but no other cytokine(s) 

including  TGF-β, IL-6 and IL-21 (214, 215). The CD161+CD4+ T cell expressed both IL-23R and RORC. 

IL-23 is required for optimum expansion and activation but not for the differentiation of naive Th17 
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cells (216-218). In vitro, IL-6 in conjunction with T cell antigen receptor activation induces the 

expression of IL-21 in naive CD4+ T cells, which together with TGF-β, independently of IL-6 can 

induce expression of IL-17 in mice and humans. In contrast, in vivo the absence of IL-21 signaling has 

little effect on Th17 cell differentiation (208, 219-221).  

In initial studies, differentiation of human Th17 cells was shown to be both, TGF-β-independent 

(222-225) or dependent (226-228). A few earlier reports even indicated that TGF-β actually inhibited 

Th17 cells (222, 223, 225, 229, 230). In T-bet and STAT6-deficient T cells, IL-6 alone, even in the 

absence of TGF-β can induce IL-17 production (231). Santarlasci et al. showed that addition of TGF-β 

to IL-1β and IL-23 increased the relative proportions of CD161+ T cells that differentiate into Th17 

cells by inhibiting T-bet expression and Th1 development (232). Ichiyama et al. demonstrated that 

TGF-β JNK c-Jun signaling strongly suppressed T Box factor Eomesodermim (Eomes) expression 

which directs T cell differentiation to Th1 cells and suppresses Th17 development (233). Taken 

together, all these findings suggest an indirect role of TGF-β in the regulation of Th17 by supressing 

Th1 and Th2 cell differentiation. It is yet unknown whether human Th17 cells also produce TGF-β. 

The cytokine environment at the time of differentiating Th17 cells determines the pathogenicity of 

cells (Fig. 1.5). Th17 cells can differentiate in the presence of IL-1β and IL-6 in combination with TGF-

β or alternatively in combination with IL-23 in the absence of TGF-β. The IL-23-differentiated Th17 

cells express T-bet, CXCR3, IL-18R1 in addition to IL-17 and could turn into IL-17/IFN- double 

producing cells. On the other hand, the TGF-β-differentiated Th17 cells express IL-17 along with AhR, 

CCL20, IL-9 and IL-10. The IL-23 differentiated but not the TGF-β differentiated Th17 cells therefore 

are pathogenic (234, 235). The former subset of Th17 cells often represent a mixed Th1- and Th17-

mediated pathology and seem more relevant in terms of autoimmune diseases. In contrast, the Th17 

cell population generated in environments with high TGF-β have limited pathogenic potentials but 

would be useful in host defence (236-238).  

Interestingly, in vitro TGF-β also induces differentiation of Tregs, cells having properties reciprocal to 

Th17 cells (239). At lower concentration, together with IL-6 or IL-21 and in the presence of IL-23, 
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TGF-β induces IL-23R and promotes Th17 differentiation and expansion. In contrast, at higher 

concentrations, TGF-β inhibits IL-23R, IL-22 and IL-17 expression and favours induction of FoxP3 and 

Treg differentiation.  

Th17 cells also produce IL-22. In vitro, IL-22 production was shown to be induced in both Th1 and 

Th17 conditions, but IL-6 and TGF-β inhibited rather than enhanced IL-22 production in Th17 

conditions (226, 240).  

 

 

 

 

 

 

 

 

 

Figure 1.5 Differentiation of pathogenic versus non-pathogenic Th17 cells. Depending on the 
microenvironment of diseases, naïve T cells can differentiate into either pathogenic or non-
pathogenic cells. The naïve T cells can differentiate in the presence of IL-1β and IL-6 in combination of 
TGF-β or alternatively with IL-23 in the absence of TGF-β. The T cells generated in the presence of 
TGF-β express IL-9 and IL-10 in addition to IL-17 and are therefore involved in host defense but have 
limited role in pathogenicity. In contrast, IL-23 generated Th17 cells express T-bet, CXCR3, IL-18R1 and 

IL-33 along with IL-17 and can turn into IL-17/IFN- cells. This subset ofTh17 cells are therefore 
pathogenic in nature. 
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1.3.2 Th17 transcriptional regulatory networks  

Like other Th lineages, differentiation of Th17 cells is regulated by a complex network of 

transcription factors which interact with each other at genetic and protein levels (Fig. 1.6). 

RORγt/STAT3 are the key master regulator and the signal transducer and activator of transcription 

(STAT) proteins that are required for the differentiation of Th17 cells. STAT3 activated by IL-6, IL-21 

and IL-23, in conjunction with TCR related transcription factors such as nuclear factor of activated T 

cells (NFAT) and B-cell activating transcription factor (BATF), induces the expression of RORt. Both 

RORγt and STAT3 bind to multiple sites in the Il17a/Il17f locus including the promoters of these 

cytokines. The transcription of Th17 is negatively regulated by STAT5, eomesodermin (Eomes), 

vitamin D receptor (VDR) and RA (retinoic acid). 

 

 

 

 

 

 

 

Figure 1.6 Th17 transcriptional regulatory network. IL-6, IL-21 and IL-23 activate STAT3, which in 

turn is required for the induction of RORt, the Th17 lineage marker. STAT3 is suppressed by 

STAT5. ROR, another ROR family member is also unregulated during Th17 differentiation. RUNX1 

and AhR synergise with RORt to enhance IL-17 expression while Fox p3, Eomes and RA suppress 
its activity. The expression of Fox p3 is enhanced by VDR and RA whereas RUNX1 is suppressed by 
both Foxp3 and VDR. Transcription factors IRF-4, cMaf, IkBζ, NFAT and BATF directly bind to il-17 
gene to increase the expression of IL-17.  

RORt,retinoic acid receptor-related orphan receptor gamma 2; ROR, retinoic acid receptor-
related orphan receptor alpha; STAT 3; signal transducer and activator of transcription 3; IRF-4, 
interferon-regulatory factor-4; RUNX 1, runt related transcription factor 1; NFAT, nuclear  factor for 
activated T cells; BATF, B cell activating factor; IκBζ, inhibitor kappa B zeta; AhR, aryl hydrocarbon 
receptor;  VDR, vitamin D receptor; RA, retinoic acid; Ets-1, erythroblastosis virus E26 oncogene  
homolog 1; Eomes, eomesoderm; gfi1, growth factor independent 1; NR2F6, nuclear receptor 
subfamily 2 group F member 6; IBP, IRF-4 binding protein. 
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1.3.2a Positive regulators of Th17 transcription 

il17a is a direct target gene for RORγt (241-245). Forced expression of RORγt is sufficient to induce 

IL-17 expression in the absence of any exogenous cytokines. RORγt-deficient mice develop less 

severe autoimmune diseases and lack Th17 cells in the inflammatory tissues (246, 247). Another ROR 

family member, ROR is also upregulated during in vitro Th17 cell differentiation (241). Although 

forced expression of ROR is sufficient to induce IL-17, ROR deficiency only selectively impairs IL-

17A but not IL-17F expression (241). Both RORγt activity and Th17 differentiation, are suppressed by 

Foxp3 (199, 239, 242, 248, 249).  

STAT3 plays an essential role in the differentiation of Th17 cells (208, 210, 250-253). It is activated by 

IL-6 and IL-23 and binds directly to il17a promoter (251), Il17 locus itself, Il21, and Il23r and CCR6 

(212, 254, 255). In addition, STAT3 binds to genes encoding transcription factors that are important 

for Th17 differentiation such as Rorc, Irf4, Batf and Nfibiz (254). STAT3 is required for induction of 

RORγt by cytokines and acts together with RORγt to induce maximal IL-17 expression (208).  

Runt related transcription factor 1 (RUNX1), a transcription factor upregulated during TCR 

stimulation, is also required for differentiation of Th17 cells (242, 256). Binding of RORγt and RUNX1 

together to the il17a locus leads to increased expression of IL-17. Foxp3 inhibits not only RORγt but 

also RUNX1 activity (242).  

Interferon-regulatory factor-4 (IRF-4), a transcription factor previously shown to be important for 

Th2 cell differentiation, is essential also for Th17 differentiation. IRF-4 regulates expression of IL-21 

and IL-23R. IRF-4 deficient T cells show impaired induction of RORγt and ROR and increased 

expression of Foxp3 (257, 258).  

Nuclear factor of activated T cells (NFAT) has been identified as a central regulator of T cell-mediated 

IL-17 gene transcription. Two crucial NFAT sites have been identified in the IL-17a but not in the IL-

17f proximal promoter. Inhibition of NFAT activation causes a defect in IL-17A transcription (259, 

260). 
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Activator protein-1 (AP-1 protein) transcription factor, B-cell activating transcription factor (BATF) 

also plays a critical role in Th17 differentiation. BATF binds conserved intergenic elements in the 

Il17a/Il17f locus and Il17, Il21 and Il22 promoters. Batf-/-T cells fail to induce RORt (246) and IL-21. 

Batf-/- mice have a defect in Th17 differentiation but a normal Th1 and Th2 differentiation. 

Th17 cells also express transcription factor proto-oncogene musculoaponeurotic fibrosarcoma 

oncogene homolog (c-Maf). Lack of c-Maf resulted in a defect in IL-21 production, IL-23R expression 

and fewer Th17 cells (261). 

Inhibitor kappa B zeta (IκBζ) encoded by the Nfkbiz gene, has recently been shown to be required for 

Th17 cell development (262). It may act by binding directly to the regulatory region of the IL-17 gene 

and synergising with RORγt or RORα. Nfkbiz-/- mice have a defect in Th17 development. 

Aryl hydrocarbon receptor (AhR) a cytosolic  transcription factor (263) is also involved in Th17 cell 

differentiation creating a link between environmental pollution and inflammation. AhR is required 

for IL-22 and, to lesser extent, IL-17 expression in Th17-polarizing conditions in the presence of 

either dioxin or FICZ (264). AhR co-operates with RORγt to induce maximal amounts of IL-17 and IL-

22 and inhibits TGF-β-induced expression of Foxp3.  

1.3.2b Negative regulators of Th17 transcription 

IL-2-induced STAT5 is known to inhibit Th17 differentiation potently (265). It displaces STAT3 by 

directly binding to essentially the same elements in promoter and enhancer on Il17 gene as STAT3. 

The balance of activation of STAT3 and STAT5 transcription factors, therefore determines the 

outcome fate of T cells. 

Eomesodermin (Eomes) substantially inhibits RORγt and IL-17A expression by directly binding to Rorc 

and Il17a promoters and also enhancing Ifng promoter activity (233). 

IRF-4 binding protein (IBP) sequesters IRF-4 to prevent it from targeting the transcriptional 

regulatory regions of il-17 and il-21genes (266). 
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The nuclear orphan receptor NR2F6 directly interferes with the transcriptional activity of the NFAT 

dependent IL-17A cytokine promoter (267). Growth factor independent 1 (Gfi1) inhibits RORγt 

activity (268). 

1,25(OH)2D3 via vitamin D receptor (VDR) transcriptionally represses IL-17A expression through 

multiple mechanisms which include blockage of NFAT, recruitment of histone deacetylase (HDAC), 

sequestration of Runx1 and a direct induction of Foxp3 (269).  

Retinoic acid inhibits Th17 differentiation by down regulating the expression of RORγt, and 

enhancing the expression of Foxp3 (270).  

Erythroblastosis virus E26 oncogene homolog 1 (Ets-1) is a negative regulator of Th17 differentiation 

(271). However, Ets-1 does not bind to the Il17 promoter. Ets-1-deficient T cells make less IL-2 and 

have impaired responsiveness in terms of IL-2- mediated inhibition of Th17 differentiation.  

 

1.3.2c Epigenetic control of IL-17 expression 

The possibility of an epigenetic regulation of IL-17 expression was raised by an initial observation 

that the promoters of Il17 and Il17F genes in Th17 cells, but not in Th1 or Th2 cells were histone H3 

acetylated and K4 trimethylated (272). Subsequently eight conserved non-coding sequences (CNS) in 

the Il17/Il17f gene locus were identified to be histone H3 acetylated. It was further shown that 

CNS2, the best studied CNS, could be induced by TGFβ and IL-6 and both RORα and RORγt could bind 

to the ROR response elements (RORE) sites in this region (241). In keeping in with these findings, 

more recently, RUNX1 factor was shown to cooperate with RORγt in activating this element (242). 
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1.3.3 Plasticity, instability and heterogeneity of Th17 cells 

Th17 cells are not terminally differentiated and can be readily converted to other Th effector 

lineages. It has been suggested that Th17 cells-derived Th17/Th1 or Th1 cells than rather Th17 

themselves play a pathogenic role in chronic inflammatory disorders (273, 274). 

 

1.3.3a Th17/Treg cells 

IL-17+ Foxp3+ T cells can be detected in vitro and in vivo in both mice and humans (275, 276). IL-

17+Foxp3+ T cells also express CD25 and RORγt (277). However, it is not known whether these IL-

17+Foxp3+ T cells originate from Th17 or Treg cells (278). Exposure of antigen activated naive CD4+ T 

cells to TGF-β results in transcriptional up regulation of both Foxp3 and RORγt. The double positive 

Foxp3+ RORγt+ T cells are probably a transient population that can differentiate into Treg or Th17 

cells. The balance of TGF- and IL-6 seems to determine the differentiation of Treg/Th17 cells (278-

280).  

The numbers of Treg and Th17 cells are inversely associated in autoimmune diseases suggesting a 

dynamic interaction between Treg and Th17 cells (281). Foxp3 expressing Tregs under appropriate 

conditions can express RORt and, develop capacity to secrete IL-17 or INF-γ (275, 278-280, 282-

284). IL-17-secreting Foxp3+ Tregs may either retain or lose their suppressive function. The 

conversion of human Foxp3+ Tregs into IL-17 producing cells is enhanced in the presence of IL-1 

alone or in combination with IL-23 or IL-6 (275, 285) or in the presence of IL-2, IL-21 and IL-6 (278). It 

is therefore plausible that reduced numbers of Foxp3 Tregs in patients with autoimmune diseases 

may occur due to enhanced conversion of these cells into IL-17 secreting cells in the context of an 

inflammatory environment.  

 

1.3.3b Th17/Th1 cells 

Recent evidence suggests that Th17 and Th1 cells might be phenotypically, developmentally and 

functionally linked in autoimmune diseases. Like Th1, polarized Th17 cells have the capacity to cause 
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autoimmune diseases although the disease induced by each cell type is distinct in terms of 

inflammatory infiltrate and preferential tissue location (213, 286-289).  

IFN+IL-17+ double positive T cells are detectable in both human and mouse inflamed tissues (213, 

290, 291). It is possible that IFN+IL-17+ T cells can develop from Th1 and/or Th17 cells (292).  

The Th1 signature cytokine, IFN-γ, can be expressed by primary Th17 cells in Th17-polarized mouse 

cells. Th17 cells after multiple rounds of culture in vitro begin to produce IFN- whereas after 

transfer in vivo, quickly acquire the ability to produce IFN- and lose their ability to produce IL-17 

(293, 294). In mouse models, under lymphopenic conditions, Th17 cells can re-differentiate into Th1 

cells (235). Using the IL-17A reporter mouse model, it was shown that during EAE, a substantial 

proportion of IFN-+T cells was derived from previous IL-17 producing cells (295).  

 

1.3.3c Th17/ Th2 cells 

A novel subset of effector T lymphocytes that co-express GATA3 and RORc and that produce both IL-

17A and IL-4 has recently been described in both mice and humans (296, 297). Th17/Th2 cells could 

be produced from either Th17 or Th2 cells. In the presence of an IL-4-rich microenvironment, Th17 

lymphocytes could switch toward the Th17/Th2 phenotype whereas, in vitro, classical mice Th2 

memory cells could be induced into Th17 cells in the presence of IL-1β, IL-6, and IL-21. 
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1.4 Targeting IL-17 for the treatment of RA  

IL-17 plays a direct role in the pathogenesis of RA (298). The expression of IL-17A, IL-17F, IL-17RA 

and IL-17RC is augmented in the rheumatoid joint and the levels of IL-17A and IL-17F increased in RA 

synovial fluid (SF) (299). Serum levels of IL-17 are significantly raised even before the onset of clinical 

RA (300, 301). IL-17A but not IFN- was transiently elevated in SF of RA patients having disease 

duration less than 3 months suggesting that IL-17 is an important T cell cytokine during early RA 

(302). The presence of IL-17 in early synovitis SF predicted development of RA and synovial IL-

17mRNA expression in early RA predicted progressive joint damage (301, 303).  

Development of a cytokine environment that favours Th17 cell generation is an early event in the 

pathogenesis of RA.  IL-17A is predominantly produced in rheumatoid joint by activated CD4+ T cells, 

though  other cells such as γδT cells, NKT cells, CD8+T cells, fibroblasts, cells in the subchondral lining 

and osteoblasts also produce IL-17 (304, 305). Heuber et al. reported unexpected finding of 

predominant production of IL-17A in inflamed RA synovial tissue by mast cells rather than Th17 cells 

(36). Th17 cells migrate to inflamed joints in response to CCL20 (306) and are activated and 

expanded via cell contact (307) and cytokines, IL-1β, IL-6, IL-21 and IL-23 (51, 308-312). 

The data now available supports the suggestion that Th17 cells play an important role in driving 

innate immune inflammation to chronic autoimmune inflammation in RA. Synovial hyperplasia, 

which occurs at the earliest stages of RA is characterised by the innate immunity cytokine complex 

of TNF-, IL-1β, IL-6, IL-8, IL-15, IL-18 and GM-CSF. The cross-talk between Th17 and RA synoviocytes 

results in reciprocal activation of both these cells. Th17 promotes uncontrolled growth and 

invasiveness of RA synoviocytes, which in turn promotes uncontrolled production of IL-6 and IL-15 

(313, 314). A persistent stimulation of T lymphocytes by IL-6, IL-15 and TNF- results in the down 

regulation of TCRζ and CD28 expression on synovial T cells (315-318), which in RA signifies transition 

from antigen-driven to cytokine-driven activation of T cells and conversion from regulatory to 

inflammatory cytokine production.  
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IL-17 directly supports both the chronic inflammatory and destructive phase of RA. IL-17 acts as an 

important effector of chronic synovial inflammation by inducing secretion of other mediators of 

inflammation, growth factors, adhesion molecules and matrix degrading enzymes (106, 107, 306, 

319-322). In vitro, IL-17 inhibits both proteoglycan and collagen synthesis, and promotes cartilage 

destruction (323). IL-17, by increasing the expression of receptor activator of NF-B ligand (RANKL) 

and inhibiting osteoprotegerin supports downstream bone destruction (323-328). The 

proinflammatory and tissue destructive actions of IL-17 are synergistic to TNF- and IL-1β (115). 

Exogenous administration of IL-17 exacerbates the onset and severity of experimental arthritis, 

whereas its neutralisation suppresses disease (327, 329-332). T cells from IL-17 deficient mice 

showed decreased sensitization to collagen and reduced levels of anti-collagen II antibodies 

indicating modulation of both cellular and humoral immunity in CIA by IL-17. Inhibition of IL-17 both 

before and after the onset of arthritis resulted in suppression of synovial inflammation implying that 

IL-17 contributes to the initiation as well as the effector phase of arthritis (331, 333). Mice deficient 

in inducible costimulator (ICOS), which is associated with reduced production of IL-17A but a normal 

Th1 response, were protected against CIA (334). Vaccinating mice with an IL-17-conjugated virus-like 

particle resulted in high levels of anti-IL-17 antibodies and a lower incidence and severity of CIA 

(335). Local overexpression of IL-17 enhanced inflammation and erosions in streptococcal cell wall-

induced arthritis in both normal and IL-1β-deficient mice, supporting an IL-1-independent role of IL-

17 (332). Ex vivo blockage of IL-17A in synergy with TNF- and IL-1β was more effective in controlling 

synovial inflammation and bone resorption (116). A study in TNF--deficient mice demonstrated 

that although TNF- is required in IL-17-induced joint pathology under naive conditions (336), TNF- 

dependency of IL-17 is lost under arthritic conditions (336). Notley et al. first reported an 

unexpected finding of increased number of pathogenic Th1 and Th17 cells in lymph nodes of CIA 

mice after TNF blockade despite diminished accumulation of Th1/Th17 cells in the joint (337). In 

keeping with results in murine arthritis, Bose et al. showed enhanced expression of activation 

markers and proliferative response to TCR stimulation of peripheral blood CD4+ T cells from patients 
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of psoriasis and IBD, which occurred concurrently with down regulation of Th7/Th1 cytokines and 

inflammatory genes in tissue biopsies (338). Moreover, the peripheral CD4+ T cells hyperactivity in 

these patients did not interfere with responsiveness to anti-TNF therapy. 

Phase I/II trials of treatment with anti-IL-17 antibodies have reported beneficial therapeutic effects 

with no notable side-effects (339-341). 
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1.5 Targeted therapies 

Inhibition of TNF by either monoclonal antibodies or receptor fusion protein in RA has demonstrated 

outstanding efficacy but unwanted systemic side effects due to the pleiotropic activities of cytokines 

still remain an issue. These limitations could be overcome by the use of therapies that can target 

their therapeutic effects to the active disease sites. Immunocytokines and latent cytokines are 

examples of targeted therapies that have been developed with the aim of localising therapeutic 

cytokines in this way. 

1.5.1 Immunocytokines 

An immunocytokine consist of an antigen-specific monoclonal antibody (mAb) and a cytokine, fused 

into a single molecule in a way that the independent functions of antibody and cytokines are not 

disturbed. The targeting properties of an immunocytokine mAb enables directing the cytokine to the 

specific pathology site in order to achieve an effective local concentration in the desired 

microenvironment, thus minimising the risk of toxicity that could result from the systemic 

administration of the cytokine. In addition, the large size and inherent stability of the mAb in the 

complex increases the half-life of the cytokine. 

During the past years, several immunocytokines have been developed including mAbs fused to 

cytokines such as TNF-α, IL-2 and GM-CSF (342-345). Amongst these, Ab-IL-2 fusion proteins are the 

best characterised. The Ab-IL-2 uses the mAb component to recognize and bind to the tumour, 

whereas the IL-2 portion activates cells expressing IL-2 receptors, such as CD8+T cells and NK cells, 

inducing the destruction of the tumour cell (346, 347). Dario Nari’s group has reported therapeutic 

efficacy of IL-10 conjugated to the specific components of extracellular matrix in CIA mice. IL-10 

when fused to L19, a monoclonal antibody against tenascin C, a specific marker for angiogenesis or 

F8, a monoclonal antibody to extracellular domain A of fibronectin was effective in inhibiting 

progression of arthritis in established CIA (348, 349). Hughes et al. in our laboratory have 

demonstrated that anti-ROS modified CII scFv fused to soluble murine TNF receptor II-Fc fusion 
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protein (mTNFRII-Fc) resulted in significantly reduced inflammation in CIA mice as compared to 

mTNFRII-Fc alone or mTNFRII-Fc fused to an irrelevant scFv (350). 

 

1.5.2 Latent cytokine  

TGF-β, unlike most cytokines is secreted as latent cytokine. TGF-β is produced with an N-terminal 

region, termed latency associated peptide (LAP). Following disulfide bonding, the LAP serves as a 

shell that protects C-terminal region, which is the active TGF-β cytokine (351). The non-covalently 

bound active TGF-β is released from this structure by several mechanisms, including the proteolytic 

cleavage of LAP, changes in pH or heat (352). For the purpose of targeted therapy, a cytokine can be 

modified as latent cytokine (Fig. 1.11) by covalently binding the cytokine to the LAP of TGF-β via a 

MMP sensitive linker (353). This allows formation of a protective shell of LAP around the cytokine, 

which in turn prevents the interaction of the cytokine with its receptor. The biological activity of a 

LAP cytokine nonetheless can be released by MMP, which free ups the biologically active cytokine by 

cleaving the MMP-sensitive linker. Due to the overexpression and localised abundance of MMPs 

within actively inflamed tissues, therapeutic effects of a LAP-cytokine can be targeted to the actual 

disease sites. Using this approach, LAP- IFN-β was the first cytokine that was modified as a latent 

cytokine in our laboratory. In vitro LAP- IFN-β did not bind to its cellular receptors and in vivo the 

half-life of LAP-IFN-β was 37-times higher and therapeutic efficacy in CIA mice superior to naïve IFN-

β (354). Additional therapeutic agents that were made latent include short anti-inflammatory 

peptides such as - and -MSH and vasoactive intestinal peptide (VIP) (355). 

Latent cytokines can be used in a number of disease conditions in which tissue modelling takes place 

such as infection, cancer (356), atherosclerosis (357) and autoimmune diseases (358-361). In 

addition, the cleavable MMP site can be tailored to be sensitive to the MMPs that are expressed 

predominantly in certain pathological conditions. Furthermore, certain cytokines with important 

biological functions but high toxicity in clinical trials could be made latent to ensure local action and 

increase their safety and therapeutic index. 



69 
 

 
 
 
 
 
 
 

 

 
Figure 1.7 Structure of a latent cytokine. A cytokine can be modified as latent cytokine by fusing it 
with the LAP of TGF-β via a MMP-sensitive linker. The LAP forms a protective shell around the 
cytokine, which prevents the interaction of the cytokine with its receptors and in turn converts it 
latent. The biological activity of a latent cytokine can be released by cleavage of the MMP-sensitive 
linker by MMP and due to the localised overexpression and abundance of MMPs, targeted to the site 
of active inflammatory pathology. LAP, latency-associated peptide; TGF-β, transforming growth 
factor-β; MMP, matrix metalloproteinase. Adams G et al. Nature Biotechnology 2003; 21:1314-1320. 
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1.6 Preclinical in vivo testing of new therapies for RA 

Preclinical in vivo testing of a newly devised therapy is an essential pre-requisite to its safe use in 

humans. This often involves production of a given therapeutic in large quantities, sufficient to allow 

multiple administrations to achieve an optimum therapeutic level. In vitro expression and 

purification of large quantities of recombinant therapeutic protein is costly, time consuming and 

technically difficult especially in the setting of non-industrial research laboratories. These limitations 

of protein-based therapy can be avoided by administering a given therapeutic in animals under 

study via in vivo gene therapy. Gene-based therapy precludes the need for in vitro purification of an 

investigational therapeutic by allowing its spontaneous in vivo expression. Gene therapy, because of 

its relative ease and low cost can be readily undertaken in research laboratories; thus providing a 

convenient alternative to protein based drug delivery to establish proof of principle for in vivo 

efficacy of new therapeutic strategies. 

1.6.1 Gene therapy as a modality for preclinical testing of new therapies 

Gene therapy is defined as transfer of new genetic material to the cells of a living organism for 

therapeutic purposes. Historically, human gene therapy was mainly focused on the treatment of 

monogenic diseases with the aim of replacing the defective gene and restoring its functions but in 

fact has much broader applications. For example, a novel therapeutic can be administered in animal 

models using gene therapy to assess its preclinical in vivo efficacy (Fig. 1.8). A solitary intravenous 

hydrodynamic delivery of plasmid DNA results in transgene expression that is sustained over weeks. 

The delivery and expression of a new gene into target cells can be facilitated by using either viral or 

non-viral vectors. Viral vectors due to their natural ability to enter and integrate their genetic 

material into target cells offer an excellent efficiency of gene delivery and expression but are difficult 

to produce and may impose the risk of immunogenicity and insertional mutagenesis. In contrast, 

non-viral vectors are generally safe and easy to produce but the efficiency of gene transfer is 

relatively weak.  
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1.6.1a Viral vectors 

Retrovirus, adenovirus and adeno-associated viruses (AAV) are the most widely used vectors for 

gene therapy applications. Other viruses including pox virus, herpes simplex virus and vaccinia virus 

have also been investigated. 

Retroviruses 

Retroviruses are small, enveloped, single stranded RNA viruses with genome capacity of 7-12kb. The 

retroviruses integrate their DNA into regions of host euchromatin, which provides stable long-term 

expression of the transgene in the host cell and descendent cells. The use of retroviruses is restricted 

to mitotic tissues as they cannot infect quiescent cells. The major limitation of retroviruses is the 

accompanied risk of insertional mutagenesis.  

Adenoviruses 

Adenoviruses are non-enveloped double stranded linear DNA viruses with a natural tropism for 

upper respiratory tract and ocular tissue. They can deliver up to an 8 kb cargo. The cargo delivered 

can be maintained as an episome which may remain transcriptionally active for the life of host cell. 

Adenoviruses are however highly immunogenic and many people have a pre-existing immune 

memory that affects its efficacy.  

Adeno-associated virus 

AAV is a non-pathogenic single stranded DNA virus with a genome of about 4.7kb. Like adenoviruses, 

they can infect dividing or quiescent cells. Many serotypes are available and they are used actively in 

clinical research including in RA. In a phase I/II clinical trial, patients treated with intra-articular 

injection of recombinant AAV containing TNFR-Fc gene reported greater improvement in target joint 

global visual analogue score at 12 weeks than placebo-treated group. The AAV delivered treatment 

resulted in site reaction in 12% patients and fatal disseminated histoplasmosis in one patient, that 

was thought to be unrelated to the study agent (362). 
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1.6.1b Non-viral methods  

Gene constructs if injected directly as naked DNA into skeletal muscles are expressed only at low 

levels.  Physical or chemical methods are usually required to enhance cellular uptake of naked DNA. 

Physical methods that facilitate the transfer of genes from extracellular to nucleus by creating 

transient membrane holes/defects using physical forces include local or rapid systemic injection, 

particle impact, electric pulse, ultrasound and laser irradiation. Chemical vectors such as cationic 

lipids or polymers form condensed complexes with negatively charged DNA (363), which in turn 

protect DNA and facilitate cell uptake and intracellular delivery.  

Hydrodynamic gene transfer 

The method of hydrodynamic gene transfer employs a high pressure as the driving force for the 

transfer of a gene. Intravenous  injection of a large volume, 8-12% of body weight in short time (3-5 

seconds) leads to a reversible permeability change in the endothelial lining and the generation of 

transient pores in hepatocyte membranes allowing the DNA molecules to diffuse internally (364). 

This is the most efficient non-viral gene transfer method in rodents. Hydrodynamic delivery has been 

used successfully in monkeys by delivery into skeletal muscle by temporarily blocking the limb 

circulation with a tourniquet (365). 

Electroporation 

Electroporation involves use of electric pulses which generate transient pores in cell membranes 

followed by intracellular electrophoretic DNA movement. Typically, in vivo electroporation is 

conducted by first injecting DNA to the target tissue followed by electric pulses, with varied voltage, 

pulse duration, and number of cycles, applied from two electrodes. In vivo electroporation 

technique is generally safe, efficient, and can produce good reproducibility and efficiency (366). 

Sonoporation 

Sonoporation uses ultrasound waves to create plasma membrane defects by acoustic cavitation. 

Most gene delivery techniques use ultrasound at frequency of 1-3MHz with intensity of 0.5-

2.5W/cm2 (367). Ultrasound may be combined with contrast agents or microbubbles (368) to 
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facilitate release of local shock waves that can disrupt the nearby cell membranes and promote 

transient pore formation to enhance local DNA transfer.  

Cationic lipids 

Cationic liposome-mediated gene transfer or lipofection is the most extensively investigated and 

commonly used non-viral gene delivery method. The various lipids used share the common structure 

of positively charged hydrophilic head and hydrophobic tail that are connected via a linker structure. 

The positively charged head binds with the negatively charged phosphate of DNA. The positively 

charged lipids surround the DNA and grant them protection against extra and intracellular nucleases. 

In addition, liposomes interact with negatively charged molecules of the cell membrane and 

facilitate their cellular uptake. The cationic lipids are inexpensive to produce and can be engineered 

to have targeted specificity but have drawbacks of short circulation half-life and acute toxicity.  

Cationic polymers 

Cationic polymers upon mixing with DNA form nanosized complexes called polyplexes. Amongst 

cationic polymers, polyethylenimine (PEI) is considered most effective. Upon systemic 

administration these polyplexes of small particle size aggregate to form larger complexes and 

accumulate in major tissues including lung and liver. Cationic polyplexes are more stable than 

lipoplexes but the level of cytokine induction is inferior to  the latter (369).  

Inorganic nanoparticles 

Inorganic nanoparticles are usually prepared from metals (e.g. iron, gold, silver), inorganic salts, or 

ceramics (370). The small particle size has advantage of bypassing most of the physiological and  

cellular barriers and produce higher gene expression (371). They can also be transported through the 

cellular membranes via specific membrane receptor nucleolin which delivers nanoparticles directly 

to the nucleus, skipping the endosomal-lysosomal degradation (372, 373). Nanoparticles have ability 

to efficiently transfect post-mitotic cells in vivo and in vitro, have low or no toxicity and are inert to 

immune responses.  
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Figure 1.8 Gene therapy as a modality for preclinical in vivo testing of new therapies. Gene-based 
therapy is an expedient alternative to protein-based therapy for preclinical in vivo testing of new 
therapies. The procedure of gene-based therapy is fast, easy and is feasible in the setting of research 
laboratories. As against, protein-based therapy involves in vitro expression and purification of large 
quantities of recombinant therapeutic protein, a procedure which is technically difficult, time 
consuming and exceedingly expensive. 
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1.6.2 Mouse models of experimental arthritis 

Animal models of experimental arthritis have been instrumental in studying the RA aetiology, 

pathophysiology and developing new therapeutic strategies. Induction of chronic inflammatory 

arthritis in susceptible inbred strains permits in vivo study under reproducible controlled conditions. 

Inflammatory arthritis in animals is stimulated by either overexpression or deletion of target gene, 

immunisation with putative autoantigens or synthetic chemical challenges. Although the animal 

models share features with human RA, none reflects all the characteristic articular, systemic, 

immunological and genetic features of the human disease. A preferential selection of an appropriate 

animal model that represents the expected outcome in the human clinical situation therefore is 

extremely important.  

Rodent models have been extensively used in RA research. Some of the commonly used mouse 

models of experimental arthritis and outcome of their responsiveness to IL-17 inhibition are 

described below.  

 

1.6.2a Collagen induced arthritis mice 

Collagen induced arthritis (CIA) is characterised by an autoimmune response-mediated synovitis and 

cartilage and bone erosion, which closely resemble RA making it the most widely used animal model 

for RA research. 

Mice with H-2q and H-2r major histocompatibility complex (MHC) class II haplotype, when 

immunized with homologous or heterologous native collagen II (CII) develop arthritis (374-377). 

Both cellular and humoral immunity to CII are necessary for the full development of arthritis in this 

model (377). An injection of anti-CII antibodies  also induces arthritis (378). The development of CIA 

critically depends on IL-1 (379) and IL-6 (380). While IL-17A (329), TNF (381, 382) and IL-23 are also 

involved, IFN-γ and IL-4 are involved only marginally. Il23-/-mice but not Il12a-/-mice are resistant to 

disease (383). 
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Il17a-/-mice exhibit a significant reduction in the sensitization of T cells following immunization with 

CII (329). Because both the incidence and the severity score was reduced in Il17a-/-mice with CIA, IL-

17 is thought to function at the sensitization as well as the elicitation phase of the arthritis. 

 

1.6.2b Anti-collagen II antibody-induced arthritis mice 

Anti-CII Ab-induced arthritis is produced by a mixture of monoclonal anti-CII abs, injected 

intravenously followed by intraperitoneal injection of LPS. Arthritis is induced within a few days and 

persists for 2 weeks in BALB/c mice (384, 385). The anti-CII Ab arthritis can also be induced in 

scid/scid mice (386) indicating that both T cells and B cells are not necessary for this disease model. 

Il17a-/- (379) and Il6-/-mice (386) develop full arthritis in this model but development of arthritis is 

completely suppressed in tnfr-/-mice (386) and significantly suppressed in Il1ra-/-mice (386).  

 

1.6.2c Human T cell-leukemia virus type I transgenic mice 

Transgenic mice carrying HTLV-1 tax gene with its own LTR promoter (HTLV-I Tg mice) develop 

chronic inflammatory polyarthropathy resembling RA (387-389).The expression of IL-1β, IL-2, IL-6, 

TNF-, IFN-γ, and IL-17A is upregulated in transgenic joints (390) and the development of arthritis is 

greatly suppressed in Il-17a-/-, Il-1/β-/- , Il-6-/-mice. 

 

1.6.2d IL-1 receptor antagonist deficient mice 

IL-1Ra-deficient, Il1ra-/- mice develop chronic inflammatory arthropathy (391). The expression of IL-

1, IL-17A, IL-6 and TNF- is augmented in these mice (391, 392). The development of arthritis in 

Il1ra-/-mice however was completely suppressed in Il17a-/-Il1ra-/-mice until 16 weeks of age  

while, more than 80% of Il17a+/+Il1ra-/- mice develop arthritis at 10 weeks of age (393). Deficiency 

of TNF- but not IL-6 led to the suppression of arthritis in these mice (379, 392). 
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1.6.2e SKG mice 

These mice, derived from BALB/c background have a mutation in -associated protein of 70 kDa 

(ZAP70) (394) and develop autoimmunity and arthritis spontaneously (395). The development of 

arthritis in SKG mice is completely suppressed by IL-17A or IL-6 deficiency and significantly by IL-1 or 

TNF- deficiency (306, 396, 397). 

 

1.6.2f TNF transgenic mice 

Transgenic mice carrying a modified human TNF gene under its own promoter and-globin 3’ end, 

produces a stable TNF mRNA, develop arthritis characterized by subchondral erosions within 4 

weeks of age (398). This arthritis develops in a rag1-/-background, which is suggestive of an innate 

and /or stromal rather than an autoimmune mechanism (399). In this model IL-6 deficiency does not 

affect the development of arthritis (380) but inhibition of IL-1RI (400) or TNFRI deficiency (399) 

completely suppresses arthritis development. Role of IL-17 in this animal model has not been 

determined. 

 

1.6.2g K/BxN mice 

K/BxN mice carry a TCR transgene, which is specific for the bovine RNase and also recognizes the 

MHC class II molecule A(g7) encoded on nucleotide oligomerization domain (NOD) (401). The 

development of spontaneous arthritis in this model depends on both T cells and B cells (402) and is 

mediated via antibodies to glucose-6-phosphate isomerase (anti-GPI) (403). Anti-GPI antibody 

containing immune complexes activate the C5a complement pathway in mast cells to induce 

secretion of inflammatory cytokines (404, 405). Mast-cell derived IL-1 (405), also TNF but not IL-6 is 

involved in the development of arthritis in this model (406). Neutralising IL-17A signaling did not 

affect this model of arthritis (407). 
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1.6.2h RA/severe combined immunodeficient mice 

Severe combined immunodeficient (SCID) mice are deficient in both T and B cell function and widely 

used as a host for the transplantation of various human tissues since their impaired T and B cell 

function prevents them from rejecting grafts. Transplantation of RA synovium into SCID mice 

enables targeting the human RA tissue directly, thereby providing an important step between 

standard animal models of experimental arthritis and clinical trials. 

This humanised arthritis model is used in two variants, each with its own advantages and limitations. 

In the RA synovial fibroblast (RASF) model, RASF are co-implanted with pieces of cartilage into SCID 

mice to study the capacity of the RASF to degrade matrix and invade the cartilage (408, 409). The RA 

synovium/SCID mouse model on the other hand involves transplantation of standardized pieces of 

RA synovial tissue subcutaneously on the back or under the renal capsule of SCID mice (410, 411). As 

this model uses the whole RA synovial tissue including various immune cells, it provides an excellent 

opportunity to investigate multiple cell types within the inflamed synovium and to test new 

therapies. For example, depletion of human T cells and B cells from the RA synovial grafts confirmed 

a crucial role for these cells in RA (412, 413) and MTX and anti-TNF treatment in the RA /SCID mouse 

model resulted in a decrease in the inflammatory cells in the graft (414, 415). 

Koenders et al. have recently confirmed the validity of the RA synovium /SCID mouse model by 

examining the effects of commonly prescribed therapies for RA including IL-1 and TNF antagonists, 

CTLA4-Ig, and anti-CD20 and anti-IL-17 antibodies (416).  
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1.7 Summary and objectives 

IL-17A plays a direct role in the pathogenesis of RA. Exogenous administration of IL-17A exacerbates 

whereas its neutralisation ameliorates experimental arthritis. Phase I/II clinical studies of inhibition 

of IL-17 have reported significant improvement in arthritis without notable side effects.  

(H161R) IL-17F mutant is a competitive inhibitor of wild-type IL-17F. In a Japanese population, 

homozygotes of (H161R) IL-17F mutant were protected from asthma. IL-17F shares structural, 

receptor binding and biological properties with IL-17A but is 30-100% less potent, which is 

suggestive of an additional inhibition of IL-17A by IL-17F mutant. 

Biological activities of cytokine-based therapies can be targeted to the site of active inflammation by 

modifying a given cytokine as LAP-MMP-cytokine fusion protein.  

 

Hypotheses 

1. Human (H161R) IL-17F mutant is an antagonist of IL-17A. 

2. (H161R) IL-17F mutant, due to its ability to suppress both IL-17A and IL-17F will be a 

powerful suppressor of IL-17-induced inflammation in RA. 

3. (H161R) IL-17F mutant if modified as LAP-IL-17F mutant would be a highly efficacious 

targeted therapy for RA. 

 

Aims 

1. To confirm that human (H161R) IL-17F mutant is an inhibitor of IL-17A. 

2. To construct mouse analogues of human (H161R) IL-17F mutant and characterise their in 

vitro biological properties. 

3. To test preclinical in vivo therapeutic efficacy of mouse LAP-IL-17F mutant in CIA mice or 

human LAP-IL-17F mutant in RA synovium/SCID mice model of RA. 
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2.1 Cloning and expression of IL-17 

2.1.1 Harvesting cDNA from mouse splenocytes 

2.1.1a Harvesting T cells from mouse spleen 

Spleen dissected from NIH Swiss mouse (kindly provided by Dr D. Gould, BJRU) was transported in 20 

ml ice-cold complete RPMI medium supplemented with 10% FBS (Invitrogen, Paisley, UK), 2mM L-

glutamine and Penicillin (100 units/ml)/Streptomycin (100μg/ml) (Cambrex, Wockingham, UK); cut, 

mashed and filtered through 70m BD Falcon cell strainer, washed twice with 50 ml complete RPMI 

medium and centrifuged at 500rpm (Eppendorf centrifuge 5810R, Hamburg, Germany) for 5 minutes 

at 4C. The RBCs were lysed by adding 1ml RBC lysis buffer (0.15M ammonium chloride in 0.01M Tris 

HCl buffer, pH 7.50), re-filtered through 70 m BD Falcon cell strainer and washed twice with RPMI. 

