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Abstract—With the use of power domain non-orthogonal
multiple access (NOMA) and backscatter communication (BAC),
future sixth-generation ultra massive machine-type communica-
tions networks are expected to connect large-scale internet of
things (IoT) devices. However, due to NOMA co-channel inter-
ference, the power allocation to large-scale IoT devices becomes
critical. The existing convex optimization-based solutions are
highly complex, and therefore it is difficult to find the optimal
solution to the resource allocation problem in a highly dynamic
environment. To alleviate this problem, this work develops an
efficient model-free BAC approach with a NOMA system to assist
the base station with complex resource scheduling tasks in a
dynamic BAC-NOMA IoT network. The objective is to increase
the sum rate of uplink backscatter devices. More specifically, we
jointly optimize the transmit power of downlink IoT users and
the reflection coefficient of uplink backscatter devices using a
reinforcement learning algorithm, namely, the soft-actor critic
(SAC) algorithm. With the advantage of entropy regularization,
the SAC agent learns to explore and exploit the dynamic BAC-
NOMA network efficiently. The proposed algorithm ensures the
quality of service (QoS) requirements of downlink users while
enhancing the sum rate of uplink backscatter devices. Numerical
results reveal the superiority of the proposed algorithm over
the conventional optimization (benchmark) approach in terms of
the average sum rate of uplink backscatter devices. We show
that the network with multiple downlink users obtained a higher
reward with respect to a large number of iterations compared
to episodes with a lower number of iterations. Moreover, the
proposed algorithm outperforms the benchmark scheme and
BAC with orthogonal multiple access in terms of the average
sum rate with the different number of backscatter devices.
Additionally, we show that our proposed algorithm enhances
sum rate efficiency with respect to different self-interference
coefficients and different noise levels. Finally, we evaluate and
show the sum rate efficiency of the proposed algorithm with
different QoS requirements and cell radii.

Index Terms—Backscatter communications, non-orthogonal
multiple access, resource allocation, reinforcement learning, soft
actor critic.
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I. INTRODUCTION

The Internet of things (IoT) is one of the main use cases of

ultra massive machine-type communications (umMTC), which

aims to connect large-scale short-packet sensors or devices

in sixth-generation (6G) systems [1]. This rapid increase in

connected devices requires efficient utilization of limited spec-

trum resources. To this end, non-orthogonal multiple access

(NOMA) is considered a promising solution due to its potential

for massive connectivity over the same time/frequency re-

source block (RB)[2]. To achieve this, NOMA assigns different

power levels to users based on their channel gains. To separate

or decode the multiplexed signals, successive interference

cancellation (SIC) has been used on the receiver side.

Among the others, energy efficiency is a key problem, es-

pecially for applications where batteries are costly or difficult

to replace. For example, sensors are deployed in radioactive

areas, hidden in walls, and hidden in pressurized pipes.

Therefore, for such scenarios, energy cooperation schemes,

such as simultaneous wireless information and power transfer

(SWIPT), are proposed. SWIPT dynamically enables low-

energy or energy-constrained devices to be powered through

the signals received from non-energy-constrained devices [3,

4]. Recently, backscatter communication (BAC) [5] with

NOMA was developed as a potential technology to enhance

spectrum and energy efficiency. Unlike traditional wireless

communication systems, BAC does not require any active ra-

dio frequency but instead enables devices to rely on continuous

carrier-wave downlink signals to other devices to modulate

for uplink communication [6]. Since its inception, BAC has

been deployed in various contexts of wireless communication,

such as maximizing resource allocation in a multi-antenna

wireless energy transfer scenario [7], increasing the range of

radio frequency [8], and securing the wireless communication

in backscatter wireless systems [9]. In the BAC framework,

the signals from a non-energy-constrained device (e.g., BS)

can be used to excite the BAC circuits of energy-constrained

devices [10].

However, resource or power allocation in BAC-NOMA

is more challenging and requires sophisticated algorithms.

Therefore, reinforcement learning (RL) with neural networks

commonly called deep reinforcement learning (DRL), has

also been considered a suitable solution to handle dynamic

network parameters (i.e., latency, throughput, and error rate

for a massive number of users, etc.) in single or multi-carrier
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NOMA-based systems for uplink or downlink techniques [11–

14].

A. Related Works

1) Backscatter Communication in Orthogonal Multiple Ac-
cess: Different studies investigating BAC in orthogonal multi-

ple access (OMA) are available in the literature. For example,

the work in [15] investigates the power allocation problem

for cooperative BAC to maximize the system achievable

rate. The authors in [16] provide a closed-form solution for

outage probability. The authors in [17] investigated the trade-

off between data rate and harvested energy via the power-

splitting factor. They also derived a closed-form solution for

outage probability over Rayleigh fading channels. In [18], the

authors developed a multi-level energy detector and calculated

a closed-form expression for the symbol error rate. The authors

in [19] maximized the throughput of BAC-OMA by optimizing

the reflection coefficient and showing the trade-off between

the sleep and active states. In [20], the authors improved the

security and reliability of BAC-OMA by calculating the outage

and intercept probability of the system.

2) Backscatter Communication in Non-orthogonal Multiple
Access: Recently, NOMA enabled BAC-COM has been inves-

tigated in the literature. In [21], a source was equipped with

multiple antennae and a closed-form expression was derived

for outage probability. The authors in [22] derived a closed-

form expression for ergodic capacity and outage probability

in the vehicle to everything network with BAC-NOMA to

enhance the sum capacity of the network. Security issues have

been discussed in [23]. A successful bit rate has been maxi-

mized by optimizing unmanned aerial vehicles (UAVs) altitude

in [24]. The average successful decoding bit was improved in

[25] by optimizing the reflection coefficient selection criteria

in BAC-NOMA networks. System minimum throughput was

maximized by optimizing the time and reflection coefficient

[26]. The outage probability and system throughput are in-

vestigated in [27]. The physical layer security of multiple

input single output was studied in [28]. The authors in [29]

optimized the transmit power and reflection coefficient to

increase the energy efficiency of BAC-NOMA. The reliability

and security of BAC-NOMA were investigated in [30]. To

maximize the sum rate of BAC-NOMA with imperfect SIC,

the joint power and reflection coefficient optimization problem

was investigated in [31].

