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EXTENDED ABSTRACT

This thesis contributes to four distinct fields on the econometrics literature:

forecasting macroeconomic variables using large datasets, volatility mod-

elling, risk premium estimation and iterative estimators. As a research out-

put, this thesis presents a balance of applied econometrics and econometric

theory, with the latter one covering the asymptotic theory of iterative es-

timators under different models and mapping specifications. In Chapter

1 we introduce and motivate the estimation tools for large datasets, the

volatility modelling and the use of iterative estimators.

In Chapter 2, we address the issue of forecasting macroeconomic vari-

ables using medium and large datasets, by adopting vector autoregressive

moving average (VARMA) models. We overcome the estimation issue that

arises with this class of models by implementing the iterative ordinary least

squares (IOLS) estimator. We establish the consistency and asymptotic

distribution considering the ARMA(1,1) and we argue these results can be

extended to the multivariate case. Monte Carlo results show that IOLS is

consistent and feasible for large systems, and outperforms the maximum

likelihood (MLE) estimator when sample size is small. Our empirical appli-

cation shows that VARMA models outperform the AR(1) (autoregressive

of order one model) and vector autoregressive (VAR) models, considering

different model dimensions.

Chapter 3 proposes a new robust estimator for GARCH-type models:

the nonlinear iterative least squares (NL-ILS). This estimator is especially

useful on specifications where errors have some degree of dependence over

time or when the conditional variance is misspecified. We illustrate the

NL-ILS estimator by providing algorithms that consider the GARCH(1,1),
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weak-GARCH(1,1), GARCH(1,1)-in-mean and RealGARCH(1,1)-in-mean

models. I establish the consistency and asymptotic distribution of the NL-

ILS estimator, in the case of the GARCH(1,1) model under assumptions

that are compatible with the quasi-maximum likelihood (QMLE) estima-

tor. The consistency result is extended to the weak-GARCH(1,1) model

and a further extension of the asymptotic results to the GARCH(1,1)-in-

mean case is also discussed. A Monte Carlo study provides evidences that

the NL-ILS estimator is consistent and outperforms the MLE benchmark

in a variety of specifications. Moreover, when the conditional variance is

misspecified, the MLE estimator delivers biased estimates of the parame-

ters in the mean equation, whereas the NL-ILS estimator does not. The

empirical application investigates the risk premium on the CRSP, S&P500

and S&P100 indices. I document the risk premium parameter to be signif-

icant only for the CRSP index when using the robust NL-ILS estimator.

We argue that this comes from the wider composition of the CRPS index,

resembling the market more accurately, when compared to the S&P500 and

S&P100 indices. This finding holds on daily, weekly and monthly frequen-

cies and it is corroborated by a series of robustness checks.

Chapter 4 assesses the evolution of the risk premium parameter over

time. To this purpose, we introduce a new class of volatility-in-mean model,

the time-varying GARCH-in-mean (TVGARCH-in-mean) model, that al-

lows the risk premium parameter to evolve stochastically as a random walk

process. We show that the kernel based NL-ILS estimator successfully es-

timates the time-varying risk premium parameter, presenting a good finite

sample performance. Regarding the empirical study, we find evidences that

the risk premium parameter is time-varying, oscillating over negative and
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positive values.

Chapter 5 concludes pointing the relevance of of the use of iterative es-

timators rather than the standard MLE framework, as well as the contribu-

tions to the applied econometrics, financial econometrics and econometric

theory literatures.
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Chapter 1

Introduction

This thesis investigates the use of iterative estimators, with applications to

two distinct fields: the applied econometrics and the financial economet-

rics fields. We therefore present a balance between econometric theory and

empirical results covering topics such as forecasting and volatility mod-

elling. Our contribution to the econometric theory literature consists in

establishing the asymptotic theory for two variants of iterative estimators

(the iterative ordinary least squares estimator (IOLS) and the nonlinear it-

erative least squares estimator (NL-ILS)). We derive theoretical results for

two of the most important time series models adopted in the literature: the

autoregressive moving average (ARMA) and the generalized autoregressive

conditional heteroscedasticity (GARCH) models. The two alternative iter-

ative estimators we adopt in this thesis overcome estimation issues related

with the vector autoregressive moving average (VARMA), GARCH, weak-

GARCH, and GARCH-in-mean models. In general lines, our empirical

application sheds light on the validity of VARMA models on forecasting

key macroeconomic variables using large datasets (Chapter 2), as well as
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on the identification of the risk-return tradeoff (Chapters 3 and 4).

Forecasting macroeconomic variables received great attention in the eco-

nomic literature in the past decades. Time series econometrics played a

major role in this process, following the seminal paper of Sims (1980) and

the wide implementation of vector autoregressive (VAR) models. A more

recent extension of this literature relates to forecasting key macroeconomic

variables using large datasets. These large datasets became more widely

available in the past years and their use is motivated by the intuition they

should reflect agents’s information set more appropriately. Hence, by incor-

porating large datasets into econometric models, forecast accuracy should

improve. The challenge of dealing with large datasets comes because stan-

dard econometric frameworks usually lose performance when the number

of variables (parameters) increases, the so-called “curse of dimensionality”.

Potential solutions for this problem arise from mainly two different

group of models: penalized regressions and factor models. The first group,

penalized regressions, aims to overcome the dimensionality issue by impos-

ing restrictions on the parameter matrices of a standard VAR model. The

intuition behind this solution arises from a well-known result of standard

linear regression which states that covariance matrices of restricted estima-

tors have lower variances than those of unrestricted estimators. Among the

many important contributions from this field, we point out the following

classes of models: Bayesian VAR (BVAR) (De Mol, Giannone, and Reichlin

(2006) and Banbura, Giannone, and Reichlin (2007)), in the spirit of Doan,

Litterman, and Sims (1984) and Litterman (1986); Ridge (De Mol, Gian-

none, and Reichlin (2006)) and shrinkage estimators (Carriero, Kapetanios,

and Marcellino (2008)); Reduced Rank VAR (Carriero, Kapetanios, and
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Marcellino (2011)); and Lasso (De Mol, Giannone, and Reichlin (2006)

and Tibshirani (1996)).

The second group of models dealing with the “curse of dimensional-

ity”is the factor models. The seminal works in this area are Forni, Hallin,

Lippi, and Reichlin (2000) and Stock and Watson (2002). Factor models

summarize a large number of variables with only a few unobserved com-

mon factors and an idiosyncratic component. These models dramatically

reduce the dimensions of the system, contributing to an improvement in

forecast accuracy. Common factor models improve forecast accuracy and

produce theoretically well-behaved impulse response functions, as reported

by De Mol, Giannone, and Reichlin (2006) and Bernanke, Boivin, and

Eliasz (2005). These findings support the idea that agents consider wider

information sets when making their decisions.

Alternatively to the methodologies discussed above, we propose the

use of vector autoregressive moving average (VARMA) models to address

the “curse of dimensionality”. The intuition supporting this choice is

that VARMA models share features from both penalized regressions and

factor models. The first is the reduction of the model dimensionality,

achieved by setting some elements of the parameter matrices to zero follow-

ing uniqueness requirements. The second is the parsimonious summarizing

of high-order autoregressive lags into low-order lagged shocks. By adopting

VARMA, we allow lagged shocks from most of the macroeconomic variables

in our dataset to play very important roles in forecasting the future realiza-

tions of key macroeconomic variables. We overcome the estimation issue

that arises with VARMA models by implementing the IOLS estimator.

We establish the consistency and asymptotic distribution considering the
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ARMA(1,1) and we argue these results can be extended to the multivariate

case. Monte Carlo results show that IOLS is consistent and feasible for large

systems, and outperforms the maximum likelihood (MLE) estimator when

sample size is small. Our empirical application shows that VARMA mod-

els outperforms the AR(1) and VAR models, considering different model

dimensions.

The second part of this thesis deals with volatility modelling and risk

premium estimation. Time-varying volatility plays a major role in both fi-

nance and economics. In particular, asset return volatility is paramount in

fields such as asset pricing, risk management and portfolio allocation. The

task of modeling the conditional variance has been a central topic in econo-

metrics following the seminal papers of Engle (1982) and Bollerslev (1986).

Since then, different specifications and frameworks, such as GARCH-type

models, stochastic volatility, realized volatility and combinations of these

approaches have been adopted, trying to capture the very specific stylized

facts observed in financial returns. A natural extension that emerges from

modeling the conditional variance is the relation between risk and return.

The intertemporal capital asset pricing model (ICAPM) of Merton (1973)

establishes a positive relation between the conditional excess returns and

the conditional variance, implying that investors should be remunerated for

bearing extra risk. In spite of its simple specification, empirical evidences

on the sign and significance of the risk premium parameter are blurred.

Bollerslev, Chou, and Kroner (1992), Lettau and Ludvigson (2010), Rossi

and Timmermann (2010), among others highlight three potential problems

that contribute to the lack of consensus regarding the existence of the risk-

return tradeoff.
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First, quasi-maximum likelihood (QMLE) estimates of the risk premium

parameter using the GARCH-in-mean framework may be inconsistent if the

conditional variance is misspecified. Hence, given the vast menu of alter-

native volatility models available in the literature, it is paramount to use

estimators which are robust to a large number of volatility specifications.

Secondly, misspecification of the risk premium function may lead to biased

results. Third, the use of only few conditioning variables generates incom-

plete models, making very difficult the identification of the risk premium

function. Chapter 3 addresses the first issue raised above, whereas Chapter

4 deals explicitly with the second and third issues.

1.1 Outline of Thesis

Chapter 2 addresses the issue of forecasting key macroeconomic variables

using medium and large datasets (from 10 to 40 variables). As an alter-

native to standard autoregressive (AR) and vector autoregressive (VAR)

models, we propose using VARMA models. We overcome the estimation

issue that usually arises in high dimensional VARMA models by adopting

the IOLS estimation procedure. We establish consistency and the asymp-

totic distribution for the IOLS estimator considering the ARMA(1,1) case,

providing an analytical expression for the latter one. We report results

from Monte Carlo simulations, assessing the consistency, efficiency, and

forecast accuracy obtained using the IOLS estimator. With regard to the

consistency and efficiency analysis, we show the IOLS estimator is con-

sistent and feasible for large systems, and also performs better than the

maximum-likelihood estimator (MLE) when sample size is small. In terms
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of forecast accuracy, we report an outstanding performance of VARMA

models compared with VAR and AR(1) models under a variety of specifi-

cations. On the empirical application, we show that different specifications

of VARMA models estimated using the IOLS framework provide more ac-

curate forecasts than VAR and AR(1) models, considering different model

dimensions.

Chapter 3 investigates the significance of the risk premium parame-

ter in three different market indices. We propose a novel full parametric

iterative estimator, the NL-ILS estimator, nesting several GARCH-type

models. This estimator is especially useful on specifications where errors

have some degree of dependence over time or the conditional variance is

misspecified. We derive the asymptotic theory for the GARCH(1,1) and

weak-GARCH(1,1) models under assumptions that are compatible with the

QMLE estimator. We argue that these results can be extended to different

GARCH-type models. A Monte Carlo study provides evidences that the

NL-ILS estimator is consistent and outperforms the MLE benchmark in a

variety of specifications. Moreover, when the conditional variance is mis-

specified, the MLE estimator delivers biased estimates of the parameters

in the mean equation, whereas the NL-ILS estimator does not. We re-

port an outstanding performance of the NL-ILS estimator when estimating

volatility models generated with time dependent innovations.

We examine the significance of the risk premium parameter using the

GARCH(1,1)-in-mean framework by adopting the NL-ILS estimator. The

main question is whether, by using an estimator which is robust to mis-

specification of the conditional variance, the risk premium parameter is

significant and presents the correct sign. We assess this question in two
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different dimensions: temporal frequency and market proxy. The former

one is evaluated by estimating the model on a daily, weekly and monthly

basis, whereas the latter dimension is appraised by adopting three different

indices: CRSP, S&P500 and S&P100. The choice of comparing different

indices emerges from the distinctive compositions they have. The CRSP

index is known to be the best proxy for the market, whereas S&P100 would

be the least complete index. By estimating the risk premium at different

frequencies, we control for the QMLE lack of consistency that arises when

the considered sampling frequency is different from the true data gener-

ation process. We find significant risk premium parameter only for the

CRSP index when using the robust NL-ILS estimator. We obtain a dif-

ferent picture with QMLE: the risk premium parameter is significant for

all indices, including the least complete one, the S&P100. The significance

of the risk premium parameter when estimated with the NL-ILS holds on

daily, weekly and monthly frequencies and it is corroborated by a series

of robustness checks. We argue that the NL-ILS estimator is the only one

able to capture the “true” risk premium, since its results reflect the wider

composition of the CRPS index, resembling the market more accurately,

when compared to S&P500 and S&P100 indices.

Chapter 4 examines how the risk premium parameter varies over time,

shedding light on the behaviour of the risk aversion parameter during peri-

ods of financial distress. To accommodate a time-varying coefficient on the

mean equation of a GARCH-in-mean model, we introduce the time-varying

GARCH-in-mean (TVGARCH-in-mean) model, where the risk premium

parameter is allowed to be a time-varying stochastic process. We propose

an estimation strategy that combines kernel methods with the NL-ILS esti-
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mator and successfully estimates the time-varying risk premium parameter.

A Monte Carlo study shows that the proposed algorithm has good finite

sample properties. We investigate the time-varying risk premium using

excess returns on the CRSP index. We document that the risk premium

parameter is indeed time-variant and shows high degree of persistence. We

find that the monthly time-varying risk premium parameter is statistically

different from zero on 46.5% of the observations. Considering point-wise

analyses, we find that weekly estimates of the time-varying risk premium

parameter anticipate bear market phases and business cycles fluctuations.

Finally, our results suggest that the relation between significance of the

time-varying risk premium parameter and business cycle fluctuations has

changed in the past twenty years.

Chapter 5 draws the conclusion and final remarks of the thesis.
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Chapter 2

Forecasting Medium and Large

Datasets with Vector

Autoregressive Moving

Average (VARMA) Models

2.1 Introduction

The use of large arrays of economic indicators to forecast key macroeco-

nomic variables has become very popular recently. Economic agents con-

sider a wide range of information when they construct their expectations

about the behavior of macroeconomic variables such as interest rates, indus-

trial production, and inflation. In the past several years, this information

has become more widely available through a large number of indicators that

aim to describe different sectors and fundamentals from the whole economy.

To improve forecast accuracy, large datasets that attempt to replicate the
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set of information used by agents to make their decisions are incorporated

into econometric models.

For the past twenty years, macroeconomic variables have been fore-

casted using vector autoregression (VAR) models. This type of models

performs well when the number of variables in the system is relatively

small. When the number of variables increases, however, the performance

of VAR forecasts deteriorates very fast, generating the so-called “curse of

dimensionality”. The reasons for this problem are: first, some variables

in the VAR models are not Granger-Caused by some components of the

system; and second, the sample data is not rich enough. In both cases,

large errors are associated with the parameter estimates, contributing to

the reduced forecast accuracy of this class of models.

In this chapter, we propose the use of vector autoregressive moving av-

erage (VARMA) models, estimated using iterative ordinary least squares

(IOLS) estimator, as a feasible method to address the “curse of dimension-

ality”on medium and large datasets. VARMA models have been studied

for the past thirty years, but they have not been, by far, as popular as

VAR models. The most recent attempt to use the VARMA approach to

forecast macroeconomic variables comes from Athanasopoulos and Vahid

(2008). They applied the VARMA methodology to small systems (three-

and four-variable models) and obtained forecasts that were better than

those obtained using standard VAR models. As far as our knowledge goes,

the VARMA methodology has never been applied to medium and large

datasets, as we do in this chapter. There are two main issues that con-

tribute to the scarcity of VARMA models in the literature: estimation and

specification. In this chapter, we tackle the first issue, by proposing the
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use of IOLS in the spirit of Kapetanios (2003). We show, through Monte

Carlo simulations, that the standard estimation procedure for VARMA

models (maximum-likelihood estimator (MLE)) is not feasible for systems

with more than eight variables, whereas the IOLS estimator is feasible and

consistent even for high-dimensional models.

Other methodologies have been proposed in the literature to deal with

the “curse of dimensionality”. The first group of models, penalized regres-

sions, aims to overcome the dimensionality issue by imposing restrictions

on the parameter matrices of a standard VAR model. The intuition behind

this solution arises from a well-known result from standard linear regres-

sion which states that covariance matrices of restricted estimators have

lower variances than those of unrestricted estimators. Among the many

important contributions from this field, we point out the following classes

of models: Bayesian VAR (BVAR) (De Mol, Giannone, and Reichlin (2006)

and Banbura, Giannone, and Reichlin (2007)), in the spirit of Doan, Lit-

terman, and Sims (1984) and Litterman (1986); Ridge (De Mol, Giannone,

and Reichlin (2006)) and shrinkage estimators (Carriero, Kapetanios, and

Marcellino (2008)); Reduced Rank VAR (Carriero, Kapetanios, and Mar-

cellino (2011)); and Lasso (De Mol, Giannone, and Reichlin (2006) and

Tibshirani (1996)).

The second group of models dealing with the “curse of dimensional-

ity”is the factor models. The seminal works in this area are Forni, Hallin,

Lippi, and Reichlin (2000) and Stock and Watson (2002). Factor models

summarize a large number of variables with only a few unobserved com-

mon factors and an idiosyncratic component. These models dramatically

reduce the dimensions of the system, contributing to an improvement in
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forecast accuracy. Common factor models improve forecast accuracy and

produce theoretically well-behaved impulse response functions, as reported

by De Mol, Giannone, and Reichlin (2006) and Bernanke, Boivin, and

Eliasz (2005). These findings support the idea that agents consider wide

sets of information when making their decisions.

VARMA models are able to capture two important features from the

penalized regressions and the common factor models. The first is the reduc-

tion of the model dimensionality, achieved by setting some elements of the

parameter matrices to zero following uniqueness requirements. The second

is the parsimonious summarizing of high-order autoregressive lags into low-

order lagged shocks. By adopting VARMA, we allow lagged shocks from

most of the macroeconomic variables in our dataset to play very important

roles in forecasting the future realizations of key macroeconomic variables.

With regard to the theory, we establish the consistency and asymptotic

distribution of the IOLS estimator by considering the univariate ARMA(1,1)

model. Our asymptotic results are obtained under mild assumptions using

the asymptotic contraction mapping framework defined in Dominitz and

Sherman (2005). We argue that these theoretical results can be extended

to VARMA models. To support this claim, we provide an extensive Monte

Carlo study showing that IOLS estimator is consistent under different sys-

tem dimensions and specifications. Furthermore, we show that, compared

to the MLE estimator, the IOLS procedure delivers outstanding gains in

terms of mean squared error when the sample size is small.

In our empirical application, we report results from three different sys-

tem sizes: 10, 20, and 40 variables. We design five different datasets taken

from Stock and Watson (2005) for each system dimension. We evaluate
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the first and fourth out-of-the-sample forecast performances of VARMA

models, comparing them with standard VAR(1) and AR(1) models; the

latter is considered one of the benchmark models for the Stock and Watson

(2005) dataset. The VARMA framework produces competitive forecasts,

especially for longer horizons. We show that VARMA models produce more

accurate forecasts than the AR(1) benchmark does, considering different

system sizes and specifications. In particular, we point out that VARMA

models compare favorably with their competitors when the dataset is large

(40 variables).

The chapter is structured as follows. In Section 2.2, we discuss the prop-

erties of VARMA models and derive the IOLS estimator. In Section 2.3,

we establish the consistency and asymptotic distribution of the IOLS esti-

mator. In Section 2.4, we address the consistency, efficiency, and forecast

accuracy of VARMA models estimated with the IOLS procedure through a

Monte Carlo study. In Section 2.5, we display the results from our empirical

application. The Appendix displays the proofs.

2.2 VARMA Models and Estimation Proce-

dures

Our interest lies in forecasting key elements of the K dimensional vector

process Yt = (y1,t, y2,t, ..., yK,t)
′, where K is allowed to be large. We assume,

as a baseline model, a general VARMA(p,q) model where the means have

been removed. The disturbances ut = (u1,t, u2,t, ..., uK,t)
′ are assumed to

be a zero-mean white-noise process with a non-singular covariance matrix
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ut ∼ (0,Σu).

A0Yt = A1Yt−1 +A2Yt−2 + ...+ApYt−p+M0ut+M1ut−1 + ...+Mqut−q (2.1)

The baseline model stated in (2.1) can be rewritten in two different

forms: lag notation form (2.2) and compact form (2.3). These representa-

tions will be very useful for deriving some important theoretical properties,

as well as for the estimation procedure.

A (L)Yt = M (L)ut (2.2)

Y = BX + U (2.3)

The lag polynomials in (2.2) have the standard form: A(L) = A0 −

A1L − A2L
2 − ... − ApLp and M(L) = M0 + M1L + M2L

2 + ... + MqL
q,

where L is the lag operator. From (2.3), Y has dimension (K × T );

B = [(IK −A0), A1, ..., Ap, (M0− IK),M1, ...,Mq] joints the parameter ma-

trices with dimension (K × K(p + q + 2)); X = (X0, ..., XT ) can be seen

as the matrix of regressors with dimension (K(p + q + 2) × T ), where

Xt = [Yt, Yt−1, ..., Yt−p, Ut, Ut−1, ..., Ut−q]
′; and U is a (K × T ) matrix of

disturbances.

Our baseline model is assumed to be stable and invertible, and the latter

is crucial in our estimation process. A general VARMA(p,q) is considered

stable and invertible if det (A0 − A1z − A2z
2 − ...− Apzp) 6= 0 for |z| ≤ 1

and det (M0 −M1z −M2z
2 − ... −Mpz

q) 6= 0 for |z| ≤ 1 hold, respec-

tively. If the model is invertible, it is possible to express the VARMA(p,q)
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as an infinite standard VAR process as follows:

Π0Yt =
∞∑
i=1

ΠiYt−i + ut (2.4)

where Π (L) = M (L)−1A (L).

The result in (2.4) is extremely important in two ways. On one hand,

it will be an important tool in deriving our estimation procedure and con-

sistency proofs. On the other hand, it gives the intuitive reason why a

VARMA model outperforms a VAR specification when forecasting large

datasets: an invertible VARMA(p,q) with finite p and q can be a parsimo-

nious representation of a very long (infinite) VAR process. In other words,

if the true data generation process is a VARMA(p,q) process, then fitting

a VAR(p) would lead to the estimation of pK2 parameters. Considering

a large K, as is done in this study, it would cause forecast accuracy to

deteriorate very fast. In contrast to the VAR case, VARMA models re-

quire some particular conditions to assure that the model is unique. There

are different transformations that guarantee uniqueness for the VARMA

class of models. Athanasopoulos, Poskitt, and Vahid (2007) show that

VARMA models specified using scalar components perform slightly better

in empirical exercises than ones using the Echelon Form methodology. The

authors claim, however, that the latter has the advantage of having a sim-

pler identification procedure. In this chapter, we implement the Echelon

Form transformation as a way to impose uniqueness in both Monte Carlo

and empirical applications.

A general VARMA model such as the one stated in (2.1) is considered

to be in its Echelon Form when there are no common factors on the polyno-
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mials A (L) and M (L) and the conditions stated in equations (2.5), (2.6),

(2.7), (2.8) and (2.9) are satisfied (see Lütkepohl (2007) pg. 452 for more

details).

pki =

min (pk + 1, pi) for k ≥ i

max (pk, pi) for k < i
(2.5)

αkk (L) = 1−
pk∑
j=1

αkk,jL
j, for k = 1, ..., K (2.6)

αki (L) = −
pk∑

j=pk−pki+1

αki,jL
j for k 6= i (2.7)

mki (L) = −
pk∑
j=0

mki,jL
j, for k = 1, ..., K (2.8)

M0 = A0 (2.9)

where A(L)=[αki]k,i=1,...,K and M(L)=[mki]k,i=1,...,K are, respectively, the

operators from the autoregressive and moving average components of the

VARMA process. The arguments [pk]k,i=1,...,K are Kronecker Indices and

denote the maximum degrees of both polynomials A(L) and M(L), being

exogenously defined. The pki numbers can be interpreted as the free coef-

ficients in each operator αki (L) for i 6= k from the A (L) polynomial. By

imposing restrictions on the coefficient matrices due to the Echelon Form

transformation, VARMA models have the desirable feature that many of

the coefficients from both the autoregressive and moving average matrices

are equal to zero.

VARMA models, similar to their univariate (ARMA model) counter-

parts, are usually estimated using the MLE procedure. Provided that the

model in (2.1) is uniquely defined and disturbances Ut are normally dis-
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tributed, MLE delivers consistent and efficient estimators. Although MLE

seems to be very powerful at first glance, it presents serious problems when

dealing with VARMA models that account for medium and large datasets.

We report the results of Monte Carlo simulations in Section 2.4 that demon-

strate how MLE becomes hardly feasible for VARMA models with more

than eight variables. We overcome this issue by implementing an IOLS pro-

cedure in the spirit of Kapetanios (2003), who shows that IOLS estimators

compare favorably with MLE estimators for ARMA models and a bivariate

VARMA(1,1) model. In this chapter we go much further in three different

directions: first, by establishing the asymptotic theory for the IOLS esti-

mator under assumptions compatible with the quasi-maximum-likelihood

(QMLE) estimator; second, by showing, through an extensive Monte Carlo,

that the theory developed for the univariate case can be extended to high-

dimensional VARMA models; third, by assessing forecast performance of

VARMA models, estimated with IOLS, compared with autoregressive (AR)

and VAR models under different system dimensions.

The IOLS framework consists of computing ordinary least squares (OLS)

estimates of the parameters using estimates of the latent regressors. These

regressors are computed recursively at each iteration using the OLS esti-

mates as functions of the parameters. Under the VARMA setup, we are

interested in estimating the parameter matrices A0, A1, ..., Ap,M0, ..., and

Mq.

Following the uniqueness discussion, we assume that the model in (2.1)

is expressed in its Echelon Form and is therefore uniquely defined. Echelon

Form transformation implies that A0 = M0, which leads to a different spec-

ification of matrices in (2.10) when compared with the compact notation
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displayed in (2.3).

vec (Y ) = (X ′ ⊗ IK) vec (B) + vec (U) (2.10)

We now have that B = [(IK − A0), A1, ..., Ap, ,M1, ...,Mq] with dimension

(K×K(p+q+1)); X = (X0, ..., XT ) is the matrix of regressors with dimen-

sion (K(p+ q + 1)× T ), where Xt = [Yt − Ut, Yt−1, ..., Yt−p, Ut−1, ..., Ut−q]
′;

and U is a (K × T ) matrix of disturbances. Note that the matrices of

parameters may not be full matrices because Echelon Form transformation

can set many of their elements to zero.

Rewriting the matrix of parameters vec (B) into the product of a matrix

R, that accounts for the restrictions from the Echelon Form transformation,

and a vector β, that joints the free parameters, shows that β could easily

be estimated with OLS in the case that regressors were fully observed.

vec (Y ) = (X ′ ⊗ IK)Rβ + vec (U) (2.11)

The matrix X in (2.11), however, is not fully observed; it contains lagged

values of the latent disturbances. Using the invertibility condition, we can

express a finite VARMA model into an infinite VAR as stated in (2.4). The

only difference from (2.4) arises from the Echelon Form transformation,

which imposes Π0 = IK .

We compute estimates of U by truncating (2.4) into some lag order p

that minimizes the AIC criterion, as in (2.12). Following the result from

Ng and Perron. (1995), this procedure delivers consistent estimates of U ,
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and we denote them as Û0.

Û0
t = Yt −

p∑
i=1

Π̂iYt−i (2.12)

By substituting Û0 into the matrix X in (2.11), we denote this matrix

of regressors as X̂0 because it contains the first estimates of the lagged

latent disturbances. The first iteration in our IOLS method is obtained

by computing the OLS estimator from the modified version of (2.11). The

vector of parameter estimates β̂1 in (2.13) is therefore the first iteration

from the IOLS algorithm.

β̂1 =
[
R′
(
X̂0X̂0′ ⊗ IK

)
R
]−1

R′
(
X̂0′ ⊗ IK

)
vec(Y ) (2.13)

We are now in a position to use β̂1 to recover the parameter matrices

Â1
0, ..., Â

1
p, M̂

1
1 , ..., M̂

1
q and a new set of residuals Û1 by recursively applying

(2.14). Note that the superscript on the parameter matrices refers to the

iteration in which those parameters were computed, whereas the subscript

is the usual lag order.

Û1
t =

[
Â1

0

]−1 [
Â1

0Yt − Â1
1Yt−1 − ...Â1

pYt−p − M̂1
1 Û

1
t−1−

...− M̂1
q Û

1
t−q

] (2.14)

We compute the second iteration of the IOLS procedure by plugging

Û1
t into (2.11) yielding X̂1. Note that X̂1 = (X̂1

0 , ..., X̂
1
T ), where X̂1

t =

[Yt−Û1
t , Yt−1, ..., Yt−p, Û

1
t−1, ..., Û

1
t−q]

′, is a function of the estimates obtained

in the first iteration: β̂1. Using (2.13), we obtain β̂2 and its correspondent

set of residuals recursively through (2.14). The jth iteration of the IOLS
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estimator is thus given by (2.15), whereas its correspondent recursive resid-

uals are given by (2.16).

β̂j(T ) = N̂T

(
β̂j(T )−1

)
=

=
[
R′
(
X̂j−1X̂j−1′ ⊗ IK

)
R
]−1

R′
(
X̂j−1′ ⊗ IK

)
vec(Y )

(2.15)

Û j
t =

[
Âj0

]−1 [
Âj0Yt − Â

j
1Yt−1 − ...ÂjpYt−p − M̂

j
1 Û

j
t−1 − ...− M̂ j

q Û
j
t−q

]
(2.16)

We stop the IOLS algorithm when estimates of β converge. In both

the empirical application and the Monte Carlo study, we assume that β̂j

converges if ‖ Û j
t − Û

j−1
t ‖≤ 10−5. In accordance with the notation that we

adopt in Section 2.3, we will allow the number of iterations to be a function

of the sample size. To simplify our notation on Û j
t and X̂j, we only make

it explicit that j (T ) is a function of T when we denote estimates of β that

were obtained from the IOLS algorithm. The rate at which j (T ) needs to

increase as T −→ ∞ will be discussed further in Section 2.3. We denote

the function N̂T

(
β̂j(T )−1

)
as the sample mapping for the IOLS estimator.

The sample mapping N̂T

(
β̂j(T )−1

)
maps β̂j(T )−1 to β̂j(T ).

In one particular case, the IOLS estimator algorithm does not converge.

This arises when some iteration of the algorithm generates a non-invertible

model. In other words, as discussed in Kapetanios (2003), the algorithm

will not converge if the mapping stated in (2.15) is not a contraction map-

ping. A similar discussion arises in Dominitz and Sherman (2005). They

prove that a compulsory condition for convergence comes from guarantee-

ing that the mapping N̂T

(
β̂j(T )−1

)
is an asymptotic contraction mapping
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(ACM)1. As pointed out by Dominitz and Sherman (2005), if a collection

is an ACM, then it will have an unique fixed point in (B, d), where the

fixed point now depends on the sample characteristics, i.e., of each T and

ω, with ω ∈ Ω and Ω being the sample space. Therefore, non-convergence

of the IOLS algorithm in a finite sample may be caused by a small T , a

sample that yields a mapping that is not an ACM, or by some particular

combinations of the eigenvalues governing the autoregressive and moving

average parameter matrices on the true data generation process (DGP). It

is important to point out that even in such cases, β̂1 is a consistent estimate

of β, following the fact that Û0
t converges to Ut for all t.

2.3 Theoretical Properties

This section provides theoretical results regarding the consistency and

asymptotic distribution of the IOLS estimator discussed in the previous

sections. As a matter of simplicity, we focus our analysis on the univariate

ARMA class of models. Extension to the VARMA case will be discussed

further in this section. We base our results on Dominitz and Sherman

(2005). We define an ARMA(1,1) model as

yt = β1yt−1 + ut + β2ut−1 (2.17)

yt = X−1,tβ + ut (2.18)

Y = X−1β + U (2.19)

1From their definition, a collection {Kω
T (.) : T ≥ 1, ω ∈ Ω} is an ACM on (B, d) if

d (Kω
T (x) ,Kω

T (y)) ≤ cd (x, y) as T −→∞, where c ∈ [0, 1), (B, d) is a metric space with
x, y ∈ B, (Ω,A,P) denoting a probability space and Kω

T (.) is a function defined on B.
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Equation (2.18) expresses the model in (2.17) in a compact notation, where

X−1,t = [yt−1, ut−1], whereas (2.19) adopts the standard matrix notation,

with both Y = [y1, y2, ..., yT ]′ and U = [u1, u2, ..., uT ]′ being (T × 1) vectors,

X−1 = [Y−1, U−1] a (T × 2) matrix and β = (β1, β2)′.

To derive consistency and asymptotic distribution of the IOLS esti-

mator for a ARMA(1,1) model stated in (2.17), we impose the following

assumptions:

Assumption 1 (Stability, Invertibility) The model in (2.17) is stable,

invertible, and contains no common factors, i.e., |β1| < 1, |β2| < 1 and

β1 6= −β2.

Assumption 2 (Disturbances) The disturbance ut in (2.17) is indepen-

dent and identically distributed (iid) process with E (ut) = 0, V ar (ut) = σ2
u

and finite fourth moment.

Definition 1 (Mapping) We define the sample mapping N̂T

(
β̂j(T )

)
and

its population counterpart N
(
βj(T )

)
as follows:

i. β̂j(T )+1 = N̂T

(
β̂j(T )

)
=

[
X̂j′
−1X̂

j
−1

T

]−1 [
X̂j′
−1Y

T

]

ii. βj(T )+1 = N
(
βj(T )

)
= E

[
Xj′
−1X

j
−1

T

]−1

E
[
Xj′
−1Y

T

]
where X̂j

−1 and Xj
−1 denote that regressors computed on the jth iteration

are functions of β̂j(T ) and βj(T ), respectively.

N̂T

(
β̂j(T )

)
maps from R2 to R2, and the superscript j denotes the it-

eration which parameters where computed. We allow j to be a func-

tion of T , in such a way that j (T ) −→ ∞ as T −→ ∞. The vector

β̂j(T ) =
(
β̂
j(T )
1 , β̂

j(T )
2

)′
joints estimates of β1 and β2 obtained in the jth
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iteration from the sample mapping in Definition 1. Note that β̂j(T )+1 is

the solution obtained from the minimization of the sample objective func-

tion Q̂T

(
β̂j(T )+1

)
subject to β̂j(T )+1 ∈ B, where B is the set of all possible

parameter values satisfying Assumption 1.

Q̂T

(
β̂j(T )+1

)
= T−1

T∑
t=1

[
yt − X̂j

−1,tβ̂
j(T )+1

]2

(2.20)

The population mapping is the closed solution from the minimization of

the population counterpart of Q̂T

(
β̂j(T )+1

)
defined as:

Q
(
βj(T )+1

)
= E

(
T−1

T∑
t=1

[
yt −Xj

−1,tβ
j(T )+1

]2)
(2.21)

Note that as an identification condition, we have N (β) = β, which im-

plies that when evaluated on the true vector of parameters, the population

mapping maps the vector β to itself. This implies that if the population

mapping is an ACM then β is a fixed point of N (β). The dependency

between Xj
−1 and βj(T ) arises from the fact that the jth estimates of the

unobserved disturbances, U j
−1, are obtained using the estimates βj(T ), as in

(2.22). To highlight this dependence, we denote regressors and residuals,

which are functions of βj(T ), as Xj
−1 and U j

−1, respectively; whereas X̂j
−1

and Û j
−1 are the quantities computed using β̂j(T ).

U j
−1 =

(
1 + β

j(T )
2 L

)−1 (
1− βj(T )

1 L
)
Y−1 (2.22)

Û j
−1 =

(
1 + β̂

j(T )
2 L

)−1 (
1− β̂j(T )

1 L
)
Y−1 (2.23)

Note that with Assumption 2 and the definition of our baseline model,

we satisfy the assumptions of the OLS estimator when the regression ac-
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commodates stochastic regressors such as lagged values of the dependent

variable. This allows us to use OLS at each jth iteration in the IOLS al-

gorithm. From Assumption 2, note that we do not have to impose any

particular distribution on the disturbances. We only require ut to have a

finite fourth moment and a continuous distribution. This is an important

advantage of our setup compared with the standard MLE approach. More-

over, both the consistency and asymptotic distribution results also hold

when we weaken Assumption 2, such as where ut is a weak white noise

process. If ut is set to be a linear projection, yielding a weak ARMA model

as discussed in Drost and Nijman (1993) and Francq and Zakoian (2000),

consistency of the IOLS estimator also holds.

We shall prove the consistency of the IOLS estimator. We first show

that the N (φ), φ ∈ B, is an ACM and thus has a fixed point (see Lemma

1 in Appendix). Lemma 1 guarantees that the population mapping is an

ACM if
∣∣∣ β1β2

1+β1β2

∣∣∣ < 1.

From Lemma 1, we have that the population mapping is an ACM if

the eigenvalues associated with the gradient of the population mapping

evaluated at β, denoted by V (β), have absolute values smaller than one.