The cell count was performed using haemocytometer. T lymphocytes were activated by incubating 

the cells with 3 g/ml Concanavalin A (Con A) in 10ml RPMI in 9cm culture plate at 37C in 10% CO2 

for 6 hours. The working-surface was cleaned with RNase free water and the plate was transferred 

on ice; medium aspirated in pre-cooled Eppendorf tubes. 500 l pre-cooled PBS was added to the 

adherent cells, the cells were scraped using a scraper and added to collected supernatant, 

centrifuged at 1200rpm for 5 minutes at 4C. The pellet was re-washed with 500l cold PBS and 

stored at -80C.  

2.1.1b RNA extraction  

RNA was extracted in a sterile environment using Ambion RNAqueous-4PCR kit. The harvested 

mouse spleen cells were treated with 200l lysis/binding solution per 106 cells and vortexed. The cell 

lysate was clarified by centrifugation, mixed with an equal volume of 64% ethanol and RNA was 

extracted as per the manufacturer’s instructions. In brief, the lysate/ethanol mixture was transferred 

to the filter cartridge, washed twice and RNA was eluted using elution buffer (pre-heated at 70-80C 

for 30 minutes). For the removal of DNA, 1l 10X DNase buffer and 0.1l DNase 1 was added to each 

9l RNA and incubated for 30 minutes at 37C. Finally 1l DNase inactivation solution added and the 
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extracted RNA stored at -80C. The extracted total RNA was analysed on 1% agarose gel to confirm 

the presence of expected ribosomal RNA bands of 28S and 18S. 

2.1.1c Reverse transcription with oligo dT primers  

The RNA extracted from mouse spleen was heated at 65C for 5 minutes and transferred on ice 

immediately. The reaction mixture containing 10X RT buffer (200mM Tris HCl, pH 8.4, 500mM KCL, 

Gibco BRL), 4l 25mM MgCl2, 1l 10mM dNTP, 1l oligo dT, 2l 0.1M DTT, RNase-free water, 0.5l 

Moloney murine leukemia virus (M-MLV) reverse transcriptase (200units/l, Promega, Madison, 

USA), 1l RNase inhibitor and RNA in a total volume of 20l was incubated  at 42C for 60 minutes, 

99C for 5 minutes and 4C for 5 minutes in a Peltier Technology Thermal cycler (PTC-200, MJ 

Research Inc., Waltham, MA). The reverse transcribed product containing single-stranded 

complementary DNA was stored at -20C. 

 

2.1.2 Cloning of human and mouse full-length IL-17 

All primers were ordered from Sigma-Aldrich Inc. (Haverhill, UK). All DNA restriction and modifying 

enzymes were purchased from New England Biolabs Inc. (Hitchin, UK). 

2.1.2a Cloning of human and mouse wild-type full-length IL-17 

Human full-length IL-17A (hFL-IL-17A) and IL-17F (hFL-IL-17F) were PCR-amplified using cDNA 

derived from RT-PCR of CD14- human peripheral blood lymphocytes (PBL) as template (kindly 

provided by Dr. N Yousaf, BJRU). Mouse full-length IL-17A (mFL-IL-17A) and IL-17F (mFL-IL-17F) were 

PCR-amplified using NIH Swiss mouse splenocyte cDNA (refer Section 2.1.1) as template employing 

the protocol described below (Section 2.2.1). The forward and reverse primers are listed in the Table 

2.1. Hot-start PCR (Section 2.2.2) was used to amplify mFL-IL-17A. Due to the presence of an 

additional band, the mFL-IL-17F was gel-purified using PureLink Quick Gel Extraction kit. As shown 

in the Fig. 2.1, the PCR products were digested with BamH1 and Xba1, and cloned in the 

corresponding sites of the plasmid expression vector pcDNA3 (Invitrogen).  
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Table 2.1 List of primers used for cloning of human and mouse full-length and LAP- IL-17 constructs 

Oligo primer name Sequence 5’-3’ 

hFL-IL-17A forward  5’CCGGATCCATGACTCCTGGGAAGACCTCA3’ 

hLAP-IL-17A forward 5’CGCGGCCGCAGGAATCACAATCCCACGAAT3’ 

hIL-17A reverse 5’GGTCTAGATTAGGCCACATGGTGGACAATCGG3’ 

hFL-IL-17F forward 5’CCGGATCCATGACAGTGAAGACCCTGCAT3’ 

hLAP-IL-17F forward 5’CGCGGCCGCAAAAATCCCCAAAGTAGGAACA3’ 

hIL-17F reverse 5’GGTCTAGATTACTGCACATGGTGGATGACAGG3’ 

hIL-17Fmutant oligo forward 5’CCCCTGTCATCCACCGTGTGCAGTAAT3’ 

hIL-17Fmutant oligo reverse 5’CTAGATTACTGCACACGGTGGATGACA3’ 

hLAP-IL-17Fmutant forward 5’CGC /G GCCGCA AAA ATC CCCAAAGTAGGAACA3’ 

mFL-IL-17A forward 5’CCGGATCCATGAGTCCAGGGAGAGCTTCA3’ 

mLAP-IL-17A forward 5’CGCGGCCGCAGCAGCGATCATCCCTCCAAGC3’ 

mIL-17A reverse 5’GGTCTAGAT TTAGGCTGCCTGGCGGACAATCGA 

mFL-IL-17F forward 5’CCGGATCCATGAAGTGCACCCGTGAACA3’ 

mLAP-IL-17F forward 5’CGCGGCCGCACGGAAGAACCCCAAAGCAGGG3’ 

mIL-17F reverse 5’GGTCTAGATTCAGGCCGCTTGGTGGACAATGGG3’ 

mFL-IL-17Fmutants forward 5’CCGGATCCATGAAGTGCACCCGTGAAACA3’ 

mLAP-IL-17Fmutants forward 5’GCCGCACGCCGGAAGAACCCCAAAGCAGGG3’ 

mIL-17F-mutant 1 reverse 5’GGTCTAGATTCAGGCCGCTCGGTGGACATGGG3’ 

mIL-17F-mutant 2 reverse 5’GGTCTAGATTCAGGCCGCTTGGCGGACAATGGG 

mIL-17F-mutant 3 reverse 5’GGTCTAGATTCAGGCCGCTTGGTGTCAAATGGGCTTGACACA 

 
The nucelotides marked in red represent the nucleotides that have been substituted in the wild-type 
IL-17F to create the desired mutations.  
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2.1.2b Cloning of human full-length (H161R) IL-17F mutant  

Annealing complementary oligonucleotides 

Previously PCR-amplified hFL-IL-17F fragment (Section 2.1.2a) was digested at BamH1 and BSPM1 

sites and gel-purified using PureLink Quick Gel Extraction kit. Complementary strands of 

oligonucleotides (Sigma-Aldrich, UK) were custom-ordered and annealed, which contained the 

desired mutation with codon sequence 5’CCCCTGTCATCCACCGTGTGCAGTAAT3’ and anti-codon 

sequence 5’CTAGATTACTGCACACGGTGGATGACA3’) along with BSPM1/Xba1 digestion sites. As 

shown in the Fig. 2.2, human FL-IL-17F mutant construct was developed by cloning together 

BamH1/BSPM1-digested FL-IL-17F fragment and annealed complementary oligonucleotides in 

pcDNA3 (Invitrogen) at the BamH1/Xba1 sites. 

 

Figure 2.1 Cloning of full-length IL-17 in pcDNA3. Human and mouse full-length IL-17A and IL-17F 

were constructed by cloning BamH1 and Xba1 digested  full-length IL-17 in the corresponding sites 

of plasmid expression vector pcDNA3.  
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Figure 2.2 Construction of human full-length (H161R) IL-17F mutant. (H161R) IL-17F mutation was 
created by substituting nucleotide A at position 485 (counted from signal peptide) in full-length IL-
17F by G. Previously amplified-type FL-IL-17F (section 2.1.2a) was digested at BSPM and Xba1 sites 
and the deleted C-terminal end was replaced by annealed complementary oligonucleotides 
containing the desired point mutation. FL-IL-17F mutant was then cloned in pcDNA3 at BamH1 and 
Xba1 sites. 
 

 

 

2.1.2c Cloning of mouse analogues of human (H161R) IL-17F mutant  

Human and mouse IL-17F sequences are 77% identical. The (H161R) mutation in human IL-17F is 

located at the extreme C- terminal end. The amino acid sequence at the C-terminal end in human IL-

17F includes HHVQ. In case of the (H161R) mutation, the third last Histidine in human IL-17F is 

replaced by Arginine. In comparison, the mouse IL-17F is 3 amino acids shorter and contains HQAA 

at the C-terminal end (Fig. 2.3). Based on these observations, three mouse analogues of human IL-

17F mutants were created as follows: 
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Mouse full-length (Q158R) IL-17F mutant (mFL-IL-17F mutant 1)  

The mouse IL-17F mutant 1 consisted of Arginine substitution of Glutamine at amino acid position 

158 in wild-type mouse IL-17F. Previously amplified mFL-IL-17F (Section 2.1.2a) was used as 

template and hot PCR-amplified using the forward and the reverse primers listed in Table 1. The PCR 

product was digested with BamH1/Xba1 and cloned in the corresponding sites of the expression 

vector pcDNA3 (Invitrogen).  

Mouse full-length (H157R) IL-17F mutant (mFL-IL-17F mutant 2) 

Mouse mutant 2 was developed by substituting Histidine at amino acid 157 by Arginine. Previously 

amplified mFL-IL-17F (Section 2.1.2a) was used as template and hot PCR-amplified using the forward 

and the reverse primers listed in table 1. The PCR product was digested at BamH1/Xba1 and cloned 

in the corresponding sites of pcDNA3 (Invitrogen).  

Mouse full-length truncated IL-17F mutant (mFL-IL-17F mutant 3) 

Mouse IL-17F mutant was developed by substituting Valine at amino acid 156 in wild-type IL-17F by 

stop codon in order to delete the last four amino acids. Previously amplified mFL-IL-17F (section 

2.1.2a) was used as template and hot PCR-amplified using the forward and the reverse primers listed 

in table 1. The PCR product was digested at BamH1/Xba1 sites and cloned in the corresponding sites 

of pcDNA3 (Invitrogen).  

 

 
Figure 2.3 C-terminal sequences of human and mouse IL-17F. Comparison of mouse IL-17F and 
human IL-17F sequences showed that mouse IL-17F was 3 amino acids shorter and the third last 
amino acid in mouse IL-17F was Glutamine instead of mutated Histidine in human IL-17F. Mouse IL-
17F however contained Histidine immediately preceding Glutamine. Based on these observations, 
three mouse analogues of human IL-17F mutant were created. Mouse mutant 1 involved 
substitution of Glutamine at amino acid position 158 by Arginine and mouse mutant 2 included 
substituting Histidine at 157 by Arginine. Mouse mutant 3 was developed as a truncated mutant by 
deletion of the last 4 amino acids. 
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2.1.3 Cloning of human and mouse wild-type and mutated LAP-IL-17  

The mature fragments of human and mouse IL-17A, IL-17F and IL-17F mutants were PCR amplified 

using corresponding full-length IL-17A, IL-17F and IL-17F mutants cDNA (section 2.1.2 ) as template 

and the forward and reverse primers as listed in the Table 1. mLAP-IL-17A was amplified using hot-

start PCR method (Section 2.1.4a). Due to the presence of an additional band, mLAP-IL-17F was 

isolated by gel-purification (Section 2.1.5a). The PCR products were digested at Not1 and Xba1 sites 

and cloned in the corresponding sites of the previously constructed expression vector pcDNA3-LAP-

MMP (353) (Fig. 2.4).  

 

 

 

Figure 2.4 Cloning of mature IL-17 in pcDNA3-LAP. Human and mouse LAP-IL-17A, LAP-IL-17F and 

LAP-IL-17F mutant were constructed by cloning Not1 and Xba1 digested mature IL-17 into the 

corresponding sites of previously constructed plasmid expression vector pcDNA3-LAP.  
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2.1.4 Polymerase chain reaction DNA amplification  

The PCR reactions containing 200ng DNA template, 0.1g each forward and reverse primer, 10X Pfu 

buffer, 2units high-fidelity DNA polymerase, PfuUltra (Stratagene Inc., CA), 2l 10mM mixed d-NTP 

and distilled water to a total volume of 50l was subjected to a protocol of an initial denaturation 

step at 95 C for 2 minutes, followed by 34 amplification cycles (denaturation at 95C for 30 sec, 

annealing of primers at 60C for 30 sec and strand amplification at 72C for 2 min) and a final 

extension step of annealing at 72C for 10 minutes using a Peltier Technology Thermal cycler (PTC-

200, MJ Research Inc., Waltham, MA). The correct size of the PCR-amplified cDNA fragment was 

confirmed by agarose gel electrophoresis: 2l PCR product in 8l distilled water was mixed with 2l 

6X Bromophenol blue loading dye (30% v/v glycerol in distilled water, 0.25% bromophenol blue, 

0.25% xylene blue) and separated on ethidium bromide (0.5g/ml) containing 1% agarose gel in 0.5X 

TAE buffer (0.02M Tris-acetate, 0.5mM EDTA, pH 8.0) in parallel with 10l (2g) 1Kb Plus DNA ladder 

(100-12000 bp) (Invitrogen Co., Paisley, UK) at 100V for approximately one hour. The ethidium 

bromide-bound DNA was visualised under ultraviolet light and the image was captured using a gel 

documentation system (Uvitec Ltd, Cambridge, UK). 

 

2.1.4a Hot-start PCR 

The PCR reaction mixture containing 10X Pfu buffer, 2l 10mM mixed d-NTP, 0.1g each forward 

and the reverse primer, 200ng DNA template was boiled for 5 minutes in screw-capped tubes; 

transferred on to ice immediately and centrifuged briefly. 2units of high-fidelity DNA polymerase 

PfuUltra (Stratagene Inc., La Jolla, CA) were added and PCR-amplification conducted as above 

(section 2.1.1) except that the annealing temperature was lowered to 52C.  

 

2.1.4b Phenol: chloroform extraction and sodium acetate precipitation of PCR products 

An equal volume of water saturated phenol:choloroform solution was added to PCR mix and 

vortexed for 30 seconds, centrifuged at 13,000rpm for 5 min using an Eppendorf Microcentrifuge 
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(541D, Eppendorf, Hamburg, Germany). The top aqueous phase was mixed with 10% sodium acetate 

3M, pH 5.2 and 2.5 volumes 100% cold ethanol, incubated at -20C for 30 min, centrifuged at 13,000 

rpm/min for 30 min at room temperature, pellet washed with 500l 70% ethanol, centrifuged at 

13,000rpm for 20 min, recovered DNA resuspended in distilled H2O, gel-analysed and stored at  

-20C.  

 

2.1.5 DNA restriction enzyme digestion 

The PCR products and plasmid vectors were digested with 5l and 10l respectively of appropriate 

enzymes, New England Biolabs, Hitchin, UK) using 10X corresponding buffer ± 100X BSA in a total 

reaction-volume of 100l by incubating at 37C overnight, gel-analysed and stored at -20C until 

utilized.  

DNA gel purification  

100l digested DNA product or 20μg plasmid vector was loaded in equal amount in 10 different 

wells of 1% agarose gel and separated at 100V. The DNA band of interest was visualized under 

ultraviolet transluminator (Uvitec Ltd), excised from the gel and purified, using PureLink Quick Gel 

extraction kit as per instructions from the manufacturer. In brief, the DNA-containing gel was 

dissolved in solubilisation buffer, incubated at 50C for 20 minutes, passed through column, washed; 

and the purified DNA recovered in distilled water and stored at -20C. 

Annealing complementary strands of oligonucelotides 

1g each of complementary strands of oligonucleotides (1g/l) mixed in 10X T4 DNA ligase buffer 

in a total 50l volume were annealed by boiling for 5 minutes, followed by slow cooling until the 

next day and stored at -20°C until cloned. 
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2.1.6 DNA Ligation  

Restriction enzyme digested PCR products were ligated in 10-fold molar excess to the 

correspondingly digested 1g plasmid vector in 10X T4 ligase buffer and 1.25l 400,000 units/ml T4 

DNA ligase (New England Biolabs, Ipswich, USA) in a total reaction volume of 25l by incubating at 

4C overnight.  

 

2.1.7 Transformation of E coli 

2.1.7a Preparation of competent E. coli  

Fresh E. Coli DH 5 were rendered competent for the uptake of plasmid DNA by using calcium 

chloride protocol (417). E. coli cells were grown overnight in 5ml LB at 37C with vigorous shaking. 

This starter culture was transferred to 500ml pre-warmed LB medium and grown at 37C with 

vigorous shaking until optical density (OD) read at 600nm reached values between 0.4 and 0.6. The 

bacterial culture was pelleted by centrifugation at 4000g for 10 minutes at 4C using Multispeed 

Centrifuge (PK 121, ALC International, Milan, Italy) and suspended in 50ml freshly made ice-cold 

0.1M MgCl2. Cells were pelleted again (1500g, 10 min, 4C), resuspended in 50ml ice-cold 0.1M CaCl2 

and incubated on ice for 20 minutes, re-centrifuged at 1500g for 10 minutes at 4C. Cells were 

resuspended in 12.5ml ice cold 0.1M Ca Cl2 with 14% glycerol, aliquoted, frozen on dry ice and 

stored at -80C. 

 

2.1.7b Transformation of competent E. coli DH 5 

25l DNA ligation product (obtained from step 2.2.7) was mixed with 100l competent E coli DH 5 

(prepared as described below) and incubated on ice for 30 minutes, heat-shocked at 42C for 2 

minutes, incubated on ice for further 2 minutes and grown in 5ml Luria Bertani (1% bactotyptone, 

0.5% bactoyeast extract, both from Invitrogen Corp., 0.17M NaCl, pH 7.4) without antibiotic with 

vigorous shaking at 37C for 90 minutes. 400l culture was then plated on a dry LB agar (1.5% w/v) 9 
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cm plates containing Ampicillin (100g/ml) (Sigma-Aldrich Inc., UK) and grown at 37C overnight, 

individual colonies picked and further analysed. 

 

2.1.8 Extraction of plasmid DNA from E. coli 

2.1.8a Small scale plasmid DNA extraction (Mini-preps) 

The bacterial colonies picked from the LB agar plates were cultured overnight in 5ml LB with 

100μg/ml Ampicillin at 37°C shaking. 1.5ml bacterial culture was centrifuged at 5000rpm for 5 

minutes at room temperature in an Eppendorf Microcentrifuge. DNA was extracted and purified 

from the pelleted cells using Purelink Quick Plasmid Miniprep Kit, Invitrogen as per the 

manufacturer’s instructions. In brief, the pelleted cells were resuspended in 250l resuspension 

buffer with RNase, lysed with 250l lysis buffer, precipitated with 350l precipitation buffer. 

Centrifugation was then carried out at 12,000rpm for 10 min at room temperature. The nucleic acids 

in the supernatant were transferred to exchange column and centrifuged at 12,000rpm for 1 minute. 

After washing the column twice, DNA was eluted in distilled water and stored at 4C. Miniprep-

derived DNA from each colony was digested with the restriction enzymes (same as those used for 

cloning) using 20l DNA, 10X buffer, 100X BSA and 1l each enzyme in total 30l volume and 

incubated at 37C for 2 hours, gel-analysed and sequenced at the Genome Centre, Queen Mary, 

London, UK. 

 

2.1.8b Large scale isolation of plasmid DNA (Maxi-prep)  

For large-scale cultures, 1ml of the 5ml starter culture was grown in 500ml LB containing Ampicillin 

(100g/ml) with vigorous shaking at 37C overnight and pelleted by centrifuging at 4000 x g at 4C 

for 20 min using Multispeed Centrifuge (PK 121, ALC International, Milan, Italy), then purified using 

Purelink HiPure Plasmid Maxiprep Kit (Invitrogen Corp.) as per the manufacturer’s instructions. In 

brief, the pellet was resuspended in resuspension buffer containing RNase, lysed with lysis buffer, 

precipitated with precipitation buffer and centrifuged at 4000g for 20 minutes. The supernatant was 
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transferred to the Maxiprep kit column, washed and DNA eluted in 15ml elution buffer. The eluted 

DNA was then precipitated with 10.5ml Isopropanol, pelleted by centrifuging at 4000rpm at 4C for 

90 minutes, washed with 70% alcohol, centrifuged at 4000rpm at 4C for 30 minutes. The pellet was 

suspended in distilled water and stored at 4C. Plasmid DNA concentration was determined at 

260nm using Pharmacia GeneQuant (Cambridge, UK) spectrophotometer. A sample of the purified 

plasmid DNA was digested (with enzymes used for cloning) and analysed on 1% agarose gel to 

confirm the presence of the insert of the correct size. 

 

2.1.9 Expression of IL-17 in mammalian cells 

All cell culture reagents were purchased from Cambrex Corp., Wokingham, UK. 

293T cell line 

The 293T cell line (418) was maintained in complete DMEM medium, supplemented with heat-

inactivated 10% fetal bovine serum (FBS), 100U/ml of Penicillin, 100g/ml of Streptomycin and 2mM 

L-Glutamine. The cells were detached using Trypsin-versene (Biowhittaker Lonza, Belgium) for 2 

minutes at 37C before plating. The cells were grown at 37C in humidified incubator, 10% CO2 and 

split 1:10 at 70% confluency. Stocks were prepared by resuspending 1 x 106 cells which had reached 

70% confluency in 1ml 10% DMSO in complete DMEM in cryostat tubes, slow frozen first on ice for 

an hour, then at -80C overnight and subsequently stored in liquid Nitrogen. 

CHO-suspension cell line 

CHO-S cells were maintained in L-glutamine containing Gibco® Freestyle ™ CHO medium (Invitrogen, 

UK) in polycarbonate Erlenmeyer flask (Corning Incorp,, USA) at 95-125rpm/min at 37°C in 8% CO2 

and split 1:10 at 70% confluency. 
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2.1.9a Transient transfection of mammalian cells  

Calcium phosphate co-precipitation method 

293T cells were transiently transfected as described previously (419). 1 x 106 293T cells were seeded 

in 9cm culture-plates in 10ml complete DMEM and incubated at 37C in 10% CO2 overnight. Next 

day, 20g plasmid DNA was added to 500l 2X HBS (280mM NaCl, 50mM HEPES, 1.5mM Na2HPO4, 

pH 7.1) and made upto 950l with distilled water. 50l 2.5M CaCl2 was added drop-wise with 

constant gentle shaking and incubated for 30 minutes at room temperature. The medium was 

removed from the 293T cells seeded previous day and the calcium phosphate DNA precipitate was 

added to the cells and incubated for 30 minutes at room temperature with gentle tilting every 5 

minutes. The cells were then topped with 9ml complete DMEM and grown at 37C in 10% CO2 

overnight. Next day, after removing the medium, 1ml 10% glycerol in serum-free DMEM was added 

to the cells for 4 minutes with tilting every 30 seconds. The cells were washed twice with 5ml serum-

free DMEM and grown in 6ml serum-free DMEM at 37C in 10% CO2 for 48 hours. The cell 

supernatant was collected, centrifuged at 3000rpm for 5 minutes and stored in aliquots at -80C.  

Polyethylene-imine (PEI) co-precipitation method 

Human and mouse IL-17A/F, IL-17F/F mutant, IL-17A/F mutant heterodimers were expressed by 

transient co-transfection of 293T cells using PEI co-precipitation method. 

Transient transfection with PEI, linear, MW 25,000 (Polysciences, Inc., Warrington, USA) was 

conducted in a similar manner to the calcium phosphate co-precipitation method except for the 

following differences. On day 2, 1ml DNA-PEI mixture was prepared by adding the following in the 

same order; 940l Opti-MEM (Invitrogen, UK), DNA 20g total (varying proportions of FL-IL-17A, IL-

17F, IL-17Fmutant and pcDNA3 as described below, 40l PEI (Polysciences, Inc., Warrington, PA), 

then vortexed and incubated for 10 minutes at room temperature before adding to the cells and the 

step of glycerol shock was omitted. 

For the expression of heterodimers, total 20g plasmid DNA was transfected using combinations of 

varying concentrations of IL-17A, IL-17F, IL-17F mutant and pcDNA3. For example, for the expression 
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of heterodimer IL-17A/F, IL-17A 15g, IL-17F 5g; IL-17A 10g, IL-17F 10g; IL-17A 15g, IL-17F 5g 

and IL-17A 5g, IL-17F 15g were co-transfected. When a single DNA was transfected, pcDNA3 was 

used to compensate to a final total of 20g DNA.  

 

2.1.9b Expression of non-secreted proteins 

Some of the proteins may not be secreted but retained within the cells after expression. As mFL-IL-

17F mutant 2 could not be detected in 293T cells supernatant, post-transfection the cells were lysed 

and lysate examined for the expressed protein. 2.5 x 105 /ml 293T cells were incubated in 2ml 

complete DMEM in a 6-well flat bottom Costar cell culture plate (Corning Incorporated, NY, USA) at 

37C in 10% CO2 overnight and transfected with 6μg plasmid DNA using calcium phosphate co-

precipitation method. Post-transfection, the cells were lysed by incubating with 250μl RIPA buffer, 

Sigma-Aldrich, UK (containing 150mM NaCl, 1% IGEPAL®, CA-630, 0.5% sodium deoxycholate, 0.1% 

SDS, 50mM Tris, pH 8.0) plus 2.5μl protease inhibitor cocktail 8340, Sigma-Aldrich, UK (containing 

AEBSF i.e. 2-aminoethyl benzenesulfonyl fluoride, 104mM, Aprotinin 80uM, Bestatin 4mM, E-64 

1.4mM, leupeptin 2mM, pepstatin A 1.5mM) at 4°C for 30 minutes. The cell lysate was centrifuged 

at 12,000rpm at 4°C for 20 minutes and collected in pre-cooled tubes and stored at -80°C. The 

concentration of total protein in the cell lysate was determined by using a Pierce® BCA protein assay 

kit (Thermo Scientific). In brief, 2-fold serial dilutions of cell lysate in serum-free DMEM and 25-

2000μg/ml BSA standard in serum free DMEM were incubated with 200μl fresh BCA working reagent 

(prepared by mixing 50 parts BCA reagent A with 1 part BCA reagent B) in a 96-well Maxisorp, Nunc 

ELISA plate at 37°C for 30 minutes. The plate was cooled to room temperature before reading with 

the spectrophotometer set to 562nm. The absorbance measurement of the blank standard was 

subtracted from the rest of the standards and samples values before deriving the total concentration 

of proteins in the cell lysates. 

 

 



95 
 

2.1.10 Expression and immunoaffinity purification of human IL-17F mutant 

2.1.10a Expression of human IL-17F mutant in CHO suspension cells  

Human FL- and LAP-IL-17F mutant were expressed by transient transfection of 2 litre culture of CHO-

suspension (CHO-S) cells grown at a density of 2 x 106 cells/ml with 800μg hFL-IL-17F mutant and 

LAP-IL-17F mutant plasmid DNA each using PEI co-precipitation method.  

The expression of hFL- and LAP-IL-17F mutant protein in the CHO-S cells supernatant was confirmed 

by Western blot. The expressed hFL- and LAP-IL-17 mutant proteins were purified by immunoaffinity 

purification. 

 

2.1.10b Binding of anti-human IL-17F antibody to Glycolink column 

Oxidation of IL-17F antibody 

1mg goat anti-human IL-17F polyclonal antibody (R&D Systems, UK) was diluted in Glycolink coupling 

buffer, pH 6 to a final volume of 1ml. In a microcentrifue tube, 2.1mg sodium meta-periodate was 

added to the 1ml antibody solution while gently pipetting until the powder dissolved (resulting in 

10mM periodate). The tube was wrapped in aluminium foil to protect from light and the mixture 

incubated at room temperature for 30 min.  

A 5ml Zeba desalting column was centrifuged at 1000g for 2 minutes at 4°C using a 15ml collection 

tube and equilibrated by adding 2ml Glycolink coupling buffer and centrifugation, the step repeated 

twice. The oxidised glycoprotein solution was then slowly applied to the centre of the compact resin 

bed. The column was centrifuged at 1000g for 2 minutes at 4°C using a 15ml collection tube and the 

sample collected in 15ml tube, the collected solution contained the oxidised IL-17F antibody. 

In the fume hood, 0.2M GlycoLink coupling catalyst was prepared by adding 18μl aniline to 1ml 

Glycolink coupling buffer. The catalyst was vortexed for 10 sec and the total volume added to the 

oxidised antibody sample (resulting in 0.1M aniline). 100μl sample was saved for subsequent 

determination of coupling efficiency. 
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Coupling oxidised antibody to Glycolink column  

Ensuring that the Glycolink column resin was not allowed to dry at any time, the resin in the column 

was suspended by end-over-end mixing. The column was centrifuged to remove the storage buffer 

taking care to avoid drawing of air into the column. 2ml Glycolink coupling buffer was added and the 

column centrifuged at 1000g for 2 minutes at 4°C using a 15ml collection tube. This step was 

repeated once. Oxidised antibody sample was added to the GlycoLink column and mixed withresin 

by end-over-end mixing at RT for 4 hours. The column was centrifuged at 1000g for 2 minutes at 4°C 

using a new 15ml collection tube to collect non-bound protein. The flow-through was saved and the 

coupling efficiency determined by comparing the protein concentrations of the non-bound fraction 

to the starting sample saved previously. The column was washed thrice with 2ml Glycolink coupling 

buffer and centrifuged. The column was then washed thrice with 2ml wash buffer and centrifuged. 

The column was equilibrated for storage by adding 2ml PBS with 0.05% sodium azide at pH7-8 and 

centrifuged at 1000g for 2 minutes at 4°C using a 15ml collection tube. This step was repeated three 

times. The column resin in 2ml PBS with 0.05% sodium azide, pH7-8 was stored upright at 4°C.  

 

2.1.10c Fast Protein Liquid Chromatography  

Immunoaffinity purification of human FL-IL-17F mutant 

The CHO-S cells supernatant containing the expressed hFL-IL-17F mutant protein was first dialysed 

using SnakeSkin Pleated Dialysis Tubing 10,000 MWCO (Thermoscientific, UK) at 4°C in a final total 

volume of 200 litre 1X PBS allowing buffer exchange for at least 4 hours in a cycle. The dialysed 

supernatant was filter sterilised using 0.22μm Polyether Sulfone filter system (Corning, USA) and 

purified by passing it through anti-IL-17F coupled Glycolink column at the rate of 0.5ml/hour at 4°C 

using FPLC (GE Healthcare, Uppsala, Sweden).Filter sterilised PBS, 0.2M glycine.HCl, pH 2.5-3.0 and 

1M sodium phosphate, pH 8-9 were used as binding/wash, elution and neutralisation buffers 

respectively. Eluted fractions of 1ml were collected after adding 100μl neutralisation buffer to the 

individual elution tubes. The expression of hFLIL-17F mutant in the eluted fractions was confirmed 
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by Western blotting and the fractions containing the IL-17F mutant protein were dialysed using 

Slide-A-LyzerDialysis cassette, 7,000 MWCO, 0.5-3ml capacity, Thermoscientific, Rockford, USA, 

aliquoted and stored at -80° C.  

 

Immunoaffinity purification of humanLAP-IL-17F mutant 

Human LAP-IL-17F mutant protein expressed and secreted in CHO-S cells supernatant was first 

dialysed using Spectra/Por® 6 dialysis membrane, MWCO, 50,000, Spectrum Laboratories Inc. 

(Dominguez, CA, USA) in the final total volume of 200 litre 1X PBS at 4°C allowing at least 4 hours of 

exchange during individual cycles. 

The supernatant was filter sterilised and purified by passing it through using HiTrap™ HeparinHP 1ml 

column (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) at the rate of 0.5ml/hour at 4°C using 

FPLC. Filter sterilised 20mM Tris HCL, 20mM EDTA, pH 8 was used as binding buffer and 20mM Tris 

HCL, 20mM EDTA, pH 8 plus 1M NaCl was used as elution buffer. 

The heparin column purified hLAP-IL-17F containing CHO-S cell supernatant was subsequently 

immunoaffinity purified using anti-IL-17F antibody coupled with resin in a 10ml Sephadex column 

(Column PD-10, Sephadex G-25M, Pharmacia LKB, Sweden). The column was pre-washed with 5ml 

1X PBS at 4°C before running the supernatant at 0.5ml/hour, washed with 10ml PBS and purified 

LAP-IL-17F mutant eluted with 10ml glycine in fractions of 1ml each in tubes containing 100μl 

Sodium Phosphate buffer. OD of eluted fractions were estimated at 280nm, the fractions dialysed in 

1X PBS using Slide-A-Lyzer10K Dialysis Cassette, 10,000 MWCO, Pierce Biotechnology, Rockford, 

USA, aliquoted and stored at -80◦C.  
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2.2 Characterisation of immunological properties of expressed IL-17 proteins 

2.2.1 Western blotting 

In vitro cleavage of LAP-IL-17 by MMP-1  

200l 293T cell supernatants transfected with human and mouse LAP-IL-17 proteins were incubated 

in the presence of MMP buffer 10X (50mM Tris, 5mM CaCl2, 300mM NaCl, 20M ZnCl2 , 0.5% Brij-35 

and 30% glycerol, pH 7.5) with and without MMP-1 at 1:50 dilution at 37C overnight. On day 2, 

EDTA to the final concentration of 2.5mM was added to chelate the zinc and stop the MMP-1 

activity.  

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)  

Three volumes of transiently transfected 293T cells supernatant or immunoaffinity purified samples 

were mixed with 1 volume of Laemmli’s 4X reducing loading buffer (125mM Tris-HCL, pH 6.8, 0.4M 

DTT, 10% SDS, 40% glycerol, 0.002% bromophenol blue) (417) and boiled for 5 minutes before 

loaded onto the gel. 25l samples were loaded to 1.5mm thick, 4-12% gradient, 10-well NuPAGE 

Novex Bis-Tris gel in parallel with 10l standard (10-250kDa Precision Plus protein standard, Bio-Rad 

Laboratories Inc., Hemel Hampstead, UK). The gel was run in NuPAGE MOPS SDS running buffer 

(Invitrogen, UK) using X cell Sure Lock mini-cell (Invitrogen, UK) at 200V for 50 minutes.  

Transfer of electrophoresed proteins to PVDF membrane 

The gel was electro-blotted onto a polyvinylidene difluoride membrane (PVDF, Amersham 

International Plc, UK) by running in NuPAGE MOPS transfer buffer (Invitrogen, UK) in X cell II Blot 

Module (Invitrogen, UK) at 30V for the minimum of one hour. 

Blocking and immunoblotting of PVDF membrane 

PVDF membrane was incubated with 25ml 5% non-fat milk (Marvel Premier Foods Plc., St Albans, 

UK) in PBST (0.005% Tween20 in 1X PBS) with modest shaking for 2 hours at RT, probed with 25l 

primary antibody (goat anti-human or -mouse) in 1:1000 dilution in 25ml 5% non-fat milk in PBST by 

incubating overnight at 4C; membranes washed thrice, incubated with 1:1000 secondary antibody, 
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horseradish peroxidase (HRP)-conjugated mouse anti-goat IgG polyclonal antibody (Santa Cruz 

Biotechnology, Middlesex, UK) in 25ml fresh 5% non-fat dry milk in PBST with mild shaking for 1 hour 

at RT; washed 4 times, treated with activated enhanced chemiluminescence solution (ECL, 

Amersham international plc., UK.) for 1 minute and exposed to autoradiography films (Amersham 

Pharmacia Biotech Inc., Amersham, UK) for approximately 1-10 minutes and the films developed 

using Agfa Curix 60 processor (Agfa-Gevaert Ltd., Gevaert, Belgium). The expression of the plasmid 

DNA encoded protein was confirmed by the presence of band of the expected size. 

Silver staining of polyacrylamide gel 

A sample of the immunoaffnity purified human FL- and LAP-IL-17F mutant each was resolved by SDS-

PAGE and stained with Silver stain plus (Bio-Rad, UK) to verify the purity of the proteins. The 

polyacrylamide gel was first fixed by placing it in a total 400ml fixative enhancer solution (containing 

200ml reagent grade methanol, 40ml reagent grade acetic acid, 40ml fixative enhancer concentrate 

and 120ml deionized water ) and subjecting to gentle agitation for 30 min; gel rinsed with 400ml 

deionized water for 20 min with gentle agitation; stained in a mixture of freshly mixed 35ml 

deionized water, 5ml silver complex solution, 5ml reduction moderator solution and 5ml image 

development reagent, and 50ml accelerator solution with gentle agitation until desired staining 

intensity was reached; the reaction was stopped by placing the gel in 5% acetic acid for a minimum 

15 min. The gel was rinsed with deionised water for 5 min and photographed. 

 

2.2.2 Determining quantity of the expressed IL-17 proteins  

Antibodies and other reagents 

The polyclonal goat anti-human and anti-mouse IL-17A, IL-17F and LAP antibodies were purchased 

from R & D Systems, UK. The mouse anti-goat IgG-HRP was purchased from Santa Cruz 

Biotechnology. Recombinant human and mouse IL-17A and IL-17F were purchased from R & D 

Systems, UK and recombinant LAP was purchased from Sigma-Aldrich, UK. 
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Concentration of IL-17 containing 293T cell supernatants 

Full-length IL-17 proteins 

Mouse and human full-length IL-17F and IL-17F mutant expressed in supernatants of transiently 

transfected 293T cells were concentrated 20-fold using Centricon centrifugal filter device with YM-3 

membrane (Millipore Corporation, UK) by centrifuging at 4000g/min at 4°C. Further samples of 

human FL-IL-17A, FL-IL-17F and FL-IL-17F mutant 293T cells-derived supernatants were concentrated 

30-fold using Centricon centrifugal filter device with YM-10 membrane (Millipore Corporation, UK) 

so as to remove maximum possible impurities. 

LAP-IL-17 proteins 

Human LAP-IL-17A, LAP- IL-17F and LAP- IL-17F mutant expressed in the supernatant of transiently 

transfected 293 T cells were concentrated 30-fold using vivaspin 20 centrifugal concentrator MWCO 

50,000 (Sigma Aldrich, UK).  

 

2.2.2a Western blot quantitation of IL-17 in 293T cells supernatant 

25μl concentrated human and mouse full-length and LAP-IL-17 proteins in serial two-fold dilutions 

and 100, 50 and 25ng of recombinant human or mouse IL-17A, IL-17F or human LAP were resolved 

on SDS-PAGE as outlined in Section 2.2.1. The quantity of the 293T-cells expressed proteins were 

derived by comparing their intensities on film with that of known quantities of standards using 

image J software.  

 

2.2.2b ELISA quantitation of IL-17 in 293T cells supernatants 

96 MicroWell, MaxiSorp surface (Thermo Scientific Nunc, Denmark) plates were coated with 

50μl standard (100ng/ml) or 293T cells-derived supernatants in coating buffer (0.1M sodium 

carbonate buffer, pH 9.6) at 4C overnight, blocked with 200μl 5% non-fat dry milk in PBST for 2 

hours at room temperature, treated with 50μl primary antibody (goat anti-human or mouse IL-17A, 

IL-17F or LAP) in 1:250 dilution in 5% Marvel for 2 hours, then 100μl secondary antibody (mouse 
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anti-goat IgG-HRP) in 1:500 dilution in 5% Marvel for 1 hour at room temperature. After each step, 

the wells were washed thrice with 300μl washing buffer (1X PBS plus 0.005% Tween). Finally, 100μl 

freshly reconstituted substrate (Tetramethylbenzidin, KPL, Gaithersburg, MD 20878, USA) was added 

and reaction stopped with 50μl 2M sulphuric acid. The optical density was determined at 450nm 

using Tecan GENios microplate reader (MTX Lab Systems, Inc., Virginia, USA).  

 

2.2.2c Ultrasensitive ELISA quantitation of immunoaffinity purified IL-17F mutant  

An IL-17F ultrasensitive ELISA was developed and standardised by using human IL-17F Duoset ELISA 

(R&D Systems, UK) in conjunction with uncoated ELISA plate and 1% PBS or mouse diluents 4 and 5 

(MSD, USA) to allow testing of mouse serum samples for the expression of mouse IL-17F mutant and 

increasing the sensitivity of R&D Duoset ELISA. The lowest levels of IL-17F or IL-17F mutant that can 

be detected with Duoset ELISA are 312.5pg/ml.  

The assay was first standardized as follows: On day 1, two separate MSD ELISA plates were coated 

with 30μl per well 1, 2 and 4μg/ml capture antibody in PBS in duplicates and incubated at 4°C 

overnight. On day 2, the plates were washed thrice with PBST, blocked with 150μl 3% BSA for 1 hour 

at 175 rpm at RT. After washing thrice with PBST, one of the plates was incubated with 25μl diluent 

4 at 175rpm for 30 minutes. R&D IL-17F standard was 3-fold serially diluted in 1% BSA in PBS or 

diluent 4 at the starting concentration of 20,000pg/ml. The lowest concentration of IL-17F mutant 

that could be detected was 27.4pg/ml. The plates were incubated with 25μl/well standard for 2 

hours at 175rpm at RT and washed thrice with PBST. 25μl/well 0.1 and 0.5μg/ml detection antibody 

in 1% BSA in PBS or diluent 5 plus 1μg/ml Streptavidin sulfotag was added and plates incubated for 2 

hours at 175rpm at RT, washed thrice with PBST and 150μl 2X Read buffer in deionised water added. 

The plates were then analysed using Sector Imager 2400 (Meso Scale Discovery, Rockville, USA). 

The quantity of purified FL-and LAP-IL-17F mutant was analysed by human IL-17F ultrasensitive ELISA 

as described above using 2μg/ml capture and 0.5μg/ml detect antibody in 1% BSA in PBS. 
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2.3 Characterisation of in vitro biological properties of expressed  

IL-17 proteins 

HFFF2 cells 

Human Caucasian foetal foreskin fibroblast cell line, which is derived from foreskin of 14-18 weeks 

old human foetus were kindly provided by Dr Adrian Churchman, Bart’s Institute of Cancer, WHRI. 

The HFFF2 cells were maintained in complete DMEM at 37C in 10% CO2. The cells were passaged 

when 70% confluent by detaching with Trypsin-versene. 

HeLa cells 

HeLa cells were maintained in complete DMEM or complete RPMI at 37C in 10% CO2.  