3) Machine Learning-based Algorithms for Non-orthogonal
Multiple Access Communications: Although there are no

machine learning (ML)-based algorithms proposed for BAC-

NOMA networks, some RL-based solutions are available in the

literature dealing with resource allocation problems. In [11],

the authors applied an ML technique to solve the clustering

and resource allocation problem for NOMA systems. In [32],

the authors applied a ML technique based on Q-learning

(RL technique) to solve resource allocation problems for

the NOMA network based on machine-type communication

systems. It is shown in the results section that the pro-

posed schemes are more effective than conventional methods.

A joint resource allocation scheme for multi-carrier (MC)

NOMA is proposed in [33] as the joint resource allocation

problem to maximize the weighted-sum system throughput.

The simulation outcomes show that the proposed intelligent

scheme is more efficient than existing alternatives in terms of

system throughput and resistance to interference, especially in

a multi-user setting. According to [34], the interplay between

NOMA and learning-based intelligent algorithms is desir-

able for the dynamic performance enhancement of NOMA

networks. Therefore on the ML side a deep deterministic

policy gradient (DDPG) strategy recently used an actor-critic

approach in which an actor network efficiently samples past

memory for an action, and then a critic network maximizes

the probability of making the right decision in the action-

selection process. The soft actor-critic (SAC) approach was

then introduced as a smoothed version of DDPG where an

entropy maximization term is introduced to ensure stability in

efficient sample learning. The main idea behind the entropy

maximization term is to maintain a larger set of possible

actions during the exploration process [35].

B. Motivation and Contributions

The aforementioned works considered more specific and im-

practical scenarios; for example, they considered single down-

link and multiple uplink backscatter users or multiple down-

link and single uplink backscatter users. Moreover, the existing

works used conventional optimization approaches to solve the

resource allocation problem in BAC-NOMA networks, which

do not necessarily address optimization problems in a high

dynamic wireless environment. The conventional optimization

approaches suffer from high complexity issues and lack the

following factors:

• Learning: Due to the absence of learning ability, the

conventional methods for resource optimization problems

need to be re-run from scratch when there is a small

change in the network parameters. Therefore, conven-

tional approaches are not feasible for long-term resource

optimization problems.

• Scalability: Scalability is one of the main challenges

next-generation cellular networks face. The resource op-

timization problem in cellular networks is NP-hard and

combinatorial in nature; therefore, it is mathematically

intractable as the network size increases.

• Long-term optimization: Conventional optimization ap-

proaches lack the ability to provide long-term resource

optimization to the adaptive wireless configuration pa-

rameters and only focus on optimizing instant metrics.

Based on the aforementioned observations, there is a need to

design a general and more practical BAC-NOMA framework

whereby multiple downlink and multiple uplink backscatter

users can communicate simultaneously. Moreover, instead of

conventional optimization methods, ML can be adopted for

NP-hard optimization and the dynamic resource allocation

problem in BAC-NOMA networks. Therefore, in this work,

we use an RL-based algorithm SAC, to handle the dynamic

resource allocation problem in BAC-NOMA to maximize

the throughput of uplink transmissions without affecting the
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downlink users’ quality of service (QoS). To the best of our

knowledge, this is the first algorithm in BAC-NOMA to use

the RL algorithm for resource allocation.

The main contributions of this work are listed below.

• Novel multi-downlink IoT users and multi-uplink

backscatter devices are considered. The objective is to

maximize the sum rate of backscatter users by jointly

optimizing the transmit power for downlink users and

the reflection coefficient for backscatter devices subject

to the QoS requirements of downlink IoT users.

• The optimization problem of maximizing the sum rate is

formulated as a Markov decision process (MDP) problem,

which is extremely difficult and complex to be solved

by conventional optimization approaches. Therefore, the

formulated MDP is solved using the RL-based model-free

SAC algorithm.

• The proposed SAC algorithm uses the online optimiza-

tion strategy with an entropy regularization process to

effectively explore and exploit the dynamic BAC-NOMA

environment for the optimal solution to the formulated

problem.

• Numerical results indicate that the proposed algorithm

outperforms the conventional optimization (benchmark)

method in terms of the achievable sum rate of uplink

backscatter devices. With a large number of iterations,

the network with multiple downlink users obtains a higher

reward. Moreover, with different numbers of backscatter

devices, the proposed algorithm outperforms the bench-

mark scheme and BAC with OMA. Furthermore, our

proposed algorithm improves sum rate efficiency under

different self-interference coefficients and noise levels.

As a final step, we evaluate and demonstrate the sum

rate efficiency of the proposed algorithm with different

QoS requirements and cell radii.

C. Organization

The rest of the paper is organized as follows. Section II

introduces the system model and problem formulation for

the proposed BAC-NOMA network. Section III discusses

the proposed intelligent SAC-based BAC-NOMA algorithm.

Section IV discusses the simulation results and a comparison

with the benchmark scheme. Finally, Section V, summarizes

and concludes the paper. The notations used in this paper are

summarized in Table I.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model for Single Downlink user D0 with multiple
uplink backscatter devices

We considered a BAC-NOMA network1 with a full-duplex

(FD) base station (BS), a downlink user denoted by D0,

and the uplink backscatter devices denoted by Uk, where the

1The practical scenario for backscatter communication can be an agri-
cultural farm or an industrial floor [27], where the backscatter sensors are
deployed to carry out the application-specific tasks. For example, the sensor’s
node can estimate the water stress of a plant by finding the difference in
temperature between the leaf and the atmosphere.

TABLE I
LIST OF NOTATIONS

Symbol Description
FD BS Full-duplex base station

Di i-th Downlink user

Uk k-th Uplink backscatter device

PDi
(t) Power of downlink user Di at time t

ηk(t) BAC reflection coefficient at time t
sDi

(t) Downlink user Di signal at time t
sUk

(t) Uplink backscatter device signal

at time t
sSI(t) Self-interference at time t
nBS Noise

nD0
(t) Noise

hDi(t) Channel gain between BS and Di

at time t
hk(t) Channel gain between BS and Uk

at time t
yBS(t) Signal received by BS at time t
yD(t) Signal received by downlink user

gk(t) Channel gain between Di and Uk

at time t
σ2 Noise (complex Gaussian white noise)

hSI(t) Self-interference channel at time t
ϕ Self-interference coefficient

Id Interference from other downlink users

Iu Signal reflected by uplink backscatter

devices

SINRD0
(t) SINR for downlink user at time t

Rsum(t) Sum rate (uplink backscatter devices)

at time t
RDi(t) Data rate for i-th downlink user at time t

R̂Di
Target data rate for i-th downlink user

integer k ∈ {1, · · · ,K}. We assume in each time slot that both

D0 and K users are simultaneously served. The BS transmits

the downlink signal to the downlink user D0, which excites

the circuits of uplink backscatter devices. Based on the signal

received signal from the BS, the uplink backscatter devices

then modulate and reflect the incident signal via a reflection

coefficient ηk (adjustable parameter and ηk ∈ [0, 1]) [36].

