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We give a general construction relating Narain rational conformal field theories (RCFTs) and as-
sociated 3d Chern-Simons (CS) theories to quantum stabilizer codes. Starting from an abelian CS
theory with a fusion group consisting of n even-order factors, we map a boundary RCFT to an
n-qubit quantum code. When the relevant 't Hooft anomalies vanish, we can orbifold our RCFTs
and describe this gauging at the level of the code. Along the way, we give CFT interpretations of
the code subspace and the Hilbert space of qubits while mapping error operations to CF'T defect

fields.

Introduction

Quantum error correcting codes (QECCs) are integral
to quantum computation. They also appear in high en-
ergy and condensed matter physics in various guises. As
one important example, QECCs capture aspects of bulk
reconstruction in AdS-CFT [1]. Another notable case
of a QECC in physics is the Toric code, a well-known
model with topological order ﬂﬂ] QECCs have also un-
ravelled the existence and properties of fractons B] More
recently, QECCs were used to construct closed, simply
connected manifolds [4].

In this work, we explore the relationship between con-
formal field theories (CFTs) in two spacetime dimen-
sions, associated 3d Chern-Simons (CS) theories, and
QECCs. The relationship between classical codes, their
associated lattices, and holomorphic CFT's was originally
noted by Dolan, Goddard, and Montague ﬂﬂ] Recently,
a quantum version of this relationship was discovered,
where quantum stabilizer codes were associated with cer-
tain Narain rational CFTs (RCFTs) ﬂa, B] This con-
struction does not exhaust all Narain RCFTs and leads
to several natural questions: (1) When do general Narain
RCFTs admit a quantum code description? (2) How does
one identify the n-qubit Hilbert space, the code subspace
and its complement, within the CEFT Hilbert space? (3)
What is the physical meaning of this relation?

In this work we answer these questions using the gen-
eral structure of Narain RCFTs.! Our main results are:

I In principle, our results apply to any RCFT with abelian fusion
rules (what we call an “abelian RCFT”) whether it admits a
Narain description or not. In what follows, we will not attempt
to distinguish between Narain RCFTs and hypothetically more
general abelian RCFTs.

e Any abelian CS theory with an even-order fusion
group is related to a Narain RCFT that admits a
stabilizer code description. Orbifolding this RCFT
by a chiral algebra-preserving Q ~ Z% 0-form gauge
group results in a Narain RCFT that continues to
admit a stabilizer code description whenever the
corresponding 3d bulk 1-form symmetry of the CS
theory has vanishing 't Hooft anomaly.

e All Narain RCFTs have abelian 0-form symmetries
implemented by topological defects. In the class
of theories described in the previous bullet, topo-
logical defect endpoint operators can naturally be
mapped to the full Pauli group. The stabilizer sub-
group corresponds to genuine local CFT operators,
which can be thought of as living at the end of the
trivial defect.

e Under this map, the RCFT Hilbert space corre-
sponds to the code subspace and certain defect
Hilbert spaces correspond to the complement of the
code subspace inside the n-qubit Hilbert space.

This paper is organized as follows. In Section I, we
start with a brief review of stabilizer codes and Narain
CFTs. We then show that Narain RCFTs with left and
right movers paired via charge conjugation can be nat-
urally associated with quantum stabilizer codes. We
end Section I by extending this map to orbifold the-
ories and deriving a relationship between vanishing ’t
Hooft anomalies and stabilizer codes; along the way, we
consider various illustrative examples. In Section II, we
study symmetries of Narain CFTs and show that oper-
ators living at the ends of topological defect lines im-
plementing these symmetries give rise to the full Pauli
group. We introduce the notion of a Verlinde subgroup
and discuss its role in determining the error detection ca-
pability of CFT symmetry currents. In Section III, we
propose a map between the n-qubit Hilbert space and
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states in the CFT. We conclude with a discussion and
future directions.

I. THE STABILIZER CODE / ABELIAN RCFT
MAP

Let us briefly review the basics of stabilizer codes and
RCFTs with abelian fusion rules. We then propose a
natural map relating them.

A stabilizer code on n qubits is defined by an abelian
subgroup, S,,, of the generalized Pauli group on n qubits,
Pr. Elements of P, are defined by &, 5 € Z% via

G@Ef) = X"® - @X"oZhg.. .0 2%
= X% 2z ep,, (1)

where the it" X and Z are the Pauli matrices acting on
the i*" qubit. This group has order 4" and is non-abelian

G(a1, f1)G(@s, B2) = (—1)° G(da, B2)G(d1,B1) . (2)

where 6(64'1,51, aa, 52) = 51 “ Qg — O -32. The hallmark
of a stabilizer subgroup is that any two elements com-
mute with each other. Clearly, if G(a, 51), G(ds, 52) €
S,, then G(ay + 622,51 + ﬁz) € S,,. In this sense, sta-
bilizer codes are additive. Moreover, all elements satisfy
G(d;, 6_;)2 = 1. The states in the n-qubit Hilbert space
which are left invariant by all G € S,, (i.e., G¢ = 1)) are
special: they form the “code subspace.”

The refined enumerator polynomial (REP) of an n
qubit stabilizer code is defined as

W(x1, x2,x3,24) := Z ey X Y xy? (3)
GeS,

where wy/x/y/z(G) count the number of I/X/Y/Z Pauli
matrices in the stabilizer group element G.

For our general construction below, it is useful to keep
in mind that the description above contains redundan-
cies. In particular, two stabilizer codes are physically
equivalent if they are related by an action of the Clifford
group — an outer automorphism of the Pauli group B]
This group includes all 3! permutations of Pauli genera-
tors acting on each qubit.

The stabilizer codes that play a role in [6] are self-
dual: in other words |S,| = 2", and so there is a one-
dimensional code subspace. These codes are also real (in
the sense that all elements of S,, in the representation (IJ)
are real-valued), but we will relax this latter condition
in our general construction. In the conventions of this
paper, the map between the CFTs and stabilizer codes

introduced in 4] is related to our map by an X < Y
code equivalence.

The mapping between stabilizer codes and CFTs as-
sociates classes of CFT operators with elements of S,,.
Since the code is additive, we consider CFTs with addi-
tive (abelian) fusion rules (i.e., those corresponding to a
lattice)

¢13L715R x ¢I?L7I?R = ¢ﬁL+I?LaﬁR+I?R ! (4)
where the pair of vector indexes label left-moving and
right-moving momenta valued in a Narain lattice, A. We
will use the terms “Narain theories” and “abelian CFTs”
interchangeably. Since there are infinitely many CFT op-
erators and finitely many elements of S,,, we must orga-
nize the CFT operators into finitely many equivalence
classes. In the context of abelian RCFT, this naturally
happens since each ¢ Py, By 11 @) satisfies

¢p5, py € (NL,Ng) , N € Rep(VL) , Nr € Rep(Vr) ,

()
where N, (Ng) are one of finitely many representations
of the left (right) moving chiral algebra, Vi, (Vz). For

simplicity, we will only consider CFTs with Vi, = Vi =
V.

Specializing to Vi, = Vg = V and satisfying some addi-
tional mild assumptions detailed in E], it turns out that
any RCFT is a (generalized) orbifold of the “Cardy case”
RCFT for V. This latter RCFT, T, consists of operators
built by pairing left and right movers transforming in
Rep(V) that are related by charge conjugation.? In the
case of an abelian RCFT, the orbifold is a standard group
orbifold of 7 [L1]. The 7" RCFT is sometimes referred
to as the “charge conjugation modular invariant,” and it
has torus partition function®

Z7(q) = > _x#(@)X3(@) , 7+P =0, N5, Ng Nj € Rep(Vr).
5

(6)
Here p'is a vector labeling elements of Rep(V) (not an
element of A ),* we sum over characters describing the

operator content of the theory, and plabels the represen-
tation conjugate to p.°

Mathematically, Rep(V) corresponds to a modular
tensor category (MTC). Physically, Rep(V) labels Wil-
son lines in the 3d Chern-Simons (CS) theory related to

2 Given V, it turns out that the charge-conjugation modular in-
variant CF'T exists on very general grounds ﬂm]

3 Note that the construction in [L1] takes as input left and right
moving chiral algebras and produces an RCFT valid on any genus
surface.

