2302.05915v1 [cs.Sl] 12 Feb 2023

arxXiv

Will Admins Cope? Decentralized Moderation in the Fediverse

Ishaku Hassan Anaobi!, Aravindh Raman?, Ignacio Castro!, Haris Bin Zia!, Dami Ibosiola!, and Gareth Tyson!3

!Queen Mary University of London, ?Telefonica Research, *Hong Kong University of Science and Technology (GZ)

Abstract

As an alternative to Twitter and other centralized social
networks, the Fediverse is growing in popularity. The
recent, and polemical, takeover of Twitter by Elon Musk
has exacerbated this trend. The Fediverse includes a
growing number of decentralized social networks, such as
Pleroma or Mastodon, that share the same subscription
protocol (ActivityPub). Each of these decentralized so-
cial networks is composed of independent instances that
are run by different administrators. Users, however, can
interact with other users across the Fediverse regardless
of the instance they are signed up to. The growing user
base of the Fediverse creates key challenges for the ad-
ministrators, who may experience a growing burden. In
this paper, we explore how large that overhead is, and
whether there are solutions to alleviate the burden. We
study the overhead of moderation on the administrators.
We observe a diversity of administrator strategies, with
evidence that administrators on larger instances strug-
gle to find sufficient resources. We then propose a tool,
WatchGen, to semi-automate the process.

1 Introduction

The Fediverse encompasses a group of increasingly pop-
ular platforms and technologies that seek to provide
greater transparency and openness on the web. [18, 30,
34, 13]. Well known Fediverse platforms include mi-
croblogging services (e.g. Pleroma [38], Mastodon [33])
and video sharing platforms (e.g. PeerTube [37]). The
acquisition of Twitter by Elon Musk [11] has exacerbated
this popularity with a large migration of Twitter users
to the Fediverse [8].

In Fediverse social networks, individuals or organisa-
tions can install, own, and manage their own indepen-
dent servers, also known as instances [15, 54]. For
these instances to interact, they rely on federation [41],
whereby instances interconnect in a peer-to-peer fash-
ion to exchange posts. Note that this allows for users
to exchange content across platforms. This results in a
physically decentralized model that is logically intercon-
nected where users can interact globally. Unfortunately,
this creates challenges for instance administrators, as
activities on one instance impact others via federation.
For example, recent work has shown that hateful ma-

terial generated on one instance can rapidly spread to
others [53].

To overcome this, most Fediverse social network im-
plementations have in-built federation policies. These
policies enable administrators to create rules to ban or
modify content from instances that matches certain rules,
e.g. banning content from a particular instance or as-
sociating it with warning tags. Although a powerful
tool, this imposes an additional overhead on adminis-
trators [26, 14, 6]. Thus, we argue it is vital to better
understand this process, and propose ways to improve it.

This paper examines administrator activities in the Fe-
diverse. We focus on Pleroma, a federated microblogging
platform with similar functionality to Twitter. We col-
lect a large-scale dataset covering 10 months: this in-
cludes 1,740 instances, 133.8k users, 29.9m posts, asso-
ciated metadata, and importantly, the policies setup by
the administrators. We find that instances are often “un-
derstaffed”, with the majority of instances only having a
single administrator, and recruiting no other moderators
to assist, despite many having over 100K posts. This
leads us to conjecture that some administrators may be
overwhelmed. Indeed, we find that instance adminis-
trators often take many months before applying policies
against other instances, even in cases where they exhibit
clearly controversial traits (e.g. posting a large number
of hate words).

We therefore turn our attention to the policy configu-
rations employed. We observe a growing number of in-
stances enacting a wide range of policy types. Common
are ‘maintenance’ policies, such as those which automat-
ically delete older posts (ObjectAgePolicy), as well as
those aimed at preventing the spread of certain content
(e.g. HashtagPolicy, which flags up posts with certain
hashtags). We further observe a range of bespoke policies
created by administrators, via the SimplePolicy, which
can be configured to trigger a range of actions based on
certain rules (e.g. blocking all connections from certain
instances). The laborious nature of this moderation work
leads us to explore automated techniques to assist admin-
istrators. We build a set of models to predict administra-
tor actions. We embed them in WatchGen, a tool that
can propose a set of instances for administrators to focus
their moderation efforts on. To the best of our knowl-
edge, this is the first study of Fediverse administrators.
We make the following observations:

1. We find a diverse range of 49 policies used by admin-
istrators, capable of performing various management
and moderation tasks. Despite this, we see that
66.9% of instances are still running, exclusively, on
the default policies alone (Section 4).

2. The number of administrators does not grow pro-
portionately with the number of posts (Section 5).
This seems to impact moderation. For example, it
takes an average of 82.3 days for an administrator
to impose a policy against an instance after it first
encounters it, even for well-known and highly con-
troversial ones (e.g. gab.com [5]).

3. Intuitive features, such as the number of mentions
and frequent use of hate words, are good indica-
tors that an instance will later have a policy applied
against it (Section 6). This suggests that there are
key traits that garner more attention by moderators.

4. We show that it is possible to predict (F1=0.77)
which instances will have policies applied against
them (Section 6) and design WatchGen, a tool that
flags particular instances for administrators to pay
special attention to.

2 Pleroma: Overview

Pleroma is a lightweight decentralized microblogging
server implementation with user-facing functionality sim-
ilar to that of Twitter. In contrast to a centralized social
network, Pleroma is a federation of multiple indepen-
dently operated servers (aka instances). Users can reg-
ister accounts on these instances and share posts with
other users on the same instance, or on different in-
stances. Through these instances, users are able to reg-
ister accounts and share posts (called statuses) to other
users on the same instance, other Pleroma instances, or
instances from other Fediverse platforms, most notably
Mastodon.

Federation. We refer to users registered on the same
instance as local, and users on different instances as re-
mote. A user on one instance can follow another user
on a separate instance. Note that a user registered on
their local instance does not need to register with the re-
mote instance to follow the remote user. When the user
wants to follow a user on a remote instance, the local
instance subscribes to the remote user on behalf of the
local user using an underlying subscription protocol (Ac-
tivityPub [2]). This process of peering between instances
in the Fediverse is referred to as federation.

The federated network includes instances from
Pleroma and other platforms (e.g. Mastodon) that sup-
port the same subscription protocol (ActivityPub). Ac-
cordingly, Pleroma instances can federate and target
their policies at non-Pleroma instances. The resulting

network of federated instances is referred to as the Fedi-
verse (with over 23k servers [16]).

Policies. Policies affect how instances federate with
each other through different rule-action pairs. These al-
low certain actions to be executed when a post, user, or
instance matches pre-specified criteria. For example, the
SimplePolicy can perform a range of actions when a re-
mote instance matches certain criteria such as rejecting
connections. Note, there are numerous in-built policies,
but tech-savvy administrators can also write their own
bespoke policies.