The signal received at the uplink backscatter device Uk from

the BS is denoted by
√
PD0(t)hk(t)sD0(t), where PD0 , hk,

and sD0
are the downlink transmit power for downlink user

D0, the channel gain between the BS and Uk, and the signal

for downlink user D0, respectively. The signal reflected by

device Uk is expressed as
√

PD0
(t)ηk(t)hk(t)sD0

(t)sUk
(t),

where sUk
is the backscatter signal from device Uk. The

channel gain is characterized by large-scale path loss and

small-scale multi-path fading, as considered in [10].

Based on the aforementioned expressions, the combined

signal received at the BS from the Uk uplink backscatter
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devices can be expressed as:

yBS(t) =
UK∑

Uk=1

h2
k(t)

√
PD0

(t)ηk(t)sD0
(t)sUk

(t) + sSI(t) + nBS ,
(1)

where sSI(t) is based on the complex Gaussian distribution

and is defined as sSI ∼ CN (0, ϕPD0
|hSI |2) [37]. The

hSI(t) shows the self-interference channel that is based on

the complex Gaussian distribution, that is hSI ∼ CN (0, 1).
The nBS represents the noise at the BS. The amount of FD

residual self-interference (ϕ) is defined as (0 ≤ ϕ � 1) [10].

At the same time, the downlink user D0 receives the

signal from the BS with added interference from the uplink

backscatter devices, as the downlink user utilizes the same

time slot with the uplink backscatter devices. Therefore, the

signal yD0
received at the downlink user D0 can be given as:

yD0(t) = hD0(t)
√

PD0(t)sD0(t)︸ ︷︷ ︸
Desired Signal

+

UK∑
Uk=1

gk(t)hk(t)
√

PD0(t)ηk(t)sD0(t)sUk
(t)

︸ ︷︷ ︸
Intra-Cell (Uk) Interference

+ nD0︸︷︷︸
Noise

.
(2)

The first part of (2) is the intended signal for user D0

from the BS, and the second part represents the interference

from uplink backscatter devices. hD0(t) denotes the channel

gain between the BS and the downlink user. gk(t) denotes

the channel gain between the downlink user D0 and uplink

backscatter device Uk. The noise is denoted by nD0
.

The sum rate for uplink backscatter devices that is achiev-

able by BAC-NOMA transmission can be given as:

Rsum(t) =

log
(
1 +

∑UK

Uk=1 |hk|4(t)ηk(t)PD0(t)|sD0 |2(t)
ϕ(t)PD0(t)|hSI |2(t) + σ2

)
,

(3)

where in this system model we assume that noise for both BS

and downlink user D0 have the same power; it is denoted as

σ2.

Finally, the data rate for the downlink user is calculated as:

RD0(t) =

log
(
1 +

PD0
(t)|hD0

|2(t)∑UK

Uk=1 |hk|2(t)|gk|2(t)ηk(t)PD0
(t) + σ2

)
.

(4)

B. Network Model for Multiple Downlink Users and Uplink
Backscatter Devices

In this section, we consider a more general scenario where

a single FD BS simultaneously serves multiple downlink users

and multiple uplink backscatter devices, as shown in Fig. 1.

Without losing the generality, perfect channel state information

(CSI) is available at the BS. Downlink users are defined as Di,

where the integer i ∈ {0, · · · , I} , and the first downlink user

D0 is considered to be in close proximity to the BS and has

the strongest channel gain condition. In effect, the downlink

user D1 is far away from the BS and has a poor channel gain

compared to D0.

Therefore, based on this description, the received signal

given in (2) for multiple downlink users can be rewritten as:

yD = hD0
(t)

√
PD0

(t)sD0
(t)︸ ︷︷ ︸

Desired Signal

+
∑

Di �=D0

hDi
(t)

√
PDi(t)sDi

(t)

︸ ︷︷ ︸
Intra-Cell (Di) Interference

+

UK∑
Uk=1

DI∑
Di=0

gk(t)hk(t)
√

PDi
(t)ηk(t)sDi

(t)sUk
(t)

︸ ︷︷ ︸
Intra-Cell (Uk) Interference

+ nD︸︷︷︸
Noise

,

(5)

where nD is the noise, and Di is the i-th downlink user in the

intra-cell interference part. Based on NOMA decoding order

principles, the downlink user D0 employs SIC2 to decode its

own signal, and then downlink user D1 is considered next as

it has the second strongest channel gain.

The signal-to-interference-plus-noise-ratio (SINR) is calcu-

lated as:

SINRD0(t) =
PD0

(t)|hD0
|2(t)

Id(t) + Iu(t) + σ2
, (6)

where Id is the interference from other downlink users and

Id =
∑

Di �=D0
hDi

(t)
√

PDi
(t). The signal reflected by

uplink backscatter devices is denoted as Iu, where Iu =∑UK

Uk=1 |hk|2(t)|gk|2(t)ηk(t).
The SINR for the last user D1 is calculated as:

SINRD1(t) =
PD1

(t)|hD1
|2(t)

Iu(t) + σ2
. (7)

The data rate for the i-th downlink user can be calculated

as:

RDi
(t) = log

(
1 + SINRDi

(t)
)
. (8)

For the uplink backscatter devices, the signal received at the

BS is calculated as:

yBS(t) =

UK∑
Uk=1

DI∑
Di=0

h2
k(t)

√
PDi

(t)ηk(t)sDi
(t)sUk

(t)

+ sSI(t) + nBS .