57A HeLa cells 

57A Hela, a luciferase reporter cell line derived from stable transfection of HeLa cells with NF-B-

responsive luciferase (420) was kindly provided by Dr Apostolos Koutsokeras, BJRU. 57A HeLa cells 

were maintained in complete DMEM plus 500g/ml G418 (Geneticin 418) at 37C in 10% CO2. 

Hela cells stably transfected with IL-6 promoter-responsive luciferase 

HeLa cells were stably transfected with IL-6 promoter-responsive luciferase (kindly provided by Prof 

Chernajovsky, BJRU) and the cell line was maintained in complete DMEM plus 1μg/ml Blasticidin. 

NIH 3T3 cells 

The spontaneously immortalised Swiss mouse embryonic fibroblast cell line (421) was maintained in 

complete DMEM at 37C in 10% CO2. The cells were passaged when 70% confluent by detaching 

with Trypsin-versene.  

Raw 264.7 cells stably transfected with NF-B driven luciferase 

Mouse macrophage cells stably transfected with NF-B- responsive luciferase were kindly provided 

by Dr S. Vessillier, BJRU. These cells were maintained in complete DMEM plus 200g/ml G418 at 

37C in 10% CO2. The cells were passaged when 70% confluent by detaching the adherent cells using 

sterile cell scraper. 
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DTF cells stably transfected with IL-6 promoter-responsive luciferase 

DTF cells, which are conditionally SV40 large T immortalised DBA/1 fibroblasts (422) were stably 

transfected with IL-6 promoter-responsive luciferase and maintained in complete DMEM plus 2 

g/ml Blasticidin at 37C in 10% CO2. The cells were passaged when 70% confluent by detaching with 

Trypsin-versene. 

 

2.3.1 Characterisation of in vitro biological properties of expressed human IL-17 

2.3.1a Determining IL-17RC binding capability of human FL-IL-17F mutant  

Mouse polyhistidine monoclonal antibody, recombinant human IL-17A, IL-17F, hIL-17RC, biotinylated 

anti-human IL-17A and IL-17F antibodies and Streptavidin-HRP were purchased from R&D Systems, 

UK. 

The ability of human FL-IL-17F mutant to bind to humanIL-17RC was assessed by functional ELISA as 

per the manufacturer’s instructions. In brief, 96-well ELISA plate (Maxisorp, Nunc, Denmark) was 

coated with 10μg/ml mouse anti-polyhistidine in cold PBS (100μl/well) and incubated at room 

temperature overnight, blocked with 1%BSA in PBS (300μl/well) and incubated for 2 hours at 37°C. 

In a separate ELISA plate, 50μl hIL-17RC at the final concentration of 100ng/ml was mixed with 50μl 

3-fold serially diluted hFL-IL-17A or hFL-IL-17F mutant at the starting final concentration of 2μg/ml in 

0.5% BSA in PBS and incubated at 500rpm for 2 hours at room temperature. As a control, 50μl 

binding buffer instead of the hIL-17RC was added to the human IL-17 dilution wells to check the non-

specific binding hIL-17. 

After removing the blocking buffer, 100μl mixture of the hIL-17 and hIL-17RC or the binding buffer 

was added to each well and incubated at room temperature overnight. Next day after washing with 

1% PBST thrice, the plate was incubated with 3μg/ml goat biotinylated anti-human IL-17 (anti-IL-17A 

or anti-IL-17F) antibody in binding buffer (100μl/well) at RT for 2 hours, washed thrice and incubated 

with 1:200 diluted Streptavidin-HRP (100μl/well) at RT for 30 minutes. ELISA was developed by 

adding 100μl freshly prepared TMB (by mixing 50μl TMB substrate and reagent each) per well at RT 
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for 20-30 minutes. The reaction was finally stopped by adding 50μl 2mM Sulphuric acid per well and 

OD measured at 450nm. The net binding was obtained by subtracting the non-specific binding value 

from the total binding values.  

 

2.3.1b Fibroblast cells IL-6 induction IL-17 bioassay 

Analysis of IL-17 induced secretion of IL-6 in fibroblast cells is the standard bioassay for IL-17 activity 

(96, 107). Bioactivity of 293T cells expressed human IL-17 was analysed in human foetal foreskin 

fibroblast and mouse embryonic fibroblast cells. 

Evaluation of IL-17 induced secretion of IL-6 in HFFF2 cells 

1 x 104 HFFF2 cells in 100l complete DMEM in 96-well plate were incubated at 37C in 10% CO2 

until adherent and, stimulated with 100l/well 100ng/ml rhIL-17(IL-17A and IL-17F), FL-IL17(IL-17A, 

IL-17F, and IL-17F mutant), and MMP-1-treated and untreated LAP-IL-17 (IL-17A, IL-17F and IL-17F 

mutant), 10ng/ml rhIL-1, mock supernatant derived from transient transfection of 293T cells with 

pcDNA3 alone and complete DMEM in triplicates for 24 hours at 37C in 10% CO2 and supernatants 

analysed using human IL-6 Duoset ELISA (R & D Systems Europe Ltd., Abingdon, UK) as per the 

manufacturer’s instructions. 

For competitive inhibition assay, HFFF2 cells were co-stimulated with 293T cells supernatant 

containing 25ng/ml FL-IL-17A and two-fold serially diluted 25ng/ml FL-IL-17Fmutant for 24 hours and 

supernatant analysed for IL-6 as above.  

Evaluation of human IL-17-induced secretion of IL-6 in NIH 3T3 cell  

It has been shown that human IL-17A and human IL-17F are able to bind to both mouse IL-17RA and 

IL-17RC, and stimulate secretion of IL-6 in mouse fibroblast cells (95, 181). Biological effects of 

expressed human IL-17 proteins in 3T3 cells were analysed as below. 

5 x 103 NIH 3T3 cells in 100 l complete DMEM in 96-well plate were incubated in 10% CO2 at 37C 

until adherent, stimulated with 100 l 100ng/ml rhIL-17A and IL-17F , FL-IL17F mutant, and medium 

alone (complete) DMEM in triplicates in 10% CO2 at 37C for 24 hours. The supernatants were 
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analysed for IL-6 using mouse IL-6 Duoset ELISA (R & D Systems Europe Ltd., Abingdon, UK) as per 

the manufacturer’s instructions. For competitive inhibition assay, the cells were co-stimulated with 

two-fold serially diluted 1μg/ml rmIL-17A plus 50μl 293T cells supernatant containing human IL-17F 

mutant protein. 

 

2.3.1c Epithelial cells IL-6 induction IL-17 bioassay 

IL-6 is one of the earliest defined IL-17 gene targets. IL-17 has been shown to induce secretion of IL-6 

in endothelial, epithelial and fibroblast cells. Bioactivity of 293T cells-expressed IL-17 in HeLa cells 

was analysed as described below. 

Evaluation of IL-17-induced secretion of IL-6 in HeLa cells 

1 x 104 HeLa cells in 100 l complete DMEM in 96-well plate were incubated at 37C in 10% CO2 until 

adherent, and stimulated with 100l/well 100ng/ml or 10ng/ml rhIL-17A and IL-17F and 100ng/ml or 

10ng/ml immunoaffinity purified IL-17F mutant, 10ng/ml rhIL-1 as positive control and complete 

DMEM alone at 37C in 10% CO2 for 24 hours and the supernatant analysed for IL-6 by human IL-6 

Duoset ELISA (R & D Systems Europe Ltd., Abingdon, UK) as per the manufacturer’s instructions. 

For competitive inhibition assays, the cells were co-stimulated with 100ng/ml rhIL-17A or IL-17F plus 

100ng/ml immunoaffinity purified IL-17F mutant for 24 hours.  

IL-6 Duoset ELISA was carried out as follows: 96-well ELISA plate (Maxisorp, Nunc-Immunoplate, 

NuncTM, Roskilde, Denmark ) was coated with 50l/well capture antibody (2g/ml in PBS) overnight 

at RT, blocked with 200l 1% BSA (Fisher Scientific, Leicestershire, UK)in PBS for 2 hours at RT, 

washed with PBST (0.005% Tween 20 in PBS), incubated with 50l sample or standard in 1%BSA in 

PBS for 2 hours at RT, washed thrice with PBST, incubated with 50l/well detect antibody (0.2μg/ml 

in 1%BSA in PBS) for 2 hours at RT, washed thrice, incubated with 50l Streptavidin-HRP diluted 

1:200 in 1%BSA in PBS for 20 minutes at room temperature avoiding direct light, washed thrice, 

incubated with freshly prepared 50l 1:1 mixture of colour reagent A (H2O2) and colour reagent B 

Tetramethylbenzidine ( KPL, Gaithersburg, USA) for 20 minutes at room temperature avoiding direct 
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light, the reaction stopped with 25l 2M H2SO4 (WWR International Ltd., Poole, England) and OD 

determined at 450 nm.  

 

2.3.1d Evaluation of biological effects of IL-17F mutant on ERK1/2 signaling 

Extracellular signal-related kinase p42/44 (ERK) and p38 MAPK are phosphorylated following IL-17 

stimulation (423, 424). The biological effects of immunoaffinity purified IL-17F mutant on ERK1/2 

phosphorylation in HeLa cells were analysed as follows: 

1 x 106 HeLa cells in 1ml complete DMEM in 12-well culture plate were incubated at 37°C in 10% CO2 

until adherent, washed twice and serum starved in serum-free DMEM for 18 hours and stimulated 

with either 100ng/ml or 10ng/ml rhIL-17A and IL-17F plus 100ng/ml or 10ng/ml immunoaffinity 

purified FL-IL-17F mutant in serum free DMEM for 20 minutes and the cell lysates analysed for 

phosphorylation of ERK1/2 as described below. 

The cell lysates were prepared as follows: plates were kept on ice, cells washed twice with ice cold 

PBS and lysed with 250μl cold lysis buffer (containing 10mM Tris HCl, pH 7.4, 0.1% SDS, 100mM 

NaCl, sodium deoxycholate 0.5%, EDTA 1mM, EGTA 1mM, Triton X 100 1%, 10% glycerol, 1mM 

sodium fluoride, 20mM sodium phosphate with freshly added 2mM sodium vanadate, 1mM PMSF 

and Halt™ protease inhibitor single use cocktail, EDTA free,100X , Thermo Scientific, Rockford, USA) 

by incubating for 30 minutes at 4°C.The lysate was centrifuged at 12,000rpm for 20 minutes at 4°C, 

collected in pre-cooled tubes and stored at -80°C. The concentration of protein in cell lysate was 

determined by BCA assay as described in Section 2.1.9a.  

 

Analysing ERK1/2 phosphorylation by Western blot  

20μg cell lysate proteins were resolved by SDS-PAGE, transferred to PVDF membrane and probed 

with rabbit P44/P42 MAPK (ERK1/2) antibody (Cell signaling Technology, Inc., Danvers, MA, USA) or 

rabbit phospho-P44/P42 MAPK (ERK1/2) (Thr202/Tyr204) antibody (Cell signaling Technology, Inc., 

Danvers, MA, USA) and detected with sheep anti-rabbit IgG (AbD SeroTec, UK) detect antibody.  
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Analysing ERK1/2 phosphorylation by multiplex ELISA 

20μg cell lysate proteins were analysed for total and phosphorylated ERK1/2 using phospho 

(Thr202/Tyr204; Thr185/Tyr187)/total ERK1/2 whole cell lysate multiplex ELISA (MSD, USA) as per 

the manufacturer’s instructions. 

  

2.3.1e Developing a novel luciferase reporter assay to analyse bioactivity of human IL-17 

Cell culture luciferase reporter system 

Cell signaling processes leading to specific transcription factor activation can be analysed using 

reporter gene assays that measure transcription response element (RE) activity. Amongst the 

available reporters, firefly luciferase is ideal for the study of promoter activity in transfected cells 

due to its broad dynamic range, sensitivity, ease of quantification, and lack of endogenous activity. 

By coupling the operative regulatory elements to the expression of luciferase gene, typically by 

placing the transcription factor DNA binding site just upstream of luciferase gene, the cellular event 

can be readily detected by a luminescent signal. Luciferase reporter genes can be readily delivered 

to a variety of cells using approaches such as viral or chemical vectors and electroporation. 

Dual luciferase reporter system 

In the quantitation of gene expression using firefly luciferase in transiently transfected cultured cells, 

the experimental reporter gene is often co-transfected with a second reporter gene to correct for 

experimental variability. Such dual reporters allow comparative measurements within an 

experimental system. Typically the second reporter is used as an internal control that is coupled to a 

constitutive promoter that is unperturbed by various experimental conditions, against which the 

measurement of the experimental reporter is normalized. Sea pansy (Renilla reniformis) luciferase 

possesses distinct evolutionary origins from firefly luciferase and therefore has dissimilar enzyme 

structures and substrate requirements. Firefly luciferase uses luciferin in the presence of oxygen, 

ATP and magnesium to produce greenish yellow light at 550-570nm whereas Renilla luciferase uses 

coelentrazine and oxygen to produce a blue light at 480nm. Combining firefly luciferase reporter 
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systems with those of the Renilla reniformis luciferase therefore allows the sequential measurement 

of activities of both the luciferases from a single lysate. In this method the substrates for the firefly 

and Renilla luciferase are added to a sample sequentially and luminescence measured following the 

addition of each. 

57A HeLa cells NF-B-promoter-driven luciferase assay  

In an attempt to standardise a novel luciferase reporter assay in 57A HeLa cells, 1x104  cells in 100 l 

complete DMEM plus 500g/ml G418 were seeded in 96 well plate and incubated at 37C in 10% 

CO2 until adherent, after which the was medium changed to 0.1% FBS-containing DMEM without the 

antibiotic. The cells were incubated overnight at 37C in 10% CO2, washed twice with 0.1% FBS-

containing DMEM and stimulated in triplicates with 100l two-fold serially diluted rhIL-17A 

(500ng/ml),FL- IL-17A , FL- IL-17F, and rhIL-1 (50ng/ml) for 6 hours. The cell lysates were prepared 

by washing the cells with PBS twice and lysing with 50l passive lysis buffer (Promega Corp., UK). 

10l cell lysate in the presence of 50l substrate was analysed for luciferase activity using MLX 

microtitre plate luminometer, Dynex Technologies Inc.  

As 500ng/ml rhIL-17 failed to induce detectable luciferase activity in 57A HeLa cells, 2ng/ml rmTNF-α 

was added to enhance its activity. IL-17 activates IL-6 synergistically with many other cytokines 

including TNF-, IL-1β, IFN- and IL-22 (114, 115, 121, 425, 426) and IL-17A and IL-17F 

responsiveness is often evaluated in conjunction with suboptimal concentrations of TNF- (135).  

 

293T cells IL-6 promoter responsive dual luciferase assay 

1.25 x 105 293T cells in 1ml complete DMEM were seeded in 12-well plate and incubated overnight 

at 37°C in 10% CO2. The next day cells were transiently co-transfected with 2g pGL2 containing IL-6 

promoter responsive luciferase and 0.2g Renilla-CMV using calcium phosphate co-precipitation 

method, and incubated in 1ml complete DMEM overnight at 37°C in 10% CO2. On day 3, the cells 

were washed twice with serum free DMEM and in triplicates stimulated with 500ng/ml rhIL-17, 

50ng/ml rhIL-1, PMA, PMA+ Ionomycin, 0.5 % FBS containing DMEM for 24 hours at 37°C in 10% 
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CO2, washed twice with PBS, lysed with 250l reporter lysis buffer under moderate agitation for 30 

min at RT, lysate centrifuged at 1200rpm for 10 min. 10l lysate was transferred to luminometer 

reading plate and analysed by MLX microtitre plate luminometer, Dynex Technologies Inc. using Stop 

and Glow dual luciferase assay kit. The IL-6 responsive luciferase activity was analysed first in the 

presence of 50l luminometer substrate, followed by analysis of Renilla CMV activity in the presence 

of 50l Renilla substrate. 

 

Evaluation of IL-17 induced activation of IL-6 promoter-responsive luciferase in HeLa cells 

Stable transfection of HeLa cells with pGL2 containing IL-6 promoter responsive luciferase 

Hela cells were stably transfected with plasmid expression vector pGL2 with previously cloned IL-6-

promoter responsive luciferase (kindly provided by Prof Yuti Chernajovsky, BJRU) fused to Blasticidin 

resistant site containing plasmid vector pcDNA6.  

Fusion of plasmid vectors pGL2 and pcDNA6 

10μg pGL2 and 1μg pcDNA6 were linearized in buffer 4 by restriction digestion at FSP1 site, which 

cleaved pcDNA6 once and PGL2 twice, albeit within the Ampicillin resistant site; phenol: chloroform 

extracted; Sodium acetate and Ammonium acetate precipiated and ligated with 5μl T4 ligase in total 

150μl volume ligation reaction. The ligation mixture was Ammonium acetate precipitated, 

resuspended in 100μl H2O and frozen at -20°C. Efficiency of the ligation was visually confirmed on 

1% agar gel. 

Estimation of Blasticidin concentration for selection of HeLa cells 

2 x 105 HeLa cells in 5ml DMEM were incubated in eight separate 5ml tissue culture flasks in 10% 

CO2 at 37°C until adherent. The cells were then treated with DMEM plus Blasticidin in the 

concentrations of 0, 1, 2, 3, 5, 7, 8 and 10μg/ml and the antibiotic containing medium changed every 

3 days. The cells were visually assessed for cell apoptosis on daily basis for determination of the 

concentration of Blasticidin required for optimum cell selection. 
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Stable transfection of HeLa cells using calcium phosphate co-precipitation method 

0.5 x 106 cells were incubated in complete DMEM in 10% CO2 at 37°C until adherent, medium 

changed to fresh complete DMEM, after 6 hours cells were transfected with 50μl ligation mixture of 

plasmid DNAs pcDNA6 and pGL2 using calcium phosphate co-precipitation method as described in 

the Section 2.1.9a. Following glycerol shock, the cells were incubated in complete DMEM for 24 

hours in 10% CO2 at 37°C, split into 4 and incubated in complete DMEM plus 2μg/ml Blasticidin at 

37°C in 10% CO2. The antibiotic containing medium was changed every 3-4 days. Blasticidin selected 

cell clones were expanded to adequate size, ring cloned and individual clones incubated in complete 

DMEM plus 2μg/ml Blasticidin in 12-wells plates in 10% CO2  at 37°C until confluent. 

Stable transfection of HeLa cells using Fugene 6 transfection reagent  

1 x 106 cells in 10ml complete DMEM medium in 9cm culture plate were incubated in 10% CO2 at 

37°C until adherent and transfected with 50l ligation mixture of pcDNA6 and pGL2 using 18l 

Fugene6 (Roche Diagnostics Corporation, Indianapolis, IN) as per the manufacturer’s instruction. The 

cells were incubated for 48 hours in 10% CO2 at 37°C until ready for passage and antibiotic selection. 

Stable transfection of HeLa cells using electroporation  

1 x 106 HeLa cells were pelleted by centrifuging the cell suspension at 1000rpm for 10 minutes, 

mixed with 100l solution V and ligation mixture of pcDNA6 plus pGL2, transferred to Amaxa cuvette 

and electroporated using 2 different programmes, O-005 for better viability and I-013 for better 

efficiency of transfection. The electroporated cells were immediately transferred to 500l complete 

DMEM, the cell suspension divided into 3 equal parts and incubated in 6-well plate in 3ml complete 

DMEM overnight in 10%CO2 at 37C. Next day, after trypsinising, the cells were pooled together and 

incubated in 10ml complete DMEM plus 2μg/ml Blasticidin in 9cm plate in 10%CO2 at 37C until 

ready for ring cloning of Blasticidin selected clones. 
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Ring cloning  

No more than 2 clones per plate were ring cloned. The cells were washed with PBS twice and a 

sterile ring was placed around the selected clones using sterile paraffin, cells trypsinised with 50l 

Trysin-EDTA and individual cell clones transferred to 12-well plate in 2ml complete DMEM plus 

2μg/ml Blasticidin and incubated in 10% CO2 at 37°C until confluent. After adequate expansion, the 

cell clones were grown in 9cm plates in 10ml complete DMEM plus 2μg/ml Blasticidin in 10% CO2 at 

37°C until 70% confluent. The individual cell clones were then examined for their suitability for the 

future biological assays. 

Assessing biological activity of antibiotic selected clones  

1 x 104 HeLa cells stably transfected with IL-6 promoter-responsive luciferase were seeded in 100l 

DMEM plus 2μg/ml Blasticidin in 96-well plate and incubated at 37°C in 10% CO2 until adherent. The 

cells were serum starved by incubating in 0.5% FBS containing DMEM overnight at 37°C in 10% CO2 

and next day stimulated with 100ng/ml rhIL-17 in 0.5% serum containing DMEM for 24 hours in 10% 

CO2 at 37°C. The cell lysates were analysed for the background and IL-17- induced luciferase activity 

as described in Section 2.3.1d. 
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2.3.2 Characterisation of in vitro biological properties of expressed mouse IL-17 proteins 

2.3.2a Determining receptor binding affinity of mouse FL-IL-17F mutants 

A functional ELISA to assess the binding of mouse FL-IL-17F mutants to mIL-17RC was carried out 

similar to that for human IL-17F mutant (Section 2.3.1a) except for the following differences: The 

starting final concentration of mouse IL-17 was 0.3μg/ml and goat biotinylated anti-mouse IL-17F 

was used at the concentration of 1μg/ml. 

 

2.3.2b Fibroblast cells IL-6 induction mouse IL-17 bioassay 

Developing an in-house mouse IL-6 ELISA 

Anti-mouse IL-6 antibodies-producing hybridoma cells  

Anti-mouse IL-6 capture and detect antibodies producing hybridoma cells, HB10656 and HB10657 

were kindly gifted by Dr. Richard Williams, Kennedy Institute, Imperial College, London. The cells 

were maintained in complete RPMI supplemented with 10% FBS, 100U/ml Penicillin, 100g/ml 

Streptomycin and 2mM L-Glutamine. Approximately one litre cell culture supernatant from the cells 

grown at a final density of 0.5-1 x 106 cells/ml was collected and stored at -80°C until purified. 

Purification of antibodies containing supernatants  

The supernatants were filter sterilised prior to purification, using ProSep G columns (Millipore, 

Schenectady, USA). In brief, Prosep G resin was packed in binding buffer (0.5M glycine in PBS, pH 

7.4) in column and equilibrated with a minimum of 100 column volume/hour binding buffer ran 

through the column for 30-60 minutes. Then the following agents were run through the column at a 

speed of 1ml/min in the same order. The column was first cleaned with 5 column volumes of 6M 

Guanidine HCl, regenerated with 10 column volumes of HCl, pH 1.5 followed by 5 column volumes of 

1X PBS. Thereafter 5 column volume of binding buffer were passed through the column before 

running the antibody containing supernatants from the hybridomas. The column was washed with 5 

column volumes of binding buffer and protein eluted with 3M potassium thiocyanate in PBS in 

multiple 1ml fractions. The column was washed with 50-100ml of 1X PBS plus 0.2-1% sodium azide. 
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The OD of the eluted fractions was determined at 280nm. The eluate was dialysed in 1X PBS using 

Slide-A-Lyzer dialysis cassettes allowing at least 4 hours of exchange in total 100X volume of the 

eluate. A fraction of eluate was resolved by SDS-PAGE gel under non-reducing conditions and stained 

with Commassie Blue. Eluates were aliquoted and stored at -80C. 

Biotinylation of mouse anti- IL-6 detect antibody  

The mouse anti-IL-6 antibody was biotinylated using EZ-Link  sulfo-NHS-SS-Biotinylation kit (Pierce 

Biotechnology, Rockford, USA). 

10mM Biotin was freshly prepared by dissolving 2.2mg Biotin in 360l of deionised H2O. 19.8l 

Biotin was added to 1ml detect antibody in PBS (1.5mg/ml) and incubated for 30-60 minutes at RT. 

The excess Biotin was removed using equilibrated Zeba desalt column and centrifuging at 1000g 

for 2 minutes. The antibody containing flow through was collected and stored at -80°C. 

The level of Biotin incorporation was estimated using HABA assay as follows: 10 mg avidin and 600l 

10mM HABA (4-Hydroxyazobenzene-2-Carboxylic acid) was added to 19.4 ml of PBS and absorbance 

measured at 500nm to confirm that A500 of this solution was between 0.9-1.3 in a 1cm cuvette.  

First the absorbance of 180l HABA/avidin solution in the microplate was measured at 500nm on its 

own and repeated after adding 20μl biotinylated antibody solution. The degree of biotinylation was 

reflected by the difference between the two values and calculated as Moles of Biotin per Mole of 

protein. 

Testing immunoactivity of purified anti-IL-6 capture and detect antibodies  

On day 1, an ELISA plate was coated with 50μl/well capture antibody in varying concentrations as 

outlined in Fig. 2.5 and incubated at 4°C overnight. On day 2 after washing thrice with PBST (1%PBS 

plus 0.05% Tween20), the plate was blocked with 50μl 1% casein for 1 hour at RT; incubated with 

two-fold serially diluted 50μl/well recombinant mouse IL-6 in PBST at the starting concentration of 

20ng/ml for 1 hour at RT, then incubated with 50μl/well biotinylated antibody in PBST in varying 

dilutions (Fig. 2.5) for 1 hour at RT followed by incubation with 50μl/well Avidin/HRP (1:1000 diluted 

in PBST) for 1 hour at RT. The plate was washed with PBST thrice after each step. Finally, the plate 
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was incubated with 50μl substrate (freshly prepared by dissolving 1 tablet Sigma fast  o-

phenylenediamine dihydrochloride in 20 ml distilled water) in the dark for 15 minutes. The reaction 

was stopped with 10μl/well 20% sulphuric acid and absorbance read at 450nm. 

An ELISA to test immunoactivity was repeated by coating 2 separate ELISA plates with 50μl/well  

5g/ml capture antibody and blocking one plate with 1% casein and the 2nd plate without casein, 

using IL-6 standard at the starting concentration of 5ng/ml and detect antibody in 1:250 and 1:500 

dilutions substituting PBST by 1% casein as diluting reagent. 

 

 

Figure 2.5 Testing immunoactivity of purified mouse anti-IL-6 antibodies. Hybridoma cells derived 
mouse anti-IL-6 capture and detect antibodies were purified using Prosep G column, detect anti-IL-6 
antibody biotinylated and tested for immunoactivity by ELISA. Capture antibody in the 
concentrations of 2μg/ml, 5μg/ml and 10μg/ml were examined for IL-6 reactivity using two-fold 
serially diluted IL-6 standard in the starting concentration of 20ng/ml and biotinylated anti-IL-6 
detect antibody in 1:100, 1:200, 1:500 and 1:1000 dilution by sandwich ELISA and absorbance read 
at 450nm. 
 
 

 

 



115 
 

Mouse IL-17-Induced secretion of IL-6 in NIH 3T3 cells  

5 x 103 cells in 100l complete DMEM in 96-well plate were incubated in 10% CO2 at 37C until 

adherent and stimulated with 100l 100ng/ml rmIL-17A and -IL-17F; FL-IL-17A, -IL-17F and -IL-17F 

mutant 1; and MMP-1-treated and untreated LAP-IL-17A, -IL-17F and-IL-17F mutant 1 along with 

10ng/ml rmTNF- as positive control, complete DMEM alone in triplicates in 10% CO2 at 37C for 24 

hours. The supernatants were analysed using mouse IL-6 Duoset ELISA (R & D Systems Europe Ltd., 

Abingdon, UK) as per the manufacturer’s instructions. 

 

2.3.2c Developing a novel luciferase reporter assay to analyse bioactivity of mouse IL-17 

Raw 264.6 cells NF-B-promoter-driven luciferase assay  

1 x 106 raw264.7 NF-B luc cells (made by Dr. S. Vessillier of BJRU) were incubated in 2ml complete 

DMEM plus 200g/ml G418 in 12-well plate at 37C in 10% CO2 overnight, stimulated with 1ml/well 

500ng/ml rmIL-17A, FL- IL-17A and -IL-17F in serum-free DMEM in triplicates at 37C in 10% CO2. 

overnight. For the purpose of positive control, the cells were incubated with 1ml/well 10g/ml 

lipopolysaccharide for 4 hours at 37C in 10% CO2. The cells were washed with PBS twice, lysed with 

100l cold lysis buffer (200mM NaCl, 20mM Tris HCl, pH 8, 1% Triton X-100) and lysates examined 

for luciferase activity as described in Section 2.3.1d. 

 

DTF cells IL-6 promoter-responsive luciferase assay 

Stable transfection of DTF cells with IL-6 promoter responsive luciferase 

DTF cells were stably transfected with pGL2 containing IL-6 promoter responsive luciferase using the 

same protocol as that was used for transfection of HeLa cells (Section 2.3.1d). The concentration of 

Blasticidin for optimum selections of DTF cells was determined and the cells stably transfected using 

calcium phosphate co-precipitation, antibiotic selected clones expanded and screened for biological 

activity as described above for HeLa cells. One of the antibiotic selected clones which on screening 
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demonstrated a low background activity along with activation of luciferase in response to rmIL-17A 

and was further analysed as follows: 

2 x 104 DTF cells stably transfected with IL-6 promoter-responsive luciferase were stimulated with 

100l/well two-fold serially diluted rmIL-17 (500ng/ml), mouse FL-IL-17A and 17F in 0.1% FBS 

containing DMEM in triplicates for 6 hours at 37C in 10% CO2. The cells were lysed and lysates 

analysed for luciferase activity as described in the Section 2.3.1d. 

As 500ng/ml rmIL-17 failed to activate luciferase in these cells, 2ng/ml recombinant mouse TNF-α 

was added to enhance the activity of IL-17A. 
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2.4 Gene therapy in mouse models of inflammation 

Preparation of endotoxin-free plasmid DNA 

Plasmid DNA encoding human FL-IL-17A, LAP-IL-17A, FL-IL-17F mutant and LAP-IL-17F mutant was 

extracted and purified using Endofree® Plasmid Mega Kit (Qiagen Ltd, Crawley, UK) as per the 

manufacturer’s instructions. In brief, pellet of sterile 500ml high copy overnight LB bacterial culture 

obtained by centrifugation at 4000g at 4°C for 20 min using Multispeed Centrifuge (PK 121, ALC 

International, Milan, Italy) was homogeneously resuspended in 50ml Buffer P1 (50mM Tris HCl, pH 

8.0, 10mM EDTA and 100μg/ml RNase A), lysed in 50ml Buffer 2 (200mM NaOH, 1% SDS) by 

vigorously inverting 5 times and incubating at RT for 5 min, and neutralized with 50ml chilled Buffer 

P3 (3.0M potassium acetate, pH 5.5) by subjecting it to a thorough mixing by vigorously inverting 5 

times. The lysate was added to QIAfilter Mega Cartridge and incubated for 10 min; cleared under a 

vacuum source and washed with 50ml Buffer FWB2 (1M potassium acetate, pH 5.5) using vacuum. 

For removal of endotoxins, the cleared lysate was mixed with 12.5ml Buffer ER by inverting the tube 

10 times and incubated on ice for 30 min. The ER buffer-treated lysate was applied to a QIAGEN-tip 

2500 [pre-equilibrated with 35ml Buffer QBT (750mM NaCl, 50mM MOPS, pH 7.0, 15% isopropanol, 

0.15% Triton® X-100] and allowed to enter the resin by gravity flow, washed with 200ml Buffer QC 

(1.0M NaCl, 50mM MOPS, pH 7.0, 15% isopropanol). The bound plasmid DNA was eluted with 35ml 

Buffer QN (1.6M NaCl, 50mM MOPS, pH 7.0, 15% isopropanol), eluted DNA precipitated by adding 

24.5ml isopropanol and centrifuging at 4000rpm at 4°C for 90 min. The DNA pellet was washed with 

endotoxin-free 70% ethanol and centrifuged at 4000rpm at 4°C for 30 min, air-dried for 10-20 min, 

resuspended in endotoxin-free water (Qiagen Ltd, Crawley, UK) and stored at 4°C. Plasmid DNA 

concentration was determined at 260nm using Pharmacia GeneQuant spectrophotometer 

(Cambridge, UK). A sample of the purified plasmid DNA was digested with the enzymes used for 

cloning and analysed on 1% agarose gel to confirm the presence of insert of the correct size. 
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C57BL/6 mice 

Thirty 6 weeks-old male C57BL/6 mice (20-25g, Charles River UK Limited, UK) were kept under 

standard conditions and maintained in a 12 h/12 h light/dark cycle at 22 ± 1°C in accordance with 

United Kingdom Home Office regulations (Guidance on the Operation of Animals, Scientific 

Procedures Act 1986) and of the European Union directives. 

SCID mice 

Four female and 4 male, 6-weeks-old SCID beige mice (Charles River UK Limited) were kept under 

standard conditions as described above.  

 

Intravenous hydrodynamic delivery of plasmid DNA 

Mice were lightly anaesthetized with 4% Isoflurane (IsoFlo®, Abott Laboratories Ltd, Berkshire, UK) 

mixed in O2/NO at 1:1 atmosphere using Boyles’ apparatus (British Oxygen Company, London, UK). 

Mice were injected in the tail vein with 5μg/ml plasmid DNA in normal saline (NS), equating to 10% 

average mice body weight rapidly over 10-15 seconds. The untreated group of mice were injected 

with NS alone. 

 

Determining in vivo expression of human IL-17 transgene in mice  

Collection of serum 

Mice were tail bled or terminally bled via cardio-puncture after light anaesthesia. Blood was allowed 

to clot by storing overnight at 4°C, serum recovered by centrifuging at 14000 rpm at 4°C for 15 

minutes and frozen at -80°C.  

Harvesting mouse liver tissue 

After sacrificing the mice, liver was dissected out and 20mg harvested liver tissue was stabilised by 

immediately immersing in 200μl RNAlater® RNA stabilisation reagent (Qiagen, UK) and stored at -

80°C. A separate piece of liver tissue was snap frozen in liquid nitrogen and stored at -80°C until 

analysed. 
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Preparation of liver homogenates 

Approximately 5mm piece of liver tissue (previously snap frozen in liquid nitrogen and stored at  

-80°C) was homogenised in 500μl ice cold lysis buffer (20mM Tris HCl, pH 7.4, 150mM NaCl, 1% 

Triton X-100, 1% BSA, freshly added Halt™ Protease inhibitor, single use cocktail, EDTA free 100X, 

Thermo scientific, Rockford, USA) in pre-cooled homogenization tubes (Precellys CK14, Bertin 

Technologies) at 3000rpm, 2 x 20 sec pulses using Precellys™ control device (Stretton Scientific Ltd.). 

The homogenate was centrifuged at 1500rpm at 4°C for a maximum of 5 min. Protein concentration 

in the homogenised liver sample was estimated by BCA. The BCA standard and cell lysates were 

diluted in PBS at least 50-fold to eliminate protein reactivity intrinsic to the lysis buffer due to the 

presence of 1% BSA. 

Ultrasensitive ELISAs  

In vivo expression of human IL-17 transgene in mice following systemic gene therapy was analysed 

by human IL-17A and IL-17F ultrasensitive ELISAs. 

Human IL-17A ultrasensitive ELISA 

Levels of human IL-17A in mice serum were analysed using human IL-17A ultra-sensitive kit in 

association with diluents 4 and 5 (Meso Scale Discovery multi-array® System, Gaithersburg, USA) as 

per the manufacturer’s instructions. In brief, 25μl/well diluent 4 in the MSD ELISA plate was 

incubated at 175 rpm for 30 min at RT; 25μl mouse serum, airpouch lavage fluid or IL-17A standard 

(concentrations 2.4-10,000pg/ml) in diluent 4 in duplicate were incubated at 175rpm for 2 hours at 

room temperature; washed 3 times with PBST; 25μl detection antibody solution added and 

incubated at 175 rpm for 2 hours, washed 3 times with PBST; 150μl 2X read buffer added and the 

plate was analysed using MSD-sector imager 2400.  

Human IL-17F ultrasensitive ELISA 

Levels of human full-length and LAP-IL-17F mutant in mice serum, airpouch lavage fluid and liver 

homogenate samples were analysed using human IL-17F ultrasensitive ELISA using 2μg/ml capture 

and 0.5μg/ml detect antibody in diluents 4 and 5 as described in the Section 2.2.2c. 
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2.4.1 Human IL-17A systemic gene therapy in naïve SCID mice  

Six-weeks-old SCID beige mice (Charles River UK Ltd.) were divided into two groups of 4 mice each 

containing 2 female (average weight 17.5g) and 2 male mice (average weight 21.5g). Mice were 

treated with intravenous hydrodynamically delivered 5μg/ml human full-length IL-17A or LAP-IL-17A 

plasmid DNA. Blood was collected at 48 hours, 1 week and 2 weeks and serum recovered and stored. 

Levels of human IL-17 transgene in mice serum were analysed by human IL-17A ultra-sensitive ELISA.  

 

 

 

 

 

Figure 2.6 Evaluation of in vivo expression and pharmacokinetics of human IL-17 systemic gene 
therapy in naïve SCID mice. Four mice in groups of 2 were treated with intravenous 
hydrodynamically delivered hIL-17A or hLAP-IL-17A and blood collected at 48 hours, 1 week and 2 
weeks. Levels of hIL-17A in mice serum were analysed by IL-17A ultrasensitive ELISA.  
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2.4.2 Evaluation of human IL-17F mutant systemic gene therapy in mouse airpouch 

inflammation 

Preparation of airpouch and induction of acute inflammation 

After lightly anaesthetising C57BL/6 mice, dorsal airpouch were prepared by injecting 2.5ml air 

subcutaneously on days 1 and 4. On day 5, acute non-specific inflammation was induced by directly 

injecting 0.5ml 0.5% Carboxy methyl cellulose (CMC 0.5% w/v in sterile PBS) into pouch as previously 

described by Perretti et al. (427, 428).  

Hydrodynamic delivery of human IL-17 plasmid DNA 

On day 4, mice in groups of five were treated with intravenous hydrodynamically delivered 5μg/ml 

human FL-IL-17F mutant, LAP-IL-17F mutant DNA, FL-IL-17A, FL-IL-17A plus FL-IL-17F mutant, 1μg/ml 

LAP-IL-17F mutant and NS alone to investigate in vivo expression of human IL-17 transgene. Mouse 

serum, liver homogenates and airpouch lavage exudate were analysed for the expression of the 

transgene. The study was terminated at 52 hours post-DNA delivery to allow analysing transgene 

levels in acutely inflamed airpouch at 4 hours following its systemic expression at 48 hours. 

Collection of airpouch lavage fluid 

Mice were culled by cervical dislocation. Airpouch was washed thoroughly with 2ml PBS containing 

3mM EDTA through a small incision and the recovered lavage fluid was collected in 14ml 

polypropylene round-bottom FACS tubes (Becton Dickinson, USA), centrifuged at 1500rpm for 10 

min at 4°C to separate the exudate from the inflammatory cells. Inflammatory exudate was 

collected, total volume measured and frozen at -80°C. 
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Figure 2.7 Investigation of in vivo distribution of human IL-17F mutant gene delivery in mice 
airpouch. Six mice in each group were treated with intravenous hydrodynamic DNA delivery of hIL-
17F mutant plus hIL-IL-17A or hIL-17A, hFL-IL-17F mutant, hLAP-IL-17F mutant (1μg and 5μg/ml) and 
NS alone 52 hours before the termination of the study. This allowed a 48 hours period for the 
expression of transgene to take place and then study its distribution on tissues after CMC-induced 
inflammation for a total 4 hours. Expression of transgene was analysed in serum, airpouch lavage 
fluid and liver homogenate samples.  
 

 

 

 

 

Statistical analysis: One way ANOVA and students T test were used to compare the levels of induced 

cytokines between treatment groups and p values less than 0.05 were considered significant. Results 

are expressed as the mean ± SEM unless stated otherwise. 
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CLONING OF HUMAN, MOUSE AND LATENT  

IL-17 ISOFORMS 
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3.1 Introduction 

A new therapeutic agent can be developed and tested rapidly using recombinant DNA technology. 

Cloning of a therapeutic gene in a suitable expression vector enables its expression in protein form 

both in vitro and in vivo, thus allowing an expedient broad preclinical testing. Both viral and non-viral 

vectors can be used for expression of a gene of interest in mammalian cells. Non-viral or plasmid 

vectors are safer than viral vectors but require adjunct physical or chemical approaches for an 

adequate transfection efficiency. Plasmid expression vector pcDNA3 contains all the elements such 

as CMV promoter with enhancer, T7 site for forward DNA sequencing for expression in relevant E 

coli host, SV40 origin of replication, Neomycin and Ampicillin drug selection genes for use in 

eukaryotic and prokaryotic cells respectively, bovine growth hormone (BGH) polyadenylation site to 

stabilise the mRNA, multiple cloning sites required for efficient cloning in bacteria, and expression in 

eukaryotic cells (Fig. 3.1). The SP6 site allows for DNA sequencing using a well characterised reverse 

primer. pcDNA3-LAP encompasses pcDNA3 with a previously cloned LAP of TGF-β (353) . 
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Figure 3.1 Plasmid expression vector pcDNA3. pcDNA3 contains all the elements required for 
efficient cloning in bacteria, and cloning and translation in eukaryotic cells. CMV promoter/ 
enhancer permits efficient, high level expression of protein, T7 enhancer allows in vitro transcription 
in the sense orientation and sequencing through the insert, SV40 enhancer promoter and origin of 
replication facilitates high level protein expression and replication of plasmid in cell lines containing 
large T antigen, SV40 poly functions as transcription terminator, Bovine growth hormone polyA 
provides efficient transcription termination and mRNA polyadenylation, Neomycin resistant site is 
utilised for selection of stable transfectants in mammalian cells, Ampicillin resistant site allows 
selection of vector in E. coli, multiple cloning site allows insertion of gene of interest. 
 

 

 

IL-17 mRNA was derived from T cells, which produce IL-17 in both human and mouse. Prior to RT-

PCR, mRNA extracted from mouse splenic T cells was analysed for integrity. mRNA comprises only 1-

3% of total RNA and is not readily detectable even with the most sensitive of methods. Ribosomal 

RNA (rRNA) however comprises more than 80% of total RNA. mRNA quality has historically been 

assessed by visual assessment of quality and quantity of rRNA on 1% agarose gel electrophoresis. 