V (β) =


β2

β1+β2

β2(1−β2
1)

(β1+β2)(1+β1β2)

−β2

β1+β2

−β2(1−β2
1)

(β1+β2)(1+β1β2)

 (2.24)

From Lemma 1, the two eigenvalues (λ1, λ2) associated with (2.24) are
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given by:

λ1 = 0 (2.25)

λ2 =
β1β2

(1 + β1β2)
(2.26)

If both β1 and β2 have the same sign, then β1β2 > 0, which leads

to |λ2| < 1. Hence, under the condition that both parameters share the

same sign, we have that Lemma 1 holds. If β1 and β2 have different signs,

then there are different combinations of parameters that violate the ACM

condition, i.e., |λ2| > 1.

To check all combinations such that Lemma 1 holds, we perform a nu-

merical analysis using (2.26). We execute a numerical grid search on λ2

through all possible combinations of β1 and β2 that satisfy Assumption

1. Figure 2.1 displays the maximum eigenvalue associated with the theo-

retical gradient. As a sufficient rule for Lemma 1 to hold, we have that

if |β1 − β2| < 1.41 then |λ2| < 1. In Figure 2.2, we zoom in on the pre-

vious analysis and only consider the different combinations of parameters

that guarantee that
∣∣∣ β1β2

(1+β1β2)

∣∣∣ < 1. We show that for a large area of the

graph, |λ2| is smaller than 0.5. This is a particularly important result,

because it defines an upper bound for the number of iterations that the

IOLS algorithm may take to converge. Thus, if κ = 0.5 and T = 1000,

we would require no more than 15 iterations to achieve convergence with

a precision of three decimal places. The validity of Lemma 1 is crucial to

proving the consistency of the IOLS estimator. If N (φ) is an ACM, then

d (N (φ)−N (γ)) ≤ κd (φ− γ) holds, with γ, φ ∈ B, κ ∈ [0, 1 ), and d (.)

being any distance function. Moreover, N (φ) will have a fixed point on

36



(B, d), as discussed in Dominitz and Sherman (2005).

We claim that the additional condition on the parameters for N (φ) to

be an ACM is not very restrictive because the initial estimator we use is

already consistent. Therefore, in the cases where the true data generation

process is not an ACM, the IOLS algorithm will not converge and we thus

adopt the consistent initial estimates. The major disadvantage in using

the initial estimator is the larger variance associated with the parameter

estimates.

To show the consistency of the IOLS estimator, we require three fur-

ther conditions: the population and sample mapping converge uniformly in

probability (Lemma 3); uniform convergence on the gradients of the map-

pings (Lemma 4); and the sample mapping is also an ACM (Lemma 5).

Lemmas 3 and 4 are crucial to show that the sample mapping is also an

ACM and thus has a fixed point denoted by β̂, such that N̂T

(
β̂
)

= β̂.

Proofs of the Lemmas related to the conditions above are stated in the

Appendix.

To establish an asymptotic distribution of the IOLS estimator, we evoke

similar conditions as those stated in Theorem 4 in Dominitz and Sherman

(2005). Lemma 6 provides
√
T convergence of β̂j(T ) to the fixed point of

the sample mapping. We show that Lemma 6 holds, provided that j (T )

increases at a sufficient rate of T . From the ACM definition, κ is bounded

such that κ ∈ [0, 1). We thus have that κj(T ) dominates
√
T yielding

Lemma 6 if ln(T )
j

= o (1) holds, where j denotes the number of iterations.

Define A = [Im − V (β)]−1 and H = plim
[
X′−1X−1

T

]
, then Theorem 1 deliv-

ers the consistency and asymptotic distribution of the IOLS estimator.

Theorem 1 Suppose Assumptions 1 and 2 hold and
∣∣∣ β1β2

1+β1β2

∣∣∣ < 1. Then,
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i.
∣∣∣β̂ − β∣∣∣ = op (1) as j (T ) −→∞ with T −→∞.

ii.
√
T
[
β̂ − β

]
d−→ N (0, σ2

uAH
−1A′) as T −→∞ and j (T ) −→∞

Note that X−1 is the matrix of regressors computed using the true vector of

parameters β. A closed-form expression for the gradient function is given in

(2.24). Estimates of β can be used to compute the empirical counterparts

of both V (β) and H.

This result holds for any starting value, provided that β̂0 ∈ B, which

yields an interesting theoretical property of this class of estimator. In the

particular case of the ARMA(1,1) model, it is enough to choose initial

estimates that fulfill Assumption 1, which turns out to be very simple. It

is also relevant that for item (i) in Theorem 1 to hold, no particular rate

is required for j (T ) −→∞ as T −→∞.

Monte Carlo simulations designed to check the theoretical asymptotic

distribution for the ARMA(1,1) model deliver consistent estimates for the

empirical asymptotic variances. These findings strengthen item (ii) in The-

orem 1. These results are available upon request.

The extension of Theorem 1 to the VARMA class of models is theoret-

ically straightforward, but mathematically cumbersome. The crucial point

is showing that the VARMA mapping is an ACM. To this purpose, one

would have to follow the steps in Lemma 1 up to (2.37). From this point

onwards, the simplification of the infinite expansions into simpler functions

becomes problematic. We perform numerical experiments testing whether

the gradient from the VARMA mapping has eigenvalues less than one in ab-

solute value. The results are very similar to those from the univariate case

(i.e., provided that some conditions on the eigenvalues of both autoregres-
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sive and moving average parameter matrices hold, we have that the OLS

mapping is an ACM). This finding matches our Monte Carlo results, in

which the IOLS estimator achieves convergence with different eigenvalues

and system dimensions.

2.4 Monte Carlo Study

This section provides results that shed light on issues such as consistency

and forecast accuracy of VARMA models estimated using the IOLS method-

ology. We consider three different types of Monte Carlo exercises in this

section. The first exercise addresses the comparison between IOLS and

MLE estimators in small- and medium-sized systems. The second exercise

focuses on analyzing the consistency of the IOLS estimator. We design

simulations covering different model dimensions, sample sizes, and depen-

dencies among the variables. The last set of exercises compares the forecast

performances of VARMA models estimated using the IOLS methodology

with those of VAR and AR(1) models.

We define our DGP by assuming a VARMA model such as the one

stated in (2.1). Following the discussion in Section 2.2, we assume that

our baseline model is stable, invertible, and unique. We generate the dis-

turbances using pseudo random standard normal in GAUSS. Uniqueness

is satisfied by setting all Kronecker indices to one. This implies that our

baseline model is a VARMA(1,1) as stated in (2.27), where A0 = M0 = IK

and both A1 and M1 are full matrices. By setting all Kronecker indices

to one, the matrix A0 is restricted to be an identity matrix, implying that

the dynamics of the VARMA model is determined by the eigenvalues of A1
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and M1.

Yt = A1Yt−1 + Ut +M1Ut−1 (2.27)

We discard the initial 500 observations to reduce dependence on initial

conditions. The number of replications varies across the different Monte

Carlo experiments, because of the time of computation associated to the

different specifications.

We aim to design models that present highly correlated series as a way

to replicate the task of forecasting macroeconomic variables. We generate

the matrices A1 and M1 in such a way that we can control the dynamics

of the process {Yt}Tt=1. By defining the eigenvalues of A1 and M1, we are

able to control the persistence of the autoregressive and moving-average

components, and consequently the correlation among the K variables in

the system. We implement the method suggested by Camba-Mendez and

Kapetanios (2004). Because A1 and M1 are generated in the same way,

we only describe the structure referring to matrix A1. We define A1 =

ẼDẼ ′, where both D and Ẽ have dimensions (K ×K). We construct

matrix Ẽ in two steps. First, we generate a (K ×K) matrix using pseudo

random standard numbers, which is then orthonormalized by applying the

Gram-Schmidt methodology. The key factor for specifying the dynamic of

matrices A1 and M1, and consequently for the process {Yt}Tt=1, is the matrix

D. We specify D as being a quasi upper triangular matrix, where all the

(2× 2) blocks on the diagonal have eigenvalues equal to those specified for

the simulation. When K is an odd number, the remaining last element of

the diagonal of matrix Λ is made equal to the last eigenvalue of the system.

Originally, we set the remaining non-zero values of D to one. As the number
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of variables in our baseline VARMA model increases, the volatility of the

process {Yt}Tt=1 increases very quickly, which does not correspond to real

economic data. To reduce the volatility without changing the assigned

eigenvalues of matrix A1, we shrink all the off-diagonal, non-zero elements

of matrix D towards zero. We implement this shrinkage strategy for both

matrix A1 and matrix M1. When the system size is large, the diagonal

elements of both the A1 and M1 matrices are close to the values assigned

for the eigenvalues, whereas the off-diagonal elements approach zero.

The first set of Monte Carlo simulations addresses the relative perfor-

mance of the IOLS estimator compared to the MLE estimator. To assess

this comparison, we report the relative mean squared error (RelMSE), com-

puted as RelMSE = MSEIOLS
MSEMLE

. A RelMSE less than one indicates that the

IOLS estimator performs better than MLE, in terms of MSE. To assess com-

putational demand and rate of convergence, we report the relative time of

computation (RT) and the percentage of failure (%F) computed within all

replications. In the first exercise, we estimate a system with three variables

(K = 3). We assign eigenvalues equal to 0.5 for both autoregressive and

moving average parameter matrices; and we consider samples of 50, 100,

150, 200 and 400 observations.

Table 2.1 displays results showing that the IOLS performs better (in

terms of the MSE) than the MLE2 estimator when the sample size is either

50 or 100. We find that IOLS provides more accurate estimates for both

autoregressive and moving average parameters, showing average gains of

17% and 41% when T = 50 and T = 100, respectively. It is important

2We use the CML - Maximum Likelihood Estimation with General Nonlinear Con-
straints on Parameters - package in GAUSS. We also perform simulations where the
initial values of the MLE algorithm are defined as being the IOLS estimates, however,
the overall picture remains the same.
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to point out that in this small dataset experiment, we are estimating 18

parameters, which turns out to be quite demanding for both estimators

when T = 50. With regard to the time of computation, we also show

that the MLE estimator takes much longer to be computed (average of

677 times longer than the IOLS estimator when T = 100). We design

an alternative Monte Carlo exercise where we compare the IOLS estimator

with a constrained version of the MLE estimator. We impose the constraint

on the eigenvalues of matrix M1 because we identify them as the major

cause for non-convergence. In spite of achieving convergence in 100% of

replications, the constrained MLE algorithm is not a feasible alternative

for medium and large datasets due to its computational demand. We do

not report the results of these simulations, because they follow the same

pattern (in terms of the RelMSE) as do the unconstrained Monte Carlo

simulations.

To assess the feasibility of the MLE estimator when applied to larger

systems, we design Monte Carlo experiments considering VARMA models

with eight and ten variables at different sample sizes: T = 100, T = 150,

T = 200 and T = 400. The number of replications were truncated to

small numbers following the computation demand3 on obtaining the MLE

estimator. Therefore, the results depicted in Table 2.2 do not carry any

statistical properties, but they do shed light on the limitations of the MLE

estimator when dealing with high-dimensional systems. From Table 2.2,

we show that for both K = 8 and K = 10 the MLE fails more than the

IOLS estimator for T ≤ 200. When T = 400 and K = 8, the MLE estima-

tor presents a lower rate of failure than the IOLS estimator, however its

3Simulations were carried out in two dedicated UNIX servers with seven and eleven
processors respectively.
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computation time is much higher (RT = 469.8). When K = 10, the pic-

ture becomes even less favorable to the MLE estimator. Table 2.2 displays

results showing that this estimator becomes unfeasible for this system di-

mension, supporting the conclusion that MLE is not feasible for medium

and large datasets. These findings motivate us to implement the IOLS

estimator for forecasting macroeconomic variables using medium and large

datasets.

The second set of Monte Carlo exercises addresses the consistency of the

IOLS estimator when considering medium and large datasets. We report

the root mean squared error (RMSE) of the parameter estimates as an

assessment of consistency. To disentangle the difference in performance

from the replications that converged and the ones that did not, we report

results in two ways: first, within all replications; second, considering only

the ones that converged (denoted with the superscript c).

We discuss four different model specifications in this section. We design

the first three models with K = 10, and the fourth specification with K =

20. When K = 10, eigenvalues of both parameters matrices are set to 0.3,

0.8 and mixed, in the first, second and third models respectively. When T =

1000 we perform 2000 replications. For all the remaining sample sizes we set

the number of replications equal to 10000. Tables 2.3, 2.4 and 2.54 report

results for samples of 150, 200, 400 and 1000 observations5. As we expect,

the parameters from the autoregressive matrix converge very fast to the true

value, whereas the moving average parameters require more observations

(larger T ) to converge to the true value. Comparing the results from the

4Due to space limitations, we do not report the estimates of all elements of matrices
A1 and M1, but only their diagonal elements.

5We do not construct simulations with T < 150, because of the lack of the degrees of
freedom following the estimation of the VAR(p) in the first step of the IOLS algorithm.
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two specifications (especially the case where T = 200), we conclude that

the eigenvalues of M1 play a very important role in determining the rate at

which the moving average parameters converge to the true value. Hence,

the higher the eigenvalues of M1 are, the slower the rate of convergence of

the moving average parameters is. Moreover, the eigenvalues associated M1

determine the percentage of failure of the IOLS estimator and therefore the

quality of the estimates. This will play an important role on the forecast

accuracy of the models estimated with the IOLS estimator. Finally, results

from both models corroborate our claim that IOLS estimates are consistent,

since their RMSE’s decay towards zero as sample size increases. Finally,

apart from the case where the eigenvalues associated to the parameter

matrices are equal to 0.8, the IOLS rate of failure is around 30% for T =

400. This turns out to be quite robust, following the fact that we estimate

200 parameters in this specification.

We design the third exercise to have K = 20 with eigenvalues from both

autoregressive and moving average parameter matrices equal to 0.6. It is

important to stress that since we set all Kronecker indices equal to one,

we estimate 800 parameters in this simulation. Table 2.6 reports results

from different samples: T = 200, T = 400, and T = 1000 observations. We

find a similar pattern for the evolution of RMSE compared with that of

lower dimensional models: the autoregressive parameters converge to the

true values very fast, whereas the IOLS estimates from the moving average

parameters require a larger sample size. Following the results presented in

Table 2.6, we conclude that the IOLS estimation procedure is feasible and

consistent, even for large systems. Moreover, we expect that as the number

of free parameters decreases (following the Echelon form transformation),
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the rate of failure also will decline.

We focus the last set of Monte Carlo exercises on assessing the fore-

cast accuracy of VARMA models estimated using the IOLS methodology.

Our main objectives are: understanding the tradeoff, in terms of forecast

accuracy, between sample size and system dimension; and assessing the dif-

ference in forecast performance from the replications that converged with

respect to the ones that did not. We report results considering four dif-

ferent model specifications. The first three models have K = 10, but they

differ with respect to the eigenvalues we assign for A1 and M1 (0.3, 0.8,

and mixed eigenvalues, respectively). The fourth model has K = 20 and

all eigenvalues equal to 0.6. We report results in terms of the relative mean

squared forecast error (RelMSFE). RelMSFEs are computed as the ratio

of the mean squared forecast error (MSFE) of the VARMA model and

the MSFE of the competitor model. Therefore, we have that a RelMSFE

less than one implies that the VARMA model outperforms the competitor

model. We compare VARMA models against VAR(p) (where p is chosen

according to the AIC criterion) and AR(1). We report the relative mea-

sures computed using only the replications that converged (denoted with

the superscript c) and using all replications. Due to the large number of

variables, we report the mean of the RelMSFE computed within all vari-

ables in the system. We report results considering forecast horizons up to

twelve-steps-ahead.

Tables 2.7, 2.8, and 2.9 show that when is T small (T = 150, T = 200)

and the IOLS algorithm does not converge, VARMA is easily outperformed

by the AR(1) and VAR models. Still considering small samples, we also

observe that when the eigenvalues associated to A1 and M1 are either low
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or mixed, the difference in performance of the VARMA model with re-

spect to the AR(1) model when the IOLS estimator does not converge is

much smaller than in the case with high eigenvalues. This better forecast

performance has two determinants: first, models with lower eigenvalues

associated to the parameter matrices have a higher rate of convergence in

small samples than models with high eigenvalues, yielding a higher share

of converged iterations that contributes to a lower RelMSFE. Second, the

initial estimator appears to do a worse job in forecasting models with high

eigenvalues. This contributes to the very poor performance of the VARMA

model when T = 150 as observed in Table 2.8. Combining this result

with those reported in Tables 2.3 and 2.4, we conclude that systems with

lower eigenvalues associated with the parameter matrices achieve consis-

tency at a faster rate, and thus deliver more accurate forecasts than systems

with eigenvalues close to one. By shifting our analysis for the cases where

T = 400, we report results showing that VARMA models estimated with

IOLS outperform both VAR and AR(1) models. In particular, we note

that the RelMSFE measures computed using only the replications that

converged are quite stable through all the sample sizes. This implies that

when the IOLS converges, the forecast accuracy obtained from VARMA

models outperforms both the AR(1) and VAR models in all sample sizes.

Furthermore, our results show that differences in performance of VARMA

model against the competitors models are quite smooth across all the fore-

cast horizons. In particular, the first-step-ahead forecast tends to be the

one that varies the most, following changes in sample size. Table 2.10 re-

ports results considering the case where K = 20. These results present the

same pattern as the ones displayed in Tables 2.7, 2.8, and 2.9. The most
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significant difference lies on the number of observations the IOLS estima-

tor needs to improve the convergence rate. As in this setup we estimate

800 parameters, it is necessary 400 observations for VARMA models out-

perform the AR(1) model considering both measures. This result will be

crucial in defining the sample size we will use in the empirical application

in Section 2.5.

2.5 Empirical Application

In this section, we analyze the competitiveness of VARMA models esti-

mated with the IOLS procedure to forecast macroeconomic variables. Our

aim is to forecast three key macroeconomic variables: industrial produc-

tion (IPS10), interest rate (FYFF), and CPI inflation (PUNEW). We asses

VARMA forecast performance under different system dimensions and fore-

cast horizons.

2.5.1 Data and Setup

We use US monthly data from the Stock and Watson (2005) dataset, which

runs from 1959:1 through 2003:12. We do not use all the available se-

ries from this dataset; as in Carriero, Kapetanios, and Marcellino (2011),

we use 52 macroeconomic variables that represent the main categories of

economic indicators. From the 52 selected variables, we work with three

system dimensions: K = 10, K = 20, and K = 40. We construct five dif-

ferent datasets (one to five) for each system size. We restrict the maximum

number of variables in the system to K = 40 because of computational

constraints. There is no particular rule to select the variables within the
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entire group of 52; however, we try to keep a balance among the three

main categories of data: real economy, money and prices, and financial

market. The series are transformed, as in Carriero, Kapetanios, and Mar-

cellino (2011), in such a way that they are approximately stationary. We

report the dataset details in Appendix 1, Table 2.11.

So far, we have assumed that the Kronecker Indices are all known, which

implies that any general VARMA model can be written in Echelon form by

applying the procedure described by equations (2.5), (2.6), (2.7), (2.8) and

(2.9). When one is dealing with empirical data, however, the true DGP is

unknown as, consequently, are the Kronecker indices. The task of defining

the Kronecker Indices is a crucial step in our forecast analysis. We specify

the Kronecker indices according to three different algorithms.

The first algorithm that we adopt is the Hannan-Kavalieris (HK) pro-

cedure, as discussed in Hannan and Kavalieris (1984b), Hannan and Kava-

lieris (1984a) and Lütkepohl (2007). We stress the importance of this

algorithm because we construct the next two alternative methodologies

based on the HK procedure. The HK algorithm consists of minimizing

information criterion denoted by C (p), given different alternative specifi-

cations of p, where p is a (K × 1) vector of Kronecker indices. We can

split the procedure into two steps. First, we start the procedure by exoge-

nously defining the maximum value that the Kronecker indices may assume,

which is denoted by pmax. Following that, we estimate different VARMA

models, assigning all elements of p to be equal to pmax, pmax − 1, ..., 1, suc-

cessively. We choose p that minimizes the criterion C (p), denoting the

vector of Kronecker indices as p(1), where 1 ≤ p(1) ≤ pmax. In the second

step of the HK algorithm, we define the Kronecker indices that will be
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used to estimate the model. This strategy requires K evaluations, since we

aim to define pk = p̂k, for all k = 1, ..., K by minimizing the information

criterion successively. The first evaluation requires the estimation of the

model varying the Kth Kronecker index from pK = 0 to pK = p(1). We

choose the p̂K associated with the lowest value of C (p). At the end of

this first evaluation, we have p =
(
p1 = p(1), p2 = p(1), ..., pK = p̂K

)′
. We

repeat the procedure for all of the remaining Kronecker indices. There-

fore, the kth evaluation results in the following vector of Kronecker indices:

p =
(
p1 = p(1), ..., pk−1 = p(1), pk = p̂k, p̂k+1, ..., p̂K

)′
. The information cri-

terion is chosen to be the Schwarz criterion (SC), as it delivers consistent

estimates of the Kronecker indices when Ut is a strong white noise process

and the VARMA model is invertible and stable.

In the spirit of Kapetanios, Labhard, and Price (2006), we design the

second algorithm (denoted as MT) to recover a specification that produces

the most accurate forecast (lowest MSFE). The algorithm consists of finding

the Kronecker index that minimizes the trace of the out-of-sample MSFE of

the key macroeconomic variables of interest. We set up the algorithm in a

very similar way to the HK procedure: we repeat the first and second steps

of the HK procedure, but swap the SC criterion for the trace of the (3× 3)

upper block of the MSFE matrix as the criterion we need to minimize.

Comparing our second algorithm with the HK procedure, we expect that

the former will deliver a more accurate forecast of the key macroeconomic

variables, because SC criterion is a function of the entire covariance matrix

of the residuals.

Our last algorithm (denoted OZ) consists of setting all Kronecker in-

dices equal to zero, except for the ones related to the key macroeconomic
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variables that we want to forecast. By ordering the three key variables

on the top of the system and implementing this specification, we force the

matrix A−1
0 A1 to have non-zero elements only in the first three columns,

whereas the matrix A−1
0 M1 remains full. We are thus able to capture the

AR(1) feature usually present in macroeconomic variables, as well as al-

low for a rich dynamic in the lagged shocks. In spite of its simplicity, we

show that this algorithm is quite competitive and robust compared with

the other specifications.

2.5.2 Results

We report forecast results considering the three algorithms discussed in

the previous subsection. We consider as competitor models the follow-

ing specifications: VAR(1), AR(1), and AR(1) with constant (denoted as

AR(1)‡). As in the Monte Carlo simulations, we compare different models

using the out-of-sample RelMSFE, where the numerator always contains

the MSE computed from the VARMA model. Therefore, a RelMSFE less

than one indicates that the VARMA model outperforms the competitor

model. We compare the prediction accuracy among the different models

using the Diebold and Mariano (1995) test. We set the sample size equal

to 470 observations in all exercises, because we conclude in Section 2.4 that

VARMA models require a larger sample size to outperform AR(1) speci-

fications. We perform 50 out-of-sample forecasts considering two different

horizons: first- (Hor:1) and fourth- (Hor:4) step-ahead. The Kronecker in-

dices in all algorithms were set to present a maximum value of one, which

implies that all VARMA models are VARMA(1,1). We subtract the sam-

ple mean at an initial stage, which implies that all the models use mean-
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adjusted variables. By doing so, we do not require any constants in our

baseline model.

Table 2.12 reports the results of systems with 10 variables (K = 10) es-

timated with the HK, MT, and OZ algorithms. For each of the algorithms,

we report results from five different datasets. We do not report results

from the OZ algorithm using dataset four, due to a lack of stability in

the initial estimator. Considering the HK and OZ algorithms, we observe

that the VARMA long-horizon forecasts tend to outperform those of com-

petitors; whereas VARMA first-step-ahead forecasts are usually beaten,

especially those for the FYFF variable. In particular, we point out decent

performances of the HK algorithm in datasets three and four. The MT

algorithm, as expected, delivers more accurate forecasts on both horizons

for all the variables. For the first-step-ahead forecast, for instance, we re-

port gains up to 35%, 33%, and 13% with respect to the AR(1) model for

IPS10, FYFF, and PUNEW, respectively.

Table 2.13 displays results for large datasets (K = 20). We show

that the MT algorithm produces very accurate fourth-step-ahead forecasts

(mostly for dataset two) with gains up to 31% in IPS10. Considering the

first-step-ahead forecast, VARMA does not outperform either the AR(1)

model or the VAR(1) model. As discussed in Carriero, Kapetanios, and

Marcellino (2011), as K gets large, AR(1) specification becomes extremely

hard to beat for short horizons. It is also important to point out the good

performance of the VAR(1) models, which may be justified by the large

sample size (T = 470). Regarding the HK algorithm, VARMA performs

well with datasets three and four for the fourth-step-ahead forecast, but

these results are not statistically significant.
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Table 2.14 reports results for the models with large datasets (K = 40).

In accordance with previous findings, we observed that VARMA models do

a better job at forecasting longer horizons in all three algorithms. From

Table 2.14, we show that the HK algorithm delivers good results when fore-

casting the fourth-step ahead. We report gains from 12% to 5% in dataset

four. Surprisingly, HK specification outperforms the AR(1) benchmark on

the first-step-ahead forecast with dataset four, with gains of 7% for IPS1.

We conclude that, by considering all K variables in the system to determine

the Kronecker indices, the HK algorithm does not systematically outper-

form the AR(1) model, indicating that more restrictions may be needed.

Considering the MT algorithm in Table 2.14, we find that VARMA models

outperform the VAR specification for the PUNEW variable across all the

different datasets. We report gains up to 43% in both datasets 1 and 5.

Comparing the VARMA performance with the AR(1) results, we find that

all RelMSFE are very close to one, indicating that both models perform

equally well. In special, we find an outstanding gain of 22% for the FYFF

variable in dataset four. Finally, the OZ algorithm outperforms the AR(1)

benchmark for at least one of the three key macroeconomic variables, when

considering longer horizons, in all datasets but dataset four. Although re-

sults are not significant, we report gains up to 11% for both IPS10 and

FYFF.

Comparing the results obtained with the OZ, HK, and MT algorithms,

we conclude that the OZ algorithm performs worse than the HK and MT

algorithms in all system dimensions but when K = 40. In addition to

that, we find that forecast results are very sensitive to Kronecker indexes

specification, implying that specification plays a decisive role on improv-

52



ing forecast accuracy in VARMA models. Therefore, we conclude that the

VARMA class of models is able to incorporate the information presented

in medium and large datasets while also attenuating the “curse of dimen-

sionality ”.

To sum up the results of this section, we show that VARMA mod-

els outperform both AR(1) and VAR(1) models for the fourth-step-ahead

forecast. This finding is especially present for the MT algorithm and when

K = 10 and K = 20. Considering the first-step-ahead forecast, VARMA

models outperform the VAR(1) specification in different algorithms and

system sizes. When it turns to compete against the AR(1) model, how-

ever, VARMA models are not able to beat this competitor apart from some

specifications when K = 10. When considering K = 40, we find that the

OZ algorithm delivers more robust results in the fourth-step-ahead fore-

cast, outperforming the AR(1) model in at least one variable in all but one

dataset. This result supports the previous findings in this literature (see

Carriero, Kapetanios, and Marcellino (2011), De Mol, Giannone, and Re-

ichlin (2006), Banbura, Giannone, and Reichlin (2007), Carriero, Kapetan-

ios, and Marcellino (2008), among others), that, by imposing restrictions

on the parameter matrices, we are able to improve forecast accuracy when

dealing with large datasets. For K = 20 and K = 10, however, we find

mixed evidences, leading to the conclusion that the VAR(1) class of mod-

els remains quite powerful under these system dimensions, especially if

the sample size is reasonably large. In addition, the forecast performance

depends heavily on the algorithm implemented to define the Kronecker

indices. Although those procedures are very time consuming, they are im-

portant and must be undertaken for all datasets. To conclude, we highlight
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the good performance of VARMA models in medium datasets (K = 10),

where the IOLS algorithm is able to outperform both VAR and AR(1)

models in different datasets.
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2.6 Conclusion

This chapter addresses the issue of forecasting key macroeconomic variables

using medium and large datasets. We propose the use of VARMA models

as a feasible framework for this task. We overcome the natural difficulties in

estimating medium- and high-dimensional VARMA models with the MLE

framework by adopting the IOLS estimator.

We establish the consistency and asymptotic distribution for the IOLS

estimator by considering the univariate ARMA(1,1) model and we argue

that these results can be extended to the multivariate case. Our Monte

Carlo exercises corroborate our theoretical findings, and support their va-

lidity to the VARMA case. It is also important to point out that our theo-

retical results are obtained under very weak assumptions. This qualifies the

IOLS estimator to cover specifications similar to the ones covered by the

quasi-maximum likelihood estimator. Our Monte Carlo study shows that

the IOLS estimator is feasible and consistent in high-dimensional systems.

Furthermore, we also report results showing that the IOLS estimator out-

performs the MLE, in terms of mean squared error, when T is small. The

empirical results show that VARMA models perform better than VAR(1)

and AR(1) models for different system sizes. We find that VARMA models

do a better job at forecasting longer horizons. In particular, the models

we specify using the MT algorithm produce the most accurate results. We

also conclude that, as system dimensionality increases, the specification of

Kronecker indices tends to play a more important role in improving forecast

accuracy.

Finally, based on both the Monte Carlo exercises and the empirical

application, we conclude that VARMA models, which are estimated using
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the IOLS methodology, produce competitive forecasts and qualify as valid

alternatives for forecasting key macroeconomic variables such as industrial

production, inflation, and interest rates.
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2.7 Appendix

Lemma 1 Suppose Assumptions 1, 2 hold and
∣∣∣ β1β2

1+β1β2

∣∣∣ < 1. Then, there

exists an open ball centered at β with closure B, such that the mapping

N (φ) is an ACM on (B, d), with φ ∈ B.

Proof of Lemma 1: We mirror our proof in Lemma 5 in Dominitz and

Sherman (2005). By Taylor expansion, we rewrite N (φ) around γ, with

φ, γ ∈ B. There also exists a φ∗ located in the segment line between φ

and γ, such that |N (φ)−N (γ)| = |V (φ∗) [φ− γ]| holds. Combining the

two results, we are in a position to define a bound that is function of the

gradient of the population mapping evaluated on β.

|N (φ)−N (γ)| = |V (φ∗) [φ− γ]| ≤ |V (β) [φ− γ]|+

+ |[V (φ∗)− V (β)] [φ− γ]|+ op (|φ− γ|)
(2.28)

From their result, it suffices to show that the maximum eigenvalue of V (β)

is less than one in absolute value. To this purpose, we define V
(
βj(T )

)
=

5βj(T )N
(
βj(T )

)
as the gradient from the population mapping on the (j + 1)th

iteration.

V
(
βj(T )

)
=


∂β

j(T )+1
1

∂β
j(T )
1

∂β
j(T )+1
1

∂β
j(T )
2

∂β
j(T )+1
2

∂β
j(T )
1

∂β
j(T )+1
2

∂β
j(T )
2

 (2.29)

Using the partitioned regression result, we obtain individual expressions

for the OLS estimates of β obtained from the population mapping at each

57



iteration.

β
j(T )+1
1 = E

[
Y ′−1Y−1

T

]−1

E
[

1
T
Y ′−1

[
Y − U j

−1β
j(T )+1
2

]]
(2.30)

β
j(T )+1
2 =

[
E
[
Uj′−1U

j
−1

T

]
−E

[
Uj′−1Y−1

T

]
E
[
Y ′−1Y−1

T

]−1

E
[
Y ′−1U

j
−1

T

]]−1

×[
E
[
Uj′−1Y

T

]
− E

[
Uj′−1Y−1

T

]
E
[
Y ′−1Y−1

T

]−1

E
[
Y ′−1Y

T

]] (2.31)

Using the invertibility condition to express estimates of the lagged distur-

bances as in (2.22), we have:

∂β
j(T )+1
1

∂β
j(T )
1

=

[
E
[
Y ′−1Y−1

T

]−1

×

E
[

1

T
Y ′−1

[(
1 + β

j(T )
2 L

)−1

Y−2

]]]
β
j(T )+1
2 −

E
[
Y ′−1Y−1

T

]−1

E

[
Y ′−1U

j
−1

T

]
∂β

j(T )+1
2

∂β
j(T )
1

(2.32)

Evaluating (2.32) on the true vector of parameters β, the first element of

(2.29) reduces to:

∂β
j(T )+1
1

∂β
j(T )
1

∣∣∣∣
β

=

(
1

σ2
y

)[ ∞∑
i=0

(−β2)i γ1+i

]
β2 −

(
σ2
u

σ2
y

)[
∂β

j(T )+1
2

∂β
j(T )
1

∣∣∣∣
β

]
(2.33)

where E
[
Y ′−1Y−1

T

]
= σ2

y =
(1+β2

2+2β1β2)σ2
u

(1−β2
1)

is the variance of the ARMA(1,1)

process, E
[
Y ′−1U−1

T

]
= σ2

u is the variance of the disturbances and E
[
Y ′Y−l
T

]
=

γl = βl−1
1

(
β1σ

2
y + β2σ

2
u

)
is the autocovariance of lag l.

58



Similarly to (2.32), the second element in the first row of (2.29) is:

∂β
j(T )+1
1

∂β
j(T )
2

=

[
E
[
Y ′−1Y−1

T

]−1

E
[

1

T
Y ′−1

[(
1 + β

j(T )
2 L

)−1

U j
−2

]]]
×

β
j(T )+1
2 − E

[
Y ′−1Y−1

T

]−1

E

[
Y ′−1U

j
−1

T

]
∂β

j(T )+1
2

∂β
j(T )
2

(2.34)

Evaluating (2.34) on the true vector of parameters β, the second ele-

ment in the first row of (2.29) reduces to (2.35), with E
[
Y ′U−l
T

]
= γ∗l =

βl−1
1 [σ2

u (β1 + β2)].

∂β
j(T )+1
1

∂β
j(T )
2

∣∣∣∣
β

=

(
1

σ2
y

)[ ∞∑
i=0

(−β2)i γ∗1+i

]
β2 −

(
σ2
u

σ2
y

)[
∂β

j(T )+1
2

∂β
j(T )
2

∣∣∣∣
β

]
(2.35)

Computing the elements in the second row of (2.29) in a similar manner as

in (2.33) and (2.35) we have:

∂β
j(T )+1
2

∂β
j(T )
1

∣∣∣∣
β

= −2

[
σ2
u −

(σ2
u)

2

σ2
y

]−2

×

[
γ∗1 −

σ2
uγ−1

σ2
y

][(
σ2
u

σ2
y

)( ∞∑
i=0

(−β2)i γ1+i

)]
+[

σ2
u −

(σ2
u)

2

σ2
y

]−1 [
−

(
∞∑
i=0

(−β2)i γ2+i

)
+

(
γ1

σ2
y

)( ∞∑
i=0

(−β2)i γ1+i

)]
(2.36)
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∂β
j(T )+1
2

∂β
j(T )
2

∣∣∣∣
β

= −2

[
σ2
u −

(σ2
u)

2

σ2
y

]−2 [
γ∗1 −

σ2
uγ−1

σ2
y

]
×[(

σ2
u

σ2
y

)( ∞∑
i=0

(−β2)i γ∗1+i

)]
+

[
σ2
u −

(σ2
u)

2

σ2
y

]−1

×[
−

(
∞∑
i=0

(−β2)i γ∗2+i

)
+

(
γ1

σ2
y

)( ∞∑
i=0

(−β2)i γ∗1+i

)] (2.37)

From (2.33), (2.35), (2.36) and (2.37) and using the fact that
∞∑
i=0

(−β2)i γ1+i =

β1σ
2
y + β2σ

2
u

1 + β1β2

,
∞∑
i=0

(−β2)i γ2+i =
β1

(
β1σ

2
y + β2σ

2
u

)
1 + β1β2

,
∞∑
i=0

(−β2)i γ∗1+i = (β1+β2)σ2
u

1+β1β2

and
∞∑
i=0

(−β2)i γ∗2+i =
(β1 + β2) β1σ

2
u

1 + β1β2

, we have that (2.29) evaluated at β,

denoted for simplicity as V (β), reduces to:

V (β) =


β2

β1+β2

β2(1−β2
1)

(β1+β2)(1+β1β2)

−β2

β1+β2

−β2(1−β2
1)

(β1+β2)(1+β1β2)

 (2.38)

Note that (2.38) does not depend on σ2
u, implying that Lemma 1 holds for

any value assigned to the variance of the disturbances. The gradient of

the population mapping in (2.38) has two eigenvalues: λ1 and λ2. These

eigenvalues solve the following quadratic equation:

λ2 +

[
−
(

β2

β1 + β2

)
+

(
β2 (1− β2

1)

(β1 + β2) (1 + β1β2)

)]
λ = 0 (2.39)

λ1 = 0 (2.40)

λ2 =
β1β2

(1 + β1β2)
(2.41)
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By solving (2.39), we have that (2.40) and (2.41) are the two eigenvalues

associated with (2.38). Since λ1 = 0, we only need to show that |λ2| < 1

to prove that the population mapping is an ACM. Figure 2.1 displays |λ2|

computed with different combinations of β1 and β2 such that Assumption 1

is satisfied, whereas 2.2 only shows the different combinations of parameters

such that |λ2| < 1. Combining these two numerical analyzes with the result

in (2.41), we prove Lemma 1.