(9)

The decoding order is based on the strength of the signal

received [13]. Therefore, the uplink backscatter device with

higher received power will be decoded first. The sum data

rate for all uplink backscatter devices is calculated as:

2This work considered perfect SIC decoding at the receiver, which is not
practical. However, investigating the performance of the proposed algorithm
with imperfect SIC is beyond the scope of this work and can be further
investigated in our future work.
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Rsum(t) =

log
(
1 +

∑UK

Uk=1

∑DI

Di=0
|hk|4(t)ηk(t)PD0(t)|sD0 |2(t)

ϕ
∑

Di �=D0
(t)PDi

(t)|hSI |2(t) + σ2

)
.

(10)

C. Problem Formulation

We maximize the sum rate of uplink backscatter devices

by optimizing the P and ηk. Therefore, considering the QoS

requirements of downlink users, the optimization problem for

long-term communications over the time period T can be

formulated as follows:

max
P,ηk

T∑
t=1

Rsum(t)/T, (11a)

s.t :RDi
(t) ≥ R̂Di

, (11b)

0 ≤ ηk ≤ 1, k ∈ K, (11c)

0 ≤ ηkPDI
(t) ≤ PDI

, (11d)

0 ≤ PDI
≤ Pmax, (11e)

where constraint (11b) ensures the minimum QoS require-

ments for the downlink users, (11c) ensures the BAC reflection

coefficient should be between 0 and 1, (11d) is the amount

of power to be allocated to uplink device k from the power

allocated to downlink users, and (11e) represents the maximum

transmit power limit for the downlink users. The optimization

of the problem defined in (11a) is considered as an NP-hard

problem. The detailed proof is provided in [38].

III. INTELLIGENT BAC-NOMA RESOURCE ALLOCATION

SYSTEMS

A. Markov Decision Process Model for BAC-NOMA

This section shows the problem formulation to optimize

resource allocation for BAC-NOMA users as a MDP. As is

known, the significant elements of MDP are agent/s, states,

actions, environment, rewards, and policies. To begin the

decision making process, the agent starts interacting with the

specified environment (BAC-NOMA network in our case). To

learn the policy π, the agent performs an action at for a

current state st to move to the next state st+1. Based on these

actions, the agent receives the action evaluation (feedback)

in the form of reward or punishment before moving to the

next state st+1. These rewards and punishments are used to

train the agent to optimize the action-selection process to find

the optimal policy π. When the training process is finished,

all the actions and states are stored in the brain of an agent.

That brain is in the form of a Q-table, denoted by QT
π (s

t, at).
Traditional Q-learning is considered one of the solutions to

the MDP problem by learning the best path for the state value

optimization function.

The downside of this method is the requirement for a huge

amount of memory to accommodate a Q-table for complex

state space. Furthermore, DRL solves this problem by intro-

ducing a neural network to solve memory requirements. More

research in this area will help improve the performance of

DRL by introducing more neural networks, because neural

networks solve the problem of a high-dimensional state or

continuous state space.

The DDPG added deterministic policies to improve the

learning process. It uses a replay buffer whereby it can draw

samples from past experiences during the learning process,

which sometimes is referred to as sample-efficient learning.

However, obtaining good results with the DDPG algorithm is

usually a challenge in some environments [39, 40].

SAC, an off-policy algorithm, introduces an entropy term

to combat this instability. SAC aims to have this entropy

high at each training step update to encourage exploration and

therefore assign equal probabilities to all actions rather than

repetitively assigning a high probability to a particular action.

Therefore, this work implements SAC to optimize the

resource allocation for all uplink backscatter devices and to

ensure the QoS for the downlink users. In summary, the

proposed model solves the MDP with the help of SAC for

long-term resource allocation optimization.

B. Backscatter-NOMA-Soft Actor Critic

1) A Design Overview: SAC is the extended version of

DDPG that is from the family of RL algorithms. Traditional

RL algorithms are based on simple Q-table and epsilon-based

simple exploration/exploitation methods (greedy approaches),

and therefore are prone to poor policy learning.

To overcome these problems, SAC employs actor/critic

networks and maximizes the entropy (unpredictability) of the

best action that the agent can possibly take and thus maximizes

the agent’s long-term rewards. Additionally, SAC uses an off-

policy formulation that is based on the previously stored data

to enhance efficiency. The critic network assists the actor

network to further improve the quality of the learning.

As shown in Fig. 2, the environment with Di downlink

users, K uplink backscatter devices, and FD BS is represented

in (a). Furthermore, the colored boxes represent all three SAC

neural networks (b, c, and d). The first neural network receives

the state information directly from the environment by the

actor network (online), which is represented by the red box

(b). Similarly, after processing the action, the output of the

actor network is the input of the critic network, which is

shown in the yellow box (c). To determine the quality of each

action performed by the actor network online at each time step,

the critic network criticizes the output of the actor network.

Therefore, to ensure the quality of each action, another input

of the critic network is also based on the state st. The quality

of each action and state pair is determined by the Q values. For

this reason, the output for the critic network is the current Qt

value and the next Qt+1 that is predicted for the future state

and action pair. The green box represents the value network

(d). The input of the value network is similar to that of the

critic network and is used to predict the current and future

value function. All the information is stored in the replay

buffer D, which is represented as a gray memory bank (e).

Next, we introduce the proposed SAC approach to optimize

BAC-NOMA systems. First, the basic BAC-NOMA-SAC de-

sign and significant elements of the proposed learning algo-
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Fig. 1. An illustration of the BAC-NOMA network environment for the proposed model, where the sub-figure (a) shows the network environment in which
we have one FD BS with multiple downlink users and K uplink backscatter devices. Sub-figure (b) illustrates the handshake process between the BS and
downlink user Di. Sub-figure (c) shows the communication between uplink backscatter devices and the BS. Finally, in sub-figure (d), we have transmission
phase in each time step.

rithm are introduced. Second, we introduce the optimization

process performed by the proposed algorithm.

2) Key Design Elements: In this section, we introduce an

intelligent BAC-NOMA-SAC system for the long-term BAC-

NOMA network sum rate maximizing optimization, where the

agent learns a policy to jointly optimize the transmit power for

downlink users and the BAC reflection coefficient under QoS

requirements of downlink users. In the formulated MDP, which

is a tuple of (S,A, p, r), the BAC-NOMA-SAC agent selects

a state st from state space S and takes a step by performing

an action A to obtain the feedback from the BAC-NOMA

environment in the form of reward rt. The p represents the

probability of transition from the current state to the next state

in a time step t.