The majority of rRNA in mammalian system is comprised by the 28S and 18S rRNA and a 28S:18S 

ratio of 2:1 is taken as indicative of intact RNA.  
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Human CD14- PBMC and NIH Swiss mouse splenic T cells cDNA was used as template for PCR 

amplification of human and mouse IL-17. A hot-start PCR was employed if necessary. A manual 

heating of reaction components prior to adding polymerase to the denaturation temperature of 95° 

reduces non-specific amplification during the initial set up stages of the PCR. It also permits optimum 

denaturation of primers especially those with high CpG contents. Non-specific amplification can also 

be reduced by raising annealing temperature. In the event of presence of more than one band on 

agarose gel electrophoresis analysis of PCR reaction, band that represented the gene of interest was 

isolated and purified by gel extraction. 

 

Site-directed mutagenesis 

Mutation at a defined site in a DNA molecule can be created using one of the several approaches 

such as Kunkel’s method, cassette mutagenesis, PCR mutagenesis and whole plasmid mutagenesis. 

In Kunkel’s method, mutagenesis template is generated by insertion of wild-type DNA in phagemid 

such as M13mp18/19 and transforming in E. coli that are deficient in DNA repair enzymes (429). 

Cassette mutagenesis involves insertion of a complementary pair of oligonucleotide containing the 

mutated gene in plasmid whereas PCR mutagenesis involves amplification of DNA template using 

single primer that contains the desired mutation. PCR reaction mixture resulting from PCR 

mutagenesis however contains original unmutated DNA in addition to mutated DNA. PCR 

mutagenesis could also lead to counter selection of mutants due to presence of mismatch repair 

system which favors the methylated template DNA. The method of whole plasmid site-directed 

mutagenesis comprises amplification of entire plasmid using a pair of complementary mutagenic 

primers followed by elimination of template DNA. This method is highly efficient, relatively simple 

and commercially available as a kit.  

PCR amplified full-length and mature human and mouse wild-type and mutated IL-17 were cloned in 

pcDNA3 and pcDNA3-LAP at multiple cloning sites.The genes conferring resistance to Ampicillin were 

utilised for antibiotic selection of transformed E coli. The selected colonies were grown in Ampicillin 
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containing LB medium and plasmid extracted by alkaline lysis. The confirmation of correctly cloned 

constructs was attained by gene sequencing using ABI 3730xl capillary sequencer and restriction 

digestion with enzymes same as those used for cloning. 

 

3.1.1 Aims 

1. To harvest mRNA from mouse splenic T cells and RT-PCR it to generate cDNA. 

2. To create human (H161R) IL-17F mutant and 3 mouse analogues of human IL-17F mutant.  

3. To clone human and mouse full-length and mature IL-17 DNAs in plasmid expression vectors 

pcDNA3 and pcDNA3-LAP. 
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3.2 Results 

3.2.1 Confirming integrity of mouse splenic T cells mRNA 

Mouse IL-17 was amplified using template cDNA derived by reverse transcription of NIH Swiss 

mouse splenic T cells mRNA. Integrity of mouse spleen extracted RNA was analysed by visual 

assessment of 28S:18S rRNA ratio on 1% agarose gel. As shown in the figure 3.1, the 28S:18S ratio 

was approximately 2:1, which confirmed the integrity of mRNA. 

 

 
 
 
Figure 3.2 Confirming integrity of mouse splenic T cells mRNA. Swiss mouse splenic T cells cDNA 
was used as template to amplify mouse IL-17. RNA extracted from mouse spleen was analysed for 
integrity of mRNA by visual analysis of ribosomal RNA on 1% agarose gel electrophoresis. Lane 2 
shows presence of 5kb and 2kb sized 28S and 18S ribosomal RNA bands in an approximate ratio of 
2:1 indicating intact RNA. Lane 1 shows control RNA extracted from 293T cells. 
                
 
 
 

3.2.2 Cloning of human IL-17  

The PCR amplified human full-length IL-17A, IL-17F and IL-17F mutant genes were cloned in pcDNA3 

at BamH1 and Xba1 sites. The human (H161R) IL-17F mutant was created by restriction digestion of 

wild type IL-17F DNA at BSPM1 site and substitution of the deleted C-terminal end with custom 

ordered complementary oligonucleotides containing the desired mutation. Human LAP-IL-17 

constructs were generated by cloning mature IL-17A, IL-17F and IL-17F mutant in pcDNA3-LAP at 

Not1 and Xba1 sites. Generation of the correct constructs were confirmed by DNA sequencing and 

restriction enzyme digestion of plasmid DNA (Figs 3.3 and 3.4).  

                                    1         2                    

28S 

18S 
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Figure 3.3 Restriction enzyme analysis of human full-length IL-17 on 1% agarose gel confirming the 
correct cloning of IL-17 in pcDNA3. BamH1 and Xba1 restriction digestion of uncut plasmid DNAs 
(size 5.4kb, lanes 2, 5 and 8) released the insert and vector fragments of expected size. Lanes 3, 6 
and 9 show that the released full-length IL-17A, and IL-17F and IL-17F mutant fragments were of 
expected 465 and 489 bp size respectively (circled in red) confirming the correct cloning. The 1kb 
molecular weight DNA ladder was used to assess the size of DNA fragments (lanes 1, 4 and 7). 
 
 
 

 
 
 
Figure 3.4 Restriction enzyme analysis of human LAP-IL-17 on 1% agarose gel confirming the 
correct cloning of mature IL-17 in pcDNA3-LAP. Not1 and Xba1 restriction digestion of uncut 
plasmid DNAs (size 6.1kb, lanes 2, 5 and 8) released the insert and vector fragments of expected 
size. Lanes 3, 6 and 9 show that the released mature IL-17A, and IL-17F and IL-17F mutant fragments 
were of expected 393 and 399 bp size respectively (circled in red) confirming the correct cloning. The 
1kb molecular weight DNA ladder was used to assess the size of DNA fragments (lanes 1, 4 and 7). 
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3.2.3 Cloning of mouse IL-17  

The PCR amplified mouse full-length and mature wild-type and mutated IL-17 were cloned in 

pcDNA3 and pcDNA3-LAP similar to that for human IL-17 (Figs 3.5 and 3.6). Three mouse FL-IL-17F 

mutants namely (Q158R) IL-17F mutant 1, (H157R)IL-17F mutant 2 and a truncated  IL-17F mutant 3 

were derived by PCR mutagenesis of wild type IL-17F resulting in substitution of nucleotide T at 

position 464 by C, nucleotide A at 461 by G and codon GGA at 457-59 by stop codon respectively.  

 

 

 

                    

 
Figure 3.5 Restriction enzyme analysis of mouse full-length IL-17 on 1% agarose gel confirming the 
correct cloning of IL-17 in pcDNA3. BamH1 and Xba1 restriction digestion of uncut plasmid DNAs 
(size 5.4kb, lanes 2, 5, 8, 10 and 12) released the insert and vector fragments of expected size. The 
released full-length IL-17A (lane 3), IL-17F and IL-17F mutants 1 and 2 (lanes 6, 9 and 11) and IL-17F 
mutant 3(lane 13) fragments were of expected 474, 483 and 471 bp size respectively (circled in red) 
confirming the correct cloning. The 1kb molecular weight DNA ladder was used to assess the size of 
DNA fragments (lanes 1, 4 and 7). 
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Figure 3.6 Restriction enzyme analysis of mouse LAP-IL-17 on 1% agarose gel confirming the 
correct cloning of mature IL-17 in pcDNA3-LAP.Not1 and Xba1 restriction digestion of uncut plasmid 
DNAs (size 6.1kb, lanes 2, 5, 8, 10 and 12) released the insert and vector fragments of expected size. 
The released mature IL-17A, IL-17F, IL-17F mutants 1 and 2 (lanes 3, 6, 9 and 11) and IL-17F mutant 3 
(lane 13) fragments were of expected 399 and 387 bp size respectively (circled in red) confirming the 
correct cloning. The 1kb molecular weight DNA ladder was used to assess the size of DNA fragments. 
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3.3 Discussion 
 

Human and mouse full-length and mature wild-type and mutated IL-17 DNA were successfully 

cloned in plasmid expression vectors pcDNA3 and pcDNA3-LAP. BamH1 and Xba1 restriction sites at 

multiple cloning sites of pcDNA3 were utilised for cloning of human and mouse wild-type and 

mutated full-length IL-17 in pcDNA3, whereas Not1 and Xba1 sites were used for cloning of human 

and mouse wild-type and mutated mature IL-17 in pcDNA3-LAP. The MMP cleavable linker located 

between the LAP of TGF-β and mature IL-17 cytokine region allows the release of biologically active 

cytokine at the sites of high MMP activity. 

Mouse IL-17 was amplified using mouse splenic T cells cDNA as template. The integrity of mRNA 

extracted from mouse spleen was analysed by 1% agarose gel electrophoresis and confirmed by 

presence of 28S:18S rRNA bands in ratio 2:1. Mouse IL-17A and IL-17F mutants were amplified by 

hot-start PCR due to a relatively high CpG content of the primers. Non-specific PCR amplification of 

mouse IL-17F DNA could not be eliminated by raising annealing temperature; the correct DNA band 

was therefore isolated by gel-purification. Alternative splicing of mouse IL-17F has not been 

reported although human IL-17F has been shown to exist in two forms (131). 

Human (H161R) IL-17F mutant was created by substituting nucleotide A at position 485 by G using 

cassette mutagenesis. The presence of point mutation in IL-17F gene at the extreme C-terminal end 

and an adjacent BSPM restriction site allowed for an effective insertion of mutation containing 

complementary oligonucleotides. Mouse IL-17F is 3 amino acids shorter than human IL-17F and 

contains Glutamine at position equivalent to mutated Histidine in human IL-17F. The first mouse IL-

17F mutant analogue was therefore created by Arginine substitution of Glutamine at amino acid 

position 158 instead of Histidine at 161 in human IL-17F. Amino acid Histidine is however present in 

mouse IL-17F immediately preceding Glutamine at 158. The second mouse IL-17F mutant therefore 

comprised Arginine substitution of Histidine at 157. The third Mouse IL-17F mutant was created by 

deleting the last 4 amino acids in mouse IL-17 to create a truncated form. PCR mutagenesis was used 

to build the desired point mutations and the deletion mutation in wild-type IL-17F.  
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Following successful cloning IL-17 proteins were expressed in vitro and their immunological and 

biological properties analysed. 
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CHARACTERISATION OF IMMUNOLOGICAL 
PROPERTIES OF THE EXPRESSED  

IL-17 PROTEINS 
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4.1 Introduction 

Following successful cloning of human and mouse full-length and LAP-IL-17 in plasmid expression 

vector pcDNA3, IL-17 proteins were expressed in vitro under the control of CMV promoter by 

transient transfection of mammalian cells. Unlike prokaryotes or lower eukaryotes, mammalian cells 

have capability to conduct elaborate posttranslational modifications, especially N-glycosylation of 

the complex type, hence are often preferred host to produce human recombinant proteins. 293T 

cells derived from human embryonic kidney contain large T cell antigen, hence allowing replication 

of plasmid DNA that contains an SV40 origin of replication such as pcDNA3 and secretion of high 

quantity of expressed proteins. 293F or Chinese hamster ovary (CHO) suspension cell are currently 

used for medium scale production of recombinant proteins in our laboratory.  

Entry of naked DNA into mammalian cells requires facilitation by natural or synthetic vehicles that 

can compact DNA, promote binding to the cell membrane, and facilitate entry into the cell. Calcium 

phosphate and polycation polyethylenimine (PEI) are two very efficient transfection vehicles. 

Although both calcium phosphate and PEI bind and precipitate efficiently, PEI offers advantages over 

calcium phosphate for scaled up transfections in terms of simplicity of use and compatibility with 

serum-free medium. Also, CHO suspension cells are difficult to transfect with calcium phosphate 

(430). The use of serum-free medium is recommended for the expression of secreted recombinant 

proteins as it significantly facilitates their recovery and purification. PEI is available as branched and 

linear polymers with a wide range of molecular weights and polydispersities. Branched 25kDa PEI is 

more potent in transfection of adherent cells whereas linear 25kDa PEI is more potent for the 

transfection of suspension-growing 293F and CHO cells (430, 431).  

IL-17 proteins expressed and secreted in cell supernatant were separated by sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and analysed by Western blotting using 

specific antibodies. SDS is an anionic detergent that linearizes proteins and imparts a negative 

charge to linearized proteins in proportion to its mass, thus enabling fractionation of proteins by 

their approximate size during electrophoresis. SDS-PAGE is commonly done under reducing 



136 
 

condition by addition of another reducing agent such as dithiothreitol (DTT) or 2-mercaptoethanol. 

This allows further denaturing of proteins by reducing disulfide linkages, which are important to the 

folding and stability of proteins secreted in the extracellular medium. Under non-reducing SDS-PAGE 

disulfide bonds of proteins remain intact, hence allow study of its secondary structure.  

SDS-PAGE separated proteins are transferred to nitrocellulose or polyvinylidine fluoride (PVDF) 

membrane and stained with antibodies specific to target protein. Staining antibodies are linked to a 

reporter enzyme such as horseradish peroxidase (HRP) that on treatment with a chemiluminescent 

agent produces luminescence in proportion to the amount of protein, which can be recorded on a 

sensitive sheet of photographic film. Western blot also allows semi-quantitation of proteins by 

comparing the intensity of band generated with that of known quantity of control. 

 

4.1.1 Fast protein liquid chromatography 

FPLC is a form of liquid chromatography that is used to separate or purify proteins and other 

polymers from complex mixtures. Columns used with an FPLC can separate macromolecules based 

on size, charge distribution, hydrophobicity, reverse-phase or biorecognition. The chromatographic 

bed is composed by the gel beads inside the column. In FPLC the pumped solvent velocity is 

microprocessor-controlled through a software interface to ensure a constant flow rate of solvents. 

As a result of different components adhering to or diffusing through the gel, the sample mixture gets 

separated.  

 

4.1.2 Immunoaffinity chromatography 

Immunoaffinity chromatography (IAC) is a powerful technique for a selective purification of a target 

compound that combines the use of liquid chromatography with the specific binding of antibodies or 

related agents. IAC entails immobilising antibodies onto supports such as agarose, cellulose or 

synthetic organic compounds. A variety of techniques ranging from covalent attachment to 

adsorption-based methods can be used to immobilise antibodies. Using covalent attachment, 

http://en.wikipedia.org/wiki/Liquid_chromatography
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antibodies can be immobilised by random attachment via amino or carboxyl groups or selectively via 

modified carbohydrate residues or thiol groups. The easiest is the technique of random attachment 

but can lead to steric hindrance and a decrease in binding efficiency (432). The target protein is 

eluted by temporarily lowering the effective strength of antibody binding to the target. One of the 

common approaches to elution in IAC which has been shown to be effective in dissociating high 

affinity antibody-antigen complexes includes changing the mobile phase pH usually conducted by 

applying an acidic buffer (pH 1-3) typically at concentrations of 1.5-8 M to the column (433).  

 
 

4.1.3 Aims 

1. To confirm the correct expression of in vitro expressed human and mouse IL-17 proteins and 

quantitate their amount in transfected cell supernatants.  

2. To express human IL-17F mutant at a medium scale and purify by immunoaffinity 

purification. 

3. To confirm in vitro cleavage of LAP-IL-17 proteins into intact LAP and IL-17 domains by MMP. 
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4.2 Results 

4.2.1 Confirming the correct expression of IL-17 proteins derived from transient 

transfection of 293T cells 

The correct expression of IL-17 proteins was confirmed by resolving 293T cell supernatants 

containing IL-17 proteins in reducing SDS-PAGE and immunoblotting with specific antibodies. In vitro 

cleavage of LAP-IL-17 proteins by MMP-1 into intact LAP and IL-17 domains was confirmed by 

Western blot analysis of MMP-1 pre-treated LAP-IL-17 proteins. Human and mouse full-length IL-17 

proteins were immunoblotted with the corresponding anti-IL-17 antibodies whereas LAP-IL-17 

proteins were immunoblotted independently with both human anti-LAP antibody and corresponding 

anti-IL-17 antibodies to target both LAP and IL-17 domain (Figs. 4.2, 4.3 and 4.4).  

 

4.2.1a Determining optimum concentration of MMP-1 required for the complete cleaving of LAP-

IL-17 proteins  

MMP-1 used in all the experiments was produced in-house via expression in E coli. It was therefore 

important to determine the optimum dilution of in-house produced MMP-1 that was required for a 

complete cleaving of LAP-IL-17 proteins. For this, human LAP-IL-17F mutant was selected as 

representative LAP-IL-17 protein and 25μl 293T cell supernatant containing expressed LAP-IL-17F 

mutant was pre-incubated with MMP-1 in dilutions ranging from 1:10 to 1:640 at 37°C overnight, 

resolved with SDS-PAGE and immunoblotted independently with human anti-IL-17F and anti-LAP 

antibodies. As shown in the Fig.4.1, the bands generated were of the expected molecular weight 

(uncleaved LAP-IL-17F mutant 58kDa, cleaved IL-17F domain 21kDa and LAP domain 37kDa). 

Complete cleavage of LAP-IL-17F mutant was seen at MMP-1 dilutions 1:50 or less. For all future 

experiments including Western blots and biological assays, MMP-1 was used in dilution 1:50 for the 

pre-treatment of LAP-IL-17 proteins. It has been previously observed in our laboratory that MMP-1 

in the final concentration of 30μM results in an adequate cleaving of cell supernatants containing 

expressed LAP-IL-17 proteins.  
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4.2.1b Expression of IL-17 homodimers 

25μl 293T cell supernatants containing human and mouse full-length IL-17 proteins, and naïve plus 

MMP-1 pre-treated (incubated with 1:50 dilution MMP-1at 37°C overnight) LAP-IL-17 proteins were 

resolved by reducing SDS-PAGE and immunoblotted independently with corresponding anti-human 

or mouse IL-17 and anti-LAP antibodies. Fig. 4.2 shows Western blot analysis of human IL-17 proteins 

demonstrating bands of the expected molecular weights (human IL-17A 15 and 17kDa, FL-IL-17F and 

IL-17F mutant proteins 17kDa, naïve LAP-IL-17 proteins 54kDa and LAP domain 34kDa). These results 

Figure 4.1 Western blot analysis demonstrating optimum dilution of MMP-1 that is required for 
complete cleaving of LAP-IL-17. MMP-1 pre-incubated (dilutions 1:10 to 1:640) and naive human 
LAP-IL-17F mutant was resolved by reducing SDS-PAGE and immunoblotted independently with 
anti-human IL-17F and -LAP antibodies. Lane 1 shows naïve LAP-IL-17F mutant protein at the 
expected molecular weight of 58kDa. Bands generated by cleavage of LAP-IL-17F mutant with 
MMP-1 in dilutions 1:50, 1:10, 1:20 and 1:40 were again of expected molecular weights of21kDa 
and 38kDa, representing IL-17F mutant and LAP domains (lanes 2, 3, 4, 5 show the complete 
cleavage of LAP-IL-17F mutant). MMP-1 in dilutions 1:80 or above (lanes 6, 7, 8, 9) generated bands 
at molecular weights higher than expected, which is indicative of an incomplete cleavage ofLAP-IL-
17F mutant. Previous observations in our laboratory have demonstrated that MMP-1 in the final 
concentration of 30μM results in an adequate cleaving of cell supernatants containing expressed 
LAP-proteins. 



140 
 

indicate that human IL-17 proteins were expressed correctly and LAP-IL-17 proteins could be cleaved 

effectively by MMP-1.  

Similarly Western blot analysis of mouse IL-17 proteins (Fig. 4.3) showed the bands of expected 

molecular size (IL-17A 17 and 21kDA, IL-17F 17kDa and 25kDa and IL-17F mutants 1, 2 and 3 20kDa 

and 25kDa, and naïve LAP-IL-17 proteins 62kDa). Despite several attempts, in vitro expression of 

mouse FL-IL-17F mutant 2 could not be confirmed in either 293T cells supernatant or whole cell 

lysates. Interestingly, FL-IL-17F mutant 2 domain released from MMP-1 treated LAP-IL-17F mutant 2 

was detectable on Western blot under similar conditions. This suggests that either FL-IL-17F mutant 

2 was not translated or was not stable enough to allow detection by Western blot. 

 

 

 
Figure 4.2 Reducing SDS-PAGE resolution and immunoblot analysis of human IL-17 homodimers. 
293T cell supernatants containing human full-length and LAP-IL-17 proteins were resolved by 
reducing SDS-PAGE and immunoblotted with anti-human IL-17A, -IL-17F or -LAP antibodies. LAP-IL-
17 proteins were pre-incubated with MMP-1 at final dilution of 1:50 at 37°C overnight.  
Panel A, lane 1 shows bands at 15 and 17kDa demonstrating glycosylation of full-length IL-17A. Lane 
2 shows LAP-IL-17A protein at the expected molecular weight 58kDa and lane 3 shows bands at 15 
and 17kDa IL-17A released from LAP-IL-17A by the action of MMP-1.  
Panel B shows 17kDa bands in lanes 4 and 7, which represent full-length IL-17F and IL-17F mutant 
respectively. Lanes 5 and 8 show LAP-IL-17 and LAP-IL-17F mutant proteins at the expected 
molecular weight of 58 kDa and lanes 6 and 9 show bands at 17kDa representing IL-17F and IL-17F 
mutant released from their corresponding LAP-IL-17 proteins by the action of MMP-1.  
Panel C shows naïve LAP IL-17A, -IL-17F and -IL-17F mutant in lanes 10, 12 and 14 at the expected 
molecular weight of 58kDa and the released LAP domain at the expected molecular weight of 37kDa 
in lanes 11, 13 and 15.  
The data is representative of at least three experiments. These results confirmed the correct 
expression of proteins and cleavage of LAP-IL-17 proteins into intact LAP and IL-17 domains by MMP. 
Anti-hIL-17A, anti-human IL-17A antibody; anti-hIL-17F, anti-human IL-17F antibody; anti-hLAP, anti-
human LAP antibody. 
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Figure 4.3 Reducing SDS-PAGE resolution and immunoblot analysis of mouse IL-17 homodimers. 
293T cell supernatants containing mouse full-length and LAP-IL-17 proteins were resolved by 
reducing SDS-PAGE and immunoblotted with anti-mouse IL-17A or -IL-17F antibodies. LAP-IL-17 
proteins were pre-incubated with MMP-1 at final dilution of 1:50 at 37°C overnight.  
Panel A, lane 1 shows bands at 17 and 21kDa demonstrating glycosylation of full-length IL-17A. Lane 
2 shows naïve LAP-IL-17A protein at the expected molecular weight of 58kDa and lane 3 shows 
bands at 17 and 21kDa representing IL-17A released from LAP-IL-17 by the action of MMP-1. The 
concentrations of FL-IL-17A and LAP-IL-17A in 293T cell supernatants as determined by direct ELISA 
(Chapter 2, Section 2.2.2b) were 105ng/ml and 415ng/ml respectively. 
Panel B shows 17, 21 and 25kDa size bands in lanes 4 which represent full-length IL-17F. Lanes 5 
shows LAP-IL-17F at the expected molecular weight of 62kDa and lanes 6 shows bands at 17 and 
21kDa representing IL-17F released from LAP-IL-17F by the action of MMP-1. The concentrations of 
FL-IL-17F and LAP-IL-17F in 293T cell supernatants as determined by direct ELISA (Chapter 2, Section 
2.2.2b) were 55ng/ml and 140ng/ml respectively. 
Panel C shows 17kDa, 21kDa and 25kDa bands representing glycosylated full-length IL-17F mutant 1 
and 3 in lanes 7 and 13 respectively. Expression of full-length IL-17F mutant could not be detected, 
which is marked with a red cross in lane 10. LAPIL-17F mutants 1, 2 and 3 were expressed at the 
expected molecular weight of 62kDa as shown in the lanes 8, 11 and 14. Lanes 9, 12 and 15 show 
21kDa and 25kDa bands representing IL-17F mutant 1, 2 and 3 domains released from their 
corresponding LAP-IL-17F mutants by the action of MMP-1. The concentrations of FL-IL-17F mutant 
1, -IL-17F mutant 3, LAP-IL-17F mutant 1, -IL-17F mutant 2 and –IL-17F mutant 3 in 293T cell 
supernatants as determined by direct ELISA (Chapter 2, Section 2.2.2b) were 52ng/ml, 50ng/ml, 
300ng/ml, 270ng/ml and 300ng/ml respectively. 
The data is representative of at least three experiments. These results confirmed the correct 
expression of proteins and cleavage of LAP-IL-17 proteins into intact LAP and IL-17 domains by MMP. 
Anti-mIL-17A, anti-mouse IL-17A antibody; anti-mIL-17F, anti-mouse IL-17F antibody. 
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4.2.1c LAP-IL-17 proteins are secreted as homodimers 

Biological latency of a LAP-cytokine is related to LAP homodimer forming a protective shell around 

the cytokine, which prevents interaction between the cytokine and its receptor. To confirm that LAP-

IL-17 proteins were expressed and secreted as homodimers, 25μl 293T cells supernatants containing 

mouse LAP-IL-17 proteins were resolved by non-reducing SDS-PAGE and immunoblotted with anti-

human LAP antibody (Fig. 4.4). 

 

 

 

 
Figure 4.4 LAP-IL-17 proteins are secreted as homodimers. 25μl naïve and MMP-1 pre-treated 293T 
cells supernatants containing mouse LAP -IL-17A, -IL-17F and -IL-17F mutant 1 were resolved by non-
reducing SDS-PAGE and immunoblotted with anti-human LAP antibodies. The concentration of LAP-
IL-17A, -IL-17F and –IL-17F mutant 1 proteins in 293T cell supernatants as determined by direct ELISA 
(refer Chapter 2, Section 2.2.2b) was 415ng/ml, 140ng/ml and 300ng/ml respectively. Lanes 1, 3 and 
5 show 116kDa bands corresponding to homodimers of LAP-IL-17A, IL-17F and IL-17F mutant 1. 
MMP-1 pre-treatment of LAP-IL-17 proteins generated 74kDa bands corresponding to LAP 
homodimers (lanes 2, 4 and 6). The data is representative of at least three experiments. Anti-hLAP, 
anti-human LAP antibody. 
 

 

4.2.1d Expression of IL-17 heterodimers  

In addition to being secreted as homodimers, human and mouse IL-17A and IL-17F are also secreted 

as heterodimer ofIL-17A/IL-17F (142, 143). This raised the possibility of IL-17F mutant forming a 

heterodimer with IL-17A and IL-17F, which was investigated by transient co-transfection of 293T 
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cells with IL-17A or IL-17F plus IL-17F mutant. 293T cells were transiently transfected with total 20μg 

plasmid DNA in combinations of 15g/5g, 10g/10g, 5g/15g and 1g/19g IL-17A or IL-17F/ IL-

17F mutant. Additional co-transfections with IL-17A or IL-17F plus empty pcDNA3, and IL-17A plus IL-

17F were also examined. 25l cell supernatant were resolved by reducing SDS-PAGE and 

immunoblotted independently with anti-IL-17A and anti-IL-17F antibodies. As shown in Figs. 4.5 and 

4.6, the bands generated were of the expected molecular size of 17-21kDa. The intensity and 

thickness of the bands was proportionate to the proportion of DNA utilised for co-transfection. 

These results showed that human and mouse IL-17A and IL-17F were also expressed as heterodimers 

of IL-17A and IL-17F. Although heterodimers of mouse IL-17A/IL-17F mutant 1 and IL-17F/IL-17F 

mutant 1 could be expressed in vitro, heterodimers of human IL-17A or IL-17F with IL-17F mutant 

were not expressed by transient co-transfection of 293T cells. 
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Figure 4.5 Reducing SDS-PAGE resolution and immunoblot analysis of human IL-17 heterodimers. 
293T cells were co-transfected with human IL-17A or IL-17F plus IL-17F mutant or empty pcDNA3 or 
IL-17A plus IL-17F (see text for details). 25μl cell supernatants were resolved by reducing SDS-PAGE 
and immunoblotted independently with anti-human IL-17A and IL-17F antibodies. The bands 
generated were of expected molecular weight size of 17-21kDa.  
Panel A, immunoblotting with anti-human IL-17A shows a progressive decrease in thickness of bands 
generated by co-transfection with 20μg IL-17A plus 0μg pcDNA3 (lane 1), 15μg IL-17A plus 5μg 
pcDNA3, IL-17F mutant or IL-17F (lanes 2, 6, 10), 10μg IL-17A plus 10μg pcDNA3, IL-17F or IL-17F 
mutant (lanes 3, 7, 11), 5μg IL-17A plus 15μg pcDNA3, IL-17F or IL-17F mutant (lanes 4, 8, 12) and 
1μg IL-17A plus 19μg pcDNA3, IL-17F or IL-17F mutant (lanes 5, 9, 13).  
Panel B, immunoblotting with anti-human IL-17F shows a progressive decrease in thickness of bands  
generated by co-transfection with 20μg IL-17F plus 0μg pcDNA3 (lane 1), 15μg IL-17F plus 5μg 
pcDNA3, IL-17F mutant or IL-17A (lanes 2, 6, 13), 10μg IL-17F plus 10μg pcDNA3, IL-17F mutant or IL-
17A (lanes 3, 7, 12), 5μg IL-17F plus 15μg pcDNA3, IL-17F mutant or IL-17A (lanes 4, 8, 11) and 1μg 
IL-17F plus 19μg pcDNA3, IL-17F mutant or IL-17FA (lanes 5, 9, 10).  
Panel C, 293T cell supernatants derived from IL-17A plus IL-17F mutant co-transfection did not 
generate bands when immunoblotted with anti-human IL-17F (lanes 2 to 5). Supernatants derived 
from co-transfection with IL-17F plus IL-17F mutant generated bands which corresponded to the 
quantity of IL-17F utilised for the co-transfection (lanes 6-9). Lane 1 shows band representing IL-17F 
mutant 20μg plus empty pcDNA3. The data is representative of at least three experiments. Anti-hIL-
17A, anti-human IL-17A antibody; anti-hIL-17F, anti-human IL-17F antibody. 
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Figure 4.6 Reducing SDS-PAGE resolution and immunoblot analysis of mouse IL-17 heterodimers. 
293T cells were co-transfected with mouse IL-17A or IL-17F plus IL-17F mutant or empty pcDNA3, or 
IL-17A plus IL-17F as described in the text. 25μl cell supernatants were resolved by reducing SDS-
PAGE and immunoblotted independently with anti-mouse IL-17A and IL-17F antibodies. The bands 
generated were of expected molecular weight size of 17-21kDa. 
Panel A, Blotting with anti-IL-17A antibody shows a progressive decrease in the thickness of band 
generated from co-transfection with 20μg IL-17A plus 0μg pcDNA3 (lanes 1), 15μg IL-17A plus 5μg 
pcDNA3 or IL-17F mutant (lanes 2, 11), 10μg IL-17A plus 10μg pcDNA3 or IL-17F mutant (lanes 3, 12), 
5μg IL-17A plus 15μg pcDNA3 or IL-17F mutant (lanes 4, 13) and 1μg IL-17A plus 19μg pcDNA3,  or IL-
17F mutant (lanes 5, 14). Lanes 6-9 represent co-transfection with IL-17A plus IL-17F. No band is 
seen in lanes 7 and 8.   
Panel B, Blotting with anti-IL-17F antibody shows a progressive decrease in the thickness of band 
generated from co-transfection with 20μg IL-17F plus 0μg pcDNA3 (lane 1, 10), 15μg IL-17F plus 5μg 
pcDNA3 or IL-17A (lanes 2, 9), 10μg IL-17F plus 10μg pcDNA3 or IL-17A (lanes 3, 8), 5μg IL-17F plus 
15μg pcDNA3 or IL-17A (lanes 4, 7) and 1μg IL-17F plus 19μg pcDNA3 or IL-17FA (lanes 5, 6). Lanes 
10 to 13 shows bands of equal size generated by co-transfection of IL-17F and IL-17F mutant 
together in the quantities of 0/20μg, 15/5μg, 10/10μg and 5/15μg. Co-transfection with combined 
IL-17F mutant and IL-17A in the quantities 19/1μg, 15/5μg, 10/10μg and 5/15μg produced bands 
with a progressive decrease in the thickness and intensity (lanes 15, 16, 17 and 18). The data is 
representative of at least three experiments. Anti-mIL-17A, anti-mouse IL-17A antibody; anti-mIL-
17F, anti-mouse IL-17F antibody. 
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4.2.1e Efficiency of transfection with PEI is superior to calcium phosphate DNA co-precipitation  

As transfection with PEI is more simple and conevient than calcium phosphate co-precipitation, 

efficiency of the two methods was compared. 1 X 106 293T cells were co-transfected with human IL-

17A plus IL-17F plasmid DNAs in combinations of 15g/5g, 10g/10g, 5g/15g and 1g/19g 

using PEI or calcium phosphate co-precipitation under similar conditions. 25μl cell supernatants 

containing expressed proteins were resolved by reducing SDS-PAGE and immunoblotted 

independently with anti-human IL-17A and IL-17F antibodies. Efficiency of transfection was 

determined by comparing the intensity and thickness of the bands. As shown in Fig. 4.7, bands 

generated with PEI transfection were of greater intensity and thickness than by calcium phosphate 

suggestive of greater protein expression by PEI method.. This indicates that PEI transfection is 

superior to calcium phosphate co-precipitation.  

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Transfection efficiency of PEI is superior to calcium phosphate co-precipitation. 
293T cells were transiently co-transfected with human IL-17A plus IL-17F in combinations of 

15g/5g, 10g/10g, 5g/15g and 1g/19g using PEI (lanes 1 to 4) or calcium phosphate 
(lanes 5 to 8). 25μl cell supernatants were resolved by reducing SDS-PAGE and immunoblotted 
independently with anti-human IL-17A (panel A) and IL-17F antibodies (panel B). The bands 
generated were of expected molecular weight size of 17-21kDa. The intensity and thickness of 
bands generated by PEI transfection was greater than calcium phosphate co-precipitation 
indicating PEI transfection is superior to calcium phosphate co-precipitation. Anti-hIL-17A, 
anti-human IL-17A antibody; anti-hIL-17F, anti-human IL-17F antibody. 
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4.2.1f Expression of human IL-17F mutant in CHO-S cells 

CHO-S cells were used for medium scale expression of human FL- and LAP-IL-17F mutant protein 

expression for the purpose of immunoaffinity purification. A total 2 litre cell culture of CHO-S cells 

was transiently transfected by human FL- and LAP-IL-17F mutnat in three separate batches each. The 

correct expression of proteins in cell supernatants was confirmed by Western blot analysis. 25μl 

supernatant from each of the three batches of FL-IL-17F mutant and MMP-1 untreated and pre-

treated LAP-IL-17F mutant were resolved by reducing SDS-PAGE and immunoblotted with anti-

human IL-17F antibody (Fig. 4.8). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Reducing SDS-PAGE resolution and immunoblot analysis of CHO-S expressed 

human IL-17F mutant. 25μl CHO-S cell supernatants containing FL-IL-17F and MMP-1 pre-

treated and untreated LAP-IL-17F mutant from 3 different batches each were resolved by 

reducing SDS-PAGE and immunoblotted with anti-human IL-17F antibodies. The bands 

generated were of expected size of 21kDa corresponding to FL-IL-17F mutant (lanes 1, 2, 3) 

and IL-17F mutant domain released from LAP-IL-17F mutant by the action of MMP-1 (lanes 

5, 7 and 9). LAP-IL-17F mutant was expressed at the expected molecular weight of 58kDa 

(lanes 4, 6, 8). The results confirmed that the proteins were expressed correctly. anti-hIL-

17F, anti-human IL-17F antibody. 
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4.2.2 Immunoaffinity purified human IL-17F mutant was more than 90% pure 

Human full-length IL-17F mutant expressed and secreted in CHO-S cells supernatant was purified via 

FPLC by immunoaffinity purification using 1mg anti-human IL-17F antibody bound to Glycolink 

column. Human LAP-IL-17F mutant was purified first via FPLC using Heparin column followed by 

immunoaffinity purification using anti-IL-17F antibody column. Purity of immunoaffinity purified IL-

17F mutant was analysed by silver plus staining of 25μl eluates resolved by reducing SDS PAGE (Fig. 

4.9). The eluates were also immunoblotted with anti-human IL-17F antibody to confirm that their 

integrity was retained following the purification procedure. 

 

 

Figure 4.9 Silver plus staining of immunoaffinity purified human IL-17F mutant resolved by 
reducing SDS PAGE. 25μl eluates of immunoaffinity purified human full-length and LAP-IL-17F 
mutants and recombinant human IL-17F were resolved by reducing SDS-PAGE and the separated 
proteins were analysed by Western blot (A and B) and silver plus staining of the polyacrylamide gel 
(C). 
Panel A shows FL-IL-17F eluates generated band of the expected size of 21kDa (lane 1 load, lane 2 
flow through, lanes 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 eluates fractions and lanes 13, 14 washes).  
Panel B shows LAP-IL-17F eluates at expected molecular weight of 58kDa (lanes 1, 2 eluates, lane 3 
flow through, lanes 4, 5 washes).  
Panel C shows bands at 15kDa representing 100ng, 50ng and 25ng rhIL-17F (lanes 1, 2, 3, circled in 
blue) and multiple additional bands. Lanes 4 shows band at 21kDa representing purified glycosylated 
human FL-IL-17F mutant and only occasional additional bands, which confirmed that purity of FL-IL-
17F mutant was more than 95%. Lane 6 shows band at 58kDa molecular weight representing LAP-IL-
17F mutant and additional bands that are similar to those present in lanes 1, 2 and 3 indicating that 
purity of LAP-IL-17F mutant was more than 90%. FL-IL-17F mutant, full-length IL-17F mutant; rhIL-
17F; recombinant human IL-17F. 
   

A B C 
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4.2.3 Quantitation of the expressed IL-17 proteins 

Quantitation of mouse IL-17 proteins expressed in 293T cells supernatant was carried out by direct 

ELISA (Table 4.1). 293T cell supernatants containing expressed IL-17 proteins were diluted in 

carbonated buffer and coated directly on ELISA plates. Bound IL-17 was detected by corresponding 

anti-mouse IL-17 or anti-human LAP antibodies.   

Quantities of expressed human full-length and LAP IL-17 proteins in 30-fold concentrated 293T cell 

supernatants was determined using Western blot.by comparing the intensity of band generated with 

that of known quantity of recombinant human IL-17 proteins (Fig. 4.10 and Table 4.2). The 

concentration of immunoaffinity purified human IL-17F mutant and LAP-IL-17F mutant determined 

by human IL-17F ultra-sensitive ELISA and was determined as 0.97μg/ml and 0.61μg/ml respectively. 

 

Table 4.1 ELISA quantitation of 293T cell expressed mouse IL-17 proteins 

Protein (ng/ml) 

FL-IL-17A 105 

FL-IL-17F 55 

FL-IL-17F mutant 1 52 

FL-IL-17F mutant 2 - 

FL-IL-17F mutant 3 50 

LAP-IL-17A 415 

LAP-IL-17F 140 

LAP-IL-17F mutant 1 300 

LAP-IL-17F mutant 2 270 

LAP-IL-17F mutant 3 300 
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Table 4.2 Western blot quantitation of human IL-17 proteins in 30-fold concentrated 293T cell 

supernatants 

Human IL-17 protein (μg/ml) 

FL-IL-17A 20 

FL-IL-17F 4 

FL-IL-17F mutant 53 

LAP-IL-17A 50 

LAP-IL-17F 21 

LAP-IL-17F mutant 95 

Figure 4.10 Semi-quantitation of expressed human full-length IL-17 proteins by Western blot. 
Commercial rhIL-17 A and IL-17F proteins and concentrated 25μl 293T cell supernatants 
containing IL-17 proteins were resolved by reducing SDS-PAGE and immunoblotted with anti-
human IL-17A (panel A) or IL-17F antibodies (panel B). Density of the bands was analysed by image 
J software.  
(A) Lanes 1, 2 and 3 show bands at 15 and 17kDa corresponding to rhIL-17A 100 ng (density 971, 
2936), 50ng (density 557, 1566) and 25ng (density 59, 944) and lanes 4, 5 and 6 show bands 
generated by 2-fold serially diluted 293T cell supernatants containing IL-17A in the final dilutions 
of 1:2 (density 6114, 5289), 1:4 (density 4070,4706) and 1:8 (density 2403, 3164).  
(B) Lanes 1, 2 and 3 show 17kDa bands generated by rhIL-17F 100ng (density 11606), 50ng 
(density 15472) and 25ng (6633)and lanes 4, 5, 6, 7, 8 and 9 show bands at 17kDa representing 2-
fold serially diluted 293T cell supernatants of IL-17F (density 8933, 6209, 3773) and IL-17F mutant 
(18137, 19071, 12997) in the final dilutions of 1:2, 1:4 and 1:8. Quantity of the expressed human 
IL-17 proteins was derived by comparing the densities of bands generated by rhIL-17A and 17F 
proteins. The data is representative of atleast three experiments. rhIL-17A, recombinant human 
IL-17A; FL-IL-17A, full-length IL-17A; rhIL-17F, recombinant human ILA-17F; FL-IL-17F, full-length 
IL-17F; FL-mutant, full-length IL-17F mutant. 
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4.3 Discussion 

Western blot analysis confirmed that following transient transfection of 293T cells, IL-17 proteins 

were correctly expressed in vitro and the expressed proteins retained their ability to bind to their 

corresponding antibodies. IL-17A is a disulfide-linked, homodimeric, variably glycosylated, secreted 

glycoprotein with a molecular mass of 35 kDa (107). An N-linked glycosylation site on human IL-17A 

was first identified after purification of the protein revealed two bands, one at 15 KDa and another 

at 20 KDa. In keeping with this, 293T cells expressed human full-length IL-17A proteins generated 

similar bands at 15kDa and 20kDa. Human full-length IL-17F and IL-17F mutant and mouse full-

length IL-17 proteins were also glycosylated and were confirmed to be expressed correctly. 

Biological latency of LAP cytokines is dependent on the release of cytokine domain by the action of 

MMP. It was therefore essential to first confirm not only the correct expression of LAP-IL-17 proteins 

but also their ability to undergo cleavage into intact LAP and IL-17 domains by the action of MMP. 

