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HARDY INEQUALITIES ON METRIC MEASURE SPACES, III: THE CASE q ≤ p < 0

AND APPLICATIONS

AIDYN KASSYMOV, MICHAEL RUZHANSKY, AND DURVUDKHAN SURAGAN

ABSTRACT. In this paper, we obtain a reverse version of the integral Hardy inequality on metric

measure space with two negative exponents. Also, as for applications we show the reverse Hardy-

Littlewood-Sobolev and the Stein-Weiss inequalities with two negative exponents on homogeneous

Lie groups and with arbitrary quasi-norm, the result which appears to be new already in the Euclidean

space. This work further complements the ranges of p and q (namely, q ≤ p < 0) considered in [35]

and [36], where one treated the cases 1 < p ≤ q < ∞ and p > q, respectively.

1. INTRODUCTION

In the famous work [19], G.H. Hardy showed the following (direct) integral inequality:

∫
∞

a

1

xp

(
∫

∞

a

f (t)dt

)p

dx ≤
(

p

p − 1

)p

∫
∞

a

f p(x)dx,(1.1)

where f ≥ 0, p > 1, and a > 0. The subject of the Hardy inequalities has been extensively

investigated and we refer to the book [27].

We refer to direct inequalities [7, 9, 10, 16, 27, 26, 28, 32] and to the reverse inequalities [2, 17,

25, 29, 34].

The main goal of this paper is to extend the reverse Hardy inequalities to general metric measure

space with two negative exponents. More specifically, we consider metric spaces X with a Borel

measure dx allowing for the following polar decomposition at a ∈ X: we assume that there is a

locally integrable function � ∈ L1
loc

such that for all f ∈ L1(X) we have

∫
X

f (x)dx = ∫
∞

0
∫
Σr

f (r, !)�(r, !)d!rdr,(1.2)

for some set Σr = {x ∈ X ∶ d(x, a) = r} ⊂ X with a measure on it denoted by d!, and (r, !) → a

as r → 0.

The condition (1.2) is rather general (see [35]) since we allow the function � to depend on the

whole variable x = (r, !). Since X does not necessarily have a differentiable structure, the function

�(r, !) can not be in general obtained as the Jacobian of the polar change of coordinates. However, if

such a differentiable structure exists on X, the condition (1.2) can be obtained as the standard polar
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decomposition formula. In particular, let us give several examples of X for which the condition

(1.2) is satisfied with different expressions for �(r, !):

(I) Euclidean space ℝ
n: �(r, !) = rn−1.

(II) Homogeneous groups: �(r, !) = rQ−1, where Q is the homogeneous dimension of the

group. Such groups have been consistently developed by Folland and Stein [14], see also

an up-to-date exposition in [12] and [41].

(III) Hyperbolic spaces ℍn: �(r, !) = (sinh r)n−1.

(IV) Cartan-Hadamard manifolds: Let KM be the sectional curvature on (M, g). A Riemannian

manifold (M, g) is called a Cartan-Hadamard manifold if it is complete, simply connected

and has non-positive sectional curvature, i.e., the sectional curvature KM ≤ 0 along each

plane section at each point of M . Let us fix a point a ∈ M and denote by �(x) = d(x, a)

the geodesic distance from x to a on M . The exponential map expa ∶ TaM → M is a

diffeomorphism, see e.g. Helgason [21]. Let J (�, !) be the density function on M , see e.g.

[15]. Then we have the following polar decomposition:

∫
M

f (x)dx = ∫
∞

0
∫
Sn−1

f (expa(�!))J (�, !)�
n−1d�d!,

so that we have (1.2) with �(�, !) = J (�, !)�n−1.

In [35] and [36], the (direct) integral Hardy inequality on metric measure spaces was established

with applications to homogeneous Lie groups, hyperbolic spaces, Cartan-Hadamard manifolds with

negative curvature and on general Lie groups with Riemannian distance for 1 < p ≤ q < ∞ and

p > q, respectively. Also, in [23], the authors showed the integral Hardy inequality for p ∈ (0, 1)

and q < 0 on metric measure space. In this paper, we continue the investigation of the integral

Hardy inequality on a metric measure space, i.e., we show the reverse integral Hardy inequality

with negative exponents.

In [20], Hardy and Littlewood considered the one dimensional fractional integral operator on

(0,∞) given by

(1.3) T�u(x) = ∫
∞

0

u(y)

|x − y|�dy, 0 < � < 1,

where they also showed the following Lq − Lp boundedness of this operator T�:

Theorem 1.1. Let 1 < p < q < ∞ and u ∈ Lp(0,∞) with
1

q
=

1

p
+ � − 1. Then

(1.4) ‖T�u‖Lq(0,∞) ≤ C‖u‖Lp(0,∞),

where C is a positive constant independent of u.

The multi-dimensional analogue of (1.3) can be represented by the formula:

(1.5) I�u(x) = ∫
ℝN

u(y)

|x − y|�dy, 0 < � < N.

In [42], Sobolev generalised Theorem 1.1 for multi-dimensional case in the following form:

Theorem 1.2. Let 1 < p < q < ∞, u ∈ Lp(ℝN ) with
1

q
=

1

p
+

�

N
− 1. Then

(1.6) ‖I�u‖Lq(ℝN ) ≤ C‖u‖Lp(ℝN ),

where C is a positive constant independent of u.
2



In [43], Stein and Weiss obtained the following radially weighted Hardy-Littlewood-Sobolev

inequality, which is known as the Stein-Weiss inequality.