4 We use capital P to denote lattice momentum and lower case P
to denote elements of Rep(V).

5 This latter statement means that we have fusion of the form
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FIG. 1: The pairing of 2d CFT left and right movers on ¥ and
Y can be specified by an abelian CS theory on X ~ ¥ x I with
a surface operator, M, inserted in between IE, |E] A local
operator, O(z,q), is specified by the Wilson lines Wj and Wy.
Different M lead to different partition functions. Topological
defects in the 2d CFT correspond to Wilson lines parallel to
3, Y (see Fig. 2).

the 2d RCFT in question (see Fig. 1). The full set of
MTCs/CS theories related to our abelian RCFTs have
been classified in [14] (see also [15]). The result is that
any such CS theory is a direct product of arbitrary com-
binations of the following factors

Agr ~ Zogr , Agr ~ ZLyr , Bar ~ Zor
qu ~ qu ) CQ’" NZQT ) D2T NZQT )
E2T ~ ZQT X ZQT, F2T ~ Z2T X ZQT s (7)
where the labels on the lefthand sides of (7)) denote CS
theories as in HE] with fusion rules for Wilson lines given
by the abelian groups on the righthand sides, and ¢ is an
odd prime number.6 The upshot is that we should think
of p’ as valued in the following product group / lattice
quotient

7e T, (Z;’fﬂ X TP X TR X TaP? x [ZQT X Zor
MFyr r r
X |:Zgr X ZQT:| 2 X H [ZZTAQ X Zan :|) =K ,
q

q"

where nx is the number of independent factors of the
CS theory X corresponding to the CFT in (@) (see Foot-
note 6).” Physically, K is the 1-form symmetry group of
the CS theory and the 0-form symmetry subgroup of the
RCFT that commutes with the full left and right chiral
algebras (see Fig. 2).

6 Strictly speaking, since a given label on the lefthand side of (@)
only specifies the statistics of a set of line operators, it can cor-
respond to different CS theories. Moreover, a CS theory that
does not factorize in the geometry with boundaries depicted in
Fig. 1 with M trivial can correspond to a product of labels (e.g.,
U(1)6 CS theory, which corresponds to Bz X B3). For simplicity
in what follows, we will avoid this latter possibility.

7 Here we are thinking of Zy as an additive subgroup of Z modulo
N.
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FIG. 2: The endpoint of L5 on ¥ gives a defect endpoint op-
erator corresponding to a state in the defect Hilbert space,
HE?‘?“. We can think of £z as generating a 3d 1-form sym-

metry or a 2d O-form symmetry (when Lz is pushed to lie
completely on ).

-,

Now we will map the pair (&, 8), which specifies a sta-
bilizer generator from §,, to a pair (ﬁ,z_?) representing a
family of operators contributing to XpXp 1n @). First
we specify the dimension of p: the most obvious choice
is that &, E, and p’ are n-dimensional. Moreover, in our
map & and 3 are linearly related to p.

To begin with, let us neglect possible For and Far CS
theory factors. Then, 7 is a CFT with n decoupled fac-
tors having fusion rules given by the n factors in (§).%
Indeed, by construction, each of the n CFT factors is
closed under fusion.” It is therefore natural to associate
such a theory with an n-fold product of one-qubit codes.
Up to code equivalence, all such codes are generated by
7 acting on individual qubits. Therefore, we set @ = 0,
and choose

—

B=r,
(8syhere @) is the simplest natural choice.

9)

However, note that for a CFT factor described by A4
or B,r, the simplest choice is to make the resulting code
factor trivial. The reason is that the corresponding com-
ponent of P, p;, has order ¢° for 1 < s < r. In this
case, multiple stabilizers would correspond to the same
(P, p). We therefore ignore factors described by A, and
By from now on and map corresponding CFT degrees
of freedom to 0-qubit codes.

In summary, we learn that linearity and code redefini-

8 More explicitly, we have that
n=3, (nA2T +NByr +NCyr + MDY + 2, (nAqr + an'r'>>'
9 If we relax the condition in Footnote 6 and allow for CS theories

like U(1)g, then we can also consider charge conjugation modular
invariants that do not decompose into n such CFT factors.



tions point to the relation
- 2
{Oﬁ_ﬁ} — 77, (10)

where we understand this map as meaning that the Z7
stabilizer corresponds to the collection of operators in the
(P, p) representation of the left and right moving chiral
algebras (i.e., the primary and its descendants). Includ-
ing factors of For and Fyr and following logic similar to
the above leads to the map

{(’)q—q} o ZA7 (11)

p.p

where A is block diagonal, with the following diagonal
components corresponding to different CFT factors

Ap, =Ap, =Ac, =Ap, =1, (12)

and, up to code equivalence,

01
T (T

Note that in writing (), we allow for multiple families
of operators to appear on the lefthand side (see Section
[[Al for some examples). Indeed, the exponent of Z on
the RHS is only sensitive to Ap'modulo two. Thus in the
simple case of charge conjugation modular invariant, we
have the CF'T to stabilizer code map

w:T — Sy = gen{ZAa'

€ij = 5ij} ) (14)

where “gen{---}” means that the code is generated by
the enclosed Pauli operators. Note that this code is self-
dual by construction. Moreover, p is non-invertible. For
example, the SU(2) and Ey WZW models at level one
are distinct but map to the same code.'”

Given the set of theories of the form (@), we can con-
struct all other Narain RCFTs by orbifolding them by
some non-anomalous O-form symmetry subgroup @ <
K.'"' Here non-anomalous means that the associator of
Verlinde lines implementing @ is trivial in H3(Q,U(1)).
12 Therefore, if () is non-anomalous, F is a 3-coboundary

10 The reason is that in both cases, = p1 takes values in the same
group.

As we will see, the theories in [d] are all orbifolds of particular
theories with partition functions of the form (@). Note that we
will only consider orbifolds with respect to symmetries which
commute with the full left and right chiral algebras. Orbifolds
of this type take us from a Narain CFT to another Narain CFT,
while more general orbifolds may result in non-Narain CFTs.

12 For the CFT with charge conjugation modular invariant, F can

be written in terms of holomorphic scaling dimensions as

11

if hy + ki <n;

if hy + ki > n;y (15)

satisfying

7(ha, h3)7(h1, ha + h3)
T(h1+h2,h3) (hl,hg)

F(ﬁlaﬁ25H3): Vh17h27h3€Q7

(16)
where 7 is a 2-cochain. Then, the Q-orbifold torus par-
tition function is

Zr1000 = 2, > Xsl@)Xzr3(0) (17)

geH peBy

where [o] is an equivalence class in H?(Q,U(1)) defining
the discrete torsion (in the condensed matter perspective,
the 2d SPT we stack when gauging @, or the B-field in

ﬂa]), and

By = {7| 85,209 =1, vien},  (8)
where we define
O - = _ 7(h,§)o(h. g
Sip= 2 2 0) = RO DD g
v 505 7(g, ) (g, h)

In [@3), 05 := exp(2mihy), and hy is the holomorphic
scaling dimension of an operator in representation p.'#

In this paper we focus on the case
Q~17k. (20)

Such subgroups are the most universal in the sense that
they are contained in any other subgroups of K.'> More
general cases can be treated in a similar fashion.

How should we include the data of states correspondmg
to § # 0 in the code? Clearly, the fields in the g =0
sector should still be captured by ([[dl). Therefore, § must

appear in a linear relation with &, ﬁ such that setting § =
0 recovers terms of the form (). Note that nontrivial
components of any § € H have the form g; = 2"~ ! € Zyr,
(since §+ § = 0). Therefore, in order to contribute to

where e; is a basis for the cyclic factors in @), and §= 3, gie;.

Here n; is the order of the i*® cyclic factor, and 05 := exp(2mihy),

where hj is the holomorphic scaling dimension of an operator in

representation p. The group @ is non-anomalous if and only if

egﬁ = 1 Vi € Q, where O} is the order of /s in @ [11].

Note that our S matrix differs from the unitary S matrix by

an overall normalization (ours is /N times bigger, where N is

the number of Wilson lines in the CS theory associated with our

RCFT).

4 R(h,§) can be written in terms of 0z as R(h,§) =
[1;(0e, )i [T ;(Sese; )i95 | where e; is a basis for the cyclic
factors in (), and § = 3=, gie;. Note that both R(l_i,g') and
7(g, ﬁ) depend on a choice of basis in Rep(V'), but Z(g, ﬁ) is
basis independent.