Lemma 2 Suppose Assumptions 1 and 2 hold. Then, as T −→∞, N̂T (φ)

is stochastically equicontinuous.

Proof of Lemma 2: We prove Lemma 2 by establishing the Lipschitz condi-

tion of N̂T (φ) similarly as in Lemma 2.9 in Newey and McFadden (1994).

We need to show that
∥∥∥V̂T (φ)

∥∥∥ = Op (1) for all φ ∈ B, where V̂T (φ) is the

sample counterpart of (2.29). To this purpose, we first bound the norm of

the difference of the sample mapping evaluated at different points as:

∥∥∥N̂T (φ)− N̂T (γ)
∥∥∥ ≤ ∥∥∥V̂T (φ∗)

∥∥∥ ‖φ− γ‖ (2.42)

where ‖.‖ accounts for the Euclidean norm, φ, γ, φ∗ ∈ B and φ∗ = (φ∗1, φ
∗
2)′

lies on the segment line between φ and γ. The second step consists of

computing the sample gradient. Note that we need to define V̂T (φ∗) in a

generic way such that it can be evaluated at any vector of estimates on any

possible iteration. Using the same steps as in Lemma 1, the elements of

V̂T
(
βj(T )

)
evaluated at φ∗ resume to:

∂β̂
j(T )+1
1

∂β̂
j(T )
1

∣∣∣∣
φ∗

=

(
1

σ̂2
y

)[ ∞∑
i=0

(−φ∗2)i γ̂1+i

]
φ∗2 −

(
ζ̂2
u

σ̂2
y

)[
∂β̂

j(T )+1
2

∂β̂
j(T )
1

∣∣∣∣
φ∗

]
(2.43)
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∂β̂
j(T )+1
1

∂β̂
j(T )
2

∣∣∣∣
φ∗

=

(
1

σ̂2
y

)[ ∞∑
i=0

(−φ∗2)i δ̂1+i

]
φ∗2 −

(
δ̂0

σ̂2
y

)[
∂β

j(T )+1
2

∂β̂
j(T )
2

∣∣∣∣
φ∗

]
(2.44)

∂β̂
j(T )+1
2

∂β̂
j(T )
1

∣∣∣∣
φ∗

= −2

ζ̂2
u −

(
δ̂2

0

)2

σ̂2
y


−2 [

δ̂1 −
δ̂2

0 γ̂−1

σ̂2
y

]
×

[
−
∞∑
i=0

(−φ∗2)i ξ̂1+i +

(
δ̂2

0

σ̂2
y

)(
∞∑
i=0

(−φ∗2)i γ̂1+i

)]
+ζ̂2

u −

(
δ̂2

0

)2

σ̂2
y


−1 [
−

(
∞∑
i=0

(−φ∗2)i γ̂2+i

)
+

(
γ̂1

σ̂2
y

)( ∞∑
i=0

(−φ∗2)i γ̂1+i

)]
(2.45)

∂β̂
j(T )+1
2

∂β̂
j(T )
2

∣∣∣∣
φ∗

= −2

ζ̂2
u −

(
δ̂2

0

)2

σ̂2
y


−2 [

δ̂1 −
δ̂2

0 γ̂−1

σ̂2
y

]
×

[(
δ̂2

0

σ̂2
y

)(
∞∑
i=0

(−φ∗2)i δ̂1+i

)]
+

ζ̂2
u −

(
δ̂2

0

)2

σ̂2
y


−1

×

[
−

(
∞∑
i=0

(−φ∗2)i δ̂2+i

)
+

(
γ̂1

σ̂2
y

)( ∞∑
i=0

(−φ∗2)i δ̂1+i

)]
(2.46)

where ζ̂2
u = 1

T

∑T
t=1 u

j
t û
j
t , δ̂0 = 1

T

∑T
t=1 ytû

j
t , δ̂l = 1

T

∑T
t=1 ytû

j
t−l, ξ̂l =

1
T

∑T
t=1 yt−lû

j
t , σ̂

2
y = 1

T

∑T
t=1 y

2
t and γ̂l = 1

T

∑T
t=1 ytyt−l. These quantities

are all averages, and hence as T −→∞, they converge to their population

counterparts. It is important to remark on two distinct results: first, we
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have that both σ̂2
y and γ̂l are quantities that do not depend on φ∗, imply-

ing that σ̂2
y

p−→ σ2
y and γ̂l

p−→ γl for all φ∗ ∈ B as T −→ ∞. These are

the population moments generated by the ARMA(1,1) model and therefore

depend only on β and σ2
u. Second, we have that ζ̂2

u, δ̂0, δ̂l and ξ̂l for l ≥ 1

converge to finite quantities. Note that we do not require these quantities

to converge to moments evaluated at the true vector of parameters β, but

to some finite quantities that will depend on φ∗. Hence, considering some

vector of estimates φ∗, we have that as T −→ ∞, the weak law of large

numbers yields:

δ̂0
p−→ δ0 =

1

(1 + β1φ∗2)

[
β1

(
γ1 − φ∗1σ2

y

)
σ2
u + β2

(
γ∗1 − (φ∗1 + φ∗2)σ2

u

)]
(2.47)

δ̂l
p−→ δl = βl−1

1

[
β1δ0 + β2σ

2
u

]
, l ≥ 1 (2.48)

ζ̂2
u

p−→ ζ2
u =

1

(1− φ∗2)

[(
1 + φ∗

2

1

)
σ2
y − 2φ∗1γ1 − 2φ∗2δ1 + 2φ∗1φ

∗
2δ0

]
(2.49)

ξ̂1
p−→ ξ1 = γ1 − φ∗1σ2

y − φ∗2δ0 (2.50)

ξ̂l
p−→ ξl = γl +

[∑l
i=2 (−1)l−2 (−1)l−1 (−φ∗2)l−i (φ∗1 + φ∗2) γi−1

]
+

+ (−1)l
[
(−φ∗2)l−1 φ∗1σ

2
y + (φ∗2)l δ0

]
, l > 1

(2.51)

From Assumption 1, we have that the
∑∞

i=0 |−φ∗2| < ∞,
∑∞

i=0 |−β2| <

∞ and
∑∞

i=0 |−β1| < ∞ for all φ∗2, β1, β2 ∈ B, implying that the infinite

summations in (2.43), (2.44), (2.45) and (2.46) are finite. Following that, it

is enough to show that

[
ζ2
u −

(δ2
0)

2

σ2
y

]
is different from zero for all φ∗, β1, β2 ∈

B, to obtain V̂T (φ∗) = Op (1) as T −→∞. This is equivalent to show that
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the solutions of

− (φ∗1 + φ∗2)2 (−1 + β2 (1− β2 + β1 (−1 + φ∗2) + φ∗2))]×[
(1 + β2 (1 + β1 + β2 + (−1 + β1)φ∗2)) (σ2

u)
2
]

[
(−1 + β2

1) (1 + β1φ∗2)2 (−1 + φ∗
2

2

)] = 0

(2.52)

do not satisfy Assumption 1. By solving (2.52), we obtain multiple solutions

that depend on the following four parameters: β1, β2, φ∗1 and φ∗2.

β1 =

{
1−β2+β2

2−β2φ∗2
β2(−1+φ2

2)
,

−1−β2−β2
2+β2φ∗2

β2(1+φ2
2)

}
(2.53)

β2 =

{
1
2

[
1− β1 + φ∗2 + β1φ

∗
2 ±

√
−4 + (−1 + β1 − φ∗2 − β1φ∗2)2

]
,

1
2

[
−1− β1 + φ∗2 − β1φ

∗
2 ±

√
−4 + (1 + β1 − φ∗2 + β1φ∗2)2

]} (2.54)

φ∗2 =
{
−1−β2−β2β1−β2

2

(−1+β1)β2
,

1−β2+β2β1+β2
2

(1+β1)β2

}
(2.55)

φ∗1 = −φ∗2 (2.56)

Solution (2.56) is ruled out by Assumption 1. We tackle the remaining

solutions through a numerical grid search. We show that there are no

real numbers satisfying both Assumption 1 and the set of solutions given

by (2.53), (2.54), (2.55), and (2.56).6 This implies that V̂T (φ∗) = Op (1),

yielding that the
∥∥∥V̂T (φ∗)

∥∥∥ = Op (1), which proves Lemma 2.

Lemma 3 Suppose Assumptions 1 and 2 hold. Then,

supφ∈B

∣∣∣N̂T (φ)−N (φ)
∣∣∣ = op (1) as T −→∞

Proof of Lemma 3: We start the proof by showing that the population

and sample mapping converge point-wise in probability for all φ ∈ B. Fix-

6As a matter of space, we do not report the graphs containing the different combi-
nations of parameters satisfying Assumption 1 and the corresponding results of (2.53),
(2.54) and (2.55). These results are available upon request.
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ing βj(T ) ∈ B, as the vector of estimates obtained at the jth iteration, and

provided that T −→∞, we have:

∣∣∣N (βj(T )
)
− N̂T

(
βj(T )

)∣∣∣ =

∣∣∣∣∣∣
[
Xj′
−1X

j
−1

T

]−1 [
Xj′
−1Y

T

]
−

E

[
Xj′
−1X

j
−1

T

]−1

E

[
Xj′
−1Y

T

]∣∣∣∣∣∣
(2.57)

Defining ÑT

(
βj(T )

)
=

[
Xj′
−1X

j
−1

T

]−1

E
[
Xj′
−1Y

T

]
, we bound (2.57) as:

∣∣∣N (βj(T )
)
− N̂T

(
βj(T )

)∣∣∣ ≤ ∣∣∣∣∣
[
Xj′
−1X

j
−1

T

]−1 [
Xj′
−1Y

T
− E

[
Xj′
−1Y

T

]]∣∣∣∣∣+∣∣∣∣∣
[[

Xj′
−1X

j
−1

T

]−1

− E
[
Xj′
−1X

j
−1

T

]−1
]
×

E
[
Xj′
−1Y

T

]∣∣∣∣
(2.58)

We need to show that both terms on the right-hand side of (2.58) converge

in probability to zero. Provided that T −→ ∞, this task becomes a law-

of-large-numbers problem, where it suffices to show that:

[
Xj′
−1X

j
−1

T

]−1

p−→ E

[
Xj′
−1X

j
−1

T

]
(2.59)[

Xj′
−1Y

T

]
p−→ E

[
Xj′
−1Y

T

]
(2.60)

Assumptions 1 and 2 guarantee that the ARMA(1,1) model is covariance-

stationary. This allows us to use the weak law of large numbers, such that

(2.59) and (2.60) hold for each φ ∈ B as T −→ ∞. Lemma 3, however,

requires uniform convergence in probability. To this purpose, the sample

mapping needs to be continuous and stochastically equicontinuous for all
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φ ∈ B. Evoking Lemma 2, we are in a position to apply theorem 21.9 (pg.

337) in Davidson (1994), yielding the final result of this Lemma:

sup
φ∈B

∣∣∣N̂T (φ)−N (φ)
∣∣∣ p−→ 0 (2.61)

Lemma 4 Suppose Assumptions 1 and 2 hold. Then,

supφ,γ∈B

∣∣∣Λ̂T (φ, γ)− Λ (φ, γ)
∣∣∣ = op (1) as T −→∞

Proof of Lemma 4: Fix φ, γ ∈ B and rewriting the difference between

the population and sample mappings, evaluated at different vector of esti-

mates, using the mean value theorem, we have:

sup
φ,γ∈B

|N (φ)−N (γ)| = sup
φ,γ∈B

|Λ (φ, γ) [φ− γ]| (2.62)

sup
φ,γ∈B

∣∣∣N̂T (φ)− N̂T (γ)
∣∣∣ = sup

φ,γ∈B

∣∣∣Λ̂T (φ, γ) [φ− γ]
∣∣∣ (2.63)

with Λ (φ, γ) =
∫ 1

0
V (φ+ ξ (φ− γ)) dξ and its sample counterpart defined

as Λ̂T (φ, γ) =
∫ 1

0
V̂T (φ+ ξ (φ− γ)) dξ. Subtracting (2.63) from (2.62) we

have:

sup
φ,γ∈B

∣∣∣Λ (φ, γ)− Λ̂T (φ, γ)
∣∣∣ |φ− γ| ≤ sup

φ,γ∈B

∣∣∣N (φ)− N̂T (φ)
∣∣∣+

sup
φ,γ∈B

∣∣∣N (γ)− N̂T (γ)
∣∣∣

sup
φ,γ∈B

∣∣∣Λ (φ, γ)− Λ̂T (φ, γ)
∣∣∣ ≤ 1

|φ− γ|

[
sup
φ,γ∈B

∣∣∣N (φ)− N̂T (φ)
∣∣∣+

sup
φ,γ∈B

∣∣∣N (γ)− N̂T (γ)
∣∣∣] (2.64)

From Lemma 3, we have that both terms inside the brackets in (2.64) have

order op (1). Provided that [φ− γ] is bounded and T −→∞, we have that

66



supφ,γ∈B

∣∣∣Λ (φ, γ)− Λ̂ (φ, γ)
∣∣∣ = op (1), proving Lemma 4.

Lemma 5 Suppose Assumptions 1 and 2 hold and
∣∣∣ β1β2

1+β1β2

∣∣∣ < 1. If

i. supφ∈B

∣∣∣N̂T (φ)−N (φ)
∣∣∣ = op (1) as T −→∞

ii. supφ,γ∈B

∣∣∣Λ̂T (φ, γ)− Λ (φ, γ)
∣∣∣ = op (1) as T −→∞

then, N̂T (φ) is an ACM on (B, d), with φ ∈ B and it has fixed point denoted

by β̂, such that
∣∣∣β̂j(T ) − β̂

∣∣∣ = op (1) as j (T ) −→∞ with T −→∞.

Proof of Lemma 5: Provided that N (φ) is an ACM on (B, d), with

φ ∈ B, we have that |N (φ)−N (γ)| ≤ κ |φ− γ| holds for each φ, γ ∈ B.

Following that, we bound
∣∣∣N̂T (φ)− N̂T (γ)

∣∣∣ as:

∣∣∣N̂T (φ)− N̂T (γ)
∣∣∣ ≤ |N (φ)−N (γ)|+

∣∣∣[N̂T (φ)− N̂T (γ)
]
−

[N (φ)−N (γ)]|
(2.65)

∣∣∣N̂T (φ)− N̂T (γ)
∣∣∣ ≤ κ |φ− γ|+

∣∣∣[Λ̂T (φ, γ)− Λ (φ, γ)
]

[φ− γ]
∣∣∣ (2.66)

From Lemma 4, the second term on the right-hand of equation (2.66) has

order op (1). Thus as T −→∞, we have that
∣∣∣N̂T (φ)− N̂T (γ)

∣∣∣ ≤ κ |φ− γ|

yielding the first result of Lemma 4. The second step of the proof consists

of showing that β̂j(T ) converges to the fixed point β̂ as j (T ) −→ ∞ with

T −→ ∞. To this purpose, we rewrite
∣∣∣β̂j(T ) − β̂

∣∣∣ using two implications

from the ACM properties of N̂T (φ): N̂T (φ) has a fixed point, such that

β̂ = N̂T

(
β̂
)

, and
∣∣∣N̂T (φ)− N̂T (γ)

∣∣∣ ≤ κ̂ |φ− γ| holds for each φ, γ ∈ B

with |κ̂| ∈ [0, 1).

∣∣∣β̂j(T ) − β̂
∣∣∣ =

∣∣∣N̂T

(
β̂j(T )−1

)
− N̂T

(
β̂
)∣∣∣ ≤ κ̂

∣∣∣β̂j(T )−1 − β̂
∣∣∣ (2.67)
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Substituting recursively and using the ACM property, we have

∣∣∣β̂j(T ) − β̂
∣∣∣ ≤ κ̂j(T )

∣∣∣β̂0 − β̂
∣∣∣ (2.68)

The proof is complete in (2.68), provided that j (T ) −→∞ as T −→∞.

Lemma 6 Suppose Assumptions 1 and 2 hold and
∣∣∣ β1β2

1+β1β2

∣∣∣ < 1. If

i. N̂T (φ) is an ACM on (B, d)

Then,
√
T
∣∣∣β̂j(T ) − β̂

∣∣∣ = op (1) as T −→∞ and j (T ) −→∞

Proof of Lemma 6: We show the
√
T convergence of β̂j(T ) to the fixed

point β̂ by using the result that yields that the sample mapping is an ACM

on (B, d) and similar steps as in item (i) in Theorem 1. Denote κ̂ as the

sample counterpart of κ. Then,

√
T
∣∣∣β̂j(T ) − β̂

∣∣∣ =
√
T
∣∣∣N̂T

(
β̂j(T )−1

)
− N̂T

(
β̂
)∣∣∣

√
T
∣∣∣N̂T

(
β̂j(T )−1

)
− N̂T

(
β̂
)∣∣∣ ≤ √T [κ̂ ∣∣∣β̂j(T )−1 − β̂

∣∣∣] (2.69)

Substituting recursively (2.69), we have

√
T
∣∣∣β̂j(T ) − β̂

∣∣∣ ≤ √T [κ̂j(T )
∣∣∣β̂0 − β̂

∣∣∣] (2.70)

To make the right-hand side of (2.70) converge in probability to zero, we

require that κ̂j(T ) dominates
√
T as j (T ) −→ ∞ with T −→ ∞. A suffi-

cient rate implying this dominance is one such that j � −1
2

[
ln(T )
ln(κ)

]
. Hence,

provided that ln(T )
j

= o (1), we have that
√
T
∣∣∣β̂j(T ) − β̂

∣∣∣ = op (1), which
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proves the lemma.

Proof of Theorem 1: We start proving the consistency of the IOLS

estimator. From Dominitz and Sherman (2005), if N (φ) is an ACM on

(B, d), then N (φ) is also a contraction map. We prove item (i) in Theo-

rem 1 by using the standard fixed-point theorem as stated in Burden and

Faires (1997) and Judd (1998). From Lemma 1, N (φ) is an ACM implying

that
∣∣N (βj(T )−1

)
−N (β)

∣∣ ≤ κ
∣∣βj(T )−1 − β

∣∣ holds. Identification on the

population mapping gives N (β) = β. Lemma 5 yields that the sample

counterpart of N (φ) is also an ACM on (B, d) with a fixed point β̂.

∣∣∣β̂ − β∣∣∣ ≤ ∣∣βj(T ) − β
∣∣+
∣∣∣β̂ − βj(T )

∣∣∣ (2.71)

We first show that the first term on the right-hand side of (2.71) converges

in probability to zero. To this purpose, we rewrite
∣∣βj(T ) − β

∣∣ as in (2.72),

provided that N (φ) is an ACM and thus N (β) = β.

∣∣βj(T ) − β
∣∣ =

∣∣N (βj(T )−1
)
−N (β)

∣∣ ≤ κ
∣∣βj(T )−1 − β

∣∣ (2.72)

Substituting recursively equation (2.72), the fixed-point theorem result

states that as the number of iterations tends to infinity, the sequence con-

verges to the fixed point.

∣∣βj(T ) − β
∣∣ ≤ κj(T )

∣∣β0 − β
∣∣ (2.73)

Thus, provided that j (T ) −→∞ as T −→∞, (2.73) yields that
∣∣βj(T ) − β

∣∣
= op (1), and therefore that the first term on the right-hand side of (2.71)
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converges in probability to zero.

We now turn our attention to the second term on the right-hand side of

(2.71). It remains to show that this term has also order op (1). We bound

this term using result in Lemma 5.

∣∣∣β̂ − βj(T )
∣∣∣ =

∣∣∣N̂T

(
β̂
)
−N

(
βj(T )−1

)∣∣∣
≤
∣∣∣N̂T

(
β̂
)
−N

(
β̂
)∣∣∣+

∣∣∣N (β̂)−N (βj(T )−1
)∣∣∣ (2.74)

If Lemma 3 holds, then
∣∣∣N̂T

(
β̂
)
−N

(
β̂
)∣∣∣ ≤ supφ∈B

∣∣∣N (φ)− N̂T (φ)
∣∣∣ for

each φ ∈ B, implying that (2.74) resumes to:

∣∣∣β̂ − βj(T )
∣∣∣ ≤ sup

φ∈B

∣∣∣N (φ)− N̂T (φ)
∣∣∣+ κ

∣∣∣β̂ − βj(T )−1
∣∣∣ (2.75)

Applying the same steps as in (2.74) and provided that j (T ) −→ ∞ as

T −→∞ and κ ∈ (0, 1 ]

∣∣∣β̂ − βj(T )
∣∣∣ ≤ sup

φ∈B

∣∣∣N (φ)− N̂T (φ)
∣∣∣ [1 + κ+ κ2 + ...

]
(2.76)∣∣∣β̂ − βj(T )

∣∣∣ ≤ sup
φ∈B

∣∣∣N (φ)− N̂T (φ)
∣∣∣ [ 1

1− κ

]
(2.77)

Because the second term in brackets on the right-hand side of (2.77) is

bounded and Lemma 3 yields that the first term has order op (1), we have

that the fixed point from the sample mapping is a consistent estimate of

β, provided that j (T ) −→∞ as T −→∞ .

We now turn our attention to show the asymptotic distribution of the

IOLS estimator. This proof mirrors the steps of Theorem 4 in Dominitz

and Sherman (2005). Similar steps are found in theorem 3.1 in Newey

and McFadden (1994). We are interested in establishing the asymptotic
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distribution of
√
T
[
β̂ − β

]
. To this purpose, we write

√
T
[
β̂j(T ) − β

]
=
√
T
[
β̂j(T ) − β̂

]
+
√
T
[
β̂ − β

]
(2.78)

The first term on the right-hand side of equation (2.78) has order op (1) fol-

lowing Lemma 6 and provided that ln(T )
j

= o (1). Rewriting the remaining

term as

√
T
[
β̂ − β

]
=
√
T
[
N̂T

(
β̂
)
−N (β)

]
√
T
[
N̂T

(
β̂
)
−N (β)

]
=
√
T
[[
N̂T

(
β̂
)
− N̂T (β)

]
+
[
N̂T (β)− β

]]
(2.79)

Rewriting the first term on the right-hand side of (2.79) into:

[
N̂T

(
β̂
)
− N̂T (β)

]
= Λ̂T

(
β̂, β

) [
β̂ − β

]
(2.80)

such that Λ̂T

(
β̂, β

)
=
∫ 1

0
V̂T

(
β̂ + ξ

(
β̂ − β

))
dξ. Substituting it back into

(2.79) and rearranging terms, we have:

√
T
[
β̂ − β

]
=
√
T
[
Λ̂T

(
β̂, β

) [
β̂ − β

]]
+
√
T
[
N̂T (β)− β

]
√
T
[
β̂ − β

]
=
√
T

[[
I2 − Λ̂T

(
β̂, β

)]−1 [
N̂T (β)− β

]]
(2.81)

As in Dominitz and Sherman (2005), we first show that Λ̂T

(
β̂, β

)
p−→ V (β).

To this purpose, we write Λ̂T

(
β̂, β

)
as:

Λ̂T

(
β̂, β

)
= V (β) +

[
Λ
(
β̂, β

)
− V (β)

]
+
[
Λ̂T

(
β̂, β

)
− Λ

(
β̂, β

)]
(2.82)

From item (i) in Theorem 1 we have that β̂ converges in probability to β
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as j −→∞ with T −→∞. This implies that Λ
(
β̂, β

)
p−→ V (β), yielding

that the second term on the right-hand converges in probability to zero.

Lemma 4 implies that the last term on the right-hand side of (2.82) has

order op (1), providing that Λ̂T

(
β̂, β

)
p−→ V (β). From this result, (2.81)

reduces to:

√
T
[
β̂ − β

]
=
√
T
[
[I2 − V (β)]−1

[
N̂T (β)− β

]]
(2.83)

Hence, as T −→ ∞ it remains to study the asymptotic distribution of
√
T
[
N̂T (β)− β

]
. To this purpose, we write:

√
T
[
N̂T (β)− β

]
=
√
T
[[
X ′−1X−1

]−1
X ′−1U

]
√
T
[[
X ′−1X−1

]−1
X ′−1U

]
=

[[
X ′−1X−1

T

]−1 [
1√
T

]
X ′−1U

]
(2.84)

Applying the Central Limit Theorem for martingale difference sequences

and provided that plim
[
X′−1X−1

T

]−1

= H−1, it follows that

√
T
[
N̂T (β)− β

]
d−→ N

(
0, σ2

uH
−1
)

(2.85)

We conclude the proof of Theorem 1 by setting A = [I − V (β)]−1 in (2.83)

and using the result in (2.85), such that:

√
T
[
β̂ − β

]
d−→ N

(
0, σ2

uAH
−1A′

)
(2.86)

�
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Figure 2.1: Maximum Eigenvalues of V (β)

We plot |λ2| computed using different combinations of β1 and β2 such that
Assumption 1 is satisfied. For viewing purposes, we truncate the parameter
interval in this analysis such that β1 = [−0.980, 0.980] and β2 = [−0.980, 0.980].
The grid is fixed in 0.001.
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Figure 2.2: Maximum Eigenvalues of V (β) - trimmed version

We plot |λ2| computed using different combinations of β1 and β2 such that
Assumption 1 is satisfied and |λ2| < 1. The grid is fixed in 0.001.
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Table 2.11: Datasets Specification

K = 10 K = 20 K = 40
DATASET 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
IPS10 × × × × × × × × × × × × × × ×
FYFF × × × × × × × × × × × × × × ×
PUNEW × × × × × × × × × × × × × × ×
A0M052 × × × × × × × × × × ×
A0M051 × × × × × ×
A0M224R × × × × × × × × ×
A0M057 × × × × × × ×
A0M059 × × × × × × × ×
PMP × × × × ×
A0m082 × × × × × × × × ×
LHEL × × × × × ×
LHELX × × × × × ×
LHEM × × × × × ×
LHUR × × × × × ×
CES002 × × × ×
A0M048 × × ×
PMI × × × × × × ×
PMNO × × ×
PMDEL × × × ×
PMNV × × × ×
FM1 × × × × × × × × ×
FM2 × × × × × × × × ×
FM3 × × × ×
FM2DQ × × × × × × × ×
FMFBA × × × × × ×
FMRRA × ×
FMRNBA × × ×
FCLNQ × × × × × × × ×
FCLBMC × × × × × × ×
CCINRV × × × × × × × ×
A0M095 × × × × × × × ×
FSPCOM × × × × × × ×
FSPIN × × × × ×
FSDXP × × × × ×
FSPXE × × × ×
CP90 × × × × × × ×
FYGM3 × × × × × × × × × ×
FYGM6 × × × ×
FYGT1 × × × × × × ×
FYGT5 × × × × × × × ×
FYGT10 × × × × × ×
FYAAAC × × × × × × × × ×
FYBAAC × × × × × × ×
EXRUS × × × × × × ×
EXRSW × × ×
EXRJAN × × × × × ×
EXRUK × × × × × × ×
EXRCAN × × ×
PWFSA × × × × × × ×
PWFCSA × × × × × × ×
PWIMSA × × × × ×
PWCMSA × × × × ×
* × indicates that the assigned variable belongs to the specified dataset.
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Chapter 3

The Nonlinear Iterative Least

Squares (NL-ILS) Estimator:

An Application to Volatility

Models

3.1 Introduction

Measuring volatility and identifying its sources is of major importance in

finance and economics. Investors are concerned about asset return volatil-

ity because it plays crucial role on asset pricing, risk management and

portfolio allocation. As a result, the task of modeling the conditional vari-

ance has been a central topic in econometrics following the seminal papers

of Engle (1982) and Bollerslev (1986). Since then, different specifications

and frameworks, such as GARCH-type models, stochastic volatility, real-

ized volatility and combinations of these approaches have been adopted,
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trying to capture the very specific stylized facts observed in financial re-

turns. A natural extension that emerges from modeling the conditional

variance is the relation between risk and return. The intertemporal capital

asset pricing model (ICAPM) of Merton (1973) establishes a positive rela-

tion between the conditional excess returns and the conditional variance,

implying that investors should be remunerated for bearing extra risk. En-

gle, Lilien, and Robins (1987) provide the first econometric specification

that relates the conditional second moment to the first moment, allowing

to test the ICAPM model. Following them, several attempts have been

undertaken to estimate the risk premium parameter, however empirical ev-

idences on the sign and significance of this parameter are blurred. Two

potential causes are: firstly, as Bollerslev, Chou, and Kroner (1992) point

out, quasi-maximum likelihood (QMLE) estimates of the risk premium pa-

rameter using the GARCH-in-mean framework may be inconsistent if the

conditional variance is misspecified. Secondly, as Drost and Nijman (1993)

discuss, sampling frequency impacts the validity of the assumptions gov-

erning the QMLE estimator and as a consequence of time aggregation,

estimates of the risk premium parameter may be inconsistent1.

In this chapter, we address the two above-mentioned issues, by propos-

ing a novel full parametric iterative estimator, the nonlinear iterative least

squares estimator (NL-ILS). The NL-ILS estimator nests the GARCH(1,1),

weak-GARCH(1,1), GARCH(1,1)-in-mean and RealGARCH(1,1)-in-mean

models2. We derive the consistency and asymptotic distribution for the

1Linton and Perron (2003), Linton and Sancetta (2009), Conrad and Mammen (2008),
Christensen, Dahl, and Iglesias (2012) point a third issue. They find strong evidences
that the relation between risk and return is nonlinear, indicating that the mixed re-
sults obtained with the full parametric GARCH-in-mean models could be the results of
misspecification of the mean equation.

2Under certain assumptions briefly discussed in Section 3.2.1, the NL-ILS is also valid
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GARCH(1,1) model under mild assumptions. The asymptotic results for

the NL-ILS estimator do not depend on the correct specification of the

stochastic term distribution, allowing, therefore, the NL-ILS estimator to

compete against the QMLE estimator. Moreover, we extend the consis-

tency result to the weak-GARCH(1,1) case, which as far as our knowledge

goes, is only covered by the estimator proposed by Francq and Zakoian

(2000). Furthermore, we show through Monte Carlo exercises that the

NL-ILS estimator is more robust to misspecification of the conditional

variance than the QMLE estimator when considering the GARCH(1,1)-

in-mean case. This result is particularly important when investigating the

existence of the risk-return tradeoff, since the true data generation pro-

cess (DGP) of the conditional variance is unknown in practise. We find

evidences that bias on the QMLE estimates of the risk premium param-

eter leads to false significant risk premium estimates in a full parametric

GARCH(1,1)-in-mean model.

The literature on GARCH-type models is extremely extensive, with

a wide range of specifications aiming to capture different stylized facts

(see Francq and Zakoian (2010) and Bollerslev (2008)). In this chapter,

we will focus on the following models: GARCH(1,1), weak-GARCH(1,1),

GARCH(1,1)-in-mean and RealGARCH(1,1)-in-mean originally proposed

by Bollerslev (1986), Drost and Nijman (1993), Engle, Lilien, and Robins

(1987) and Hansen, Huang, and Shek (2012), respectively. Another im-

portant branch of the GARCH literature examines the asymptotic prop-

erties of the QMLE estimator. Research on this topic has mainly focused

on relaxing moment assumptions as a way to accommodate heavy-tailed

for ARMA(1,1) and weak-ARMA(1,1) models.
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marginal distributions (see Francq and Zakoian (2008) for a survey on this

topic). We address this issue by establishing the asymptotic theory for

the GARCH(1,1) model under assumptions that are compatible with the

QMLE estimator. Apart from Christensen, Dahl, and Iglesias (2012) of

which work nests the full parametric GARCH(1,1)-in-mean and which is

based on the profile log-likelihood approach, there has not been so far

a proper QMLE asymptotic theory covering this model. This chapter dis-

cusses the extension of the NL-ILS asymptotic results for the GARCH(1,1)-

in-mean and the RealGARCH(1,1)-in-mean models.

Recently, the abundant availability of high frequency data has triggered

a new class of volatility models: the realized volatility (see Mcaleer and

Medeiros (2008) for an extensive survey on the different estimators avail-

able in the literature). Jointly with that, models that combine GARCH-

type structure with realized measures, such as GARCH-X in Engle (2002),

HEAVY in Shepard and Sheppard (2010) and RealGARCH in Hansen,

Huang, and Shek (2012), have also become popular. These “turbo”3 mod-

els have the nice property of adjusting much faster to shocks in volatility,

providing a better forecasting performance than GARCH-type models. By

extending the NL-ILS algorithm to the RealGARCH(1,1)-in-mean model,

we able to assess whether, by augmenting the volatility equation with re-

alized variance measures, the risk premium parameter estimate improves.

Moreover, the theoretical framework we use to establish the asymptotic

theory for the GARCH(1,1) model can also be extended to accommodate

exogenous regressors in the variance equation as in the RealGARCH(1,1)-

in-mean model. Another important advantage of the NL-ILS framework

3This is an expression used by Shepard and Sheppard (2010), and it illustrates, in a
very good way, the enhanced properties of this class of augmented models.
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emerges from its robustness to disturbances that possess some nonlinear de-

pendence. From the RealGARCH framework, the measurement equation

relates the conditional variance to the realized variance. Hansen, Huang,

and Shek (2012) assume the stochastic term in the measurement equation

is an independent and identically distributed (iid) process evolving on daily

basis. We argue the conditional and realized variance evolve at different

frequencies. The former one evolves on a daily basis, whereas the latter

evolves intradaily. Following that, modeling the stochastic term in the mea-

surement equation as an iid process might turn out to be a far too strong

assumption. Hence, it makes necessary the adoption of estimators that can

cope with disturbances possessing dependence on higher moments, such as

linear projections, as discussed in Drost and Nijman (1993) and Drost and

Werker (1996).

In the empirical section we investigate the existence of the risk pre-

mium in the spirit of the ICAPM model proposed by Merton (1973). To

do so, we adopt the GARCH(1,1)-in-mean specification. The main ques-

tion is whether the risk premium parameter is significant and presents the

correct sign by using an estimator which is robust to misspecification of

the conditional variance and also to dependence on the errors. We assess

this question in two dimensions: temporal frequency and market proxy.

To evaluate the former one we estimate the model on daily, weekly and

monthly basis. To appraise the latter dimension we adopt three market

indices: CRSP, S&P500 and S&P100. The choice of comparing different

indices emerges from the different compositions they have. The CRSP

data set is known to be the best proxy for the market. When we imple-

ment the NL-ILS, the risk premium is significant only in the CRSP data
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set. A different picture arises when we use the QMLE estimator: the risk

premium is significant in all frequencies and indices. This result holds

across all three frequencies. Following the consistency issue of the QMLE

estimator, we perform robustness checks using RealGARCH-in-mean (with

both NL-ILS and QMLE estimators), EGARCH-in-mean, GJR-GARCH-

in-mean and APARCH-in-mean models. These exercises deliver results for

the risk premium estimates which are in line with the ones found when

using the robust NL-ILS estimator. We argue that the NL-ILS estimator is

able to capture the “true” risk premium, since its results reflect the wider

composition of the CRPS index, resembling the market more accurately,

when compared to S&P500 and S&P100 indices.

This chapter is organized as follows. Section 3.2 introduces the NL-ILS

estimator and establishes the asymptotic theory for the GARCH(1,1) case.

We start the discussion with a generic model nesting the GARCH, GARCH-

in-mean and RealGARCH models. We then illustrate the specific cases of

GARCH(1,1), weak-GARCH(1,1) and GARCH(1,1)in-mean. Section 3.3

presents the NL-ILS algorithm for the GARCH(1,1), weak-GARCH(1,1),

GARCH(1,1)-in-mean and RealGARCH(1,1)-in-mean. Section 3.4 displays

an extensive Monte Carlo study, assessing the finite sample performance of

the NL-ILS compared to the QMLE benchmark with respect to consistency,

efficiency and forecast accuracy. This section also discusses the robustness

of the NL-ILS estimator when the conditional variance is misspecified. In

Section 3.5, we assess the risk-return tradeoff considering different indices at

three sampling frequencies. Section 3.6 concludes. The Appendix contains

all proofs.
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3.2 Asymptotic theory: main results

This section provides theoretical results regarding the consistency and

asymptotic distribution of the NL-ILS estimator. We start with a generic

model nesting three of the models we discuss through out this chapter:

GARCH(1,1), GARCH(1,1)-in-mean and RealGARCH(1,1)-in-mean mod-

els. Firstly, we derive the consistency and asymptotic distribution for this

generic model under high level assumptions. Secondly, we relax some of

these assumptions focusing on these models and analyzing them in greater

depth, providing discussions on the asymptotic results. The theory devel-

oped in this section is based on the work of Dominitz and Sherman (2005).

Following their work, the crucial point on showing consistency and asymp-

totic distribution for this class of iterative estimators lies on proving that

the population mapping is an Asymptotic Contraction Mapping (ACM)4.