Theorem 1.3. Let 0 < � < N , 1 < p < ∞, � <
N(p−1)

p
, � <

N

q
, � + � ≥ 0 and

1

q
=

1

p
+

�+�+�

N
− 1.

If 1 < p ≤ q < ∞, then

(1.7) ‖|x|−�I�u‖Lq(ℝN ) ≤ C‖|x|�u‖Lp(ℝN ),

where C is a positive constant independent of u.

To the best of our knowledge, the Hardy-Littlewood-Sobolev inequality on the Heisenberg group

was proved by Folland and Stein in [13] and the best constants of the Hardy-Littlewood-Sobolev

inequality, in the Euclidean space and Heisenberg group were obtained in [30] and [11], respec-

tively. Also, in [18], [41] and [22], the authors studied the Hardy-Littlewood-Sobolev and the

Stein-Weiss inequalities on Heisenberg and homogeneous Lie groups. Note that systematic stud-

ies of different functional inequalities on general homogeneous (Lie) groups were initiated by the

papers [33, 37, 39, 40].

The reverse Stein-Weiss inequality in Euclidean setting has the following form:

Theorem 1.4 ([5], Theorem 1). For n ≥ 1, p ∈ (0, 1), q < 0, � > 0, 0 ≤ � < −
n

q
, and 0 ≤ � < −

n

p′

satisfying
1

p
+

1

q′
−

�+�+�

n
= 2, there is a constant C = C(n, �, �, �, p, q) > 0 such that for any

non-negative functions f ∈ Lq′(ℝn) and 0 < ∫
ℝn g

p(y)dy < ∞, we have

(1.8) ∫
ℝn ∫ℝn

|x|�|x − y|�f (x)g(y)|y|�dydx ≥ C

(
∫
ℝn

f q′(x)dx

) 1

q′
(
∫
ℝn

gp(y)dy

) 1

p

,

where
1

q
+

1

q′
= 1 and

1

p
+

1

p′
= 1.

Note, we obtain the reverse Hardy-Littlewood-Sobolev inequality if � = � = 0. Improved Stein-

Weiss inequality was obtained in [4] on the Euclidean upper half-space and in [24] on homogeneous

Lie groups. For more results about the reverse Hardy–Littlewood–Sobolev inequality in Euclidean

space, we refer the reader to [3] [6], [8], [31] and the references therein. Note that the reverse Hardy-

Littlewood-Sobolev and Stein-Weiss inequalities were shown in [24] for the case p ∈ (0, 1) and

q < 0. In this paper, we show the reverse Hardy-Littlewood-Sobolev and Stein-Weiss inequalities

with two negative exponents i.e., q < p < 0, which is also new in the Euclidean space.

2. MAIN RESULT

Firstly, let us denote by B(a, r) a ball in X with centre a and radius r, i.e.,

B(a, r) ∶= {x ∈ X ∶ d(x, a) < r},

where d is the metric on X. Once and for all let us fix some point a ∈ X, and denote

(2.1) |x|a ∶= d(a, x).

Let us recall briefly the reverse Hölder inequality.

Theorem 2.1 ([1], Theorem 2.12, p. 27). Let p < 0, so that p′ =
p

p−1
> 0. If non-negative functions

satisfy 0 < ∫
X
f p(x)dx < +∞ and 0 < ∫

X
gp

′

(x)dx < +∞, we have

(2.2) ∫
X

f (x)g(x)dx ≥
(
∫
X

f p(x)dx

) 1

p
(
∫
X

gp
′

(x)dx

) 1

p′

.
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As the main results of this section, we show the reverse integral Hardy inequality as well as its

conjugate.

Theorem 2.2. Assume that p, q < 0 are such that q ≤ p < 0. Let X be a metric measure space

with a polar decomposition at a ∈ X. Suppose that u, v ≥ 0 are locally integrable functions on X.

Then the inequality

(2.3)

[
∫
X

(
∫
B(a,|x|a)

f (y)dy

)q

u(x)dx

] 1

q ≥ C1(p, q)

(
∫
X

f p(x)v(x)dx

) 1

p

holds for all non-negative real-valued measurable functions f , if and only if

(2.4) 0 < D1 = inf
x≠a1(|x|a) = inf

x≠a

[(
∫
B(a,|x|a)

u(y)dy

) 1

q
(
∫
B(a,|x|a)

v1−p
′

(y)dy

) 1

p′

]
,

and 1(|x|a) is non-decreasing. Moreover, the largest constant C1(p, q) in (2.3) satisfies

(2.5) D1 ≥ C1(p, q) ≥ |p| 1q (p′) 1

p′ D1,

where
1

p
+

1

p′
= 1.

Remark 2.3. In (2.5), by simple calculation, we have that the for the case q ≤ p < 0

(2.6) |p| 1q (p′) 1

p′ ≤ 1.

Proof of Theorem 2.2. Let us divide a proof of this theorem to 2 steps.