Admanistrators. Instances are hosted and managed by
specialized users called administrators. By default, the
creator of an instance will take on the role of the admin-
istrator, however, it is also possible to delegate such re-
sponsibilities to multiple others. Instance administrators
are responsible for carrying out the day-to-day adminis-
trative tasks on the instances. These include managing
the front-end, users, uploads, database, emoji packs and
carrying out administrative email tasks. The instance
administrator is also responsible for accepting new user
registrations and removing users where necessary. The
administrator updates and backs-up the instance, set the
terms of service and retains the ability to shutdown the
instance. One essential responsibility of the instance ad-
ministrator is the moderation of content (although they
can also assign the role to other users called moderators).
This can make instance administration a cumbersome
task, and administrators a very important part of the
Fediverse.

3 Data Collection

Instance €& Administrator Dataset. Our mea-
surement campaign covers 16th Dec 2020 — 19th Oct
2021. We first compile a list of Pleroma instances by
crawling the directory of instances from distsn.org
and the-federation.info. We then capture the list of
instances that each Pleroma instance has ever federated
with using each instance’s Peers API.! Note, this includes
both Pleroma and non-Pleroma instances. In total, we
identify 9,981 instances, out of which 2,407 are Pleroma
and the remainder are non-Pleroma (e.g. Mastodon).

We then collect metadata for each Pleroma instance
every 4 hours via their public API.2 We record the list of
administrators and any delegated moderators. We also
obtain the number of users on the instance, the number of
posts, the enabled policies, the applied policies as well as
the instances targeted by these policies, and other meta
information.

From the 2,407 Pleroma instances, we are able to
gather data from a total of 1,740 instances (72.28%).

! (instance.uri) /api/v1/instance/peers
2(instance.uri)/api/v1/instance/

distsn.org
the-federation.info
<instance.uri>/api/v1/instance/peers
<instance.uri>/api/v1/instance/

For the remaining 667 instances: 65.1% have non ex-
istent domains, 17.9% are not found (404 status code),
6.4% instances has private timelines (403), 4.5% result in
Bad Gateway (502), 1.3% in Service Unavailable (503),
and under 1% return Gone (410).

User Timelines. Users in Pleroma have three time-
lines: (i) a home timeline, with posts published by the
accounts that the user follows (local and remote); (ii) a
public timeline, with all the posts generated within the
local instance; and (i) the whole known network, with
all posts that have been retrieved from remote instances
that the local users follow. Note, the whole known net-
work is not limited to remote posts that a particular user
follows: it is the union of remote posts retrieved by all
users on the instance. We use the public Timeline API?
to gather posts data from 819 instances (the remaining
912 instances have either no posts or unreachable public
timelines).

Ethics. Our dataset covers Pleroma instances and their
administrators. We exclusively focus on the policies that
these administrators set, and do not investigate other
aspects of administrator behavior (e.g. the posts they
share). All data is available via public APIs. We empha-
size that administrators, themselves, are the ones who
control access to these APIs. Hence, the administrators
covered in this paper consent for others to use this data.
Further, the policies studied do not work on a per-user
granularity and, thus, we cannot infer anything about
individual users. All data is anonymized before usage,
and it is stored within a secure silo.

4 Exploring Policy Configura-
tions

Policy Footprint. We first quantify the presence of
policies across instances. In total, we observe 49 unique
policy types. From our 1.74k Pleroma instances, we re-
trieve policy information from 93.2% of instances (the re-
mainder do not expose their policies). These cover 94.2%
of the total users and 94.5% of all posts. Figure 1 shows
the distribution of the top 15 policy types enabled by
the administrators across instances and the percentage
of users signed up within those instances as well as the
posts on the instances. We see a wide range of policies
with diverse functionalities and varying coverage based
on which metric is considered. For instance, whereas the
ObjectAgePolicy (which performs an action on a post
once it reaches a certain age) is installed on 74.8% of in-
stances, this only covers 52.4% of the users. In contrast,
the KeyWordPolicy (which performs an action on any
posts containing a given keyword) covers 18.8% of users,
but just 3% instances. Critically, there is a highly un-
even distribution of policies, with the the top-5 covering

3 (instance.uri) /api/v1/timelines/public?local=true

ObjectAgePolicy
TagPolicy
HashtagPolicy
SimplePolicy
NoOpPolicy ===
StealEmojiPolicy ==
HellthreadPolicy ===
Others ==
AntiFollowbotPolicy ==
MediaProxyWarmingPolicy S
KeywordPolicy =
AntiLinkSpamPolicy =
ForceBotUnlistedPolicy B
ActivityExpirationPolicy £
EnsureRePrepended™
NormalizeMarkup i<

Policies

EEN Users
Posts
N Instances

10 20 30 40 50 60 70 80
Percentage (%)

Figure 1: The top 15 policies and percentage of instances
that use each policy (sorted by the percentage of in-
stances).

92.3% of all instances, 73.6% of users and 88.8% of the
posts.

Default Policies. Default policies come auto-enabled
with new installations. Prior to version 2.3.0 in March,
2021, only the ObjectAgepolicy and NoOpPolicy are
enabled by default. Since version 2.3.0, the TagPolicy
and HashtagPolicy are also enabled with a new instal-
lation (or upgrade). 66.9% of instances only have these
default policies running. Relying solely on default poli-
cies may indicate several things. For example, adminis-
trators maybe unaware of management and moderation
functionalities, unable to use them or simply not have
sufficient time. Alternatively, they may actively choose
not to use them.

Note, while the TagPolicy allows tagging user posts
as sensitive (default: nsfw), the Hashtagpolicy allows
the tagging of hashtags (e.g. nsfw sensitive). We find
54.6% and 34.3% of instances enabling these policies
respectively. The other Pleroma default policy is the
NoOpPolicy. This allows any content to be imported.
This describes the default state of a new instance. In-
terestingly, we see administrators paying more attention
to this policy: 89.7% of the instances have actively dis-
abled it.* This suggests that administrators are aware
and concerned about importing undesirable content.

Non-Default Policies. Non-default policies are those
that instance administrators have to actively enable. In-
stances with these policies may indicate a more proactive
administrator. We find 45 non-default policies during our
data collection period.

The most powerful policy available is the
SimplePolicy, enabled on 28.8% of instances. This
policy allows administrators to apply a wide range of
actions against specific instances (e.g. gab.com). The
most impactful and common is the reject action.’
56.9% of instance that enable the SimplePolicy employ
the reject action. Interestingly, although we see only

4Note, this is overridden if a user enabled any other policy.
5This blocks all connections from a given instance

<instance.uri>/api/v1/timelines/public?local=true

28.8% of instances with the SimplePolicy enabled, its
application affects 85.4% of users and 90.3% of the posts
on the Pleroma platform. We see noteworthy instances
being amongst the top targets of this policy (e.g. kiwi-
farms.cc and anime.website), which are all commonly
understood to share controversial material. Interest-
ingly, only 18.5% of instances with the SimplePolicy
applied against them are from the Pleroma platform
(the most are from Mastodon [39]). This means that
81.5% of the recipients are from federated instances
outside of Pleroma.

