
Weakly Supervised Learning of Objects,
Attributes and their Associations

Zhiyuan Shi, Yongxin Yang, Timothy M. Hospedales, Tao Xiang

Queen Mary, University of London, London E1 4NS, UK
{z.shi,yongxin.yang,t.hospedales,t.xiang}@qmul.ac.uk

Abstract. When humans describe images they tend to use combina-
tions of nouns and adjectives, corresponding to objects and their as-
sociated attributes respectively. To generate such a description auto-
matically, one needs to model objects, attributes and their associations.
Conventional methods require strong annotation of object and attribute
locations, making them less scalable. In this paper, we model object-
attribute associations from weakly labelled images, such as those widely
available on media sharing sites (e.g. Flickr), where only image-level la-
bels (either object or attributes) are given, without their locations and
associations. This is achieved by introducing a novel weakly supervised
non-parametric Bayesian model. Once learned, given a new image, our
model can describe the image, including objects, attributes and their as-
sociations, as well as their locations and segmentation. Extensive exper-
iments on benchmark datasets demonstrate that our weakly supervised
model performs at par with strongly supervised models on tasks such as
image description and retrieval based on object-attribute associations.
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1 Introduction

Vision research is moving beyond simple classification, annotation and detection
to encompass generating more structured and semantic descriptions of images.
When humans describe images they use combinations of nouns and adjectives,
corresponding to objects and their associated attributes respectively. For exam-
ple, an image can be described as containing “a person in red clothes and a shiny
car”. In order to imitate this ability, a computer vision system needs to learn
models about objects, attributes, and their associations. Object-attribute asso-
ciations is important for avoiding the mistakes such as “a shiny person and a red
car”. Learning object-attribute association also provides new query capabilities,
e.g., “find images with a furry brown horse and a red shiny car”.

There has been extensive work on detecting and segmenting objects [33, 6, 31]
and describing specified objects and images in terms of semantic attributes [9,
36, 3, 32]. However, these tasks have previously been treated separately; jointly
learning about and inferring object-attribute association in images with poten-
tially multiple objects is much less studied. The few existing studies on modelling
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Fig. 1: Comparing our weakly supervised approach to object-attribute associa-
tion learning to the conventional strongly supervised approach.

object-attribute association [17, 38, 20, 37, 36, 35] use fully annotated data [38, 20,
37] and/or are separately trained [17, 35]. In the conventional pipeline (Fig. 1) im-
ages are strongly labelled with object bounding boxes and associated attributes,
from which object detectors and attribute classifiers are trained.Given a new im-
age, the learned object detectors are first applied to find object locations, where
the attribute classifiers are then applied to produce the object descriptions. How-
ever, there is a critical limitation of the existing approach: it requires strongly
labelled objects and attributes. Considering there are over 30,000 object classes
distinguishable to humans [18], even more attributes to describe them, and an
infinite number of combinations, it is not scalable.

In this paper we propose to learn objects, attributes, and their associations
from weakly labelled data. That is, images with object and attribute labels but
not their associations nor their locations (see Fig. 1). Such weakly labelled images
are abundant on media sharing websites such as Flickr. Therefore lack of training
data would never be a problem. However, learning strong semantics, i.e. explicit
object-attribute association from weakly labelled images is extremely challenging
due to the label ambiguity: a real-world image with the tags “dog, white, coat,
furry” could contain a furry dog and a white coat or a furry coat and a white
dog. Furthermore, the tags/labels typically only describe the foreground/objects.
There could be a white building in the background which is ignored by the
annotator, and a computer vision model must infer that this is not what the
tag ‘white’ refers to. Conventional methods cannot be applied without object
locations and explicit object-attribute association being labelled.