Western blot analysis confirmed that LAP-IL-17 proteins were expressed correctly and could be 

cleaved into intact LAP and IL-17 domains by MMP-1. The quantitation analysis of expressed 

proteins showed that LAP-IL-17 proteins were expressed and secreted in cell supernatants in two to 

six-fold higher concentrations than full-length IL-17 proteins. These results indicate that modifying a 

cytokine into LAP-cytokine enhances its in vitro expression significantly. Similarly, in vivo expression 

of IL-17 proteins in C57BL/6 and SCID mice (refer Sections 6.2.1 and 6.2.2 and Figs. 6.1 and 6.2) 

showed a 2.2-fold higher expression of LAP-IL-17F mutant and a 1400-fold higher expression of LAP-

IL-17A than their full-length counterparts. A higher in vitro and in vivo expression of LAP-IL-17 

proteins seems to be related to a greater stability of LAP-proteins. The reason for this is not exactly 

known but we think it is related to either enhanced secretion of LAP proteins and/or a reduction in 

their degradation due to interference with their ability to bind to their cognate receptors. Our group 

has previously reported that in vivo half-life of LAP-IFN-β in DBA/1 mice was 37-fold higher than 

naïve IFN-β. These observations imply that LAP-cytokines due to their higher level of expression and 

prolonged half-life are likely to be superior therapeutics than conventional cytokine-based therapies. 
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Existence of IL-17A/IL-17F heterodimers has been demonstrated in vitro and in vivo in both human 

and mouse. In this study possibility of IL-17F mutant forming a heterodimer with IL-17A and IL-17F 

was investigated by co-transfection of 293T cells with IL-17A or IL-17F plus IL-17F mutant. Although 

expression of mouse IL-17A/IL-17F mutant and IL-17F/IL-17F mutant heterodimers could be 

demonstrated, expression of human IL-17A/IL-17F mutant and IL-17F/IL-17F mutant could not be 

confirmed. It is possible that either the expressed heterodimers were not stable enough or 

homdimer formation was preferred over heterodimer formation with the mutant. However, a forced 

expression of IL-17A/IL-17F mutant heterodimer can be achieved by fusing the genes via a 

polyglycine linker (143). 

Comparison of transfection using PEI with calcium phosphate co-precipitation showed that under 

similar conditions transfection with PEI resulted in expression and secretion of higher quantities of 

IL-17 proteins. PEI also offers advantage over calcium phosphate precipitation method in terms of its 

simplicity. With PEI, the incubation time to form DNA complexes is much shorter, only 10 minutes as 

against 30 minutes with calcium phosphate, and there is no requirement for osmotic enhancement 

of DNA uptake with glycerol shock, which is often used as an adjucnt with calcium phosphate 

method.  

As the expressed proteins were not tagged, CHO-S cell supernatants containing human full-length IL-

17F mutant was purified by immunoaffinity using anti-human IL-17F antibody. The LAP domain of 

LAP-cytokines binds to heparin (434), hence LAP-IL-17F mutant was first purified using heparin 

column and then immunoaffinity purified using an anti-IL-17F antibody column. Immunoaffinity 

purification is a potent technique to separate target protein from a mixture. In this study, 

purification of human full-length and LAP-IL-17F mutant via FPLC using human anti-IL-17F antibody 

column yielded proteins which were more than 90% pure. 

To summarise, human and mouse IL-17 proteins except mouse IL-17F mutant 2 were successfully 

expressed in vitro. The correct expression of the proteins was confirmed by Western blotting. 

Immunoaffinity purified human full-length and LAP-IL-17F mutant were more than 90% pure. 
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5.1 Introduction 

The process of preclinical testing of an investigational drug requires that its biological activity is first 

tested in vitro on individual cells containing the drug target before in vivo examination in animal 

models. Developing and characterising an in vitro system that represents key features of some of the 

in vivo effects of a given therapeutic are paramount to an accurate initial prediction of its future 

clinical efficacy. 

Kawaguchi et al. (153) working in asthma reported that (H161R) IL-17F mutant, a natural variant of 

IL-17F is an antagonist of wild-type IL-17F. The IL-17F mutant blocked IL-17F induced IL-8 production 

in bronchial epithelial cells in a dose-dependent manner, inhibiting 50% of IL-17F induced IL-8 

production at equal concentrations. This inhibition reached 100% when the concentration of IL-17F 

mutant was increased to 5-fold that of IL-17F, which suggested that (H161R) IL-17F mutant is a 

competitive inhibitor of  IL-17F and the loss of its biological function was not a result of its inability 

to bind to the IL-17F receptor. However, at that time, the receptor for IL-17F had not been 

identified. It has now been shown that human IL-17A and IL-17F bind to IL-17RA/RC, a 

heteroreceptor complex of IL-17RA and IL-17RC to mediate their biological effects (173, 181). 

Although isoform and species specific differences exist in the binding affinities of the individual 

receptor components (189), both IL-17RA and IL-17RC are essential for the biological activity of IL-

17A and IL-17F (136, 435, 436).  

IL-17 induces secretion of pro-inflammatory cytokines, chemokines and growth factors in stromal 

cells such as endothelial, epithelial and fibroblast cells (96). IL-17 activates common signaling 

pathways such as NF-κB, MAPKs, C/EBPs and PI3K/JAK pathways (95, 114, 195, 437-439). Kawaguchi 

et al. (153) in their study showed that IL-17F mutant lacked the ability to activate ERK1/2 

phosphorylation in bronchial epithelial cells  

Human IL-17 has also been shown to induce biological response in murine cells. Human IL-17 induces 

secretion of IL-6 in mouse stromal cells (440, 441). It has also been demonstrated that human IL-17A 

and IL-17F are able to bind to mouse IL-17RA and IL-17RC (181). 
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5.1.1 Aims 

1. Examine in vitro biological activity of human and mouse IL-17F mutants.  

2. Develop a novel luciferase reporter system to assess biological activity of human and mouse 

IL-17. 
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5.2 Results 

5.2.1 Human IL-17F mutant lacks the ability to induce secretion of IL-6 in human and 

mouse fibroblast cells 

Biological activity of human IL-17 is most commonly evaluated by assessing production of IL-6 by IL-

17 stimulated human foreskin fibroblasts and mouse embryonic fibroblasts. These bioassays were 

therefore used to assess in vitro biological activity of human IL-17F mutant. First, the biological 

activity of full-length IL-17F mutant was assessed by analysing induction of IL-6 secretion in HFFF2 

and 3T3 cells in comparison with commercial recombinant or 293T cell expressed full-length IL-17A 

and IL-17F as positive controls (Figs. 5.1A and 5.1B). The results demonstrated that unlike IL-17A and 

IL-17F, IL-17F mutant was unable to induce the secretion of IL-6 in these cells, which confirmed that 

IL-17F mutant lacked the ability to stimulate secretion of IL-6 in both human and mouse fibroblast 

cells. 

 

5.2.2 Human IL-17F mutant inhibits IL-17A induced IL-6 secretion in human and mouse 

fibroblast cells 

After establishing that IL-17F mutant was unable to induce IL-6 secretion in fibroblast cells,, the 

hypothesis that IL-17F mutant is an inhibitor of IL-17A was tested by co-stimulating HFFF2 and 3T3 

cells together with IL-17A and IL-17F mutant. HFFF2 cells were co-stimulated with rhIL-17A at a 

constant concentration of 25ng/ml plus 2-fold serially diluted 293T cell supernatants containing IL-

17F mutant at the starting concentration of 25ng/ml (Fig. 5.2A). 3T3 cells were co-stimulated with a 

constant 50μl volume of 293T cells supernatant containing human full-length IL-17F mutant plus 2-

fold serially diluted 1μg/ml rhIL-17A (Fig. 5.2B). In equal concentrations of 25ng/ml, IL-17F mutant 

led to a 62% decrease in IL-17A induced secretion of IL-6 in HFFF2 cells. Keeping the concentration of 

IL-17A constant at 25ng/ml and serially decreasing the concentration of added IL-17F mutant led to a 

progressive increase in IL-17A induced secretion of IL-6 confirming that IL-17F mutant competitively 

inhibited IL-17A. In keeping with results in human fibroblast cells, human IL-17F mutant was also 
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able to inhibit human IL-17A induced IL-6 secretion in 3T3 cells. Taken together these results confirm 

the hypothesis that the human IL-17F mutant is an inhibitor of IL-17A. 
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Figure 5.1 Human IL-17F mutant is unable to induce secretion of IL-6 in HFFF2 and 3T3 cells. (A) 1 x 
104 HFFF2 cells and (B) 5 x103 3T3 cells were stimulated with 2-fold serial dilution of 293T cells 
supernatants containing the expressed human full-length IL-17F mutant in parallel with (A) 293T 
cells expressed FL-IL-17A and -IL-17F proteins or (B) commercial rhIL-17A and IL-17F at the starting 
concentration of 1μg/ml. HFFF2 cells were also stimulated with rhIL-1β 10ng/ml as a positive 
control. Twenty four hours post-stimulation the induced secretion of human IL-6 in HFFF2 cells and 
mouse IL-6 in 3T3 cells was analysed by ELISA. Unlike IL-17A and IL-17F, IL-17F mutant was unable to 
induce the secretion of IL-6. IL-17A induced a significantly higher secretion of IL-6 in HFFF2 but not in 
3T3 cells. * (p<0.05), ** (p<0.005); HFFF2, human foetal foreskin fibroblasts; 3T3 cells, mouse foetal 
fibroblasts; rhIL-1, recombinant human IL-1; rhIL-17A, recombinant human IL-17A; rhIL-17F, 
recombinant human IL-17F; FL-IL-17A, full-length IL-17A; FL-IL-17F, full-length IL-17F; FL-IL-17F 
mutant, full-length IL-17F mutant. 
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Figure 5.2 Human IL-17F mutant inhibits IL-17A induced IL-6 secretion in HFFF2 and 3T3 cells. (A) 1 
x104 HFFF2 cells were co-stimulated with 25ng/ml rhIL-17A and two-fold serially diluted 293T cell 
supernatant containing 25ng/ml FL-IL-17F mutant and (B) 5 x103 3T3 cells were co-stimulated with 
two-fold serially diluted 1μg/ml rhIL-17A with or without 50μl 293T cells supernatants containing 
human IL-17F mutant and analysed for induced secretion of IL-6 by ELISA. (A) In equal 
concentrations of 25ng/ml FL-IL-17F mutant led to a 62% decrease in IL-17A induced IL-6 secretion. A 
serial reduction in the concentration of added IL-17F mutant led to the corresponding increase in the 
induced secretion of IL-6 by IL-17A. (B) Similar to HFFF2 cells, human IL-17F mutant inhibited IL-17 
induced IL-6 secretion in 3T3 cells. Taken together, these findings imply that IL-17F mutant is an 
inhibitor of IL-17A. *p < 0.05; HFFF2 cells, human foetal foreskin fibroblast cells; 3T3 cells, mouse 
embryonic fibroblasts; rhIL-17A, recombinant human IL-17A; FL-IL-17F mutant, full-length IL-17F 
mutant; medium, complete DMEM. 
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5.2.3 In vitro biological effects of IL-17F mutant are specific to its biological activity 

Transiently transfected 293T cell supernatants, in addition to the expressed proteins also contain 

multiple other substances including impurities and non-specific inhibitors. It was therefore possible 

that one of the non-specific inhibitors rather than IL-17F mutant was responsible for the apparent IL-

17A inhibition by the mutant. The specificity of biological activity of IL-17F mutant was therefore 

assessed in several ways. For example, by examining capability of IL-17F mutant to bind to IL-17 

receptor, by repeating the assays of biological activity using immunoaffinity purified IL-17F mutant 

and additionally assessing whether biological effects of IL-17F mutant could be reversed in the 

presence of a neutralising anti-IL-17F antibody. In addition, modulation of ERK1/2 signaling by IL-17F 

mutant was also analysed.  

 

5.2.3a IL-17F mutant binds to IL-17RC 

Human IL-17A and IL-17F bind to IL-17RA/IL-17RC, a heteroreceptor complex and require both the 

receptor components to mediate their biological activity. Human IL-17F however binds to IL-17RC 

with a much stronger affinity than IL-17RA where as human IL-17A binds to both IL-17RA and IL-17RC 

with an equal affinity (181). Based on these observations, ability of IL-17F mutant to bind to IL-17RC 

was assessed using a commercially available functional ELISA (described in detail in Chapter 2, 

Section 2.3.1a). As high concentrations of IL-17F mutant were required for the assays, 293T cells 

supernatants containing IL-17F mutant and full-length IL-17A (used as control) were first 30-fold 

concentrated using a Centricon centrifugal filter device (refer Chapter 2, Section 2.2.2). The results 

confirmed that human IL-17F mutant was able to bind to IL-17RC although the strength of its binding 

to IL-17RC was 1.4-fold less than full-length IL-17A (Fig.5.3). This finding provided an initial 

circumstantial evidence for the specificity of biological activity of IL-17F mutant. 
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Figure 5.3 Human IL-17F mutant binds to IL-17RC. A competitive binding inhibition assay of 30-fold 
concentrated 293T cell supernatants containing human FL- IL-17F mutant and - IL-17A to human IL-
17RC was performed using functional ELISA (Chapter 2, Section 2.3.1a). In brief, a mixture of hIL-
17RC at the final concentration of 100ng/ml or binding buffer (control) and 3-fold serially diluted 
human FL-IL-17A or FL-IL-17F mutant at the starting final concentration of 2μg/ml were incubated at 
500rpm for 2 hours at room temperature and captured with 10μg/ml anti-polyhistidine and 
detected with 3μg/ml anti-human IL-17A or IL-17F antibody.The results confirmed that IL-17F 
mutant was able to bind to IL-17RC but its strength of binding to the receptor was 1.4-fold less than 
IL-17A. FL-IL-17A, full-length IL-17A; FL- IL-17F mutant, full-length IL-17F mutant; OD, optical density.  
 

 

5.2.3b Immunoaffinity purified IL-17F mutant is unable to stimulate IL-6 secretion and ERK1/2 

activation in HeLa cells 

In order to confirm the specificity of biological activity of IL-17F mutant, unwanted impurities 

including non-specific inhibitors were eliminated from the transiently transfected CHO-S cell 

supernatant containing IL-17F mutant by immunoaffinity purification (Chapter 4, Section 4.2.2).  

Besides fibroblasts, IL-17 also induces the secretion of IL-6 in epithelial cells (442). IL-17 has been 

shown to induce IL-6 and also upregulate ERK1/2 phosphorylation in HeLa, a human cervical 

epithelial cell carcinoma cell line (443). HeLa instead of HFFF2 cells were used for this part of the 

study mainly because growth and expansion of HFFF2 cells was very slow. HeLa cells were stimulated 

with immunoaffinity purified IL-17F mutant and induced secretion of IL-6 and ERK1/2 activation in 

cell lysates were analysed (Chapter 2, Sections 2.3.1b and 2.3.1c). Based on a time course analysis 
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study by Kawaguchi et al. which showed that IL-17 induced phosphorylation of ERK1/2 in primary 

bronchial epithelial cells reached a maximum at approximately 20 minutes and returned to baseline 

levels by 60 minutes (444), ERK1/2 phosphorylation was analysed after stimulation of HeLa cells for 

20 minutes. 

As shown in the Fig. 5.4A, immunoaffinity purified IL-17F mutant failed to induce the secretion of IL-

6 in HeLa cells. Furthermore, unlike recombinant IL-17A and IL-17F, after 20 minutes of stimulation, 

immunoaffinity purified IL-17F mutant was unable to activate ERK1/2 phosphorylation (Fig. 5.4B). 

These findings taken together with the results of experiments described in the Sections 5.2.1 and 

5.2.3a confirmed that inability of IL-17F mutant to stimulate IL-6 secretion in epithelial or fibroblasts 

was specific to its biological activity and not merely due to the lack of binding to IL-17R or presence 

of non-specific inhibitor(s) in 293T cell supernatants. 
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Figure 5.4 Immunoaffinity purified IL-17F mutant is unable to induce IL-6 secretion and ERK1/2 
activation in HeLa cells. (A) and (B) 1 x 104 HeLa cells were stimulated with 100ng/ml and 10ng/ml 
immunoaffinity purified IL-17F mutant in parallel with rhIL-17A and IL-17F and analysed for secretion 
of IL-6 and activation of ERK1/2. 10ng/ml rhIL-1 was used as a positive control. Unlike IL-17A and IL-
17F, immunoaffinity purified IL-17F mutant was unable to induce secretion of IL-6 and 
phosphorylate ERK1/2 in HeLa cells. PhosphoERK1/2 data represents percentage of total ERK1/2 that 
was phosphorylated (refer Chapeter 2, Section 2.3.1d). Both these assays have been done only once 
and the graphs therefore do not contain error bars. rhIL-17A, recombinant human IL-17A; rhIL-17F, 
recombinant human IL-17F; rhIL-1, recombinant human IL-1; IL-17F mutant, immunoaffinity purified 
human full-length IL-17F mutant; medium, complete RPMI. 
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5.2.3c Inhibition of IL-17A by immunoaffinity purified IL-17F mutant is reversed by a neutralising 

anti-IL-17F antibody 

The biological specificity of IL-17F mutant was further confirmed by assessing whether its biological 

effects could be reversed in the presence of a neutralising anti-IL-17F antibody. HeLa cells were co-

stimulated with rhIL-17A plus immunoaffinity purified IL-17F mutant with or without 10μg/ml 

neutralising anti-IL-17F antibody. In equal concentration of 100ng/ml, IL-17F mutant led to a 72% 

decrease in IL-17A induced IL-6 secretion and this could be reversed by a neutralising anti-IL-17F 

antibody (Fig. 5.5). These findings confirmed that inhibition of IL-17A induced IL-6 secretion by IL-17F 

mutant is specific to its biological activity.. 
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Figure 5.5 Inhibition of IL-17A by immunoaffinity purified IL-17F mutant is reversed by a 
neutralising anti-IL-17F antibody. HeLa cells were co-stimulated with 100ng/ml rhIL-17A or IL-17F 
plus immunoaffinity purified IL-17F mutant with or without 10μg/ml neutralising anti-IL-17F 
antibody. 10ng/ml rhIL-1 was used as a positive control. IL-17F mutant led to a 72% decrease in IL-
17A induced IL-6 secretion and this decrease in IL-6 was reversed by a neutralising anti-IL-17F 
antibody, thus confirming that the inhibition of IL-17A by IL-17F mutant is specific to its the 
biological activity. rhIL-17A, recombinant human IL-17A; rhIL-17F, recombinant human IL-17F; rhIL-1, 
recombinant human IL-1; IL-17F mutant, immunoaffinity purified human full-length IL-17F mutant; 
medium, complete RPMI. 
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5.2.4 Treatment with MMP-1 releases IL-17 activity from latent LAP-IL-17 molecules   

In order to investigate the release of biological activity of LAP-IL-17 proteins, HFFF2 cells were 

stimulated with untreated or MMP-1 treated 293T cell supernatants containing the expressed 

human LAP-IL-17 proteins for 24 hours and analysed for the induced secretion of IL-6. As shown in 

the Fig. 5.6, IL-6 secretion was significantly higher when cells were stimulated with MMP-1 pre-

treated than untreated LAP-IL-17 proteins. These results indicate that the biological activity of LAP-

IL-17 is released in the presence of MMP. The unexpected finding of stimulation of IL-6 secretion by 

MMP-1 pre-treated LAP-IL-17F mutant seems to be related to LPS contamination of in-house MMP-1 

that was expressed in E. coli. 
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Figure 5.6 Biological latency of human LAP-IL-17 proteins is released by MMP. 1 x 104 HFFF2 cells 
were stimulated with MMP-1 treated and untreated 293T cells supernatants containing human LAP-
IL-17 proteins and analysed for IL-6 secretion by ELISA. MMP-1 treatment of LAP-IL-17 proteins 
resulted in a significant increase in the secretion of IL-6 than untreated LAP-IL-17 proteins implying 
that biological activity of LAP-IL-17 proteins is released by the action of MMP. *p<0.05, **p<0.005, 
***p<0.0005; HFFF2, human foetal foreskin fibroblasts; FL-IL-17A, full-length IL-17A; FL-IL-17F, full-
length IL-17F; MMP-1, matrix metalloprotease 1; medium, complete Dulbecco’s modified eagle 
medium. 
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5.2.5 IL-17 is unable to activate luciferase in 57A HeLa cells 

IL-17 activates transcription factor NF-B in HeLa cells (443). As 57A HeLa cells contain NF-B 

dependent luciferase (420), it was attempted to standardise a luciferase reporter assay in response 

to IL-17 in these cells. 

Activation of luciferase in 57A HeLa cells could not be induced even with 500ng/ml rhIL-17A (data 

not shown). Based on a study by Ruddy M et al., which reported a synergistic enhancement of IL-17 

induced IL-6 secretion in osteoclast cells with 0.2 to 2ng/ml TNF- (114), an amplification of IL-17 

induced luciferase activation was attempted by co-stimulating 57A HeLa cells with IL-17A plus 

2ng/ml mouse TNF-. However, even with TNF- amplification, activation of luciferase could not be 

induced (Fig 5.7) and therefore a luciferase reporter assay as a readout for the biological activity of 

IL-17 could not be standardised in HeLa cells.  
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Figure 5.7 IL-17 is unable to activate luciferase in 57A cells. 57A HeLa cells were co-stimulated with 

293T cell supernatants containing expressed FL-IL-17A and -IL-17F plus 2ng/ml mTNF- in an 
attempt to amplify IL-17 induced activation of luciferase. Combination of IL-17A and suboptimal 

concentration of TNF- did not induce activation of luciferase in 57A HeLa cells.FL-IL-17A, full-length 

IL-17A; FL-IL-17F, full-length IL-17F; mTNF, mouse TNF-; RLU, relative luminescent units. 
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5.2.6 IL-17 was unable to activate IL-6 promoter responsive luciferase in epithelial cells 

As IL-17 stimulated production of IL-6 in HeLa cells (Section 5.2.3b) it was decided to attempt and 

develop an IL-6 promoter responsive luciferase reporter system in response to IL-17 in HeLa cells. In 

addition, ability of IL-17 to activate IL-6 promoter responsive luciferase in 293T cells was also 

examined (Chapter 2, Section 2.3.1g). This system however produced a very high background 

activity. 

For developing an IL-6 promoter responsive luciferase assay in HeLa cells, the cells were stably 

transfected with a plasmid expression vector containing IL-6 promoter responsive luciferase 

(Chapter 2, Section 2.3.1g). However, none of the eleven clones selected with Blasticidin were 

responsive to IL-17.  

 

 

5.2.7 Mouse IL-17F mutant 1 but not IL-17F mutant 3 binds to IL-17RC 

Of the three mouse analogues of human IL-17F mutant that were constructed, only mouse IL-17F 

mutant 1 and mutant 3 were further analysed. Mouse IL-17F mutant 2 could not be expressed in 

vitro and therefore could not be further examined. 

Ability of mouse IL-17F mutants to bind to mouse IL-17 receptor was first assessed. Mouse IL-17F 

binds to both mouse IL-17RC and IL-17RA. IL-17RC binding affinities of mouse IL-17F mutants 1 and 3 

were analysed using a commercially available functional ELISA (Chapter 2, Section 2.3.2a). The 

results showed that mouse IL-17F mutant 1 but not mutant 3 could bind to IL-17RC (Fig. 5.8). The 

binding strength of IL-17F mutant 1 to IL-17RC was 1.75-fold higher than commercial rmIL-17F, 

which in turn was 1.73-fold higher than 293T cells expressed full-length IL-17F. These results showed 

that mouse IL-17F mutant 1 but not mutant 3 was able to bind to mouse IL-17RC. 
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Figure 5.8 Mouse IL-17F mutant 1 but not IL-17F mutant 3 binds to IL-17RC. Ability of mouse FL-
IL-17F mutants 1 and 3 to mouse IL-17RC was analysed by functional ELISA determining 
competitive binding inhbition as described in Chapter 2, Section 2.3.2a. IL-17F mutant 1 but not 
IL-17F mutant 3 could to bind to IL-17RC. The strength of binding of IL-17F mutant 1 to IL-17RC 
was 1.75-fold higher than rmIL-17F, which in turn was 1.73-fold higher than 293T cells expressed 
FL-IL-17F. FL-IL-17F; full-length IL-17F; rmIL-17F, recombinant mouse IL-17F; FL-IL-17F mutant 1, 
full-length IL-17F mutant 1; FL-IL-17F mutant 3, full-length IL-17F mutant 3; OD, optical density. 
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5.2.8 Mouse IL-17F mutant 1 is an agonist of IL-17 

Mouse IL-17F mutants 2 and 3 were not further examined because the mutant 2 could not be 

expressed in vitro and the mutant 3 was unable to bind to IL-17RC.   

Similar to human IL-17, mouse IL-17 stimulates secretion of IL-6 in stromal cells (445). Biological 

activity of IL-17F mutant 1 was assessed by stimulating mouse embryonic fibroblasts, 3T3 cells and 

analysing the induced secretion of IL-6. Mouse IL-17F mutant 1 unexpectedly resulted in stimulation 

of IL-6 secretion in 3T3 cells, which was significantly higher than that induced by IL-17A and IL-17F, 

p<0.005 (Fig. 5.9). These results imply that mouse IL-17F mutant 1 is an agonist rather than 

antagonist of IL-17.  
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Figure 5.9 Mouse IL-17F mutant 1 is an agonist of IL-17. 5x103 3T3 cells were stimulated with 293T 
cell supernatant containing the expressed mouse full-length I IL-17F mutant in parallel with IL-17A 

and IL-17F and the induced secretion of IL-6 was by analysed by ELISA. 25ng/ml rmTNF- was used 
as a positive control. IL-17F mutant 1 unexpectedly stimulated the secretion of IL-6, which was 
significantly higher than that induced by IL-17A and IL-17F (p<0.005). ** p<0.005; 3T3, mouse 
embryonic fibroblasts; FL-IL-17A, full-length IL-17A; FL-IL-17F, full-length IL-17F, FL-IL-17F mutant 1, 

full-length IL-17F mutant 1; mTNF, mouse TNF-; medium, complete DMEM.  
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5.2.9 Biological latency of mouse LAP-IL-17 proteins is released by MMP 

Release of biological activity of mouse LAP-IL-17 proteins was assessed using the protocol same as 

that was used for human LAP-IL-17 proteins. 3T3 cells were stimulated with 293T cell supernatants 

containing mouse full-length IL-17 proteins, untreated or MMP-1 treated LAP-IL-17 proteins and 

analysed for the induced secretion of IL-6 (Fig. 5.10). Untreated LAP-IL-17A and -IL-17F proteins 

although induced a secretion of IL-6 that was higher than that induced by medium alone, it was 

significantly less than that induced by their corresponding full-length IL-17 proteins. MMP-1 

treatment of LAP-IL-17A and IL-17F proteins resulted in a significant increase in the secretion of IL-6. 

These results confirmed that biological activity of LAP-IL-17 proteins can be released by MMP. 

Interestingly, IL-6 secretion induced by untreated LAP-IL-17F mutant 1 was significantly higher than 

that induced by full-length IL-17F mutant 1, which further increased with MMP-1 treatment 

(p<0.0005)..  
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Figure 5.10 Biological activity of mouse LAP-IL-17 proteins is released by MMP. 5x103 3T3 cells 
were stimulated with 293T cell supernatants containing the expressed mouse full-length IL-17 
proteins, and untreated or MMP-1 treated LAP-IL-17 proteins and induced secretion of IL-6 was 

analysed by ELISA. 10ng/ml rmTNF- was used as a positive control. MMP-1 treatment of LAP-IL-17 
proteins resulted in a significant increase in the induced IL-6 secretion implying that biological 
activity of LAP-IL-17 proteins is released by MMP. Stimulation of IL-6 secretion by MMP-1 untreated 
LAP-IL-17 proteins seems to be related to the presence of endogenous MMP-1 in 293T cells 
supernatants. * p<0.05; **p<0.005; ***p<0.0005; 3T3, mouse embryonic fibroblasts; FL-IL-17A, full-
length IL-17A; FL-IL-17F, full-length IL-17F; FL-IL-17F mutant 1; full-length IL-17F mutant 1; rmTNF, 

recombinant mouse TNF-; medium, complete Dulbecco’s modified eagle medium.  
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5.2.10 A novel IL-6 promoter responsive luciferase reporter system to assess biological 

activity of mouse IL-17 is developed and standardised 

Murine IL-17 induces production of a number of cytokines and chemokines in macrophage cells 

(446). Jovanovic et al. have shown that IL-17 induces NF-B in human macrophage cells (106). Raw 

264.7 cells, a mouse macrophage cell line which was previously selected in G418 to express an NF-B 

driven luciferase construct (kindly provided by Dr. Vessillier, BJRU) were stimulated with mouse IL-17 

proteins for 24 hours and the cell lysates were analysed for luciferase activity. The results showed 

that IL-17 did not activate luciferase in these cells although lipopolysaccharide (LPS) used as a 

positive control was able to activate luciferase in these cells (data not shown). A NF-B driven 

luciferase reporter assay as a readout for biological activity of mouse IL-17 therefore could not be 

developed in Raw 264.7 cells. 

Development and standardisation of a IL-6 promoter responsive luciferase assay was therefore 

attempted. First, DBA/1 mouse fibroblast cells were stably transfected with a plasmid expression 

vector containing IL-6 promoter responsive luciferase (Chapter 2, Section 2.3.2c). However, 

stimulation of these cells even with 500ng/ml rmIL-17A did not result in the activation of IL-6 

promoter responsive luciferase (data not shown). The cells were then stimulated with IL-17 in 

combination with a small amount of TNF- to see whether synergistic activity of these two cytokines 

could lead to stimulation of IL-6 promoter responsive luciferase. 

As shown in the Fig. 5.11, addition of 2ng/ml rmTNF- to mouse IL-17A and IL-17F led to a 

synergistic activation of IL-6 promoter responsive luciferase in DTF cells. Although, not used here, a 

chequerboard experiment using different concentrations of TNF- and IL-17 would have ideal to 

demonstrate the synergistic activation of IL-6 by TNF- and IL-17 together. As luciferase reporter 

assays are sensitive yet simple and efficient assay systems, use of herewith developed and 

standardised novel IL-6 promoter responsive cell culture luciferase reporter system would allow an 

easy testing of biological activity of mouse IL-17. 
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Figure 5.11 DTF cells stably transfected with IL-6 promoter driven luciferase are responsive to 

mouse IL-17A plus 2ng/ml TNF-. DTF cells were stably transfected with pGL2 containing IL-6 
promoter responsive luciferase under Blasticidin selection (Chapter 2, Section 2.3.2c). The stably 
transfected DTF cells were stimulated with 293T cells supernatants containing expressed mouse FL-

IL-17A or –IL-17F alone or in combination with 2ng/ml rmTNF- for 6 hours and cell lysates analysed 

for luciferase activity. Addition of suboptimal concentrations of rmTNF- resulted in a synergistic 
amplification of induction of luciferase activation by IL-17A and IL-17F. ***p<0.0005; FL-IL-17A, full-
length IL-17A; FL-IL-17F, full-length IL-17F, medium, 0.5% FBS containing DMEM; RLU, relative 
luminescent unit. 
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5.3. Discussion 
 

In vitro functional assays showed that in equal concentrations, human (H161R) IL-17F mutant 

reduced IL-17A induced secretion of IL-6 by more than 50% in HFFF2, 3T3 and HeLa cells. The 

inhibition of IL-17A by IL-17F mutant was reversed in the presence of a neutralising anti-IL-17F 

antibody. Although not used in this experiment, use of a control IgG to demonstrate that reversal of 

IL-17A induced reduction in secreted IL-6 was achieved by anti-IL-17F neutralising antibody but not 

the control IgG would have been highly desirable to further confirm the specificity of biological 

activity of IL-17F mutant. The mutant on its own was unable to induce secretion of IL-6 in all the 

three cell lines and lacked the ability to activate ERK1/2 in HeLa cells. Taken together these results 

confirm the hypothesis that human (H161R) IL-17F mutant is an inhibitor of IL-17A. Inhibition of IL-

17F but not IL-17A by IL-17F mutant has been previously reported (153). This study for the first time 

demonstrates an additional inhibition of IL-17A by the mutant. IL-17A is the major proinflammatory 

IL-17 cytokine and 30-100 times more potent than IL-17F (143). An inhibition of IL-17A by IL-17F 

mutant is likely to result in a therapeutically effective suppression of IL-17 mediated inflammation in 

RA and similar autoimmune conditions. All the three mouse analogues of human IL-17F mutant that 

were developed for in vivo investigation proved unsuitable for testing in CIA mice. The RA 

synovium/SCID model would have allowed direct targeting of human RA tissue by human IL-17F 

mutant but suitable RA synovial samples could not be obtained. 

This part of the study also demonstrated that IL-17F mutant is able to bind to IL-17RC. IL-17A and IL-

17F bind to a heteroreceptor complex IL-17RA/RC and require both the receptor to mediate 

their signaling effects (136, 435, 436). In contrast to IL-17RC, which binds both IL-17A and IL-17F 

with a high affinity, IL-17RA binds IL-17A effectively but binds IL-17F with 1000-fold lower affinity 

(447). Binding of IL-17F mutant to IL-17RA was not examined. However, irrespective of whether or 

not IL-17F mutant binds to IL-17RA, demonstration of its binding to IL-17RC suggests that the mutant 

would be able to inhibit both IL-17A and IL-17F mediated signaling effects. While, either anti-IL-17RA 

or anti-IL-17RC antibody resulted in a significant reduction in in vitro biological activity of IL-17A and 
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IL-17F (447), a soluble form of IL-17RC but not IL-17RA blocked binding of both IL-17A and IL-17F, 

and inhibited the signaling effects in response to both the cytokines (181). It has been shown that in 

the absence of IL-17RC, IL-17A and IL-17F are unable to activate downstream pathways (173, 181). 

IL-17F mutant would compete with both IL-17A and IL-17F for binding to IL-17RC and therefore 

would inhibit both IL-17A and IL-17F mediated signaling effects.  

The receptor binding assays of mouse IL-17F mutants showed rather unexpected results (IL-17F 

mutant 2 due to undetectable expression in vitro was not examined). Interestingly, the strength of 

affinity of the mouse IL-17F mutant 1 s analysed by a competitive binding inhibition ELISA was 1.75-

fold higher than wild-type IL-17F whereas mouse IL-17F mutant 3 did not bind to IL-17RC at all. 

These changes in receptor binding affinity of mouse IL-17F mutants seem to be related to the fact 

that the mutations involved an important receptor binding site of IL-17F (179). Substitution of 

Glutamine by Arginine in mouse IL-17F mutant 1 caused a gain of function mutation resulting in 

enhancement of its receptor binding affinity, whereas deletion of the last 4 amino acids in the 

truncated IL-17F mutant 3 resulted in the loss of receptor binding affinity. In line with the results of 

receptor binding, mouse IL-17F mutant 1 stimulated rather than inhibited IL-6 secretion from 3T3 

cells. All the three mouse analogues of human IL-17F mutant thus displayed either immunological or 

biological properties that were contrary to those expected. 

The functional assays demonstrated that MMP-1 pre-treated LAP-IL-17 proteins induced significantly 

higher secretion of IL-6 than naïve LAP-IL-17 proteins, thus confirming in vitro release of biological 

latency of human and mouse LAP-IL-17 by MMP. Stimulation of fibroblast cells with MMP-1 pre-

treated LAP-IL-17F mutant unexpectedly resulted in induction than inhibition of IL-6 secretion, which 

seems to be related to LPS contamination of in-house MMP-1 that was expressed in E. coli. Also, the 

biological activity of naïve LAP proteins was higher than that induced by medium alone. 293T cells 

contain endogenous MMPs, which seem to be responsible for partial release of biological activity of 

naïve LAP-IL-17 proteins. The LAP cytokine approach was pioneered in our laboratory first using IFN-

 and since has been validated for a number of other cytokines and small molecules including MSH-α 
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and VIP (355). Use of LAP-cytokine allows targeting of biological effects of cytokine-based therapies 

to the sites, where MMPs are overexpressed. In addition, LAP-cytokine approach offers other 

advantages such as significant enhancement in in vitro and in vivo expression of a given cytokine as 

shown in this study and a significant prolongation of in vivo half-life as shown previously. Half-life of 

LAP-IFN- was thirty-seven fold higher than naive IFN- and its therapeutic efficacy was superior to 

IFN-β in CIA mice (353). Similarly, in vivo therapeutic effects of LAP-MSH were superior to free MSH 

in a peritonitis mouse model (355).  

A novel IL-6 promoter responsive luciferase reporter system to analyse biological activity of mouse 

IL-17 was developed and standardised. DTF cells (DBA/1 mouse fibroblasts) were stably transfected 

withIL-6 promoter responsive luciferase. Although not used in this study, a chequerboard 

experiment using different concentrations of rmTNF-α and IL-17A or IL-17F would have been ideal to 

demonstrate the observed synergy between IL-17A and TNF-α. The cells demonstrated a synergistic 

activation of luciferase in response to mouse IL-17A and IL-17F in combination with 2ng/ml TNF- 

but not when stimulated by IL-17A or IL-17F alone. It has been shown that IL-17 induces secretion of 

IL-6 primarily by activating the transcription factor C/EBP- and , having a minimal activity on NF-

B, but in combination with TNF-, even in suboptimal concentrations can induce a much greater 

secretion of IL-6 by synergistically activating C/EBD-δ and β (114). In addition, stabilisation of mRNA 

of IL-6 and other TNF- target genes by IL-17 further enhances the synergism between the two 

cytokines (185). 

Development and standardisation of anIL-6 promoter driven luciferase reporter system in 293T and 

HeLa cells to assess biological activity of human IL-17 was not successful. Similarly, standardisation 

of a NF-B responsive luciferase reporter system in 57A HeLa cells (420) and Raw 264.7 cells (mouse 

macrophage cells stably transfected with NF-B driven luciferase) to assess biological activity of 

human and mouse IL-17 could not be achieved. All these cell lines failed to activate luciferase in 

response to IL-17. Shen et al. have previously reported a lack of NF-B-linked luciferase activity in 

response to IL-17 in a number of mammalian cell lines (135). 
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To conclude, in vitro biological assays confirmed the hypothesis that human IL-17F mutant is an 

inhibitor of IL-17A. The study also demonstrated that in vitro biological activity of LAP-IL-17 proteins 

can be released by MMP. A novel IL-6 promoter responsive luciferase reporter system to assess 

biological activity of mouse IL-17 was successfully developed and standardised. 
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HUMAN IL-17 TRANSGENE IN MOUSE MODELS  
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6.1 Introduction 

In vitro studies in primary cells or cell lines, although extremely important, they do not fully 

reproduce the situation in vivo, which is much more complex and less well defined. It is therefore 

important to test preclinical efficacy of an investigational therapy in vivo in animal models of disease 

before clinical testing in humans. CIA in mice bears close resemblance to RA (448, 449) and is well 

recognised for its robustness in predicting efficacy of anti-TNF therapy (450). This model of RA was 

initially selected for in vivo testing of IL-17F mutant but could not be pursued due to unexpected in 

vitro properties of the mouse analogues of human IL-17F mutant that were constructed for this 

purpose. Mouse IL-17F mutant 1 displayed IL-17 agonist rather than antagonist activity whereas in 

vitro expression of IL-17F mutant 2 could not be detected at all. The third mouse IL-17F mutant 

failed to bind to mouse IL-17RC.  

The RA synovium/SCID mouse model of RA provides a unique opportunity to directly examine 

efficacy of therapeutics of human origin in mice implanted with human RA synovium. Koenders et al. 

(416) have confirmed the validity of this model in predicting therapeutic efficacy of currently used 

biological therapies for RA. Investigation of IL-17 inhibition in this model showed that a significant 

response to anti-IL-17 treatment was seen only in the mice which were transplanted with RA 

synovium enriched in CD3+T cells, implying that the responsiveness to anti-IL-17 is dependent on the 

presence of CD3+ T cells in a RA joint.  

Mouse stromal cells secrete IL-6 in response to human IL-17 (440, 445). In keeping with these 

observations, as described in Chapter 5, Section 5.2.1, 3T3 cells were responsive to human IL-17 and 

produced IL-6 when stimulated with human IL-17A and IL-17F. As in human fibroblast and epithelial 

cells, human IL-17F mutant was unable to induce secretion of IL-6 in 3T3 cells and inhibited human 

IL-17A induced secretion of IL-6 in these cells (Chapter 5, sections 5.2.1 and 5.2.2).  

Murine airpouch model is considered a model of synovial-like tissue inflammation (451). Airpouch 

pouch cavity formed by subcutaneous injection of sterile air into the back of a mouse is lined with 

cells that resembles the synovial membrane after 6 days (452). Injection of non-specific irritants such 
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as Carboxymethyl cellulose (CMC) into an air pouch induces an acute inflammatory response that 

can be readily evaluated by analysing the volume of exudate produced, the infiltration of cells, and 

the release of inflammatory mediators.  

Amongst non-viral approaches to gene transfer, intravenous hydrodynamic delivery (364) results in 

highest gene transfer and expression and seems to be well tolerated in rodents despite rapid 

injection of a relatively large volume of normal saline. In comparison with other physical and 

chemical methods, the procedure of intravenous hydrodynamic delivery is relatively simple and does 

not require special equipment or chemical adjuncts. Intravenous administration of plasmid DNA in 

normal saline in volume equivalent to 10% body weight rapidly over 3-5 seconds alters 

transmembrane permeability of hepatocytes by creating transient pores and allows uptake of 

injected DNA by liver cells. DNA transferred to hepatocytes then becomes available for translation 

and expression into its protein and is eventually secreted into the circulation. Due to its high 

efficiency and a non-viral nature of delivery, hydrodynamic gene delivery is under active 

investigation for human use. Hydrodynamic limb vein delivery in large research animals has 

demonstrated an efficiency that is comparable to small research animals (365) and holds a good 

promise for human use. A therapeutic gene can be delivered to an isolated limb by infusing plasmid 

DNA into a limb vein and facilitating gene transfer by the placement of a proximal tourniquet, which 

in turn will result in a transient increase in vascular pressure and aid extravasation of plasmid DNA 

(453). 

After demonstrating that human IL-17F mutant but none of the three cloned mouse IL-17F mutants 

were able to inhibit IL-17A in vitro, it was decided to examine in vivo therapeutic therapeutic efficacy 

of human IL-17F mutant in RA synovium/SCID mice model of RA. As a preliminary to this, in vivo 

expression of intravenous hydrodynamically delivered human full-length and LAP-IL-17A plasmid 

DNA and its pharmacokinetics over the two weeks period was first examined in naïve SCID mice. IL-

17A instead of IL-17F mutant was used for this part of the study as a commercial ELISA to analyse 

expression of human IL-17F in mouse serum was not available. It was also believed that due to the 
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striking similarities between IL-17A and IL-17F, the necessary information about in vivo expression of 

human IL-17F mutant transgene in mouse serum required for the future definitive experiement 

could be well obtained by using IL-17A in the preliminary experiment.  