A detailed explanation of the elements of the formulated

MDP is given below.

• Environment: A BAC-NOMA network is the environ-

ment for the proposed SAC agent where there are one

FD BS, a number of K uplink backscatter devices, and

multiple downlink users, as shown in Fig. 2.

• Agent: In the formulated MDP, the BS works as an

agent to jointly optimize the power of downlink users and

the BAC reflection coefficient of the uplink backscatter

devices.

• State space: The state is the information relevant to the

environment the agent accesses during the interaction.

The proposed state space is a matrix characterized by

the BAC reflection coefficient ηk of uplink backscatter

devices and the transmit power for downlink users PDi
.

At each time step t, the state can be given as:

st =
(
(PDi

), (
∑

ηk × PDi
)
)
. (12)

The state space is a finite set with K(ηk×PDi
) number

of states through which the agent (BS) can navigate.

Furthermore, based on the received reward, if the agent

selects 1 then the agent moves to the next power al-

location coefficients subset from 2 dimensions set of

states that are bounded by K(ηk×PDi
) total number

of states. The whole state space can be defined as

S = {st, st+1, st+2, . . . , sN}. The values of state space

parameters are listed in Table II.

• Action space: The action is the swap operation between

the states. Three different levels of action help the agent

to explore and exploit the environment and to optimize

the resource allocation for all users.

at = {−1, 0, 1}, (13)

the action −1 implies that the agent shifts back to the

previous state, 0 implies that the agent does not change

its state but remains in the current state, and 1 implies

that the agent shifts to the next state. To optimize the

resource allocation, the agent navigates the environment

by switching to different power allocation levels for

each downlink user and BAC reflection coefficient for

uplink backscatter devices. In this way, the agent explores

the dynamic environment to optimize long-term resource
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Fig. 2. An illustration of the BAC-NOMA-SAC network model with maximum entropy reinforcement learning. The black dotted line (a) contains the BAC-
NOMA network where there is one BS, downlink users, and uplink backscatter devices. At the top and right of the figure, three different color boxes represent
three neural networks (b, c, and d). The red box is for the actor network (b), the yellow box is for the critic network (c), and the green box is for the value
network (d). Moreover, the replay buffer is represented by the gray memory bank (e), which contains the experience of the BAC-NOMA-SAC agent. (f) shows
the notation used in this figure.

allocations for BAC-NOMA systems.

• Rewards: The agent receives feedback from the BAC-

NOMA environment in the form of reward rt. The agent

receives positive feedback in the form of 10 from the

BAC-NOMA environment if the current sum rate of the

uplink backscatter devices is greater or equal to the

previous sum rate and the constraints are not violated

(11b-11e). Otherwise, the agent receives a reward of 0
as a penalty for the wrong action. Finally, the reward

function is calculated as:

rt(st, at) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10, if Rsum(t) ≥ Rsum(t− 1)

and satisfy constraints

given in (11b-11e).

0, otherwise.

(14)

The following function Z(π) maximizes the expected reward

by adding an entropy term H as indicated below [40],

Z(π) =
T∑

t=0

E(st,at)∼pπ

⎡
⎢⎣r(st, at) + ᾱH(

π(·|st))︸ ︷︷ ︸
Entropy

⎤
⎥⎦ , (15)

where H is weighted by a temperature parameter ᾱ to regulate

the randomness of the optimal policy.

Remark. For the SAC agent, the concept of exploration and
exploitation of the wireless network environment is important
to learn a stable action selection policy. ᾱ temperature param-
eter is between 0 and 1. This ᾱ determines the H(

π(·|st)) to
set the learning path for the agent.
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The modified Bellman equation for the policy π is utilized

in any Q function that is calculated iteratively for operator χπ

as follows:

χπQ(st, at) � r(st, at) + γ̄Est+1∼p

[
V (st+1)

]
, (16)

where V (st) is the soft state value function for policy π, which

is shown in the following equation:

V (st) = Eat∼π

[
Q(st, at)− log π(at|st)] . (17)

SAC trains functions to approximate, a state value function

Vψ(s
t), a soft Q function Qθ(s

t, at), and a policy function

πφ(a
t|st). The actor, critic, and value networks’ parameters

are respectively denoted by φ, θ, ψ, and Vψ minimizes the

squared residual error as follows:

ZV (ψ) =

Est∼D
[
1
2 (Vψ(s

t)− Eat∼πφ
[Qθ(s

t, at)− log πφ(a
t|st)])2

]
,

(18)

where D denotes a previously experienced state and action

distribution, which is used as experience memory. The gradient

update estimation of equation (18) is performed with the help

of the following function. Generally, at each time step, the

squared difference between predictions and the expectation

of the soft Q-function is minimized to obtain the policy π.

The parameters of the above objective function are updated as

follows:

∇̂ψZV (ψ) =

∇ψVψ(s
t)
(
Vψ(s

t)−Qθ(s
t, at) + log πφ(a

t|st)
)
,

(19)

where ∇̂ψ shows the update function of the ZV (ψ) based on

the gradient step. The soft Q-function is optimized using the

equation below:

ZQ(θ) = E(st,at)∼D
[
1
2

(
Qθ(s

t, at)− Q̂(st, at)
)2]

, (20)

where the definition of Q̂(st, at) is as follows:

Q̂(st, at) = r(st, at) + γ̄Est+1∼p[Vψ̄(s
t+1)]. (21)

The objective here is to minimize the squared difference

between what the soft Q-function predicts and the reward plus

the discounted expected value of the next state. The soft Q-

functions parameters are updated as below:

∇̂θZQ(θ) =

∇θQθ(a
t, st)

(
Qθ(s

t, at)− r(st, at)− γ̄Vψ̄(s
t+1)

)
.

(22)

We need to add tractable policies to restrict the policy to a set

of policies Ψ where (π ∈ Ψ). Moreover, the policy function

is trained to minimize the error where we have the update

rule for the new policy π. A new policy equation is based on

equation (23):

πnew = arg min
π′∈Ψ

δKL

(
π

′
(·|st)||exp

(
Qπold(st, ·))
ξπold(st)

)
, (23)

where the policy distribution normalizes with the help of

partition function ξπold(st). Additionally, we aim to minimize

the difference between the new policy and the set of policies

Ψ using the Kullback-Leibler divergence δKL [41].