To address the challenges of learning strong semantics from weak annotation,
we develop a unified probabilistic generative model capable of jointly learning
objects, attributes and their associations, as well as their location and segmen-
tation. Our model is also able to learn from realistic images where there are
multiple objects of variable sizes per image such as PASCAL VOC. More specif-
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ically, our model generalises the non-parametric Indian Buffet Process (IBP)
[13]. The IBP is chosen because it is designed for explaining multiple factors
that simultaneously co-exist to account for the appearance of a particular image
or patch, e.g., such factors can be an object and its particular texture and colour
attributes. However, the conventional IBP is limited in that it is unsupervised
and, as a flat model, applies to either patches or images, not both; it thus can-
not be directly applied to our problem. To overcome these limitations, a novel
model termed Weakly Supervised Stacked Indian Buffet Process (WS-SIBP) is
formulated in this work. By introducing hierarchy into IBP, WS-SIBP is able
to group data, thus allowing it to explain images as groups of patches, each of
which has an inferred multi-label description vector corresponding to an object
and its associated attributes. We also introduce weak image-level supervision,
which is disambiguated into multi-label patch explanations by our WS-SIBP.

Modelling weakly labelled images using our framework provides a number
of benefits: (i) By jointly learning multiple objects, attributes and background
clutter in a single framework, ambiguity in each is explained away by knowledge
of the other. (ii) The infinite number of factors provided by the non-parametric
Bayesian framework allows structured background clutter of unbounded com-
plexity to be explained away. (iii) A sparse binary latent representation of each
patch allows an unlimited number of attributes to co-exist on one object. The
aims and capabilities of our approach are illustrated schematically in Fig. 1,
where weak annotation in the form of a mixture of objects and attributes is
transformed into object and attribute associations with locations.

2 Related work

Learning objects and attributes A central task in computer vision is un-
derstanding image content. Such an understanding has been shown in the form
of an image description in terms of nouns (object detection or region segmen-
tation), and more recently adjectives (visual attributes) [9, 27]. Attributes have
been used to describe objects [9, 34], people [3], clothing [4], scenes [36], faces [32],
and video events [12]. However, most previous studies have learned and inferred
object and attribute models separately, e.g., by independently training binary
classifiers, and require strong annotations/labels indicating object/attribute lo-
cations and/or associations if the image is not dominated by a single object.
Learning object-attribute associations A few recent studies have learned
object-attribute association explicitly [35, 16, 17, 36–38, 20]. Different from our
approach, [35, 37, 38, 20] only trains and tests on unambiguous data, i.e. im-
ages containing a single dominant object, assumes object-attribute association
is known at training; and moreover allocates exactly one attribute per object.
[17] tests on more challenging PASCAL VOC data with multiple objects and at-
tributes coexisting. However, their model is pre-trained on object and attribute
detectors learned on strongly annotated images with object bounding boxes pro-
vided. [36] also does object segmentation and object-attribute prediction. But
their model is learned from strongly labelled images in that object-attribute
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association are given during training; and importantly prediction is restricted
to object-attribute pairs seen during training. In summary none of the existing
work learns object-attribute association from weakly labelled data as we do here.

Multi-attribute query Some existing work aims to perform attribute-based
query [26, 15, 30, 32]. In particular, Recent studies have considered how to cali-
brate [30] and fuse [26] multiple attribute scores in a single query. We go beyond
these studies in supporting conjunction of object+multi-attribute query. More-
over, existing methods either require bounding boxes or assume simple data with
single dominant objects, and do not reason jointly about multiple attribute-
object association. This means they would be intrinsically challenged in rea-
soning about (multi)-attribute-object queries on challenging data with multiple
objects and multiple attributes in each image (e.g., querying furry brown horse,
in a dataset with black horses and furry dogs in the same image). In other words,
they cannot be directly extended to solve query by object-attribute association.

Probabilistic models for image understanding Discriminative kernel meth-
ods underpin many high performance recognition and annotation studies [9,
27, 3, 36, 28, 17, 5, 21, 6]. However the flexibility of generative probabilistic mod-
els has seen them successfully applied to a variety of tasks, especially learning
structured scene representations, and weakly-supervised learning [12, 33, 31, 19].
These studies often generalise probabilistic topic models (PTM) [2]. However
PTMs are limited for explaining objects and attributes in that latent topics are
competitive - the fundamental assumption is that an object is a horse or brown
or furry. They intrinsically do not account for the reality that it is all at once.