Policy Growth. We next look at how the use of poli-
cies has changed over time. We conjecture that the longer
administrators run their instances, the more experienced
they become. As such, we expect to see greater appli-
cation of policies. Here we focus on the 5 most popu-
lar policies as they account for 92.3% of the instances,
73.6% of users and 88.8% of the posts. For complete-
ness, we include the sum of the other less popular poli-
cies too. Figure 2 presents the percentage of instances
that activate each policy over time. Across our measure-
ment period, we observe a growth of 40% in the total
number of policies used. This suggests that the use of
policies is becoming more common. 28.5% of these poli-
cies are introduced by new instances coming online, with
newly installed default policies, e.g. ObjectAgepolicy,
TagPolicy and HashtagPolicy. The remainder are in-
stantiated by pre-existing instance administrators that
update their policies, suggesting a relatively active sub-
set of administrators.

We also inspect the growth on individual instances.
Overall, 42% of instances add policies during our mea-
surement period. Of these instances, 52.3% enable only
one extra policy and we see only a small minority (1.9%)
enabling in excess of 5 new policies (e.g. chaos.is en-
ables 13 and poa.st 12). A closer look at these instances
show they mostly add common policies. However, we
also see a wide range of other less common policies (e.g.
KeywordPolicy).

In contrast, the use of the SimplePolicy, with the
most flexible range of moderation actions, has remained
relatively stable. Actions under the SimplePolicy have
instance-wide effect and can effectively control instance
federation. Overall, we only see 28.8% of instances en-
abling this policy, without much growth across the mea-
surement period (as seen in Figure 2). This could im-
ply that administrators are unaware of this policy, do
not have time to moderate their instances at this level
or maybe find this policy too blunt (not fine-grained
enough). The latter could lead to other issues, which ad-
ministrators seek to avoid (e.g. collateral damage [22]).
It is also worth noting that the SimplePolicy is one
of the most complex, and administrators potentially shy
away from these more labour-intensive policies. We
argue that the diversity of policies could potentially
overwhelm (volunteer) instance administrators (see Sec-

—— ObjectAgePolicy
TagPolicy

—— HashtagPolicy

—— SimplePolicy

—— NoOpPolicy

—— Others

40

w
o

% of Instances
N
o

o

0
NS F S PP P RS R

Q N N N’ N N N N N N N N
P PP DS
S S S S S S S S S

Figure 2: Time series showing the percentage of instances
(Y-axis) that use the 5 most popular Pleroma policies.
We include the sum of all the remaining policies as “Oth-

”

ers-.

% of instances
N w £ w [=)] ~
o o o o o o

-
o

o

1 2 3 4 5 6 7 8 12 13 16
of Administrators

Figure 3: Instances (%) by number of administrators.

tion 5). This suggest that they require further support
to automate this process (see Section 6).

5 Characterising Administrators

5.1 Distribution of Administrators

Number of Administrators Per-Instance. We ob-
serve a total of 2,111 unique administrators from 1,633
instances (93.8% of 1.74k).% Figure 3 presents the dis-
tribution of the number of administrators per instance.
Although a majority of instances (71.6%) are managed
by a single administrator, we also see some instances with
a larger number of administrators (e.g. rakket.app: 16
and poa.st: 13).

Admainistrator Workload. We next test if the number
of administrators increases proportionately to the num-
ber of posts. We treat this as a rudimentary proxy for
how much moderation must take place on an instance.
Figure 4 presents the distribution of posts on instances

6The remaining instances do not publish their administrator(s)
information.

1 2 3 4 7 8 12 13 16

5 6
of Administrators

Figure 4: Box plot of the number of posts per instances
with different number of administrators.

vs. the number of administrators. Generally, we find that
instances with more posts do have more administrators
on average, e.g. instances with multiple administrators
have more posts, with a ratio of 6:1. However, this is
driven by a few instances (e.g. poa.st).

Table 3 summarizes the top 10 instances that see the
largest growth in administrators. Many of them are small
instances with under 1000 users, and a proportionately
small number of posts. This suggests that administrator
growth does not necessarily occur on the instances that
need it the most. To test if the number of administrators
grow proportionately to the number of posts, Figure 5
plots the growth of administrators vs. the growth of posts
on each individual instance during our data collection pe-
riod. We see that a growth in posts on a given instance
does not necessarily correspond to the recruitment of new
administrators. In fact, only 6.9% of instances record a
growth in administrators during this period. Overall,
there is a weak correlation (Spearman coefficient of 0.19
for the number of posts vs. number of administrators).
In total, we see a 60.3% increase in the number of posts,
but just a 35.6% growth in administrators. Unsurpris-
ingly, instances that grow their administrator pool do
become more active. On average, instances with a grow-
ing number of administrators have 1.5x more policies
than other instances. Specifically, looking at the policy
with the most impact (reject), these instances apply it
1.8x more than others. Interestingly, instances with an
increasing number of administrators also have 4x more
policies applied against them.

5.2 Administrators’ Response Lag

The previous section has shown that administrators face
a growing moderation workload. To study this workload,
we now look at how long it takes administrators to ap-
ply polices against particular instances. We focus on the
SimplePolicy as this is clearly geared towards moder-
ation, has instance-wide targeting, and lists the target
instances. For each SimplePolicy against a given in-

10 = Postgrowth [6

—— Admin growth

Post Growth
3
IS
Admin Growth

=)

0 200 400 600 800 1000 1200 1400 1600
Instances

Figure 5: Per instance growth in the number of admin-
istrators (Y2-axis) and posts (Y1l-axis). Individual in-
stances are on the X-axis, sorted by the number of posts.

1.0-
0.8-
0.6-
('S
[=]
o
0.4-
0.2-
@ All moderated
@ Top10 moderated
0.0- @ _Bottom10 moderated
0 50 100 150 200 250
of Days

Figure 6: CDF showing the distribution of days from
federation to moderation for all moderated instances. We
also show results for the top 10 and bottom 10 instances,
based on the number of policies applied against them.

stance, we compute the lag between the date of the imple-
mentation of the policy and the date when the targeted
instance was first federated with. This is a rudimentary
proxy for how long it took an administrator to identify
the problem. We temper our analysis with the fact that
there could be many reasons for this delay, which we have
limited vantage on.

Policy Creation Delay. Figure 6 presents the distri-
bution of delays (as defined above). Note, we exclude the
55% of federations that occurred before the beginning
of our data collection (as we cannot know their times-
tamp). We plot the delay distributions for applying poli-
cies against: (4) All instances; (#) “Controversial” in-
stances with the most policies applied against them (top
10); and (77) “Benign” instances with the fewest policies
against them (bottom 10).

It takes administrators an average of 82.3 days to apply
any form of policy against other instances. Although, on
average, it takes more time for a policy to be applied on
the “bottom 10” instances than the ”top 10” instances
(74.7 and 59.5 days respectively), we see that there is
a noticeable lag (almost 3 months) between federation
occurring and policies being imposed. This may suggest

300
250
9 200

©
T 150

G
5 100
50

Figure 7: Box plot showing the distribution of the num-
ber of days from federation to the imposition of policies
for the top 10 instances with the most policies applied

against them.

that administrators find it difficult to keep-up with the
need to rapidly identify instances that justify policy im-

position.
Delay for Controversial Instances. We next extract
the top 10 instances that receive the most policies tar-
geted against them. For each one, Figure 7 plots the
distribution of delays (i.e. how long it takes other in-
stances to impose a policy against them). In-line with
expectations, we see that administrators take less time to
apply policies against instances like gab.com, known for
its right-wing stance (average of 19 days). However, we
see much longer delays for other controversial instances
that are less well-known (e.g. neckbeard.xyz), averag-
ing up to 98.4 days. These instances are quite active,
with significant growth in posts during our measurement
period (e.g. neckbeard.xyz: 789.4k and kiwifarms.cc:
469.2k). With other instances such as anime.website
posting “lolicon” (suggestive art depicting prepubescent
females), it is expected that policies would be swift, how-
ever, we see a very wide breadth of delays. The diverse
nature of these administrator reactions indicates that any
future automated moderation tools should be specialized
to the preferences of individual administrators.