If the population mapping is an ACM, then it has a fixed point. This

allows the use of the fixed point theorem to derive the consistency of the

iterative estimator. The asymptotic theory is derived using the popula-

tion mapping evaluated at the true vector of parameters, allowing the use

of asymptotic results obtained from the standard nonlinear least squares

(NL-LS) framework.

Assume a stationary stochastic process {yt}Tt=1 with finite fourth mo-

4Using the definition in Dominitz and Sherman (2005), a collection
{Kω

T (.) : T ≥ 1, ω ∈ Ω} is an ACM on (B, d) if d (Kω
T (x) ,Kω

T (y)) ≤ cd (x, y) as
T −→ ∞, where c ∈ [0, 1), (B, d) is a metric space with x, y ∈ B, (Ω,A,P) denoting a
probability space and Kω

T (.) is a function defined on B.
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ment.

yt = f (Yt−l, Xt−m, σt, θ1) + εt, l ≥ 1, m ≥ 0 (3.1)

εt = σtηt (3.2)

σ2
t = ω +

p∑
i=1

αiεt−i +

q∑
i=1

βiσ
2
t−i +

r∑
i=1

γivt−i (3.3)

Zt = Ψ0 + Ut +
∞∑
i=1

ΨiUt−i Ψi = %i (θ2) , i = 0, 1, ...,∞ (3.4)

where f (Yt−l, Xt−m, σt, θ1) is a twice continuously differentiable function;

%i (θ2) is a continuous function for all i’s; Xt−m is a matrix of exogenous

regressors; Yt−l is a vector containing lags of the dependent variable; σ2
t

is a latent variable (conditional variance); Zt = (ε2t , vt)
′
; Ut is a vector of

martingale difference sequence (m.d.s.) processes, such that E (Ut) = 0 and

Var(Ut) = ΣU with Σu being a diagonal matrix; θ1 is a vector of free pa-

rameters in (3.1), θ2 is a vector of free parameters in (3.3) and θ = (θ1, θ2)′.

Denote B as the space where θ is defined. Equation (3.1) is generic enough

to accommodate models that are nonlinear in the parameters, also nesting

linear regressions. As in Dominitz and Sherman (2005), we define two map-

pings: population and sample mappings. Both mappings map from B to

itself, and on each iteration, they are computed through the minimization

of the average of squared residuals. For notation purposes, we denote the

sample objective function as QT (yt, vt; θ) and its population counterpart as

E (QT (yt, vt; θ)). These functions are nonlinear in the parameters, yielding

NL-LS estimates on all iterations. Therefore, the NL-ILS estimator con-

sists on computing NL-LS estimates using estimates of the latent variables

as regressors, updating, at each iteration, the latent variable using the NL-
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LS parameter estimates. This procedure is repeated until the parameters

converge.

Definition 2 Mapping:

Define the population mapping as N(θj) and its sample counterpart as

N̂T (θ̂j), such that at any j iteration, N(θj) maps from θj to θj+1 and N̂T (θ̂j)

maps from θ̂j to θ̂j+1.

θj+1 = N(θj) = min
θj+1

E

 1

T

T∑
t=1

[
Zt −Ψj+1,0 −

∞∑
i=0

Ψj+1,iUj,t−1−i

]2
 (3.5)

θ̂j+1 = N̂T (θ̂j) = min
θ̂j+1

1

T

T∑
t=1

[
Ẑt − Ψ̂j+1,0 −

q̄∑
i=0

Ψ̂j+1,iÛj,t−1−i

]2

(3.6)

Note that Ψj+1,i and Ψ̂j+1,i depend on θ2,j+1 and θ̂2,j+1, respectively. The

subscript j denotes the iteration which parameters are computed. The

number of iterations j is set to be a function of T , such that as T −→ ∞,

j −→∞ at some rate satisfying ln(T )
j

= o (1) and q̄ is a truncation param-

eter, such that q̄ −→ ∞ at a logarithmic rate of T . From the population

mapping definition, θ = N(θ) holds as an identification condition. This im-

plies that, if N(θj) is an ACM, then θ is the fixed point of the population

mapping and the following bound holds for any j:

|θj+1 − θj| = |N(θj)−N(θj−1)| ≤ κ |θj − θj−1| (3.7)

where κ = [0, 1 ) is the contraction parameter. By using the Newton-

Raphson (NR) procedure, the two mappings in Definition 1 have the fol-
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lowing linear representation:

θj+1 = N (θj) = θj − [H (θj)]
−1G (θj) (3.8)

θ̂j+1 = N̂T

(
θ̂j

)
= θ̂j −

[
ĤT

(
θ̂j

)]−1

ĜT

(
θ̂j

)
(3.9)

where ĜT

(
θ̂j

)
and ĤT

(
θ̂j

)
are the sample gradient and Hessian computed

from QT

(
θ̂j

)
, whereas H (θj) and G (θj) are their population counterparts.

To use the theory developed by Dominitz and Sherman (2005), we intro-

duce assumptions which are related to the identification of classical non-

linear regression models (see Amemiya (1985) pg. 129 for more details),

and assumptions governing the behavior of both population and sample

mappings.

Assumptions A

1.

E

{[
Zt−Z̃t+

(
%0 (θ2) +

∞∑
i=1

%i (θ2)

)
−

(
%0

(
θ̃2

)
+
∞∑
i=1

%i

(
θ̃2

))]2}
6= 0

for ∀ θ̃ 6= θ and Z̃t = (ε̃2
t , vt)

′ and ε̃2
t =

(
yt − f

(
Y−l, Xt−m, σ̃t, θ̃1

))2

.

2. Cov(f (Y−l, Xt−m, σt, θ1) , εt) = 0.

3. The disturbances ηt have a non-degenerate distribution such that

ηt ∼ iid (0, 1) and E (η4
t ) <∞.

4. N(θj) is an ACM in spirit of the definition of Dominitz and Sherman

(2005) for all θj ∈ B.

5. sup
ξ,ς ∈B

∣∣∣N (ξ)− N̂T (ς)
∣∣∣ = op (1) for all ξ, ς ∈ B. θj ∈ B.
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Assumption A1 implies the population mapping is identified, allowing the

use of the NL-LS estimator to recover estimates of θ. Note that Assumption

A2 is weaker than the usual assumption presented in linear regressions with

stochastic regressors. In these cases, the regressors at time t are assumed to

be independent of εs for all t and s as discussed in Hamilton (1994) chapter

8. Our setup, however, relies on relaxing this assumption in spirit of the

AR(p) model (case 4 in chapter 8 of Hamilton (1994)). Assumption A4

states that population mapping in Definition 1 is an ACM. Assumptions

A5 establishes uniform convergence between the sample and population

mappings. Under Assumptions A1, A2, A3, A4 and A5, Theorems 2 and

4 in Dominitz and Sherman (2005) hold, yielding the consistency and the

asymptotic distribution of the NL-ILS algorithm for the generic model de-

fined in (3.1), (3.3) and (3.4).

3.2.1 GARCH(1,1)

From the seminal papers of Engle (1982) and Bollerslev (1986), a process

{yt}Tt=1 is said to be a strong GARCH(1,1), (GARCH(1,1) hereafter), if the

following structure holds:

yt = εt = ηtσt (3.10)

σ2
t = ω + αε2t−1 + βσ2

t−1 (3.11)

where ηt is an iid ∼ (0, 1) and σ2
t is the latent conditional variance. Suffi-

cient conditions on the parameters of (3.11) that guarantee the process in

(3.10) is second-order stationary are: ω > 0, α > 0, β > 0 and α + β < 1

(see Francq and Zakoian (2010) for an extensive study on stationarity so-
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lutions to GARCH(p,q) models). The conditional variance equation of the

GARCH(1,1) model allows an ARMA(1,1) representation on the form of:

ε2t = ω + aε2t−1 + ut + but−1 (3.12)

where a = (α + β) and b = −β are the autoregressive and moving av-

erage parameters, respectively. Denote φ as φ = (ω, a, b)′. The distur-

bances ut = ε2t − σ2
t are m.d.s., such that E (ut) = 0 and Var(ut) = σ2

u.

If the GARCH(1,1) in (3.10) and (3.11) is covariance stationary, then the

ARMA(1,1) in (3.12) can be expressed as MA(∞) as:

ε2t = ψ0 +
∞∑
i=1

ψiut−i + ut (3.13)

where ψ0 = ω
1−a , ψi = ai(a+ b).

We establish the consistency and asymptotic distribution for the

GARCH(1,1) model, by relaxing some of the high level assumptions we

imposed to the generic model. Note that the generic model nests the

GARCH(1,1) model, by setting f (Yt−l, Xt−m, σt, θ1) = 0, lags orders p and

q to 1 and γi = 0 for all i = 1, 2, ..., r. These imply that the VMA in (3.4) re-

duces to the MA(∞) depicted in (3.13). Using Definition 1, and setting the

sample objective function as QT

(
yt; φ̂j+1

)
=

1
T

∑T
t=1

[
ε2t − ψ̂j+1,0 −

∑q̄
i=0 ψ̂j+1,iûj,t−1−i

]2

, the population and the sample

mappings are defined as:

Definition 3 GARCH(1,1) Mapping:

Define the population mapping for the GARCH(1,1) model as N(θj) and

its sample counterpart as N̂T (θ̂j), such that at any j iteration, N(θj) maps
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from θj to θj+1 and N̂T (θ̂j) maps from θ̂j to θ̂j+1.

φj+1 = N (φj) = min
φj+1

E

 1

T

T∑
t=1

[
ε2t − ψj+1,0 −

∞∑
i=0

ψj+1,iuj,t−1−i

]2
 (3.14)

φ̂j+1 = N̂T

(
φ̂j

)
= min

φ̂j+1

1

T

T∑
t=1

[
ε2t − ψ̂j+1,0 −

q̄∑
i=0

ψ̂j+1,iûj,t−1−i

]2

(3.15)

Remark Definition 3: the MA(∞) representation satisfies assumption A1 in

the generic setup (see Lemma 8 in the appendix). We relax assumption A4

and A5 in order to establish the consistency and asymptotic distribution of

the NL-ILS estimator. To this purpose, we state the following assumptions:

Assumptions B

1. The GARCH(1,1) model stated in (3.10) and (3.11) is second-order

stationary and yields σ2
t > 0 for all t. These imply that ω > 0, α > 0,

β > 0 and α + β < 1. Also, assume that φ ∈ B and B is compact.

2. The disturbances ηt have a non-degenerate distribution such that

ηt ∼ iid (0, 1) and E (η4
t ) <∞.

3. Define the gradient of N (φj) as V (φj) = 5φjN (θj) and its sample

counterpart as V̂T (φ̂j) = 5φ̂j
N̂T

(
φ̂j

)
. Then, the Euclidean norm of

V̂T (φ̂j) is bounded in probability, such that
∥∥∥V̂T (φ̂j)

∥∥∥ = Op (1) for all

φ̂j ∈ B.

Assumption B2 is important in two different aspects: firstly, it implies that

ut in (3.24) is a m.d.s.5; secondly, the finite fourth moment is required as

5The iid assumption on ηt can be relaxed as in the case of the weak-GARCH(1,1)
model. This will only affect the asymptotic distribution of the NL-ILS estimator.
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a condition to obtain a finite σ2
u. Finally, Assumption B3 establishes the

Lipschitz condition of N̂T

(
φ̂j

)
. This implies that N̂T

(
φ̂j

)
is stochastically

equicontinuous. To show consistency of the NL-ILS estimator, the crucial

point consists on proving that the population mapping is an ACM. Lemma

7 delivers this result. Lemma 7 is equivalent to Lemma 1 in Chapter 2, but

the distinct feature of the mapping leads to different contraction properties

associated with the population mapping.

Lemma 7 Suppose Assumptions B1, B2 and B3 hold. Then, there exist

an open ball centered at φ with closure B, such that the mapping N (φj) is

an ACM on (B, d), with φj ∈ B for all j > 0.

Figure 3.1 displays the maximum eigenvalue associated with different com-

binations of parameters satisfying Assumption B1. From Lemma 7, the

population mapping has a fixed point such that N (φ) = φ holds and the

following inequality is valid for all iterations:

|φj+1 − φj| = |N(φj)−N(φj−1)| ≤ κ |φj − φj−1| (3.16)

Remark Lemma 7: Lemma 7 can also be extended to the ARMA(1,1) case.

Note that the eigenvalues of the population mapping gradient evaluated on

the true vector of parameters, V (φ), are given by:

ε =

[
a+ b

1 + b
,

a(a+ b)

1 + b
,

a(a+ b)

1 + b

]′
(3.17)

Under the ARMA(1,1) model, Assumption B1 is relaxed such that |a| < 1

and |b| < 1 hold. For all b > 0, the eigenvalues associated with (3.17) are

smaller than one in absolute value. This result is particulary relevant for
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ARMA(1,1) models generated with a positive moving average parameter

(close to unity) and a negative autoregressive parameter (potentially close

to one in absolute value). Under such combination of parameter values,

Chapter 2 shows that the IOLS estimator is not valid, because its pop-

ulation mapping is not an ACM. This implies that the NL-ILS estimator

can, alternatively, be used when convergence is not achieved with the IOLS

estimator.

To prove the consistency of the NL-ILS estimator, it is necessary to

show that the population mapping and the population gradient converge

uniformly to their sample counterparts when evaluated at the same points.

These are given by Lemmas 9 and 10, respectively. Lemmas 9 is obtained

using the fact that q̄ −→∞ at a logarithmic rate of T and using the weak

law of large numbers. Lemma 11 in the appendix shows that the sample

mapping is also an ACM, implying that it also has a fixed point, denoted

by φ̂, such that N̂T

(
φ̂
)

= φ̂.

With regard to the asymptotic distribution of the NL-ILS estimator,

Lemma 12 gives the
√
T convergence of φ̂j to φ̂. This is achieved by allowing

the number of iterations goes to infinite as T −→∞, such that ln(T )
j

= o (1).

As in Chapter 2, we use the fact that, when evaluated at the true vector

of parameters and T −→ ∞, the lagged disturbances are no longer latent

variables. This implies that asymptotic results from the NL-LS estimator

can be used in the final bit of the proof.

Define the following quantities: A = [I − V (φ)]−1; V (φ) is the gradient

of the population mapping evaluated on the true vector of parameters φ;
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C0 = plim 1
T

∑T
t=1

[
∂ht(φ)
∂φ

∂ht(φ)
∂φ′

]
; and ht (φ) = ψ0 −

∑q̄
i=1 ψiut−i.

A−1 =



1−a
b+1

((a2+a−1)b+1)ω
b+1

− (a−1)(a+1)2ω
b+1

0
(a3−2a+1)b

b+1
−(a2−1)

2

b+1

0 (ab+1)2

b+1
−(ab+2)a2+b+2

b+1


(3.18)

C0 =



1
(1−a)2 − ω

(1−a)3 0

− ω
(1−a)3

ω2

(1−a)4 +

q̄∑
i=0

d2

iσ
2

u

q̄∑
i=0

dia
iσ2

u

0

q̄∑
i=0

dia
iσ2

u

q̄∑
i=0

a2iσ2

u


(3.19)

The consistency and asymptotic distribution of the NL-ILS is therefore

given by:

Theorem 2 Suppose Assumptions B1, B2 and B3 hold. Then

i.
∣∣∣φ̂− φ∣∣∣ = op (1) as j −→∞ with T −→∞.

ii.
√
T
[
φ̂− φ

]
d−→ N

(
0, σ2

uAC
−1
0 A′

)
as T −→∞ and ln(T )

j
= o (1).

The proof of Theorem 2 is given in the Appendix. The asymptotic co-

variance matrix can be computed replacing the true vector of parameters

with the consistent NL-ILS estimates of φ. From item (ii) in Theorem 2,

it is clear that the asymptotic variance of the NL-ILS is in fact an aug-

mented version of the one obtained from the NL-LS estimator when all the

regressors are fully observed. The closed form for the asymptotic variance

of the NL-ILS estimator considering the parameters of GARCH(1,1) in its
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original form can be easily obtained. Denote Σ = AC−1
0 A′, Σi,j as the i, j

element of Σ and θ = [ω, α, β]′. Then, the asymptotic distribution of θ is

given by:

√
T
[
θ̂ − θ

]
d−→ N

(
0, σ2

u Υ
)

(3.20)

with Υ =


Σ1,1 Σ1,2 + Σ1,3 −Σ1,3

Σ1,2 + Σ1,3 Σ2,2 + Σ3,3 + 2Σ2,3 −Σ3,3 − Σ2,3

−Σ1,3 −Σ3,3 − Σ2,3 Σ3,3


Note that the crucial point to prove item (i) in Theorem 2 is the ACM con-

dition of the population mapping, which does not require ut to be a m.d.s..

In fact, by relaxing Assumption B2 and substituting it by some weaker

condition, such that ut is a linear projection, we establish the consistency

of the weak-GARCH(1,1) model.

Corollary 1 Suppose Assumptions B1 and B3 hold. If

i. εt is a fourth-order stationary white noise process, such that ut in (3.12)

is a linear innovation with ut ∼ (0, σ2
u) and Cov

(
ut, ε

2
t−l
)
∀ l > 0 ;

Then,
∣∣∣φ̂− φ∣∣∣ = op (1) as j −→∞ with T −→∞.

3.2.2 GARCH(1,1)-in-mean

To explore the relation between risk and return, Engle, Lilien, and Robins

(1987) proposed the ARCH-in-mean model. Following them, a process

{y}Tt=1 is said to be a GARCH(1,1)-in-mean model if the structure below
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holds:

yt = λσt + εt (3.21)

εt = ηtσt (3.22)

σ2
t = ω + αε2t−1 + βσ2

t−1 (3.23)

where ηt be an iid ∼ (0, 1) sequence and σ2
t is the latent conditional vari-

ance. The parameter λ is usually known as the risk premium parameter.

The GARCH(1,1)-in-mean is second-order stationary provided that ω > 0,

α > 0, β > 0 and α + β < 1 hold. Similarly to the GARCH(1,1) model,

(3.23) allows an ARMA(1,1) representation as:

ε2t = ω + aε2t−1 + ut + but−1 (3.24)

where a = (α + β) and b = −β. We denote φ = (ω, a, b)′ and θ = (λ, φ′)′.

The generic model in (3.1), (3.3) and (3.4) nests the GARCH(1,1)-in-mean

specification by setting f (Yt−l, Xt−m, σt, θ1) = λσ2
t and γi = 0 for all i =

1, 2, ...r. Extension of Theorem 2 to the GARCH(1,1)-in-mean model does

not carry any significant difference. The main point consists on showing

that the gradient associated with the population mapping is an ACM. This

chapter provides numerical evidences indicating that the gradient of the

population mapping is indeed an ACM.

Definition 4 GARCH(1,1)-in-mean Mapping:

Define the population mapping for the GARCH(1,1)-in-mean model as N(θj)

and its sample counterpart as N̂T (θ̂j), such that at any j iteration, N(θj)

maps from θj to θj+1 and N̂T (θ̂j) maps from θ̂j to θ̂j+1.
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θj+1 = N (θj) =min
φj+1

E

{
1

T

T∑
t=1

[
[yt − λj+1σj,t]

2−

ψj+1,0 −
∞∑
i=0

ψj+1,iuj,t−1−i

]2


(3.25)

θ̂j+1 = N̂T

(
θ̂j

)
=min
θ̂j+1

1

T

T∑
t=1

[[
yt − λ̂j+1σ̂j,t

]2
−

ψ̂j+1,0 −
q̄∑
i=0

ψ̂j+1,iûj,t−1−i

]2 (3.26)

It is possible to split the sample mapping in two distinct procedures: the

first mapping delivers estimates of λ, whereas the second one delivers the

parameters from the ARMA(1,1) representation in (3.24). This result is

formalized in Proposition 1.

Proposition 1 Assume the model stated in (3.21), (3.22) and (3.23).

Define the vector of free parameters in (3.24) on the j + 1 iteration as

φ̂j+1 =
(
ω̂j+1, âj+1, b̂j+1

)′
. The sample mapping in (3.26) can be computed

in two distinct procedures, such that:

i. λ̂j+1 =

[
T∑
t=1

σ̂2
j,t

]−1 T∑
t=1

σ̂j,tyt

ii. φ̂j+1 = min
φ̂j+1

1
T

T∑
t=1

[[
yt − λ̂j+1σ̂j,t

]2

− ψ̂j+1,0 −
q̄∑
i=0

ψ̂j+1,iûj,t−1−i

]2

Remark Proposition 1: it provides the necessary identification conditions

for the use of NL-ILS estimator and alleviates the computational burden of

computing parameter(s) in the mean equation. The proof of Proposition 1

is obtained from the first order condition computed from the sample map-

ping in Definition 4. Figure 3.2 displays the maximum eigenvalue associated
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with the numerical gradient of the sample mapping computed using results

in Proposition 1. As discussed in Lemma 7, if the maximum eigenvalue is

smaller than one in absolute value, this guarantees the ACM property. All

the eigenvalues in Figure 3.2 are less than one in absolute value, indicating

that the sample mapping is an ACM. Furthermore, preliminary calculations

show that the contraction property of N (θ) does not depend on λ, being

only governed by the parameters from the ARMA(1,1) representation of

(3.23). If the ACM holds, asymptotic theory for the GARCH(1,1)-in-mean

model can be extended following the steps in Theorem 2.

3.3 NL-ILS estimation procedure

We first describe the NL-ILS algorithm for the simple GARCH(1,1) model.

As a natural extension of this procedure, we show that NL-ILS estimator

can be also applied to the weak-GARCH(1,1) models. This variant of the

GARCH(1,1) model was originally proposed by Drost and Nijman (1993)

and it is robust to temporal aggregation. Secondly, we extend the algo-

rithm for the GARCH(1,1)-in-mean model in the spirit of Engle, Lilien,

and Robins (1987). This is a particulary interesting case since, under this

specification, the mean equation has now a latent regressor. Finally, we

show that the NL-ILS algorithm can also be implemented to estimate pa-

rameters from the RealGARCH(1,1)-in-mean model in the spirit of Hansen,

Huang, and Shek (2012). This model turns out to be particularly impor-

tant, because it is parameterized in such a way that there is a measurement

equation linking the latent conditional variance to the realized measure.

Hence, the RealGARCH model can be seen as an augmented GARCH

108



model.

3.3.1 GARCH(1,1) and weak GARCH(1,1) models

We consider the GARCH(1,1) model as in (3.10) and (3.11). Using the sam-

ple mapping defined in (3.15), the NL-ILS algorithm is computed through

the following steps:

Step 1: Given any initial estimate6 of φ, denoted by φ̂0 with φ̂0 ∈ B,

compute, recursively, estimates of ut, denoted by û0,t, with:

û0,t = ε2t − ω̂0 − â0ε
2
t−1 − b̂0û0,t−1 (3.27)

Step 2: Plug û0,t into the sample mapping and minimize the sum of squared

residuals with respect to φ̂1 to obtain the first estimate of φ, denoted

by φ̂1.

φ̂1 = N̂T

(
φ̂0

)
= min

φ̂1

1

T

T∑
t=1

[
ε2t − ψ̂1,0 −

q̄∑
i=0

ψ̂1,iû0,t−1−i

]2

(3.28)

where ψ̂1,0 and ψ̂1,i denote the parameters from the MA(∞) rep-

resentation computed using φ̂1 = (ω̂1, â1, b̂1)
′ and q̄ is the trunca-

tion parameter defined exogenously. Note that (3.28) arises from

the MA (∞) representation of the conditional variance, following the

fact the the conditional variance allows an ARMA representation and

assumption B1 guarantees invertibility of the autoregressive polyno-

6The starting value φ̂0 can assume any value, provided that φ̂0 ∈ B, where B is the
set of parameters satisfying the restrictions that guarantee the GARCH(1,1) model in
(3.10) is second-order stationary. In both Monte Carlo study and empirical analysis,
we obtain φ0 by estimating (3.12) using residuals obtained from an AR(p) model as
regressors.
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mial. The Monte Carlo simulations showed that the size of q̄ does

not play a decisive role on both performance and convergence. As a

standard rule, we fixed q̄ = 3 4
√
T 7.

Step 3: Compute recursively a new set of residuals, denoted by û1,t, using

φ̂1 through (3.29):

û1,t = ε2t − ω̂1 − â1ε
2
t−1 − b̂1û1,t−1 (3.29)

Repeat steps 2 and 3 j times until φ̂j converges. We assume NL-ILS al-

gorithm converges if
∥∥∥φ̂j − φ̂j−1

∥∥∥ < c, where c is exogenously defined. In

both, Monte Carlo simulations and empirical application, we set c = 10−5.

Therefore, the jth iteration of the NL-ILS algorithm is given by the mini-

mization below:

φ̂j = N̂T

(
φ̂j−1

)
= min

φ̂j

1

T

T∑
t=1

[
ε2t − ψ̂j,0 −

q̄∑
i=0

ψ̂j,iûj−1,t−1−i

]2

(3.30)

We denote the NL-ILS estimates obtained through the steps above by φ̂.

The key factor that guarantees the NL-ILS algorithm converges is the con-

traction property yielded by the ACM condition on the population coun-

terpart of (3.30). It is important to point out that the speed of convergence

depends on the contraction parameter κ as discussed in Section 3.2. Con-

sidering a specification such that α = 0.025 and β = 0.95, the maximum

eigenvalue associated with V (φ) is equal to 0.5. Adopting c = 10−5 and

provided that
∣∣∣φ̂0 − φ

∣∣∣ = 0.1, convergence in this scenario would occur af-

7Note that, under the true vector of parameters, the disturbances are iid process,
implying, from the Theorem 3.1 (Orthogonal Regression) in Greene (2008) - pg. 23,
that estimates of ψ are unbiased for any truncation parameter q̄. At any iteration j,
we only require the residuals to be uncorrelated and the resulting MA(q̄) model to be
invertible.

110



ter ten iterations. This is in line with the results obtained in the Monte

Carlo study, where convergence for the GARCH(1,1) takes, on average,

eight iterations.

The class of GARCH(1,1) model suffers from an important drawback:

it is not closed under temporal aggregation. To overcome this issue, Drost

and Nijman (1993) introduced the weak-GARCH(p,q) model. From their

definition, a weak-GARCH(1,1) model, at some frequency m, is given by:

y(m)t = ε(m)t = η(m)tσ(m)t (3.31)

σ2
(m)t = ω(m) + α(m)ε

2
(m)t−1 + β(m)σ

2
(m)t−1 (3.32)

E
(
ε(m)t

)
= 0 (3.33)

P
[
ε2(m)t | ε(m)t−1, ε(m)t−1, ...

]
= σ2

(m)t (3.34)

where P
[
ε2(m)t | ε(m)t−m, ε(m)t−2m, ...

]
denotes the best linear predictor of

ε2(m)t in terms of the lagged values of ε(m)t. An alternative definition of

weak-GARCH (in terms of ARMA representation) is given by Francq and

Zakoian (2010). They state that a process ε(m)t is generated by a weak-

GARCH if ε(m)t is a white noise and ε2(m)t admits an ARMA representation,

such that u(m)t in the ARMA(1,1) representation is a linear innovation with

Cov
(
u(m)t, ε

2
(m)t−l

)
for all l > 0. By being closed under temporal aggrega-

tion, the weak-GARCH(1,1) model relaxes the assumption on sampling the

data at the true data generation process frequency. This is particulary rele-

vant when dealing with financial returns which are discrete representations

from continuous processes. Drost and Werker (1996) establish the tempo-

ral aggregation, from the continuous time processes to the weak-GARCH

models, providing closed solutions for the diffusion parameters as functions
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of the parameters of the weak-GARCH(1,1) model.

In statistical terms, the main difference between the weak-GARCH and

the strong GARCH approaches arises from the nature of the innovations

associated with the ARMA representation of the conditional variance. Un-

der the weak-GARCH specification, these innovations are no longer a m.d.s.

process as they are in the case of the strong GARCH. This different feature

implies that the disturbances of the ARMA representation of the weak-

GARCH model may carry some nonlinear dependence. In terms of eco-

nomic intuition, the weak-GARCH class of model turns to be much more

flexible and generic than its strong counterpart, having as a core benefit

the fact that it is closed under temporal aggregation.

Since this chapter focuses on discrete time models, we restrict our anal-

ysis to the temporal aggregation provided by Drost and Nijman (1993).

They define a bridge from the parameters of the strong GARCH(1,1) to

the parameters of the weak-GARCH(1,1) sampled at some lower frequency

m as the solution of the following system of equations:

ω(m) = ω

[
1− (β + α)m

1− (β + α)

]
(3.35)

α(m) = (β + α)m − β(m) (3.36)

β(m)

1 + β2
(m)

=
β (β + α)m−1

1 + α2
[

1−(β+α)2m−2

1−(β+α)

]
+ β2 (β + α)2m−2

(3.37)

where ω(m), α(m) and β(m) are parameters at some frequency m from the

weak-GARCH(1,1) model and φ(m) = (ω(m), α(m), β(m))
′.

Estimation of weak-GARCH models showed to be more difficult than

its strong counterpart. In fact, the QMLE asymptotic theory for the weak-

GARCH models remain to be established. Monte Carlo exercises, however,
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show that QMLE consistently estimate the parameters in (3.32). Francq

and Zakoian (2000) establish the asymptotic theory for a two-stage lest

squares (LS) estimator.

Extending the NL-ILS algorithm to the weak-GARCH(1,1) is straight

forward. Similar to the GARCH(1,1) model, (3.32) allows an ARMA(1,1)

representation, implying that steps 1, 2 and 3 above can be performed

to obtain estimates of φ(m). The NL-ILS estimate of φ(m) is denoted by

φ̂(m). Corollary 1 delivers the consistency of the NL-ILS for the weak-

GARCH(1,1) model. Convergence of the NL-ILS algorithm in the weak-

GARCH(1,1) model is the same as in the GARCH(1,1) case, because they

both share the same contraction parameter.

3.3.2 GARCH(1,1)-in-mean

We illustrate the NL-ILS estimator for the GARCH(1,1)-in-mean8 model.

From (3.21), (3.22), (3.23) and (3.24), rewrite the model as:

σ2
t = ω + αε2t−1 + βσ2

t−1 (3.38)

εt = yt − λσt (3.39)

ut = ε2t − ω − aε2t−1 − but−1 (3.40)

8Note that under the temporal aggregation discussion in the previous subsection, the
GARCH(1,1)-in-mean model depicted in (3.21), (3.22) and (3.23) is classified within
the strong class of models. The literature, as far as we are aware, does not provide
time aggregation results for the GARCH(1,1)-in-mean models. In this entire chapter,
therefore, we will refer to the strong GARCH(1,1)-in-mean as GARCH(1,1)-in mean.
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Following the fact that |a| < 1, the ARMA representation of the conditional

variance can be inverted generating an MA (∞) as:

[yt − λσt]2 = ε2t = ψ0 +
∞∑
i=1

ψiut−i + ut

where ψ0 = ω
1−a , ψi = ai(a+b). The NL-ILS algorithm is computed through

the following steps:

Step 1: Choose an initial estimate of θ, such that θ0 ∈ B, where B is the

set of parameters satisfying the second-order stationarity conditions

9. Using (3.39) and (3.38), compute recursively estimates of the con-

ditional variance, denoted as σ̂2
0,t, and estimates of ut, denoted by

û0,t.

Step 2: From Proposition 1, the sample mapping in (3.26) can be split in

two distinctive maps, such that θ̂1 is given by:

λ̂1 =
[
σ̂0
′σ̂0

]−1
σ̂0
′Y (3.41)

φ̂1 = min
φ̂1

1

T

T∑
t=1

[[
yt − λ̂1σ̂0,t

]2

− ψ̂1,0 −
q̄∑
i=0

ψ̂1,iû0,t−1−i

]2

(3.42)

where σ̂0 and Y are (T × 1) vectors stacking all observations of σ̂0,t

and yt, respectively. Compute λ̂1 through (3.41). Plug λ̂1 into (3.42),

and minimize with respect to φ̂1. Equations (3.41) and (3.42) deliver

θ̂1.

Step 3: Using θ̂1, compute recursively σ̂2
1,t, ε̂1,t and û1,t through (3.38),

9In practise, we firstly fix λ0 =
[

1
T

∑T

t=1 yt
]

[V ar(yt)]
−1

and obtain ε̂0,t. As a second
step, similarly to the GARCH(1,1) case, we estimate an AR(p) model having ε̂20,t as

dependent variable. This allows me to get initial estimates of ut and hence compute φ̂0.
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(3.39) and (3.40).

Repeat Steps 2 and 3 j times until θ̂j converges. As in the GARCH(1,1)

case, we assume θ̂j converges if
∥∥∥θ̂j − θ̂j−1

∥∥∥ < c 10. On the jth iteration,

the sample mapping resumes to:

λ̂j =
[
σ̂′j−1σ̂j−1

]−1
σ̂′j−1Y (3.43)

φ̂j = min
φ̂j

1

T

T∑
t=1

[[
yt − λ̂jσ̂j−1,t

]2

− ψ̂j,0 −
q̄∑
i=0

ψ̂j,iûj−1,t−1−i

]2

(3.44)

Denote the resulting NL-ILS estimates as θ̂. As in the GARCH(1,1) case,

the key factor governing convergence of the NL-ILS estimator is the ACM

property of NT (θj). It is important to stress that the procedure described

above covers models with mean equation that accounts for more complex

mean specifications. Among them, (3.39) can contain a constant, observed

exogenous regressors or any function from the conditional variance. For

all these scenarios, Proposition 1 holds, implying that sample mapping, on

any jth iteration, can take the form of equations (3.43) and (3.44). With

respect to computational issues, the NL-ILS estimator does not present sig-

nificant numerical problems, achieving convergence for the great majority

of replications. To this point, we found that by imposing constraints on the

autoregressive and moving average parameters in (3.40), the rate of suc-

cess of the NL-ILS algorithm improves. This showed to be a valid strategy

when dealing with small samples and conditional variance specifications

containing β very close to 1.

10As in the GARCH(1,1) case, we fix c = 10−5.
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3.3.3 RealGARCH(1,1)-in-mean

The availability of high frequency data has triggered a new class of volatil-

ity estimators: the realized variance. These realized measures showed to

be quite powerful on modeling the unobserved conditional variance. As

pointed out by Andersen, Bollerslev, Diebold, and Labys (2003), realized

volatility measures are able to respond faster to abrupt changes in the un-

derline volatility than the standard GARCH framework, which may deliver

massive improvements on volatility forecast. This important feature carried

by the realized measures led to the establishment of models that combine

the GARCH-type approach with the realized variance. Among these mod-

els, we point out the GARCH-X, HEAVY and RealGARCH proposed by

Engle (2002), Shepard and Sheppard (2010) and Hansen, Huang, and Shek

(2012), respectively. In this chapter, we focus on extending the NL-ILS es-

timator to the case of the RealGARCH(1,1)-in-mean model 11, since these

models present the nice feature of having a measurement equation relating

the realized variance to the latent conditional variance. The measurement

equation accommodates the measurement error that arises from the differ-

ence between the realized variance and the latent conditional variance, as

pointed out by Asai, Mcaleer, and Medeiros (2011). This chapter does not

address the different realized variance estimators, (an extensive survey can

be found on Mcaleer and Medeiros (2008)), we simply assume that the real-

ized measures are obtained through consistent estimators and therefore are

treated as observed variables. Following Hansen, Huang, and Shek (2012),

11The extension of the NL-ILS estimator to the RealGARCH(1,1) model is a natural
simplification of the RealGARCH(1,1)-in-mean case. Hence, this chapter covers the
latter one as a way to illustrate the use of the NL-ILS estimator.
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a log-linear RealGARCH(1,1)-in-mean model is given by:

yt = λσt + εt (3.45)

εt = ηtσt (3.46)

lnσ2
t = ω + β lnσ2

t−1 + γ ln νt−1 (3.47)

ln νt = ξ + ϕ lnσ2
t + τ (ηt) + zt (3.48)

where νt accounts for the realized variance, τ (ηt) is a leverage function

capturing asymmetries on the response of the realized measure to positive

or negative shocks in ηt, ηt and zt are a iid processes with zero mean and

variances equal to 1 and σ2
z respectively. As in Hansen, Huang, and Shek

(2012)), we define the leverage function as:

τ (ηt) = τ1ηt + τ2

(
η2
t − 1

)
(3.49)

Note that (3.48) is a measurement equation relating σ2
t to νt. Its im-

portance is twofold: firstly, it allows multi-step-ahead forecast, since the

dynamics of νt is fully specified; secondly, it helps identifying the parame-

ters in (3.45), (3.47) and (3.48) when NL-ILS estimator is adopted. Denote

θ = (λ, ω, β, γ, ξ, ϕ, τ1, τ2)
′. Estimation of the log-linear RealGARCH(1,1)-

in-mean is originally undertaken through QMLE procedure. The QMLE

estimates are denoted by θ̂Q). Hansen, Huang, and Shek (2012) discuss the

asymptotic properties of θ̂Q for the standard log-linear RealGARCH(1,1)

case.
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Hansen, Huang, and Shek (2012) derives a VARMA(1,1) representation

of the two processes: ln ε2t and ln νt:

 ln νt

ln ε2t

 =

µν

µε

+

ρ 0

0 ρ


 ln νt−1

ln ε2t−1

+

wt

ut

+

−β 0

γ −ρ


wt−1

ut−1


(3.50)

where µε = ω + γξ + (1− β − ϕγ) η̄2, µν = ϕω + (1− β) ξ, ρ = β + ϕγ,

η̄2 = E (ln η2
t ), wt = τ (ηt) + zt and ut = ln η2

t − η̄2. Note that ln νt in

(3.50) does not depend on the ln ε2t nor on ut, implying that the parameters

on the first equation of the VARMA(1,1) representation can be estimated

separately from the parameters governing ln νt. Furthermore, necessary

condition an ARMA(1,1) model to be second-order stationarity implies

|ρ| < 1. Using this result, (3.50) can be expressed as a VMA(∞) process:

 ln νt

ln ε2t

 =

 µν
1−ρ

µε
1−ρ

+

wt

ut

+


∞∑
i=0

ρi (ρ− β)Li 0

∞∑
i=0

γρi+1Li 0


wt−1

ut−1


(3.51)

Note that the generic model in (3.1), (3.3) and (3.4) nests the RealGARCH(1,1)-

in-mean by setting the mean equation as λσt; α, β and γ to one; and (3.51)

satisfies (3.4), where Zt = (ln νt, ln ε
2
t )
′

and Ut = (wt, ut)
′. The algorithm

we adopt uses the fact that the rows in the VMA (∞) depicted in (3.51)

can be estimated separately, solving the minimization problems considering
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the free parameters in (3.51). Hence, we minimize the following expressions

on each iterations, using estimates of the latent regressors:

φ̂j+1 = N̂T

(
φ̂j

)
= min

φ̂j+1

1

T

T∑
t=1

[
ln νt − ψ̂j+1,0 −

q̄∑
i=0

ψ̂j+1,iŵj,t−1−i

]2

ζ̂j+1 =M̂T

(
ζ̂j

)
= min

ζ̂j+1

1

T

T∑
t=1

[
ln

[(
yt − λ̂j+1σ̂j,t

)2
]
−

µ̂ε,j+1

1− ρ̂j+1

−
q̄∑
i=0

γ̂j+1ρ̂
i
j+1ûj,t−1−i

]2

where ψ̂j+1,0 = µ̂ν,j+1/ (1− ρ̂j+1) and ψ̂j+1,i = ρ̂ij+1

(
ρ̂j+1 − β̂j+1

)
, φ̂j+1 =(

µ̂ν,j+1, ρ̂j+1, β̂j+1

)′
and ζ̂j+1 =

(
λ̂j+1, µ̂ε,j+1, γ̂j+1

)′
.