We therefore generalise instead the Indian Buffet Process (IBP) [7, 13]. The
IBP is a latent feature model that can independently activate each latent factor,
explaining imagery as a weighted sum of active factor appearances. However,
conventional IBP is (i) fully unsupervised, and (ii) only handles flat data. Thus,
it could explain patches or images, but not images composed of patches, thereby
limiting usefulness for multiple object-attribute association within images. We
therefore formulate a novel Weakly Supervised Stacked Indian Buffet Process
(WS-SIBP) to model grouped data (images composed of patches), such that
each patch has an infinite latent feature vector. This allows us to exploit image-
level weak supervision, but disambiguate it to determine the best explanation
in terms of which patches correspond to un-annotated background; which patch
corresponds to which annotated object; and which objects have which attributes.

Weakly supervised learning Weakly supervised learning (WSL) has at-
tracted increasing attention as the volume of data which we are interested in
learning from grows much faster than available annotation. Existing studies have
generally focused on WSL of objects alone [31, 19, 6], with limited work on WSL
of attributes [36, 12]. Some studies have treated this as a discriminative multi-
instance learning (MIL) problem [22, 6], while others leveraged PTMs [31, 19].
Weakly supervised localisation is a particularly challenging variant where images
are annotated with objects, but absent bounding boxes means their location is
unknown. This has been solved by sampling bounding boxes for MIL treatment
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[6], or more ‘softly’ by PTMs [31]. In this paper we uniquely consider WSL of
both objects, attributes, their associations and their locations simultaneously.
Our contributions In this paper we make three key contributions: (i) We
for the first time jointly learn all object, attribute and background appearances,
object-attribute association, and their locations from realistic weakly labelled
images; (ii) We formulate a novel weakly supervised non-parametric Bayesian
model by generalising the Indian Buffet Process; (iii) From this weakly labelled
data, we demonstrate various image description and query tasks, including chal-
lenging tasks relying on predicting strong object-attribute association. Extensive
experiments on benchmark datasets demonstrate that in each case our model is
comparable to the strongly supervised alternatives and significantly outperforms
a number of weakly supervised baselines.

3 Weakly Supervised Stacked Indian Buffet Process

We propose a non-parametric Bayesian model that learns to describe images
composed of super-pixels/patches from weak object and attribute annotation.
Each patch is associated with an infinite latent factor vector indicating if it
corresponds to (an unlimited variety of) unannotated background clutter, or an
object of interest, and what set of attributes are possessed by the object. Given a
set of images with weak labels and segmented into super-pixels/patches, we need
to learn: (i) which are the unique patches shared by all images with a particular
label, (ii) which patches correspond to unannotated background, and (iii) what
is the appearance of each object, attribute and background type. Moreover, since
multiple labels (attribute and object) can apply to a single patch, we need to
disambiguate which aspects of the appearance of the patch are due to each
of the (unknown) associated object and attribute labels. To address all these
learning tasks we build on the IBP [7] and introduce a weakly-supervised stacked
Indian Buffet process (WS-SIBP) to model data represented as bags (images) of
instances (patches) with bag-level labels (image annotations). This is analogous
to the notion of documents in topic models [2].

3.1 Model formulation

First, we associate each object category and each attribute to a latent factor. If
there are Ko object categories and Ka attributes, then the first Koa = Ko +Ka

latent factors correspond to these. An unbounded number of further factors are
available to explain away background clutter in the data. At training time, we
assume a binary label vector L(i) for objects and attributes is provided for each

image i. So L
(i)
k = 1 if attribute/object k is present, and zero otherwise. Also

L
(i)
k = 1 for all k > Koa. That is, without any labels, we assume all background

types can be present. With these assumptions, the generative process (illustrated

in Fig. 2) for image i represented as bags of patches X(i) = {X(i)
j· } is as follows:

For each latent factor k ∈ 1 . . .∞:
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Fig. 2: The graphical model for WS-SIBP. Shaded nodes are observed.

1. Draw an appearance distribution mean Ak· ∼ N (0, σ2
AI).

For each image i ∈ 1 . . .M :

1. Draw a sequence of i.i.d. random variables v
(i)
1 , v

(i)
2 · · · ∼ Beta(α, 1),

2. Construct an image prior π
(i)
k =

k∏
t=1

v
(i)
t ,

3. Input weak annotation L
(i)
k ∈ {0, 1},

4. For each super-pixel patch j ∈ 1 . . . Ni:

(a) Sample state of each latent factor k: z
(i)
jk ∼ Bern(π

(i)
k L

(i)
k ),

(b) Sample patch appearance: X
(i)
j· ∼ N (Z

(i)
j· A, σ

2I).

where N , Bern and Beta respectively correspond to Normal, Bernoulli and Beta
distributions with the specified parameters; and the notation Xj· means the
vector of row j in matrix X. The Beta-Bernoulli and Normal-Normal conjugacy
are chosen because they allow more efficient inference. α is the prior expected
sparsity of annotations and σ2 is the prior variance in appearance for each factor.