Algorithm 1 The Intelligent BAC-NOMA-SAC Scheduling

Framework.

1: Initialize parameter vectors S , A, rt, BAC-NOMA net-

work environment, episodes, iterations, replay memory D,

batch-size, actor network (φ), critic network (θ), value

network (ψ), and target value network (ψ̄).

2: for each episode Me do
3: for each iteration Te do
4: at ∼ πφ(a

t|st)
5: if action < 0 then
6: at = −1
7: else if action = 0 then
8: at = 0
9: else

10: at = 1
11: end if
12: Calculate reward rt using equation (14)

13: D ← D ∪
{(

st, at, r(st, at), st+1
)}

14: end for
15: Update; actor network (φ), critic network (θ), value

network (ψ), and the next target value network (ψ̄).

16: for each gradient step do
17: ψ ← ψ − λV �̂ψZV (ψ)
18: θ ← θ − λQ�̂θZQ(θ)
19: φ ← φ− λπ�̂φZπ(φ)
20: ψ̄ ← τψ + (1− τ)(ψ̄)

21: end for
22: end for

3) BAC-NOMA-SAC Algorithm Details: Based on the

above discussion, we describe the significant features of the

proposed algorithm (Algorithm 1) that are used to enhance

the achievable sum rate of uplink backscatter devices while

preserving the QoS requirements of the downlink users. The

details for these features of the proposed algorithm are intro-

duced in the following points.

• Initialization:
To begin the optimization processes, we initialize network

environment parameters and training hyper-parameters,

that is S,A, rt, episodes (Me), iterations (Te), agent

memory (D), batch-size, actor network (φ), critic network

(θ), and value network (ψ). We start with the initialization

of the network environment that is used to train the agent

for the optimization process. In the next step, we initialize

state space (S), action space (A), and initial reward (rt).
We then initialize (Me) and (Te) to define the maximum

episodes and iterations. After that, replay memory and

batch size are initialized and are used by the agent to store

and learn from the previous experiences. Last, the brain

of the SAC agent is initialized as three different neural

networks (actor, critic, and value) to learn the optimal
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policy. The hyper-parameters used for this algorithm are

listed in Table II.

• Brain Architecture:
We considered fully connected neural networks (FCNNs)

architecture for the brain of the proposed agent because

FCNNs are considered efficient architecture of artificial

neural networks to process the dynamic environment

[11, 13, 40]. Additionally, to dynamically tune/adjust the

network weights, we also equipped the brain of the SAC

agent with a forward and backward propagation mecha-

nism. The feed-forward propagation mainly performs the

functions of neuron activation, neuron transfer, and for-

ward propagation. First, the neuron activation computes

the weighted sum for the input and the bias. The neuron

transfer invokes the rectified linear unit (ReLU) activation

function to activate the neurons. Finally, forward propa-

gation is the process of providing input to the next layer.

This process happens for all the remaining layers.

After doing the feed-forward propagation, the back prop-

agation helps to increase the stability of the weights

updated in the neural network. This is based on two

main things, transfer derivative and error back propaga-

tion. Moreover, the optimization function in this model

is based on an adaptive moment estimation optimizer

(Adam) to optimize the error between the weight and

the bias. Last, to get robust stable learning and optimize

the dynamic BAC-NOMA network, we use the optimiza-

tion for a dynamic BAC-NOMA network with the three

following neural networks.

– Actor Network (φ):
This model is based on the throughput maximization

policy πφ(s
t, at) that also considers the QoS require-

ments of the downlink user, which is tuned by the

actor network (φ). For this reason, the actor network

is the main network that directly interacts with the

network environment. The architecture of the actor

network is shown in Fig. 3, where the details of the

input and output of the actor network are a high-

lighted within a red colored box. The architecture of

this network consists of one input layer, two hidden

layers with ReLU activation functions, feed-forward

propagation, back propagation, loss function, Adam

optimizer, and output mechanisms to perform effi-

cient action in the dynamic network environment.

Starting with the inputs, the actor network receives

states as input from the environment (BAC-NOMA).

The first hidden layer receives the network environ-

ment information that is output propagated from the

first layer that is activated by the ReLU activation

function. The output of this hidden layer is in the

form of weights and bias. The same process con-

tinues with the second hidden layer until the final

output. We utilize the Adam optimizer to compute

the gradients used in updating the weights of the

neural networks, thus minimizing the overall loss

when predicting the output that is an action at.
Generally this back-propagation process helps the

neural network to minimize the weight prediction

errors by adjusting neural network weights during

the learning process.

Last, when the agent is experienced enough by

obtaining multiple allocation policies. For future

policies, the agent optimizes the dynamic BAC-

NOMA network by minimizing the expectation of

the following equation:

Zπ(φ) =

Est∼D
[
δKL

(
πφ(·|st)||exp(Qθ(s

t, ·))
ξθ(st)

)]
.

(24)

The updated parameters of the actor network are:

φ ← φ− λπ�̂φZπ(φ). (25)

– Critic Network (θ):
Similar to the first neural network architecture (ac-

tor), the critic network follows the same architectural

design. The input of this network is different from

that of the actor network, which is based on state

and action at each time slot t. This is the function of

the critic network is to learn the current in future key

value by calculating the Bellman equation (16). For

this reason, the input of the critic network is different

from the actor network. As the name suggests, the

bellman equation is updated with soft Q updates. The

soft Q-function is denoted as Qθ(s
t, at). Finally, the

Q-function update is as follows:

θ ← θ − λQ�̂θZQ(θ). (26)

– Value Network and Target Value Network (ψ, ψ̄):
Value network denoted by V t(ψ), and the target

value network is denoted by V t+1 (ψ̄). The archi-

tecture of the value network follows the same design

as the actor and critic networks, with two hidden

layers that contain 250 neurons in each layer. The

input of these networks is state and action to predict

the current and target values for the given state

and action. To learn the efficient resource allocation

via policy π, the value network output V t seeks to

minimize the error between the two value networks

to assist the agent efficiently. The value network is

updated with the help of the following equation:

ψ ← ψ − λV �̂ψZV (ψ). (27)

Similarly, the target value network V t+1 is updated

with the following equation,

ψ̄ ← τψ + (1− τ)(ψ̄), (28)

where τ represents the target value smoothing co-

efficient. The function of τ is used to stabilize the

training process of the SAC agent. The higher the

value of τ , the faster the updating of the value net-

work. Due to this fast updating process, the learning

becomes unstable. However, the smaller target value

coefficient leads to slow updates. This helps the SAC
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Fig. 3. An illustration of the actor, critic, and value neural networks model. The input is different for each network, but the process is the same to ensure the
learning phase is applied to all networks.

agent learn efficiently.