5.3 Administrators & Moderators

Moderation Delegation. As administrators are re-
sponsible for a wide range of activities, they can dele-
gate the task of content moderation to select individuals.
These accounts are referred to as moderators. Of our
1.74k instances, 47% of them (819) expose information in
our dataset. From these, only 12% (98) of instances have
assigned the role of moderator to any other accounts. Of
these, 73.5% (72) of the instances have the administra-
tor also doubling as a moderator, while 29.6% (29) of the
instances assign the entire moderator role to an account
that is not the administrator. This implies that only
3.5% of instances have dedicated account(s) assigned the

role of moderator.

EEE No additional moderators
Additional moderators

[}
825
<20
3
» 15
£
« 10
o
=5 I
0 | B I R S B
§ § 8§ 6 6 © & & ©35 & © o
2 @ & & & &£ & 22 & & & § &8
9 5 5 ¢ 9 T § 5§ dSpFg £ T 5§ 9
2L £ 39 § £ s £§ 5 £ L o2
P 5 £ 2 £ 4 5§ £35 & £ 5 3 F
D T D s’EQ‘UQ)«:aQE
= T T &4 S S¥ § 2 8 ¥ &
9 T g £ 3= g oS W & o
g 5 S g > 7 =2
o s ¢ T 2
< g < o = ,5
S 5 W
0 S O
5 £ <
L]
S
Policies

Figure 8: The percentage of instances that enable the
top 15 most popular policies. We separate instances into
two groups: (¢) Instances without additional moderators;
and (i7) instances with additional moderators outside of

the administrator set.

Are moderators helpful? We conjecture that in-
stances with dedicated moderators outside of their ad-
ministrator team might be swifter in the application of
policies. Figure 8 shows the percentage of instances
that enable the 15 most popular policies (Figure 1).
We present two bars for each policy: (i) Instances
with additional moderators (who are not an administra-
tor); and (#) Instances without additional moderators.
There is a broadly similar distribution across these two
groups. However, we notice that instances without ad-
ditional moderators have approximately 3x more of the
NoOpPolicy configured. Recall, this is the default state
of an instance and allows any content to be imported.
This begins to suggest that instances with additional
moderators do pay greater attention to policies.

We expand this analysis in Figure 9, where we show
the number of SimplePolicy actions and the delay to
apply a policy after federation (in days) for instances in
the two groups. We use the SimplePolicy for this anal-
ysis as it is the only moderation policy with instance-
wide targeting and a list of targeted instance domains.
The plot shows that instances with moderators take less
time (average 103 days) to impose a SimplePolicy af-
ter federation, compared to instances without dedicated
moderators (average 111 days). The figure also shows a
marked difference in the number of instances that apply
the SimplePolicy. Only 38% of the instances with ded-
icated moderators apply no SimplePolicy actions, com-
pared to 70% for those without. This confirms that in-
stances with additional moderators are more proactively

moderated.

of Days
10 10

1.0 s Additional moderators(policy)
m== wm Additional moderators(days)

@ No additional moderators(policy)
=== == No additional moderators(days)

0.8-
W 0.6
a
o _/
0.4+ [I
21
0.2- 77
27
-
040'____‘_0__----7_ L
10 10 10

of SimplePolicy actions

Figure 9: CDF of the number of SimplePolicy actions
per instance (X1-axis) and the lag (in days) for instances
to impose a policy after federation (X2-axis). We sepa-
rate instances into (i) those with dedicated moderators;
and (4i) those without dedicated moderators.

6 WatchGen:
eration

Automating Mod-

Our results indicate that moderation is labor-intensive.
We now explore techniques to assist administrators. We
propose WatchGen,” a tool that recommends to admin-
istrators a “watchlist” of instances that may require fed-
erated moderation. This watchlist must be on a per-
instance basis, as different administrators may have vary-
ing views on what is considered appropriate for the in-
stance they manage. WatchGen, helps administrators to
more proactively identify instances requiring attention
with regards to content moderation. We build Watch-
Gen by compiling a large feature set for each instance,
and experimenting with a number of classification models
to flag instances that are more likely to require attention.

Feature Selection. We first extract features for each
instance. These features include information about user
(e.g. number of users) and administrator activities with
respect to moderation (e.g. number of rejected in-
stances). We also extract features from post content (e.g.
number of hate words in posts). We experiment with a
total of 38 features (see Table 5). Through extensive
manual experimentation, we distil this down to the 16
most determinant features (highlighted in Table 5).

Model Training. Next, we train multiple machine
learning models using the sklearn library, and Grid-
SearchCV within 5-fold cross-validation to find the opti-
mal hyper-parameter settings. We detail below the hy-
perparameters for each model.

Logistic Regression (LR). We only tune the C hyper-
parameter. This regularization parameter controls how
closely the model fits to the training data. We test for
best value of ”C” using the values {0.001, 0.01, 0.1, 1,

Thttps://github.com/anaobi/WatchGen.git

10, 100, 1000}.

Multilayer Perceptron (MLP). We tune three hy-
perparameters: (z) hidden layer-size: dictates the num-
ber of hidden layers and nodes in each layer. We use a
single hidden layer with varying hidden layer-sizes {10,
50, 100}; (i7) activation function: determines the type
of non-linearity introduced into the model. We employ 3
activation functions {relu, tanh, logistic}; and (7i¢) learn-
ing rate: we tune how the initial learning rate parameter
changes in finding the optimal model using {constant,
invscaling, adaptive}.

Random Forest (RF). We tune 2 hyperparameters.
(i) n_estimators: the number of independent trees (es-
timators). We test using 3 values {5, 50, 250}; and
(4i) max_depth: the depth of the trees. We test for best
result using 6 different depths {2, 4, 8, 16, 32, None}.

Gradient Boosted Trees (GB). We tune three hy-
perparameters. (i) n_estimators: The number of inde-
pendent trees (estimators). We test with 4 value {5, 50,
250, 500}; (4) max_depth: The depth of the trees. We
test with 5 values {1, 3, 5, 7, 9}. (i47) Learning rate: This
impacts the speed and granularity of the model training.
We test 5 values {0.01, 0.1, 1, 10, 100}.

6.1 Generating a Global Watchlist

Task. We first assume a WatchGen central broker that
compiles a global pool of training data, collected from
all instances through their public APIs (similar to us in
Section 3). We use this global pool of training data,
with an 80:20 split, to predict if a given instance will be
subject to any policy (by any other instance). We then
produce a ‘watchlist’ of instances that may be worthy of
attention.