Denote hidden variables byH = {π(1), . . . ,π(M),Z(1), . . . ,Z(M),A}, images
byX = {X(1), . . . ,X(M)}, and parameters byΘ = {α, σA, σ,L}. Then the joint
probability of the variables and data given the parameters is:

p(H,X|Θ) =

M∏
i=1

( ∞∏
k=1

(
p(π

(i)
k |α)

Ni∏
j=1

p(z
(i)
jk |π

(i)
k , L

(i)
k )
)

·
Ni∏
j=1

p(X
(i)
j· |Z

(i)
j· ,A, σ)

) ∞∏
k=1

p(Ak·|σ2
A). (1)

Learning in our model aims to compute the posterior p(H|X,Θ) for: disam-
biguating and localising all the annotated (L(i)) objects and attributes among
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the patches (inferring Z
(i)
j· ), inferring the attribute and background prior for each

image (inferring π(i)), and learning the appearance of each factor (inferring Ak·).

3.2 Model learning

Exact inference for p(H|X,Θ) in our stacked IBP is intractable, so an ap-
proximate inference algorithm in the spirit of [7] is developed. The mean field
variational approximation to the desired posterior p(H|X,Θ) is:

q(H) =

M∏
i=1

(
qτ (v(i))qν(Z(i))

)
qφ(A) (2)

where qτ (v
(i)
k ) = Beta(v

(i)
k ; τ

(i)
k1 τ

(i)
k2 ), qν(z

(i)
jk ) = Bernoulli(z

(i)
jk ; ν

(i)
jk ), qφ(Ak·) =

N (Ak·;φk,Φk) and the infinite stick-breaking process for latent factors is trun-
cated at Kmax, so πk = 0 for k > Kmax. A variational message passing (VMP)
strategy [7] can be used to minimise the KL divergence of Eq. (2) to the true
posterior. Updates are obtained by deriving integrals of the form ln q(h) =
EH\h [ln p(H,X)] + C for each group of hidden variables h. These result in
the series of iterative updates given in Algorithm 1, where ϕ(·) is the digamma

function; and q
(i)
ms and Ev[log(1−

k∏
t=1

v
(i)
t )] are given in [7]. In practice, the trun-

cation approximation means that our WS-SIBP runs with a finite number of
factors Kmax where truncation factor Kmax can be freely set so long as it is
bigger than the number of factors needed by both annotations and background
clutter (Kbg), i.e., Kmax � Ko +Ka +Kbg. Despite the combinatorial nature of
the object-attribute association and localisation problem, our model is of com-
plexity O(MNDKmax) for M images with N patches, D feature dimension and
Kmax truncation factor.

3.3 Inference for test data

At testing time, the appearance of each factor k, now modelled by sufficient
statistics N (Ak·;φk,Φk), is assumed to be known (learned from the training

data), while annotations for each test image L
(i)
k will need to be inferred. Thus

Algorithm 1 still applies, but without the appearance update terms and with

L
(i)
k = 1 ∀k, to reflect the fact that all the learned object, attribute, and back-

ground types could be present without any prior knowledge.

3.4 Applications of the model

Given the learned model applied to testing data, we can perform the following
tasks: Free Annotation: This is to describe an image using a list of nouns and
adjectives corresponding to objects and their associated attributes, as well as
locating them. To infer what objects are present in image i, the first Ko latent
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Algorithm 1: Variational Inference for WS-SIBP

while not converge do
for k = 1 to Kmax do

φk = ( 1
σ2

M∑
i=1

Ni∑
j=1

ν
(i)
jk (X

(i)
j· −

∑
l:l 6=k

ν
(i)
jl φl))(

1
σ2
A

+ 1
σ2

M∑
i=1

Ni∑
j=1

ν
(i)
jk )−1

Φk =
(

1
σ2
A

+ 1
σ2

M∑
i=1

Ni∑
j=1

ν
(i)
jk

)−1

I

end
for i = 1 to M do

for k = 1 to Kmax do

τ
(i)
k1 = α+

Kmax∑
m=k

Ni∑
j=1

ν
(i)
jm +

Kmax∑
m=k+1

(Ni −
Ni∑
j=1

ν
(i)
jm)(

m∑
s=k+1

q
(i)
ms)