We use the same architecture for all the neural networks.

This shows the strength of the proposed design, which can

learn the dynamic environment of the actor, critic, and value

networks.

C. Complexity of the BAC-NOMA-SAC Model

In this section, we discuss the complexity of the proposed

model. According to the given network environment, the

complexity of our model depends on the network size (i.e.,

active uplink backscatter devices and downlink users) and

three neural networks (actor, critic, and value networks). Each

network consists of a different number of inputs and output

features. The actor network takes input from the environment

in the form of a state. After processing the state, the deep

neural network (DNN) produces output action in the form of

mean and standard deviation. Before producing the output, the

feed-forward and back-propagation mechanisms are adopted

to fine tune the DNN online. Similarly, activation of all the

neurons is performed using the ReLU activation function. The

ω denotes the input layer size that depends on the number of

active devices. The actor network contains two hidden layers

(H), and each layer contains (xh) neurons. For the critic

network, the input is the state and the action produced as the

output by the actor network. After processing the action and

the state, the critic network DNN calculates the Q-function

value for each state and action pair. This is the same as the

actor network.

Finally, the value network takes state and action as inputs

to produce value and target value as outputs after processing

the input states and actions. These parameters follow ζ
Δ
=

ωx1+
∑H−1

h=1 xhxh+1. The real-time computational complexity

of the feed forward and back propagation for the downlink

users and uplink backscatter devices in this proposed model
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is O(ζ). Based on the number of episodes Me and iterations

Te that the agent takes, the calculation for the computational

complexity is O(MeTeωζ).

IV. SIMULATION RESULTS

A. BAC-NOMA-SAC Experimental Setup

This section presents the system parameters and the setup

of the simulation to demonstrate the BAC-NOMA-SAC al-

gorithm performance. Our setup includes multiple downlink

users and multiple uplink backscatter devices connected via the

same sub-channel to a single FD BS within different radius

sizes of 5 meters, 25 meters, and 50 meters. The location

of the BS, downlink users, and uplink backscatter devices

are set at (0, 0) meters, ((3, 0), (4, 0)) meters, and randomly

distributed in the area, respectively. We treat the noise (σ2) as

a hyper-parameter and test different values. The system model

(BAC-NOMA-SAC) uses fully connected hidden layers, and

there are (256) neurons per layer. The actor, critic, and value

networks are used to enhance the learning process. Different

parameters, such as the temperature parameter represented by

ᾱ, the discount factor represented by γ̄, and τ are used to

modulate the parameters of our target value network. More-

over, all hidden layers are processed by the ReLU function.

To balance between exploration and exploitation, SAC uses

entropy from equation (15). Tuning the parameters can lead to

a faster learning process and convergence. Additional system

parameters and their values used for the simulation (for both

the proposed and benchmark schemes) are given in Table II.

A MacBook Pro macOS system with a 3.1 GHz Intel Core

i5 processor, 8 GB of memory (random access memory), and

2133 MHz LPDDR3 is used for the simulation. Python 3.6 is

used to implement the proposed system model.

B. The BAC-NOMA-SAC Convergence
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Fig. 4. Shows the convergence and the reward obtained in the different number
of iterations at each episode.

Fig. 4 shows the convergence of the BAC-NOMA-SAC

algorithm with respect to the different number of iterations

in each episode. It can be seen that the agent obtained a

TABLE II
LIST OF NETWORK PARAMETERS

Parameter Value
FD BS 1
Downlink users 2
Uplink backscatter devices {2− 10}
Pmax 20 dBm

Noise {−94,−84,−74} dBm

Radius {5, 25, 50} meters

Target data rate for Di {0.5, 1, 2, 3} BPCU

BAC reflection {0.1, 0.2, . . .
coefficient . . . , 0.8, 0.9} dBm

Self-interference coefficient {0.001, . . . , 0.1} dBm

Episodes 500
Trials {400, 500}
Learning rate 0.1
Discount factor 0.99
Target value 0.001
smoothing coefficient

Batch size 100
DNN activations ReLU

Optimizer Adam

Hidden layers 2

Neurons for each layer 256

higher average reward with 500 iterations in each episode.

the agent with a lower number of iterations (400 iterations) in

each episode cannot explore the environment completely and

converges to a non-optimal solution with a low reward. To find

the optimal solution to a given problem, RL algorithms require

considerable learning steps; therefore, we kept the number

of iterations at 500 so that the agent can fully explore the

environment and find good states and actions.

C. Performance with Respect to Different QoS Requirements
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Fig. 5. This illustrates the achievable sum rate of uplink backscatter devices
with the different number of downlink users and target data rate.
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Fig. 5 illustrates the sum rate of backscatter users with

regard to different QoS requirements and the different number

of downlink users. It can be concluded that the sum rate of

backscatter devices increases with multiple downlink users

when we set the QoS requirements to 0.5 bit per channel use

(BPCU). Because of the small QoS requirements, the downlink

users can achieve the target date rate with a small amount

of transmit power, and the rest of the power is allocated to

backscatter devices, which increases their sum rate. In the

same way, with a single downlink user and multiple uplink

backscatter devices, the 0.5 BPCU requirements enhance the

sum rate of backscatter devices compared to the large (3

BPCU) requirements. In a nutshell, the BS (agent) is able

to allocate the transmit power and reflection coefficient effec-

tively while considering the QoS requirements of downlink

users.

D. Performance Comparison with a Varying Number of
Backscatter Devices
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Fig. 6. The achievable sum rate bit per channel use (BPCU) of the proposed
BAC-NOMA-SAC, BAC-NOMA [10], BAC-OMA, and random BAC-NOMA
against the different target data rate (R̂D0

) and the different number of uplink
backscatter devices.