To investigate how long it would take to garner suffi-
cient data to train WatchGen, we also train several mod-
els on datasets covering increasing time windows. We
first train on one month of data and increase the train-
ing dataset by one month at a time (up to 9 months).
For our test dataset, we use the data remaining after the
training snapshot.

Results. Table 1 summarizes the result with the global
pool of training data (80:20 split) with Random Forest
being the best performing model (f1=0.77). Recall, that
we also run experiments with a training set based on
varying time windows. Figure 10 presents the f1 scores
based on the size (duration) of the training set. We
observe that it takes at least 5 months for a model to
achieve its best score (e.g. Gradient Boosted Trees is
month 5 and Random Forest in month 7). Note that the
training sets are different from Table 1 and hence the
scores differ.

Feature Importance. We next inspect which features
are most important. This sheds insight into which char-
acteristics are most related to triggering policies. We use

https://github.com/anaobi/WatchGen.git

— | R

06 MLP
a— RF

-— GB

f1-score

& & @& & © ® S &R
& & & & & & & & &
<& Ny Ny <& <& <& <& <& <&
Algorithm

Figure 10: Time series of fl-scores for the Logistic Re-
gression, Multi-Layer Perceptron, Random Forest and
Gradient Boosted Trees models. Note that we exempt
month 10 as this leaves insufficient test data.

Algorithm Acc. Prec. Recall f1 score
Logistic Regression 0.86 0.85 0.34 0.49
Multi-Layer Perceptron 0.57 0.34 0.42 0.53
Random Forest 0.92 0.88 0.68 0.77

Gradient Boosted Trees 0.89 071 0.71 0.71

Table 1: WatchGen performance results when using
global training pool and the full feature set.

the in-built functions for feature importance. Figure 11
presents the feature importance for the explainable mod-
els. We see that the top 3 features (transformed post, av-
erage number of mentions in a post, and number of posts
on an instance) are all related to the number of posts on
an instance. This suggests that the likelihood of an in-
stance having a policy applied against it is closely related
to the amount of content its users post. In other words,
the more users and posts on an instance, the higher the
probability of having a policy applied against it. This
is expected as such instances are likely to attract more
attention.

Features such as the number of mentions and hate
words in the posts also play an important role. This is
in-line with prior work that observed how mentions and
quote retweets result in more attention [17]. To better
understand the importance of these secondary metrics,
we retrain the model without the two top features (num-
ber of posts and transformed posts). We show the results
in Table 4. Confirming our prior assertion, we retain rel-
atively good performance. For Random Forest, we attain
an f1 of 0.62 (vs. 0.77 with the full feature set in Table 5).
This confirms that these other factors play an important
role in determining if an instance has a policy applied
against it. In other words, in addition to the size of an
instance, other features are required to obtain a fairly
good prediction of instances being subject to any policy.

6.2 Generating a Local Watchlist

Task. Our prior WatchGen models assume a central
pool of training data, aggregated from all instances. This
may be infeasible in practice due to the decentralized na-
ture of the Fediverse. Hence, we next investigate how
well our best model (Random Forest) performs when de-
centralizing the training process. For each instance, we
extract its federated peers and exclusively build a lo-
cal training set from their data (using the features high-
lighted in Table 5). For each pair of instances, we tag
whether or not a directed policy is imposed, i.e. each in-
stance only considers the policies it locally sees. Finally,
each instance trains its own local model using the first 8
months of data (and tests on the last 2). This creates one
independent model per-instance. Based on this, Watch-
Gen predicts whether a policy will be applied against the
instance.

Results. Figure 12 presents the distribution of perfor-
mance metrics per-instance. As expected, we observe
an overall performance drop compared to the prior task
based on a global model. Instances attain an aver-
age f1 score of 0.55. This is largely due to the sig-
nificant reduction in per-instance training data. That
said, we observe a wide array of performances across
the instances: 42.6% of instances achieve above 0.6 f1,
with a tail of 8.3% attaining below 0.4 f1. We find
that performance is impacted by the training set size.
Instances that perform relatively well (>=0.6 {1), tend
to be larger (i.e. more posts and users). For example,
65.4% of the best performing instances (>=0.6 f1) have
a local post count of over 50k (e.g. neckbeard.xyz and
freespeechextremist.com). In contrast, only 4.4% of
instances that perform poorly (<0.6 f1) have over 50k
posts (e.g. princess.cat and sleepy.cafe). This im-
plies that as instances grow, their local performance will
improve. The above experiments show that instances
can use these locally trained models to generate a per-
sonalized watchlist of instances they peer with. Thus, we
argue that these automatically compiled lists can helps
administrator pay attention to these instances.

7 Related Work

Social Network Studies. FExtensive work has been
carried out in the area of online social networks. How-
ever, most of these are on centralized social networks
(e.g. Facebook and Twitter) [29, 31, 19, 28, 3, 36]. A
number of these look at the anatomy of social graphs [23]
and moderation challenges [20]. Others look into areas
ranging from the evolution of user activities to demo-
graphics [32, 45]. In contrast to Pleroma, these social
networking platforms tend to rely on central (commer-
cial) administrators and moderators [48].

Fediverse and Decentralized Web. Only a small set

Logistic Regression

posts-

posts_tr
mentions_avg
users-
mentions_count
url_avg
url_count:
hate_avg
hashtag_avg
fed_time_rem
nsfw-
media_removal
quaran_inst-
reject_deletes:

posts_tr
mentions_avg
posts

users

url_avg
url_count
media_removal
hate_avg

nsfw
mentions_count
fed_time_rem
quaran_inst
hashtag_avg
reject_deletes

Features
Features

mentions_avg
posts

posts._tr

users

url_avg
mentions_count:
url_count:
fed_time_rem
hashtag_avg

Features

hate_avg
quaran_inst-
media_removal{
nsfw
reject_deletes

'OI
°
8

0.05 0.10 0.15 0.20
Importance

o
N
@

(a) Logistic Regression

(b) Random Forest

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.00 0.05 0.10 0.15 0.20 0.25

Importance Importance

(c) Gradient Boosted Trees

Figure 11: Feature importance for our explainable models.

1.0

0.8

0.6

CDF

0.4

= Accuracy
~——_precision
—— recall
—_— fl

O'%.O 0.2 0.4 0.6 0.8 1.0
Scores

0.2

Figure 12: CDF of per-instance performance for Random
Forest trained on data from local and federated instances.

of studies have focused on the Fediverse or Decentralized
Web applications. Raman et al. looked at the challenges
in the Fediverse, with a particular focus on the infras-
tructure and resilience of Mastodon [39]. Trautwein et al.
studied the Inter Planetary File System (IPF'S), a decen-
tralized storage solution [44]. Guidi et al. and Datta et
al. studied the structure, data management, and privacy
aspects of decentralized social networks [7, 1]. Recent
works have examined the standardization of related pro-
tocols [27, 35]. Bielenberg et al. analyzed the growth,
topology and server reliability of Diaspora (a decentral-
ized social network) [4]. Similarly, Zignani et al. studied
the evolution of the Mastodon social graph [55]. Our
work differs in that we focus on exploring administrator
actions within the Fediverse.