τ
(i)
k2 = 1 +

Kmax∑
m=k

(Ni −
Ni∑
j=1

ν
(i)
jm)q

(i)
mk

for j = 1 to Ni do

η =
k∑
t=1

(ϕ(τ
(i)
t1 )− ϕ(τ

(i)
t2 ))− Ev[log(1−

k∏
t=1

v
(i)
t )]

− 1
2σ2 (tr(Φk) + φkφ

T
k − 2φk(X

(i)
j· −

∑
l:l 6=k

ν
(i)
jl φl)

T )

ν
(i)
jk =

L
(i)
k

1+e−η

end

end

end

end

factors of the inferred π(i) are thresholded or ranked to obtain a list of objects.
This is followed by locating them via searching for the patches j∗ maximising

Z
(i)
jk , then thresholding or ranking the Ka attribute latent factors in Z

(i)
j∗k to

describe them.
Annotation given object names: This is a more constrained variant of

the free annotation task above. Given a named (but not located) object k, its
associated attributes can be estimated by first finding the location as j∗ =

arg max
j

Z
(i)
jk , then the associated attributes by Z

(i)
j∗k for Ko < k ≤ Ko + Ka.

Object+Attribute Query: Images can be queried for a specified object-

attribute conjunction < ko, ka > by searching for i∗, j∗ = arg max
j

Z
(i)
jko
·Z(i)

jka
.

4 Experiments

Datasets:
Various object and attribute datasets are available such as aPascal, ImageNet,
SUN [24] and AwA [18]. We use aPascal because it has multiple objects per
image; and ImageNet due to sharing attributes widely across categories.



Weakly Supervised Learning of Objects, Attributes and their Associations 9

Person 1

Person 2
Aeroplane

Person 1 :  head, cloth, arm

Bounding-Box-level:

Object-level:

Person 2 :  head, cloth

Aeroplane :  metal, wing

Person :  head, cloth, arm

Aeroplane :  metal, wing

Image-level:

person, head, cloth, arm, 
aeroplane, metal, wing

Fig. 3: Strong bounding-box-level annotation
and weak image-level annotations for aPascal
are used for learning strongly supervised models
and weakly supervised models respectively.

Person 1 Person 2Aeroplane

Person 1 :  head, cloth, arm

BoundingBox-level:

Object-level:

Image-levelA:

Person 2 :  head, cloth

Aeroplane :  metal, wing

Person :  head, cloth, arm

Aeroplane :  metal, wing

head, cloth, arm, metal, wing

Image-levelO+A:

person, head, cloth, arm,
aeroplane, metal, wing

mutt courser hound

basset beagle bloodhound

bluetick coonhound dachshund

Entry-level: dogFig. 4: 43 subordinate
classes of dog are converted
into a single entry-level
class ‘dog’.

aPascal: This dataset [9] is an attribute labelled version of PASCAL VOC
2008. There are 4340 images of 20 object categories. Each object is annotated
with a list of 64 attributes that describe them by shape (e.g., isBoxy), parts
(e.g., hasHead) and material (e.g., isFurry). In the original aPascal, attributes
are strongly labelled for 12695 object bounding boxes, i.e. the object-attribute
association are given. To test our weakly supervised approach, we merge the
object-level category annotations and attribute annotations into a single an-
notation vector of length 84 for the entire image. This image-level annotation
is much weaker than the original bounding-box-level annotation, as shown in
Fig. 3. In all experiments, we use the same train/test splits provided by [9].