Step 1. Firstly, let us denote

F (s) ∶= ∫∑
s

�(s, �)f p(s, �)v(s, �)d�,(2.7)

V (s) ∶= ∫∑
s

�(s, �)v1−p
′

(s, �)d�,(2.8)

ℎ(t) ∶=

(
∫

t

0 ∫∑
s

�(s, �)v1−p
′

(s, �)d�ds

) 1

pp′

,(2.9)

H1(t) ∶= ∫
t

0 ∫∑
s

�(s, �)v
−

p′

p (s, �)ℎ−p′ (s)d�ds,(2.10)

U1(s) ∶= ∫∑
s

�(s, �)u(s, �)d�.(2.11)
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By using the reverse Hölder inequality (2.2) with the polar decomposition, we compute

∫
B(a,|x|a)

f (y)dy = ∫
B(a,|x|a)

[f (y)v
1

p (y)ℎ(y)][v
1

p (y)ℎ(y)]−1dy

≥
(
∫
B(a,|x|a)

(f (y)v
1

p (y)ℎ(y))pdy

) 1

p
(
∫
B(a,|x|a)

(v
1

p (y)ℎ(y))−p
′

dy

) 1

p′

=

(
∫

|x|a

0 ∫∑
s

ℎp(s)�(s, �)f p(s, �)v(s, �)d�ds

) 1

p

×

(
∫

|x|a

0 ∫∑
s

v
−

p′

p (s, �)ℎ−p′ (s)�(s, �)d�ds

) 1

p′

=

(
∫

|x|a

0

ℎp(s)F (s)ds

) 1

p

H
1

p′

1
(|x|a).

(2.12)

Let us calculate H1(t):

H1(t) = ∫
t

0
∫∑

s

�(s, �)v
−

p′

p (s, �)ℎ−p′ (s)d�ds

(2.8)
= ∫

t

0

ℎ−p′(s)V (s)ds

(2.9)
= ∫

t

0

(
∫

s

0 ∫∑
z

�(z, !)v1−p
′

(z, !)dzd!

)−
1

p

V (s)ds

(2.8)
= ∫

t

0

(
∫

s

0

V (z)dz

)−
1

p

V (s)ds

= ∫
t

0

(
∫

s

0

V (z)dz

)−
1

p

ds

(
∫

s

0

V (z)dz

)

= p′
(
∫

s

0

V (z)dz

) 1

p′ |||
t

0

1

p′
>0

= p′
(
∫

t

0

V (z)dz

) 1

p′

= p′ℎp(t).

(2.13)

By combining (2.13) and (2.12), we get

∫
B(a,|x|a)

f (y)dy ≥
(
∫

|x|a

0

ℎp(s)F (s)ds

) 1

p

H
1

p′

1
(|x|a)

(2.13)
= (p′)

1

p′

(
∫

|x|a

0

ℎp(s)F (s)ds

) 1

p

ℎ
p

p′ (|x|a).
(2.14)
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Multiplying by u, integrating over X with q < 0 and by using (direct) Minkowski’s inequality with
q

p
≥ 1 (see [1], Theorem 2.9, p.26), we compute

∫
X

(
∫
B(a,|x|a)

f (y)dy

)q

u(x)dx

= ∫
∞

0 ∫∑
r

u(z, !)�(z, !)

(
∫

|x|a

0 ∫∑
s

�(s, �)f (s, �)dsd�

)q

dzd!

(2.11)
= ∫

∞

0

U1(z)

(
∫

z

0 ∫∑
s

�(s, �)f (s, �)dsd�

)q

dz

q<0, (2.14)≤ (p′)
q

p′ ∫
∞

0

U1(z)

(
∫

z

0

ℎp(s)F (s)ds

) q

p

ℎ
qp

p′ (z)dz

= (p′)
q

p′ ∫
∞

0

U1(z)

(
∫

∞

0

�[0,z]ℎ
p(s)F (s)ds

) q

p

ℎ
qp

p′ (z)dz

≤ (p′)
q

p′

[
∫

∞

0

ℎp(s)F (s)

(
∫

∞

s

U1(z)ℎ
qp

p′ (z)dz

) p

q

ds

] q

p

,

(2.15)

where �[0,r] is the cut-off function. At the same time, one can also estimate

ℎ
pq

p′ (t) =

⎡
⎢⎢⎣

(
∫

t

0 ∫∑
s

�(s, �)v1−p
′

(s, �)dsd�

) q

p′ ⎤
⎥⎥⎦

1

p′

(2.8)
=

[(
∫

t

0

V (s)ds

) q

p′

] 1

p′

=

[(
∫

t

0

V (s)ds

) q

p′
(
∫

t

0

U1(s)ds

)(
∫

t

0

U1(s)ds

)−1
] 1

p′

=  q

p′

1
(|t|a)

(
∫

t

0

U1(s)ds

)−
1

p′

,

(2.16)

where 1(|t|a) ∶=
(∫ t

0
V (s)ds

) 1

p′
(∫ t

0
U1(s)ds

) 1

q

. By using this fact and since 1(|x|a) is non-

decreasing, we get

∫
X

(
∫
B(a,|x|a)

f (y)dy

)q

u(x)dx

(2.15)≤ (p′)
q

p′

[
∫

∞

0

ℎp(s)F (s)

(
∫

∞

s

U1(r)ℎ
qp

p′ (r)dr

) p

q

ds

] q

p

6



p

q
>0, (2.16)

≤ (p′)
q

p′

⎡
⎢⎢⎣∫

∞

0

ℎp(s)F (s) p

p′

1
(s)

(
∫

∞

s

U1(r)