As in vitro assays also demonstrated that human IL-17F mutant inhibited IL-17A induced secretion of 

IL-6 not only in human but also mouse fibroblast cells, it was also decided to examine in vivo 

therapeutic efficacy of human IL-17F mutant in CIA mice. Although an immune response to human 

IL-17F mutant would be inevitable in mice, the short duration, approximately 10 days of post-

treatment assessment would have still allowed the completion of CIA experiment. As a preliminary 

to this, in vivo expression of human full-length and LAP-IL-17F mutant was first examined in C57BL/6 

mice. In addition, airpouch were created over the dorsum of these mice and actute non-specific 

inflammation induced in the pouch to enable investigation of therapeutic transgene expression at 

the site of actual inflammation. After successful development and standardisation of an 

ultrasensitive ELISA (Chapeter 2, Section 2.2.2c) to analyse expression of human IL-17F in mouse 

serum, systemic gene therapy with human IL-17F mutant was used for this part of the experiment. 

As mouse airpouch model offers an opportunity to examine actue inflammatory response, number 

of neutrophils in airpouch lavage fluid, and levels of KC and IL-6 in mouse airpouch lavage exudate 

and serum were also analysed as a preliminary to investigation of therapeutic efficacy of human IL-

17F mutant in CIA mice. The results however showed that the numbers of neutrophils and levels of 

KC and IL-6 in IL-17F mutant treated group were not different than the control group of normal 

saline treated mice (data not shown). CIA experiment therefore was not pursued. 

 

6.1.1 Aims 

1. To evaluate systemic expression and pharmacokinetics of intravenous hydrodynamically 

delivered human IL-17A gene therapy in naïve SCID mice.  

2. To examine expression of intravenous hydrodynamically delivered human IL-17F mutant 

gene therapy in serum and airpouch exudate in C57BL/6 mice.  
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6.2 Results 

6.2.1 Expression of human FL- and LAP-IL-17A transgenes in naïve SCID mice 

Pharmacokinetics and in vivo expression of intravenous hydrodynamically delivered human full-

length- and LAP-IL-17 plasmid DNA were studied in naïve SCID mice as a preliminary to assessing in 

vivo therapeutic efficacy of human IL-17F gene therapy in RA synovium/SCID model of RA. Due to 

the need to use human RA tissue in RA/SCID model, it was essential to confirm that intravenous 

hydrodynamic plasmid-based gene therapy with human IL-17 led to an adequate in vivo transgene 

expression in SCID mice and that the expression of transgene was sustained for at least one week, 

before conducting the final study. Human IL-17A instead of IL-17F mutant was used for this part of 

the study as a commercial ELISA sensitive enough to detect human IL-17A but not human IL-17F in 

mouse serum was available. It was believed that due to the striking structural and functional 

similarities between IL-17A and IL-17F, the expression and pharmacokinetic characteristics of IL-17F 

mutant would be well represented by IL-17A.  

Previous observations in our laboratory have shown that 5μg/ml plasmid DNA delivered via 

intravenous hydrodynamic tail injection in mice resulted in a transgene expression that was first 

detected at 48 hours and lasted over several weeks. On the basis of these findings, naïve SCID mice 

were treated with intravenous hydrodynamically delivered 5μg/ml human full-length and LAP-IL-17A 

plasmid DNA and levels of transgene expression in mouse serum analysed at 48 hours, 1 week and 2 

weeks. The treatment had to be discontinued prematurely in 2 female mice due to technical 

difficulties. One of these female mice received 8.5μg FL-IL-17A in 1.5ml NS and another received 

only 3.5μg LAP-IL-17A in 0.7ml NS. Two mice (one male and one female) from the LAP-IL-17A treated 

group died unexpectedly; the male mouse died at the time of intravenous injection of the plasmid 

DNA and the female mouse died 30 hours post-LAP-IL-17A injection from unknown causes. The 

results (Fig. 6.1) showed that the levels of human LAP- IL-17A transgene in mice serum were 1400-

fold higher than full-length IL-17A. The serum levels of both full-length and LAP-IL-17A declined to 

20% and 2% of the baseline at the end of the first and second week respectively. 
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Figure 6.1 Expression of human IL-17 transgene in naïve SCID mice. Naïve SCID mice (n=4) were 

treated with intravenous hydrodynamic human full-length or LAP-IL-17A gene therapy and levels of 

expressed transgenes in individual mouse serum were analysed at 48 hours, 1 week and 2 weeks by 

ELISA. The expression of LAP-IL-17A was 1400- fold higher than full-length IL-17A and the levels of 

expressed transgenes declined to 20% and 2% of the baseline levels at 1 and 2 weeks period 

respectively. IL-17A, full-length IL-17A. 
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6.2.2 Expression of human FL- and LAP-IL-17 transgenes in C57BL/6 mice 

Thirty C57BL/6 mice were injected dorsally to develop an airpouch and treated with intravenous 

hydrodynamically delivery 5μg/ml human IL-17F mutant or control plasmid DNAs. Expression of 

transgene was analysed at 52 hours post-plasmid DNA administration. 

Expression of human full-length IL-17A and IL-17F mutant, administered either alone or in 

combination, and LAP-IL-17F mutant, administered in two different doses of 1μg/ml and 5μg/ml in 

mouse serum, airpouch lavage exudate and liver homogenates was analysed by human IL-17A and a 

modified human IL-17F ultrasensitive ELISA. An ultrasensitive ELISA was developed and standardised 

for detection of human IL-17F in mouse serum by using human IL-17F Duoset ELISA (R&D Systems, 

UK) in conjunction with uncoated ELISA plate and mouse diluents 4 and 5 (MSD, USA) (Chapter 2, 

section 2.2.2c). As seen in the Fig. 6.2, levels of human full-length IL-17F mutant in mouse serum and 

airpouch lavage exudate were 1000-fold higher than full-length IL-17A. The concentrations of 

expressed transgene in mouse serum following co-administration of full-length IL-17A plus IL-17F 

mutant in an equal concentration of 2.5μg/ml were 7700-fold higher and in airpouch lavage exudate 

134-fold higher on detection with anti-human IL-17F than anti-human IL-17A antibody. The levels of 

expressed LAP-IL-17F mutant in mice serum were 2.2-fold higher than full-length IL-17F mutant 

Administration of LAP-IL-17F mutant in two different doses of 1μg/ml and 5μg/ml led to a dose-

dependent expression of LAP-IL-17F mutant transgene in mice serum, airpouch lavage exudate and 

liver homogenate samples. The levels of LAP-IL-17F mutant in mouse serum, airpouch lavage 

exudate and liver homogenates following treatment with 5ug/ml LAP-IL-17F mutant were 5.2, 3 and 

2.4-fold higher than the treatment with 1ug/ml LAP-IL-17F mutant. Interestingly, only 0.35% serum 

LAP-IL-17F mutant was expressed in airpouch lavage exudate as against a 4.5% expression of serum 

full-length IL-17F mutant in airpouch lavage exudate. 
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Figure 6.2 Expression of human IL-17 transgene in C57BL/6 mice. 52 hours post- hydrodynamic 
gene delivery, levels of human IL-17 transgenes expressed in vivo were analysed in mouse serum, 
airpouch lavage fluid and liver homogenates by ELISA. Expression of IL-17A in liver homogenates was 
not examined. Levels of IL-17F mutant in serum and airpouch lavage exudat were significantly higher 
than IL-17A (p<0.05). Administration of 5μg/ml LAP-IL-17F mutant in comparison with 1μg/ml 
resulted in a significant higher expression of transgene in serum, airouch exudate and liver 
homogenates (p<0.005). Levels of transgene detected in serum following co-administration of IL-17A 
plus IL-17F mutant were significantly higher when detected with anti-human IL-17F than anti-human 
IL-17A antibody. Levels of LAP-IL-17F mutant and FL-IL-17F mutant in airpouch lavage exudate were 
only 0.35% and 4.5% of their serum levels. FL-IL-17A, full-length IL-17A; FL-IL-17F mutant, full-length 
IL-17F mutant, IL-17A/IL-17F mutant, IL-17A/IL-17F heterodimer. 
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6.3 Discussion 

Intravenous hydrodynamic injection of human full-length and LAP- IL-17 plasmid DNA constructs via 

tail vein in SCID and C57BL/6 mice resulted in a detectable expression of human IL-17 transgenes at 

protein level in mice serum and airpouch lavage exudate. These findings support the previous 

reports of a high efficiency of gene transfer achieved with this relatively simple non-viral method of 

gene delivery (454, 455).  

The levels of expressed IL-17 transgene however declined rapidly and progressively over the two 

week study period. The expression of transgene was 20% of the baseline at the end of first week and 

only 2% of the baseline after 2 weeks. Longevity of transgene expression is influenced by the 

methylation status of the plasmid vectors (456). Expression vectors produced in bacteria such as 

pcDNA3 contain numerous methylated CpG dinucleotides, which may generate a proinflammatory 

cytokine response by activating TLR 9 (457) and cause a rapid decline in the level of expressed 

transgene as seen in this study.  

It was thus demonstrated that systemic gene therapy with human full-length and LAP-IL-17 led to a 

successful expression of human IL-17 transgene in naïve SCID and C57BL/6 mice although the 

transgene levels declined rapidly over the two weeks period. The results also showed that human IL-

17F mutant was unable to suppress mouse airpouch inflammation as assessed by analysing the 

number of neutrophils and levels of KC and IL-6 in airpouch lavage fluid (data not shown). It was 

therefore decided to further investigate in vivo therapeutic efficacy of human IL-17F mutant in RA 

synovium/SCID mice model of RA. Although the levels of transgene declined rapidly, the very fact 

that these could still be detected in mouse serum at the end of two weeks would have still allowed 

the completion of the study, which required post-treatment assessment over one week period. Due 

to difficulty in obtaining suitable RA synovium samples and SCID mice, this experiment however 

could not be conducted. 

In vivo expression of IL-17F mutant transgene in serum and airpouch lavage exudate in C57BL/6 mice 

was 1000-fold higher than IL-17A. Similarly, serum and airpouch exudate levels of expressed 
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transgene following co-administration of IL-17A plus IL-17F mutant were 7700-and 135-fold higher 

when detected with anti-human IL-17F antibody than anti-human IL-17A antibody. These results 

imply that IL-17F mutant had a longer half-life in vivo and was more stable than IL-17A. It is also 

possible that the majority of the transgene expression following co-administration of IL-17A plus IL-

17F mutant was either in the form of IL-17F mutant homodimers or expressed as IL-17A/IL-17F 

mutant heterodimer which was better detected with anti-IL-17F than anti-IL-17A antibody. A 

preferred expression of IL-17F over IL-17A has been previously reported. Wright et al. (143) have 

shown that activated human CD4+ T cells secreted minimal IL-17A but 10-fold or greater IL-17F and 

Liang et al. (144) have reported a higher expression of IL-17F than IL-17A from naïve mouse CD4+ T 

cells.  

In vivo expression of LAP-IL-17A in SCID mice was 1400-fold higher than full-length IL-17A whereas 

expression of LAP-IL-17F mutant was 2.2-fold higher than full-length IL-17F mutant in C57BL/6 mice. 

Similarly, in vitro expression of LAP-IL-17A, IL-17F and IL-17F mutant proteins was two to six-folds 

higher than corresponding full-length IL-17. These results imply that modification of a cytokine as 

LAP-cytokine significantly enhances both its in vitro and in vivo expression. A significant prolongation 

of in vivo half-life of LAP-IFN-β in the order of 37-fold higher than naïve IFN-β in CIA mice has been 

previously reported (353). A LAP-cytokine approach therefore offers advantage of a superior 

expression and a prolonged half-life over naïve cytokine and a potential for reduction in the dose 

and frequency of administration of a cytokine based therapy.  

The local expression of transgenes in airpouch lavage exudate was only slight in comparison to the 

systemic expression. The levels of LAP-IL-17F mutant in airpouch lavage exudate were only 0.35% of 

its serum level as against airpouch lavage exudate levels of full-length IL-17F mutant, which were 

4.5% of its systemic levels. The less efficient migration of LAP-IL-17F locally into acutely inflamed 

airpouch does not seem to be related to its size. The molecular weight ofLAP-IL-17F mutant 

homodimer is approximately 108kDa, much lower than that of immunoglobulins, which are able to 

easily migrate through vascular endothelium. It will be of interest to investigate whether 
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thrombospondin in the basal surface of endothelial cells (458, 459) interacted with LAP domain (460) 

of LAP-IL-17F mutant and prevented its migration through the local vasculature. 

Although this study has helped in arriving at some important conclusions such as confirmation of 

efficiency of intravenous hydrodynamic plasmid injection via tail vein in achieveing an effective in 

vivo transgene expression in mice and significantly enhanced in vivo expression of LAP-IL-17 in 

comparsion to full-length IL-17, some of the key experiments to essentially investigate in vivo 

therapeutic efficacy of IL-17F mutant could not be conducted. After a successful in vivo expression of 

human full-length and LAP-IL-17 transgenes in naïve SCID mice, a further confirmation of therapeutic 

effectiveness of IL-17F mutant could not be carried out due to difficulties in obtaining suitable RA 

synovial samples. Although both human IL-17F mutant and LAP-IL-17F mutant could aslo be 

successfully expressed in C57BL/6 mice, a preliminary analysis of therapeutic efficacy of human IL-

17F mutant did not show expected results. Rather, no difference between the treatment and 

untreated group was observed. The levels of KC, IL-6 and degree of neutrophilia were almost similar 

in treatment group, positive control treated with human IL-17A and a control group of mice treated 

with normal saline alone. One would have liked to examine therapeutic efficacy of human IL-17F 

mutant in CIA mice, if the preliminary experiments in mouse airpouch model of inflammation were 

successful. It would therefore be highly desirable to examine in vivo therapeutic efficacy of human 

IL-17F mutant in RA synovium/SCID mice model. 

 

 

 

 

 

            

 



187 
 

 

 

 

 

 

 

CHAPTER VII 

 

 

 

 

 

 

 

 

 

 

 

 

GENERAL DISCUSSION 



188 
 

RA was defined as a Th1 mediated disease until the discovery of Th17 cells. Both Th1 and Th17 cells 

have been recognised in RA and the research in this important field continues. A recent study by van 

Hamburg et al. showed that Th17 but not Th1 cells cooperated with RASF in a proinflammatory 

feedback loop underscoring the importance of Th17 cells (461). In treatment-naïve, early RA 

patients, serum and SF IL-17A levels were shown to correlate strongly with DAS28, ACPA, RF and 

histopathology score (462). Increased levels of IL-17 mRNA in synovium are predictive of more 

severe joint damage progression (303). Phase I/II clinical trials of humanised anti-IL-17 monoclonal 

antibodies in RA have demonstrated therapeutic efficacy without notable side effects (339, 341). 

Likewise, in phase II clinical trials of psoriasis, neutralisation of IL-17 by a humanised anti-IL-17 

monoclonal antibody or human anti-IL-17 receptor antibody resulted in significant clinical 

improvement (463, 464). IL-17 in these studies was inhibited using either an anti-IL-17 or anti-IL-17R 

monoclonal antibody similar to using anti-TNF and other cytokine inhibiting therapies in RA (41, 465-

468). These therapies, however, cause a non-targeted inhibition of cytokines that are also needed 

for other important immune functions. This approach results in a state of generalised immune 

suppression and consequently increases the risk of systemic infections. Such unwanted side-effects 

of a cytokine-based therapy can be avoided by modifying a cytokine as a latent cytokine (353). A 

non-covalent fusion of a cytokine with LAP of TGF-β via a MMP-sensitive linker allows targeting 

biological actions of a pleiotropic cytokine to the site of active inflammation, prolongs its half-life 

and enhances its overall therapeutic efficacy (353). The aim of this study was to develop a novel 

latent IL-17 antagonist for targeted therapy of RA and examine its preclinical therapeutic efficacy in 

CIA mice via plasmid- based systemic gene therapy. 

Kawaguchi et al. (153) in their study of IL-17F polymorphism reported that (H161R) IL-17F mutant 

was an antagonist of IL-17F and protective against asthma in a Japanese population. The fact that IL-

17F is structurally and functionally similar to IL-17A but biologically 30-100 times less potent, (143, 

144, 469) suggested to us that the protective effect of IL-17F mutant in asthma was due to additional 

inhibition of IL-17A. We therefore hypothesised that (H161R) IL-17F mutant is also an inhibitor of IL-
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17A. We further hypothesised that IL-17F mutant, if modified as LAP- IL-17F mutant would be 

superior to conventional IL-17 or IL-17R inhibiting therapies in RA. 

Plasmid expression vectors encoding human full-length and LAP-IL-17F mutant were constructed and 

the proteins expressed in vitro. The results of in vitro biological assays showed that IL-17A induced 

secretion of IL-6 was inhibited by IL-17F mutant. The mutant lacked the ability to induce secretion of 

IL-6 in HFFF2, 3T3 and HeLa cells, and activate phosphorylation of ERK1/2 in HeLa cells. These 

biological effects were specific to the biological activity of IL-17F mutant as confirmed by 

demonstrating that IL-17F mutant was able to bind to IL-17 receptor and its ability to inhibit IL-17A 

was reversed in the presence of a neutralising anti-IL-17F antibody. Taken together, these findings 

confirmed the hypothesis that IL-17F mutant is an inhibitor of IL-17A (manuscript in preparation). 

The findings that IL-17F mutant was able to bind to IL-17RC but inhibited IL-17A induced secretion of 

IL-6 in fibroblast and epithelial cells suggest that IL-17F mutant is a receptor antagonist of IL-17A. 

Furthermore, as this novel inhibitor of IL-17A is a cytokine variant and not a monoclonal antibody or 

receptor fusion protein, it offers an opportunity for modifying it as LAP-IL-17F mutant for targeted 

therapy of RA. 

The targeted activity of LAP-cytokines is dependent on MMPs, which releases its biological activity 

by cleaving the linker that binds the cytokine to LAP. The release of biological activity of expressed 

LAP-IL-17 proteins by MMP was confirmed in vitro by demonstrating that naïve LAP-cytokines 

induced significantly less secretion of IL-6 than their corresponding full-length proteins but when 

pre-incubated with MMP-1, resulted in a significant increase in the induced secretion of IL-6. Use of 

LAP-IL-17F mutant in the treatment of RA is expected to provide superior therapeutic efficacy than 

inhibition of IL-17 via monoclonal antibodies or receptor fusion proteins. Our group has previously 

demonstrated that biological activity of LAP-IFN-β could be released by pre-incubation with synovial 

fluid from RA or osteoarthritis patients. The half-life of LAP-IFN-β was 37 fold higher than naive IFN-β 

and it was effective in ameliorating established CIA in mice (353). The LAP cytokine approach since 

first used for IFN- in our laboratory has been validated for a number of other cytokines and small 
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molecules including MSH-α and VIP (355). In vivo therapeutic effects of LAP-MSH were superior to 

free MSH in a peritonitis mouse model (355). Therapeutic efficacy of LAP-cytokines in the treatment 

of RA and similar autoimmune conditions, due to their targeted biological activity, prolonged half-

life and significantly enhanced in vitro and in vivo expression (as shown in this study) is expected to 

be superior to conventional cytokine inhibiting therapies. 

All the three mouse analogues of human IL-17F mutant, which were developed for the purpose of in 

vivo testing in CIA mice, exhibited unexpected immunological or biological activities. Mouse IL-17F 

mutant 1 did not inhibit but stimulated IL-6 secretion in fibroblast cells, in vitro expression of mouse 

IL-17F mutant 2 could not be detected in either transfected cells supernatant or lysate, and mouse 

IL-17F mutant 3 failed to bind to mouse IL-17RC. The crystal structure of human IL-17F bound to IL-

17RA revealed that one of the major receptor bindings sites of IL-17F is located at its C-terminal end 

(179). It seems that the site-specific point and deletion mutations, which are located within this 

important receptor binding region of IL-17F were significant enough to alter the receptor binding 

affinities. A total lack of expression of mouse IL-17F mutant 2 in vitro points towards the possibility 

of severe compromise of its stability. 

Thus, only the human IL-17F mutant construct could be assessed in vivo. RA synovium/SCID mice 

model allows a direct testing of therapeutics of human origin in SCID mice implanted with human RA 

synovium (410, 411). As a preliminary to investigating in vivo therapeutic efficacy of human IL-17F 

mutant in this model of RA, expression and pharmacokinetics of intravenous hydrodynamically 

delivered human full-length and LAP-IL-17A in naïve SCID were studied. In vivo expression of LAP-IL-

17A in mice serum was 1400-fold higher than full-length IL-17A. Similarly, in vivo expression of LAP-

IL-17F mutant in C57BL/6 mice serum was 2.2-fold higher than FL-IL-17F mutant and in vitro 

expression of LAP-IL-17 proteins was two-six-fold higher than their corresponding full-length IL-17 

proteins. An enhanced expression of LAP-cytokines, as shown in this study, in conjunction with a 

significantly prolonged half-life (353) would help decresing the dose and frequency of therapy.   
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The levels of transgene expression in SCID mice declined rapidly. The serum levels of both FL-and 

LAP-IL-17A were only 20% and 2% of the baseline at the end of first and second week respectively. 

The levels of the expressed transgene however still would have been adequate to evaluate 

therapeutic response after a week’s treatment in RA/SCID mice. The rapid decline in transgene 

expression in mice seems to be related to generation of a proinflammatory TLR induced response to 

CpG dinucleotides in pcDNA3 plasmid DNA (456, 457). Transgene expression could also be reduced 

by the CpG methylation of the promoter region in the plasmid expression vector (470). 

In vivo expression of intravenous hydrodynamically delivered human IL-17F mutant transgene at the 

site of inflammation was examined in C57BL/6 mouse airpouch inflammation. The local expression 

of human full-length and LAP-IL-17F mutant transgenes was negligible in comparison to their 

systemic levels. Interestingly, expression of IL-17F mutant in C57BL/6 mouse serum and airpouch 

lavage exudate was 1000-fold higher than IL-17A. Also, concentrations of expressed transgene 

following co-administration of IL-17A plus IL-17F mutant were 7700-fold higher in mouse serum and 

at least 134-fold higher in airpouch lavage exudate on detection with anti-IL-17F antibody than anti-

IL-17A antibody. Although this difference may be related to a superior detection of IL-17A/IL-17F 

mutant heterodimer by anti-IL-17F than anti-IL-17A detection antibody, it is more likely to be related 

to a better stability of IL-17F mutant than IL-17A. It is also possible that co-administration of IL-17A 

plus IL-17F mutant resulted in a preferred expression of IL-17F mutant homodimers. Wright et al. 

(143) have previously shown that activated human CD4+ T cells secreted minimal IL-17A but 10-fold 

or greater IL-17F. Similarly, Liang et al. (144) have demonstrated a higher expression of IL-17F than 

IL-17A in naïve mouse CD4+T cells. 

After demonstrating successful in vivo transgene expression of human IL-17 in mice following 

systemic gene therapy, an experiment to investigate in vivo therapeutic efficacy of human IL-17F 

mutant in RA synovium/SCID mice was planned but could not be conducted due to difficltly in 

obtaining suitable RA synovium samples. The readouts for in vivo therapeutic efficacy of IL-17F 

mutant included histopathology of implanted synovium for the severity of inflamamtion, mRNA 
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levels of KC, IL-6, IL-8, IL-1β and TNF- in the synovial tissue and proteins levels of KC, IL-6, IL-8, IL-1β 

and TNF- in mouse serum, which would have been comapred between FL-IL-17F mutant, LAP-IL-

17F mutant, FL-IL-17A treated group (as a positive control) and untreated group. 

A novel IL-6 promoter responsive reporter system was developed and standardised to assess 

biological activity of mouse IL-17. DTF (DBA/1 mouse fibroblasts) cells were stably transfected with 

IL-6 promoter responsive luciferase. A combination of mouse IL-17A or IL-17F and 2ng/ml TNF- but 

not IL-17A or IL-17F alone induced an activation of luciferase in these cells. It has been previously 

reported that IL-17 induces IL-6 secretion primarily by activating the transcription factor C/EBP- and 

, having a minimal activity on NF-B but IL-17 in combination with even suboptimal concentrations 

of TNF-, can induce a much greater secretion of IL-6 by synergistically activating C/EBD-δ and β 

(114). Unlike DTF cells, an IL-6 promoter responsive luciferase reporter system in HeLa and 293T cells 

did not demonstrate luciferase activation in response to human IL-17. Similarly, human and mouse 

IL-17 were unable to activate NF-B driven luciferase in 57A HeLa (420) and Raw 264.7 cells, 

previously transfected with NF-B driven luciferase. A lack of NF-B-linked luciferase activity in 

response to IL-17 in a number of mammalian cell lines has been previously reported (135).  

In conclusion, this study for the first time demonstrates that human (H161R) IL-17F mutant is an 

inhibitor of IL-17A. It was also demonstrated that modification of a cytokine as LAP-cytokine 

enhances its in vitro and in vivo expression. A novel IL-6 promoter responsive luciferase reporter 

system to assess biological activity of mouse IL-17 was developed and standardised. Lastly, 

intravenous hydrodynamic gene therapy delivered via tail vein in mice resulted in detectable levels 

of transgene in mouse serum, thus confirming that this method of in vivo gene transfer is highly 

efficient. 
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The aim of this study was to develop a novel latent IL-17 antagonist for targeted therapy of RA. The 

study has for the first time demonstrated that (H161R) IL-17F mutant, a natural inhibitor of human 

IL-17F is an additional inhibitor of IL-17A. The study has also confirmed that LAP-IL-17F mutant was 

biologically latent and that its biological activity can be released by the action of MMP. Taken 

together, the results of the study support the proposition that LAP-IL-17F mutant is likely to be an 

effective targeted therapy for RA. It will therefore be important to substantiate the findings of this 

study by examining biological effects of IL-17F mutant ex vivo in RA synovial explants and in vivo in a 

suitable preclinical model of RA. A direct in vivo testing of therapeutics of human origin is possible in 

SCID mice implanted with RA synovium (410, 411). The RA synovium/SCID therefore would be an 

ideal rodent model to study preclinical in vivo therapeutic efficacy of IL-17F mutant. As 

responsiveness to IL-17 targeted therapies in RA is dependent on rich infiltration of CD3+T cells in RA 

synovium (416), it will be important to pre-screen RA synovial samples before engrafting in mice. For 

a rapid preclinical testing, human IL-17F mutant can be delivered via intravenous hydrodynamic 

gene therapy. Therapeutic efficacy of the therapy can be assessed by analysing synovial 

inflammation, levels of IL-6 and IL-8 mRNA in engrafted synovium and IL-6 and IL-8 proteins in mice 

serum.  

Although gene therapy is an easy and quick method to test preclinical in vivo therapeutic efficacy of 

investigational and new therapies, it has its own limitations. For example, some of the problems 

encountered in the study were varied levels of transgene expression despite administration of equal 

quantity of plasmid DNA, and a rapid decline in the levels of expressed transgenes. Moreover, gene 

therapy in humans is still in experimental stages. Therefore its will be desirable to also assess 

preclinical in vivo therapeutic efficacy of IL-17F mutant delivered via protein-based therapy.  

IL-17F binds only weakly to IL-17RA. The binding affinity of human IL-17A to IL-17RA is 1000 stronger 

than that of IL-17F (181). This suggests that a heterodimer of IL-17A/IL-17F mutant would bind to IL-

17RA more strongly than IL-17F mutant homodimer and therefore mediate a more potent inhibition 

ofIL-17A than IL-17F mutant homodimer. A forced expression of IL-17A/IL-17F mutant heterodimer 
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can be achieved by fusing IL-17A to IL-17F mutant via a polyglycine linker (143). In vitro biological 

actions and in vivo therapeutic efficacy of expressed IL-17A/IL-17 F mutant then be analysed using 

the assays same as those used for IL-17F mutant homodimer. 

Finally, if human IL-17F mutant homodimer and/or IL-17A/IL-17F heterodimer are proven to be 

effective in preclinical models of RA, the findings can be translated and integrated with clinical 

research. 
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DNA sequence of human and mouse IL-17 constructs  

Shown below are the open reading frames (ORF) of DNA sequences of human and mouse full-length 

and LAP-IL-17 constructs. One letter code translation is shown for each ORF where * indicates 

termination of the translation. 

 
A1. Human FL-IL-17A 
 
 
     <SdeAI   >Bbr7I  

    <MlyI       >BbsI  

    >BspD6I     >AjuI     <SdeOSI  

    <PleI      >CchII     <NgoAVIII                     BlpI  

    |  |       ||         |                             | 

  ATG ACT CCT GGG AAG ACC TCA TTG GTG TCA CTG CTA CTG CTG CTG AGC CTG GAG GCC ATA  < 60 

  M   T   P   G   K   T   S   L   V   S   L   L   L   L   L   S   L   E   A   I    

              10           20           30            40           50  

 

                                                          Tsp509I  

                                        PfoI            ApoI            >DraRI  <AquIV  

                                        |               | |             |       | 

  GTG AAG GCA GGA ATC ACA ATC CCA CGA AAT CCA GGA TGC CCA AAT TCT GAG GAC AAG AAC  < 120 

  V   K   A   G   I   T   I   P   R   N   P   G   C   P   N   S   E   D   K   N    

              70           80           90            100          110  

 

                       >RdeGBIII  

       NciI       <NlaCI  

       EcoHI  HpyCH4III   HincII                   BsaWI  

       |      |   |    |  |                        | 

  TTC CCC CGG ACT GTG ATG GTC AAC CTG AAC ATC CAT AAC CGG AAT ACC AAT ACC AAT CCC  < 180 

  F   P   R   T   V   M   V   N   L   N   I   H   N   R   N   T   N   T   N   P    

              130          140          150           160          170  

 

                                                                       >BsrDI  

      Sse8647I                                    StyI            MslI  

      |                                           |               |    | 

  AAA AGG TCC TCA GAT TAC TAC AAC CGA TCC ACC TCA CCT TGG AAT CTC CAC CGC AAT GAG  < 240 

  K   R   S   S   D   Y   Y   N   R   S   T   S   P   W   N   L   H   R   N   E    

              190          200          210           220          230  

 

                                        <TstI              BglI  

  <SimI        EcoRV                    <BsaXI         TauI     <CchIII  

  |            |                        |              |   |    | 

  GAC CCT GAG AGA TAT CCC TCT GTG ATC TGG GAG GCA AAG TGC CGC CAC TTG GGC TGC ATC  < 300 

  D   P   E   R   Y   P   S   V   I   W   E   A   K   C   R   H   L   G   C   I    

              250          260          270           280          290  

 

                   HpyCH4IV  

                   TaiI  

       <PlaDI   >PsrI                 >TspDTI     <BsmFI               BstYI  

       |        |  |                  |           |                    | 

  AAC GCT GAT GGG AAC GTG GAC TAC CAC ATG AAC TCT GTC CCC ATC CAG CAA GAG ATC CTG  < 360 

  N   A   D   G   N   V   D   Y   H   M   N   S   V   P   I   Q   Q   E   I   L    

              310          320          330           340          350  

 

        HhaI  

        HinP1I  

        GlaI                                                            >BsrI  

       FspI                                 <CstMI                  <BaeI  

       ||                                   |                       |   | 

  GTC CTG CGC AGG GAG CCT CCA CAC TGC CCC AAC TCC TTC CGG CTG GAG AAG ATA CTG GTG  < 420 

  V   L   R   R   E   P   P   H   C   P   N   S   F   R   L   E   K   I   L   V    

              370          380          390           400          410  

 

   BtgI                                       DraIII  

  <TspGWI   <BsgI                           PflMI  

  ||        |                               | | 
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  TCC GTG GGC TGC ACC TGT GTC ACC CCG ATT GTC CAC CAT GTG GCC TAA  < 468 

  S   V   G   C   T   C   V   T   P   I   V   H   H   V   A   *    

              430          440          450           460        

 

Signal peptide starts from nucleotide 1, mature peptide starts from nucleotide 

136. 

   
 

A2. Human LAP-IL-17A 
 

 

HindIII  

  | 

  AAG CTT ATG CCG CCC TCC GGG CTG CGG CTG CTG CCG CTG CTG CTA CCG CTG CTG TGG CTA  < 60 

  K   L   M   P   P   S   G   L   R   L   L   P   L   L   L   P   L   L   W   L    

              10           20           30            40           50  

 

                            KroI  

                            NaeI                      >BspMI  

            BsaHI           NgoMIV                  >AarI  <BcgI      >ApyPI  

            |               |                       | |    |          | 

  CTG GTG CTG ACG CCT GGC CCG CCG GCC GCG GGA CTA TCC ACC tgc AAG ACT ATC GAC ATG  < 120 

  L   V   L   T   P   G   P   P   A   A   G   L   S   T   C   K   T   I   D   M    

              70           80           90            100          110  

 

                            >CdiI                   <Bsp24I  

                            |                       | 

  GAG CTG GTG AAG CGG AAG CGC ATC GAG GCC ATC CGC GGC CAG ATC CTG TCC AAG CTG CGG  < 180 

  E   L   V   K   R   K   R   I   E   A   I   R   G   Q   I   L   S   K   L   R    

              130          140          150           160          170  

 

 

   

  CTC GCC AGC CCC CCG AGC CAG GGG GAG GTG CCG CCC GGC CCG CTG CCC GAG GCC GTG CTC  < 240 

  L   A   S   P   P   S   Q   G   E   V   P   P   G   P   L   P   E   A   V   L    

              190          200          210           220          230  

 

       BsrGI  

       | 

  GCC CTG TAC AAC AGC ACC CGC GAC CGG GTG GCC GGG GAG AGT GCA GAA CCG GAG CCC GAG  < 300 

  A   L   Y   N   S   T   R   D   R   V   A   G   E   S   A   E   P   E   P   E    

              250          260          270           280          290  

 

  Bsu36I                                AleI                           >RleAI  

  |                                     |                              | 

  CCT GAG GCC GAC TAC TAC GCC AAG GAG GTC ACC CGC GTG CTA ATG GTG GAA ACC CAC AAC  < 360 

  P   E   A   D   Y   Y   A   K   E   V   T   R   V   L   M   V   E   T   H   N    

              310          320          330           340          350  

 

                        >Tth111II  

                        | 

  GAA ATC TAT GAC AAG TTC AAG CAG AGT ACA CAC AGC ATA TAT ATG TTC TTC AAC ACA TCA  < 420 

  E   I   Y   D   K   F   K   Q   S   T   H   S   I   Y   M   F   F   N   T   S    

              370          380          390           400          410  

 

  >UcoMSI  

  SacI              KpnI                           SmaI  

  Eco53kI           Acc65I                         XmaI  

  |                 |                              | 

  GAG CTC CGA GAA GCG GTA CCT GAA CCC GTG TTG CTC TCC CGG GCA GAG CTG CGT CTG CTG  < 480 

  E   L   R   E   A   V   P   E   P   V   L   L   S   R   A   E   L   R   L   L    

              430          440          450           460          470  

 

      <BpuEI                      PmlI  

      SmlI    MseI                BsaAI  

      |       |                   | 

  AGG CTC AAG TTA AAA GTG GAG CAG CAC GTG GAG CTG TAC CAG AAA TAC AGC AAC AAT TCC  < 540 

  R   L   K   L   K   V   E   Q   H   V   E   L   Y   Q   K   Y   S   N   N   S    

              490          500          510           520          530  

 

                   >AlfI                >RdeGBII  
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                   |                    | 

  TGG CGA TAC CTC AGC AAC CGG CTG CTG GCA CCC AGC GAC TCG CCA GAG TGG TTA TCT TTT  < 600 

  W   R   Y   L   S   N   R   L   L   A   P   S   D   S   P   E   W   L   S   F    

              550          560          570           580          590  

 

                      <AquII  

                      | 

  GAT GTC ACC GGA GTT GTG CGG CAG TGG TTG AGC CGT GGA GGG GAA ATT GAG GGC TTT CGC  < 660 

  D   V   T   G   V   V   R   Q   W   L   S   R   G   G   E   I   E   G   F   R    

              610          620          630           640          650  

 

      HaeII  

      LpnI  

      | 

  CTT AGC GCC CAC TGC TCC TGT GAC AGC AGG GAT AAC ACA CTG CAA GTG GAC ATC AAC GGG  < 720 

  L   S   A   H   C   S   C   D   S   R   D   N   T   L   Q   V   D   I   N   G    

              670          680          690           700          710  

 

                   >NmeAIII  

                   | 

  TTC ACT ACC GGC CGC CGA GGT GAC CTG GCC ACC ATT CAT GGC ATG AAC CGG CCT TTC CTG  < 780 

  F   T   T   G   R   R   G   D   L   A   T   I   H   G   M   N   R   P   F   L    

              730          740          750           760          770  

 

                                   ApaI  

                                   PspOMI  

               BstXI               BaeGI                      EcoRI           >EciI  

               |                   |                          |               | 

  CTT CTC ATG GCC ACC CCG CTG GAG AGG GCC CAG CAT CTG CAA AGC GAA TTC GGG GGA GGC  < 840 

  L   L   M   A   T   P   L   E   R   A   Q   H   L   Q   S   E   F   G   G   G    

              790          800          810           820          830  

 

                                                                            >AjuI  

                                                                            >Bbr7I  

                                                                            >BbsI  

  BamHI   >BsrBI        <PspOMII                  NotI                     >CchII  

  |       |             |                         |                        || 

  GGA TCC CCG CTC GGG CTT TGG GCG GGA GGG GGC TCA GCG GCC GCA ATG ACT CCT GGG AAG  < 900 

  G   S   P   L   G   L   W   A   G   G   G   S   A   A   A   M   T   P   G   K    

              850          860          870           880          890  

 

      <SdeOSI  

      <NgoAVIII  

      | 

  ACC TCA TTG GTG TCA CTG CTA CTG CTG CTG AGC CTG GAG GCC ATA GTG AAG GCA GGA ATC  < 960 

  T   S   L   V   S   L   L   L   L   L   S   L   E   A   I   V   K   A   G   I    

              910          920          930           940          950  

 

                                                                              <NlaCI  

                    PfoI                            >DraRI  <AquIV        HpyCH4III  

                    |                               |       |             |   | 

  ACA ATC CCA CGA AAT CCA GGA TGC CCA AAT TCT GAG GAC AAG AAC TTC CCC CGG ACT GTG  < 

1020 

  T   I   P   R   N   P   G   C   P   N   S   E   D   K   N   F   P   R   T   V    

              970          980          990           1000         1010  

 

      HincII                                                      Sse8647I  

      |                                                           | 

  ATG GTC AAC CTG AAC ATC CAT AAC CGG AAT ACC AAT ACC AAT CCC AAA AGG TCC TCA GAT  < 

1080 

  M   V   N   L   N   I   H   N   R   N   T   N   T   N   P   K   R   S   S   D    

              1030         1040         1050          1060         1070  

 

                                                              <SimI        EcoRV  

                                                              |            | 

  TAC TAC AAC CGA TCC ACC TCA CCT TGG AAT CTC CAC CGC AAT GAG GAC CCT GAG AGA TAT  < 

1140 

  Y   Y   N   R   S   T   S   P   W   N   L   H   R   N   E   D   P   E   R   Y    

              1090         1100         1110          1120         1130  

 

                    <BsaXI  

                    <TstI                   <CchIII                         >PsrI  
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                    |                       |                               | 

  CCC TCT GTG ATC TGG GAG GCA AAG TGC CGC CAC TTG GGC TGC ATC AAC GCT GAT GGG AAC  < 

1200 

  P   S   V   I   W   E   A   K   C   R   H   L   G   C   I   N   A   D   G   N    

              1150         1160         1170          1180         1190  

 

                                                                   FspI  

                                                                   | 

  GTG GAC TAC CAC ATG AAC TCT GTC CCC ATC CAG CAA GAG ATC CTG GTC CTG CGC AGG GAG  < 

1260 

  V   D   Y   H   M   N   S   V   P   I   Q   Q   E   I   L   V   L   R   R   E    

              1210         1220         1230          1240         1250  

 

                                                <BaeI         <TspGWI  

                                                |             | 

  CCT CCA CAC TGC CCC AAC TCC TTC CGG CTG GAG AAG ATA CTG GTG TCC GTG GGC TGC ACC  < 

1320 

  P   P   H   C   P   N   S   F   R   L   E   K   I   L   V   S   V   G   C   T    

              1270         1280         1290          1300         1310  

 

                          DraIII  

                        PflMI  

                        | | 

  TGT GTC ACC CCG ATT GTC CAC CAT GTG GCC TAA  < 1353 

  C   V   T   P   I   V   H   H   V   A   *    

              1330         1340         1350  

 

 

Signal peptide of LAP from nucleotide 7, mature peptide of IL-17A from 

nucleotide 886. 