ImageNet Attribute: This dataset [27] contains 9600 images from 384 Im-
ageNet synsets/categories. We ignore the provided bounding box annotation.
Attributes for each bounding box are labelled as 1 (presence), -1 (absence) or
0 (ambiguous). We use the same 20 of 25 attributes as [27] and consider 1 and
0 as positive examples. Many of the 384 categories are subordinate categories,
e.g. dog breeds. However, distinguishing fine-grained subordinate categories is
beyond the scope of this study. We are interested in finding a ‘black-dog’ or
‘white-car’, rather than ‘black-mutt’ or ‘white-ford-focus’. We thus convert the
384 ImageNet categories to 172 entry-level categories using [23] (see Fig. 4). We
evenly split each class to create the training and testing sets.

Features:
We first convert each image i to Ni super-pixels/patches by a recent segmenta-
tion algorithm [1]. We set the segmentation threshold to 0.1 to obtain a single
over-segmentation from the hierarchical segmentation for each image. Each seg-
mented patch is represented using two types of normalised histogram features:
SIFT and Color. (1) SIFT: we extract regular grid (every 5 pixels) colorSIFT [29]
at four scales. A 256 component GMM model is constructed on the collection of
ColourSIFTs from all images. We compute Fisher Vector + PCA for all regular
points in each patch following [14]. The resulting reduced descriptor is 512-D
for every segmented region. (2) Colour: We convert the image to quantised LAB
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space 8×8×8. A 512-D color histogram is then computed for each patch. The
final 1024-D feature vector concatenates SIFT and Colour features together.
Compared Methods:
We compare our WS-IBP to one strongly supervised model and three weakly
supervised alternatives:
Strongly supervised model: A strongly supervised model uses bounding-box-
level annotation. Two variants are considered for the two datasets respectively.
DPM+s-SVM: for aPascal, both object detector and attribute classifier are
trained from fully supervised data (i.e. Bounding-Box-level annotation in Fig. 3).
Specifically, we use the 20 pre-trained DPM detectors from [10] and 64 attribute
classifiers from [9]. GT+s-SVM: for ImageNet attributes, there is not enough
data to learn 172 strong DPM detectors as in aPascal. So we use the ground
truth bounding box instead assuming we have perfect object detectors, giving
a significant advantage to this strongly supervised model. We train attribute
classifiers using our feature and liblinear SVM [8]. These strongly supervised
models are similar in spirit to the models used in [17, 36, 35] and can provide a
performance upper bound for the weakly supervised models compared.
w-SVM [9, 27]: In this weakly-supervised baseline, both object detectors and
attribute classifiers are trained on the weak image-level labels as for our model
(see Fig. 3). For aPascal, we train object and attribute classifiers using the feature
extraction and model training codes (which is also based on [8]) provided by the
authors of [9]. For ImageNet, our features are used, without segmentation.
MIML [41]: This is the multi-instance multi-label (MIML) learning method in
[41]. In a way, our model can also be considered as a MIML method with each
image a bag and each patch an instance. The MIML model provides a mechanism
to use the same super-pixel/patch based representation for images as our model,
thus providing the object/attribute localisation capability as our model does.
w-LDA: Weakly-supervised Latent Dirichlet Allocation (LDA) approaches [25,
31] have been used for object localisation. We implement a generalisation of
LDA [2, 31] that accepts continuous feature vectors (instead of bag-of-words).
Like MIML this method can also accept patch based representation, but w-LDA
is more related to our WS-SIBP than MIML since it is also a generative model.

4.1 Image annotation with object-attribute association

An image description can be automatically generated by predicting objects and
their associated attributes. Evaluating the performance of a multi-faceted frame-
work covering annotation, association and localisation is non-trivial. To com-
prehensively cover all aspects of performance of our method and competitors,
we perform three annotation tasks with different amount of constraints on test
images: (1) free annotation, where no constraint is given to a test image, (2)
annotation given object names, where named but not located objects are known
for each test image, and (3) annotation given locations, where objects locations
are given in the form of bounding boxes, where the attributes can be predicted.
Free annotation: For WS-SIBP, w-LDA and MIML the procedure in Sec. 3.4
is used to detect objects and then describe them using the top t attributes. For
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aPascal w-SVM MIML w-LDA WS-SIBP DPM+s-SVM

AP@2 24.8 28.7 30.7 38.6 40.6
AP@5 21.2 22.4 24.0 28.9 30.3
AP@8 20.3 21.0 21.5 24.1 23.8

ImageNet w-SVM MIML w-LDA WS-SIBP GT+s-SVM

AP@2 46.3 46.6 48.4 58.5 65.9
AP@3 41.1 43.2 43.1 51.8 60.7
AP@4 37.5 38.3 38.4 47.4 53.2

Table 1: Free annotation performance evaluated on t attributes per object.