Considering the baseline log-linear RealGARCH(1,1)-in-mean model

and the compact representation of the (ln ε2t , ln νt)
′

in (3.51), the NL-ILS

is computed through the following steps:

Step 1: Choose an initial estimate of θ, such that θ0 ∈ B, where B is the

set of parameters satisfying the second-order stationarity conditions.

Compute initial estimates of µν and ρ, denoted as µ̂ν,0 and ρ̂0 re-

spectively. Denote φ̂0 =
(
µ̂ν,0, ρ̂0, β̂0

)′
as the vector of parameters

describing the ln νt process. Compute recursively an initial set of

disturbances ŵ0,t using:

ŵ0,t = ln νt − µ̂ν,0 − ρ̂0 ln νt−1 + β̂0ŵ0,t−1 (3.52)

Step 2: Recursively in (3.47), compute σ̂2
0,t assuming θ̂0.

Step 3: By truncating, at some lag order q̄, the first row in (3.51), write
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the first sample mapping similarly to the GARCH(1,1) case as:

φ̂1 = N̂T

(
φ̂0

)
= min

φ̂1

1

T

T∑
t=1

[
ln νt − ψ̂1,0 −

q̄∑
i=0

ψ̂1,iŵ0,t−1−i

]2

(3.53)

where ψ̂1,0 = µ̂ν,1/ (1− ρ̂1) and ψ̂1,i = ρ̂i1

(
ρ̂1 − β̂1

)
. Minimize (3.53)

with respect to φ̂1 and obtain φ̂1. Using (3.52), compute recursively

ŵ1,t.

Step 4: From the second equation in (3.51), define the second sample

mapping:

ζ̂1 =M̂T

(
ζ̂0

)
= min

ζ̂1

1

T

T∑
t=1

[
ln

[(
yt − λ̂1σ̂0,t

)2
]
−

µ̂ε,0
1− ρ̂1

−
q̄∑
i=0

γ̂1ρ̂
i
1û1,t−1−i

]2 (3.54)

where ζ̂1 =
(
λ̂1, µ̂ε,1, γ̂1

)′
. Similarly to Step 2 in the GARCH(1,1)-in-

mean case, Proposition 1 allows to split the mapping in (3.54) such

that:

λ̂1 =
[
σ̂0
′σ̂0

]−1
σ̂0
′Y (3.55)

ζ̂∗1 = min
ζ̂∗1

1

T

T∑
t=1

[
ln

[(
yt − λ̂1σ̂0,t

)2
]
−

µ̂ε,0
1− ρ̂1

−
q̄∑
i=0

γ̂1ρ̂
i
1û1,t−1−i

]2 (3.56)

where σ̂0 and Y are (T × 1) vectors stacking all observations of σ̂0,t

and yt. Compute λ̂1 through (3.55). Plug λ̂1 into (3.56), and minimize

with respect to ζ̂∗1 = (µ̂ε,1, γ̂1)
′.
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Step 5: Based on φ̂1, ζ̂1, and η̄2 solve the following system of equations to

find ω̂1, ξ̂1 and ϕ̂1.

ϕ̂1 =
ρ̂1 − β̂1

γ̂1

(3.57)

ξ̂1 =

[
µ̂ν1 − ϕ̂1µ̂ε1 + ϕ̂1

(
1− β̂1 − ϕ̂1γ̂1

)
η̄2

]
(

1− β̂1 − ϕ̂1γ̂1

) (3.58)

ω̂1 = µ̂ν1 − γ̂1ξ̂1 −
(

1− β̂1 − ϕ̂1γ̂1

)
η̄2 (3.59)

Step 6: Recursively in (3.47) and (3.45), compute σ̂2
1,t using

(
ω̂1, β̂1, γ̂1

)′
.

Retrieve estimates of ηt through η̂1,t =
(yt−λ̂1σ̂1,t)

σ̂1,t
and obtain τ̂ 1 by

estimating (3.48) using σ̂1,t as a regressor.

Repeat Steps 3, 4, 5 and 6 until θ̂j converges. As in the previous mod-

els, we assume convergence occurs if
∥∥∥θ̂j − θ̂j−1

∥∥∥ < c. Note that the NL-

ILS algorithm requires η̄2 to be defined exogenously, which implies that

some distributional assumption has to be made on ηt. The Monte Carlo

simulations showed that the NL-ILS algorithm takes more iterations to

converge, which indicates that the contraction parameter associated with

the RealGARCH(1,1)-in-mean model is higher than the one found in the

GARCH(1,1) model. The steps above also hold for computing the Real-

GARCH(1,1) model. In this case, (3.55) in step 4 drops out.

3.4 Monte Carlo Study

This section addresses the performance of the NL-ILS estimator discussed

in the previous section, when estimating the GARCH(1,1), weak-

GARCH(1,1), GARCH(1,1)-in-mean and RealGARCH(1,1)-in-mean mod-
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els. We will focus on assessing consistency, efficiency and forecast perfor-

mance of the NL-ILS estimator compared with the benchmark estimator:

the MLE. For the GARCH(1,1)-in-mean case, we discuss an additional is-

sue: we assess the behavior of the λ estimates (risk premium parameter)

when the conditional variance is misspecified. This set of experiments plays

the role of robustness analysis, since it is known that MLE estimates of λ

can be biased when the conditional variance is misspecified. This follows

from the fact that the information matrix is no longer block diagonal in

the GARCH(1,1)-in-mean specification. In all exercises, we fix the number

of replications to 1500 unless otherwise stated. We also discard the initial

500 observations to reduce dependence on initial conditions. All models are

estimated using the CML12 optimization library in GAUSS. Results for the

GARCH(1,1) and weak-GARCH(1,1) models are reported in terms of the

median and the relative root mean squared error (RRMSE). The relative

measures are computed using the MLE benchmark (in the denominator),

implying that NL-ILS outperforms the MLE estimator when the relative

measures are lower than one.

The first set of simulations analyzes the performance of the NL-ILS for

the GARCH(1,1) model. The data generating process follows the baseline

model displayed in (3.10) and (3.11). The stochastic term ηt is set to be

normally distributed, with zero mean and variance equal to one. Table

3.1 displays results for two different specifications and five different sample

sizes (T = 100, T = 200, T = 300, T = 400 and T = 500)13. Despite

12CML (Constrained Maximum Likelihood Estimation) is library in GAUSS designed
to solve maximum likelihood functions subject to linear and nonlinear constraints. In
all Monte Carlo simulations, we set global variables in CML to their default values,
because this specification is flexible enough to accommodate endogenous changes in
both algorithms and grid search procedures.

13Additional results considering different specifications are available upon request.
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financial data being usually available on higher frequency than macroeco-

nomic variables, it is interesting to examine the performance of the NL-

ILS and MLE estimators in small samples, following the upward bias of

the GARCH parameters in the presence of structural breaks. We focus

on high persistent GARCH(1,1) specifications with (α + β) close to one,

because these are the most usual cases reported when modeling financial

returns. As an overall picture, we find that NL-ILS estimates outperform

the MLE benchmark when T is small. This was somehow expected, since

MLE estimator is known to suffer from numerical problems either when

T is small or (α + β) approaches to one. The outstanding performance in

small samples is particularly welcome when dealing with variables that may

have structural breaks and also for forecasting purposes (see the work of

Giraitis, Kapetanios, and Yates (2010)). When (α + β) = 0.995, the NL-

ILS-ILS estimator outperforms the MLE in all sample sizes, achieving its

best performance when T = 100, with gains of 61%, 44% and 61% for the

ω, α and β parameters, respectively. Considering the specification where

(α + β) = 0.97, we find that the MLE estimator improves its performance,

yielding more accurate estimates than the NL-ILS estimator for all sample

sizes, but T = 100.

Table 3.2 and 3.3 report results for the weak-GARCH(1,1) model. The

weak-GARCH(1,1) processes are generated in the spirit of Drost and Ni-

jman (1993). We firstly generate a GARCH(1,1) process using (3.10)

and (3.11). The vector θ = (ω, α, β)′ used in this specification contains

the high frequency parameters. The stochastic term is assumed to be

normally distributed, such that ηt ∼ (0, 1). Given the high frequency

GARCH(1,1) process, we re-sample yt at different frequencies m, yielding
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y(m)t. When re-sampling, we assume yt is a stock variable, rendering y(m)t,

t = m, 2m, ...., T . The low frequency parameters are computed through

(3.35), (3.36) and (3.37) and denoted as θm. Table 3.2 displays results

obtained when the high frequency α and β parameters are set equal to

0.05 and 0.94 respectively. In this scenario, as m increases (the resulting

weak-GARCH(1,1) is sampled at a lower frequency), the NL-ILS estima-

tor improves its performance when compared to the MLE benchmark. We

argue that the reasons for that are twofold: firstly, as observed in the

GARCH(1,1) case, NL-ILS has a better performance than MLE estimator

for small samples. This plays an important role in this setup, since as m

increases T (m) decreases, following the fact that T (the high frequency

sample size) is constant. The second reason arises from the robustness of

the NL-ILS estimator to disturbances that present nonlinear dependence.

Comparing the relative measures obtained in the weak-GARCH(1,1) exper-

iment, with the ones obtained with the GARCH(1,1), we find that perfor-

mance gains from the NL-ILS estimator with respect to the MLE estimator

are higher for the weak-GARCH(1,1) model. It is also relevant to point out

that NL-ILS improves its performance with respect to MLE estimator when

β approaches one. Comparing the results when m = 3 in Tables 3.2 and

3.3, we find that NL-ILS improves the RRMSE in 26% and 17% for α(m)

and β(m), respectively. This is a particular relevant result, since it mimics

financial series that usually display β very close to one. NL-ILS procedure

delivers less biased estimates than the MLE benchmark, when the bias is

assessed through the median. The reason for this discrepancy between the

mean and the median arises from the presence of outliers. From the data

generation process specification, α is very close to zero and β is close to
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one, rendering autoregressive and moving average parameters very close

to each other. This feature may lead to problems in the optimization of

the sample mapping, yielding local minimums instead of global ones. This

numerical problem usually generates outliers, impacting the mean and the

variance of the NL-ILS estimator.

The third set of simulations focuses on analyzing the performance of the

NL-ILS estimator for the GARCH(1,1)-in-mean specification. Tables 3.4

and 3.5 report results considering different specifications and sample sizes.

We generate the data using (3.21), (3.22) and (3.23), where ηt is assumed to

be normally distributed with zero mean and variance equal to one. To re-

duce the impact of the outliers when assessing the comparison between the

NL-ILS and the MLE estimators, we display results in terms of relative root

median squared error (RRMedSE) and the relative root median squared

forecast error (RRMedSFE). The former one is adopted when analyzing

the parameters of the GARCH(1,1)-in-mean, whereas the RRMedSFE is

used when evaluating the out-of-sample forecast performance for both risk

premium and conditional variance. We denote the out-of-sample risk pre-

mium forecast, at some horizon h, as: π̂t+h = λ̂σ̂t+h. As in the GARCH(1,1)

and weak-GARCH(1,1) cases, the relative measures are computed having

the MLE as the benchmark. We also report results considering the MLE

algorithm computed using the NL-ILS estimates as starting values. We

denote this results as MLE*.

Table 3.4 displays results for two different GARCH(1,1)-in-mean speci-

fications. These specifications present (α+β) close to one (0.995 and 0.97,

respectively) and α = 0.025. With respect to the RMedSE associated with

the parameters, we find that NL-ILS outperforms the MLE benchmark for
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sample sizes up to T = 300 (except for the λ) when (α+ β) = 0.995. This

conclusion is in line with our previous findings for the GARCH(1,1) and

weak-GARCH(1,1). When T gets large, the MLE estimator performance

improves reasonably fast, outperforming the NL-ILS estimator. Again, this

pattern is expected, since the MLE is extremely difficult to be beaten in

medium samples and when the model is correctly specified. As discussed

in Section 3.2, NL-ILS is consistent, presenting a bias14 of only 0.008 when

T=750, whereas the bias associated with the MLE estimator is 0.010. The

main determinant of the poorer performance of the NL-ILS estimator for

large T lies on the presence of many more outliers than the ones found when

the MLE algorithm is implemented. Concluding this point, we find that

MLE algorithm is able to reduce the variance associated with the estimates

much faster than the NL-ILS algorithm as T gets large. The poorer per-

formance of the MLE* algorithm is also explained by the outliers. Hence,

when T is small and the starting values in the MLE algorithm are very

bad, the final outcome is likely to be also very poor. As expected, as T

gets large MLE* algorithm converges to the standard MLE estimator.

The forecast performance of models estimated using the NL-ILS esti-

mator is also worth highlighting. In particular, we find very good results

on forecasting the conditional variance up to T = 300. We report gains of

up to 51% in terms of the RRMedFE. The surprisingly good performance

of MLE* algorithm arises from the bias on estimating ω and α. In prac-

tise, when β is very high (as is the case in this specification), models that

present a bias combination such that, β̂ is downward biased and ω̂ and α̂

are upward biased, tend to perform well on forecasting, due to level effect.

14We compute the bias using the median within all replications.
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Regarding the forecast of the risk premium, we find that NL-ILS is not

able to outperform the MLE benchmark for any value of T . The reason for

that is the poorer performance of the NL-ILS algorithm on estimating the

risk premium parameter λ.

The second model in Table 3.4 presents a similar pattern, across dif-

ferent sample sizes, as the first specification discussed above. The main

difference arises from the higher RRMedSE associated with the parame-

ters (except for α). As noted before in the strong- and weak-GARCH(1,1)

cases, MLE improves its performance, compared to NL-ILS, as β decreases.

Table 3.5 displays two additional GARCH(1,1)-in-mean specifications.

Their main difference lies on the higher value impounded to α: α = 0.08.

Apart from the case where T = 100, we find that MLE delivers more

accurate estimates and forecasts than the NL-ILS. This result is in line

with our previous findings, indicating that the NL-ILS algorithm has an

outstanding performance either when T is small or β is very close to one.

Considering the forecast performance analysis, it is important to point out

that, when outperformed by the MLE estimator, the NL-ILS results are,

on average, only 5% to 10% worse than the results obtained with the MLE

estimator.

Table 3.6 displays results considering the performance of the NL-ILS

estimator when applied to the log-linear RealGARCH(1,1)-in-mean. The

parameters in the RealGARCH(1,1)-in-mean are set as the ones Hansen,

Huang, and Shek (2012) found in their empirical application. Overall, the

results are favorable to the MLE estimator for both parameter estimation

and out-of-the sample forecast of the conditional variance. The RRMSE

of the parameter estimates are very high indicating a poor performance
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of the NL-ILS estimator. We argue that this poor performance comes

from the higher variance associated with the NL-ILS estimates (presence of

outliers), since the bias assessed through the median within all replications

is neglectful when T is large. In particular, it is important to point out

that the MLE estimator is able to extract a considerable benefit out of the

inclusion of the measurement equation. Turning the analysis to the forecast

performance, the NL-ILS is able to outperform the MLE benchmark for the

realized variance for sample sizes up to T = 300. This good performance

on forecasting the realized variance contributed for a decent performance

on forecasting the conditional variance.

3.4.1 Robustness

Mixed evidences, in both sign and significance of the λ parameter, have

been found in the literature when estimating the risk premium using the

full parametric GARCH-in-mean model and its variants. While French,

Schwert, and Stambaugh (1987) found a positive value for λ, Glosten, Ja-

gannathan, and Runkle (1993) found an opposite sign and Baillie and De-

Gennaro (1990) found very little evidence for a statistically significant λ.

Considering the semiparametric approach, Linton and Perron (2003), Con-

rad and Mammen (2008) and Christensen, Dahl, and Iglesias (2012) found

strong evidences of nonlinearity governing the risk premium function. Fo-

cusing on the full parametric GARCH-in-mean models, mixed results on the

λ estimates can be motivated by lack of consistency of the QMLE estima-

tor. As discussed in Bollerslev, Chou, and Kroner (1992), QMLE estimates

of GARCH-in-mean parameters may be inconsistent when the conditional

variance is misspecified. This drawback arises because the information ma-
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trix is not block diagonal between the parameters in the conditional mean

and the conditional variance. The task of correctly specifying the con-

ditional variance is extremely difficult given the large menu of alternative

models available in the literature (see Francq and Zakoian (2010), Bollerslev

(2008) for a surveys on GARCH-type models). To study the performance

of the NL-ILS estimator when the conditional variance is misspecified, we

carry out four different experiments: in the first one, the conditional vari-

ance is specified as being an APARCH model (see Ding, Granger, and Engle

(1993)); in the second exercise, the conditional variance is set to follow an

EGARCH model in the spirit of Nelson (1991); the third exercise consists

on modeling the conditional variance as a JGR-GARCH as in Glosten, Ja-

gannathan, and Runkle (1993); the final simulation is carried out using a

GARCH(2,2) specification. Note that both EGARCH and JGR-GARCH

models capture asymmetric responses of the conditional variance to posi-

tive and negative shocks, whereas the APARCH specification manages to

capture three important stylized facts: long memory, dependence on some

power transformation of the conditional standard deviations and asym-

metric responses to positive and negative shocks. We assess performance

on estimating λ through the RRMSE and bias. Forecast performance is

assessed using the RRMSFE. As in the previous experiments, the MLE

estimator is the benchmark for all the relative measures. We also report

the results for the MLE estimates which are computed using the NL-ILS

estimates as starting values (MLE*).

Table 3.7 displays results for the APARCH and EGARCH models. Con-

sidering the APARCH results, we find that the NL-ILS estimator outper-

forms the MLE benchmark for all the different sample sizes. The difference
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in performance achieves 22% when T = 1750. When looking at the bias, the

conclusion is even more favorable to the NL-ILS estimator. We find that

MLE estimates are downward biased in 15%, when T = 1750, whereas the

bias related to the NL-ILS is neglectful. In spite of the good performance

on estimating λ, the NL-ILS algorithm fails on achieving outstanding re-

sults on forecasting both the risk premium and the conditional variance.

In both cases, the MLE estimator delivers more accurate forecasts.

When the conditional variance is misspecified using the EGARCH spec-

ification, the results regarding the estimation of λ are, again, extremely

favorable to the NL-ILS estimator. Table 3.7 reports gains of 47% in terms

of the RRMSE with respect to the MLE benchmark. The outstanding dif-

ference in performance is consistent through all the sample sizes, showing

the robustness of the NL-ILS estimator. Analyzing the bias computed from

both estimators, we find a similar picture as in the APARCH case: NL-

ILS delivers neglectful bias, indicating consistency, whereas MLE is upward

biased in 15%. A different picture arises when considering the forecast per-

formance of the risk premium function. The NL-ILS estimator is now able

to outperform the MLE benchmark in up to 28%, considering the median

within all forecast horizons. We claim that this difference in performance

comes mostly from the best estimation of λ, since NL-ILS does a worse job

on forecasting the conditional variance.

Table 3.8 displays results for models using GJR-GARCH and GARCH(2,2)

specifications. Considering the latter one, the results are very similar to

the standard GARCH(1,1)-in-mean experiments carried out previously in

this section. Overall, MLE provides more accurate results for both the es-

timation of λ and the variance and risk premium forecasts. It is important
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to point out, however, that bias associated with the NL-ILS estimates of λ

is neglectful. The results associated with the GJR-GARCH model follows

the same pattern as the ones obtained with the APARCH and EGARCH

specifications. We find that the MLE estimates of λ are biased, leading

to a poorer performance of this estimator when compared to the NL-ILS

procedure.

Overall, the conclusion obtained from this set of experiments is that

NL-ILS is more robust than the MLE benchmark when the conditional

variance is misspecified. Moreover, MLE delivers biased estimates of λ

when the conditional variance is misspecified in such a way that it pos-

sesses either asymmetric responses to positive and negative shocks or de-

pendence at different moments than the second one. Finally, we claim that,

under misspecification of the conditional variance, inference using the MLE

framework may no longer be a valid alternative.

3.5 Empirical application

We examine the significance of the risk premium parameter using the

GARCH(1,1)-in-mean framework by adopting the NL-ILS estimator dis-

cussed in the previous sections. As discussed in the Monte Carlo section,

the performance of both NL-ILS and QMLE estimator may vary when

dealing with weak processes, such as the weak-GARCH(1,1). As the true

data generation process governing the excess returns are believed not to

be discrete (such as daily, weekly or monthly), the impact of time aggrega-

tion on the consistency of the λ estimates needs to be addressed. To this

purpose, we construct nine different data sets on excess returns, compre-
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hending three different indices (CRSP value-weighted index, S&P500 and

S&P100) at three different frequencies: daily, weekly and monthly. The

CRSP value-weighted index is considered as the most complete (in market

sense) index, being therefore the best proxy for the market, as pointed out

by Linton and Perron (2003). Hence, by using “least complete” indices,

we check whether the significance of the risk premium parameter depends

on the market coverage of the index. Excess returns for the three indices

are computed deducting the risk free rate (one-month Treasury bill rate)

from their log returns15. Table 3.9 reports the descriptive statistics. The

daily CRSP and S&P500 indices spans from 28/06/1963 to 29/09/2011, ac-

counting for 12,148 observations. The S&P100 index spans from a smaller

period, (04/08/1982 - 29/09/2011), yielding 7,364 observations. CRSP and

S&P500 indices have 2,426 and 740 observations for weekly and monthly

frequencies, respectively. S&P100 index contains 1,469 and 330 observa-

tions on the weekly and monthly frequencies, respectively. Standard errors

for the NL-ILS estimator are computed using block bootstrap with one

thousand replications, whereas for the QMLE estimator the Bollerslev-

Wooldridge robust standard errors are implemented.

We start discussing the results reported in Table 3.10, where we estimate

a GARCH(1,1)-in-mean model using both, NL-ILS and QMLE estimators.

At daily frequency, the λ estimates obtained using the NL-ILS estimator are

significant at 5%16 level only for the CRSP index, whereas QMLE estima-

tor delivers significant estimates for all series. Considering the parameters

15CRSP value-weighted index and one-month Treasure bill rate were downloaded from
WRDS - Wharton Research Data Services, whereas S&P500 and S&P100 indices were
obtained from Yahoo! finance.

16T-statistics for the NL-ILS estimate of λ is on the boundary of 5% level signifi-
cance. However, looking at the empirical distribution computed from the bootstrapped
estimates of λ, the NL-ILS turned out to be significant at 5% level.
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in the conditional variance equation, both procedures deliver highly signif-

icant estimates of the parameters α and β. Both methodologies also yield

high degrees of persistence (α+β). With respect to this point, it is relevant

to mention that, in all indices, the persistence obtained using QMLE esti-

mator is always higher (average of 0.99502) than the ones obtained using

the NL-ILS estimator. To check this issue, we also performed the MLE es-

timation using the GED distribution. Results did not show any significant

quantitative change. There is an important difference in magnitude from

the λ estimates obtained with the NL-ILS algorithm and the ones obtained

with the MLE methodology. In fact, the difference between them turned

out to be statistically significant17, indicating the possibility of MLE being

upward biased following discussion in Section 3.4.

Moving to the weekly and monthly frequencies, their patterns remain

very similar to the one previously discussed. NL-ILS delivers λ estimates

which are significant at 5% level only for the CRSP index, whereas QMLE

estimates are significant for all indices. The α and β parameters from

the conditional variance equation remain highly significant, yielding a high

degree of persistence in the conditional variance. The results in Table 3.10

turn out to be consistent with the previous findings in the literature. Linton

and Perron (2003) found a value of λ̂ when estimating a EGARCH-in-mean

very close to the NL-ILS estimates. The same applies for Christensen,

Dahl, and Iglesias (2012), who found significant QMLE estimates of λ for

the daily S&P500 index.

As a second step of our investigation, we incorporate realized measures

of volatility in this analysis by estimating the RealGARCH(1,1)-in-mean

17T-statistics are 4.77, 3.44, 2.50 for CRSP, S&P500 and S&P100, respectively.
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for the S&P500 index18. Results in Table 3.11 corroborate our previous

findings: risk premium parameter is not significant to any of the sample

frequencies.

Analyzing the empirical results at the light of the results obtained in

the Monte Carlo section, we claim that this difference in magnitude and

significance may be caused by bias on the QMLE estimates, following mis-

specification of the conditional variance. Assuming our claim is correct, we

outline two conclusions: firstly, the risk premium parameter is only signifi-

cant for the most complete index (CRSP), whereas for the “less complete”

indices the risk-return tradeoff does not hold. This finding is consistent

with the theoretical results in Merton (1973), that requires the existence of

a market portfolio. Hence, the fact that the λ estimates obtained from the

S&P500 and S&P100 are not significant may imply that these two indices

are not good proxies for the market. Secondly, we conclude that the NL-

ILS estimator is the most suitable for dealing with the task of estimating

the risk premium parameter, since, as observed in the Section 3.4, it is

robust to misspecification of the conditional variance.

3.5.1 Empirical application: Robustness

As a robustness check, we estimate the risk premium parameter using

three alternative models: APARCH(1,1,1)-in-mean, EGARCH(1,1,1)-in-

mean and GJR-GARCH(1,1,1)-in-mean models. All the three models are

estimated using the QMLE procedure. Table 3.12 reports results for all

indices at all frequencies. By using models that allow for asymmetric re-

18Realized measures of the conditional variance were obtained from the Oxford-Man
Institute of Quantitative Finance (realized Library). Unfortunately, among the three
different indices we adopt in this chapter, there is only availability of data for the S&P500
index.
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sponse of the conditional variance to positive and negative shocks, it turns

out that the risk premium parameter λ is only significant for the CRSP in-

dex. This finding strengths the conclusion that the GARCH(1,1)-in-mean

estimated with the MLE estimator is not robust enough to misspecification

of the conditional variance equation, leading to misleading results.

3.6 Conclusion

This chapter introduces a novel estimator: the nonlinear iterative least

squares (NL-ILS). To illustrate the NL-ILS estimator, we provide algo-

rithms covering the GARCH(1,1), weak-GARCH(1,1), GARCH(1,1)-in-

mean and

RealGARCH(1,1)-in-mean models. We show that the NL-ILS estimator is

particulary useful when innovations in the mean equation have some degree

of dependence or the variance equation is misspecified. These both features

may lead to inconsistency when the QMLE procedure is implemented. We

establish the consistency and asymptotic distribution for the NL-ILS esti-

mator covering the GARCH(1,1) model and extend the consistency result

for the weak-GARCH(1,1) model. The assumptions we require for the

asymptotic theory are compatible with the QMLE estimator. Through an

extensive Monte Carlo study, we show that the NL-ILS estimator outper-

forms the MLE benchmark in a variety of scenarios including the following:

the sample size is small; the β parameter in the conditional variance has val-

ues very close to one, as widely found in empirical studies; or the true data

generation process (DGP) is the weak-GARCH(1,1), indicating that the

NL-ILS estimator is more robust to the presence of dependence on the in-
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novations. Moreover, we show that the NL-ILS estimator is more robust to

misspecification of the conditional variance, delivering neglectful biases on

estimating the risk premium parameter in a GARCH(1,1)-in-mean model.

In contrast with the NL-ILS algorithm, the MLE estimator presents biases

of up to 15%, leading to the differences in performances of up to 22%, in

terms of the relative mean squared error, when estimating the risk premium

parameter. The NL-ILS estimator also delivers more accurate out-of-the-

sample forecasts for the risk premium function when the DGP is either the

EGARCH(1,1,1)-in-mean or the GJR-GARCH(1,1,1)-in-mean models.

An empirical application addressing the significance of the risk premium

parameter through a full parametric GARCH-in-mean and RealGARCH

(1,1)-in-mean models is provided. We undertake our analysis through

two different dimensions: temporal aggregation and market representation.

The latter dimension is appraised by using the CRSP, S&P500 and S&P100

indices, which possess distinct market coverage, whereas the former dimen-

sion is assessed by aggregating the series at daily, weekly and monthly basis.

When adopting the robust NL-ILS estimator and the QMLE benchmark

to assess significance of the risk premium parameter, the results turned

out to be very different: the NL-ILS estimator delivered risk premium esti-

mates which are significant only for the CRSP index at all its frequencies;

the QMLE estimator, however, provides estimates which are significant to

all three data sets, in all frequencies. Moreover, the difference in magni-

tude between the NL-ILS and QMLE estimates are also significant in some

data sets, indicating a potential bias. By using the Monte Carlo results,

we argue that the QMLE estimator provides biased estimates following a

misspecified conditional variance. As a robustness check for the empir-
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ical results, we estimate RealGARCH(1,1)-in-mean, EGARCH(1,1,1)-in-

mean, APARCH(1,1,1)-in-mean and GJR-GARCH(1,1,1)-in-mean models

and their results corroborate our findings using the GARCH(1,1)-in-mean

estimated with NL-ILS algorithm: the risk premium parameter is only

significant for the CRSP index at all frequencies. Ultimately, this chap-

ter suggests the use of the NL-ILS estimator on modeling the conditional

volatility in the presence of dependent errors and misspecification. We

highlight the robustness properties of the NL-ILS estimator assessing the

risk premium in different indices and sampling frequencies.
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3.7 Appendix

Proof of Lemma 7: It mirrors the proof in Lemma 5 in Dominitz and Sher-

man (2005) and Chapter 2. Define the population mapping evaluated at

some vectors of parameters ξ and ς , such that ξ, ς ∈ B. By Taylor expan-

sion, rewrite |N (ξ)−N (ς)| defining a bound that contains the gradient of

the population mapping evaluated on φ.

|N (ξ)−N (ς)| = |V (ξ∗) [ξ − ς]|

|V (ξ∗) [ξ − ς]| ≤ |V (φ) [ξ − ς]|+ |[V (ξ∗)− V (φ)] [ξ − ς]|+

op (|ξ − ς|)
(3.60)

Using Dominitz and Sherman (2005) result (Lemma 5), it suffices to show

that the maximum eigenvalue of V (φ) is less than one in absolute value

to prove Lemma 7. By applying the NR procedure, the population and

sample mapping in (3.14) and (3.15) can be linearized as:

φj+1 = N (φj) = φj − [H (φj)]
−1G (φj) (3.61)

φ̂j+1 = N̂T

(
φ̂j

)
= φ̂j −

[
ĤT

(
φ̂j

)]−1

ĜT

(
φ̂j

)
(3.62)

where ĜT

(
φ̂j

)
and ĤT

(
φ̂j

)
are the gradient and Hessian of QT

(
φ̂j+1

)
evaluated on φ̂j, and G (φj) and H (φj) are their population counterparts.

Using (3.61), the gradient of the population mapping on the (j + 1)th iter-
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ation, defined as V (φj) = 5φjN (φj), is given by:

V (φj)

∣∣∣∣
φ

=
[
5φjN (φj)

] ∣∣∣∣
φ

= I3 −

{[
I1 ⊗ [H (φj)]

−1

∣∣∣∣
φ

]
×

∂vec (G (φj))

∂φ′

∣∣∣∣
φ

+
[
G (φj)

′ ⊗ I3

] ∣∣∣∣
φ

∂vec
(
[H (φj)]

−1)
∂φ′

∣∣∣∣
φ

} (3.63)

When evaluated at the true vector of parameters, the second term on the

right-hand side of (3.63) is zero, following
[
G (φj)

′ ⊗ I3

] ∣∣∣∣
φ

= 0. Hence,

(3.63) reduces to:

V (φj)

∣∣∣∣
φ

= I − [H (φj)]
−1

∣∣∣∣
φ

[
5φjG (φj)

] ∣∣∣∣
φ

(3.64)

The expressions for [H (φj)]
−1

∣∣∣∣
φ

and
[
5φjG (φj)

] ∣∣∣∣
φ

are given by:

[H (φj)]
−1

∣∣∣∣
φ

=



(−1+a)
2

[
−1+a−((1+a)3ω2)

((a+b)2σ2
u)

]
− (−1+a)2(1+a)3ω

2(a+b)2σ2
u

− (−1+a)2(1+a)3ω
2(a+b)2σ2

u
− (−1+a2)3

2(a+b)2σ2
u

...

− (−1+a)(1+a)2(1+ab)ω
2(a+b)2σ2

u
− (−1+a2)2(1+ab)

2(a+b)2σ2
u

− (−1+a)(1+a)2(1+ab)ω
2(a+b)2σ2

u

− (−1+a2)2(1+ab)
2(a+b)2σ2

u

− (−1+a2)(1+4ab+b2+a2(1+b2))
2(a+b)2σ2

u



(3.65)
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[
5φjG (φj)

] ∣∣∣∣
φ

=



− 2
(−1+a)(1+b)

2ω
(−1+a)2(1+b)

0

2ω
(−1+a)2(1+b)

V22 V23

0 − 2(1+a+b)(1+ab)σ2
u

(−1+a)(1+a)2(1+b)
2(1+a+b)σ2

u

(1+a)(1+b)


(3.66)

with V22 = −2(1+a)3ω2−2(1−a2+b+a(1+a−4a2+a4)b+a(4−5a+a3)b2+(−1+a)2b3)σ2
u

(−1+a2)3(1+b)
and V23 =

2((−1+a)(1+a)2+(−1+a+a2)b+b2)σ2
u

(−1+a)(1+a)2(1+b)
.

Using results in (3.66) and (3.65) and collecting terms in (3.64), V (φ)

reduces to:

V (φ) =



a+b
1+b
− (1+(−1+a+a2)b)ω

1+b
(−1+a)(1+a)2ω

1+b

0 (1+2ab−a3b)
1+b

(−1+a2)2

1+b

0 − (1+ab)2

1+b
(−1+a2(2+ab))

1+b


(3.67)

Define the Eigenvalues associated with V (φ) as ε = (ε1, ε2, ε3)
′. By solving

(3.67), ε is given by:

ε =

[
a+ b

1 + b
,

a(a+ b)

1 + b
,

a(a+ b)

1 + b

]′
(3.68)

Remark: In Lemma 7, it is important to point out that the eigenvalues

associated with (3.67) do not depend on ω nor on σ2
u. This allows to focus

only with the parameters a, b which are bounded by Assumption B1. To

this purpose, we evaluate the properties of (3.68) performing a numeri-
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cal grid search through different combinations of parameters a and b that

satisfy Assumption B1. Figure 3.1 displays the maximum eigenvalue com-

puted using (3.68). From Figure 3.1, the maximum eigenvalue associated

with V (φ) is smaller than one, in absolute value, for all combinations in

the grid search. This is enough to prove Lemma 7, yielding that N (ξ) is

an ACM for all ξ ∈ B.