 

 

 

A3. Human FL-IL-17F 
 

 

                                       NcoI  

                                >GsaI  BtgI        ScaI  

                                >BseYI     >RdeGBIII                <ApyPI  

                                |      |   |       |                | 

  ATG ACA GTG AAG ACC CTG CAT GGC CCA GCC ATG GTC AAG TAC TTG CTG CTG TCG ATA TTG  < 60 

  M   T   V   K   T   L   H   G   P   A   M   V   K   Y   L   L   L   S   I   L    

              10           20           30            40           50  

 

                                   >AceIII  

                                   | 

  GGG CTT GCC TTT CTG AGT GAG GCG GCA GCT CGG AAA ATC CCC AAA GTA GGA CAT ACT TTT  < 120 

  G   L   A   F   L   S   E   A   A   A   R   K   I   P   K   V   G   H   T   F    

              70           80           90            100          110  

 

                                  EcoNI  

                            >Sth132I  

                            >FauI          >SdeAI             HindIII  

                            |     |        |                  | 

  TTC CAA AAG CCT GAG AGT TGC CCG CCT GTG CCA GGA GGT AGT ATG AAG CTT GAC ATT GGC  < 180 

  F   Q   K   P   E   S   C   P   P   V   P   G   G   S   M   K   L   D   I   G    

              130          140          150           160          170  

 

                          SelI  

                          BstUI  

                        HhaI                HpyCH4IV  

                        HinP1I              TaiI          >BplI  

                        GlaI               BsaAI    >CdiI       >BsrBI  

                        | |                ||       |     |     | 

  ATC ATC AAT GAA AAC CAG CGC GTT TCC ATG TCA CGT AAC ATC GAG AGC CGC TCC ACC TCC  < 240 

  I   I   N   E   N   Q   R   V   S   M   S   R   N   I   E   S   R   S   T   S    

              190          200          210           220          230  

 

                                VpaK11AI  

                                AvaII  

                                Psp03I         Acc65I  
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                               PpuMI           BanI  

                               >BsmFI          KpnI  

                               EcoO109I    BsrFI  

                               KflI        >NmeDI  

                               PssI        AgeI                     BsrGI      <BmrI  

                               ||          |   |                    |          | 

  CCC TGG AAT TAC ACT GTC ACT TGG GAC CCC AAC CGG TAC CCC TCG GAA GTT GTA CAG GCC  < 300 

  P   W   N   Y   T   V   T   W   D   P   N   R   Y   P   S   E   V   V   Q   A    

              250          260          270           280          290  

 

                                       <BpuEI                           EcoRI  

                                       SmlI                 MslI        ApoI  <TspGWI  

                                       |                    |           |     | 

  CAG TGT AGG AAC TTG GGC TGC ATC AAT GCT CAA GGA AAG GAA GAC ATC TCC ATG AAT TCC  < 360 

  Q   C   R   N   L   G   C   I   N   A   Q   G   K   E   D   I   S   M   N   S    

              310          320          330           340          350  

 

                        PshAI  

                      <BsmAI                >AquIV  

       >BccI          <BsaI            BspEI  

       |              | |              |    | 

  GTT CCC ATC CAG CAA GAG ACC CTG GTC GTC CGG AGG AAG CAC CAA GGC TGC TCT GTT TCT  < 420 

  V   P   I   Q   Q   E   T   L   V   V   R   R   K   H   Q   G   C   S   V   S    

              370          380          390           400          410  

 

                                                           <NgoAVIII  

        >RpaI                                   >AarI  <HgaI  

        <MmeI   <HpyAV                     MwoI   >BspMI   <SdeOSI            DraIII  

        |       |                          |    | |    |   |                  | 

  TTC CAG TTG GAG AAG GTG CTG GTG ACT GTT GGC TGC ACC TGC GTC ACC CCT GTC ATC CAC  < 480 

  F   Q   L   E   K   V   L   V   T   V   G   C   T   C   V   T   P   V   I   H    

              430          440          450           460          470  

 

 

   

  CAT GTG CAG TAA  < 492 

  H   V   Q   *    

              490  

 

Signal peptide from nucleotide 1, mature peptide from nucleotide 91. 

 

 

 

A4. Human LAP-IL-17F 
 

 

             BglI  

                | 

  AAG CTT ATG CCG CCC TCC GGG CTG CGG CTG CTG CCG CTG CTG CTA CCG CTG CTG TGG CTA  < 60 

  K   L   M   P   P   S   G   L   R   L   L   P   L   L   L   P   L   L   W   L    

              10           20           30            40           50  

 

                            NaeI  

                            NgoMIV  

            BsaHI           KroI                           <BcgI      >ApyPI  

            |               |                              |          | 

  CTG GTG CTG ACG CCT GGC CCG CCG GCC GCG GGA CTA TCC ACC tgc AAG ACT ATC GAC ATG  < 120 

  L   V   L   T   P   G   P   P   A   A   G   L   S   T   C   K   T   I   D   M    

              70           80           90            100          110  

 

                                                    <Bsp24I  

                                                    | 

  GAG CTG GTG AAG CGG AAG CGC ATC GAG GCC ATC CGC GGC CAG ATC CTG TCC AAG CTG CGG  < 180 

  E   L   V   K   R   K   R   I   E   A   I   R   G   Q   I   L   S   K   L   R    

              130          140          150           160          170  

 

 

   

  CTC GCC AGC CCC CCG AGC CAG GGG GAG GTG CCG CCC GGC CCG CTG CCC GAG GCC GTG CTC  < 240 

  L   A   S   P   P   S   Q   G   E   V   P   P   G   P   L   P   E   A   V   L    

              190          200          210           220          230  
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  GCC CTG TAC AAC AGC ACC CGC GAC CGG GTG GCC GGG GAG AGT GCA GAA CCG GAG CCC GAG  < 300 

  A   L   Y   N   S   T   R   D   R   V   A   G   E   S   A   E   P   E   P   E    

              250          260          270           280          290  

 

  Bsu36I                      >CstMI    AleI                           >RleAI  

  |                           |         |                              | 

  CCT GAG GCC GAC TAC TAC GCC AAG GAG GTC ACC CGC GTG CTA ATG GTG GAA ACC CAC AAC  < 360 

  P   E   A   D   Y   Y   A   K   E   V   T   R   V   L   M   V   E   T   H   N    

              310          320          330           340          350  

 

                        >Tth111II                                          >PlaDI  

                        |                                                  | 

  GAA ATC TAT GAC AAG TTC AAG CAG AGT ACA CAC AGC ATA TAT ATG TTC TTC AAC ACA TCA  < 420 

  E   I   Y   D   K   F   K   Q   S   T   H   S   I   Y   M   F   F   N   T   S    

              370          380          390           400          410  

 

  >UcoMSI  

  Eco53kI                                          XmaI  

  SacI                                             SmaI  

  |                                                | 

  GAG CTC CGA GAA GCG GTA CCT GAA CCC GTG TTG CTC TCC CGG GCA GAG CTG CGT CTG CTG  < 480 

  E   L   R   E   A   V   P   E   P   V   L   L   S   R   A   E   L   R   L   L    

              430          440          450           460          470  

 

              MseI                PmlI  

              |                   | 

  AGG CTC AAG TTA AAA GTG GAG CAG CAC GTG GAG CTG TAC CAG AAA TAC AGC AAC AAT TCC  < 540 

  R   L   K   L   K   V   E   Q   H   V   E   L   Y   Q   K   Y   S   N   N   S    

              490          500          510           520          530  

 

                                                  >BspD6I  

                                                  <MlyI  

                                                  HinfI  

                   >AlfI                >RdeGBII  <PleI  

                   |                    |         | 

  TGG CGA TAC CTC AGC AAC CGG CTG CTG GCA CCC AGC GAC TCG CCA GAG TGG TTA TCT TTT  < 600 

  W   R   Y   L   S   N   R   L   L   A   P   S   D   S   P   E   W   L   S   F    

              550          560          570           580          590  

 

 

   

  GAT GTC ACC GGA GTT GTG CGG CAG TGG TTG AGC CGT GGA GGG GAA ATT GAG GGC TTT CGC  < 660 

  D   V   T   G   V   V   R   Q   W   L   S   R   G   G   E   I   E   G   F   R    

              610          620          630           640          650  

 

      LpnI  

      HaeII  

      | 

  CTT AGC GCC CAC TGC TCC TGT GAC AGC AGG GAT AAC ACA CTG CAA GTG GAC ATC AAC GGG  < 720 

  L   S   A   H   C   S   C   D   S   R   D   N   T   L   Q   V   D   I   N   G    

              670          680          690           700          710  

 

                   >NmeAIII  

                   | 

  TTC ACT ACC GGC CGC CGA GGT GAC CTG GCC ACC ATT CAT GGC ATG AAC CGG CCT TTC CTG  < 780 

  F   T   T   G   R   R   G   D   L   A   T   I   H   G   M   N   R   P   F   L    

              730          740          750           760          770  

 

                                   PspOMI  

                                   ApaI  

                          >BpmI    BaeGI  

               BstXI      >Eco57MI                                            >EciI  

               |          |        |                                          | 

  CTT CTC ATG GCC ACC CCG CTG GAG AGG GCC CAG CAT CTG CAA AGC GAA TTC GGG GGA GGC  < 840 

  L   L   M   A   T   P   L   E   R   A   Q   H   L   Q   S   E   F   G   G   G    

              790          800          810           820          830  

 

  BamHI                 <PspOMII           BlpI   NotI     >TstI  

  |                     |                  |      |        | 

  GGA TCC CCG CTC GGG CTT TGG GCG GGA GGG GGC TCA GCG GCC GCA CGG AAA ATC CCC AAA  < 900 
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  G   S   P   L   G   L   W   A   G   G   G   S   A   A   A   R   K   I   P   K    

              850          860          870           880          890  

 

                                                      EcoNI  

                                                      | 

  GTA GGA CAT ACT TTT TTC CAA AAG CCT GAG AGT TGC CCG CCT GTG CCA GGA GGT AGT ATG  < 960 

  V   G   H   T   F   F   Q   K   P   E   S   C   P   P   V   P   G   G   S   M    

              910          920          930           940          950  

 

                                                                              >BplI  

                                                                              | 

  AAG CTT GAC ATT GGC ATC ATC AAT GAA AAC CAG CGC GTT TCC ATG TCA CGT AAC ATC GAG  < 

1020 

  K   L   D   I   G   I   I   N   E   N   Q   R   V   S   M   S   R   N   I   E    

              970          980          990           1000         1010  

 

                                                    AvaII  

                                                    Psp03I  

                                                    VpaK11AI  

                                                   KflI  

                                                   PpuMI       AgeI  

                                                   ||          | 

  AGC CGC TCC ACC TCC CCC TGG AAT TAC ACT GTC ACT TGG GAC CCC AAC CGG TAC CCC TCG  < 

1080 

  S   R   S   T   S   P   W   N   Y   T   V   T   W   D   P   N   R   Y   P   S    

              1030         1040         1050          1060         1070  

 

                                                                          >BbsI  

                   <BmrI                                                  >Bbr7I  

                   |                                                      | 

  GAA GTT GTA CAG GCC CAG TGT AGG AAC TTG GGC TGC ATC AAT GCT CAA GGA AAG GAA GAC  < 

1140 

  E   V   V   Q   A   Q   C   R   N   L   G   C   I   N   A   Q   G   K   E   D    

              1090         1100         1110          1120         1130  

 

                                            PshAI  

                                          <BsmAI                >AquIV  

                                          <BsaI            BspEI  

                                          | |              |    | 

  ATC TCC ATG AAT TCC GTT CCC ATC CAG CAA GAG ACC CTG GTC GTC CGG AGG AAG CAC CAA  < 

1200 

  I   S   M   N   S   V   P   I   Q   Q   E   T   L   V   V   R   R   K   H   Q    

              1150         1160         1170          1180         1190  

 

                            <MmeI                                              <NgoAVIII  

                            >RpaI   <HpyAV                                     <SdeOSI  

                            |       |                                          | 

  GGC TGC TCT GTT TCT TTC CAG TTG GAG AAG GTG CTG GTG ACT GTT GGC TGC ACC TGC GTC  < 

1260 

  G   C   S   V   S   F   Q   L   E   K   V   L   V   T   V   G   C   T   C   V    

              1210         1220         1230          1240         1250  

 

                  DraIII  

                  | 

  ACC CCT GTC ATC CAC CAT GTG CAG TAA  < 1287 

  T   P   V   I   H   H   V   Q   *    

              1270         1280      

 

 

Signal peptide of LAP from nucleotide 7, mature peptide of IL-17F from 

nucleotide 886. 
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A5. Human FL-IL-17F mutant 
 

 

                                       NcoI  

                                >GsaI  BtgI        ScaI  

                                >BseYI     >RdeGBIII                <ApyPI  

                                |      |   |       |                | 

  ATG ACA GTG AAG ACC CTG CAT GGC CCA GCC ATG GTC AAG TAC TTG CTG CTG TCG ATA TTG  < 60 

  M   T   V   K   T   L   H   G   P   A   M   V   K   Y   L   L   L   S   I   L    

              10           20           30            40           50  

 

                                   >AceIII  

                                   | 

  GGG CTT GCC TTT CTG AGT GAG GCG GCA GCT CGG AAA ATC CCC AAA GTA GGA CAT ACT TTT  < 120 

  G   L   A   F   L   S   E   A   A   A   R   K   I   P   K   V   G   H   T   F    

              70           80           90            100          110  

 

                                  EcoNI  

                            >FauI  

                            >Sth132I       >SdeAI             HindIII  

                            |     |        |                  | 

  TTC CAA AAG CCT GAG AGT TGC CCG CCT GTG CCA GGA GGT AGT ATG AAG CTT GAC ATT GGC  < 180 

  F   Q   K   P   E   S   C   P   P   V   P   G   G   S   M   K   L   D   I   G    

              130          140          150           160          170  

 

                          SelI  

                          BstUI  

                        GlaI                TaiI  

                        HhaI                HpyCH4IV      >BplI  

                        HinP1I             BsaAI    >CdiI       >BsrBI  

                        | |                ||       |     |     | 

  ATC ATC AAT GAA AAC CAG CGC GTT TCC ATG TCA CGT AAC ATC GAG AGC CGC TCC ACC TCC  < 240 

  I   I   N   E   N   Q   R   V   S   M   S   R   N   I   E   S   R   S   T   S    

              190          200          210           220          230  

 

                                AvaII  

                                Psp03I  

                                VpaK11AI       BanI  

                               >BsmFI          KpnI  

                               PssI            Acc65I  

                               KflI        AgeI  

                               EcoO109I    >NmeDI  

                               PpuMI       BsrFI                    BsrGI      <BmrI  

                               ||          |   |                    |          | 

  CCC TGG AAT TAC ACT GTC ACT TGG GAC CCC AAC CGG TAC CCC TCG GAA GTT GTA CAG GCC  < 300 

  P   W   N   Y   T   V   T   W   D   P   N   R   Y   P   S   E   V   V   Q   A    

              250          260          270           280          290  

 

                                       <BpuEI                           EcoRI  

                                       SmlI                 MslI        ApoI  <TspGWI  

                                       |                    |           |     | 

  CAG TGT AGG AAC TTG GGC TGC ATC AAT GCT CAA GGA AAG GAA GAC ATC TCC ATG AAT TCC  < 360 

  Q   C   R   N   L   G   C   I   N   A   Q   G   K   E   D   I   S   M   N   S    

              310          320          330           340          350  

 

                        PshAI  

                      <BsaI                 >AquIV  

       >BccI          <BsmAI           BspEI  

       |              | |              |    | 

  GTT CCC ATC CAG CAA GAG ACC CTG GTC GTC CGG AGG AAG CAC CAA GGC TGC TCT GTT TCT  < 420 

  V   P   I   Q   Q   E   T   L   V   V   R   R   K   H   Q   G   C   S   V   S    

              370          380          390           400          410  

 

                                                           <NgoAVIII  

        <MmeI                                   >AarI  <HgaI  

        >RpaI   <HpyAV                     MwoI   >BspMI   <SdeOSI            DraIII  

        |       |                          |    | |    |   |                  | 

  TTC CAG TTG GAG AAG GTG CTG GTG ACT GTT GGC TGC ACC TGC GTC ACC CCT GTC ATC CAC  < 480 

  F   Q   L   E   K   V   L   V   T   V   G   C   T   C   V   T   P   V   I   H    

              430          440          450           460          470  
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  CGT GTG CAG TAA  < 492 

  R   V   Q   *    

              490  

 

 

Signal peptide from nucleotide 1, mature peptide from nucleotide 91. 

 

 

 

A6. Human LAP-IL-17F mutant 
 
  BglI  

                | 

  AAG CTT ATG CCG CCC TCC GGG CTG CGG CTG CTG CCG CTG CTG CTA CCG CTG CTG TGG CTA  < 60 

  K   L   M   P   P   S   G   L   R   L   L   P   L   L   L   P   L   L   W   L    

              10           20           30            40           50  

 

                            NaeI  

                            NgoMIV  

            BsaHI           KroI                           <BcgI      >ApyPI  

            |               |                              |          | 

  CTG GTG CTG ACG CCT GGC CCG CCG GCC GCG GGA CTA TCC ACC tgc AAG ACT ATC GAC ATG  < 120 

  L   V   L   T   P   G   P   P   A   A   G   L   S   T   C   K   T   I   D   M    

              70           80           90            100          110  

 

                                                    <Bsp24I  

                                                    | 

  GAG CTG GTG AAG CGG AAG CGC ATC GAG GCC ATC CGC GGC CAG ATC CTG TCC AAG CTG CGG  < 180 

  E   L   V   K   R   K   R   I   E   A   I   R   G   Q   I   L   S   K   L   R    

              130          140          150           160          170  

 

 

   

  CTC GCC AGC CCC CCG AGC CAG GGG GAG GTG CCG CCC GGC CCG CTG CCC GAG GCC GTG CTC  < 240 

  L   A   S   P   P   S   Q   G   E   V   P   P   G   P   L   P   E   A   V   L    

              190          200          210           220          230  

 

 

   

  GCC CTG TAC AAC AGC ACC CGC GAC CGG GTG GCC GGG GAG AGT GCA GAA CCG GAG CCC GAG  < 300 

  A   L   Y   N   S   T   R   D   R   V   A   G   E   S   A   E   P   E   P   E    

              250          260          270           280          290  

 

  Bsu36I                      >CstMI    AleI                           >RleAI  

  |                           |         |                              | 

  CCT GAG GCC GAC TAC TAC GCC AAG GAG GTC ACC CGC GTG CTA ATG GTG GAA ACC CAC AAC  < 360 

  P   E   A   D   Y   Y   A   K   E   V   T   R   V   L   M   V   E   T   H   N    

              310          320          330           340          350  

 

                        >Tth111II                                          >PlaDI  

                        |                                                  | 

  GAA ATC TAT GAC AAG TTC AAG CAG AGT ACA CAC AGC ATA TAT ATG TTC TTC AAC ACA TCA  < 420 

  E   I   Y   D   K   F   K   Q   S   T   H   S   I   Y   M   F   F   N   T   S    

              370          380          390           400          410  

 

  SacI  

  Eco53kI                                          SmaI  

  >UcoMSI                                          XmaI  

  |                                                | 

  GAG CTC CGA GAA GCG GTA CCT GAA CCC GTG TTG CTC TCC CGG GCA GAG CTG CGT CTG CTG  < 480 

  E   L   R   E   A   V   P   E   P   V   L   L   S   R   A   E   L   R   L   L    

              430          440          450           460          470  

 

              MseI                PmlI  

              |                   | 

  AGG CTC AAG TTA AAA GTG GAG CAG CAC GTG GAG CTG TAC CAG AAA TAC AGC AAC AAT TCC  < 540 

  R   L   K   L   K   V   E   Q   H   V   E   L   Y   Q   K   Y   S   N   N   S    

              490          500          510           520          530  
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                                                  <MlyI  

                                                  >BspD6I  

                                                  <PleI  

                   >AlfI                >RdeGBII  HinfI  

                   |                    |         | 

  TGG CGA TAC CTC AGC AAC CGG CTG CTG GCA CCC AGC GAC TCG CCA GAG TGG TTA TCT TTT  < 600 

  W   R   Y   L   S   N   R   L   L   A   P   S   D   S   P   E   W   L   S   F    

              550          560          570           580          590  

 

 

   

  GAT GTC ACC GGA GTT GTG CGG CAG TGG TTG AGC CGT GGA GGG GAA ATT GAG GGC TTT CGC  < 660 

  D   V   T   G   V   V   R   Q   W   L   S   R   G   G   E   I   E   G   F   R    

              610          620          630           640          650  

 

      HaeII  

      LpnI  

      | 

  CTT AGC GCC CAC TGC TCC TGT GAC AGC AGG GAT AAC ACA CTG CAA GTG GAC ATC AAC GGG  < 720 

  L   S   A   H   C   S   C   D   S   R   D   N   T   L   Q   V   D   I   N   G    

              670          680          690           700          710  

 

                   >NmeAIII  

                   | 

  TTC ACT ACC GGC CGC CGA GGT GAC CTG GCC ACC ATT CAT GGC ATG AAC CGG CCT TTC CTG  < 780 

  F   T   T   G   R   R   G   D   L   A   T   I   H   G   M   N   R   P   F   L    

              730          740          750           760          770  

 

                                   BaeGI  

                                   PspOMI  

                          >BpmI    ApaI  

               BstXI      >Eco57MI                                            >EciI  

               |          |        |                                          | 

  CTT CTC ATG GCC ACC CCG CTG GAG AGG GCC CAG CAT CTG CAA AGC GAA TTC GGG GGA GGC  < 840 

  L   L   M   A   T   P   L   E   R   A   Q   H   L   Q   S   E   F   G   G   G    

              790          800          810           820          830  

 

  BamHI                 <PspOMII           BlpI   NotI     >TstI  

  |                     |                  |      |        | 

  GGA TCC CCG CTC GGG CTT TGG GCG GGA GGG GGC TCA GCG GCC GCA CGG AAA ATC CCC AAA  < 900 

  G   S   P   L   G   L   W   A   G   G   G   S   A   A   A   R   K   I   P   K    

              850          860          870           880          890  

 

                                                      EcoNI  

                                                      | 

  GTA GGA CAT ACT TTT TTC CAA AAG CCT GAG AGT TGC CCG CCT GTG CCA GGA GGT AGT ATG  < 960 

  V   G   H   T   F   F   Q   K   P   E   S   C   P   P   V   P   G   G   S   M    

              910          920          930           940          950  

 

                                                                              >BplI  

                                                                              | 

  AAG CTT GAC ATT GGC ATC ATC AAT GAA AAC CAG CGC GTT TCC ATG TCA CGT AAC ATC GAG  < 

1020 

  K   L   D   I   G   I   I   N   E   N   Q   R   V   S   M   S   R   N   I   E    

              970          980          990           1000         1010  

 

                                                    VpaK11AI  

                                                    AvaII  

                                                    Psp03I  

                                                   PpuMI  

                                                   KflI        AgeI  

                                                   ||          | 

  AGC CGC TCC ACC TCC CCC TGG AAT TAC ACT GTC ACT TGG GAC CCC AAC CGG TAC CCC TCG  < 

1080 

  S   R   S   T   S   P   W   N   Y   T   V   T   W   D   P   N   R   Y   P   S    

              1030         1040         1050          1060         1070  

 

                                                                          >Bbr7I  

                   <BmrI                                                  >BbsI  

                   |                                                      | 

  GAA GTT GTA CAG GCC CAG TGT AGG AAC TTG GGC TGC ATC AAT GCT CAA GGA AAG GAA GAC  < 

1140 
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  E   V   V   Q   A   Q   C   R   N   L   G   C   I   N   A   Q   G   K   E   D    

              1090         1100         1110          1120         1130  

 

                                            PshAI  

                                          <BsmAI                >AquIV  

                                          <BsaI            BspEI  

                                          | |              |    | 

  ATC TCC ATG AAT TCC GTT CCC ATC CAG CAA GAG ACC CTG GTC GTC CGG AGG AAG CAC CAA  < 

1200 

  I   S   M   N   S   V   P   I   Q   Q   E   T   L   V   V   R   R   K   H   Q    

              1150         1160         1170          1180         1190  

 

                            >RpaI                                              <NgoAVIII  

                            <MmeI   <HpyAV                                     <SdeOSI  

                            |       |                                          | 

  GGC TGC TCT GTT TCT TTC CAG TTG GAG AAG GTG CTG GTG ACT GTT GGC TGC ACC TGC GTC  < 

1260 

  G   C   S   V   S   F   Q   L   E   K   V   L   V   T   V   G   C   T   C   V    

              1210         1220         1230          1240         1250  

 

                  DraIII  

                  | 

  ACC CCT GTC ATC CAC CGT GTG CAG TAA  < 1287 

  T   P   V   I   H   R   V   Q   *    

              1270         1280      

 
Signal peptide of LAP from nucleotide 7, mature peptide of IL-17F mutant from 

nucleotide 886. 

 

 

 

A7. Mouse FL-IL-17A 
 

 

          <SdeOSI   >BsmAI  

                          <NgoAVIII       <PlaDI  

                          |         |     | 

  ATG AGT CCA GGG AGA GCT TCA TCT GTG TCT CTG ATG CTG TTG CTG CTG CTG AGC CTG GCG  < 60 

  M   S   P   G   R   A   S   S   V   S   L   M   L   L   L   L   L   S   L   A    

              10           20           30            40           50  

 

   SfcI                     >Hin4I                             >Tth111II        >DraRI  

   |                        |                                  |                | 

  GCT ACA GTG AAG GCA GCA GCG ATC ATC CCT CAA AGC TCA GCG TGT CCA AAC ACT GAG GCC  < 120 

  A   T   V   K   A   A   A   I   I   P   Q   S   S   A   C   P   N   T   E   A    

              70           80           90            100          110  

 

           <CchII                 HincII  

        <AquIV                    Hpy166II             MseI  

        |  |                      |                    | 

  AAG GAC TTC CTC CAG AAT GTG AAG GTC AAC CTC AAA GTC TTT AAC TCC CTT GGC GCA AAA  < 180 

  K   D   F   L   Q   N   V   K   V   N   L   K   V   F   N   S   L   G   A   K    

              130          140          150           160          170  

 

                                                          <HphI  

    SacI                                                  <SspD5I  

    Eco53kI                                             MaeIII  

    BanII   >SdeAI                                      Tsp45I  

    >UcoMSI                                           HpyCH4IV  

    Bsp1286I      PssI                                TaiI  

    BsiHKAI       EcoO109I                          >BmgBI  

    |       |     |                                 | | | | 

  GTG AGC TCC AGA AGG CCC TCA GAC TAC CTC AAC CGT TCC ACG TCA CCC TGG ACT CTC CAC  < 240 

  V   S   S   R   R   P   S   D   Y   L   N   R   S   T   S   P   W   T   L   H    

              190          200          210           220          230  

 

          >BbsI                                                                AfeI  

          >Bbr7I           EcoRV                                               LpnI  

   >BsrDI             BsaBI                         <TstI                      HaeII  

   |      |           |    |                        |                          | 
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  CGC AAT GAA GAC CCT GAT AGA TAT CCC TCT GTG ATC TGG GAA GCT CAG TGC CGC CAC CAG  < 300 

  R   N   E   D   P   D   R   Y   P   S   V   I   W   E   A   Q   C   R   H   Q    

              250          260          270           280          290  

 

                                                    ApoI  

                                                NlaIII  

                                                FaiI  

                                                FatI  Tsp509I  

                                                CviAII  

          <MaqI   >CdpI                     >CjePI  EcoRI  

          |       |                         |   |   | | 

  CGC TGT GTC AAT GCG GAG GGA AAG CTG GAC CAC CAC ATG AAT TCT GTT CTC ATC CAG CAA  < 360 

  R   C   V   N   A   E   G   K   L   D   H   H   M   N   S   V   L   I   Q   Q    

              310          320          330           340          350  

 

                    <EarI  

    <AlwI         >AcuI  

   BstYI        BslI        NlaIV       <AceIII  

   ||           | | |       |           | 

  GAG ATC CTG GTC CTG AAG AGG GAG CCT GAG AGC TGC CCC TTC ACT TTC AGG GTC GAG AAG  < 420 

  E   I   L   V   L   K   R   E   P   E   S   C   P   F   T   F   R   V   E   K    

              370          380          390           400          410  

 

                              >BspMI  

                            >AarI  

                            AleI  

                          HpyCH4V  

                <RleAI  <BsgI                          <EciI  

                |       | | | |                        | 

  ATG CTG GTG GGT GTG GGC TGC ACC TGC GTG GCC TCG ATT GTC CGC CAG GCA GCC TAA  < 477 

  M   L   V   G   V   G   C   T   C   V   A   S   I   V   R   Q   A   A   *    

              430          440          450           460          470  

 

 

 

Signal peptide from nucleotide 1, mature peptide from nucleotide 76. 

 

 
 
A8. Mouse LAP-IL-17A 
 

 

HindIII       BglI                                                            >BsrI  

  |             |                                                               | 

  AAG CTT ATG CCG CCC TCC GGG CTG CGG CTG CTG CCG CTG CTG CTA CCG CTG CTG TGG CTA  < 60 

  K   L   M   P   P   S   G   L   R   L   L   P   L   L   L   P   L   L   W   L    

              10           20           30            40           50  

 

                            KroI  

                            NgoMIV  

            BsaHI           NaeI        >BsmFI             <BcgI      >ApyPI  

            |               |           |                  |          | 

  CTG GTG CTG ACG CCT GGC CCG CCG GCC GCG GGA CTA TCC ACC tgc AAG ACT ATC GAC ATG  < 120 

  L   V   L   T   P   G   P   P   A   A   G   L   S   T   C   K   T   I   D   M    

              70           80           90            100          110  

 

                            >CdiI      >BccI        <Bsp24I  

                            |          |            | 

  GAG CTG GTG AAG CGG AAG CGC ATC GAG GCC ATC CGC GGC CAG ATC CTG TCC AAG CTG CGG  < 180 

  E   L   V   K   R   K   R   I   E   A   I   R   G   Q   I   L   S   K   L   R    

              130          140          150           160          170  

 

 

   

  CTC GCC AGC CCC CCG AGC CAG GGG GAG GTG CCG CCC GGC CCG CTG CCC GAG GCC GTG CTC  < 240 

  L   A   S   P   P   S   Q   G   E   V   P   P   G   P   L   P   E   A   V   L    

              190          200          210           220          230  

 

       BsrGI  

       | 
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  GCC CTG TAC AAC AGC ACC CGC GAC CGG GTG GCC GGG GAG AGT GCA GAA CCG GAG CCC GAG  < 300 

  A   L   Y   N   S   T   R   D   R   V   A   G   E   S   A   E   P   E   P   E    

              250          260          270           280          290  

 

  Bsu36I                      >CstMI  

  |                           | 

  CCT GAG GCC GAC TAC TAC GCC AAG GAG GTC ACC CGC GTG CTA ATG GTG GAA ACC CAC AAC  < 360 

  P   E   A   D   Y   Y   A   K   E   V   T   R   V   L   M   V   E   T   H   N    

              310          320          330           340          350  

 

                                                                           >PlaDI  

                                                                           | 

  GAA ATC TAT GAC AAG TTC AAG CAG AGT ACA CAC AGC ATA TAT ATG TTC TTC AAC ACA TCA  < 420 

  E   I   Y   D   K   F   K   Q   S   T   H   S   I   Y   M   F   F   N   T   S    

              370          380          390           400          410  

 

                    KpnI                           SmaI  

                    Acc65I                         XmaI  

                    |                              | 

  GAG CTC CGA GAA GCG GTA CCT GAA CCC GTG TTG CTC TCC CGG GCA GAG CTG CGT CTG CTG  < 480 

  E   L   R   E   A   V   P   E   P   V   L   L   S   R   A   E   L   R   L   L    

              430          440          450           460          470  

 

      SmlI                        PmlI  

      <BpuEI                      BsaAI  

      |                           | 

  AGG CTC AAG TTA AAA GTG GAG CAG CAC GTG GAG CTG TAC CAG AAA TAC AGC AAC AAT TCC  < 540 

  R   L   K   L   K   V   E   Q   H   V   E   L   Y   Q   K   Y   S   N   N   S    

              490          500          510           520          530  

 

                   >AlfI                >RdeGBII  

                   |                    | 

  TGG CGA TAC CTC AGC AAC CGG CTG CTG GCA CCC AGC GAC TCG CCA GAG TGG TTA TCT TTT  < 600 

  W   R   Y   L   S   N   R   L   L   A   P   S   D   S   P   E   W   L   S   F    

              550          560          570           580          590  

 

                      <AquII  

                      | 

  GAT GTC ACC GGA GTT GTG CGG CAG TGG TTG AGC CGT GGA GGG GAA ATT GAG GGC TTT CGC  < 660 

  D   V   T   G   V   V   R   Q   W   L   S   R   G   G   E   I   E   G   F   R    

              610          620          630           640          650  

 

 

   

  CTT AGC GCC CAC TGC TCC TGT GAC AGC AGG GAT AAC ACA CTG CAA GTG GAC ATC AAC GGG  < 720 

  L   S   A   H   C   S   C   D   S   R   D   N   T   L   Q   V   D   I   N   G    

              670          680          690           700          710  

 

                   >NmeAIII  

                   | 

  TTC ACT ACC GGC CGC CGA GGT GAC CTG GCC ACC ATT CAT GGC ATG AAC CGG CCT TTC CTG  < 780 

  F   T   T   G   R   R   G   D   L   A   T   I   H   G   M   N   R   P   F   L    

              730          740          750           760          770  

 

                                   BaeGI  

                                   ApaI  

               BstXI               PspOMI  

               |                   | 

  CTT CTC ATG GCC ACC CCG CTG GAG AGG GCC CAG CAT CTG CAA AGC GAA TTC GGG GGA GGC  < 840 

  L   L   M   A   T   P   L   E   R   A   Q   H   L   Q   S   E   F   G   G   G    

              790          800          810           820          830  

 

  BamHI   >BsrBI        <PspOMII                  NotI  

  |       |             |                         | 

  GGA TCC CCG CTC GGG CTT TGG GCG GGA GGG GGC TCA GCG GCC GCA GCA GCG ATC ATC CCT  < 900 

  G   S   P   L   G   L   W   A   G   G   G   S   A   A   A   A   A   I   I   P    

              850          860          870           880          890  

 

                                                   <CchII  

                                        >DraRI  <AquIV                    HincII  

                                        |       |  |                      | 

  CAA AGC TCA GCG TGT CCA AAC ACT GAG GCC AAG GAC TTC CTC CAG AAT GTG AAG GTC AAC  < 960 
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  Q   S   S   A   C   P   N   T   E   A   K   D   F   L   Q   N   V   K   V   N    

              910          920          930           940          950  

 

 

   

  CTC AAA GTC TTT AAC TCC CTT GGC GCA AAA GTG AGC TCC AGA AGG CCC TCA GAC TAC CTC  < 

1020 

  L   K   V   F   N   S   L   G   A   K   V   S   S   R   R   P   S   D   Y   L    

              970          980          990           1000         1010  

 

                                                  >Bbr7I  

            >BmgBI                                >BbsI            EcoRV  

   HpyCH4III                               >BsrDI             BsaBI  

   |        |                              |      |           |    | 

  AAC CGT TCC ACG TCA CCC TGG ACT CTC CAC CGC AAT GAA GAC CCT GAT AGA TAT CCC TCT  < 

1080 

  N   R   S   T   S   P   W   T   L   H   R   N   E   D   P   D   R   Y   P   S    

              1030         1040         1050          1060         1070  

 

            <TstI                      AfeI       <MaqI   >CdpI  

            |                          |          |       | 

  GTG ATC TGG GAA GCT CAG TGC CGC CAC CAG CGC TGT GTC AAT GCG GAG GGA AAG CTG GAC  < 

1140 

  V   I   W   E   A   Q   C   R   H   Q   R   C   V   N   A   E   G   K   L   D    

              1090         1100         1110          1120         1130  

 

                                                            <EarI  

                                                          >AcuI  

                                                          | | 

  CAC CAC ATG AAT TCT GTT CTC ATC CAG CAA GAG ATC CTG GTC CTG AAG AGG GAG CCT GAG  < 

1200 

  H   H   M   N   S   V   L   I   Q   Q   E   I   L   V   L   K   R   E   P   E    

              1150         1160         1170          1180         1190  

 

 

   

  AGC TGC CCC TTC ACT TTC AGG GTC GAG AAG ATG CTG GTG GGT GTG GGC TGC ACC TGC GTG  < 

1260 

  S   C   P   F   T   F   R   V   E   K   M   L   V   G   V   G   C   T   C   V    

              1210         1220         1230          1240         1250  

 

 

   

  GCC TCG ATT GTC CGC CAG GCA GCC TAA  < 1287 

  A   S   I   V   R   Q   A   A   *    

              1270         1280      

 

 

Signal peptide of LAP from nucleotide 7, mature peptide of IL-17A from 

nucleotide 886. 
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A9. Mouse FL-IL-17F 
 

 

 

   ApaLI  

        BaeGI  >Sth132I  

        BsiHKAI                    >RdeGBIII  

        |      |                   | 

  ATG AAG TGC ACC CGT GAA ACA GCC ATG GTC AAG TCT TTG CTA CTG TTG ATG TTG GGA CTT  < 60 

  M   K   C   T   R   E   T   A   M   V   K   S   L   L   L   L   M   L   G   L    

              10           20           30            40           50  

 

                            AluI  

                           >AceIII                                            >SdeAI  

                           ||                                                 | 

  GCC ATT CTG AGG GAG GTA GCA GCT CGG AAG AAC CCC AAA GCA GGG GTT CCT GCC TTG CAG  < 120 

  A   I   L   R   E   V   A   A   R   K   N   P   K   A   G   V   P   A   L   Q    

              70           80           90            100          110  

 

                                                                       HinfI  

      <GsaI                                                            TfiI  

      <BseYI                                              HincII   BstBI      AgsI  

      |                                                   |        |   |      | 

  AAG GCT GGG AAC TGT CCT CCC CTG GAG GAT AAC ACT GTG AGA GTT GAC ATT CGA ATC TTC  < 180 

  K   A   G   N   C   P   P   L   E   D   N   T   V   R   V   D   I   R   I   F    

              130          140          150           160          170  

 

                                    HpyCH4IV  

                                    TaiI  

                                   BsaAI  

                                   >TstI  ApoI  

                                   PmlI   EcoRI         >BsrBI  

                                   ||     |             | 

  AAC CAA AAC CAG GGC ATT TCT GTC CCA CGT GAA TTC CAG AAC CGC TCC AGT TCC CCA TGG  < 240 

  N   Q   N   Q   G   I   S   V   P   R   E   F   Q   N   R   S   S   S   P   W    

              190          200          210           220          230  

 

                       <BsmAI  

                   Nli3877I         Sth302II  

                   AvaI             HpaII               ChaI  

                   SmlI            >NmeDI               MboI  <Bpu10I  

                   XhoI            AgeI                 Asi256I  

                   SciI            BsrFI                DpnI  <BbvCI  

            >NlaCI     <BsaI       BsaWI                BstKTI         <BmrI  

            |      |   |           ||                   |     |        | 

  GAT TAC AAC ATC ACT CGA GAC CCC CAC CGG TTC CCC TCA GAG ATC GCT GAG GCC CAG TGC  < 300 

  D   Y   N   I   T   R   D   P   H   R   F   P   S   E   I   A   E   A   Q   C    

              250          260          270           280          290  

 

                                              >BbsI                     Hpy99I  

                                              >Bbr7I                  <TspGWI  

                                              |                       | | 

  AGA CAC TCA GGC TGC ATC AAT GCC CAG GGT CAG GAA GAC AGC ACC ATG AAC TCC GTC GCC  < 360 

  R   H   S   G   C   I   N   A   Q   G   Q   E   D   S   T   M   N   S   V   A    

              310          320          330           340          350  

 

                        Psp03I  

                        VpaK11AI                                                >RpaI  

                        AvaII             BanII                         <AcuI   <MmeI  

                        |                 |                             |       | 

  ATT CAG CAA GAA ATC CTG GTC CTT CGG AGG GAG CCC CAG GGC TGT TCT AAT TCC TTC AGG  < 420 

  I   Q   Q   E   I   L   V   L   R   R   E   P   Q   G   C   S   N   S   F   R    

              370          380          390           400          410  

 

                                                                              TauI  

                                                                              | 

  TTG GAG AAG ATG CTC CTA AAA GTT GGC TGC ACC TGT GTC AAG CCC ATT GTC CAC CAA GCG  < 480 

  L   E   K   M   L   L   K   V   G   C   T   C   V   K   P   I   V   H   Q   A    

              430          440          450           460          470  
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  GCC TGA  < 486 

  A   *    

         

 

Signal peptide from nucleotide 1, mature peptide from nucleotide 76. 