w-SVM MIML w-LDA WS-SIBP DPM+s-SVM
bicycle motorbike person bicycle motorbike bicycle person motorbike person motorbike
metal
row wind
shiny
text
wool

metal
row wind
shiny
text
wool

skin
cloth
shiny
leather
foot/shoe

headlight
window
wheel
arm
screen

taillight
label
engine
shiny
glass

wheel
rein
beak
metal
sail

cloth
clear
arm
skin
head

wheel
shiny
pedal
exhaust
round

cloth
skin
hair
head
leg

engine
metal
label
shiny
taillight

cat sheep cat dog person cat person cat person dog
furry
cloth
snout
leg
head

furry
cloth
snout
leg
head

furry
horn
ear
occluded
leg

mouth
furry
torso
taillight
shiny

cloth
wood
mast
torso
arm

nose
furry
arm
jet engine
foot

skin
cloth
vegetation
torso
arm

furry
ear
beak
leg
leather

cloth
torso
skin
clear
head

beak
hand
arm
furry
skin
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Fig. 5: Qualitative results on free annotation. False positives are shown in red.
If the object prediction is wrong, the corresponding attribute box is shaded.

the strongly supervised model on aPascal (DPM+s-SVM), we use DPM object
detectors to find the most confident objects and their bounding boxes in each test
image. Then we use the 64 attribute classifiers to predict top t attributes in each
bounding box. In contrast, w-SVM trains attributes and objects independently,
and cannot associate objects and attributes. We thus use it to predict only one
attribute vector per image regardless of which object label it predicts.

Since there are variable number of objects per image in aPascal, quantita-
tively evaluating free annotation is not straightforward. Therefore, we evaluate
only the most confident object and its associated top t attributes in each image,
although more could be described. For ImageNet, there is only one object per
image. We follow [11, 39] in evaluating annotation accuracy by average precision
(AP), given varying numbers (t) of predicted attributes per object. Note that if
the predicted object is wrong, all associated attributes are considered wrong.

Table 1 compares the free annotation performance of the five models. We
have the following observations: (1) Our WS-SIBP, despite learned with the
weak image-level annotation, yields comparable performance to the strongly su-
pervised model. The gap is particularly small for the more challenging aPascal
dataset, whist for ImageNet, the gap is bigger as the strongly supervised GT+s-
SVM has an unfair advantage by using the ground truth bounding boxes during
testing. (2) WS-SIBP consistently outperforms the three weakly supervised alter-
natives. The margin is particularly large for t = 2 attributes per object, which is
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Fig. 6: Illustrating the inferred patch-annotation. Object and attributes are
coloured, and multi-label annotation blends colours. The bottom two groups
each have two rows corresponding to the two most confident objects detected.

closest to the true number of attributes per object. For bigger t, all models must
generate some irrelevant attributes thus narrowing the gaps. (3) As expected,
the w-SVM model obtains the weakest results, suggesting that the ability to
locate objects is important for modelling object-attribute association. (4) Com-
pared to the two generative models, MIML has worse performance because a
generative model is more capable of utilising weak labels [31]. (5) Between the
two generative models, the advantage of our WS-SIBP over w-LDA is clear; due
to the ability of IBP to explain each patch with multiple non-competing factors.
(Training two independent w-LDA models for objects and attributes respectively
is not a solution: the problem would re-occur for multiple competing attributes.)

Fig. 5 shows qualitative results on aPascal via the two most confident objects
and their associated attributes. This is challenging data – even the strongly su-
pervised DPM+s-SVM makes mistakes for both attribute and object prediction.
Compared to the weakly supervised models, WS-SIBP has more accurate pre-
diction – it jointly and non-competitively models objects and their attributes so
object detection benefits from attribute detection and vice versa. Other weakly
supervised models are also more likely to mismatch attributes with objects,
e.g. MIML detects a shiny person rather than the correct shiny motorbike.