In this section, we compare the performance of our proposed

scheme with conventional optimization (benchmark), random

power allocation, and compare the performance of BAC with

OMA in terms of the achievable sum rate against varying

numbers of K uplink backscatter devices. The performance

of all schemes is checked for two different target data rate

requirements, that is 0.5 BPCU and 3 BPCU. As seen in Fig.

6, our proposed scheme (red curves) outperforms the rest of

the schemes with respect to both QoS requirements. With an

increased number (K = 8) and QoS of 0.5 BPCU, the sum

rate almost reaches 8 BPCU. Further increasing the number

of users (K = 10), no increase in the sum rate can be seen.

Because adding more users increases the state space and the

agent needs more training time to locate the best states and

actions. Increasing QoS for downlink users from 0.5 BPCU to

3 BPCU leads to a decrease in the achievable sum rate; that is,

it drops from 8 BPCU to 6.5 BPCU. The benchmark scheme

(black curves) given in [10] outperforms the random power al-

location method (blue curves) and backscatter communication

with OMA (green curves).

E. Varying Self-Interference Coefficient (ϕ) and Different Up-
link Backscatter Devices
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with different value of k

Fig. 7. Achievable sum rate (BPCU) comparison of the proposed BAC-
NOMA with BAC-NOMA proposed in [10] and BAC-OMA with respect to
increasing self-interference coefficient (ϕ).

Fig. 7 shows the performance comparison of the proposed

BAC-NOMA-SAC scheme with the conventional optimization

(benchmark) schemes with regard to different values of (ϕ)

and K in terms of the achievable sum rate. The proposed

scheme with K = 8 provides the highest achievable sum

rate. However, as the value of (ϕ) increases towards 0.1, the

achievable sum rate decreases to almost 3 BPCU. With the

same number of backscatter users (K = 2), our proposed

scheme achieves a higher sum rate than the benchmark scheme

and BAC-OMA method. We attribute the performance gains

made by our proposed model to the fact that the BS allocates

the power and BAC reflection coefficient dynamically to

downlink and uplink backscatter users.

F. Impact of the Noise σ

NOMANOMANOMA

OMA OMA OMA

Fig. 8. This figure shows the achievable sum rate (BPCU) comparison with
decreasing noise (σ) levels. BAC-NOMA-SAC manages to achieve a better
sum rate (with a different number of K uplink backscatter devices) compared
with the BAC-OMA network.
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Fig. 8 shows the impact of noise σ, uplink backscatter

devices, and different QoS requirements for downlink user on

the performance of the proposed BAC-NOMA-SAC algorithm.

We also compare the performance with that of BAC-OMA. For

all the cases, the achievable sum rate decreases as the noise

level increases from (−94 dBm) to (−74 dBm). Moreover,

the proposed scheme achieves a better sum rate compared to

BAC-OMA with an increased number of backscatter devices

and when the QoS requirements are set to 0.5 BPCU (low

QoS requirements). Additionally, the conventional BAC-OMA

provides the lowest sum rate against all parameters.

G. Impact of the Cell Radius Size

NOMA

OMA

Fig. 9. Achievable sum rate (BPCU) comparison with BAC-OMA networks
against increasing radii and different target data rates R̂D0 .

Fig. 9 illustrates the comparison of the proposed BAC-

NOMA-SAC and BAC-OMA in terms of the achievable

sum rate. The figure depicts the achievable sum rate with

different radius sizes, different values of K, and different

QoS requirements for the downlink users. The achievable sum

rate with the high number of K uplink backscatter devices

is a higher sum rate compared to BAC-OMA for a low

number of K uplink backscatter devices for different radii.

As the radius size increases, the sum rate of the proposed

algorithm (red curves) gradually decreases because of the

large-scale distance-dependent path loss. Moreover, based on

different radius settings, BAC-NOMA-SAC and BAC-OMA

with R̂D0 = 3 BPCU perform worse than BAC-NOMA-SAC

and BAC-OMA with R̂D0
= 0.5 BPCU. The BAC-OMA

performance (green curves) also decreases with the increase

in the radius size and has a low sum rate for all scenarios

compared to the proposed BAC-NOMA scheme.

H. Performance Comparison with BAC-OMA with regard to
Different QoS Requirements

Fig. 10 provides a performance comparison of the proposed

BAC-NOMA with BAC-OMA against different QoS R̂D0
and

number of K uplink backscatter devices. The light green

NOMANOMANOMANOMA

OMA OMA OMA OMA

Fig. 10. Achievable sum rate (BPCU) of BAC-NOMA-SAC and BAC-OMA
with different numbers of uplink backscatter devices and different target data
rates for the downlink user.

bar represents two uplink backscatter devices with the BAC-

OMA network, and the dark green bar represents four uplink

backscatter devices with the BAC-OMA network. In contrast,

the light red bar represents the two uplink backscatter devices

with BAC-NOMA-SAC, and the dark red represents the four

uplink backscatter devices with BAC-NOMA-SAC. We can

see that with decreased QoS requirements, the sum rate of

our proposed algorithm optimizing the reflection coefficient of

four backscatter devices produces a higher sum rate. Generally,

with different target data rates and uplink backscatter devices,

BAC-NOMA-SAC consistently achieves a better sum rate

compared to the BAC-OMA system.

V. CONCLUSION

In this paper, we have proposed a SAC-based BAC-NOMA

algorithm to maximize the sum rate of uplink backscatter

devices. The proposed SAC framework ensures the QoS

requirements of downlink users are not compromised and

learns long-term resource optimization in a dynamic BAC-

NOMA network. We have shown that the proposed algorithm

converges to an optimal solution with 500 iterations. More-

over, the simulation results show that the proposed algorithm

achieves a better sum rate with multiple downlink users and

small QoS requirements. Additionally, the proposed algorithm

outperforms the benchmark scheme, random power allocation,

and the BAC-OMA method in terms of the achievable sum

rate given the varying number of uplink backscatter devices.

Similarly, the proposed algorithm shows superiority in terms

of the sum rate against different values of self-interference and

different noise levels. Finally, we have shown that the BAC-

NOMA scheme outperforms the BAC-OMA scheme with

different radii and target data rates in terms of the achievable

sum rate.
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