Online Moderation. Prior work has investigated the
roles that volunteer moderators play in platforms like
Twitch [51]. Text-based content classification and filter-
ing has been extensively studied too. These include com-
putational techniques to detect cyberbullying [12, 49, 10],
anti-social posting [43, 25, 42, 52], and hate speech
[9, 46, 40, 50, 21, 47, 24]. These models have proven effec-
tive in reducing the workload of human moderators. For
example, Cheng et. al. [25] use random forest and logis-
tic regression classifiers to predict whether a user will be
banned, reducing the manual load on moderators. Simi-
larly, Zia et al. [53] look at detecting the spread of toxic
posts specifically in Pleroma (although not administra-

tor reactions). In our prior work, we also studied the use
of federation policies [22]. Here, we build on this, with a
focus on the actions undertaken by administrators. We
further propose WatchGen to assist administrators. To
the best of our knowledge, this is the first large-scale
study of administrator activities in the Fediverse. We
hope that this can further contribute to the wider un-
derstanding of moderation in other platforms.

8 Conclusion and Discussion

We have studied instance administrators in a popular Fe-
diverse platform, Pleroma. Although 66.9% of instances
are still running on default policies, we observe an up-
take of more sophisticated management functions. We
find evidence that some administrators may become over-
whelmed with the growing number of posts and users
they must manage. For instance, it takes an average of
82.3 days for administrators to apply any policy against
a newly federated instance. Another sign of the over-
head is that just 3.5% of instances share the load across
multiple moderators. This lack of moderators may come
with challenges: instances with fewer moderators tend
to employ less sophisticated policy strategies (e.g. 70%
of them apply no SimplePolicy actions). To alleviate
this, we have proposed WatchGen, a tool that identi-
fies instances in need of closer attention. We show that
WatchGen can predict which instances will later have a
policy imposed (f1 = 0.77).

Our study opens up a number of lines of future work.
First, we wish to expand our work to cover other Fedi-
verse platforms, e.g. Mastodon or PeerTube. Second, we
plan to experiment with alternate feature sets that can
better identify instances that will later require policy at-
tention. Through this we hope to improve WatchGen and
pilot its deployment. Last, we want to perform a qualita-
tive study to better understand the subjective opinions
of administrators that underlie these trends. We conjec-
ture that such qualitative insights might be invaluable
for improving WatchGen.

Acknowledgements

This
EP/S033564/1,

EPSRC grants
UKRI DSNmod

research was supported by

EP/W032473/1,

(REPHRAIN EP/V011189/1), and EU Horizon Frame-
work grant agreement 101093006 (TaRDIS).

References

(1]

[10]

[11]

[12]

[13]

D. A, B. S, V.L-H, S. T, and R. K. Decentralized online
social networks. In: Furht B (ed) Handbook of social
network technologies and applications. In Springer, page
349-378, 2010.
ActivityPub.
2018.

Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong.
Analysis of topological characteristics of huge online
social networking services. In In Proceedings of the
16th international conference on World Wide Web, page
835-844, 2007.

B. Ames, H. Lara, G. Anthony, S. Dan, and Z. Hong-
gang. The growth of Diaspora — A decentralized online
social network in the wild. In INFOCOM Workshops,
2012.

N. A. Arnold, B. Steer, I. Hafnaoui, H. A. Parada G,
R. J. Mondragén, F. Cuadrado, and R. G. Clegg. Mov-
ing with the times: Investigating the alt-right network
gab with temporal interaction graphs. Proceedings of the
ACM on Human-Computer Interaction, 5(CSCW2):1—-
17, 2021.

R. Ashwin, R. Paul, and B. Ceren. Quick, community-
specific learning: How distinctive toxicity norms are
maintained in political subreddits. In Proceedings of the
14th International AAAI Conference on Web and Social
Media, ICWSM 2020, pages 557-568, 2020.

G. B, C. M, P. A, and R. L. Managing social contents in
decentralized online social networks: a survey. In Online
Social Networks and Media, volume 7, pages 12—29, 2018.
H. Bin Zia, J. HE, A. Raman, I. Castro, N. Sastry, and
G. Tyson. Flocking to mastodon: Tracking the great
twitter migration. In Arziv, 2023.

P. Burnap and M. L. Williams. Hate speech, machine
classification and statistical modelling of information
flows on Twitter: Interpretation and communication for
policy decision making. In In Internet, Policy and Poli-
tics Conference, Ozford, United Kingdom, 2014.
Z.C,V.Y,and M. F. Aggressive, repetitive, intentional,
visible, and imbalanced: Refining representations for cy-
berbullying classification. In In Proceedings of the 14th
International AAAI Conference on Web and Social Me-
dia, ICWSM 2020, page 808-819, 2020.

J. Cox. 30,000 users signed up for
mastodon after elon musk bought twitter.
https://www.vice.com/en/article/n7npd7/30000-new-
users-signed-up-for-mastodon-after-elon-musk-bought-
twitter, 2022.

K. Dinakar, R. Reichart, and H. Lieberman. Modeling
the detection of Textual Cyberbullying. In In The Social
Mobile Web, pages 11-17, 2011.

T. V. Doan, T. D. Pham, M. Oberprieler, and V. Baj-
pai. Measuring Decentralized Video Streaming: A Case

https://www.w3.org/ TR /activitypub/,

new

10

[20]

[21]

[22]

[25]

[26]

[27]

[28]

Study of DTube. In IFIP Networking 2020, pages 118—
126, 2020.

C. Eshwar, S. Mattia, S. Anirudh, and G. Eric. The
bag of communities. In Advances in Neural Information
Processing Systems, pages 3175-3187, 2017.

M. Farokhmanesh. A beginner’s guide to
Mastodon, the hot new open-source Twitter clone.
https://www.theverge.com/2017/4/7/15183128/
mastodon-open-source-twitter-clone-how-to-use, 2017.
T. Federation. https://the-federation.info/, 2019.

K. Garimella, I. Weber, and M. De Choudhury. Quote
rts on twitter: Usage of the new feature for political
discourse. In Proceedings of the 8th ACM Conference on
Web Science, pages 200-204, 2016.

B. Guidi, M. Conti, A. Passarella, and L. Ricci. Manag-
ing social contents in Decentralized Online Social Net-
works: A survey. Online Social Networks and Media,
2018.

K. H., C. Lee, H. Park, , and M. S. What is twitter, a
social network or a news media? In In Proceedings of
the 19th International Conference on World wide web,
WWW ’10, page 591— 600, 2010.

D. Ibosiola, I. Castro, G. Stringhini, S. Uhlig, and
G. Tyson. Who watches the watchmen: Exploring com-
plaints on the web. In The World Wide Web Conference,
pages 729-738, 2019.

W. Igbal, M. H. Arshad, G. Tyson, and I. Castro. Ex-
ploring crowdsourced content moderation through lens of
reddit during covid-19. In Proceedings of the 17th Asian
Internet Engineering Conference, pages 26-35, 2022.

H. A. Ishaku, R. Aravindh, C. Ignacio, Z. H. Bin, D. C.
Emiliano, S. Nishanth, and T. Gareth. Exploring content
moderation in the decentralised web: The pleroma case.
In CoNEXT 2021 - Proceedings of the 17th International
Conference on emerging Networking EXperiments and
Technologies, pages 328-335, 2021.