Lemma 8 Denote Ψi = %i (φ) and Ψ̃i = %i

(
φ̃
)

, with φ, φ̃ ∈ B. Suppose

Assumptions B1, B2 and B3 hold. Then,

E
{[

(ψj+1,0 −
∑∞

i=0 ψj+1,iuj,t−1−i)−
(
ψ̃j+1,0 −

∑∞
i=0 ψ̃j+1,iuj,t−1−i

)]2
}
6= 0

for all φ̃ 6= φ

Proof of Lemma 8: To prove Lemma 8, rewrite the target expression as:

E


[(
ψ0 − ψ̃0

)
−

(
∞∑
i=0

ψ̃iut−1−i −
∞∑
i=0

ψiut−1−i

)]2
 6= 0

E

{(
ψ0 − ψ̃0

)2

− 2
(
ψ0 − ψ̃0

) ∞∑
i=0

(
ψ̃i − ψi

)
ut−1−i+(

∞∑
i=0

ψ̃iut−1−i −
∞∑
i=0

ψiut−1−i

)2
 6= 0

(
ψ0 − ψ̃0

)2

+ E


[
∞∑
i=0

(
ψ̃i − ψi

)
ut−1−i

]2
 6= 0

(
ψ0 − ψ̃0

)2

+ E

{
∞∑
i=0

(
ψ̃i − ψi

)2

u2
t−1−i +

2
∞∑
i=0

(
ψ̃i − ψi

)
ut−1−i

[
∞∑

l=i+1

(
ψ̃l − ψl

)
ut−1−l

]}
6= 0

(
ψ0 − ψ̃0

)2

+
∞∑
i=0

(
ψ̃i − ψi

)2

σ2
u 6= 0 (3.69)
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Showing that (3.69) holds is equivalent to prove:

∣∣∣ψ0 − ψ̃0

∣∣∣+ σ2
u

∞∑
i=0

∣∣∣ψ̃i − ψi∣∣∣ > 0 (3.70)

We shall prove (3.70) by contradiction. To this purpose, we show that

φ̃ = φ is the only vector that sets (3.70) to zero. Define φ∗ as vector

located in the segment line between φ and φ̃. Using the first order Taylor

expansion, the first term on the left-hand side of (3.70) reduces to:

∣∣∣ψ0 − ψ̃0

∣∣∣ =

∣∣∣∣∣∂
(

ω
1−a

)
∂φ′

∣∣∣∣
φ∗

∣∣∣∣∣ ∣∣∣φ− φ̃∣∣∣ =

∣∣∣∣[ 1

1− a∗
,

ω∗

(1− a∗)2 , 0

]∣∣∣∣ ∣∣∣φ− φ̃∣∣∣ (3.71)

Assumption B1 guarantees that the first two elements of ∂ψ0

∂φ′

∣∣∣∣
φ∗

are strictly

positive. Given that, (3.71) is equal to zero only if φ̃ =
[
ω, a, b̃

]′
, for

any b̃ satisfying Assumption B1. Hence it makes necessary to show that

the second term on the left-hand side of (3.70) is greater than zero when

evaluated at φ̃ =
[
ω, a, b̃

]′
. To this purpose, we apply the first order

Taylor expansion such that:

σ2
u

∞∑
i=0

∣∣∣ψ̃i − ψi∣∣∣ = σ2
u

∞∑
i=0

∣∣∣∣∣∂ψi∂φ

∣∣∣∣
φ∗

∣∣∣∣∣ ∣∣∣φ− φ̃∣∣∣
= σ2

u

∞∑
i=0

∣∣[0, ia∗ (a∗ + b∗) , a∗i
]∣∣ ∣∣∣φ− φ̃∣∣∣ (3.72)

The third element of ∂ψi
∂φ

∣∣∣∣
φ∗

is strictly greater than zero for all i ≥ 1 and b∗

satisfying Assumption B1, implying that when evaluated on φ̃ =
[
ω, a, b̃

]′
(3.72) is strictly greater than zero. Hence, the only vector that sets (3.70)

to zero is φ̃ = φ. This concludes the proof of Lemma 8.
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Lemma 9 Suppose Assumptions B1, B2 and B3 hold. Then,

supξ∈B

∣∣∣N̂T (ξ)−N (ξ)
∣∣∣ = op (1) as T −→∞

Proof of Lemma 9: By evaluating both (3.61) and (3.62) on φj, the

absolute difference between the population mapping and its sample coun-

terpart is given by:

∣∣∣N̂T (φj)−N (φj)
∣∣∣ =

∣∣∣∣∣[φj − [H (φj)]
−1G (φj)

]
−

[
φj −

[
ĤT (φj)

]−1

ĜT (φj)

] ∣∣∣∣∣
(3.73)

Subtracting and adding
[
ĤT (φj)

]−1

G (φj) in (3.73):

∣∣∣∣∣N̂T (φj)−N (φj)

∣∣∣∣∣ ≤
∣∣∣∣∣
[[
ĤT (φj)

]−1
− [H (φj)]

−1

]
G (φj)

∣∣∣∣∣−∣∣∣∣∣ [ĤT (φj)
]−1 [

ĜT (φj)−G (φj)
] ∣∣∣∣∣

(3.74)

To prove point-wise convergence of the population and sample mappings

evaluated at the same vector of parameters, it suffices to show that both

terms on the right-hand side of (3.74) have order op (1) as T −→ ∞. This

implies showing that sample gradient and Hessian converge to their pop-

ulation counterparts, when evaluated on the true vector of parameters φ.
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The sample and population gradient are then given by:

ĜT (φ) =



1
T

T∑
t=1

{
−2

1− a
u̇t

}
1
T

T∑
t=1

{
2u̇t

(
− ω

(1− a)
2 −

q̄∑
i=0

diut−1−i

)}

1
T

T∑
t=1

{
−2

(
q̄∑
i=0

aiut−1−i

)
u̇t

}


(3.75)

G (φ) =



E

 −2
1−a

u̇t − ∞∑
i=q̄+1

ai (a+ b)ut−1−i


E

2

u̇t − ∞∑
i=q̄+1

ai (a+ b)ut−1−i

×− ω

(1− a)
2 −

q̄∑
i=0

diut−1−i −
∞∑

i=q̄+1

diut−1−i


E

−2

 q̄∑
i=0

aiut−1−i −
∞∑

i=q̄+1

aiut−1−i

 u̇t





(3.76)

where di = ai + iai−1 (a+ b) and u̇t = ε2t − ω
1−a −

∑q̄
i=0 a

i (a+ b)ut−1−i.

Provided that q̄ −→ ∞ as T −→ ∞, and
∑∞

i=0 |ai| <∞ following |a| < 1,

the additional terms in the population mapping converges in probability

to zero as T −→ ∞, such that
∑∞

i=q̄+1
ai

p−→ 0 and
∑∞

i=q̄+1
di

p−→ 0. Fur-

thermore, all elements in (3.75) are averages of m.d.s. processes. This

allows the use of the weak law of large numbers, such that (3.77) holds.

Similar steps are conducted to show that the sample Hessian converges in

probability to its population counterpart, yielding (3.78).

ĜT (φj)
p−→ G (φj) (3.77)

ĤT (φj)
p−→ H (φj) (3.78)

To obtain uniform convergence in probability, the sample mapping needs
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to be stochastically equicontinuous. Assumption B3 provides the Lipschitz

condition for N̂T (φj) for all φj ∈ B. Following Lemma 2.9 in Newey and

McFadden (1994), the Lipschitz condition implies that the sample mapping

is stochastically equicontinuous, which allows the use of theorem 21.9 (pg.

337) in Davidson (1994), yielding uniform convergence between sample and

population mappings.

Lemma 10 Suppose Assumptions B1, B2 and B3 hold and fix ξ and ς in

B. Then,

supξ,ς∈B

∣∣∣Λ̂T (ξ, ς)− Λ (ξ, ς)
∣∣∣ = op (1) as T −→∞

Proof of Lemma 10: Proof of Lemma 10 mirrors the steps of Lemma 4 in

Chapter 2. Using their result, rewrite supξ,ς∈B

∣∣∣Λ̂T (ξ, ς)− Λ (ξ, ς)
∣∣∣ = op (1)

as:

sup
ξ,ς∈B

∣∣∣Λ (ξ, ς)− Λ̂T (ξ, ς)
∣∣∣ ≤ 1

|ξ − ς|

[
sup
ξ,ς∈B

∣∣∣N (ξ)− N̂T (ξ)
∣∣∣+

sup
ξ,ς∈B

∣∣∣N (ς)− N̂T (ς)
∣∣∣] (3.79)

Lemma 9 implies that both terms inside the brackets have order op (1).

Assumption B1 states that [ξ − ς] is bounded, implying that the right-hand

side of (3.79) converges in probability to zero, as T −→∞.

Lemma 11 Suppose Assumptions B1, B2 and B3 hold and fix ξ and ς in

B. If

i) supξ∈B

∣∣∣N̂T (ξ)−N (ξ)
∣∣∣ = op (1) as T −→∞

ii) supξ,ς∈B

∣∣∣Λ̂T (ξ, ς)− Λ (ξ, ς)
∣∣∣ = op (1) as T −→∞

then, N̂T (ξ) is an ACM on (B, d), with ξ ∈ B and it has fixed point denoted

by φ̂, such that
∣∣∣φ̂j − φ̂∣∣∣ = op (1), as j −→∞ with T −→∞.
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Proof of Lemma 11: see Lemma 5 in Chapter 2.

Lemma 12 Suppose Assumptions B1, B2 and B3 hold. If N̂T (γ) is an

ACM on (B, d)

Then,
√
T
∣∣∣φ̂j − φ̂∣∣∣ = op (1) as T −→∞ and j −→∞

Proof of Lemma 12: Lemma 6 in Chapter 2 gives:

√
T
∣∣∣φ̂j − φ̂∣∣∣ ≤ √T κ̂j ∣∣∣φ̂0 − φ̂

∣∣∣ (3.80)

The right-hand side converges in probability to zero if ln(T )
j

= o (1). In fact,

j � −1
2

[
ln(T )
ln(κ)

]
needs to hold, implying that speed of convergence depends

on the contraction parameter of the population mapping.

Proof of Theorem 2: We divide this proof in two sections. In the first

part, we prove the consistency of the NL-ILS estimator (item (i) in Theorem

2), whereas the second part focuses on the asymptotic distribution (part (ii)

in Theorem 2). From Dominitz and Sherman (2005), if N (ξ) is an ACM on

(B, d), then N (ξ) is also a contraction map. Lemmas 7 and 11 state that

the population and the sample mapping are ACM. These allow the use of

standard fixed-point theorem as stated in Burden and Faires (1993) and

Judd (1998) to show consistency of the NL-ILS estimator. Identification on

the population mapping gives N (φ) = φ. To show that
∣∣∣φ̂− φ∣∣∣ = op (1),

rewrite this term

∣∣∣φ̂− φ∣∣∣ ≤ |φj − φ|+ ∣∣∣φ̂− φj∣∣∣ (3.81)

The first term on the right-hand side can be expressed only as function of

the population mapping. Rewriting it in this way and substituting recur-
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sively using the ACM bound, |φj − φ| resumes to

|φj − φ| = |N (φj−1)−N (φ)| ≤ κ |φj−1 − φ|

|φj − φ| ≤ κ |N (φj−1)−N (φ)| ≤ κ2 |φj−1 − φ|

|φj − φ| ≤ κj |N (φ0)−N (φ)| (3.82)

Provided that j −→∞ as T −→∞, the right-hand side of (3.82) converges

in probability to zero. Hence, to show consistency of the NL-ILS estimator

it remains to show that the second term on the right-hand side of (3.81)

converges in probability to zero. Rewrite this term as:

∣∣∣φ̂− φj∣∣∣ ≤ ∣∣∣φ̂− φ̂j∣∣∣+
∣∣∣φ̂j − φj∣∣∣ (3.83)

The first term on the right-hand side of (3.83) has order op

(
T

1
2

)
following

Lemma 12. The second term on the right-hand side of (3.83) is bounded

as

∣∣∣φ̂j − φj∣∣∣ ≤ ∣∣∣N̂T

(
φ̂j−1

)
−N

(
φ̂j−1

)∣∣∣+
∣∣∣N (φ̂j−1

)
−N (φj−1)

∣∣∣ (3.84)

The first term on the right-hand side of (3.84) has order op (1) following

Lemma 9. The remaining term of (3.84) can be rewritten using the ACM

bound, such that:

∣∣∣N (φ̂j−1

)
−N (φj−1)

∣∣∣ ≤ κ
∣∣∣φ̂j−1 − φj−1

∣∣∣ (3.85)

Applying recursively the same strategy as in (3.84) and (3.85), equation
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(3.83) reduces to

∣∣∣φ̂− φj∣∣∣ ≤ κj
∣∣∣φ̂0 − φ̂0

∣∣∣ (3.86)

Note that
∣∣∣φ̂0 − φ0

∣∣∣ is bounded, provided that φ̂0, φ0 ∈ B. As j −→ ∞

with T −→ ∞, the right-hand side of (3.86) has order op (1), implying∣∣∣φ̂− φ∣∣∣ = op (1).

We now prove the asymptotic distribution of the NL-ILS estimator.

This proof mirrors the steps of Theorem 4 in Dominitz and Sherman (2005).

To establish the asymptotic distribution of
√
T [φj − φ], firstly rewrite it as:

√
T
[
φ̂j − φ

]
=
√
T
[
φ̂j − φ̂

]
+
√
T
[
φ̂− φ

]
(3.87)

The first term on the right-hand side of equation (3.87) has order op (1)

following Lemma 12 and provided that ln(T )
j

= o (1). The second term of

(3.87) resumes to

√
T
[
φ̂− φ

]
=
√
T
[
N̂T

(
φ̂
)
−N (φ)

]
√
T
[
N̂T

(
φ̂
)
−N (φ)

]
=
√
T
[[
N̂T

(
φ̂
)
− N̂T (φ)

]
+
[
N̂T (φ)− φ

]]
(3.88)

Define Λ̂T

(
φ̂, φ

)
=
∫ 1

0
V̂T

(
φ̂+ ξ

(
φ̂− φ

))
dξ, such that the first term on

the right-hand side of (3.88) is given by

[
N̂T

(
φ̂
)
− N̂T (φ)

]
= Λ̂T

(
φ̂, φ

) [
φ̂− φ

]
(3.89)
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Plugging (3.89) into (3.88), the latter reduces to:

√
T
[
φ̂− φ

]
=
√
T
[
Λ̂T

(
φ̂, φ

) [
φ̂− φ

]]
+
√
T
[
N̂T (φ)− φ

]
√
T
[
φ̂− φ

]
=
√
T

[[
I3 − Λ̂T

(
φ̂, φ

)]−1 [
N̂T (φ)− φ

]]
(3.90)

As in Dominitz and Sherman (2005), we initially show that Λ̂T

(
φ̂, φ

)
p−→ V (φ).

To this purpose, write Λ̂T

(
φ̂, φ

)
as

Λ̂T

(
φ̂, φ

)
= V (φ) +

[
Λ
(
φ̂, φ

)
− V (φ)

]
+
[
Λ̂T

(
φ̂, φ

)
− Λ

(
φ̂, φ

)]
(3.91)

Item i in Theorem 2 states that φ̂ converges in probability to φ as j −→∞

with T −→ ∞. This implies that Λ
(
φ̂, φ

)
p−→ V (φ), yielding that the

second term on the right-hand of (3.91) converges in probability to zero.

Lemma 10 implies that the third term on the right-hand side of (3.91) has

order op (1). Hence, (3.90) reduces to

√
T
[
φ̂− φ

]
=
√
T
[
[I3 − V (φ)]−1

[
N̂T (φ)− φ

]]
(3.92)

It remains to study the asymptotic distribution of
√
T
[
N̂T (φ)− φ

]
. Note

that, when T −→ ∞ and NT (.) is evaluated on the true vector of param-

eter, the sample mapping reduces, asymptotically, to the case where the

latent variable becomes observed regressors. Given that, the asymptotic

distribution of
√
T
[
N̂T (φ)− φ

]
reduces to the asymptotic distribution of

the NL-LS estimator. As in Greene (2008), the asymptotic variance of the

NL-LS estimator is given by σ2
uC
−1
0 , where C0 = plim 1

T

∑T
t=1

[
∂ht(θ)
∂θ

∂ht(θ)
∂θ′

]
and ht (θ) is the nonlinear function inQT (yt, xt; θ) = (yt − ht (xt, θ))

2. Con-

sidering the sample mapping of the NL-ILS estimator, the function ht (xt, φ)
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is given by the MA(q̄), such that ht (ut, φ) = ψ0 +
∑q̄

i=0 ψiut−1−i. Given

that, C0 resumes to

C0 =



1
(1−a)2 − ω

(1−a)3 0

− ω
(1−a)3

ω2

(1−a)4 +

q̄∑
i=0

d2

iσ
2

u

q̄∑
i=0

dia
iσ2

u

0

q̄∑
i=0

dia
iσ2

u

q̄∑
i=0

a2iσ2

u


(3.93)

where di = iai−1 (a+ b)+ai. Applying the central limit theorem for martin-

gale difference sequences, the asymptotic distribution of
√
T
[
N̂T (φ)− φ

]
is given by

√
T
[
N̂T (φ)− φ

]
d−→ N

(
0, σ2

uC
−1
0

)
(3.94)

Equation 3.67 gives the analytical solution of V (φ). DefineA = [I − V (φ)]−1,

then the asymptotic distribution of the NL-ILS is given by

√
T
[
φ̂− φ

]
d−→ N

(
0, σ2

uAC
−1
0 A′

)
(3.95)

�

Proof of Corollary 1: This proof follows the item (i) in Theorem 2. Note

that Lemma 7 holds because ut has zero mean, finite variance and autoco-

variance equal to zero for all lags greater than zero. It is relevant to discuss

the validity of Lemmas 10 and 9. Both of them are based on the weak law

of large numbers. Note that, from item (i) in corollary 1, the ut is a linear

projection with Cov(ut−i, ut−j) = 0 for all i 6= j. This is sufficient to allow
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the use of the weak law of large numbers as stated in Hamilton (1994) -

pg. 186, implying that Lemma 9 holds. If Lemma 9 holds, then Lemma 10

also holds, extending the validity of item (i) in Theorem 2 to this Corollary.

Proof of Proposition 1: The regressors in (3.26) do not depend on λ̂j+1.

This implies that the first derivative of the sample mapping with respect

to λ̂j+1 is

4
1

T

T∑
t=1


[[
yt − λ̂j+1σ̂j,t

]
− ψ̂j+1,0 −

q̄∑
i=0

ψ̂j+1,iûj,t−1−i

]2

×

[
yt − λ̂j+1σ̂j,t

]
σ̂j,t

}
= 0

1

T

T∑
t=1

{[
yt − λ̂j+1σ̂j,t

]
σ̂j,t

}
= 0 (3.96)

By manipulating (3.96), λ̂j+1 resumes to:

λ̂j+1 =

[
T∑
t=1

σ̂2
j,t

]−1 T∑
t=1

σ̂j,tyt (3.97)

The remaining first order conditions do not have a closed solution, implying

that φ̂j+1 has to be recovers through optimization. This concludes the proof

of Proposition 1.
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Figure 3.1: GARCH(1,1): ACM property

Figure 3.1 plots the highest element of |ε| in (3.68) using different combinations
of α and β, such that Assumption B1 is satisfied. The grid is fixed in 0.001.
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Figure 3.2: GARCH(1,1)-in-mean: ACM property
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Figure 3.2 displays the maximum eigenvalue computed from the numerical gra-
dient of the NL-ILS mapping.
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Table 3.6: RealGARCH(1,1)-in-mean

T = 100 T = 200 T = 300 T = 400 T = 500 T = 2000
NL-ILS NL-ILS NL-ILS NL-ILS NL-ILS NL-ILS

λ = 0.1 1.21
(0.099)

1.41
(0.105)

1.63
(0.104)

1.71
(0.103)

1.81
(0.104)

2.35
(0.102)

ω = 0.06 1.74
(0.06)

1.89
(0.05)

1.95
(0.049)

2.00
(0.05)

2.01
(0.053)

2.27
(0.058)

β = 0.45 1.65
(0.393)

2.45
(0.423)

2.83
(0.442)

3.30
(0.442)

3.70
(0.444)

5.68
(0.458)

γ = 0.51 1.80
(0.519)

2.63
(0.506)

3.10
(0.496)

3.49
(0.501)

3.84
(0.505)

5.39
(0.501)

ξ = −0.18 1.78
(−0.318)

2.03
(−0.227)

2.10
(−0.22)

2.19
(−0.207)

2.21
(−0.209)

2.08
(−0.189)

ϕ = 1.04 2.01
(0.942)

2.40
(1.012)

2.54
(1.017)

2.60
(1.021)

2.65
(1.027)

2.51
(1.038)

τ1 = −0.11 1.03
(−0.119)

1.03
(−0.118)

1.07
(−0.121)

1.06
(−0.122)

1.10
(−0.121)

1.37
(−0.122)

τ2 = 0.07 1.03
(0.073)

1.11
(0.073)

1.16
(0.076)

1.14
(0.074)

1.21
(0.076)

1.14
(0.073)

σ̂2
t 1.00 0.94 0.96 0.95 0.96 1.00

min π̂t+h 1.10 1.20 1.24 1.27 1.28 1.27
med π̂t+h 1.14 1.26 1.34 1.34 1.36 1.33
max π̂t+h 1.19 1.35 1.45 1.45 1.50 1.45

min σ̂2
t+h 0.98 1.01 1.00 1.01 1.01 0.99

med σ̂2
t+h 1.02 1.04 1.01 1.02 1.03 1.00

max σ̂2
t+h 1.09 1.07 1.03 1.05 1.05 1.01

min ν̂t+h 0.92 0.97 0.96 0.99 0.98 0.98
med ν̂t+h 0.97 0.99 0.97 1.00 1.00 0.99
max ν̂t+h 1.00 1.01 0.99 1.02 1.01 1.00

Table 3.6 reports the results obtained using the NL-ILS a estimator. Results for the RealGARCH(1,1)-in-mean pa-
rameters and in-sample conditional variance are reported in terms of the Relative root Mean Squared Error (RMSE).
Values inside the brackets refer to the median computed within all valid replications. Forecast accuracy is accessed
through the RRMedSFE (relative root median squared forecast error). Relative measures are computed with respect
to the MLE benchmark. Relative measures less than one imply NL-ILS estimator outperforms the MLE methodol-

ogy. Truncation parameter is fixed to q̄ = 3
4√
T . We perform 1500 replications. Replications that do not achieve

convergence are discarded for computing the relative measures.
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Table 3.9: Descriptive statistics

Mean Median Std. Dev. Kurtosis N. Obs Start Date End Date
CRSP† 0.0002 0.0005 0.0099 19.7 12,148 28/06/1963 29/09/2011

S&P500† 0.0000 0.0002 0.0104 31.1 12,148 28/06/1963 29/09/2011
S&P100† 0.0001 0.0004 0.0121 30.5 7,364 04/08/1982 29/09/2011

CRSP‡ 0.0010 0.0026 0.0227 9.0 2,426 05/07/1963 30/09/2011
S&P500‡ 0.0001 0.0010 0.0227 11.6 2,426 05/07/1963 30/09/2011
S&P100‡ 0.0007 0.0019 0.0243 8.3 1,469 04/08/1982 29/09/2011

CRSP§ 0.0061 0.0096 0.0545 10.4 1,023 01/07/1926 01/08/2011
S&P500§ 0.0019 0.0054 0.0424 5.3 740 01/01/1950 01/08/2011
S&P100§ 0.0023 0.0061 0.0492 7.1 330 02/04/1984 02/10/2011

Superscripts †, ‡ and § denote daily, weekly and monthly frequencies, respectively. The null hypothesis in the Jarque-
Bera test is reject in all indices and frequencies.
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Table 3.10: Empirical application: risk premium estimation

Daily freq.
CRSP S&P500 S&P100

NL-ILS QMLE NL-ILS QMLE NL-ILS QMLE
λ 0.02∗

(0.013)
0.07∗∗∗
(0.009)

0.01
(0.010)

0.04∗∗∗
(0.009)

0.02∗
(0.012)

0.05∗∗∗
(0.011)

ω 0.00
(0.000)

0.00∗∗∗
(0.000)

0.00
(0.000)

0.00∗∗∗
(0.000)

0.00
(0.000)

0.00∗∗∗
(0.000)

α 0.12∗∗∗
(0.023)

0.09∗∗∗
(0.002)

0.10∗∗∗
(0.022)

0.08∗∗∗
(0.002)

0.11∗∗∗
(0.015)

0.08∗∗∗
(0.002)

β 0.84∗∗∗
(0.024)

0.91∗∗∗
(0.003)

0.83∗∗∗
(0.034)

0.92∗∗∗
(0.002)

0.80∗∗∗
(0.077)

0.91∗∗∗
(0.003)

Weekly freq.
CRSP S&P500 S&P100

NL-ILS QMLE NL-ILS QMLE NL-ILS QMLE
λ 0.06∗∗

(0.024)
0.11∗∗∗
(0.019)

0.01
(0.022)

0.06∗∗∗
(0.020)

0.03
(0.029)

0.08∗∗∗
(0.025)

ω 0.00
(0.000)

0.00∗∗∗
(0.000)

0.00
(0.000)

0.00∗∗∗
(0.000)

0.00
(0.000)

0.00∗∗∗
(0.000)

α 0.12∗∗∗
(0.042)

0.14∗∗∗
(0.011)

0.11∗∗
(0.058)

0.13∗∗∗
(0.009)

0.14∗∗∗
(0.054)

0.14∗∗∗
(0.012)

β 0.77∗∗∗
(0.209)

0.84∗∗∗
(0.013)

0.81∗∗∗
(0.204)

0.85∗∗∗
(0.012)

0.74∗∗∗
(0.207)

0.84∗∗∗
(0.015)

Monthly freq.
CRSP S&P500 S&P100

NL-ILS QMLE NL-ILS QMLE NL-ILS QMLE
λ 0.12∗∗∗

(0.045)
0.18∗∗∗
(0.031)

0.05
(0.044)

0.07∗
(0.038)

0.05
(0.063)

0.06
(0.058)

ω 0.00
(0.000)

0.00∗∗∗
(0.000)

0.00
(0.000)

0.00∗∗∗
(0.000)

0.00
(0.001)

0.00∗
(0.000)

α 0.09
(0.063)

0.14∗∗∗
(0.019)

0.11∗∗∗
(0.042)

0.11∗∗∗
(0.025)

0.04
(0.078)

0.14∗∗∗
(0.042)

β 0.88∗∗∗
(0.138)

0.84∗∗∗
(0.018)

0.71∗∗∗
(0.186)

0.85∗∗∗
(0.028)

0.77∗∗∗
(0.218)

0.82∗∗∗
(0.055)

Standard errors are reported inside the brackets. NL-ILS standard errors are obtained using
block bootstrap algorithm with 1000 replications. QMLE standard errors are computed using
Bollerslev-Wooldridge robust estimator. The symbols *, **, and *** denote significance 10%, 5%
and 1%, respectively.
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Table 3.11: Empirical application: risk premium estimation -
RealGARCH(1,1)-in-mean

S&P500
Daily freq. Weekly freq. Monthly freq.

NL-ILS MLE NL-ILS MLE NL-ILS MLE
λ −0.03

(0.019)
0.01

(0.020)
−0.03
(0.052)

−0.02
(0.045)

−0.10
(0.115)

−0.05
(0.110)

ω 1.44∗∗∗
(0.242)

0.59∗∗∗
(0.165)

0.50
(0.493)

−0.23
(0.521)

−0.66
(0.941)

−0.75
(1.277)

β 0.51∗∗∗
(0.045)

0.56∗∗∗
(0.032)

0.29∗∗∗
(0.074)

0.28∗∗∗
(0.053)

0.25∗∗
(0.109)

0.28∗∗
(0.130)

γ 0.63∗∗∗
(0.061)

0.49∗∗∗
(0.041)

0.75∗∗∗
(0.086)

0.65∗∗∗
(0.071)

0.62∗∗∗
(0.150)

0.57∗∗∗
(0.152)

ξ −2.61∗∗∗
(0.284)

−1.84∗∗∗
(0.306)

−1.26∗
(0.645)

−0.61
(0.748)

−0.11
(2.164)

−0.16
(2.360)

ϕ 0.75∗∗∗
(0.030)

0.83∗∗∗
(0.034)

0.88∗∗∗
(0.083)

0.98∗∗∗
(0.104)

1.03∗∗∗
(0.348)

1.02∗∗
(0.401)

τ1 −0.14∗∗∗
(0.012)

−0.15∗∗∗
(0.012)

−0.20∗∗∗
(0.026)

−0.22∗∗∗
(0.032)

−0.31∗∗∗
(0.062)

−0.32∗∗∗
(0.073)

τ2 0.00
(0.010)

0.01
(0.012)

0.07∗∗∗
(0.022)

0.08∗∗∗
(0.022)

0.08∗
(0.045)

0.08∗∗
(0.036)

Standard errors are reported inside the brackets. NL-ILS and MLE standard errors are obtained using
block bootstrap algorithm with 1000 replications. The symbols *, **, and *** denote significance 10%,
5% and 1%, respectively.
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Chapter 4

Inference on GARCH-in-mean

models with time-varying

coefficients: assessing risk

premium over time

4.1 Introduction

Time-varying volatility plays a major role in both finance and economics.

In special, asset return volatility is paramount in fields such as asset pric-

ing, risk management and portfolio allocation. The task of modeling the

conditional variance has been a central topic in econometrics following the

seminal papers of Engle (1982) and Bollerslev (1986). Since then, different

specifications and frameworks, such as GARCH-type models, stochastic

volatility, realized volatility and combinations of these approaches have

been adopted, trying to capture the very specific stylized facts observed
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in financial returns. A natural extension that emerges from modeling the

conditional variance is the relation between risk and return. The intertem-

poral capital asset pricing model (ICAPM) establishes a positive relation

between the conditional excess returns and the conditional variance, imply-

ing that investors should be remunerated for bearing extra risk. To assess

the risk-return tradeoff postulated by the ICAPM model, Engle, Lilien,

and Robins (1987) formulates the (G)ARCH-in-mean specification, where

a function of the latent conditional variance appears in the mean equation

as a regressor. Following Engle, Lilien, and Robins (1987)’s work, the risk-

return tradeoff literature has rapidly evolved, however empirical evidences

on the sign and significance of the risk premium parameter remain blurred.

The justification for these mixed empirical evidences lies on three different

issues: first, misspecification of the risk premium function; second, mis-

specification of the conditional variance equation; third, use of only a few

conditioning variables.

In this chapter, we undertake inference on the risk-return tradeoff by us-

ing an econometric framework that encompasses the three issues previously

discussed. We firstly address the misspecification of the risk premium func-

tion by modelling the risk premium parameter as a time-varying stochastic

process. To this purpose, we introduce the time-varying GARCH-in-mean

(TVGARCH-in-mean) model, where the risk premium parameter is allowed

to evolve as a bounded random walk process. By using such specification,

we obtain a stochastic risk premium function that is no longer a determin-

istic function of the conditional standard deviation. Secondly, by modelling

the risk premium parameter as a bounded random walk process, we allow

its disturbance term to summarize information from a wide range of latent
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variables. The issue of biased estimates of the risk premium parameters

that arises from misspecification of the conditional variance is addressed by

using a kernel based version of the robust nonlinear iterative least squares

(NL-ILS) estimator. Using the excess returns computed using the CRSP

index on weekly and monthly frequencies, we document that the risk pre-

mium parameter is indeed time-varying, alternating positive and negative

values over time. Regarding results obtained with excess returns sampled

on weekly frequency, we show that the time-varying risk premium param-

eter picks on periods that precedes the financial crises and economic re-

cessions, and turns negative during high volatility times. Considering the

monthly frequency, we find smoother estimates of the time-varying risk pre-

mium parameter, which contributes to narrower confidence intervals and

stronger significance analyses. We report that the time-varying risk pre-

mium parameter is statistically different from zero on almost half of the

observations.

The methodology we adopt in this chapter originates in the applied

macroeconomics literature, where the time-varying coefficient models have

addressed issues such as structural changes on macroeconomic variables

and in particular the Great Moderation phenomenon. Estimation strate-

gies that use kernel methods showed to be valid alternatives on assessing

these models. Robinson (1989) and Orbe, Ferreira, and Rodriguez-Poo

(2005)) assume that the time-varying coefficient is a deterministic (smooth)

function of time, whereas Giraitis, Kapetanios, and Yates (2010) model it

as a bounded random walk process. We construct the kernel based NL-ILS

estimator using the theoretical insights developed by the latter authors.

With regard to previous studies in the risk-return literature, we split
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these results in three different groups: first, the full parametric GARCH-

in-mean class of models, which includes other parametric specifications of

the conditional variance such as EGARCH, GJR-GARCH and stochastic

volatility models. Second, the semiparametric GARCH-in-mean models,

where estimates of the conditional variance are obtained through a para-

metric specification of the conditional variance, whereas risk premium func-

tion is estimated using nonparametric techniques. Third, models that use

measures of realized variance and a broader set of conditioning variables.

Also, this third class of models are generic enough to allow for a nonlinear

risk premium function.

Considering the first group, mixed evidences in both sign and signifi-

cance of the time-invariant risk premium parameter have been found in the

literature. While French, Schwert, and Stambaugh (1987) find a positive

value for λ, Glosten, Jagannathan, and Runkle (1993) find an opposite

sign, Baillie and DeGennaro (1990) find very little evidence for a statisti-

cally significant λ. We find in Chapter 3 that λ is only significant when

the CRSP dataset is adopted. To support this result, we argue that sig-

nificance analyses using quasi-maximum likelihood (QMLE) estimates of

the parameters of GARCH-in-mean models are blurred, following a poten-

tial bias associated with the parameters in the mean equation. In fact,

if the conditional variance is misspecified, QMLE estimates of the risk

premium parameter may be biased, as discussed in Bollerslev, Chou, and

Kroner (1992). Furthermore, apart from the work of Christensen, Dahl,

and Iglesias (2012), asymptotic theory supporting the use of the QMLE

estimator on GARCH-in-mean models is not well established as it is in

the GARCH family of models, relying, among others, on the assumption
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that the disturbances are martingale difference sequence (m.d.s) processes.

This assumption, however, fails when sampling frequency changes, yielding

a class of models (weak-GARCH models) which possess disturbances that

present some degree of dependence. Chapter 3 shows that the nonlinear

iterative least squares (NL-ILS) estimator is robust to misspecification of

the conditional variance, delivering unbiased estimates of the risk premium

parameter under a variety of volatility specifications. Furthermore, we es-

tablish the asymptotic theory considering the GARCH(1,1) case, as well

the consistency of the NL-ILS estimator when the disturbances are linear

projections (the case of the weak-GARCH(1,1) specification). This chap-

ter adopts the NL-ILS estimator as the core estimation procedure, using

therefore the desirable properties associated with the NL-ILS to construct

inference on the time-varying risk premium parameter.

With respect to the semiparametric GARCH-in-mean literature, Linton

and Perron (2003), Christensen, Dahl, and Iglesias (2012) and Conrad and

Mammen (2008) find strong evidences that the risk-return tradeoff is non-

linear, corroborating Pagan and Hong (1990) who argued that the linear

relationship between the conditional variance and the excess returns only

occurs in very particular cases. Furthermore, Veronesi (2000) shows that

the risk premium function can virtually take any form, strengthening the

choice of these authors of using the nonparametric framework to recover

the risk premium function. Although we use kernel functions to estimate

the time-varying risk premium parameter, the TVGARCH-in-mean frame-

work departures from the semiparametric GARCH-in-mean approach in

two different directions: firstly, we assume a linear relationship between the

conditional standard deviation and λt, whereas Linton and Perron (2003),
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Christensen, Dahl, and Iglesias (2012) and Conrad and Mammen (2008) as-

sume that the risk premium function is an unknown deterministic function

of the conditional variance. Secondly, we admit λt to evolve stochastically

as an independent process, which allows the risk premium function to de-

pend on exogenous latent shocks and be therefore a stochastic function.

This flexible feature of our specification is able to address an important

point raised by Lettau and Ludvigson (2010) and Rossi and Timmermann

(2010): the disagreement in the risk-return tradeoff literature arises from

the use of few conditioning variables and misspecification of the risk pre-

mium function. By modelling λt as a random walk process, we therefore

allow the time-varying risk premium parameter to summarize information

from conditioning variables driving the real economy.

A third class of models relies on the use of different datasets that in-

clude macroeconomic variables. Lettau and Ludvigson (2010) adopts the

dynamic factor analysis, Ghysels, Santa-Clara, and Valkanov (2005) the

MIDAS approach and Rossi and Timmermann (2010) the regression trees

framework.

It is important to stress that by modelling λt as an exogenous stochastic

process, we address the points raised by Pagan and Hong (1990), Veronesi

(2000) and others, regarding the shape of the risk premium function.

This chapter is organized as follows. Section 4.2 introduces the

TVGARCH-in-mean model and the kernel based NL-ILS estimator. By

focusing on the TVGARCH(1,1)-in-mean specification, we describe the es-

timation algorithm as well as the bootstrap methodology we implement to

compute the confidence intervals associated with the parameters estimates.

Section 4.3 covers the numerical illustrations. We start with the Monte
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Carlo study showing that the kernel based NL-ILS estimator presents a

good finite sample performance on estimating the time-varying risk pre-

mium parameter and the parameters of the conditional variance equation.