(
∫

r

0

U1(z)dz

)−
1

p′

dr

) p

q

ds

⎤
⎥⎥⎦

q

p

= (p′)
q

p′

⎡
⎢⎢⎣∫

∞

0

ℎp(s)F (s) p

p′

1
(s)

(
∫

∞

s

dr

[
p

(
∫

r

0

U1(z)dz

) 1

p

]) p

q

ds

⎤
⎥⎥⎦

q

p

= (p′)
q

p′

⎡
⎢⎢⎣∫

∞

0

ℎp(s)F (s) p

p′

1
(s)

(
p

(
∫

∞

0

U1(z)dz

) 1

p

− p

(
∫

s

0

U1(z)dz

) 1

p

) p

q

ds

⎤
⎥⎥⎦

q

p

p<0≤ (−p)(p′)
q

p′

[
∫

∞

0

ℎp(s)F (s) p

p′

1
(s)

(
∫

s

0

U1(z)dz

) 1

q

ds

] q

p

(2.9)
= (−p)(p′)

q

p′

[
∫

∞

0

F (s)1+
p

p′

1
(s)ds

] q

p

= (−p)(p′)
q

p′

[
∫

∞

0

F (s)p

1
(s)ds

] q

p

p<0≤ (−p)(p′)
q

p′D
q

1

[
∫

∞

0

F (s)ds

] q

p

(2.7)
= (−p)(p′)

q

p′D
q

1

(
∫
X

f p(x)v(x)dx

) q

p

= |p|(p′) q

p′ D
q

1

(
∫
X

f p(x)v(x)dx

) q

p

.

(2.17)

Finally, we obtain

(2.18)

(
∫
X

(
∫
B(a,|x|a)

f (y)dy

)q

u(x)dx

) 1

q ≥ |p| 1q (p′) 1

p′D1

(
∫
X

f p(x)v(x)dx

) 1

p

.

Hence, it follows that (2.3) holds with C1(p, q) ≥ |p| 1q (p′) 1

p′ D1, proving one of the relations in (2.5).

Step 2. Now it remains to show that (2.3) yields (2.4). Let us fix t > 0 and denote the following

function:

(2.19) f (x) ∶=

{
v1−p

′

(x), if |x|a ≤ t,

�f1(x), if |x|a > t,

where f1 is any function satisfying ∫
B(a,|x|a) f1(y)dy < ∞ and ∫|x|a≥t v(x)f p

1
(x)dx < ∞, and � > 0.

Then we compute

C1(p, q) ≤
[
∫
X

(
∫|y|a≤|x|a

f (y)dy

)q

u(x)dx

] 1

q
[
∫
X

f p(y)v(y)dy

]− 1

p

7



=

[
∫
X

(
∫|y|a≤|x|a

f (y)dy

)q

u(x)dx

] 1

q
[
∫|y|a≤t

v1−p
′

(y)dy + �p ∫|y|a>t
v(y)f

p

1
(y)dy

]− 1

p

q<0≤
[
∫|x|a≤t

(
∫|y|a≤|x|a

f (y)dy

)q

u(x)dx

] 1

q
[
∫|y|a≤t

v1−p
′

(y)dy + �p ∫|y|a>t
v(y)f

p

1
(y)dy

]− 1

p

=

[
∫|x|a≤t

(
∫|y|a≤|x|a

v1−p
′

(y)dy

)q

u(x)dx

] 1

q
[
∫|y|a≤t

v1−p
′

(y)dy + �p ∫|y|a>t
v(y)f

p

1
(y)dy

]− 1

p

q<0≤
[
∫|x|a≤t

(
∫|y|a≤t

v1−p
′

(y)dy

)q

u(x)dx

] 1

q
[
∫|y|a≤t

v1−p
′

(y)dy + �p ∫|y|a>t
v(y)f

p

1
(y)dy

]− 1

p

=

[
∫|x|a≤t

u(x)dx

] 1

q
[
∫|y|a≤t

v1−p
′

(y)dy

] [
∫|y|a≤t

v1−p
′

(y)dy + �p ∫|y|a>t
v(y)f

p

1
(y)dy

]− 1

p

.

Summarising above facts with q ≤ p < 0 and taking limit as � → 0, we obtain

(2.20) C1(p, q) ≤
[
∫|y|a≤t

v1−p
′

(y)dy

] 1

p′
[
∫|x|a≤t

u(x)dx

] 1

q

.

Finally, we get C1(p, q) ≤ D1. �

Now let us prove the conjugate integral Hardy inequality.

Theorem 2.4. Assume that p, q < 0 such that q ≤ p < 0. Let X be a metric measure space with a

polar decomposition at a ∈ X. Suppose that u, v ≥ 0 are locally integrable functions on X. Then

the inequality

(2.21)

[
∫
X

(
∫
X⧵B(a,|x|a)

f (y)dy

)q

u(x)dx

] 1

q ≥ C2(p, q)

(
∫
X

f p(x)v(x)dx

) 1

p

holds for all non-negative real-valued measurable functions f , if and only if

(2.22) 0 < D2 = inf
x≠a2(|x|a) = inf

x≠a

[(
∫
X⧵B(a,|x|a)

u(y)dy

) 1

q
(
∫
X⧵B(a,|x|a)

v1−p
′

(y)dy

) 1

p′

]
,

and 2(|x|a) is non-increasing. Moreover, the largest constant C2(p, q) satisfies

(2.23) D2 ≥ C2(p, q) ≥ |p| 1q (p′) 1

p′ D2,

where
1

p
+

1

p′
= 1.