To gain some insight into what has been learned by our model and why it is
better than the weakly supervised alternatives, Fig. 6 visualises the attribute and
object factors learned by WS-SIBP model and by the two baselines that also use
patches as input. It is evident that without explicit background modelling, MIML
suffers greatly by trying to explain the background patches using the weak labels.
In contrast, both w-LDA and WS-SIBP have good segmentation of foreground
objects, showing that both the learned foreground and background topics are
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w-SVM MIML w-LDA WS-SIBP strongly supervised

G
N aPascal – 32.1 35.5 38.9 41.8

ImageNet 32.4 33.5 39.6 51.5 56.8

G
L aPascal 33.2 35.1 35.8 43.8 42.1

ImageNet 37.7 39.1 46.8 53.7 56.8

Table 2: Results on annotation given object names (GN) or locations (GL).
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Fig. 7: Object-attribute query results as precision-average recall curve.

meaningful. However, for w-LDA, since object and attributes topics compete for
the same patch, each patch is dominated by either an object or attribute topic.
In contrast, the object factors and attribute factors co-exist happily in WS-SIBP
as they should do, e.g. most person patches have the clothing attribute as well.

Annotation given object names (GN): In this experiment, we assume that
object labels are given and we aim to describe each object by attributes, cor-
responding to tasks such as: “Describe the car in this image”. For the strongly
supervised model on aPascal, we use the object’s DPM detector to find the most
confident bounding box. Then we predict attributes for that box. Here, annota-
tion accuracy is the same as attribute accuracy, so the performance of different
models is evaluated following [40] by mean average precision (mAP) under the
precision-recall curve. Note that for aPascal, w-SVM reports the same list of at-
tributes for all co-existing objects, without being able to localise and distinguish
them. Its result is thus not meaningful and is excluded. The same set of conclu-
sions can be drawn from Table 2 as in the free annotation task: our WS-SIBP at
par with the supervised models and outperforming the weakly supervised ones.

Given object location (GL): If we further know the bounding box of an
object in a test image, we can simply predict attributes inside each bounding
box. This becomes the conventional attribute prediction task [9, 27] for describing
an object. Table 2 shows the results, where similar observations can be made
as in the other two tasks above. Note that in this case the strongly supervised
model is the method used in [9]. The mAP obtained using our weakly supervised
model is even higher than the strongly supervised model (though our area-under-
ROC-curve value of 81.5 is slightly lower than the 83.4 figure reported in [9]).
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Fig. 8: Object-attribute query: qualitative comparison

4.2 Object-attribute query

In this task object-attribute association is used for image retrieval. Following
work on multi-attribute queries [26], we use mean average recall over all preci-
sions (MAR) as the evaluation metric. Note that unlike [26] which requires each
queried combination to have enough (100) training examples to train conjunc-
tion classifiers, our method can query novel never-previously-seen combinations.
Three experiments are conducted. We generate 300 random object-attribute
combinations for aPascal and ImageNet respectively and 300 object-attribute-
attribute queries for ImageNet. For the strongly supervised model, we normalise
and multiply object detector with attribute classifier scores. No object detector
is trained for ImageNet so no result is reported there. For w-SVM, we use [30]
to calibrate the SVM scores for objects and attributes as in [26]. For the three
WS models, the procedure in Sec. 3.4 is used to compute the retrieval ranking.

Quantitative results are shown in Fig. 7 and some qualitative examples in
Fig. 8. Our WS-SIBP has a very similar MAR values to the strongly supervised
DPM+s-SVM, while outperforming all the other models. w-SVM calibration [30]
helps it outperform MIML and w-LDA. However, the lack of object-attribute
association and background modelling still causes problems for w-SVM. This
is illustrated in the ‘dog-black-white’ example shown in Fig. 8 where a white
background caused an image with a black dog retrieved at rank 2 by w-SVM.

5 Conclusion

We have presented an effective model for weakly-supervised learning of objects,
attributes, their location and associations. Learning object-attribute association
from weak supervision is non-trivial but critical for learning from ‘natural’ data,
and scaling to many classes and attributes. We achieve this for the first time
through a novel weakly-supervised stacked IBP model that simultaneously dis-
ambiguates patch-annotation correspondence, as well as learning the appearance
of each annotation. Our results show that our model performs comparably with
a strongly supervised alternative that is significantly more costly to supervise.
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