Finally, we investigate the risk-return tradeoff over time using the excess

returns computed using the CRSP index. Section 4.4 concludes. The Ap-

pendix brings tables and graphs.

4.2 The time-varying GARCH-in-mean spec-

ification

In this section we introduce the TVGARCH-in-mean model as a frame-

work to recover the time-varying risk premium parameter denoted as λt,

t = 1, 2, .., T . Giraitis, Kapetanios, and Yates (2010) established the

asymptotic theory for the class of autoregressive models driven by a ran-

dom drifting autoregressive parameter. We extend their work by allowing

the regressors to be latent, which is the case of the TVGARCH-in-mean

model. We specify the TVGARCH-in-mean allowing λt to evolve stochas-

tically as a bounded random walk process. We start our discussion with

a generic specification of the TVGARCH-in-mean model that encompasses

specifications with exogenous variables in the conditional variance equa-

tion.

These specifications are particularly important because they nest mod-

els that use measures of realized variances as regressors. As pointed out

by Andersen, Bollerslev, Diebold, and Labys (2003), models that combine

the conditional variance with realize measures tend outperform the stan-

dard GARCH-type models when forecasting the conditional variance. The
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intuition for such results arises because these augmented models tend to

respond faster to abrupt changes in the underline volatility than the stan-

dard GARCH-type models. Among these models, we highlight the HEAVY,

GARCH-X and RealGARCH models proposed by Shepard and Sheppard

(2010), Engle (2002) and Hansen, Huang, and Shek (2012), respectively.

In principle, the generic model in equations (4.1), (4.3) and (4.4) could be

changed in order to accommodate the latter two specifications in spirit of

the generic model in Chapter 3. As a matter of simplicity, however, we

restrict ourselves to the generic TVGARCH-in-mean model as:

yt = λtσt + εt (4.1)

εt = σtηt (4.2)

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i (4.3)

ε2

t = Ψ0 + ut +
∞∑
i=1

Ψiut−i Ψi = %i (θ2) , i = 0, 1, ...,∞ (4.4)

where σt is a latent variable (conditional standard deviation); ε2
t = (yt − λtσt)2;

ut is a vector of m.d.s. processes, such that E (ut) = 0 and Var(ut) = σu;

λ = (λ1, λ2, ..., λT )′, θ2 is a vector of free parameters in (4.3) and θ =

(λ, θ2)′. The parameter λt is known as the risk premium parameter (time-

varying in our specification) and the risk premium function, µt, is defined

as µt = λtσt.

Similarly as in Giraitis, Kapetanios, and Yates (2010), the time-varying

coefficient in (4.1), λt, evolves as a rescaled random walk process bounded
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between some constant c, such that −c ≤ λt ≤ c.

λt = c
at

max0≤κ≤t |aκ|
(4.5)

at = at−1 + ξt (4.6)

where ξt is a zero mean covariance stationary process with finite fourth

moment1. Given its parametrization, λt is a partial sum of past values of ξt,

which is set to be orthogonal to σt and summarizes information contained

in different information sets. Note that under the TVGARCH-in-mean

specification, µt is allowed to be linear on σt but it remains stochastic

following the nature of λt. Therefore, by allowing µt to be stochastic,

we departure from the semiparametric GARCH-in-mean specification used

by Linton and Perron (2003), Christensen, Dahl, and Iglesias (2012) and

Conrad and Mammen (2008).

To estimate the parameters in (4.1), (4.3) and (4.4), we adopt the NL-

ILS estimator in the spirit of Chapter 3. The NL-ILS estimator is an

iterative estimator that consists on updating recursively, on each iteration,

σt and then using it to compute the time-varying coefficient λt and the

remaining parameters θ2. Denote B as the space where θ is defined. As in

Dominitz and Sherman (2005), we define two mappings: population and

sample mappings, which are the solution of the optimization of the pop-

ulation, E (QT (yt; θ)), and sample, QT (yt; θ), objective functions, respec-

tively. To define both objective functions, we adopt the type of smoothed

sum of squared residuals target function as discussed in Robinson (1989),

1In Section 4.3.1, we discuss how the Kernel based NL-ILS estimator performs when
the λt is no longer a random walk process, but a stationary AR(1) process taking the
form of: λt = φλt−1 + ξt, with |φ| < 1.
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Orbe, Ferreira, and Rodriguez-Poo (2005), Kapetanios (2008) and Giraitis,

Kapetanios, and Yates (2010). The two mappings are therefore given by:

θj+1 = N(θj) = min
θj+1

E

{
1

T

T∑
t=1

[
T∑
κ=1

K

(
t− κ
H

)(
yκ − λj+1,tσj,κ

)2

−

− Ψj+1,0 −
∞∑
i=1

Ψj+1,iuj,t−1−i

]2


(4.7)

θ̂j+1 = N̂T (θ̂j) = min
θ̂j+1

1

T

T∑
t=1

[
T∑
κ=1

K

(
t− κ
H

)(
yκ − λ̂j+1,tσ̂j,κ

)2

−

−Ψ̂j+1,0 −
q̄∑
i=1

Ψ̂j+1,iûj,t−1−i

]2 (4.8)

where j accounts for the number of iterations which is a function of T , such

that as T −→∞, j −→∞ at some rate satisfying ln(T )
j

= o (1), K (x) ≥ 0,

x ∈ R is kernel function with bounded first derivatives and
∫
K (x) dx = 1,

H is the bandwidth parameter such that H −→∞ and H = o (T ); Ψj+1,i,

Ψ̂j+1,i are deterministic functions of θ2,j+1 and θ̂2,j+1, respectively, and q̄

is a truncation parameter, such that q̄ −→ ∞ at a logarithmic rate of T .

Note that both mappings map from B to itself, yielding that the iterative

procedure is stopped when convergence is achieved. As a identification

condition, we have that when evaluated at the true vector of parameters θ,

the population mapping returns θ, such that θ = N (θ).

Considering the standard GARCH-in-mean specification discussed in

Chapter 3, Proposition 1 states that both mappings can be split into two

distinct processes: parameters in the mean equation are estimated using

ordinary least squares (OLS), whereas the parameters in the conditional
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variance are retrieved by adopting the nonlinear least squares (NL-LS) esti-

mator. We generalize the result in Proposition 1 in Chapter 3 to encompass

the TVGARCH-in-mean specification. As a result of this, the parameters

λt in (4.1) are no longer estimated using the OLS estimator, but by using

kernel based OLS estimators. The parameters governing the conditional

variance equation remain being the estimates obtained using the NL-LS

estimator. We formalize this result in Proposition 2.

Proposition 2 Assume the model stated in (4.1), (4.3) and (4.4). Define

the vectors of free parameters in (4.8) on the j + 1 iteration as λ̂j+1 =

(λ1,j+1, λ2,j+1, ..., λT,j+1)
′ and φ̂j+1 =

(
ω̂j+1, âj+1, b̂j+1

)′
. The sample map-

ping in (4.8) can be computed in two different steps, such that:

i. λ̂j+1,t =

[
T∑
κ=1

K

(
t− κ
H

)
σ̂2
j,κ

]−1 T∑
κ=1

K

(
t− κ
H

)
σ̂j,κyκ, for t=1, ...,T

ii. φ̂j+1 = min
φ̂j+1

T∑
κ=1

[[
yκ − λ̂j+1,κσ̂j,κ

]2

− ψ̂j+1,0 −
q̄∑
i=0

ψ̂j+1,iûj,κ−1−i

]2

Proof of proposition 2 follows a trivial extension of Proposition 1 in Chapter

3.

Convergence of the NL-ILS estimator relies on the existence of a fixed

point, which is determined by the contraction property associated with

the mapping. As discussed in Kapetanios (2003), Dominitz and Sherman

(2005) and in Chapters 2 and 3, convergence will only occur if the pop-

ulation mapping stated in (4.7) is an Asymptotic Contraction Mapping

(ACM)2. Furthermore, Chapter 3 argues that the parameters of the infinite

2Using the definition in Dominitz and Sherman (2005), a collection
{Kω

T (.) : T ≥ 1, ω ∈ Ω} is an ACM on (B, d) if d (Kω
T (x) ,Kω

T (y)) ≤ cd (x, y) as
T −→ ∞, where c ∈ [0, 1), (B, d) is a metric space with x, y ∈ B, (Ω,A,P) denoting a
probability space and Kω

T (.) is a function defined on B.
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MA representation of the GARCH component is the bit driving the con-

traction property of the population mapping of GARCH-in-mean models.

Chapter 2 establishes a theoretical bound on the parameters of ARMA(1,1)

models that satisfy the ACM condition, whereas Chapter 3 provides anal-

ogous results for the GARCH(1,1) case. Using their result, we perform

Monte Carlo simulations (available upon request) showing that convergence

does not occur in finite sample when the these theoretical bounds are vi-

olated. Following that, we implement Monte Carlo validation to assess

whether the mapping in (4.8) is an ACM. We show that the NL-ILS algo-

rithm converges for the TVGARCH(1,1)-in-mean model, which supports

our claim that the population mapping of the generic TVGARCH-in-mean

model is indeed an ACM.

In order to have a rigorous asymptotic inference of the NL-ILS estima-

tor for the TVGARCH(1,1)-in-mean model, it is necessary to combine the

theory developed in Dominitz and Sherman (2005) and Giraitis, Kapetan-

ios, and Yates (2010). The first authors provide a generic asymptotic the-

ory for iterative estimators that relies on the contraction property of the

population mapping. This condition is proved by evaluating the eigen-

value associated with the theoretical gradient of the population mapping

evaluated on the true vector of parameters θ. Additionally to the ana-

lytical expression for V (θ), Theorem 4 in Dominitz and Sherman (2005)

requires the asymptotic distribution of the sample mapping evaluated on

θ,
√
T
(
N̂T (θ)− θ

)
d−→ N (0,Σ). To derive this asymptotic result, it is

necessary to use Theorem 2.3 in Giraitis, Kapetanios, and Yates (2010),

where they provide
√
H convergence of the time-varying parameter. Hence,

assuming that the mapping in (4.7) is an ACM mapping and in addition
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to some regularities conditions, the consistency and the asymptotic distri-

bution of the NL-ILS estimator for the TVGARCH-in-mean model can be

established by using the theory developed by Dominitz and Sherman (2005)

and Giraitis, Kapetanios, and Yates (2010). The rates associated with the

asymptotic results would, differently from the standard NL-ILS estimator

adopted in Chapter 3, depend on the bandwidth parameter, H, and T .

In this chapter, we do not show the asymptotic distribution of the kernel

based NL-ILS estimator for the TVGARCH-in-mean specification, but we

rely on the bootstrap framework (discussed in Section 4.3.1) to obtain the

empirical distribution of the parameters governing the TVGARCH-in-mean

model.

Chapter 3 shows that the NL-ILS estimator presents the additional fea-

ture to remain consistent even when the disturbances are no longer m.d.s

processes, such as the cases of the weak-GARCH models in the spirit of

Drost and Nijman (1993). This turns to be an important advantage of the

NL-ILS estimator, since studies that estimate the risk premium function

usually deal with daily, weekly or monthly data. These frequencies are

obtained through the temporal aggregation of the observed intraday re-

turns, which are a proxy for discretization of the continuous latent prices.

Drost and Nijman (1993), Drost and Werker (1996) and Francq and Za-

koian (2000) show that GARCH process are not closed under temporal

aggregation, whereas weak-GARCH models are.

4.2.1 TVGARCH(1,1)-in-mean

We focus down our analyses on the TVGARCH(1,1)-in-mean specification,

where we shall provide a step by step algorithm showing how to compute
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the kernel based NL-ILS estimator. We also discuss the implementation

of a bootstrap strategy to construct the confidence intervals for all the

parameters θ.

We define the TVGARCH(1,1)-in-mean model as in (4.9) and (4.11).

yt = λtσt + εt (4.9)

εt = σtηt (4.10)

σ2
t = ω + αε2t−1 + βσ2

t−1 (4.11)

Similarly to the GARCH(1,1)-in-mean case, we assume that ω > 0, α >

0, β > 0 and α + β < 1 hold. Equation (4.11) allows an ARMA(1,1)

representation as in (4.12), where a = (α + β) and b = −β.

ε2t = ω + aε2t−1 + ut + but−1 (4.12)

Provided that α+β < 1 holds, the AR polynomial in (4.12) can be inverted

to generate an infinite MA process (MA(∞)) as:

ε2t = ψ0 +
∞∑
i=1

ψiut−1 + ut (4.13)

where ψ0 = ω
1−a , ψi = ai(a + b). Denote φ = (ω, a, b)′, λ = (λ1, λ2, ..., λT )′

and θ = (λ, φ)′. Identification of
∑T

t=1 u
2
t with respect to the vector of

parameters φ follows from Lemma 8 in Chapter 3. Following result (i) in

Proposition 2, we use three kernel functions to retrieve estimates of λt.

All kernels functions possess bounded first derivatives, however only the
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Gaussian kernel has an infinite support.

K

(
t− κ
H

)
=

1

2
I

(∣∣∣∣t− κH
∣∣∣∣ ≤ 1

)
, flat kernel (4.14)

K

(
t− κ
H

)
=

3

4

(
1−

(
t− κ
H

)2
)
I

(∣∣∣∣t− κH
∣∣∣∣ ≤ 1

)
,

Epanechnikov kernel

(4.15)

K

(
t− κ
H

)
=

(
1√
2π

)
e

( t−κH )
2

2 , Gaussian kernel (4.16)

We are now in the position to discuss the implementation of the ker-

nel based NL-ILS estimator, as well as feasible inference procedure. To

this purpose, Subsection 4.2.1 displays the step by step procedure to com-

pute the NL-ILS estimator, whereas Subsection 4.2.1 covers two different

bootstrap strategies adopted to compute the confidence intervals associated

with estimates of θ.

Kernel based NL-ILS algorithm

We compute the NL-ILS algorithm through the following steps:

Step 1: Choose an initial estimate of θ, such that θ̂0 ∈ B, where B is the set

of parameters satisfying the second-order stationarity conditions of

(4.11)3. Applying θ̂0 to (4.9), (4.11) and (4.12), compute recursively

estimates of the conditional variance, denoted as σ̂2
0,t, and estimates

of ut, denoted by û0,t.

Step 2: Using result in Proposition 2, compute λ̂1,t using any of the three

3In practise, define σy as the unconditional variance of yt. Then, fix λ̂0,t =[∑T

κ=1K
(
t−κ
H

)
σyyκ

]
[σy]

−1
and obtain ε̂0,t. As a second step, estimate an AR(p) model

having ε̂20,t as dependent variable to obtain initial estimates of ut. Finally, compute φ̂0.
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kernels defined in (4.14), ,(4.15) and (4.16).

λ̂1,t =

[
T∑
κ=1

K

(
t− κ
H

)
σ̂2

0,κ

]−1 T∑
κ=1

K

(
t− κ
H

)
σ̂0,κyκ (4.17)

Step 3: Compute ε̂1,t as ε̂1,t = yt − λ̂1,tσ̂0,t. Using result (ii) in Propo-

sition 2, obtain φ̂1 by minimizing the MA(∞) representation of the

conditional variance using:

φ̂1 = min
φ̂1

T∑
t=1

[[
yt − λ̂1,tσ̂0,t

]2

− ψ̂1,0 −
q̄∑
i=0

ψ̂1,iû0,t−1−i

]2

(4.18)

Step 4: Using θ̂1, compute recursively σ̂2
1,t, ε̂1,t and û1,t through (4.11),

(4.9) and (4.12).

Repeat Steps 2, 3 and 4 j times until θ̂j converges. Convergence occurs

when the following both criteria are satisfied:
∥∥∥λ̂j,t − λ̂j−1,t

∥∥∥ ≤ 10−5 and∥∥∥φ̂j − φ̂j−1

∥∥∥ ≤ 10−5. Note that the convergence bound is exogenously de-

fined, making it possible to be as narrow as desired. Parameters on the jth

iteration are therefore given by:

λ̂j,t =

[
T∑
κ=1

K

(
t− κ
H

)
σ̂2
j−1,κ

]−1 T∑
κ=1

K

(
t− κ
H

)
σ̂j−1,κyκ (4.19)

φ̂j = min
φ̂j

T∑
t=1

[[
yt − λ̂j,tσ̂j−1,t

]2

− ψ̂j,0 −
q̄∑
i=0

ψ̂j,iûj−1,t−1−i

]2

(4.20)

Bootstrap algorithm

We perform inference on the NL-ILS estimator by using the bootstrap

framework. We adopt two distinct strategies: the first one is the full para-

metric bootstrap, whereas the second one follows the wild bootstrap pro-
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posed in Linton and Perron (2003). As discussed in Section 4.2, provided

that the maximum eigenvalue of V (θ) is strictly smaller than one in abso-

lute value,
√
T
(
N̂T (θ)− θ

)
d−→ N (0,Σ), and some additional regularities

conditions, the theory developed by Dominitz and Sherman (2005) guar-

antees that the NL-ILS estimator is asymptotically normally distributed.

This strengthens the bootstrap validation we adopt in this chapter, since

under high-level assumptions the kernel based NL-ILS estimator is asymp-

totically well behaved. The parametric and the wild bootstrap differ only

in the first step. To all the remaining steps, we do not differentiate from

the two algorithms.

1. Given the NL-ILS estimates λ̂t for t = 1, 2, ..., T , ω̂, α̂ and β̂, compute

the recentered residuals ε̂ct , such that ε̂ct = ε̂t− ¯̂εt and ¯̂εt = 1
T

∑T
t=1 ε̂t.

i. Parametric: Bootstrap ε̂ct to generate a (T × 1) vector of residuals

denoted by εbt .

ii. Wild: As in Linton and Perron (2003), define zt as a variable

with E
(
zjt
)

= 0 for j = 1, 3, ... and E
(
zjt
)

= 1 for j = 2, 4, ....

Similarly to them, we set zt = 1 or zt = −1 with probability

equal to 0.5. Generate εbt = εctzt.

2. Set σ2
1 and εc1 as starting values. Using εbt , λ̂ =

(
λ̂1, ...., λ̂T

)′
and

φ̂ =
(
ω̂, α̂, β̂

)′
, compute bootstrapped values of yt, denoted by ybt .

3. Using
{
ybt
}T
t=1

, estimate λ̂b =
(
λ̂b1, ...., λ̂

b
T

)′
and φ̂b =

(
ω̂b, α̂b, β̂b

)′
by

adopting the kernel based NL-ILS estimator as discussed in 4.2.1.

4. Repeat steps 1, 2 and 3 B times4.

4We set B = 1000 in both empirical and Monte Carlo studies.
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5. Compute the percentiles and standard deviation from the empirical

distribution of λ̂b =
(
λ̂b1, ...., λ̂

b
T

)′
and φ̂b =

(
ω̂b, α̂b, β̂b

)′
where b =

1, 2, ..., B..

Both bootstrap procedures described above are highly time-demanding5,

which makes a proper coverage probability study based on Monte Carlo

validation very difficult to be undertaken. We discuss the coverage proba-

bility associated with the two methodologies in Subsection 4.3.1.

4.3 Numerical Illustrations

4.3.1 Monte Carlo

This section has manly two objectives. Firstly, we assess the performance of

the kernel based NL-ILS estimator on estimating the parameters governing

the TVGARCH(1,1)-in-mean model. Secondly, we discuss how the two

bootstrap methodologies discussed in Section 4.2.1 perform on retrieving

the confidence intervals associated with the NL-ILS estimates of λt.

Regarding the first point, we focus on understanding how the NL-ILS

estimator tracks the time-varying risk premium parameters in terms of

the root mean squared error (RMSE) and point-wise correlation with the

latent time-varying coefficients. To this purpose, we implement a variety of

bandwidth choices (different degrees of smoothing) that will be very useful

to guide our choice of H when estimating the time-varying risk premium

parameters in Subsection 4.3.2. From the nonparametric literature, there

is a variance-bias tradeoff involving the choice of the bandwidth parameter

5Computing the NL-ILS estimates confidence intervals for a TVGARCH(1,1)-in-
mean model (using only one kernel function) with T = 2000 takes one day in a dedicated
server (one core).
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H. In one hand, if H is too small, bias associated with the kernel based

NL-ILS estimates tend to decrease, whereas their variance increases. On

the other hand, if H is too large, bias increases and variance decreases.

In fact, the choice of H turns to be more important than choosing the

kernel function. From Giraitis, Kapetanios, and Yates (2010), H = T 0.5 is

the closest value to the optimal H that minimizes the mean squared error

(MSE) in their time-varying AR(1) model. As discussed in Section 4.2,

we require the bandwidth parameter to satisfy the following: H −→ ∞

and H (T ) = o (T ). We evaluate the performance of the kernel based NL-

ILS estimator under the following bandwidth parameters: H = T 0.2, H =

T 0.3, H = T 0.4, H = T 0.5, H = T 0.6, H = T 0.7 and H = T 0.8. Finally, we

also evaluate the finite sample performance of the NL-ILS estimator when

estimating parameters in the conditional variance equation.

We specify two different data generation processes in this subsection.

Both models are TVGARCH(1,1)-in-mean models as depicted in (4.9) and

(4.11). We set ηt to be normally distributed with zero mean and variance

equals to one. The difference between the two models consists on the

specification of the time-varying risk premium parameter λt. In the first

case, we define λt as a bounded random walk process as in (4.5), with

aT = at−1 + ξt and c = 0.9. We add some dependence on ξt, by modelling

it as an AR(1) process with ξt = ρξt1 + ςt, where ςt ∼ N (0, 0.02). The

second specification sets λt as a covariance stationary process. We specify

λt as an AR(1) process with autoregressive parameter equal to 0.9. This

second specification is not supported by the theory developed in Giraitis,

Kapetanios, and Yates (2010) (see Remark 2.4), however it sheds light

about the performance of the kernel based NL-ILS estimator when λt is
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not persistent enough6. In all exercises, we fix the number of replications

to 1000 unless otherwise stated. We also discard the initial 500 observations

to reduce dependence on initial conditions. All models are estimated using

the CML7 optimization library in GAUSS.

Table 4.2 displays the results associated with the first specification,

where λt is modeled as a bounded random walk process. Considering the

fit of the kernel based NL-ILS estimator, we conclude that the best choices

for bandwidth parameters, the ones that minimize the RMSE, are either

T 0.5 or T 0.6. Furthermore, these are also the bandwidths which deliver the

highest point-wise correlation (around 0.85) between the NL-ILS estimates

and the true latent time-varying risk premium parameter. Figures 4.1,

4.2,4.3, 4.4, 4.5 and 4.6 display the evolution of λt, λ̂t and its correspondent

confidence intervals. From these figures, we assert that the kernel based

NL-ILS estimator provides estimates (considering all the three alternative

kernel functions) that track λt very accurately, corroborating the point-

wise correlation result. Considering the performance of the kernel based

NL-ILS estimator on recovering the parameters in the conditional variance

equation, we conclude that apart from the scenario where H = T 0.2, all

different combinations of kernel methods and bandwidth parameters deliver

unbiased estimates of φ = (ω, α, β)′. It also relevant to point out that the

RMSE of φ is reasonably small and constant through all the different kernel

6Robinson (1989) and Orbe, Ferreira, and Rodriguez-Poo (2005) establish the con-
sistency of kernel based OLS estimators when dealing with regressions that present
deterministic time-varying coefficients. They impose smoothness assumptions on λt to
obtain consistency.

7CML (Constrained Maximum Likelihood Estimation) is library in GAUSS designed
to solve maximum likelihood functions subject to linear and nonlinear constraints. In
all Monte Carlo simulations, we set global variables in CML to their default values,
because this specification is flexible enough to accommodate endogenous changes in
both algorithms and grid search procedures.
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functions and bandwidth choices, indicating that NL-ILS estimates of φ are

robust to different bandwidth and kernel choices.

Table 4.3 reports results considering the case where λt is an AR(1)

process, such that λt = ρλt−1 + ςt, with ρ = 0.9 and ςt ∼ N (0, 0.2). We

find that the kernel based NL-ILS estimator looses performance in terms of

RMSE and point-wise correlation in all different scenarios. This turns not

to be a surprising result, because λt is a now covariance stationary process

and kernel methods cannot handle such feature (see discussion in Giraitis,

Kapetanios, and Yates (2010)). To capture the less persistent feature of λt,

H = T 0.3 turns to be the best bandwidth choice considering the RMSE and

point-wise correlation tradeoff. We stress, however, that even when λt is a

covariance stationary process, the kernel based NL-ILS estimator delivers

unbiased estimates of the parameters in the conditional variance equation.

We now turn our attention to the performance of the two bootstrap

methodologies discussed in Section 4.2.1. To give a flavour about the cov-

erage probability of these two strategies, we compute the coverage proba-

bility associated with different confidence intervals (CI) for one realization

of the TVGARCH(1,1)-in-mean model. To assess the magnitude of the

point-wise confidence bands, we compute the root mean squared distance

(RMSD) between the point-wise upper and the lower bound associated

with different confidence intervals adopted (90%, 95% and 99%), such that

RMSD =
[

1
T

∑T
t=1

(
λ̂ut − λ̂lt

)2 ]0.5

, where λ̂ut and λ̂lt account for the point-

wise upper and lower bound associated with a specific confidence interval.

Table 4.1 shows that both the parametric and the wild bootstrap perform

reasonable well, delivering coverage probabilities very close to the theoret-

ical values implied by the confidence interval. This strengthens our claim
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that these two bootstrap methodologies qualify as an inference tool for

constructing the confidence bands associated with the kernel based NL-

ILS estimator. Regarding the magnitude of the confidence intervals, we

report an average distance of 0.38 when CI = 90%, which may be too

high when dealing with empirical applications. In fact, the high values of

RMSD reported in both bootstrap methodologies reenforce the difficulties

associated with estimating time-varying parameters in the presence of la-

tent regressors, as it is the case of the TVGARCH-in-mean models. Hence,

as discussed previously, although the kernel based NL-ILS estimator has

wide confidence bands, it tracks the dynamics of the time-varying param-

eter λt very well, providing an important insight on the behaviour of the

time-varying risk premium parameter.

4.3.2 Empirical results

We examine the time-varying risk premium parameter using the

TVGARCH(1,1)-in-mean framework. We estimate λt using the NL-ILS

estimator as discussed in Subsection 4.2.1. We adopt the excess returns

computed using the CRSP value-weighted index aggregated on weekly and

monthly basis8. We choose the CRSP index because it is considered the

financial index that best mimics the entire market, including large and

small capitalized firms. Moreover, Chapter 3 documents that risk pre-

mium parameter λ obtained through a GARCH(1,1)-in-mean model esti-

mated with the robust NL-ILS estimator is statistically significant only

when the CRSP index is adopted. We show that for less complete indices,

8We obtain the market excess returns through Wharton Research Data Services
(wrds), Fama French & Liquidity Factors library. This variable is denoted as MKTRF
on wrds database and it is available on daily and monthly basis.
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such as the S&P100 and S&P500 indices, estimates of λ, are not statisti-

cally significant, indicating that market coverage plays an important role

on identifying the risk premium parameter. We work with two different

sampling frequencies: weekly and monthly, yielding 2,426 and 1,023 obser-

vations, respectively. Monthly data is available since 1926, which give us

the opportunity to cover the Great Depression and the financial crisis of

2007/08. Table 4.4 displays the descriptive statistics.

Figures 4.7 and 4.8 plot weekly estimates of λt considering H = T 0.5

and H = T 0.6, respectively. We choose these two bandwidth values, be-

cause they present the best performance in terms of RMSE in the Monte

Carlo study discussed in Section 4.3.1. We also plot the 90% upper and

lower confidence intervals computed using the empirical percentiles ob-

tained through the parametric bootstrap9. With respect to the point-wise

analyses, we find that there is strong evidence that the risk premium param-

eter is indeed time-varying, with λ̂t assuming both positive and negative

values, within ranges of (0.25,−0.25) and (0.2,−0.1) for the H = T 0.5 and

H = T 0.6, respectively. This result reinforces the claim that specifying the

risk premium parameter as time-invariant or as a deterministic function of

the conditional standard deviation can cause severe bias on the estimates

of the risk premium function. Furthermore, periods of negative risk-return

tradeoff can arise as part of the volatility feedback mechanism, as pointed

out by Campbell and Hentschel (1992) and Dahl and Iglesias (2009). In

fact, periods of financial distress usually present high volatility, which leads

to an increase in the risk premium and the discount rate. These cause a

drop in prices, yielding to a momentaneous negative relationship between

9Estimates of λt computed with H = T 0.2, H = T 0.3 and H = T 0.4 are available
upon request.
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volatility and returns. This is indeed the picture we find on Figures 4.7

and 4.8, where λ̂t turns negative for short periods of time.

Analysing 4.7 more in depth, we find that λ̂t is very volatile when

the Epanechnikov and flat kernels are adopted. This contributes for the

bootstrap confidence bands to be very wide, which tends to jeopardize the

significance analyses. We find that λ̂t estimated with these two kernel

methods are statistically different from zero for the period prior to the

year of 2000. This is exactly the period that precedes the Dot-com bubble,

which lead to an eight-month recession starting in March 2001 and lasting

until November 2001.

The picture described above is even clearer when considering Figure

4.8, where the bandwidth is set equal to T 0.6. This leads to much smoother

estimates of λt, making both point-wise and significance analyses more rel-

evant. We find that λ̂t does present a strong variation over time, picking

in periods prior to financial distress. In fact, considering the period cov-

ering the last twenty years (1991 - 2011), we find that estimates of the

time-varying risk premium during this time frame present a cyclical pat-

tern, picking in periods that precede the financial crises. Also, the periods

where λ̂t is negative or approaches to zero coincide with the intervals of

time which the economy is going through a recession. This indicates that

the volatility feedback mechanism takes action, leading to a drop in stock

prices, which usually anticipates business cycles fluctuations. Therefore, we

assert that λ̂t estimated using the TVGARCH(1,1)-in-mean framework is

able to track both bear market and business cycle expansions and contrac-

tions. To be more precise in our analysis, we focus on the first plot of Figure

4.8. Considering the NL-ILS estimator computed with the Epanechnikov
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kernel, we find that λ̂t picks on the week of 14/Jun/1996, which precedes

the Russian crisis. From this date onwards, λ̂t declines becoming negative

on the week of 02/Feb/2001. This time range coincides with the reces-

sion period reported by National Bureau of Economic Research (NBER),

that states that the United States (US) economy was in recession during

the period starting on the March 2001 until November 2001 (see Table 4.5

for the specific dates). The time-varying risk premium parameter presents

a similar pattern in the last half of the first decade of the twenty first

century. We find that λ̂t picks on the week of 18/Feb/2005, starting a

downturn that results in negative values associated with λ̂t on the week of

17/Nov/2006. The time-varying risk premium only turns positive on the

week of 26/Sep/2008. This pattern again tracks and anticipates both the

bear market and the US recession dates. Regarding the latter, the NBER

reports that the US economy faced recession from Dec/2007 until Jun/2009.

This again provides us with a date intersection between the behaviour of

the real economy and the time-varying risk premium parameter.

With regard to tracking the bear market period, we find that the down-

turn of λ̂t coincides with the period prior to the failure of the Lehman

Brothers (13/Sep/2008), including the burst of the housing bubble and the

bailout of a series of financial institutions including the Northern Rock,

Fannie Mae, Freddie Mac, American International Group (AIG) among

others. Figure 4.9 plots λ̂t and its confidence bands together with the con-

ditional standard deviation computed using the TVGARCH(1,1)-in-mean

specification. We find that in periods where λ̂t is high, market volatility is

low. When λ̂t is either negative or presents a declining path, we observe

the volatility associated with the excess returns is very high. These corrob-
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orate our claim that λ̂t is able to track both financial market performance

and business cycles fluctuations.

We now turn our attention to the monthly estimates of λ̂t. Figures 4.10

and 4.11 display plots considering the two alternative bandwidth choices

adopted in this section: H = T 0.5 and H = T 0.6, respectively. The monthly

sample carries an important difference from the one at weekly bases we

discussed previously: it spans from a longer period (1926-2011), compre-

hending events such as the Great depression, the World War II and the

post-war period. Moreover, this much longer sample also allows us to in-

vestigate potential changes on the time-varying risk premium parameter

behaviour, following potential structural changes in the economy. In fact,

these structural changes may arise from a wide variety of factors, including

changes in the investors preferences, financial markets organization, market

regulation, portfolio composition and availability of assets. Comparing the

results obtained with weekly and monthly frequencies, we expect a trade-

off between smoothness of λ̂t and the responsiveness of the time-varying

risk premium parameter to shocks on the CRSP index. As a consequence

of that, estimates of λt computed using monthly data are smoother and

more persistent that the estimates we report in Figures 4.7 and 4.8. As

a drawback, we have that monthly estimates of λt tend to lose power on

predicting financial crises and economic recessions when compared to their

weekly counterparts.

Considering the set of graphs where H = T 0.5 and focusing on the

estimates computed using the Epanechnikov and flat kernels, we find that

λ̂t is statistically different from zero in the period that precedes the year of

2000 (from Apr/1994 to Apr/1998 for the Epanechnikov kernel, and from
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Feb/1994 to Dec/1998 for the flat kernel). This finding corroborates our

previous results considering weekly estimates of λt computed using H =

T 0.6, where λ̂t turns to be significant from the week of 22/Jul/1998 until the

week of 17/Jul/1998. Furthermore, we find that λ̂t is significantly different

from zero within the Nov/1940 - Mar/1964 and Jun/1939 and Dec/1964 for

the Epanechnikov and flat kernel functions, respectively. These periods of

significant parameters are by far greater than the ones observed during the

nineties, suggesting a structural change on the pattern of the time-varying

risk premium parameter.

As in the weekly frequency analyses, we focus our analyses on the es-

timates of λt computed using H = T 0.6 and two different kernel specifica-

tions: the Epanechnikov and flat kernels. These choices are supported by

our Monte Carlo results, that indicate that the H = T 0.6 is the bandwidth

choice that minimizes the RMSE for the Epanechnikov and flat kernel func-

tions. The first and third plot of Figure 4.11 display λ̂t computed with the

Epanechnikov and flat kernel functions, respectively. We find that under

these specifications the confidence bands are narrower than the ones com-

puted with H = T 0.5. We find λ̂t is statistically significant in 46.5% and

43.0% of the total observations. These are extremely interesting results,

because they shed light on the mixed evidence reported in the literature

regarding sign and significance of the risk premium parameter. From the

results in Figure 4.11, we find that following the persistent time-varying

nature of λt, it is misleading to model the risk premium parameter as a

time-invariant parameter. In other words, if we model λt as a time-invariant

parameter, we are likely to obtain results that falsely return insignificant

or barely significant estimates of the risk premium parameter.
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We now focus on the relation between the time-varying risk premium

parameter and periods of financial distress and business cycle fluctuations.

Figure 4.12 displays plots of λ̂t with its respective upper and lower 90%

confidence bands and the conditional standard deviation computed using

the TVGARCH(1,1)-in-mean specification. As in the previous analyses,

we focus on the estimates obtained with the Epanechnikov and flat kernel

functions. We find that during the first period where λt is statistically

different from zero (1939/40 - 1964), the US economy faces five periods of

recessions, however the time-varying risk premium parameter is very high.

When analysing the second period where λ̂t is significantly different from

zero (May/1982-Jul/1998 and Mar/1988 - Apr/1998, Epanechnikov and

flat kernel functions, respectively) we find that there is only one period

where the US economy faces recession (Jul/1990-Mar/1991). Considering

the next two recessions, (Mar/2001-Nov/2001 and Dec/2007-Jun/209), we

find that λ̂t is not statistically different from zero, being in fact lower than

0.1. Differently from the results obtained using weekly data, we do not

observe a spike on λ̂t in the period that precedes the 2007-09 financial

crisis, indicating that the boon on equity prices observed from 2001 to 2007

was in fact associated with low values of λ̂t. To conclude, we find strong

evidences that the risk premium parameter is time-varying, and therefore

needs to be modelled as so. Moreover, we find that the relation between

the significance on the time-varying risk premium parameter and business

cycle fluctuations change over time, suggesting that it has become weaker

in the last twenty years.

Considering the relationship between λt and σt, Linton and Perron

(2003), Christensen, Dahl, and Iglesias (2012) and Conrad and Mammen

193



(2008) relax the linearity assumption governing the risk premium function,

finding that the risk premium function exhibits a hump shape. In this

chapter, however, we force the relation between λt and σt to be linear, but

we allow λt to evolve stochastically. This implies that the relation between

λt and σt in no longer deterministic in our approach. Figures 4.13 and 4.14

depict scatter plots of λ̂t versus log (σ̂2
t )

10 and the risk premium function

versus log (σ̂2
t ). Our aim is to investigate whether there is a clear relation

between these variables. We find that such relations do not hold under the

TVGARCH(1,1)-in-mean framework. Regarding the first series of graphs

(λ̂t versus log (σ̂2
t )), we cannot identify any pattern. We can only say that

when the volatility increases to values above 0.04, λ̂t is either negative or

below 0.05, indicating that volatility feedback mechanism is the key force

driving the λt towards negative or zero values. Regarding the series of

graphs displaying the relationship between the risk premium function and

λ̂t and log (σ̂2
t ), we find that such relation is highly nonlinear, confirm-

ing that the TVGARCH(1,1)-in-mean specification is flexible enough to

accommodate different shapes of the risk premium function.