Proof. The main idea of the proof of this theorem is similar to that of Theorem 2.2 with the only

difference that 2(|x|a) is non-increasing, so we omit the details. �

3. CONSEQUENCES ON HOMOGENEOUS GROUPS

In this section, we consider several consequences of the main results for the reverse integral

Hardy, Hardy-Littlewood-Sobolev and Stein-Weiss inequalities on homogeneous groups.

Let us recall that a Lie group (on ℝn) G with the dilation

D�(x) ∶= (��1x1,… , ��nxn), �1,… , �n > 0, D� ∶ ℝ
n
→ ℝ

n,
8



which is an automorphism of the group G for each � > 0, is called a homogeneous (Lie) group. For

simplicity, throughout this paper we use the notation �x for the dilation D�(x). The homogeneous

dimension of the homogeneous group G is denoted by Q ∶= �1 +… + �n. Also, in this paper we

denote a homogeneous quasi-norm on G by |x|, which is a continuous non-negative function

(3.1) G ∋ x ↦ |x| ∈ [0,∞),

with the following properties

i) |x| = |x−1| for all x ∈ G,

ii) |�x| = �|x| for all x ∈ G and � > 0,

iii) |x| = 0 if and only if x = 0.

Let us also recall the following well-known fact about quasi-norms.

Proposition 3.1 (e.g. [12], Proposition 3.1.38 and [38], Proposition 1.2.4). If | ⋅ | is a homogeneous

quasi-norm on G, there exists C > 0 such that for every x, y ∈ G, we have

(3.2) |xy| ≤ C(|x| + |y|).
The following polarisation formula on homogeneous Lie groups will be used in our proofs: there

is a (unique) positive Borel measure � on the unit quasi-sphere S ∶= {x ∈ G ∶ |x| = 1}, so that

for every f ∈ L1(G) we have

(3.3) ∫
G

f (x)dx = ∫
∞

0
∫
S

f (ry)rQ−1d�dr.

We refer to [14] for the original appearance of such groups, to [12] and to [38] for a recent compre-

hensive treatment. Let us define quasi-ball centered at x with radius r in the following form:

(3.4) B(x, r) ∶= {y ∈ G ∶ |x−1y| < r}.

3.1. Reverse integral Hardy inequality. In this sub-section we show the reverse integral Hardy

inequality on homogeneous Lie groups.

Theorem 3.2. Let G be a homogeneous Lie group of homogeneous dimension Q with a quasi-norm

| ⋅ |. Assume that q ≤ p < 0 and �, � ∈ ℝ. Then the reverse integral Hardy inequality

(3.5)

[
∫
G

(
∫
B(0,|x|)

f (y)dy

)q

|x|�dx
] 1

q ≥ C1

(
∫
G

f p(x)|x|�dx
) 1

p

,

holds for someC1 > 0 and for all non-negative measurable functions f , if �+Q > 0, �(1−p′)+Q >

0 and
Q+�

q
+

Q+�(1−p′)

p′
= 0, where

1

p
+

1

p′
= 1. Moreover, the biggest constant C1 for (3.4) satisfies

( |S|
� +Q

) 1

q
( |S|
Q + �(1 − p′)

) 1

p′ ≥ C1 ≥ |p| 1q (p′) 1

p′

( |S|
� +Q

) 1

q
( |S|
Q + �(1 − p′)

) 1

p′

.

Proof. Let us show that the condition (2.4) is satisfied with u(x) = |x|� and v(x) = |x|� . We

calculate the first integral in (2.4):

∫
B(0,|x|)

u(y)dy = ∫
B(0,|x|)

|y|�dy (3.2)
= ∫

|x|

0 ∫S

r�rQ−1drd� =
|S|
Q + �

|x|Q+�,(3.6)

9



where |S| is the area of the unit quasi-sphere in G. Then,

∫
B(0,|x|)

v1−p
′

(y)dy = ∫
B(0,|x|)

|y|�(1−p′)dy
(3.2)
= ∫

|x|

0
∫
S

r�(1−p
′)rQ−1drd�

=
|S|

Q + �(1 − p′)
|x|Q+�(1−p′).

Finally, by using above facts and
Q+�

q
+

Q+�(1−p′)

p′
= 0, we have

1(|x|) =
( |S|
� +Q

) 1

q
( |S|
Q + �(1 − p′)

) 1

p′
[
|x|Q+�

q
+

Q+�(1−p′ )

p′

]
=

( |S|
� +Q

) 1

q
( |S|
Q + �(1 − p′)

) 1

p′

,

which shows that 1(|x|) is a non-decreasing function. Then

D1 = inf
x≠a1(|x|) =

( |S|
� +Q

) 1

q
( |S|
Q + �(1 − p′)

) 1

p′

> 0.

Therefore, by (2.5) we have

D1 ≥ C1 ≥ |p| 1q (p′) 1

p′ D1,

where D1 =
( |S|

�+Q

) 1

q
( |S|

Q+�(1−p′)

) 1

p′

thereby, completing the proof. �

Now we obtain the conjugate reverse integral Hardy inequality on homogeneous Lie groups.