15 Recall that we are ignoring CFT factors involving primaries la-
beled by Agr and Bgr.

13



the stabilizer, § must appear through Mg (M is diagonal,
and M;; := 21_”).

At this point, we should ask what principle requires §
to contribute to the stabilizers at all. The answer is that
orbifolding is an invertible procedure: when we gauge a
discrete O-form symmetry, @, of a CFT, 7,6 there is an
isomorphic dual Q' ~ @ symmetry we can gauge in 7 /Q
to return back to the original theory.'” We would like
this invertibility to extend to the map between codes.

If M§ only appears through a factor Z™9, then our
map between codes will not generally be invertible. The
simplest and most natural possibility is the following.!®

CFT to stabilizer operator map:

{oﬁgﬁ} o XMio Z7A% .= G(MG,Ap) . (21)
In the language of ([I4)), we have

p:T/Q — St,q = gen {XM‘?I'ZAIEJ} , (22)
where ¢; and p’y generate @Q and K respectively.

Since Z is order two, the quantum code constructed
above is only sensitive to Ap’; mod 2. Therefore, in gen-
eral we will have multiple families of operators mapping
to the same element of the stabilizer group.

Recall that the stabilizer code associated with the
charge conjugation modular invariant is self-dual. Since
orbifolding is invertible, the above map assigns a self-
dual code to T/K (see Appendix B for an alternate ar-
gument).

Intriguingly, given the map in (2I)), the commutation
relations of elements of S7/y are controlled by the S
matrix of the RCFT. Indeed, it is a simple exercise to
check that

G(gl,ﬁl)G(g2,ﬁ2) _ eﬂi[MﬁQ'Aﬁl—kfgl‘Aﬁg]
G(g2,P2)G(g1,P1)
= SpmnSapm
G(G2, 72)G(g1, 1)
= Z(g2,51)2(d1,G2)
G(G2, 72)G (g1, 1)
= S§17§2

16 Note that to unambiguously refer to the orbifolded theory, we
should also generally specify the discrete torsion, [o]. However,
we will often be slightly imprecise and leave the discrete torsion
implicit in our discussions.

17 See [16, [17] as well as the more recent discussion in [18].

18 We can also include an Mg contribution in Z. Then we have
XMG o 7zAP+MG — YM3 o ZAP which is equivalent to the code
XMG o ZAP, Similarly, XMI+AP o ZA? is code equivalent to
XM3 o ZAP,

G(gQaﬁQ)G(glaﬁl) ) (23)

where, in the third equality, we have used ([I8). We
have also used the expression for the S matrix Sz s =

2mi

e3P MAT which follows from @) ﬂﬁ] Therefore, St/
is a stabilizer code if and only if Sy 5, = 1. This latter
statement can be reinterpreted as the vanishing of the
1-form anomaly for the @ 1-form symmetry in the bulk
CS theory related to the 7 RCFT.

A. Examples

1. R=1,2 compact boson

The code CFTs in ﬂa] are all orbifolds of charge con-
jugation modular invariants with Rep(V) = AZA“, for
some integer n4, > 0. That is, the fusion rules for the
charge conjugation modular invariants are given by the
abelian group, K = (Z4)™41 (all other nx in () vanish).
The theories discussed in [] with non-trivial B-field cor-
respond in our language to orbifolds of the charge conju-
gation theories with discrete torsion turned on (or, equiv-
alently, a non-trivial 2D SPT in the Z§ < ZZA‘* gauging
process). As such, the CFTs in [f] are a small subset of
theories discussed here.

The simplest code CFT among these is the R = 1 com-
pact boson, corresponding to the choice ny, = 1. The
chiral algebra has the trivial, fundamental, spinor, and
conjugate spinor representations which we will denote by
No, No, N1, N3, respectively. These form the K = Z4
group under fusion. The scaling dimensions of chiral pri-
maries in these representations are

1 1

ho = ho=—, hy =hs = — . 24
0=20, he 50 M 373 (24)

The Narain lattice for this theory is given by
PL::TL+%,PR::TL7%, (25)
where m,n € Z. In general, the vertex operators are

given by

Vinm) =: eiﬁLXLeiﬁR)ZR : (26)

where X L, Xp are the left and right moving components
of the field X describing the compact boson. The parti-
tion function is

Z7 = XoXo + X2X2 + X1X3 + X3X1 » (27)

which is the charge conjugation modular invariant. The
scaling dimensions of the primaries are twice those in
(@4). Here y; is the character of N; given by [17]

1 2nt2)?
Xp(q) = —= q oo 28



where p = 0,1,2,3 and 7 is the Dedekind eta function.
Note that the partition function can also be written in
terms of the Narain lattice vectors as

(29)
The lattice vectors corresponding to a primary operator
O,p can be found by requiring

P? + P3
LR 5 B = 2h; (30)
where the R.H.S. is the scaling dimension of O, . In
particular, the primary operators O; 3,031 correspond
to the lattice vectors

rro=(5-3)(-33) @

while O3 5 corresponds to!?

and Opo = 1 to (0,0). We can assign each (Pr,Pg)
lattice point to be in a particular {O) 5} family by con-
sidering fusions of the above operators and imposing that
fusions correspond to momentum vector addition. Using
(), these operators map to the 1-qubit stabilizer code
generated by the Z Pauli matrix via

I {00,0},{02.2} , Z < {013}, {051}, (33)
where the map includes all descendants.

A topological line operator, denoted Lo, labelled by
P = 2 generates a Zso 0-form symmetry. This symmetry
. . Xn-X
act?, by a shift ¢ — ¢ — 7, w'here ¢ = =L5=£. The
action on the vertex operators is

In particular, the collections of operators {01 3}, {031}
change sign under this symmetry while {Og o}, {O22}
remain invariant. This symmetry is non-anomalous be-
cause hy = 3 [11] (see also the related discussion in [19]
and Footnote 12). Taking the Zs-orbifold,?’ we get a

dual CFT with partition function (using (IT), (I8))

21175 = X0X0 + X2X2 + X1X1 + X3X3 - (35)

This is the partition function of the R = 2 compact bo-
son, which is T-dual to the R = 1 compact boson. Using

19 The four states in ([32) correspond to the fact that Oz trans-
forms as a left-moving so(2) vector times a right moving so(2)
vector.

20 H2(Zo,U(1)) 22 Z1. Therefore, there is no discrete torsion.

(210, the stabilizer code corresponding to this CFT is the
1-qubit code generated by Y via the map

I+ {00,0}, {0272}; Y & {01,1}, {0373} . (36)

T-duality between these theories is captured by the fact
that the 1-qubit code generated by Y is equivalent to the
code generated by Zﬁé] (recall that our conventions here
differ from those in [6] by an X <+ Y code equivalence).

Using (@), we can compute the refined enumerator
polynomials (REPs) for the codes above, generated by
Z and Y to get

Wgen(Z)(xlaxQ)xgaxll) = 1 +:L'4 3

Wgen(Y)(xlv :CQ, 1"3; 1“4) = I + :CB : (37)

Therefore, corresponding CEF'T torus partition functions
can be written in terms of the REPs by choosing

T1 = XoXo + X2X2 ,
T4 = X1X3 + X3X1
T3 = X1X1 + X3X3 - (38)

As a final note, let us comment that we obtain the
same quantum codes using any RCFT with Rep(V) =
AZA‘*. For any n 4, there are always infinitely many such
RCFTs. For example, we can take the product of the
R =1 compact boson with arbitrarily many Fg WZW
models at level one and trivial Rep(V') (this latter theory
is associated with a 0-qubit code). In this case, to get
the partition function from the REP we have to input the
characters x,XzxoXo into 1), where g is the vacuum
character of the Fs WZW model at level 1 factors.

2. R =+/2 compact boson ~ SU(2) level one WZW

The compact boson at the self-dual radius, or, equiva-
lently, the SU(2) at level one WZW model has Rep(V) =
As. That is, the representations of the chiral algebra are
the trivial and fundamental representations, which we
denote by Ny, Ny, respectively. They form a K = Z,
group under fusion. We have chiral primaries with scal-
ing dimensions

1
hozo,hlzz. (39)
The Narain lattice for this theory is given by
1 1
P :=—(Mnm+m), Pp:=—=(n—m), (40)

V2 V2

where, n,m € Z. The vertex operators are given by (26))
with (0) inserted, and the torus partition function is

Z7 = XoXo + X1X1 (41)



where the characters are given by ﬂﬁ]

Yola) = — > g (42)
: n(a) =, ’

with i = 0, 1.