4.4 Conclusion

In this chapter we model the risk-return tradeoff allowing for the risk pre-

mium parameter to be time-varying and evolve stochastically over time as

a random walk process. To this purpose, we introduce the time-varying

GARCH-in-mean (TVGARCH-in-mean) model. We introduce the kernel

based NL-ILS estimator and show that it successfully estimates the time-

10We choose to construct the graphs using log
(
σ̂2
t

)
in order to be in accordance with

the notation used in Linton and Perron (2003).
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varying risk premium parameter, λt. The kernel based NL-ILS estima-

tor generalizes the kernel based OLS estimator implemented in Giraitis,

Kapetanios, and Yates (2010), making it possible to estimate λt in the

presence of a latent regressor (σt) under the TVGARCH-in-mean spec-

ification. The Monte Carlo study shows that the kernel based NL-ILS

estimator presents a good finite sample performance on estimating both λt

and the parameters in the conditional variance equation. Furthermore, we

show that the parametric and wild bootstrap methodologies can be imple-

mented to compute the confidence intervals associated with all parameters

governing the TVGARCH-in-mean model.

We investigate the time-varying risk premium parameter using the ex-

cess returns computed using the CRSP value-weighted index aggregated

on weekly and monthly basis. By adopting the TVGARCH-in-mean spec-

ification, we address the issue of misspecification of the conditional mean,

as it is regarded as one of the causes for mixed evidences regarding the

significance and sign of the risk premium parameter. Also, by relying on

the robust NL-ILS estimator, we address the issue of biased results follow-

ing misspecification in the conditional variance equation. We find strong

evidences, on both sample frequencies, that λt is indeed time variant. Con-

sidering the monthly frequency, we find that estimates of λt are statistically

different from zero in up to 46.5% of the observations. This result sheds

light on the mixed evidences regarding sign and significance of the risk

premium parameter, because modelling the risk premium parameter as a

time-invariant coefficient may lead to biased results. Furthermore, we find

that estimates of λt computed using the weekly excess returns track and

anticipate both bear market phases and business cycles fluctuations. In par-
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ticular, we find that periods of financial distress and economic recessions

are preceded by downturn on the time-varying risk premium parameter,

whereas during the financial crisis, the time-varying risk premium param-

eter is close to zero or even negative. Finally, our results suggest that the

relation between significance of the time-varying risk premium parameter

and business cycle fluctuations has changed in the past twenty years.
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4.5 Appendix

Figure 4.1: Parametric Bootstrap Confidence Intervals - TVGARCH(1,1)-
in-mean - Epanechnikov kernel
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λt λ̂t LowerBound UpperBound

Figure 4.1 plots confidence intervals (90%, 95% and 99%) computed using the
empirical percentiles obtained with the parametric bootstrap discussed in Sec-
tion 4.2. The plot on the left hand side depicts the 90% confidence interval,
whereas the graphs on the center and on the right hand side display the 95%
and 99% confidence intervals, respectively. We generate the TVGARCH(1,1)-in-
mean model defining λt as in (4.5) and setting the parameters in the conditional
variance equation as ω = 0.01, α = 0.05 and β = 0.90. We perform 1000 repli-
cations in the bootstrap algorithm. Estimates of the time-varying risk premium
parameters, λ̂t, are computed using the NL-ILS estimator computed with the
Epanechnikov kernel function as in (4.15).
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Figure 4.2: Wild Bootstrap Confidence Intervals - TVGARCH(1,1)-in-
mean - Epanechnikov kernel

0 500 1000 1500 2000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 500 1000 1500 2000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 500 1000 1500 2000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

λt λ̂t LowerBound UpperBound

Figure 4.2 plots confidence intervals (90%, 95% and 99%) computed using the
empirical percentiles obtained with the wild bootstrap discussed in Section 4.2.
The plot on the left hand side depicts the 90% confidence interval, whereas the
graphs on the center and on the right hand side display the 95% and 99% con-
fidence intervals, respectively. We generate the TVGARCH(1,1)-in-mean model
defining λt as in (4.5) and setting the parameters in the conditional variance
equation as ω = 0.01, α = 0.05 and β = 0.90. We perform 1000 replica-
tions in the bootstrap algorithm. Estimates of the time-varying risk premium
parameters, λ̂t, are computed using the NL-ILS estimator computed with the
Epanechnikov kernel function as in (4.15).
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Figure 4.3: Parametric Bootstrap Confidence Intervals - TVGARCH(1,1)-
in-mean - Gaussian kernel
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Figure 4.3 plots confidence intervals (90%, 95% and 99%) computed using the
empirical percentiles obtained with the parametric bootstrap discussed in Sec-
tion 4.2. The plot on the left hand side depicts the 90% confidence interval,
whereas the graphs on the center and on the right hand side display the 95%
and 99% confidence intervals, respectively. We generate the TVGARCH(1,1)-in-
mean model defining λt as in (4.5) and setting the parameters in the conditional
variance equation as ω = 0.01, α = 0.05 and β = 0.90. We perform 1000 repli-
cations in the bootstrap algorithm. Estimates of the time-varying risk premium
parameters, λ̂t, are computed using the NL-ILS estimator computed with the
Gaussian kernel function as in (4.16).
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Figure 4.4: Wild Bootstrap Confidence Intervals - TVGARCH(1,1)-in-
mean - Gaussian kernel
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Figure 4.4 plots confidence intervals (90%, 95% and 99%) computed using the
empirical percentiles obtained with the wild bootstrap discussed in Section 4.2.
The plot on the left hand side depicts the 90% confidence interval, whereas the
graphs on the center and on the right hand side display the 95% and 99% con-
fidence intervals, respectively. We generate the TVGARCH(1,1)-in-mean model
defining λt as in (4.5) and setting the parameters in the conditional variance
equation as ω = 0.01, α = 0.05 and β = 0.90. We perform 1000 replications in
the bootstrap algorithm. Estimates of the time-varying risk premium parame-
ters, λ̂t, are computed using the NL-ILS estimator computed with the Gaussian
kernel function as in (4.16).
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Figure 4.5: Parametric Bootstrap Confidence Intervals - TVGARCH(1,1)-
in-mean - flat kernel
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Figure 4.5 plots confidence intervals (90%, 95% and 99%) computed using the
empirical percentiles obtained with the parametric bootstrap discussed in Sec-
tion 4.2. The plot on the left hand side depicts the 90% confidence interval,
whereas the graphs on the center and on the right hand side display the 95%
and 99% confidence intervals, respectively. We generate the TVGARCH(1,1)-in-
mean model defining λt as in (4.5) and setting the parameters in the conditional
variance equation as ω = 0.01, α = 0.05 and β = 0.90. We perform 1000 repli-
cations in the bootstrap algorithm. Estimates of the time-varying risk premium
parameters, λ̂t, are computed using the NL-ILS estimator computed with the
flat kernel function as in (4.14).
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Figure 4.6: Wild Bootstrap Confidence Intervals - TVGARCH(1,1)-in-
mean - flat kernel
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Figure 4.6 plots confidence intervals (90%, 95% and 99%) computed using the
empirical percentiles obtained with the wild bootstrap discussed in Section 4.2.
The plot on the left hand side depicts the 90% confidence interval, whereas the
graphs on the center and on the right hand side display the 95% and 99% con-
fidence intervals, respectively. We generate the TVGARCH(1,1)-in-mean model
defining λt as in (4.5) and setting the parameters in the conditional variance
equation as ω = 0.01, α = 0.05 and β = 0.90. We perform 1000 replications in
the bootstrap algorithm. Estimates of the time-varying risk premium parame-
ters, λ̂t, are computed using the NL-ILS estimator computed with the flat kernel
function as in (4.14).
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Figure 4.7: Time-varying risk premium estimation - weekly data

1960 1980 2000 2011
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

1960 1980 2000 2011
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1960 1980 2000 2011
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

λ̂t 90% Lower Bound 90% Upper Bound

Figure 4.7 plots estimates of λt and the 90% confidence intervals computed us-
ing the empirical percentiles obtained with the parametric bootstrap discussed
in Section 4.2.1. We perform 1000 replications in the bootstrap algorithm. The
plot on the left hand side depicts estimates of the time-varying risk premium
parameters computed using the NL-ILS estimator computed with the Epanech-
nikov kernel function, whereas the graphs on the center and on the right hand
side display estimates of λt computed using the NL-ILS estimator computed with
the Gaussian and the flat kernel functions, respectively. We fix the bandwidth
parameter equal to T 0.5.
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Figure 4.8: Time-varying risk premium estimation - weekly data
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Figure 4.8 plots estimates of λt and the 90% confidence intervals computed us-
ing the empirical percentiles obtained with the parametric bootstrap discussed
in Section 4.2.1. We perform 1000 replications in the bootstrap algorithm. The
plot on the left hand side depicts estimates of the time-varying risk premium
parameters computed using the NL-ILS estimator computed with the Epanech-
nikov kernel function, whereas the graphs on the center and on the right hand
side display estimates of λt computed using the NL-ILS estimator computed with
the Gaussian and the flat kernel functions, respectively. We fix the bandwidth
parameter equal to T 0.6.
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Figure 4.9: Time-varying risk premium estimation and conditional stan-
dard deviation - weekly data
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Figure 4.9 plots, on the left axis, estimates of λt and the 90% confidence in-
tervals computed using the empirical percentiles obtained with the parametric
bootstrap discussed in Section 4.2.1. On the right axis, we plot, in light blue,
the conditional standard deviation computed using the TVGARCH(1,1)-in-mean
specification. We perform 1000 replications in the bootstrap algorithm. The plot
on the left hand side depicts estimates of the time-varying risk premium param-
eters computed using the NL-ILS estimator computed with the Epanechnikov
kernel function, whereas the graphs on the center and on the right hand side
display estimates of λt computed using the NL-ILS estimator computed with
the Gaussian and the flat kernel functions, respectively. We fix the bandwidth
parameter equal to T 0.6.
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Figure 4.10: Time-varying risk premium estimation - monthly data
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Figure 4.10 plots estimates of λt and the 90% confidence intervals computed us-
ing the empirical percentiles obtained with the parametric bootstrap discussed
in Section 4.2.1. We perform 1000 replications in the bootstrap algorithm. The
plot on the left hand side depicts estimates of the time-varying risk premium
parameters computed using the NL-ILS estimator computed with the Epanech-
nikov kernel function, whereas the graphs on the center and on the right hand
side display estimates of λt computed using the NL-ILS estimator computed with
the Gaussian and the flat kernel functions, respectively. We fix the bandwidth
parameter equal to T 0.5.

206



Figure 4.11: Time-varying risk premium estimation - monthly data
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Figure 4.11 plots estimates of λt and the 90% confidence intervals computed us-
ing the empirical percentiles obtained with the parametric bootstrap discussed
in Section 4.2.1. We perform 1000 replications in the bootstrap algorithm. The
plot on the left hand side depicts estimates of the time-varying risk premium
parameters computed using the NL-ILS estimator computed with the Epanech-
nikov kernel function, whereas the graphs on the center and on the right hand
side display estimates of λt computed using the NL-ILS estimator computed with
the Gaussian and the flat kernel functions, respectively. We fix the bandwidth
parameter equal to T 0.6.
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Figure 4.12: Time-varying risk premium estimation and conditional stan-
dard deviation - monthly data
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Figure 4.12 plots, on the left axis, estimates of λt and the 90% confidence in-
tervals computed using the empirical percentiles obtained with the parametric
bootstrap discussed in Section 4.2.1. On the right axis, we plot, in light blue,
the conditional standard deviation computed using the TVGARCH(1,1)-in-mean
specification. We perform 1000 replications in the bootstrap algorithm. The plot
on the left hand side depicts estimates of the time-varying risk premium param-
eters computed using the NL-ILS estimator computed with the Epanechnikov
kernel function, whereas the graphs on the center and on the right hand side
display estimates of λt computed using the NL-ILS estimator computed with
the Gaussian and the flat kernel functions, respectively. We fix the bandwidth
parameter equal to T 0.6.
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Table 4.1: Bootstrap performance: Coverage probability and RMSD

Parametric Bootstrap Wild Bootstrap
CI Epanechnikov Gaussian Flat Epanechnikov Gaussian Flat

90% 0.932
(0.386)

0.898
(0.384)

0.937
(0.388)

0.939
(0.388)

0.846
(0.386)

0.871
(0.384)

95% 0.960
(0.463)

0.955
(0.458)

0.989
(0.463)

0.975
(0.464)

0.912
(0.458)

0.937
(0.457)

99% 0.995
(0.616)

0.981
(0.610)

1.000
(0.618)

1.000
(0.604)

0.983
(0.598)

0.996
(0.598)

All measures are computed using the kernel based NL-ILS estimator. We generate a
TVGARCH(1,1)-in-mean models as in (4.9) and (4.11), where ηt ∼ N (0, 1). The time-varying
parameter λt is set to be a bounded random walk process as in (4.5) with c = 0.9. We model ξt
as a AR(1) process such that ξt = ρξt−1 + ςt, where ρ = 0.7 and ςt ∼ N (0, 0.02). The parameters
governing the conditional variance equation is set to be equal to φ = (0.01, 0.05, 0.9)′. We set the
number of bootstrap replications B equal to 1000 and H = T 0.5. We report the coverage probabil-
ity associated with different CI’s. Measures inside the brackets are the root mean squared distance
(RMSD) between the upper and the lower bound defined by the confidence interval computed using
the bootstrap framework.
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Table 4.2: TVGARCH(1,1)-in-mean: λt as a bounded random walk

λt RMSE Mean
Bandwidth - H Kernel RMSE Corr ω α β ω α β

T 0.2 Epanechnikov 0.39 0.60 0.01 0.03 0.10 0.02 0.07 0.84
T 0.2 Gaussian 0.25 0.71 0.01 0.02 0.06 0.01 0.05 0.88
T 0.2 Flat 0.36 0.61 0.01 0.02 0.07 0.01 0.06 0.86

T 0.3 Epanechnikov 0.26 0.72 0.01 0.02 0.05 0.01 0.05 0.88
T 0.3 Gaussian 0.18 0.81 0.01 0.02 0.05 0.01 0.05 0.89
T 0.3 Flat 0.24 0.73 0.01 0.02 0.05 0.01 0.05 0.89

T 0.4 Epanechnikov 0.18 0.80 0.01 0.02 0.05 0.01 0.05 0.90
T 0.4 Gaussian 0.13 0.86 0.01 0.02 0.06 0.01 0.05 0.90
T 0.4 Flat 0.17 0.81 0.01 0.02 0.05 0.01 0.05 0.90

T 0.5 Epanechnikov 0.13 0.86 0.01 0.02 0.05 0.01 0.05 0.90
T 0.5 Gaussian 0.11 0.88 0.01 0.02 0.05 0.01 0.05 0.90
T 0.5 Flat 0.13 0.86 0.01 0.02 0.05 0.01 0.05 0.90

T 0.6 Epanechnikov 0.12 0.88 0.01 0.02 0.06 0.01 0.05 0.89
T 0.6 Gaussian 0.13 0.86 0.01 0.02 0.06 0.01 0.05 0.89
T 0.6 Flat 0.12 0.86 0.01 0.02 0.06 0.01 0.05 0.89

T 0.7 Epanechnikov 0.13 0.85 0.01 0.02 0.05 0.01 0.05 0.90
T 0.7 Gaussian 0.16 0.79 0.01 0.02 0.05 0.01 0.05 0.90
T 0.7 Flat 0.15 0.81 0.01 0.02 0.05 0.01 0.05 0.90

T 0.8 Epanechnikov 0.17 0.77 0.01 0.02 0.05 0.01 0.05 0.89
T 0.8 Gaussian 0.21 0.68 0.01 0.02 0.05 0.01 0.05 0.89
T 0.8 Flat 0.19 0.67 0.01 0.02 0.05 0.01 0.05 0.89

All measures are computed using the kernel based NL-ILS estimator. We generate a TVGARCH(1,1)-
in-mean models as in (4.9) and (4.11), where ηt ∼ N (0, 1). The time-varying parameter λt is set to be
a bounded random walk process as in (4.5) with c = 0.9. We model ξt as a AR(1) process such that
ξt = ρξt−1 + ςt, where ρ = 0.7 and ςt ∼ N (0, 0.02). The parameters governing the conditional variance
equation is set to be equal to φ = (0.01, 0.05, 0.9)′. MSE and RMSE account for meas squared error,

root mean squared error, respectively, whereas Corr is the point-wise correlation between λt and λ̂t.
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Table 4.3: TVGARCH(1,1)-in-mean: λt as an AR(1) process

λt RMSE Mean
Bandwidth - H Kernel RMSE Corr ω α β ω α β

T 0.2 Epanechnikov 0.40 0.33 0.01 0.02 0.09 0.02 0.07 0.84
T 0.2 Gaussian 0.30 0.31 0.01 0.02 0.06 0.01 0.05 0.88
T 0.2 Flat 0.38 0.31 0.01 0.02 0.07 0.01 0.06 0.86

T 0.3 Epanechnikov 0.30 0.30 0.01 0.02 0.06 0.01 0.05 0.89
T 0.3 Gaussian 0.25 0.25 0.01 0.02 0.05 0.01 0.05 0.90
T 0.3 Flat 0.29 0.25 0.01 0.02 0.05 0.01 0.05 0.90

T 0.4 Epanechnikov 0.26 0.23 0.01 0.02 0.05 0.01 0.05 0.90
T 0.4 Gaussian 0.24 0.18 0.01 0.02 0.06 0.01 0.05 0.90
T 0.4 Flat 0.26 0.17 0.01 0.02 0.05 0.01 0.04 0.90

T 0.5 Epanechnikov 0.24 0.16 0.01 0.02 0.06 0.01 0.05 0.90
T 0.5 Gaussian 0.23 0.12 0.01 0.02 0.06 0.01 0.05 0.90
T 0.5 Flat 0.24 0.11 0.01 0.02 0.06 0.01 0.05 0.90

T 0.6 Epanechnikov 0.23 0.10 0.01 0.02 0.06 0.01 0.05 0.90
T 0.6 Gaussian 0.22 0.08 0.01 0.02 0.06 0.01 0.05 0.89
T 0.6 Flat 0.23 0.07 0.01 0.02 0.06 0.01 0.05 0.89

T 0.7 Epanechnikov 0.23 0.07 0.01 0.02 0.05 0.01 0.05 0.90
T 0.7 Gaussian 0.22 0.06 0.01 0.02 0.05 0.01 0.05 0.90
T 0.7 Flat 0.23 0.05 0.01 0.02 0.05 0.01 0.05 0.90

T 0.8 Epanechnikov 0.22 0.05 0.01 0.02 0.06 0.01 0.05 0.90
T 0.8 Gaussian 0.22 0.04 0.01 0.02 0.06 0.01 0.05 0.90
T 0.8 Flat 0.22 0.03 0.01 0.02 0.06 0.01 0.05 0.90

All measures are computed using the kernel based NL-ILS estimator. We generate a TVGARCH(1,1)-
in-mean models as in (4.9) and (4.11), where ηt ∼ N (0, 1). The time-varying parameter λt is set to
be covariance stationary process. We model λt as a AR(1) process such that λt = ρλt−1 + ςt, where
ρ = 0.9 and ςt ∼ N (0, 0.02). The parameters governing the conditional variance equation is set to be
equal to φ = (0.01, 0.05, 0.9)′. MSE and RMSE account for meas squared error, root mean squared

error, respectively, whereas Corr is the point-wise correlation between λt and λ̂t.
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Chapter 5

Conclusion

This thesis covers four different branches of the applied and financial econo-

metrics literature, having the use of iterative estimators as a bridge linking

these topics. As research outputs, we present contributions on both em-

pirical and econometric theory fields. Regarding the methodological con-

tributions, we adopt three variants of iterative estimators (the iterative

least squares (IOLS), the nonlinear iterative least squares (NL-ILS) and

the kernel based NL-ILS estimator) to overcome estimation issues related

with vector autoregressive moving average (VARMA) and volatility mod-

els, such as GARCH, GARCH-in-mean and TVGARCH-in-mean models.

We establish the consistency and the asymptotic distribution of the IOLS

and NL-ILS estimators considering univariate specifications (ARMA(1,1)

and GARCH(1,1)) and discuss the validity of high level assumptions re-

quired to extend the theoretical results to more complex specifications

(VARMA, GARCH-in-mean and TVGARCH-in-mean models). In general

lines, our empirical contributions shed light on the validity of VARMA mod-

els as powerful tools to improve forecast accuracy when dealing with large
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datasets. Regarding contributions to the financial econometrics literature,

we document that estimates of the risk premium parameter obtained with

the NL-ILS estimator are statistically significant when the CRSP index is

used. We also find evidences that the risk premium parameter is time-

varying, suggesting that this variable tracks and anticipates bear market

phases and business cycles.

More precisely, Chapter 2 addresses the issue of forecasting key macroe-

conomic variables using large datasets using VARMA models. We overcome

the estimation problem associated with the use of maximum likelihood

estimator on this class of models by adopting the IOLS estimator. We

establish the consistency and the asymptotic distribution considering the

univariate ARMA(1,1) model and we argue that this result can be extended

to VARMA models. We present an extensive Monte Carlo study showing

that the IOLS estimator is feasible and presents good performance in finite

sample even when dealing with high dimensional models, such as when the

number of variables is equal to twenty. Furthermore, we show that under

such dimensions, the MLE estimator is no longer a feasible alternative. We

present promising results, showing that VARMA models estimated with

the IOLS estimator are able to outperform the benchmark competitor (the

AR(1) specification) under a variety of scenarios.

Chapter 3 caries contribution on the financial econometrics field, cov-

ering theoretical and empirical aspects. Firstly, we proposes a new robust

estimator for GARCH-type models: the nonlinear iterative least squares

(NL-ILS). We show that the NL-ILS estimator is generic enough to ac-

commodate a variety of volatility models generally adopted in the litera-

ture. Furthermore, we show that the NL-ILS estimator is especially useful
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on specifications where errors have some degree of dependence over time.

This turns to be a remarkable point on the financial econometrics litera-

ture, since we show that the NL-ILS relaxes the assumption that the dis-

turbances associated with the volatility models are martingale difference

sequence processes. We illustrate the NL-ILS estimator by providing algo-

rithms that consider the GARCH(1,1), weak-GARCH(1,1), GARCH(1,1)-

in-mean and RealGARCH(1,1)-in-mean models. We establish the consis-

tency and asymptotic distribution of the NL-ILS estimator, in the case

of the GARCH(1,1) model under assumptions that are compatible with

the QMLE estimator. The consistency result is extended to the weak-

GARCH(1,1) model and a further extension of the asymptotic results to

the GARCH(1,1)-in-mean case is also discussed. A Monte Carlo study pro-

vides evidences that the NL-ILS estimator is consistent and outperforms the

MLE benchmark in a variety of specifications. Moreover, when the condi-

tional variance is misspecified, the MLE estimator delivers biased estimates

of the parameters in the mean equation, whereas the NL-ILS estimator does

not. The empirical application investigates the risk premium on the CRSP,

S&P500 and S&P100 indices considering different sampling frequencies. By

adopting the NL-ILS estimator, we document the risk premium parameter

is statistically significant only for the CRSP index. We argue that this

result comes from the wider composition of the CRPS index, resembling

the market more accurately, when compared to the S&P500 and S&P100

indices. This finding holds on daily, weekly and monthly frequencies and

it is corroborated by a series of robustness checks.

Finally, Chapter 4 addresses the issue of misspecification of the risk

premium function. Differently from the semiparametric GARCH-in-mean
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literature, we assume linearity on the relation between the conditional stan-

dard deviation and the risk premium parameter, but we allow the latter to

be time-varying and evolve as a random walk process. To accommodate this

feature, we introduce the time-varying GARCH-in-mean (TVGARCH-in-

mean) model and show that the time-varying risk premium parameter, λt,

can be estimated using the kernel based NL-ILS estimator. A Monte Carlo

study shows that the kernel based NL-ILS estimator provides accurate esti-

mates of λt. We also describe a bootstrap strategy to compute the empirical

confidence intervals and we show that they present good coverage proba-

bility. Using weekly and monthly data on the excess returns computed

using the CRSP index, we find evidences that the risk premium parame-

ter is time-varying. On the monthly frequency, estimates of λt turn to be

statistically different from zero in almost half of the observations. Point-

wise analyses using weekly estimates of λt show that the time-varying risk

premium parameter picks on periods prior to financial crises and economic

downturn and gets negative when market volatility increases substantially.

219



Bibliography

Amemiya, T. (1985): Advanced Econometrics. Harvard University Press.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys

(2003): “Modelling and Forecasting Realized Volatility,” Econometrica,

71(2), 579–625.

Asai, M., M. Mcaleer, and M. C. Medeiros (2011): “Asymmetry

and Long Memory in Volatility Modeling,” Journal of Financial Econo-

metrics, 10(3), 495–512, Advance Access published.

Athanasopoulos, G., D. Poskitt, and F. Vahid (2007): “Two canon-

ical VARMA forms: Scalar component models vis--vis the Echelon form,”

Monash Econometrics and Business Statistics Working Papers 10/07,

Monash University, Department of Econometrics and Business Statis-

tics.

Athanasopoulos, G., and F. Vahid (2008): “VARMA versus VAR for

Macroeconomic Forecasting,” Journal of Business & Economic Statis-

tics, 26(2), 237–252.

Baillie, R. T., and R. P. DeGennaro (1990): “Stock Returns and

Volatility,” Journal of Financial and Quantitative Analysis, 25, 203–214.

220



Banbura, M., D. Giannone, and L. Reichlin (2007): “Bayesian

VARs with Large Panels,” CEPR Discussion Papers 6326, C.E.P.R. Dis-

cussion Papers.

Bernanke, B., J. Boivin, and P. S. Eliasz (2005): “Measuring the

Effects of Monetary Policy: A Factor-augmented Vector Autoregressive

(FAVAR) Approach,” The Quarterly Journal of Economics, 120(1), 387–

422.

Bollerslev, T. (1986): “Generalised Autoregressive Condidional Het-

eroskedasticity,” Journal of Econometrics, 31, 307–327.

(2008): “Glossary to ARCH (GARCH),” Discussion paper, School

of Economics and Management, University of Aarhus.

Bollerslev, T., R. Y. Chou, and K. F. Kroner (1992): “ARCH

modeling in finance: A review of the theory and empirical evidence,”

Journal of Econometrics, 52, 5–59.

Burden, R. L., and J. D. Faires (1993): Numerical Analysis. PWS-

Kent Pub. Co.

Camba-Mendez, G., and G. Kapetanios (2004): “Bootstrap Statisti-

cal Tests of Rank Determination for System Identification,” IEEE Trans-

actions on Automatic Control, 49, 238–243.

Campbell, J. Y., and L. Hentschel (1992): “No news is good news:

An asymmetric model of changing volatility in stock returns,” Journal

of Financial Economics, 31, 281–318.

221



Carriero, A., G. Kapetanios, and M. Marcellino (2008): “Fore-

casting with Dynamic Models using Shrinkage-based Estimation,” Work-

ing Papers 635, Queen Mary, University of London, School of Economics

and Finance.

(2011): “Forecasting large datasets with Bayesian reduced rank

multivariate models,” Journal of Applied Econometrics, 26, 735–761.

Christensen, B. J., C. M. Dahl, and E. M. Iglesias (2012): “Semi-

parametric inference in a GARCH-in-mean model,” Journal of Econo-

metrics, 167, 458–472.

Conrad, C., and E. Mammen (2008): “Nonparametric Regression on

Latent Covariates with an Application to Semiparametric GARCH-in-

Mean Models,” Discussion paper, University of Heilderberg.

Dahl, C. M., and E. M. Iglesias (2009): “Modelling the Volatility-

Return Trade-off when Volatility may be Nonstationary,” Discussion

paper, Center for Research in Econometric Analysis of Time Series -

CREATES.

Davidson, J. (1994): Stochastic Limit Theory. An Introduction for Econo-

metricians. Oxford University Press.

De Mol, C., D. Giannone, and L. Reichlin (2006): “Forecasting

Using a Large Number of Predictors: Is Bayesian Regression a Valid

Alternative to Principal Components?,” CEPR Discussion Papers 5829,

C.E.P.R. Discussion Papers.

Diebold, F. X., and R. S. Mariano (1995): “Comparing Predictive

Accuracy,” Journal of Business & Economic Statistics, 13, 253–263.

222



Ding, Z., C. W. J. Granger, and R. F. Engle (1993): “A long

memory property of stock market returns and a new model,” Journal of

Empirical Finance, 1, 83–106.

Doan, T., R. Litterman, and C. Sims (1984): “Forecasting and con-

ditional projection using realistic prior distributions,” Econometric Re-

views, 3(1), 1–100.

Dominitz, J., and R. Sherman (2005): “Some Convergence Theory for

Iterative Estimation Procedures with an Application to Semiparametric

Estimation,” Econometric Theory, 21, 838–863.

Drost, F. C., and T. E. Nijman (1993): “Temporal Aggregation of

Garch Processes,” Econometrica, 61(4), 909–927.

Drost, F. C., and B. J. M. Werker (1996): “Closing the GARCH

gap: Continuous time GARCH modeling,” Journal of Econometrics, 74,

31–57.

Engle, R. (2002): “New Frontiers for ARCH models,” Journal of Applied

Econometrics, 17, 425–446.

Engle, R. F. (1982): “Autoregressive Conditional Heteroscedasticity

with Estimates of the Variance of United Kingdom Inflation,” Econo-

metrica, 50, 987–1007.

Engle, R. F., D. M. Lilien, and R. P. Robins (1987): “Estimating

Time Varying Risk Premia in the Term Structure: The Arch-M Model,”

Econometrica, 55, 391–407.

223



Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2000): “The

Generalised Dynamic Factor Model: Identification and Estimation,” The

Review of Economics and Statistics, 82(4), 540–554.

Francq, C., and J.-M. Zakoian (2000): “Estimating Weak Garch Rep-

resentations,” Econometric Theory, 16, 692–728.

(2008): “A Tour in the Asymptotic Theory of GARCH Estima-

tion,” Discussion Paper 2008-03, CREST.

Francq, C., and J.-M. Zakoian (2010): GARCH Models: Structure,

Statistical Inference and Financial Appliations. John Wiley & Sons Ltd.

French, K. R., G. Schwert, and R. F. Stambaugh (1987): “Ex-

pected stock returns and volatility,” Journal of Financial Economics,

19, 3–29.

Ghysels, E., P. Santa-Clara, and R. Valkanov (2005): “There is

a risk-return trade-off after all,” Journal of Financial Economics, 76,

509–548.

Giraitis, L., G. Kapetanios, and T. Yates (2010): “Inference on

stochastic time-varying coefficient models,” Discussion paper.

Glosten, L. R., R. Jagannathan, and D. E. Runkle (1993): “On

the Relation between the Expected Value and the Volatility of the Nom-

inal Excess Return on Stocks,” The Journal of Finance, 48, 1779–1801.

Greene, W. H. (2008): Econometric Analysis - Sixth Edition. Pearson

Education.

Hamilton, J. (1994): Time Series Analysis. Princeton University Press.

224



Hannan, E. J., and L. Kavalieris (1984a): “A Method for

Autoregressive-Moving Average Estimation,” Biometrika, 71(2), 273–

280.

(1984b): “Multivariate Linear Time Series Models”. Advances in

Applied Probability,” Advances in Applied Probability, 16(3), 492–561.

Hansen, P. R., Z. Huang, and H. H. Shek (2012): “Realized GARCH:

A Joint Model for Returns and Realized Measures of Volatility,” Journal

of Applied Econometrics, 27, 877–906.

Judd, K. L. (1998): Numerical Methods in Economics. MIT Press.

Kapetanios, G. (2003): “A Note on an Iterative Least Squares Estima-

tion Method for ARMA and VARMA models,” Economics Letters, 79(3),

305–312.

(2008): “Bootstrap-based tests for deterministic time-varying co-

efficients in regression models,” Computational Statistics & Data Analy-

sis, 53, 534–45.

Kapetanios, G., V. Labhard, and S. Price (2006): “Forecasting

using predictive likelihood model averaging,” Economics Letters, 91(3),

373–379.

Lettau, M., and S. C. Ludvigson (2010): Handbook of Financial

Econometrics, vol. 1. Elsevier B.V.

Linton, O., and B. Perron (2003): “The Shape of the Risk Premium:

Evidence From a Semiparametric Generalised Autoregressive Condid-

ional Heteroscedasticity Model,” Journal of Business & Economic Statis-

tics, 21, 354–367.

225



Linton, O., and A. Sancetta (2009): “Consistent estimation of a gen-

eral nonparametric regression function in time series,” Journal of Econo-

metrics, 152, 70–78.

Litterman, R. B. (1986): “Forecasting with Bayesian Vector Autore-

gressions: Five Years of Experience,” Journal of Business & Economic

Statistics, 4(1), pp. 25–38.

Lütkepohl, H. (2007): New Introduction to Multivariate Time Series

Analysis. Springer- Verlag.

Mcaleer, M., and M. C. Medeiros (2008): “Realized Volatility: A

Review,” Econometric Reviews, 27, 10–45.

Merton, R. C. (1973): “An Intertemporal Capital Asset Pricing Model,”

Econometrica, 41(5), 867–887.

Nelson, D. B. (1991): “Conditional Heteroskedasticity in Asset Returns:

A New Approach,” Econometrica, 59, 347–370.

Newey, W. K., and D. McFadden (1994): “Large sample estimation

and hypothesis testing,” in Handbook of Econometrics, ed. by R. F. En-

gle, and D. McFadden, vol. 4 of Handbook of Econometrics, chap. 36, pp.

2111–2245. Elsevier.

Ng, S., and P. Perron. (1995): “Unit Root Tests in ARMA Models

with Data-Dependent Methods for the Selection of the Truncation Lag,”

Journal of the American Statistical Association, 90, 268–281.

Orbe, S., E. Ferreira, and J. Rodriguez-Poo (2005): “Nonpara-

metric estimation of time varying parameters under shape restrictions,”

Journal of Econometrics, 126, 53–77.

226



Pagan, A. R., and Y. S. Hong (1990): “Non-Parametric Estimation and

the Risk Premium,” in Nonparametric and Semiparametric Methods in

Econometrics and Statistics: Proceedings of the Fifth Nternational Sym-

posium in Economic Theory and Econometrics, ed. by W. A. Barnett,

J. Powell, and G. Tauchen, pp. 51–75. Cambridge University Press.

Robinson, P. (1989): “Nonparametric Estimation of Time-Varying Pa-

rameters,” in Statistics Analysis and Forecasting of Economic Structural

Change., ed. by P. Hackl, chap. 15, pp. 253–264. Springer, Berlin.

Rossi, A., and A. Timmermann (2010): “What is the Shape of the Risk-

Return Relation?,” Discussion paper, The Rady School of Management,

University of California, San Diego.

Shepard, N., and K. Sheppard (2010): “Realising the future: forecast-

ing with high frequency based volatility (HEAVY) models,” Journal of

Applied Econometrics, 25, 197–231.

Sims, C. A. (1980): “Macroeconomics and Reality,” Econometrica, 48,

1–48.

Stock, J. H., and M. W. Watson (2002): “Forecasting Using Prin-

cipal Components From a Large Number of Predictors,” Journal of the

American Statistical Association, 97(460), 1167–1179.

Stock, J. H., and M. W. Watson (2005): “Implications of Dynamic

Factor Models for VAR Analysis,” NBER Working Papers 11467, Na-

tional Bureau of Economic Research, Inc.

Tibshirani, R. (1996): “Regression Shrinkage and Selection via the

227



Lasso,” Journal of the Royal Statistical Society. Series B (Methodologi-

cal), 58(1), pp. 267–288.

Veronesi, P. (2000): “How Does Information Quality Affect Stock Re-

turns,” Journal of Finance, 55, 807–837.

228


	Introduction
	Outline of Thesis

	Forecasting Medium and Large Datasets with Vector Autoregressive Moving Average (VARMA) Models
	Introduction
	VARMA Models and Estimation Procedures 
	Theoretical Properties 
	Monte Carlo Study 
	Empirical Application 
	Data and Setup 
	Results

	Conclusion 
	Appendix

	The Nonlinear Iterative Least Squares (NL-ILS) Estimator: An Application to Volatility Models
	Introduction
	Asymptotic theory: main results
	GARCH(1,1)
	GARCH(1,1)-in-mean

	NL-ILS estimation procedure
	GARCH(1,1) and weak GARCH(1,1) models
	GARCH(1,1)-in-mean
	RealGARCH(1,1)-in-mean

	Monte Carlo Study
	Robustness

	Empirical application
	Empirical application: Robustness

	Conclusion
	Appendix

	Inference on GARCH-in-mean models with time-varying coefficients: assessing risk premium over time
	Introduction
	The time-varying GARCH-in-mean specification
	TVGARCH(1,1)-in-mean

	Numerical Illustrations
	Monte Carlo
	Empirical results

	Conclusion
	Appendix

	Conclusion