Theorem 3.3. Let G be a homogeneous Lie group of homogeneous dimension Q with a quasi-norm

| ⋅ |. Assume that q ≤ p < 0 and �, � ∈ ℝ. Then the reverse conjugate integral Hardy inequality

(3.7)

[
∫
G

(
∫
G⧵B(0,|x|)

f (y)dy

)q

|x|�dx
] 1

q ≥ C2

(
∫
G

f p(x)|x|�dx
) 1

p

,

holds for some C2 > 0 and for all non-negative measurable functionsf , if �+Q < 0, �(1−p′)+Q <

0 and
Q+�

q
+

Q+�(1−p′)

p′
= 0. Moreover, the biggest constant C2 for (3.6) satisfies

( |S|
|� +Q|

) 1

q
( |S|
|Q + �(1 − p′)|

) 1

p′ ≥ C2 ≥ |p| 1q (p′) 1

p′

( |S|
|� +Q|

) 1

q
( |S|
|Q + �(1 − p′)|

) 1

p′

.

Proof. Proof of this theorem is similar to the previous case, where we use Theorem 2.4 instead of

of Theorem 2.2. �

3.2. The reverse Hardy-Littlewood-Sobolev inequality and Stein-Weiss inequality. In this sub-

section we obtain the reverse Hardy-Littlewood-Sobolev inequality and Stein-Weiss inequality on

Euclidean space and homogeneous Lie groups.

Let us introduce the Riesz operator on homogeneous Lie groups in the following form:

(3.8) I�,|⋅|u(x) = |x|� ∗ u = ∫
G

|y−1x|�u(y)dy, � < 0,
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where ∗ is the convolution. Hence, by taking G = (ℝn,+), Q = n and | ⋅ | = | ⋅ |E (| ⋅ |E is the

Euclidean distance), we get the Riesz operator on Euclidean space:

(3.9) I�,|⋅|Eu(x) = |x|�
E
∗ u = ∫

G

|x − y|�
E
u(y)dy, � < 0.

Firstly, let us present the Hardy-Littlewood-Sobolev inequality on Euclidean space.

Theorem 3.4 (The reverse Hardy-Littlewood-Sobolev inequality on ℝn). Assume that n ≥ 1, q <

p < 0, � < 0 such that
1

p′
+

1

q
+

�

n
= 0, where

1

p
+

1

p′
= 1 and

1

q
+

1

q′
= 1. Then for all non-negative

functions f ∈ Lq′(ℝn) and 0 < ∫
ℝn ℎ

p(x)dx < ∞, we get

(3.10) ∫
ℝn ∫ℝn

f (x)|x − y|�
E
ℎ(y)dxdy ≥ C

(
∫
ℝn

f q′(x)dx

) 1

q′
(
∫
ℝn

ℎp(x)dx

) 1

p

,

where C is a positive constant independent of f and ℎ.

Proof. By using the reverse Hölder inequality with
1

q
+

1

q′
= 1, we calculate

∫
ℝn ∫ℝn

f (x)|x − y|�
E
ℎ(y)dydx

(2.2)≥
(
∫
ℝn

(
∫
ℝn

|x − y|�
E
ℎ(y)dy

)q

dx

) 1

q ‖f‖Lq′ (ℝn).

Thus for (3.9), it is enough to show that

(
∫
ℝn

(
∫
ℝn

|x − y|�
E
ℎ(y)dy

)q

dx

) 1

q ≥ C

(
∫
ℝn

ℎp(x)dx

) 1

p

.

By direct calculation, we have

(3.11)

(
∫
ℝn

(
∫
ℝn

|x − y|�
E
ℎ(y)dy

)q

dx

) 1

q q<0≥
(
∫
ℝn

(
∫
BE(0,|x|E)

|x − y|�
E
ℎ(y)dy

)q

dx

) 1

q

,

where BE(0, |x|E) is the Euclidean ball centered at 0 with radius |x|E . By using |y|E ≤ |x|E , we

get

(3.12) |x − y|E ≤ |x|E + |y|E ≤ 2|x|E .
Then for any � < 0, we have

(
∫
ℝn

(
∫
ℝn

|x − y|�
E
ℎ(y)dy

)q

dx

) 1

q q<0≥
(
∫
ℝn

(
∫
BE(0,|x|E)

|x − y|�
E
ℎ(y)dy

)q

dx

) 1

q

≥ 2�

(
∫
ℝn

|x|�q
E

(
∫
BE(0,|x|E)

ℎ(y)dy

)q

dx

) 1

q

.

(3.13)

If condition (2.4) in Theorem 2.2 with u(x) = |x|�q and v(x) = 1 in (2.3) is satisfied, then we have

(
∫
ℝn

|x|�q
E

(
∫
BE(0,|x|E)

ℎ(y)dy

)q

dx

) 1

q

≥ C

(
∫
ℝn

ℎp(x)dx

) 1

p

.
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Let us show that the condition (2.4) is satisfied. From the assumption, we have

(3.14) 0 =
1

p′
+

1

q
+

�

n

1

p′
>0

>
1

q
+

�

n
,

which means n + �q > 0. By using this fact, we obtain

∫
BE(0,|x|E)

u(y)dy = ∫
B(0,|x|E)

|y|�q
E
dy

(3.2)
= ∫

|x|E

0
∫
S

r�qrn−1drd�

=
|S|

n + �q
|x|n+�q

E
,

(3.15)

and

∫
BE(0,|x|E)

v1−p
′

(y)dy = ∫
BE(0,|x|E)

1dy = |S||x|n
E
.(3.16)

Finally, by using the assumption
1

p′
+

1

q
+

�

n
= 0,

1(|x|E) =
( |S|
n + �q

) 1

q

(|S|) 1

p′ |x|
n

p′
+

n+�q

q

E
=

( |S|
n + �q

) 1

q |S| 1

p′ ,(3.17)

which implies, 1(|x|E) is a non-decreasing function. Thus,

D1 = inf
x≠01(|x|E) =

( |S|
n + �q

) 1

q |S| 1

p′ > 0,

completing the proof. �

Remark 3.5. Inequality (3.10) seems to be new even in the Euclidean space.