The non-trivial primary, O 1, corresponds to the lat-
tice vectors

1 1 1 1
Fur == (75 05) e+ (J575) - @)
where the number of states follows from the fact that
the primary transforms in the fundamental representa-
tion of the left and right moving SU(2). We can assign
any Narain lattice vector to be a member in a {Op 5}
family by considering fusions of the above primaries and
imposing that they correspond to lattice vector addition.
Now, using (), this CFT corresponds to the 1-qubit

stabilizer code generated by Z via the map

I < {0070} R 7 {01,1} . (44)

Note that this is the same quantum code as in the case of
the R = 1 compact boson. This fact illustrates that, the
map (2I) can give the same quantum code for distinct
CFTs.

The REP for this code is given by [37), and the torus
partition function can be written in terms of W by choos-
ing

T1 = X0oXo, T4 =X1X1 - (45)

This CFT has a Zs 0O-form symmetry generated by
the topological line Lo. However, this Zs is anomalous
[11] (see Footnote 12), and hence cannot be gauged (in a
purely 2d system).

Again, from our construction, we can consider arbi-
trary products of this theory and, when we have at least
two factors, orbifolds with and without discrete torsion.

3. Compact boson at R = /2%

Let us generalize the discussion above to compact bo-

son at R = \/27]“, where k, ¢ are co-prime integers. This

RCFT has fusion rules given by the group K = Zoky.
The corresponding bulk CS theory is U(1)axe. There-
fore, in this case Rep(V') labels the Wilson lines in the
U(1)ake CS theory. Rep(V) decomposes as follows

Rep(V) = Xoo x [[(YVi) i , K = Zoe x [[Z - (46)

where the ¢;’s are distinct odd primes, X € {A, B,C, D},
and Y; € {A,B}. Here the labels must be chosen so
that the topological central charge is equal to 1 modulo
8. Note that this does not imply that the U(1)axs CS
theory or the associated CFT itself factorizes. The de-
composition (@G is an algebraic property of the set of
representations of the chiral algebra Rep(V) (see Foot-
note 6).

As discussed above, the odd factors contribute trivially
to the code. For simplicity, we will therefore consider
¢ =2°"1 and k = 1 for some integer s > 0. In this case

U(l)gs CS ~ A2S s K = ZQS . (47)

The representations of the chiral algebra are denoted by
integers p € Zsys. The scaling dimensions for these chiral

2
primaries are given by h, = &7 if p < 257! and hy, =
_o
s if p> 271

The Narain lattice for this theory is given by

n  mR n  mR 2-s
Ppbi=—+—,Ppri=———, R=2"7 , (48
LERT R R RT - (48)
where m,n € Z. The vertex operators are given by (26]).
The torus partition function is

Zr =Y XpXp > (49)
pEZos

which is the charge conjugation modular invariant. The
characters, x,(¢), are given by ﬂﬁ]

Xpld) = —= > &) (50)

nez

Non-trivial primaries, O, 5, with p < 257! correspond
to lattice vectors satisfying

1

2

while the charge conjugate corresponds to lattice vectors

of the above type with Pr > Pp. Finally, the non-trivial

primary Oss-1 9:-1 corresponds to the lattice vectors sat-
isfying

(P} + P}) =2h, ,Pr, > Pg , (51)

1
2
The quantum code corresponding to this CFT is the 1-

qubit quantum code generated by Z, where the operators
are mapped to the code as

(P} 4+ P3) =22, (52)

I+{0,5},p=0 mod 2,
Z 10,5}, p=1 mod 2. (53)

A topological line operator, denoted Lys-1, labelled by

§ = 2°"1 generates a Zy 0-form symmetry. This symme-

try acts by a shift ¢ — ¢ — w, where ¢ := M



The action on the vertex operators is

This symmetry is non-anomalous and can be gauged.
Taking the Zs-orbifold we get the the orbifold CFT with
the partition function

272, = >

p=0 mod 2,pEZ>s

‘/(n,m) - (7

XpXp t XpXzi=i55 o (55)

Using (2I)), the operators in this CFT can be mapped to
the stabilizer code generated by X as

I {05}, X < {0 (56)

P2°7 1+p}

Note that the quantum code corresponding to the Zy
orbifold of the R = 1 compact boson CFT is gen(Y") while
that for the Zs orbifold of the R = 2°° compact boson
CFT for s > 1is gen(X). This difference is because, for
s > 1, the chiral primary p = 2°~! is bosonic while, for
s = 1, it is fermionic.

The REPs for the codes obtained above are

Wgen(z)(zl,z2,$3,$4) =T + T4 ,

Wgen(X) (:Cl) $2,.T3,.’L'4) =1 + T2 . (57)

Therefore, the partition functions considered above can
be written in terms of the REPs by choosing

Ty = Z XpXp >
p=0 mod 2

Ty = Z XpXp >
p=1 mod 2

T3 = Z XpXaa=iiy - (58)
p=0 mod 2

4. Spin(16), CFT

The Spin(16); CFT has Rep(V) = E» (the “toric
code” MTC). We denote the representations of the chi-
ral algebra by N(070), N(O,l)a N(I,O); N(1,1)7 and they form
a K = 7y x Zs group under fusion. We have chiral pri-
maries with scaling dimensions

1
h,0) =0, ho1)=hao =1, hay = 3 (59)

The Narain lattice is
{(ﬁL,ﬁR)EAWwa,ﬁL—ﬁRGAR} (60)

where Aw = {3, ni\i,n; € Z} is the weight lattice, \;
are the fundamental weights

Ai=(1,---,1,0,---,0), 1<r <6 (1 repeated i times)

)\7*(151715171517151) )\8 (15171517151715 1)

and Ar = {),nio,n; € Z} where o; are the simple
roots

a;=¢€;—e+1 1 <1 <7 ag=eg+er. (61)

Here e; is the vector with components (e;); = ¢; ;. It is
easy to check that Ag is the set of 8-component vectors
such that the sum of its components is even.

The partition function is

Zr = X(O,O)X(o,o)+X(0,1)>Z(0,1)+X(1,0)>Z(1,0)+X(1,1)>Z(1(,1) )a
62

where the characters are given by ﬂﬁ]

(05 +03) 05
X(0,0) = T » X(0,1) = X(1,0) = 2—7785 (63)
(05 — 03)

== 4
X(1,1) 2 (64)
Here 0o, 03,04 are Jacobi-Theta func-
tions. The Dynkin labels for the repre-
sentations N(QQ), N(O,l)v N(I,O) and N(l,l) are

(0,0,0,0,0,0,0,1),(0,0,0,0,0,0,1,0),(0,0,0,0,0,1,0,0)
and (1,0,0,0,0,0,0,0), respectively.  Therefore, the
primary operators O(o,0),(0,0): O(0,1),0,1): O(1,0),(1,0) and
O(1,1),(1,1), in turn, correspond to the lattice vectors

(As;As) 5 (A7, A7) 5 (Aes Ae) (A1, A1) - (65)

Using ([II)), this CFT corresponds to the two-qubit sta-
bilizer code generated by I ® Z,Z @ I via the map

I®Z < {010,010} Z2&1 < {001,001} - (66)

This CFT has three non-anomalous Zs 0-form symme-
tries, @1, @2, s, corresponding to the topological lines
L0,1),L(1,0), and L1 1). These symmetries act on the
primary operators (and the corresponding Narain lattice
vectors) as

5(0,1) : 0(1,0) — —0(1,0), 0(1,1) — —0(1,1) )
5(1,0) : 0(0,1) — *(9(0,1), (9(1,1) — *(9(1,1) )
L1y 0,1y = —O0w,1), O,0) = —Opy - (67)

Actions of the symmetries on primaries not mentioned
above are trivial. Orbifolding by @Q1,Q2,Q@3, we get
CFTs with partition functions (using (I7), (IS)

ZT/0, = X(0,00X(0,00 + X(0,00X(0,1) t X(0,1)X(0,0)
+X(0,1)X(0,1)

ZT/0s = X(0,00X(0,00 + X(0,00X(1,0) T X(1,0)X(0,0)
+X(1,00X(1,0) >

ZT7/05 = X(0,00X(0,00 + X(1,1)X(1,1) + X(0,1)X(1,0)
+X(1,0X(0,1) 5 (68)

respectively. Using (ZI]), these CFTs can be mapped, in
turn, to the stabilizer codes specified by gen(Z®1I, I® X),
gen(I ® Z, X ®I), and gen(Z ® Z,Y ® X).