U. J., K. B, B. L., and C. Marlow. The anatomy
of the facebook social graph. In arXiv preprint
arXiv:1111.4503, 2011.

R. T. Javed, M. E. Shuja, M. Usama, J. Qadir, W. Igbal,
G. Tyson, I. Castro, and K. Garimella. A first look at
covid-19 messages on whatsapp in pakistan. In 2020
IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), pages
118-125. IEEE, 2020.

C. Justin, D.-N.-M. Cristian, and L. Jure. Antisocial be-
havior in online discussion communities. In Proceedings
of the 9th International Conference on Web and Social
Media, ICWSM 2015, pages 61-70, 2015.

L. J. Kai, C. K. Ta, and L. C. Laung. A collusion-
resistant automation scheme for social moderation sys-
tems. In Conference on Human Factors in Computing
Systems-Proceedings, pages 1157-1162, February 2016.
P. Khare, M. Karan, S. McQuistin, C. Perkins, G. Tyson,
M. Purver, P. Healey, and 1. Castro. The web we weave:
Untangling the social graph of the ietf. In Proceedings of
the International AAAI Conference on Web and Social
Media, volume 16, pages 500-511, 2022.

R. Kumar, J. Novak, and A. Tomkins. Structure and
evolution of online social networks. In In Link mining:
models, algorithms, and applications. Springer., page
337-357, 2010.

https://www.w3.org/TR/activitypub/
https://www.theverge.com/2017/4/7/15183128/mastodon-open-source-twitter-clone-how-to-use
https://www.theverge.com/2017/4/7/15183128/mastodon-open-source-twitter-clone-how-to-use
https://the-federation.info/

29]

[30]

31]

32]

33]
34]

[35]

[36]

37]
[38]
39]

[40]

[41]

[42]

[43]

[44]

[45]

T. A. L., M. P. J,, and P. M. A. Social structure of
facebook networks. In Physica A: Statistical Mechanics
and its Applications, page 4165-4180, 2012.

L. C. Lucio, G. Sergio, and T. Andrea. Understanding
the growth of the fediverse through the lens of mastodon.
In Applied Network Science, volume 6, 2021.

C. M., H. H., B. F., and G. P. K. Measuring user in-
fluence in twitter: The million follower fallacy. In In
Proceedings of the 5th International Conference on Web
and Social Media, ICWSM ’10., 2010.

L. Manikonda, Y. Hu, and S. Kambhampati. Analyz-
ing user activities, demographics, social network struc-
ture and user-generated content on Instagram. In arXiv
preprint arXiv:1410.8099 (2014), 2014.

Mastodon. https://joinmastodon.org, 2016.

Z. Matteo, Q. Christian, G. Alessia, G. Sabrina, and
R. G. Paolo. Mastodon content warnings: Inappropriate
contents in a microblogging platform. In Proceedings
of the 13th International Conference on Web and Social
Media, ICWSM 2019, pages 639-645, 2019.

S. McQuistin, M. Karan, P. Khare, C. Perkins, G. Tyson,
M. Purver, P. Healey, W. Igbal, J. Qadir, and I. Castro.
Characterising the ietf through the lens of rfc deploy-
ment. In Proceedings of the 21st ACM Internet Mea-
surement Conference, pages 137-149, 2021.

S. A. Myers, A. Sharma, P. Gupta, and J. Lin. Infor-
mation network or social network? The structure of the
Twitter follow graph. In In Proceedings of the 23rd Inter-
national Conference on World Wide Web, page 493-498,
2014.

PeerTube. https://joinpeertube.org, 2018.

Pleroma. https://pleroma.social/, 2018.

A. Raman, S. Joglekar, E. D. Cristofaro, N. Sastry, and
G. Tyson. Challenges in the decentralised web: The
mastodon case. In ACM IMC, pages 217-229, October
2019.

A. H. Razavi, D. Inkpen, S. Uritsky, and S. Matwin.
Offensive language detection using multi-level classifica-
tion. In In Canadian Conference on Artificial Intelli-
gence. Springer, pages 16—27, 2010.

L. Schwittmann, C. Boelmann, M. Wander, and T. Weis.
SoNet—Privacy and Replication in Federated Online So-
cial Networks. In Distributed Computing Systems Work-
shops, 2013.

S. O. Sood, E. F. Churchill, and J. Antin. Automatic
identification of personal insults on social news sites. In
Journal of the American Society for Information Science
and Technology, page 270-285, 2012.

C. Stevie, L. Zhiyuan, and D. C. Munmun. This post
will just get taken down”: Characterizing removed pro-
eating disorder social media content. In 2009 6th IEEE
Consumer Communications and Networking Conference,
CCNC 2009, pages 1157-1162, 2009.

D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott,
M. Schubotz, B. Gipp, and Y. Psaras. Design and eval-
uation of ipfs: a storage layer for the decentralized web.
In Proceedings of the ACM SIGCOMM 2022 Conference,
pages 739-752, 2022.

B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi.
On the evolution of user interaction in facebook. In In
Proceedings of the 2nd ACM workshop on Online social
networks., page 37-42, 2010.

11

[46]

[47]

[50]

[51]

[52]

W. Warner and J. Hirschberg. Detecting hate speech
on the world wide web. In In Proceedings of the Second
Workshop on Language in Social Media. Association for
Computational Linguistics, pages 19-26, 2014.

Z. Waseem and D. Hovy. Hateful symbols or hateful
people? predictive features for hate speech detection
on twitter. In In Proceedings of the North American
Chapter of the Association for Computational Linguis-
tics (NAACL-HLT), pages 88-93, 2016.

E. Wauters, V. Donoso, and E. Lievens. Optimizing
transparency for users in social networking sites. info,
2014.

J.-M. Xu, B. Burchfiel, X. Zhu, and A. Bellmore. An
Examination of Regret in Bullying Tweets. In In Pro-
ceedings of the North American Chapter ofthe Associa-
tion for Computational Linguistics (NAACL-HLT), page
697-702, 2011.

Z. Xu and S. Zhu. Filtering offensive language in online
communities using grammatical relations. In In Pro-
ceedings of the Seventh Annual Collaboration, Electronic
Messaging, Anti-Abuse and Spam Conference, pages 1—
10, 2010.

W. D. Yvette. Volunteer Moderators in Twitch Micro
Communities. pages 1-13, 2013.

H. B. Zia, I. Castro, and G. Tyson. Racist or sexist
meme? classifying memes beyond hateful. In Proceed-
ings of the 5th Workshop on Online Abuse and Harms
(WOAH 2021), pages 215-219, 2021.

H. B. Zia, A. Raman, I. Castro, I. H. Anaobi,
E. De Cristofaro, N. Sastry, and G. Tyson. Toxicity in
the decentralized web and the potential for model shar-
ing. ACM SIGMETRICS, 2022.

M. Zignani, S. Gaito, and G. P. Rossi. Follow the
“Mastodon”: Structure and Evolution of a Decentral-
ized Online Social Network. In ICWSM, 2018.