Also, let us now present the reverse Hardy-Littlewood-Sobolev inequality on G.

Theorem 3.6 (The reverse Hardy-Littlewood-Sobolev inequality on G). Let G be a homogeneous

Lie group of homogeneous dimensionQ ≥ 1 with arbitrary quasi-norm |⋅|. Assume that q < p < 0,

� < 0 such that
1

p′
+

1

q
+

�

Q
= 0, where

1

p
+

1

p′
= 1 and

1

q
+

1

q′
= 1. Then for all non-negative functions

f ∈ Lq′(G) and 0 < ∫
G
ℎp(x)dx < ∞, we get

∫
G
∫
G

f (x)|y−1x|�ℎ(y)dxdy ≥ C

(
∫
G

f q′(x)dx

) 1

q′
(
∫
G

ℎp(x)dx

) 1

p

,

where C is a positive constant independent of f and ℎ.

Proof. The proof of this theorem is similar to Theorem 3.4, but here we use Proposition 3.1 and

the polar decomposition formula (3.3). �

Let us now show the reverse Stein-Weiss inequality on ℝn.
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Theorem 3.7 (The reverse Stein-Weiss inequality on ℝ
n). Assume that n ≥ 1, q ≤ p < 0, � < 0,

and
1

p′
+

1

q
+

�+�+�

n
= 0, where

1

p
+

1

p′
= 1 and

1

q
+

1

q′
= 1. Then for all non-negative functions

f ∈ Lq′(ℝn) and 0 < ∫
ℝn ℎ

p(x)dx < ∞, we have

(3.18) ∫
ℝn ∫ℝn

|x|�
E
f (x)|x − y|�

E
ℎ(y)|y|�

E
dxdy ≥ C

(
∫
ℝn

f q′(x)dx

) 1

q′
(
∫
ℝn

ℎp(x)dx

) 1

p

,

if one of the following conditions is satisfied:

(a) � > −
n

p′
;

(b) � > −
n

q
.

Proof. Similarly to Theorem 3.3, by using the reverse Hölder inequality with
1

q
+

1

q′
= 1, we calculate

∫
ℝn ∫ℝn

|x|�
E
f (x)|x − y|�

E
ℎ(y)|y|�

E
dydx = ∫

ℝn

(
∫
ℝn

|x|�
E
|x − y|�

E
ℎ(y)|y|�

E
dy

)
f (x)dx

≥
(
∫
ℝn

(
∫
ℝn

|x|�
E
|x − y|�

E
ℎ(y)|y|�

E
dy

)q

dx

) 1

q ‖f‖Lq′ (ℝn).

Thus for (3.18), it is enough to show that

(
∫
ℝn

(
∫
ℝn

|x|�
E
|x − y|�

E
ℎ(y)|y|�

E
dy

)q

dx

) 1

q ≥ C

(
∫
ℝn

ℎp(x)dx

) 1

p

,

and by substituting z(y) = ℎ(y)|y|�
E

, this is equivalent to

∫
ℝn

(
∫
ℝn

|x|�
E
|x − y|�

E
z(y)dy

)q

dx ≤ C

(
∫
ℝn

|y|−�p
E

zp(x)dx

) q

p

.

We have that

∫
ℝn

|x|�
E
|x − y|�

E
z(y)dy ≥ ∫

BE(0,|x|E)
|x|�

E
|x − y|�

E
z(y)dy,

then (
∫
ℝn

|x|�
E
|x − y|�

E
z(y)dy

)q
q<0≤

(
∫
BE(0,|x|E)

|x|�
E
|x − y|�

E
z(y)dy

)q

.

Therefore, we obtain

(3.19)

(
∫
ℝn

|x|�q
E

(
∫
ℝn

|x − y|�
E
z(y)dy

)q

dx

) 1

q

q<0≥
(
∫
ℝn

|x|�q
E

(
∫
BE(0,|x|E)

|x − y|�
E
z(y)dy

)q

dx

) 1

q

∶= I
1

q

1
.

Similarly to (3.19), we have
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(3.20)

(
∫
ℝn

|x|�q
E

(
∫
ℝn

|x − y|�
E
z(y)dy

)q

dx

) 1

q

q<0≥
(
∫
ℝn

|x|�q
E

(
∫
ℝn⧵BE(0,|x|E )

|x − y|�
E
z(y)dy

)q

dx

) 1

q

∶= I
1

q

2
.

From (3.19)-(3.20), we obtain

(3.21)

(
∫
ℝn

|x|�q
E

(
∫
ℝn

|x − y|�
E
z(y)dy

)q

dx

) 1

q ≥ I
1

q

1
,

and

(3.22)

(
∫
ℝn

|x|�q
E

(
∫
ℝn

|x − y|�
E
z(y)dy

)q

dx

) 1

q ≥ I
1

q

2
.