We can also orbifold by the full @Q; x Q2 symmetry of
the CFT. We get partition functions (using (), (I8]))

ZT/Q1xQs,[1] = X(0,00X(0,0) T X(0,1)X(0,0) T+ X(0,0)X(1,0)
+X(0,1)X(1,0) s

= X(0,0)X(0,0) + X(0,00X(0,1) T X(1,0)X(0,0)
+X(1,0)X(0,1) > (69)

ZT/QI X Q2,[0]

where [1] and [o] are the trivial and non-trivial elements
of H*(Zy x Za,U(1)), respectively. Using (2I)), these
CFTs can be mapped, in turn, to subgroups of the Pauli
group specified by gen(Z @ X, X ®I) and gen(X @ Z, I ®
X).

The subgroup of the Pauli group generated by these
elements is clearly not a stabilizer code since it is non-
abelian. For example, 7 ® X and X ® I anti-commute
with each other. This is expected from out general ar-
guments above since ()1 and @2 are related to 1-form
symmetries of the bulk Spin(16); Chern-Simons theory
which have a mixed ’t Hooft anomaly.

II. ERRORS AND THE FULL PAULI GROUP
FROM DEFECTS

In the context of quantum codes, the elements of the
Pauli group, P, that are not in the stabilizer subgroup,
Sy, are either called “logical operators” or “errors,” de-
pending, respectively, on whether they preserve the code
subspace or map states from the code subspace to its
complement. Since our codes are self-dual, we have no
(non-trivial) logical operators,?t and all elements of P,
that are not in S,, correspond to errors.

How can we see these errors in the CFT? An intuitive
picture is provided by the toric code ﬂﬂ] There one
finds that error operations correspond to string operators
(defects) that create anyonic pairs.?? When the anyons
annihilate, the system returns to the code subspace, im-
plementing a logical operation. While the gapped toric
code system is very different from the CFTs considered
in this paper, as we will see below, this geometric picture
of errors is still informative.

A more direct way to understand errors is to look at
the fields in 7/Q that contribute the terms with § # 0
in (I7). In the orbifolding procedure, we gauge @ in
the charge-conjugation modular invariant theory, 7. The
G # 0 bulk fields of T/Q then come from certain fields
living at the end of @ topological defects of 7. Therefore,

21 Note that the elements in Sy, are sometimes called “trivial” log-
ical operators.
22 For a pedagogical discussion, see section 11.3 of m]

the X-dependent Pauli stabilizers of the T /Q theory ap-
pearing in (2I)) correspond to error operations in the T
theory. This discussion suggests error operations of the
code related to T are given by defect endpoint operators
of the @ symmetries of 7. In the language of quantum
codes, such orbifolding exchanges certain errors with sta-
bilizers in an n-qubit self-dual code to produce a new
n-qubit self-dual code, see e.g. the examples in section

Bl

With the motivation above, we are now ready to iden-
tify the full set of error operations, i.e., to reconstruct the
full Pauli group, from the defect fields. Since @) consists
of order-two defects which commute with the vacuum
module, this suggests that we associate error operations
with fields living at the ends of such defects. Through
a slight abuse of terminology, we will refer to these and
any other defects that preserve the maximal chiral alge-
bra of a theory as “Verlinde lines” (for further discussion
of such lines, see for example ﬂﬁﬁ])

To understand the spectrum of defect endpoint fields
in the most general case, we eventually want to consider
CFTs in which the pairing of characters is given by

71 = Y Moaxp(0)Xa(D) (70)

where M is a matrix commuting with S and T.2% As a
technically simpler starting point, let us first consider the
case when Mg is a permutation on the set of vectors.
Such modular invariants are called “permutation mod-
ular invariants,” and charge conjugation corresponds to
the case My 7 = d;z. To avoid confusion below, we call
theories of this type “maximal” permutation modular in-
variants (MPMIs).?* As we will see, we can reconstruct
the Pauli group from Verlinde lines alone in any MPMI

admitting a code description.

In MPMIs, we define Verlinde lines via2?®
Sﬁz .
7 0¢

where each |Z, ZM><E; EM| is a projector on the primary
state labeled by (,fx) together with its descendants.
Since this operator is a multiple of the identity within
each representation of the left and right chiral algebras,
it commutes with the chiral algebras and is topological
(by construction, it commutes with the Virasoro sub-

algebras). For convenience, we denote Lz z,,) simply

23 Here, we have Tpq:= e—"i<c/12>eﬁéﬁq~.

24 More general permutation modular invariants will play a role
below.

25 In (D) and bellow, ZM = [ is the unique vector such that Mz #
0.



as Ly since the right-moving label is determined by p.
Using the Verlinde formula, it is easy to check that these
lines satisfy the fusion rules of the RCFT

Lyx Li=Lpyq- (72)
When p'is order two, we have

P+p=0 = Syl Sor € {£1} - (73)

To proceed, we insert Lz in the torus partition function
(i.e., we wrap it on the spatial cycle of the torus) and
perform a modular transformation so that it wraps time

ZrLy) =Y 2L Mupxs(0)Xa(@)

w7 Dol
S[ﬁM q — /=
= > 5 MpiSmSanx()xs(0)
7.7, 0L

= NEMaexr(@)%:(a) = 25, (¢, 0) - (74)

q,7,§
where, in the last line, we have arrived at a definition for
the partition function of fields living at the end of the

defect labeled by 7. Tn the second to last equality, we use
the Verlinde formula. In light of (72), we can simplify

the fusion coefficients as IV 7% = 5§_ i Therefore, we have

ZgM(q,(j) = ZM;_[gXF(Q)XE@)

> Mopxgdxa@ - (75)

Specializing to the case of the charge conjugation mod-
ular invariant, we obtain

me X50) - (76)

When ¢ € Q ~ 7k, we get, using 2 20 = 0,

pr+z(q X7 pd) - (77)

Zqu

As expected, these are equivalent to the contributions in
1), only here they correspond to defect operators in T
rather than bulk operators in 7/Q. Therefore, consis-
tency with the map in ([2I) demands

{Ozt;—i-é,p } <_>

where {O;;_ Z:} should be understood as an (-defect pri-

P

XMZO ZA(5+Z) , (78)

mary operator and its associated descendants. If Q ~ Z7,
then (8] gives rise to the full Pauli group. More gener-
ally, we can consider cases in which @ % Z% and some of
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the order-two Verlinde lines correspond to v Z Q (e.g., see
the SU(2) at level one WZW model example in section
[IB). In this case we also obtain the full Pauli group: £in
([T8) is any order-two element, and §'is any representation
in the Narain theory. Therefore, the charge-conjugation
modular invariant knows about the full set of operations
acting on the quantum code: the genuine local operators
correspond to stabilizers and the defect endpoint opera-
tors correspond to the errors.

It is straightforward to extend this picture to the most
general MPMIs when these CFTs admit a quantum code
description. Clearly, to be an MPMI, we need every pos-
sible g and ¢+ p'to appear exactly once in ([IT). There-
fore, as we sum over ¢ and take all j € By, we produce
all possible p € K. As a result, in the code we generate
via ([ZI)), we get all possible powers of Z. The powers of
X are restricted since § € @, and @ is a proper subgroup
of K.

However, the fields living at the end of the order-two
Verlinde defects precisely make up the difference since
([@3) now becomes

Zg—M(q,(j) N Z Z XﬁJr[(q))Zm(q)
) gezz:fpez;ax”“’(q Xrrigid @ - (79)

As a result, our CFT-code map in (2I) becomes
‘oo M (2+3) A(p+0)

{Ow,ﬂﬁ} o X o7 . (80)

Since the fusion rules in ([72) do not depend on the na-

ture of M, we see that the number of order-two Verlinde

defects is the same as in the charge-conjugation case.

Therefore, upon including all order-two Verlinde lines,

we get all possible Pauli group elements, and the corre-
sponding errors that affect our stabilizer code.

Let us now consider the most general case (7)), which
we can always write as in ([[Q) with Ty = 7/Q (and
discrete torsion [o]). Note that in ([Z0), My s is a matrix
with entries consisting of 0’s and 1’s (see Appendix B),
and it will not generally be a permutation (i.e., the CFT
will not be an MPMI).