 

 

 

A10. Mouse LAP-IL-17F  
 

HindIII       BglI  

  |             | 

  AAG CTT ATG CCG CCC TCC GGG CTG CGG CTG CTG CCG CTG CTG CTA CCG CTG CTG TGG CTA  < 60 

  K   L   M   P   P   S   G   L   R   L   L   P   L   L   L   P   L   L   W   L    

              10           20           30            40           50  

 

                            KroI  

                            NgoMIV                    >BspMI  

            BsaHI           NaeI                    >AarI  <BcgI      >ApyPI  

            |               |                       | |    |          | 

  CTG GTG CTG ACG CCT GGC CCG CCG GCC GCG GGA CTA TCC ACC tgc AAG ACT ATC GAC ATG  < 120 

  L   V   L   T   P   G   P   P   A   A   G   L   S   T   C   K   T   I   D   M    

              70           80           90            100          110  

 

                                        <StsI  

                                        <FokI  

                                        <BtsCI  

                            >CdiI      >BccI        <Bsp24I  

                            |          ||           | 

  GAG CTG GTG AAG CGG AAG CGC ATC GAG GCC ATC CGC GGC CAG ATC CTG TCC AAG CTG CGG  < 180 

  E   L   V   K   R   K   R   I   E   A   I   R   G   Q   I   L   S   K   L   R    

              130          140          150           160          170  

 

 

   

  CTC GCC AGC CCC CCG AGC CAG GGG GAG GTG CCG CCC GGC CCG CTG CCC GAG GCC GTG CTC  < 240 

  L   A   S   P   P   S   Q   G   E   V   P   P   G   P   L   P   E   A   V   L    

              190          200          210           220          230  

 

       BsrGI  

       | 

  GCC CTG TAC AAC AGC ACC CGC GAC CGG GTG GCC GGG GAG AGT GCA GAA CCG GAG CCC GAG  < 300 

  A   L   Y   N   S   T   R   D   R   V   A   G   E   S   A   E   P   E   P   E    

              250          260          270           280          290  

 

  Bsu36I                      >CstMI    AleI                           >RleAI  

  |                           |         |                              | 

  CCT GAG GCC GAC TAC TAC GCC AAG GAG GTC ACC CGC GTG CTA ATG GTG GAA ACC CAC AAC  < 360 

  P   E   A   D   Y   Y   A   K   E   V   T   R   V   L   M   V   E   T   H   N    

              310          320          330           340          350  

 

                        >Tth111II                                          >PlaDI  

                        |                                                  | 

  GAA ATC TAT GAC AAG TTC AAG CAG AGT ACA CAC AGC ATA TAT ATG TTC TTC AAC ACA TCA  < 420 

  E   I   Y   D   K   F   K   Q   S   T   H   S   I   Y   M   F   F   N   T   S    

              370          380          390           400          410  

 

  SacI  

  Eco53kI           Acc65I                         SmaI  

  >UcoMSI           KpnI                           XmaI  

  |                 |                              | 

  GAG CTC CGA GAA GCG GTA CCT GAA CCC GTG TTG CTC TCC CGG GCA GAG CTG CGT CTG CTG  < 480 

  E   L   R   E   A   V   P   E   P   V   L   L   S   R   A   E   L   R   L   L    

              430          440          450           460          470  

 

      <BpuEI  MseI  

      |       | 

  AGG CTC AAG TTA AAA GTG GAG CAG CAC GTG GAG CTG TAC CAG AAA TAC AGC AAC AAT TCC  < 540 

  R   L   K   L   K   V   E   Q   H   V   E   L   Y   Q   K   Y   S   N   N   S    

              490          500          510           520          530  
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                                                  <MlyI  

                                                  >BspD6I  

                   >AlfI                >RdeGBII  <PleI  

                   |                    |         | 

  TGG CGA TAC CTC AGC AAC CGG CTG CTG GCA CCC AGC GAC TCG CCA GAG TGG TTA TCT TTT  < 600 

  W   R   Y   L   S   N   R   L   L   A   P   S   D   S   P   E   W   L   S   F    

              550          560          570           580          590  

 

 

   

  GAT GTC ACC GGA GTT GTG CGG CAG TGG TTG AGC CGT GGA GGG GAA ATT GAG GGC TTT CGC  < 660 

  D   V   T   G   V   V   R   Q   W   L   S   R   G   G   E   I   E   G   F   R    

              610          620          630           640          650  

 

      HaeII  

      LpnI  

      | 

  CTT AGC GCC CAC TGC TCC TGT GAC AGC AGG GAT AAC ACA CTG CAA GTG GAC ATC AAC GGG  < 720 

  L   S   A   H   C   S   C   D   S   R   D   N   T   L   Q   V   D   I   N   G    

              670          680          690           700          710  

 

                   >NmeAIII  

                   | 

  TTC ACT ACC GGC CGC CGA GGT GAC CTG GCC ACC ATT CAT GGC ATG AAC CGG CCT TTC CTG  < 780 

  F   T   T   G   R   R   G   D   L   A   T   I   H   G   M   N   R   P   F   L    

              730          740          750           760          770  

 

                                   PspOMI  

                                   ApaI  

                                   BaeGI  

                                  PssI  

               BstXI              EcoO109I                                    >EciI  

               |                  ||                                          | 

  CTT CTC ATG GCC ACC CCG CTG GAG AGG GCC CAG CAT CTG CAA AGC GAA TTC GGG GGA GGC  < 840 

  L   L   M   A   T   P   L   E   R   A   Q   H   L   Q   S   E   F   G   G   G    

              790          800          810           820          830  

 

  BamHI                 <PspOMII           BlpI   NotI  

  |                     |                  |      | 

  GGA TCC CCG CTC GGG CTT TGG GCG GGA GGG GGC TCA GCG GCC GCA CGG AAG AAC CCC AAA  < 900 

  G   S   P   L   G   L   W   A   G   G   G   S   A   A   A   R   K   N   P   K    

              850          860          870           880          890  

 

 

   

  GCA GGG GTT CCT GCC TTG CAG AAG GCT GGG AAC TGT CCT CCC CTG GAG GAT AAC ACT GTG  < 960 

  A   G   V   P   A   L   Q   K   A   G   N   C   P   P   L   E   D   N   T   V    

              910          920          930           940          950  

 

                   TfiI  

      HincII   BstBI                                           >TstI  

      |        |   |                                           | 

  AGA GTT GAC ATT CGA ATC TTC AAC CAA AAC CAG GGC ATT TCT GTC CCA CGT GAA TTC CAG  < 

1020 

  R   V   D   I   R   I   F   N   Q   N   Q   G   I   S   V   P   R   E   F   Q    

              970          980          990           1000         1010  

 

                                                   <BsaI  

                                               SciI  

                                               XhoI  

                      NcoI              >NlaCI     <BsmAI      AgeI  

                      |                 |      |   |           | 

  AAC CGC TCC AGT TCC CCA TGG GAT TAC AAC ATC ACT CGA GAC CCC CAC CGG TTC CCC TCA  < 

1080 

  N   R   S   S   S   P   W   D   Y   N   I   T   R   D   P   H   R   F   P   S    

              1030         1040         1050          1060         1070  

 

                                                                          >BbsI  

                   <BmrI                                                  >Bbr7I  

                   |                                                      | 
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  GAG ATC GCT GAG GCC CAG TGC AGA CAC TCA GGC TGC ATC AAT GCC CAG GGT CAG GAA GAC  < 

1140 

  E   I   A   E   A   Q   C   R   H   S   G   C   I   N   A   Q   G   Q   E   D    

              1090         1100         1110          1120         1130  

 

                                                    Psp03I  

                                                    VpaK11AI  

                    Hpy99I                          AvaII  

                    |                               | 

  AGC ACC ATG AAC TCC GTC GCC ATT CAG CAA GAA ATC CTG GTC CTT CGG AGG GAG CCC CAG  < 

1200 

  S   T   M   N   S   V   A   I   Q   Q   E   I   L   V   L   R   R   E   P   Q    

              1150         1160         1170          1180         1190  

 

                            >RpaI  

                    <AcuI   <MmeI  

                    |       | 

  GGC TGT TCT AAT TCC TTC AGG TTG GAG AAG ATG CTC CTA AAA GTT GGC TGC ACC TGT GTC  < 

1260 

  G   C   S   N   S   F   R   L   E   K   M   L   L   K   V   G   C   T   C   V    

              1210         1220         1230          1240         1250  

 

 

   

  AAG CCC ATT GTC CAC CAA GCG GCC TGA  < 1287 

  K   P   I   V   H   Q   A   A   *    

              1270         1280      

 

 

Signal peptide of LAP from nucleotide 7, mature peptide of IL-17F from 

nucleotide 886. 

 

 

 

A11. Mouse FL-IL-17F mutant 1(Q158R mutation) 
 
   ApaLI  

        BaeGI  >Sth132I  

        BsiHKAI                    >RdeGBIII  

        |      |                   | 

  ATG AAG TGC ACC CGT GAA ACA GCC ATG GTC AAG TCT TTG CTA CTG TTG ATG TTG GGA CTT  < 60 

  M   K   C   T   R   E   T   A   M   V   K   S   L   L   L   L   M   L   G   L    

              10           20           30            40           50  

 

                            AluI  

                           >AceIII                                            >SdeAI  

                           ||                                                 | 

  GCC ATT CTG AGG GAG GTA GCA GCT CGG AAG AAC CCC AAA GCA GGG GTT CCT GCC TTG CAG  < 120 

  A   I   L   R   E   V   A   A   R   K   N   P   K   A   G   V   P   A   L   Q    

              70           80           90            100          110  

 

                                                                       HinfI  

      <GsaI                                                            TfiI  

      <BseYI                                              HincII   BstBI      AgsI  

      |                                                   |        |   |      | 

  AAG GCT GGG AAC TGT CCT CCC CTG GAG GAT AAC ACT GTG AGA GTT GAC ATT CGA ATC TTC  < 180 

  K   A   G   N   C   P   P   L   E   D   N   T   V   R   V   D   I   R   I   F    

              130          140          150           160          170  

 

                                    HpyCH4IV  

                                    TaiI  

                                   BsaAI  

                                   >TstI  ApoI  

                                   PmlI   EcoRI         >BsrBI  

                                   ||     |             | 

  AAC CAA AAC CAG GGC ATT TCT GTC CCA CGT GAA TTC CAG AAC CGC TCC AGT TCC CCA TGG  < 240 

  N   Q   N   Q   G   I   S   V   P   R   E   F   Q   N   R   S   S   S   P   W    

              190          200          210           220          230  

 

                       <BsmAI  

                   Nli3877I         Sth302II  
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                   AvaI             HpaII               ChaI  

                   SmlI            >NmeDI               MboI  <Bpu10I  

                   XhoI            AgeI                 Asi256I  

                   SciI            BsrFI                DpnI  <BbvCI  

            >NlaCI     <BsaI       BsaWI                BstKTI         <BmrI  

            |      |   |           ||                   |     |        | 

  GAT TAC AAC ATC ACT CGA GAC CCC CAC CGG TTC CCC TCA GAG ATC GCT GAG GCC CAG TGC  < 300 

  D   Y   N   I   T   R   D   P   H   R   F   P   S   E   I   A   E   A   Q   C    

              250          260          270           280          290  

 

                                              >BbsI                     Hpy99I  

                                              >Bbr7I                  <TspGWI  

                                              |                       | | 

  AGA CAC TCA GGC TGC ATC AAT GCC CAG GGT CAG GAA GAC AGC ACC ATG AAC TCC GTC GCC  < 360 

  R   H   S   G   C   I   N   A   Q   G   Q   E   D   S   T   M   N   S   V   A    

              310          320          330           340          350  

 

                        Psp03I  

                        VpaK11AI                                                >RpaI  

                        AvaII             BanII                         <AcuI   <MmeI  

                        |                 |                             |       | 

  ATT CAG CAA GAA ATC CTG GTC CTT CGG AGG GAG CCC CAG GGC TGT TCT AAT TCC TTC AGG  < 420 

  I   Q   Q   E   I   L   V   L   R   R   E   P   Q   G   C   S   N   S   F   R    

              370          380          390           400          410  

 

                                                                              TauI  

                                                                              | 

  TTG GAG AAG ATG CTC CTA AAA GTT GGC TGC ACC TGT GTC AAG CCC ATT GTC CAC CAA GCG  < 480 

  L   E   K   M   L   L   K   V   G   C   T   C   V   K   P   I   V   H   Q   A    

              430          440          450           460          470  

 

 

   

  GCC TGA  < 486 

  A   *    

 

 

Signal peptide from nucleotide 1, mature peptide from nucleotide 85. 

 

 

 

A12. Mouse LAP-IL-17F mutant 1(Q158R mutation) 
 
HindIII       BglI  

  |             | 

  AAG CTT ATG CCG CCC TCC GGG CTG CGG CTG CTG CCG CTG CTG CTA CCG CTG CTG TGG CTA  < 60 

  K   L   M   P   P   S   G   L   R   L   L   P   L   L   L   P   L   L   W   L    

              10           20           30            40           50  

 

                            KroI  

                            NgoMIV                    >BspMI  

            BsaHI           NaeI                    >AarI  <BcgI      >ApyPI  

            |               |                       | |    |          | 

  CTG GTG CTG ACG CCT GGC CCG CCG GCC GCG GGA CTA TCC ACC tgc AAG ACT ATC GAC ATG  < 120 

  L   V   L   T   P   G   P   P   A   A   G   L   S   T   C   K   T   I   D   M    

              70           80           90            100          110  

 

                                        <StsI  

                                        <FokI  

                                        <BtsCI  

                            >CdiI      >BccI        <Bsp24I  

                            |          ||           | 

  GAG CTG GTG AAG CGG AAG CGC ATC GAG GCC ATC CGC GGC CAG ATC CTG TCC AAG CTG CGG  < 180 

  E   L   V   K   R   K   R   I   E   A   I   R   G   Q   I   L   S   K   L   R    

              130          140          150           160          170  

 

 

   

  CTC GCC AGC CCC CCG AGC CAG GGG GAG GTG CCG CCC GGC CCG CTG CCC GAG GCC GTG CTC  < 240 

  L   A   S   P   P   S   Q   G   E   V   P   P   G   P   L   P   E   A   V   L    

              190          200          210           220          230  
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       BsrGI  

       | 

  GCC CTG TAC AAC AGC ACC CGC GAC CGG GTG GCC GGG GAG AGT GCA GAA CCG GAG CCC GAG  < 300 

  A   L   Y   N   S   T   R   D   R   V   A   G   E   S   A   E   P   E   P   E    

              250          260          270           280          290  

 

  Bsu36I                      >CstMI    AleI                           >RleAI  

  |                           |         |                              | 

  CCT GAG GCC GAC TAC TAC GCC AAG GAG GTC ACC CGC GTG CTA ATG GTG GAA ACC CAC AAC  < 360 

  P   E   A   D   Y   Y   A   K   E   V   T   R   V   L   M   V   E   T   H   N    

              310          320          330           340          350  

 

                        >Tth111II                                          >PlaDI  

                        |                                                  | 

  GAA ATC TAT GAC AAG TTC AAG CAG AGT ACA CAC AGC ATA TAT ATG TTC TTC AAC ACA TCA  < 420 

  E   I   Y   D   K   F   K   Q   S   T   H   S   I   Y   M   F   F   N   T   S    

              370          380          390           400          410  

 

  SacI  

  Eco53kI           Acc65I                         SmaI  

  >UcoMSI           KpnI                           XmaI  

  |                 |                              | 

  GAG CTC CGA GAA GCG GTA CCT GAA CCC GTG TTG CTC TCC CGG GCA GAG CTG CGT CTG CTG  < 480 

  E   L   R   E   A   V   P   E   P   V   L   L   S   R   A   E   L   R   L   L    

              430          440          450           460          470  

 

      <BpuEI  MseI  

      |       | 

  AGG CTC AAG TTA AAA GTG GAG CAG CAC GTG GAG CTG TAC CAG AAA TAC AGC AAC AAT TCC  < 540 

  R   L   K   L   K   V   E   Q   H   V   E   L   Y   Q   K   Y   S   N   N   S    

              490          500          510           520          530  

 

                                                  <MlyI  

                                                  >BspD6I  

                   >AlfI                >RdeGBII  <PleI  

                   |                    |         | 

  TGG CGA TAC CTC AGC AAC CGG CTG CTG GCA CCC AGC GAC TCG CCA GAG TGG TTA TCT TTT  < 600 

  W   R   Y   L   S   N   R   L   L   A   P   S   D   S   P   E   W   L   S   F    

              550          560          570           580          590  

 

 

   

  GAT GTC ACC GGA GTT GTG CGG CAG TGG TTG AGC CGT GGA GGG GAA ATT GAG GGC TTT CGC  < 660 

  D   V   T   G   V   V   R   Q   W   L   S   R   G   G   E   I   E   G   F   R    

              610          620          630           640          650  

 

      HaeII  

      LpnI  

      | 

  CTT AGC GCC CAC TGC TCC TGT GAC AGC AGG GAT AAC ACA CTG CAA GTG GAC ATC AAC GGG  < 720 

  L   S   A   H   C   S   C   D   S   R   D   N   T   L   Q   V   D   I   N   G    

              670          680          690           700          710  

 

                   >NmeAIII  

                   | 

  TTC ACT ACC GGC CGC CGA GGT GAC CTG GCC ACC ATT CAT GGC ATG AAC CGG CCT TTC CTG  < 780 

  F   T   T   G   R   R   G   D   L   A   T   I   H   G   M   N   R   P   F   L    

              730          740          750           760          770  

 

                                   PspOMI  

                                   ApaI  

                                   BaeGI  

                                  PssI  

               BstXI              EcoO109I                                    >EciI  

               |                  ||                                          | 

  CTT CTC ATG GCC ACC CCG CTG GAG AGG GCC CAG CAT CTG CAA AGC GAA TTC GGG GGA GGC  < 840 

  L   L   M   A   T   P   L   E   R   A   Q   H   L   Q   S   E   F   G   G   G    

              790          800          810           820          830  

 

  BamHI                 <PspOMII           BlpI   NotI  

  |                     |                  |      | 
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  GGA TCC CCG CTC GGG CTT TGG GCG GGA GGG GGC TCA GCG GCC GCA CGG AAG AAC CCC AAA  < 900 

  G   S   P   L   G   L   W   A   G   G   G   S   A   A   A   R   K   N   P   K    

              850          860          870           880          890  

 

 

   

  GCA GGG GTT CCT GCC TTG CAG AAG GCT GGG AAC TGT CCT CCC CTG GAG GAT AAC ACT GTG  < 960 

  A   G   V   P   A   L   Q   K   A   G   N   C   P   P   L   E   D   N   T   V    

              910          920          930           940          950  

 

                   TfiI  

      HincII   BstBI                                           >TstI  

      |        |   |                                           | 

  AGA GTT GAC ATT CGA ATC TTC AAC CAA AAC CAG GGC ATT TCT GTC CCA CGT GAA TTC CAG  < 

1020 

  R   V   D   I   R   I   F   N   Q   N   Q   G   I   S   V   P   R   E   F   Q    

              970          980          990           1000         1010  

 

                                                   <BsaI  

                                               SciI  

                                               XhoI  

                      NcoI              >NlaCI     <BsmAI      AgeI  

                      |                 |      |   |           | 

  AAC CGC TCC AGT TCC CCA TGG GAT TAC AAC ATC ACT CGA GAC CCC CAC CGG TTC CCC TCA  < 

1080 

  N   R   S   S   S   P   W   D   Y   N   I   T   R   D   P   H   R   F   P   S    

              1030         1040         1050          1060         1070  

 

                                                                          >BbsI  

                   <BmrI                                                  >Bbr7I  

                   |                                                      | 

  GAG ATC GCT GAG GCC CAG TGC AGA CAC TCA GGC TGC ATC AAT GCC CAG GGT CAG GAA GAC  < 

1140 

  E   I   A   E   A   Q   C   R   H   S   G   C   I   N   A   Q   G   Q   E   D    

              1090         1100         1110          1120         1130  

 

                                                    Psp03I  

                                                    VpaK11AI  

                    Hpy99I                          AvaII  

                    |                               | 

  AGC ACC ATG AAC TCC GTC GCC ATT CAG CAA GAA ATC CTG GTC CTT CGG AGG GAG CCC CAG  < 

1200 

  S   T   M   N   S   V   A   I   Q   Q   E   I   L   V   L   R   R   E   P   Q    

              1150         1160         1170          1180         1190  

 

                            >RpaI  

                    <AcuI   <MmeI  

                    |       | 

  GGC TGT TCT AAT TCC TTC AGG TTG GAG AAG ATG CTC CTA AAA GTT GGC TGC ACC TGT GTC  < 

1260 

  G   C   S   N   S   F   R   L   E   K   M   L   L   K   V   G   C   T   C   V    

              1210         1220         1230          1240         1250  

 

 

   

  AAG CCC ATT GTC CAC CAA GCG GCC TGA  < 1287 

  K   P   I   V   H   Q   A   A   *    

              1270         1280     

 

 

Signal peptide of LAP from nucleotide 7, mature peptide of IL-17F mutant 1 from 

nucleotide 886. 
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A13. Mouse FL-IL-17F mutant 2 (H157R mutation) 

  ApaLI  

        BaeGI  >Sth132I  

        BsiHKAI                    >RdeGBIII  

        |      |                   | 

  ATG AAG TGC ACC CGT GAA ACA GCC ATG GTC AAG TCT TTG CTA CTG TTG ATG TTG GGA CTT  < 60 

  M   K   C   T   R   E   T   A   M   V   K   S   L   L   L   L   M   L   G   L    

              10           20           30            40           50  

 

                            AluI  

                           >AceIII                                            >SdeAI  

                           ||                                                 | 

  GCC ATT CTG AGG GAG GTA GCA GCT CGG AAG AAC CCC AAA GCA GGG GTT CCT GCC TTG CAG  < 120 

  A   I   L   R   E   V   A   A   R   K   N   P   K   A   G   V   P   A   L   Q    

              70           80           90            100          110  

 

                                                                       TfiI  

      <BseYI                                                           HinfI  

      <GsaI                                               HincII   BstBI      AgsI  

      |                                                   |        |   |      | 

  AAG GCT GGG AAC TGT CCT CCC CTG GAG GAT AAC ACT GTG AGA GTT GAC ATT CGA ATC TTC  < 180 

  K   A   G   N   C   P   P   L   E   D   N   T   V   R   V   D   I   R   I   F    

              130          140          150           160          170  

 

                                    HpyCH4IV  

                                    TaiI  

                                   BsaAI  

                                   >TstI  ApoI  

                                   PmlI   EcoRI         >BsrBI  

                                   ||     |             | 

  AAC CAA AAC CAG GGC ATT TCT GTC CCA CGT GAA TTC CAG AAC CGC TCC AGT TCC CCA TGG  < 240 

  N   Q   N   Q   G   I   S   V   P   R   E   F   Q   N   R   S   S   S   P   W    

              190          200          210           220          230  

 

                       <BsmAI  

                   XhoI             Sth302II  

                   SmlI             HpaII               Asi256I  

                   AvaI            BsrFI                DpnI  

                   SciI            AgeI                 ChaI  <BbvCI  

                   Nli3877I        BsaWI                MboI  <Bpu10I  

            >NlaCI     <BsaI       >NmeDI               BstKTI         <BmrI  

            |      |   |           ||                   |     |        | 

  GAT TAC AAC ATC ACT CGA GAC CCC CAC CGG TTC CCC TCA GAG ATC GCT GAG GCC CAG TGC  < 300 

  D   Y   N   I   T   R   D   P   H   R   F   P   S   E   I   A   E   A   Q   C    

              250          260          270           280          290  

 

                                              >BbsI                     Hpy99I  

                                              >Bbr7I                  <TspGWI  

                                              |                       | | 

  AGA CAC TCA GGC TGC ATC AAT GCC CAG GGT CAG GAA GAC AGC ACC ATG AAC TCC GTC GCC  < 360 

  R   H   S   G   C   I   N   A   Q   G   Q   E   D   S   T   M   N   S   V   A    

              310          320          330           340          350  

 

                        Psp03I  

                        VpaK11AI                                                <MmeI  

                        AvaII             BanII                         <AcuI   >RpaI  

                        |                 |                             |       | 

  ATT CAG CAA GAA ATC CTG GTC CTT CGG AGG GAG CCC CAG GGC TGT TCT AAT TCC TTC AGG  < 420 

  I   Q   Q   E   I   L   V   L   R   R   E   P   Q   G   C   S   N   S   F   R    

              370          380          390           400          410  

 

                                                                   <EciI      TauI  

                                                                   |          | 

  TTG GAG AAG ATG CTC CTA AAA GTT GGC TGC ACC TGT GTC AAG CCC ATT GTC CGC CAA GCG  < 480 

  L   E   K   M   L   L   K   V   G   C   T   C   V   K   P   I   V   R   Q   A    

              430          440          450           460          470  

 

 

   

  GCC TGA  < 486 

  A   *    

         

 

Signal peptide from nucleotide 1, mature peptide from nucleotide 85. 
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A14. Mouse LAP-IL-17F mutant 2 (H157R mutation) 

HindIII       BglI  

  |             | 

  AAG CTT ATG CCG CCC TCC GGG CTG CGG CTG CTG CCG CTG CTG CTA CCG CTG CTG TGG CTA  < 60 

  K   L   M   P   P   S   G   L   R   L   L   P   L   L   L   P   L   L   W   L    

              10           20           30            40           50  

 

                            KroI  

                            NaeI                      >BspMI  

            BsaHI           NgoMIV                  >AarI  <BcgI      >ApyPI  

            |               |                       | |    |          | 

  CTG GTG CTG ACG CCT GGC CCG CCG GCC GCG GGA CTA TCC ACC tgc AAG ACT ATC GAC ATG  < 120 

  L   V   L   T   P   G   P   P   A   A   G   L   S   T   C   K   T   I   D   M    

              70           80           90            100          110  

 

                                        <BtsCI  

                                        <StsI  

                                        <FokI  

                            >CdiI      >BccI        <Bsp24I  

                            |          ||           | 

  GAG CTG GTG AAG CGG AAG CGC ATC GAG GCC ATC CGC GGC CAG ATC CTG TCC AAG CTG CGG  < 180 

  E   L   V   K   R   K   R   I   E   A   I   R   G   Q   I   L   S   K   L   R    

              130          140          150           160          170  

 

 

   

  CTC GCC AGC CCC CCG AGC CAG GGG GAG GTG CCG CCC GGC CCG CTG CCC GAG GCC GTG CTC  < 240 

  L   A   S   P   P   S   Q   G   E   V   P   P   G   P   L   P   E   A   V   L    

              190          200          210           220          230  

 

       BsrGI  

       | 

  GCC CTG TAC AAC AGC ACC CGC GAC CGG GTG GCC GGG GAG AGT GCA GAA CCG GAG CCC GAG  < 300 

  A   L   Y   N   S   T   R   D   R   V   A   G   E   S   A   E   P   E   P   E    

              250          260          270           280          290  

 

  Bsu36I                      >CstMI    AleI                           >RleAI  

  |                           |         |                              | 

  CCT GAG GCC GAC TAC TAC GCC AAG GAG GTC ACC CGC GTG CTA ATG GTG GAA ACC CAC AAC  < 360 

  P   E   A   D   Y   Y   A   K   E   V   T   R   V   L   M   V   E   T   H   N    

              310          320          330           340          350  

 

                        >Tth111II                                          >PlaDI  

                        |                                                  | 

  GAA ATC TAT GAC AAG TTC AAG CAG AGT ACA CAC AGC ATA TAT ATG TTC TTC AAC ACA TCA  < 420 

  E   I   Y   D   K   F   K   Q   S   T   H   S   I   Y   M   F   F   N   T   S    

              370          380          390           400          410  

 

  Eco53kI  

  >UcoMSI           Acc65I                         SmaI  

  SacI              KpnI                           XmaI  

  |                 |                              | 

  GAG CTC CGA GAA GCG GTA CCT GAA CCC GTG TTG CTC TCC CGG GCA GAG CTG CGT CTG CTG  < 480 

  E   L   R   E   A   V   P   E   P   V   L   L   S   R   A   E   L   R   L   L    

              430          440          450           460          470  

 

      <BpuEI  MseI  

      |       | 

  AGG CTC AAG TTA AAA GTG GAG CAG CAC GTG GAG CTG TAC CAG AAA TAC AGC AAC AAT TCC  < 540 

  R   L   K   L   K   V   E   Q   H   V   E   L   Y   Q   K   Y   S   N   N   S    

              490          500          510           520          530  

 

                                                  <MlyI  

                                                  >BspD6I  

                   >AlfI                >RdeGBII  <PleI  

                   |                    |         | 

  TGG CGA TAC CTC AGC AAC CGG CTG CTG GCA CCC AGC GAC TCG CCA GAG TGG TTA TCT TTT  < 600 

  W   R   Y   L   S   N   R   L   L   A   P   S   D   S   P   E   W   L   S   F    

              550          560          570           580          590  
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  GAT GTC ACC GGA GTT GTG CGG CAG TGG TTG AGC CGT GGA GGG GAA ATT GAG GGC TTT CGC  < 660 

  D   V   T   G   V   V   R   Q   W   L   S   R   G   G   E   I   E   G   F   R    

              610          620          630           640          650  

 

      HaeII  

      LpnI  

      | 

  CTT AGC GCC CAC TGC TCC TGT GAC AGC AGG GAT AAC ACA CTG CAA GTG GAC ATC AAC GGG  < 720 

  L   S   A   H   C   S   C   D   S   R   D   N   T   L   Q   V   D   I   N   G    

              670          680          690           700          710  

 

                   >NmeAIII  

                   | 

  TTC ACT ACC GGC CGC CGA GGT GAC CTG GCC ACC ATT CAT GGC ATG AAC CGG CCT TTC CTG  < 780 

  F   T   T   G   R   R   G   D   L   A   T   I   H   G   M   N   R   P   F   L    

              730          740          750           760          770  

 

                                   ApaI  

                                   PspOMI  

                                   BaeGI  

                                  PssI  

               BstXI              EcoO109I  

               |                  || 

  CTT CTC ATG GCC ACC CCG CTG GAG AGG GCC CAG CAT CTG CAA AGC GAA TTC GGG GGA GGC  < 840 

  L   L   M   A   T   P   L   E   R   A   Q   H   L   Q   S   E   F   G   G   G    

              790          800          810           820          830  

 

  BamHI                 <PspOMII           BlpI   NotI  

  |                     |                  |      | 

  GGA TCC CCG CTC GGG CTT TGG GCG GGA GGG GGC TCA GCG GCC GCA CGG AAG AAC CCC AAA  < 900 

  G   S   P   L   G   L   W   A   G   G   G   S   A   A   A   R   K   N   P   K    

              850          860          870           880          890  

 

 

   

  GCA GGG GTT CCT GCC TTG CAG AAG GCT GGG AAC TGT CCT CCC CTG GAG GAT AAC ACT GTG  < 960 

  A   G   V   P   A   L   Q   K   A   G   N   C   P   P   L   E   D   N   T   V    

              910          920          930           940          950  

 

                   TfiI  

      HincII   BstBI                                           >TstI  

      |        |   |                                           | 

  AGA GTT GAC ATT CGA ATC TTC AAC CAA AAC CAG GGC ATT TCT GTC CCA CGT GAA TTC CAG  < 

1020 

  R   V   D   I   R   I   F   N   Q   N   Q   G   I   S   V   P   R   E   F   Q    

              970          980          990           1000         1010  

 

                                                   <BsaI  

                                               XhoI  

                                               SciI  

                      NcoI              >NlaCI     <BsmAI      AgeI  

                      |                 |      |   |           | 

  AAC CGC TCC AGT TCC CCA TGG GAT TAC AAC ATC ACT CGA GAC CCC CAC CGG TTC CCC TCA  < 

1080 

  N   R   S   S   S   P   W   D   Y   N   I   T   R   D   P   H   R   F   P   S    

              1030         1040         1050          1060         1070  

 

                                                                          >Bbr7I  

                   <BmrI                                                  >BbsI  

                   |                                                      | 

  GAG ATC GCT GAG GCC CAG TGC AGA CAC TCA GGC TGC ATC AAT GCC CAG GGT CAG GAA GAC  < 

1140 

  E   I   A   E   A   Q   C   R   H   S   G   C   I   N   A   Q   G   Q   E   D    

              1090         1100         1110          1120         1130  

 

                                                    AvaII  

                                                    Psp03I  

                    Hpy99I                          VpaK11AI  

                    |                               | 
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  AGC ACC ATG AAC TCC GTC GCC ATT CAG CAA GAA ATC CTG GTC CTT CGG AGG GAG CCC CAG  < 

1200 

  S   T   M   N   S   V   A   I   Q   Q   E   I   L   V   L   R   R   E   P   Q    

              1150         1160         1170          1180         1190  

 

                            >RpaI  

                    <AcuI   <MmeI  

                    |       | 

  GGC TGT TCT AAT TCC TTC AGG TTG GAG AAG ATG CTC CTA AAA GTT GGC TGC ACC TGT GTC  < 

1260 

  G   C   S   N   S   F   R   L   E   K   M   L   L   K   V   G   C   T   C   V    

              1210         1220         1230          1240         1250  

 

 

   

  AAG CCC ATT GTC CGC CAA GCG GCC TGA  < 1287 

  K   P   I   V   R   Q   A   A   *    

              1270         1280      

 

 

Signal peptide of LAP from nucleotide 7, mature peptide of IL-17F mutant 2 from 

nucleotide 886. 

 

 

A15. Mouse FL-IL-17F mutant 3 (deletion of the last 4 amino acids) 

 

 

        ApaLI  

        BaeGI  >Sth132I  

        BsiHKAI                    >RdeGBIII  

        |      |                   | 

  ATG AAG TGC ACC CGT GAA ACA GCC ATG GTC AAG TCT TTG CTA CTG TTG ATG TTG GGA CTT  < 60 

  M   K   C   T   R   E   T   A   M   V   K   S   L   L   L   L   M   L   G   L    

              10           20           30            40           50  

 

                            AluI  

                           >AceIII                                            >SdeAI  

                           ||                                                 | 

  GCC ATT CTG AGG GAG GTA GCA GCT CGG AAG AAC CCC AAA GCA GGG GTT CCT GCC TTG CAG  < 120 

  A   I   L   R   E   V   A   A   R   K   N   P   K   A   G   V   P   A   L   Q    

              70           80           90            100          110  

 

                                                                       HinfI  

      <GsaI                                                            TfiI  

      <BseYI                                              HincII   BstBI      AgsI  

      |                                                   |        |   |      | 

  AAG GCT GGG AAC TGT CCT CCC CTG GAG GAT AAC ACT GTG AGA GTT GAC ATT CGA ATC TTC  < 180 

  K   A   G   N   C   P   P   L   E   D   N   T   V   R   V   D   I   R   I   F    

              130          140          150           160          170  

 

                                    HpyCH4IV  

                                    TaiI  

                                   BsaAI  

                                   PmlI   ApoI          >BsrBI  

                                   >TstI  EcoRI         >AciI  

                                   ||     |             | 

  AAC CAA AAC CAG GGC ATT TCT GTC CCA CGT GAA TTC CAG AAC CGC TCC AGT TCC CCA TGG  < 240 

  N   Q   N   Q   G   I   S   V   P   R   E   F   Q   N   R   S   S   S   P   W    

              190          200          210           220          230  

 

                       <BsaI  

                   AvaI             HpaII  

                   XhoI             Sth302II            MboI  

                   SciI            BsrFI                DpnI  <BbvCI  

                   Nli3877I        AgeI                 Asi256I     AoxI  
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                   SmlI            >NmeDI               BstKTI      HaeIII  

            >NlaCI     <BsmAI      BsaWI                ChaI  <Bpu10I  <BmrI  

            |      |   |           ||                   |     |     |  | 

  GAT TAC AAC ATC ACT CGA GAC CCC CAC CGG TTC CCC TCA GAG ATC GCT GAG GCC CAG TGC  < 300 

  D   Y   N   I   T   R   D   P   H   R   F   P   S   E   I   A   E   A   Q   C    

              250          260          270           280          290  

 

                                              >Bbr7I                    Hpy99I  

                                              >BbsI                   <TspGWI  

                                              |                       | | 

  AGA CAC TCA GGC TGC ATC AAT GCC CAG GGT CAG GAA GAC AGC ACC ATG AAC TCC GTC GCC  < 360 

  R   H   S   G   C   I   N   A   Q   G   Q   E   D   S   T   M   N   S   V   A    

              310          320          330           340          350  

 

                        VpaK11AI  

                        Psp03I                                                  <MmeI  

                        AvaII             BanII                         <AcuI   >RpaI  

                        |                 |                             |       | 

  ATT CAG CAA GAA ATC CTG GTC CTT CGG AGG GAG CCC CAG GGC TGT TCT AAT TCC TTC AGG  < 420 

  I   Q   Q   E   I   L   V   L   R   R   E   P   Q   G   C   S   N   S   F   R    

              370          380          390           400          410  

 

 

   

  TTG GAG AAG ATG CTC CTA AAA GTT GGC TGC ACC TGT GTC AAG CCC ATT TGA  < 471 

  L   E   K   M   L   L   K   V   G   C   T   C   V   K   P   I   *    

              430          440          450           460          470  

 

Signal peptide from nucleotide 1, mature peptide from nucleotide 85. 

 

 

A16. Mouse LAP-IL-17F mutant 3 (deletion of the last 4 amino acids) 

HindIII       BglI  

  |             | 

  AAG CTT ATG CCG CCC TCC GGG CTG CGG CTG CTG CCG CTG CTG CTA CCG CTG CTG TGG CTA  < 60 

  K   L   M   P   P   S   G   L   R   L   L   P   L   L   L   P   L   L   W   L    

              10           20           30            40           50  

 

                            NaeI  

                            NgoMIV                    >BspMI  

            BsaHI           KroI                    >AarI  <BcgI      >ApyPI  

            |               |                       | |    |          | 

  CTG GTG CTG ACG CCT GGC CCG CCG GCC GCG GGA CTA TCC ACC tgc AAG ACT ATC GAC ATG  < 120 

  L   V   L   T   P   G   P   P   A   A   G   L   S   T   C   K   T   I   D   M    

              70           80           90            100          110  

 

                                        <FokI  

                                        <BtsCI  

                                        <StsI  

                            >CdiI      >BccI        <Bsp24I  

                            |          ||           | 

  GAG CTG GTG AAG CGG AAG CGC ATC GAG GCC ATC CGC GGC CAG ATC CTG TCC AAG CTG CGG  < 180 

  E   L   V   K   R   K   R   I   E   A   I   R   G   Q   I   L   S   K   L   R    

              130          140          150           160          170  

 

 

   

  CTC GCC AGC CCC CCG AGC CAG GGG GAG GTG CCG CCC GGC CCG CTG CCC GAG GCC GTG CTC  < 240 

  L   A   S   P   P   S   Q   G   E   V   P   P   G   P   L   P   E   A   V   L    

              190          200          210           220          230  

 

       BsrGI  

       | 

  GCC CTG TAC AAC AGC ACC CGC GAC CGG GTG GCC GGG GAG AGT GCA GAA CCG GAG CCC GAG  < 300 

  A   L   Y   N   S   T   R   D   R   V   A   G   E   S   A   E   P   E   P   E    
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              250          260          270           280          290  

 

  Bsu36I                      >CstMI    AleI                           >RleAI  

  |                           |         |                              | 

  CCT GAG GCC GAC TAC TAC GCC AAG GAG GTC ACC CGC GTG CTA ATG GTG GAA ACC CAC AAC  < 360 

  P   E   A   D   Y   Y   A   K   E   V   T   R   V   L   M   V   E   T   H   N    

              310          320          330           340          350  

 

                        >Tth111II                                          >PlaDI  

                        |                                                  | 

  GAA ATC TAT GAC AAG TTC AAG CAG AGT ACA CAC AGC ATA TAT ATG TTC TTC AAC ACA TCA  < 420 

  E   I   Y   D   K   F   K   Q   S   T   H   S   I   Y   M   F   F   N   T   S    

              370          380          390           400          410  

 

  >UcoMSI  

  Eco53kI           Acc65I                         SmaI  

  SacI              KpnI                           XmaI  

  |                 |                              | 

  GAG CTC CGA GAA GCG GTA CCT GAA CCC GTG TTG CTC TCC CGG GCA GAG CTG CGT CTG CTG  < 480 

  E   L   R   E   A   V   P   E   P   V   L   L   S   R   A   E   L   R   L   L    

              430          440          450           460          470  

 

      <BpuEI  MseI  

      |       | 

  AGG CTC AAG TTA AAA GTG GAG CAG CAC GTG GAG CTG TAC CAG AAA TAC AGC AAC AAT TCC  < 540 

  R   L   K   L   K   V   E   Q   H   V   E   L   Y   Q   K   Y   S   N   N   S    

              490          500          510           520          530  

 

                                                  >BspD6I  

                                                  <MlyI  

                   >AlfI                >RdeGBII  <PleI  

                   |                    |         | 

  TGG CGA TAC CTC AGC AAC CGG CTG CTG GCA CCC AGC GAC TCG CCA GAG TGG TTA TCT TTT  < 600 

  W   R   Y   L   S   N   R   L   L   A   P   S   D   S   P   E   W   L   S   F    

              550          560          570           580          590  

 

 

   

  GAT GTC ACC GGA GTT GTG CGG CAG TGG TTG AGC CGT GGA GGG GAA ATT GAG GGC TTT CGC  < 660 

  D   V   T   G   V   V   R   Q   W   L   S   R   G   G   E   I   E   G   F   R    

              610          620          630           640          650  

 

      LpnI  

      HaeII  

      | 

  CTT AGC GCC CAC TGC TCC TGT GAC AGC AGG GAT AAC ACA CTG CAA GTG GAC ATC AAC GGG  < 720 

  L   S   A   H   C   S   C   D   S   R   D   N   T   L   Q   V   D   I   N   G    

              670          680          690           700          710  

 

                   >NmeAIII  

                   | 

  TTC ACT ACC GGC CGC CGA GGT GAC CTG GCC ACC ATT CAT GGC ATG AAC CGG CCT TTC CTG  < 780 

  F   T   T   G   R   R   G   D   L   A   T   I   H   G   M   N   R   P   F   L    

              730          740          750           760          770  

 

                                   PspOMI  

                                   ApaI  

                                   BaeGI  

                                  PssI  

               BstXI              EcoO109I                                    >EciI  

               |                  ||                                          | 

  CTT CTC ATG GCC ACC CCG CTG GAG AGG GCC CAG CAT CTG CAA AGC GAA TTC GGG GGA GGC  < 840 

  L   L   M   A   T   P   L   E   R   A   Q   H   L   Q   S   E   F   G   G   G    

              790          800          810           820          830  

 

  BamHI                 <PspOMII           BlpI   NotI  

  |                     |                  |      | 

  GGA TCC CCG CTC GGG CTT TGG GCG GGA GGG GGC TCA GCG GCC GCA CGG AAG AAC CCC AAA  < 900 

  G   S   P   L   G   L   W   A   G   G   G   S   A   A   A   R   K   N   P   K    

              850          860          870           880          890  
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  GCA GGG GTT CCT GCC TTG CAG AAG GCT GGG AAC TGT CCT CCC CTG GAG GAT AAC ACT GTG  < 960 

  A   G   V   P   A   L   Q   K   A   G   N   C   P   P   L   E   D   N   T   V    

              910          920          930           940          950  

 

                   TfiI  

      HincII   BstBI                                           >TstI  

      |        |   |                                           | 

  AGA GTT GAC ATT CGA ATC TTC AAC CAA AAC CAG GGC ATT TCT GTC CCA CGT GAA TTC CAG  < 

1020 

  R   V   D   I   R   I   F   N   Q   N   Q   G   I   S   V   P   R   E   F   Q    

              970          980          990           1000         1010  

 

                                                   <BsaI  

                                               XhoI  

                                               SciI  

                      NcoI              >NlaCI     <BsmAI      AgeI  

                      |                 |      |   |           | 

  AAC CGC TCC AGT TCC CCA TGG GAT TAC AAC ATC ACT CGA GAC CCC CAC CGG TTC CCC TCA  < 

1080 

  N   R   S   S   S   P   W   D   Y   N   I   T   R   D   P   H   R   F   P   S    

              1030         1040         1050          1060         1070  

 

                                                                          >BbsI  

                   <BmrI                                                  >Bbr7I  

                   |                                                      | 

  GAG ATC GCT GAG GCC CAG TGC AGA CAC TCA GGC TGC ATC AAT GCC CAG GGT CAG GAA GAC  < 

1140 

  E   I   A   E   A   Q   C   R   H   S   G   C   I   N   A   Q   G   Q   E   D    

              1090         1100         1110          1120         1130  

 

                                                    AvaII  

                                                    VpaK11AI  

                    Hpy99I                          Psp03I  

                    |                               | 

  AGC ACC ATG AAC TCC GTC GCC ATT CAG CAA GAA ATC CTG GTC CTT CGG AGG GAG CCC CAG  < 

1200 

  S   T   M   N   S   V   A   I   Q   Q   E   I   L   V   L   R   R   E   P   Q    

              1150         1160         1170          1180         1190  

 

                            >RpaI  

                    <AcuI   <MmeI  

                    |       | 

  GGC TGT TCT AAT TCC TTC AGG TTG GAG AAG ATG CTC CTA AAA GTT GGC TGC ACC TGT GTC  < 

1260 

  G   C   S   N   S   F   R   L   E   K   M   L   L   K   V   G   C   T   C   V    

              1210         1220         1230          1240         1250  

 

 

   

  AAG CCC ATT TGA  < 1272 

  K   P   I   *    

              1270  

 

Signal peptide of LAP from nucleotide 7, mature peptide of IL-17F mutant 3 from 

nucleotide 886. 
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