M. Zignani, S. Galto, and G. P. Rossi. Follow the
”Mastodon”: Structure and evolution of a decentralized
online social media. In ICWSM, pages 541-550, 2018.

A Appendix

https://joinmastodon.org
https://joinpeertube.org
https://pleroma.social/

Policy Description % Instances % Users % Posts Growth in Inst. % Growth in Inst
ObjectAgePolicy Applies action based on post age 74.80 57.00 65.30 352 73.50%
TagPolicy Applies policies to individual users based on tags 58.50 39.40 31.30 509 707.40%
HashtagPolicy List of hashtags to apply actions against 36.40 16.20 21.20 479 15,833.00%
SimplePolicy Wide range of actions applied against instances 28.80 39.70 36.30 83 30.70%
NoOpPolicy Default state of an instance 11.50 5.90 3.70 -98 -63.70%
StealEmojiPolicy List of hosts to steal emojis from 7.00 6.10 5.40 29 80.50%
HellthreadPolicy Performs action when a threshold of mentions is reached 6.50 10.90 19.80 21 42.80%
AntiFollowbotPolicy Stops bots from following users on the instance 4.50 6.20 6.90 13 40.60%
MediaProxyWarmingPolicy =~ Crawls attachments using their MediaProxy URLs 3.60 7.00 8.30 16 72.70%
KeywordPolicy Matches a pattern in a post for an action to be taken 23.00 19.40 10.00 9 36.00%
ForceBotUnlistedPolicy Makes all bot posts to disappear from public timelines 2.70 7.00 5.50 27 675.00%
AntiLinkSpamPolicy Rejects posts from likely spambots by rejecting posts from new users that contain links 2.70 6.70 6.80 12 85.70%
ActivityExpirationPolicy Sets a default expiration on all posts made by users of the local instance. 1.30 1.20 0.73 11 366.60%
EnsureRePrepended Rewrites posts to ensure that replies to posts with subjects do not have an identical subject 1.30 0.40 1.80 6 66.60%
NormalizeMarkup processes messages through an alternate pipeline 0.9 4.2 1.4 6 150%

Table 2: The top 15 policies applied by administrators with the percentage of instances applying the policies. It shows
the percentage of users and posts on the instances applying them, and their growth during our measurement period.

Federated

Admin . User Post Hate URL Mentions Hashtag Media . . Quaran
Tnstances growth # Admins - Users Growth Posts Growth count count Count Count nsfw Removal E{:::i)l:;f Reject -tined
disqordia.space 6 8 53 33 55.5k 5.1k NA NA NA NA 3 2 15 71 17
poa.st 5 13 9.7k 9.46k 1.14m 453.3k 78.2k 19.5k 60.8k 20.1k 4 3 2 1 0
pleroma.nobodyhasthe.biz 5 6 128 79 20.5k 1.12k 42.8k 2.6k 42.2k 2.2k 0 1 0 2 0
pleroma.pt 4 7 450 448 24.9k 1.8k 449 75 246 29 8 5 0 1
pleroma.foxarmy.ml 4 5 8 7 40 7 NA NA NA NA 0 0 0 0 0
varishangout.net 4 7 924 856 98.5k 2.6k 4 1 0.0 3 0 3 9 6 0
mindset.rage.lol 3 5 10 8 635 444 NA NA NA NA 0 0 0 0 0
neckbeard.xyz 3 13 2k 1.22k 1.34m 789.4k 883 136 607 177 0 0 0 2 0
fedi.absturztau.be 2 4 900 463 775.8k 327k 12.9k 1.9k 9.5k 2.4k 3 0 0 14 12
childpawn.shop 2 3 183 176 3.8k 441 NA NA NA NA 0 0 0 0 0

Table 3: Top 10 Instances with the largest increase in number of administrators during our measurement period.

Algorithm Acc. Prec. Recall F1 score
Logistic Regression 0.73 0.24 0.20 0.21
Multi-Layer Perceptron 0.81 0.00 0.05 0.10
Random Forest 0.87 0.69 0.57 0.62
Gradient Boosted Trees 0.87 0.73 0.54 0.62

Table 4: WatchGen performance results using global training pool and excluding post features (number of posts and
transformed posts).

12

Feature #Description #Representation Number
Users Number of users registered on an instance Count 133.8k
posts Number of posts by users on an instance Count 29.9m
hate_count Number of hate words on an instance from hatebase.org Count 36m
url_count Number of URLs in user posts on an instance Count 4.8m
reject Number of instances to completely reject any flow of material from Count 8.7k
nsfw Number of instances to tag all user posts as ”Not Safe For Work” Count 934
media removal Number of instances to remove media from ” Count 630
federated timeline removal Number of instances to un-list all user posts from the federated timeline Count 2.4k
posts_tr Transformed number of posts using Box Cox transformation Count 2.8k
reject_deletes Number of instances to remove all banners from Count 158
quaran_inst Number of instances where private (DMs, followers-only) activities will not be sent Count 1k
mentions_count Number of mentions in user posts on an instance Count 24m
hate_avg Average number of hate words on an instance from hatebase.org Count 1.5
url_avg Average number of URLs in user posts on an instance Count 0.2
hashtags_avg Average number of hashtags in user posts on an instance Count 0.3
mentions_avg Average number of mentions in user posts on an instance Count 0.8
hashtags_count Number of hashtags in user posts on an instance Count Tm
hate_percent Average percentage of hate words in a post from hatebase.org Percentage 2.2%
url_percent Average percentage of URLSs in user posts on an instance Percentage 8.4%
hashtags_percent Average percentage of hashtags in user posts on an instance Percentage 6.6%
mentions_percent Average percentage of mentions in user posts on an instance Percentage 2.5%
followers Number of followers of users on an instance Count 169k
following Number of remote users that users on an instance follow Count 8.9k
reblogs_count Number of reblogs by users on an instance Count 7.2k
replies_count Number of posts replied by users on an instance Count 24.5k
users_tr Transformed number of users using Box Cox transformation Count 1.3k
hate_tr Transformed number of hate_count using Box Cox transformation Count 4.3k
url_tr Transformed number of url_count using Box Cox transformation Count 3k
accept Number of instances to accept all material from Count 635
report removal Number of instances to remove all reports from Count 91
avatar removal Number of instances to remove all avatars from Count 266
banner removal Number of instances to remove all banners from Count 291
followers_only Number of instances that user posts are only seen by their followers Count 99
active_halfyear Number of active users in half a year Count 9
active_month Number of active users in a month Count 7
hash_ftr Number of hashtags to remove activities from the federated timeline Count 7
hash_rej Number of of hashtags to reject activities from Count 6
hash_sen Number of hashtags to mark activities as sensitive Count 365

Table 5: Summary of all extracted features used for model training.

13

hatebase.org
hatebase.org
hatebase.org

	1 Introduction
	2 Pleroma: Overview
	3 Data Collection
	4 Exploring Policy Configurations
	5 Characterising Administrators
	5.1 Distribution of Administrators
	5.2 Administrators' Response Lag
	5.3 Administrators & Moderators

	6 WatchGen: Automating Moderation
	6.1 Generating a Global Watchlist
	6.2 Generating a Local Watchlist

	7 Related Work
	8 Conclusion and Discussion
	A Appendix