As we will see in the next subsection, we have a smaller
number of Verlinde lines when 7 /@ is not an MPMI.
However, we can still define enough order-two symmetries
to recover the Pauli group from the corresponding defect
fields (note that invertibility of the orbifolding procedure
guarantees that, for each symmetry we gauge, there is a
dual symmetry in the orbifolded theory).

To construct these extra symmetries, it suffices to as-
sociate signs with the primaries compatible with fusion
(then all local correlation functions are invariant). In the
Verlinde line case, we did this via (1)) and (73).



Since we have orbifolded in a way that respects T’s
chiral algebra, T /Q respects the fusion rules of T.
More precisely, if we have operators in the orbifolded
theory transforming in representations (pi, g1 + p1) and
(P2, g2 + P2), then we also have an operator transforming
as (p1 + P2, g1 + Go + P1 + P2). Technically, this state-
ment follows from

Shgigs S+ 32) = Si EhiG1) g, S, 2)

=1, VheZk, (81)

\P1+D2

where we have used the bicharacter property of both S
and E (see Appendix A). Therefore, (p, g+ p) forms an
abelian group under fusion (as it should since 7/Q is a
Narain theory). Let us denote this group as F.

Now, after acting with some order-two symmetry, =
(i.e., inserting the corresponding topological defect, Dy,
along a spatial cycle and computing the torus partition
function), some of the 1 entries in M get flipped to —1
such that fusion is respected. Let us denote the matrix
so obtained as M.

As in [), to calculate the defect partition function,
we have to perform an S transformation to get ST M, S.
All the characters that we get from the defect partition
functions for all possible order-two m correspond to the
non-zero entries of the matrix

> STMS=5" ( > Mw) S:=S5"MxS5, (82)
where the sum is over all such symmetries, .

Assigning signs to the primaries such that the fusion
is respected is the same as choosing an irreducible repre-
sentation of F' valued in +1. The trivial representation
acts trivially on the primaries. Therefore, for each 7, we
associate an irrep, sign 7. In order to find the non-zero
entries of ) M we have to understand when

0’(.1') = Z Xsign w(-r) s (83)

sign

is non-zero. Here, the sum is over the irreducible repre-
sentations, sign 7, of F' valued in +1, and Xsign () is the
character of sign 7 (not to be confused with the RCFT
characters appearing in the partition function!) evalu-
ated on a given element x € F' (note that each element in
F represents a character combination XiX757 € ZT/Q,l0);

we will denote this combination (p, g + p)).

To that end, suppose F' has a decomposition in terms
of cyclic groups given by

F27, ®..0%, . (84)

Since we are treating CFT factors related to A, and Byr
as spectators, the n; are even.
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We know that

F=70p ®..0 %y, , (85)

where F is the group of irreducible representations of
F. In particular, the sign representations of F' are given
by products of Z,, sign representations. Choose a basis
{e1, -+, e} for the cyclic groups; then, an element of F'
is of the form (ey™,...,e;"") for some integers 0 < m; <
n;—1. Consider o(x) for some x = (e}",...,e;"") € F. We
know that sign m = sign m ® - - - ® sign m;, where sign 7;
is a representation of Z,, valued in +1. Therefore

o(x) = Z

Xy (€7") o Xy (€)=

sign 71,---, sign m
H Z (Xsign s (ei))ml . (86)
[ sign 7,

Since the n; are all even and sign m; is valued in +1, we
have Xsign «, (€;) = £1Vi. Therefore, we find

o(x) = [Jam™ +(-1)™) = {21 , iff m; € 22 Vi

87
0, otherwise . (87)

%

Now, suppose z = (ef"',...,e/"") is an element of the
group F' such that all m; are even. Then there exists
some other element y € F such that y?> = z. Recall
that an element of F' represents a character combination
in the partition function denoted by (p,§+ p). Adding
this element to itself gives (2j,2p) (since § is order two).
Therefore, if z € F has only even m;, z = (27, 2p).

As a result, the matrix My defined in (82)) is a matrix
with entries valued in {0,2'}, where the only non-zero
entries correspond to (2p,2p). In other words

> Z71001(Dx) = Y Magaxa@)xa(D

2'> xop(@)Xa3(@) - (89)

Note that the case m = 1 gives the partition function
without a defect. As a result, X25Xa5 is a term in this
partition function, and we know that 2p has to satisfy
([IR) for g = 0. That is, the CS Wilson line corresponding
to 257 should braid trivially with all i € Z&.

We want to show that the sum of defect partition
functions ) Z7 10,0] (coming from applying a modular
transformation to (88)) contains all possible characters
of the form XpXF55 where ¢ is order two, so that we get
the full Pauli group from it. To that end, consider

D ZFqun = 2D SapiSniXiks

2p 7,

=2 > S

% i



_ ol vl
=20 Spaapaks - (89)
25 1]

-,

It is clear that if (i—7) is order two, then Spai-7) = 1 VP
Therefore, the character x;)’(;. contributes non-trivally to

the sum for any Z,j satisfying the constraint that i— j is
order two. These characters correspond to

XME=7) o ZAT (90)

Since 7 — j is any order-two element, and iis arbitrary
(though choosing ¢ fixes j mod 2), we find that these
defect fields give the full Pauli group. This ends our
proof and shows that all code CFTs contain all possible
errors via order-two defects.

A. Verlinde Subgroup of the Pauli Group

In this section, we define a “Verlinde subgroup” of P,,.
This subgroup can be constructed from any code RCFT.
It is defined as follows.

Definition: The Verlinde subgroup, Vr/q, is the sub-
group of Pr/q coming from all stabilizers that are related
to (1) CFT local fields and (2) fields living at the end of
order-two Verlinde lines.

Note that, by construction S/g C V7/q € Pr/q- Phys-
ically, the ratio

<r<l1

— — )

(91)

measures how well the continuous symmetries of the
Narain CFT corresponding to an n-qubit code are able to
detect an error. For example, in the charge conjugation
modular invariant or any of the MPMIs, ry/,q = 27",
which is the smallest value possible. This is because the
Verlinde subgroup corresponds to the full Pauli group.
Any Verlinde line, £z commutes with the chiral algebra,
since Sy5/S55 = 1 in (), and so the corresponding con-
tinuous symmetry currents are acted upon trivially by
the Verlinde lines. In this sense, the continuous symme-
try currents cannot detect errors associated with these
defects.

What about more general theories? These theories are
not MPMIs. However, it turns out that, if we enlarge the
chiral algebras as much as possible, any orbifold theory
we can construct using our methods above is a permu-
tation modular invariant with respect to this larger al-
gebra (see Appendix D). We can then define a Verlinde
subgroup for any of our orbifold theories. Moreover, as
we show in Appendix D, if we enlarge the chiral algebra,
then, rr/g > 27", and the error detection ability of the
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continuous symmetry currents improves. In the most ex-
treme cases, we get CF'Ts that are products of left moving
meromorphic and right moving anti-meromorphic CFTs.
These types of theories have 77, = 1, and their contin-
uous symmetries are able to fully detect errors.

B. Examples
1. Pauli group from R =1 compact boson

The R = 1 compact boson has a charge conjugation
partition function which is an MPMI. Therefore, our gen-
eral discussion on Pauli groups from MPMIs can be read-
ily applied to this case. To that end, consider

Z7 = XoXo + X2X2 + X1X3 + X3X1 - (92)

Recall that the bulk operators are mapped to the 1-qubit
stabilizer code, gen(Z). This CFT has a Zs symmetry
generated by the Verlinde line, £5. Inserting this line in
the partition function, we can calculate the defect parti-
tion function using (77)

Z52 = xoX2 + X2X0 + X1X1 + X3X3 - (93)

Using ([8), the defect operators are mapped to Pauli
group elements as follows

X {002} {0G0)} » ¥ < {0G 1} {0G5) - (94)

Therefore, the bulk operators along with the defect op-
erators give us the full Pauli group, Ps. Since the X
and Y Pauli matrices correspond to defect operators liv-
ing at the end of an order-two Verlinde line, the Verlinde
subgroup, V7, is the full Pauli group.

2. Pauli group from R = 23%1 compact boson

Recall that the R =
charge conjugation partition function

Zr = Z XpXp > (95)
pEZos

1/25% compact boson has the

We know that the CFT local operators are mapped to the
qubit stabilier code generated by Z. This CFT has a Zo
symmetry generated by the Verlinde line, L9s-1. Insert-
ing this line in the partition function, we can calculate
the defect partition function using (1)

j_o9s—1 _
ZFT = ) Xpro i Xa s (96)
pEZos



Using (78), the defect operators are mapped to Pauli
group elements as follows

X {053 ,) . p=0 mod 2,
Y {0535 ), p=1 mod 2. (97)

p+2571,

Therefore, the local operators along with the defect oper-
ators at the end of the order-two Verlinde line Lo: gives
us the full Pauli group.

Now let us consider the CFT with partition function

ZT/Z2 = Z

p=0 mod 2,p€Zss

XpX5 + XpX577p » (98)

2—s

obtained from the R =272 CFT by orbifolding the Z,
symmetry generated by Los—1. Recall that the genuine
local operators in this CFT are mapped to the stabilizer
code generated by X (for s > 2).

This CFT has a Zsy symmetry generated by a line de-
fect, say D,, which acts on the primary operators as
follows

{OU,’T/} - {OU,TJ}) {Ov,m} — _{Oy7m} (99)

Using a modular S transformation, we can find the defect
partition function

Z7)2,(Dr) = >

p=1 mod 2,pEZys

XpXp + XpXga—ip, » (100)

Using (78], the defect operators are mapped to Pauli
group elements as follows

Z {00, Y < {0V, },

e (101)

where p = 1 mod 2. Therefore, we find that the local
operators of the CFT along with the defect operators
give us the full Pauli group.

Note that the partition function (@8] is clearly not an
MPMI. In this case we get the non-trivial group £ =
{0,271} defined in section [[TAl Therefore, using (48],
we can enlarge the chiral algebra as follows.

X0 = X0 + X2:-15 Xp = Xp + Xpt2e1 (102)
where p is a a representative of the orbit {v, v+2571}, v =
0 mod 2,v € Zss. With respect to this enlarged chiral
algebra, we have the partition function

Z1iz, = XoXp - (103)
P

Therefore, we have Verlinde lines labelled by the pri-
maries p. However, we don’t have any non-trivial order-
two Verlinde lines. Therefore, the Verlinde subgroup is
same as the stabilizer group.
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3. Pauli group from Spin(16), CFT

—

Recall that the Spin(16); CFT has the charge-
conjugation partition function

Zr = X(o,o))?(o,o)+X(o,1)>2(o,1)+X(1,o)>2(1,o)+X(1,1)>2611,621),
and the bulk operators are mapped to the 2-qubit sta-
bilizer code gen(I ® Z,Z ® I). This CFT has Za X Zs
0-form symmetry generated by the Verlinde lines L 1)
and L1 o). Inserting these lines in the parition function,
we obtain the following defect partition functions via ([77))

ZPY = xon X000 + X(0,0)X(0,1) F X(1,1)X(1,0)
+X@,0X(1,1) >

Z(TI’O) =X@.0X0,0) + Xa1X0©.1) +X(0,0X(1,0
+X0,1)X(1,1) >

Z8Y = xanXo0 + X(1,00X(0,1) F X(0,1)X(1,0)
+X(0,0X(1,1) - (105)

Using ([Z8), the defect operators are, in turn, mapped to
Pauli group elements

ZoX,I0X,Z0Y,IQY , (106)
X@0ZYQZXI,YDI, (107)
YRY,X0V,Y X, X®X . (108)

Therefore, the bulk operators along with the defect op-
erators give us the full Pauli group P7. Since all defect
operators live at the end of order-two Verlinde lines, the
Verlinde subgroup, V7, is the full Pauli group.

Now let us consider the CFT with partition function

ZT/Q1 = X(0,00X(0,00 + X(0,00X(0,1) + X(0,1)X(0,0)
+X(0,1)X(0,1) 5 (109)
obtained from the Spin(16); CFT by orbifolding the
Q1 symmetry generated by L 1). Recall that the bulk
operators are mapped to the 2-qubit stabilizer code
gen(Z ® I,I ® X). This CFT has order-two symmetries
generated by D, and D,,. D,, acts on the primaries as

{000.,0).00} = —{Ow0,0),01)} >

{00,100} = —{O0w0,1),00} > (110)

and trivially on {O(0,0),(0,0)} and {O0,1),0,1}- D, acts
on the primaries as

{0(0,1),(0,0)} - *{0(0,1),(0,0)} and

{001,010 = 100,101} ; (111)

and tr1v1a11y on {0(0,0)7(0,0)} and {0(0,0)7(0,1)}.



Using a modular S transformation, we can find the
defect partition functions

Z10,(Dxy) = X(1,00X(1,00 + X(@1)X(1,1) + X(1,1)X(1,0)
+X(1,00X(1,1) >

Z71Q,(Dry) = X(1,00X0,0) + X(1,00X(0,1) + X(1,1)X(0,0)
+Xa,1)X(0,1) >

Z71Qs(Daymy) = X(0,00X(1,0) + X(0,0)X(1,1) + X(0,1)X(1,0)
+X(0,1)X(1,1) -

Using ([@0), the defect operators are, in turn, mapped to
Pauli group elements

I®RZ2,Z0Z,XY,I®Y (113)
X®Z,XY,YRY,Y®Z, (114)
XR[LXX,YRX,Y®I. (115)

Therefore, the bulk fields along with the defect fields give
us the full 2-qubit Pauli group.

The Verlinde subgroup in this case is the same as the
stabilizer group. To understand this statement, note that
the partition function (I09) is clearly not an MPMI. In
this case we get the non-trivial group E = {(0,0),(0,1)}
defined in section [TAl Therefore, using (I4€]), we can
enlarge the chiral algebra as follows.

Xg = X(0,0) + X(0,1) - (116)

With respect to this enlarged chiral algebra, we have

Z71/6, = X5Xg - (117)
We get a meromorphic RCFT times an anti-meromorphic
RCEFT. In this case we don’t have any non-trivial Verlinde
lines, and V7 ,q, = So.

III. THE QUBIT HILBERT SPACE / CFT
HILBERT SPACE MAP

We have constructed a map that relates the stabilizers
and error operations acting on n qubits to an infinite
number of genuine local and defect endpoint operators in
very general Narain RCFTs. How then should we map
the n-qubit Hilbert space, H,,, to the infinite-dimensional
CFT Hilbert space?

Let us first consider the code subspace, C,, C H,. It
is defined as the space invariant under the action of the
stabilizer group. In our case it is one dimensional. To
find the corresponding CF'T states, we look for the space
which is closed under action of genuine local CFT opera-
tors, since these operators correspond to stabilizers under
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FIG. 3: The CFT on S' x R: (i) The code subspace maps
to the CFT states corresponding to genuine local operators
(ii) A CFT logical operation: wrapping the spatial slice with
a symmetry defect, £z, implements the symmetry on HEEE
(at the level of the code, the logical operation is trivial). (iii)
The complement of the code subspace in the n-qubit Hilbert

space: a state in the Ly-defect Hilbert space (here 2h = 0)

the map p (22). By the state-operator correspondence,
this is nothing but the CF'T Hilbert space

M(HCFT) _ Cn )

Note that, at the level of the CFT Hilbert space, logical
operations are non-trivial, but they become trivial after

the action of p (IIJ)).

Next, what are the 2 — 1 states in the complement of
C,, inside the n-qubit Hilbert space on the CFT side? The
natural choice is that these correspond to the 2™ — 1 dif-
ferent defect Hilbert spaces, ’H?efe“, associated with the
defect endpoint fields we interpreted as errors in section

i

(118)

p(HPefeety = ¢C .= 1, \ C, . (119)

The basic property of Cg is that error operations acting
on C, produce states in the complement. This property
is respected by p: inserting a defect endpoint operator
takes us from the bulk CFT Hilbert space to the corre-
sponding defect Hilbert space. We illustrate our proposal

([[IR8) and (II9) in Figs. 3 (i)-(iii).

IV. DISCUSSION AND CONCLUSIONS

We have proposed a map from very general rational
Narain CFTs (including defects), and their associated
CS theories, to stabilizer codes. This construction in-
cludes the theories discussed in ﬂa, B] as a special case,
and provides a CFT picture of the code space states and
errors reminiscent of the toric code construction ﬂﬂ]

Our CFT to stabilizer map works as follows. First,
we pick a Narain theory with a particular chiral algebra



and construct the charge conjugation modular invariant.
We then consider all orbifolds by @Q = Z& subgroups of
the 0-form flavor symmetry that come from 3d CS 1-
form symmetries with vanishing 't Hooft anomalies (this
condition ensures the stabilizer group is abelian (23])
and relate genuine local operators to stabilizer genera-
tors (2I)). Under this map, operators sitting at the ends
of line defects are mapped to Pauli operators acting on
logical qubits. Accordingly, the whole bulk CFT Hilbert
space is mapped to the code subspace (II8]), while defect
Hilbert spaces are mapped to the complement of the code
subspace in the n-qubit Hilbert space (I19]).

Note that, while the map is unambiguous, it can lead
to the same CFT having different codes associated with
it because certain CFTs can be considered rational with
respect to multiple chiral algebras. For example, the

—

Spin(16),/Z, orbifolds discussed in section [A] can be

interpreted as corresponding to two different chiral al-

gebras. If we run our map with the smaller chiral al-

gebra Viin = VS/,—\ , we produce the sequence of
pin(16),

RCFT / code relations discussed in the text. On the
other hand, if we use maximal chiral algebra, Vi ax, de-

—

scribed around (II6]), then the Spin(16),/Zs orbifolds
correspond to trivial 0-qubit codes, as follows from triv-
iality of Rep(Vinax), see the discussion below (I16).

Within our construction, it is natural to ask if we can
construct a CFT starting from a given stabilizer code.
Since there might be different CFTs related to that code,
it is clear that we need extra data. Starting from the
stabilizers, we can choose a group @, and a 2-cocycle,
o € H*(Q,U(1)), compatible with the code. To recon-
struct the CFT requires choosing a chiral algebra such
that the charge conjugation modular invariant with that
chiral algebra admits a non-anomalous 0-form symme-
try isomorphic to Q. Taking the Q-orbifold of this CF'T
with discrete torsion, o, gives a CFT corresponding to
the quantum code in question. An alternative approach
is to define a Narain lattice starting from a quantum
code. One particular receipe is given by the “new Con-
struction A” of ﬂa], which can be used to construct orb-
ifolds of the charge conjugation modular invariant with
Rep(V) = A}** for arbitrary integer n4,. There are,
of course, other constructions leading to other CFTs for
the same or other codes. For example, the Narain lattice
Q) for the SU(2) WZW model at level one can be gen-
eralized to yield CFTs with Rep(V) = A5"? for arbitrary
integer na, > 0.

Our work opens a number of new directions to explore:

e We have emphasized that different CFTs can be as-
sociated with the same code. It is natural to ask if
the space of CFTs related to a particular code ad-
mits additional structure. One possible idea is to
relate these theories by RG flow, or perhaps, some
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other form of coarse-graining. More broadly, these
theories may comprise deformation classes reminis-
cent of topological modular forms in 2d N'= (0,1)
theories, see e.g.

An alternative idea comes from the example dis-
cussed below ([Id]), where different CFTs mapping
to the same code correspond to CS theories that are
related by Galois conjugation m, @] A natural
question to ask is if more general Galois transfor-
mations always relate theories corresponding to the
same code.

Finally, when a d-dimensional QFT is invariant un-
der gauging a (d — 2)/2-form symmetry, one finds
a non-invertible “duality” defect m, @] In 2d,
these defects arise when a theory is invariant un-
der gauging a zero-form symmetry, as in the case
of the R = 1 compact boson (see also [20]). In
this theory, we saw that the codes before and after
gauging the ) = Zs symmetry are equivalent. The
codes before and after gauging are also equivalent

for R = \/% (for k > 2) even though the theories

are not. This result begs the question of whether
code equivalences correspond, in the absence of an
equivalence under gauging, to the existence of more
general defects.

The construction of this paper can be extended in
many possible ways. In the discussion below (@),
the factors of A, and By in (§) are mapped into
trivial (zero qubit) codes. Quite naturally, these
factors can be associated with qudit codes with
d = g, where d = 2 is the qubit case [33]. An-
other possible generalization comes from the choice
of orbifold group, @, in ([Z0) and, implicitly, a choice
of stabilizer in ([2I) for RCFTs corresponding to
CS theories with Es- and Fy- factors. Yet another
natural generalization would be to include theories
with non-abelian fusion rules. In this way, one may
hope to extend our construction to all RCFTs. Go-
ing in a different direction, general CFT relations
to codes are likely to extend beyond RCFTs to in-
clude non-rational “finite” theories [34].

The broad program we are advocating here is to
identify a generalization of codes which can be as-
sociated with general 2d CFTs.

Relations to codes provide a powerful way to write
CFT torus partition functions in terms of code enu-
merator polynomials. This relation applies to all
CF'Ts discussed in this paper and can be extended
to higher-genus partition functions @] In this
way, modular bootstrap constraints can be refor-
mulated in terms of much simpler algebraic prop-
erties of enumerator polynomials, leading to a new
approach to the modular bootstrap ﬂ] Our work
emphasized the importance of defects in the con-
text of codes. We therefore surmise that codes will



prove useful as a new tool for the program of boot-
strapping CFTs with defects (e.g., see [20]). Since
defects are also closely related to boundaries, we
expect codes to have direct implications for boot-
strapping in the presence of boundaries @] In-
triguingly, conformal boundaries are also related to
gapped boundaries of the bulk TQFT @] There-
fore, it will be interesting to explore the role of
quantum codes in describing and classifying gapped
boundaries as in [41].

e The physical meaning of quantum codes outlined in
our paper, namely that the code subspace is related
to the Hilbert space of CFT local operators, while
errors correspond to defect endpoint operators, has
a natural holographic interpretation. Our theories
are dual to 3d CS, where the code subspace and
errors have a clear geometric meaning. We raise
the question of making an explicit connection with
the quantum codes, which define the space of low-
energy bulk states in the context of holographic
quantum gravity [1].
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Appendix A: S and = are bicharacters

In this appendix, we will show that both S and = are
bicharacters. To prove this, we need the following equa-
tions satisfied by F(p, ¢,7) and R(p, q).

F(@,5,7) R34+ 7)

FGENF@ 7 REDRGD

FEIOPERD _ RGETH o
FGrd  RBOR@H
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These are known as the Hexagon equations ﬂﬁ] The
modular S matrix can be written in terms of R as

Spq = R(p, Q) R(4,P) - (121)

We have

Sp.aSpr = R, QR(T P)R(D, ) R(F, p)
= R(P,§+ MR(7+ 7, p) = Spgrr , (122)

where in the second equality we used (I20). A similar
argument can be used to show that Sp#Sgr = Spyg.7-
This shows that the modular S matrix is a bicharacter.

Consider the expression for = in terms of R, the 2-
cochain 7 and the 2-cocycle o.

- i_l’ -
(g h)olg.h) (123)
h,3)o(h

Recall that = is defined on a subgroup @ of K on which
F is trivial in cohomology. In fact, we can choose a gauge
in which F (g, h,k) = 1 Vg, h,k € Q. Then 7(F, k) can be
set to 1 for all g, he (. Therefore, we have

e P oo = 0(Gyh) o(G, K
5,705 F) = R PRE HZED T
o o(h,g)o(k,g
- 7 7 _'a h + k —_— 7
= R(G.h+ k)T f —2(G,h+F), (124)
o(h+Fk,9)
where in the second equality above we used the property
o(g.h)

that for any 2-cocycle o, is a bicharacter. A simi-

a(h.g)
lar argument can be used to show that Z(g, k)=(h, k) =
E(g+ h, k). This shows that = is a bicharacter.

Appendix B: Properties of Zr /g (]

Let us discuss some properties of Z71/q () which will
be useful for our arguments. To that end, consider the
general expression for Z71/q [o]-

Z7/Q,l0] = Z Z X5 (D X515(@) (125)
geQ pe By
where
By={p| 8,2 =1, vheqQ} .  (120)

A basic observation is that these partition functions
are of the form

ZT/0Q,[0] (127)

= Mpapxa(@)Xa(2)



where Mz is a modular invariant matrix with entries
consisting of 0’s and 1’s. Indeed, if

XpXrg = XaXg 7 - (128)
then we should have p'= ¢'and p+g = cj'Jrl_i which implies
that § = h. Therefore, the non-trivial terms contribute
to the parition function without mutiplicity.

Now let us discuss some properties of the set Bg. For
any ¢, the