Step 1. Let us prove (a) for (3.21). By using |y|E ≤ |x|E , we get

(3.23) |x − y|E ≤ |x|E + |y|E ≤ 2|x|E .
Then for any � < 0, we have

2�|x|�
E
≤ |x − y|�

E
.

Therefore, we get

I1 = ∫
ℝn

|x|�q
E

(
∫
BE(0,|x|E)

|x − y|�
E
z(y)dy

)q

dx ≤ 2�q ∫
ℝn

|x|(�+�)q
E

(
∫
BE(0,|x|E)

z(y)dy

)q

dx.

If condition (2.4) in Theorem 2.2 with u(x) = |x|(�+�)q
E

and v(y) = |y|−�p
E

in (2.3) is satisfied, then

we have

I1 ≤ C ∫
ℝn

(
∫
BE(0,|x|E)

z(y)dy

)q

|x|(�+�)q
E

dx ≤ C

(
∫
ℝn

|y|−�p
E

zp(y)dy

) q

p

.

Let us verify that the condition (2.4) holds. By using the assumption � > −
n

p′
, we obtain

0 =
1

p′
+

1

q
+

� + � + �

n
>

1

q
+

� + �

n
,

that is,
n+(�+�)q

nq
< 0, or n + (� + �)q > 0,. Then, we get

(
∫
BE(0,|x|E)

u(y)dy

) 1

q

=

(
∫
BE(0,|x|E)

|y|(�+�)q
E

dy

) 1

q

=

( |S|
n + (� + �)q)

) 1

q |x| n+(�+�)qq .

Since � > −
n

p′
, we have

−�p(1 − p′) + n = �p′ + n > 0.
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Thus −�p(1 − p′) + n > 0. Then, a direct computation gives

(
∫
BE(0,|x|E)

v1−p
′

(y)dy

) 1

p′

=

(
∫
BE(0,|x|E)

|y|−�p(1−p′ )
E

dy

) 1

p′

=

( |S|
�p′ + n

) 1

p′ |x|
�p′+n

p′

E
.

(3.24)

Therefore by using
1

p′
+

1

q
+

�+�+�

n
= 0, we have

1(|x|E) =
(
∫
BE(0,|x|E)

u(y)dy

) 1

q
(
∫
BE(0,|x|E)

v1−p
′

(y)dy

) 1

p′

=

( |S|
n + (� + �)q

) 1

q
( |S|
�p′ + n

) 1

p′

,

which means 1(|x|E) is a non-decreasing function. Therefore,

(3.25) D1 = inf
x≠01(|x|E) =

( |S|
n + (� + �)q

) 1

q
( |S|
�p′ + n

) 1

p′

> 0.

Then by using (2.3), we obtain

(3.26) I
1

q

1
≥ C

(
∫
ℝn

|y|−�p
E

zp(y)dy

) 1

p

= C

(
∫
ℝn

ℎp(y)dy

) 1

p

.

Step 2. Let us prove (b) for (3.22). From |x|E ≤ |y|E , we calculate

|x − y|E ≤ |x|E + |y|E ≤ 2|y|E ,
then

|x − y|�
E
≥ C|y|�

E
,

where C > 0. Then, if condition (2.22) with u(x) = |x|�q
E

and v(y) = |y|−(�+�)p
E

is satisfied, then we

have

I2 ≤ C ∫
ℝn

|x|�q
E

(
∫
ℝn⧵BE (0,|x|E )

z(y)|y|�
E
dy

)q

dx ≤ C

(
∫
ℝn

|y|−�p
E

zp(y)dy

) q

p

.

Now let us check that the condition (2.22) holds. We have

(
∫
ℝn⧵BE(0,|x|E )

u(y)dy

) 1

q

=

(
∫
ℝn⧵BE (0,|x|E)

|y|�q
E
dy

) 1

q

=

(
∫

∞

|x|E ∫S

r�qrn−1drd�

) 1

q

=

( |S|
|n + �q|

) 1

q |x|
n+�q

q

E
,

where n + �q < 0. From � > −
n

q
, we have 0 =

1

p′
+

1

q
+

�+�+�

n
>

1

p′
+

�+�

n
, then

(3.27) (� + �)p′ + n < 0.
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By using this fact, we have

(
∫
ℝn⧵BE (0,|x|E)

v1−p
′

(y)dy

) 1

p′

=

(
∫
ℝn⧵BE(0,|x|)

|y|−(�+�)(1−p′ )p
E

dy

) 1

p′

=

( |S|
|n + (� + �)p′|

) 1

p′ |x|
n+(�+�)p′

p′

E
.

Then by using
1

p′
+

1

q
+

�+�+�

n
= 0, we get

2(|x|E) =
( |S|
|n + �q|

) 1

q
( |S|
|n + (� + �)p′|

) 1

p′

,(3.28)

which means 2(|x|E) is a non-increasing function. Therefore, we have

D2 = inf
x≠02(|x|E) =

( |S|
|n + �q|

) 1

q
( |S|
|n + (� + �)p′|

) 1

p′

> 0.(3.29)

Then, we have

(3.30) I
1

q

2
≥ C

(
∫
ℝn

|y|−�p
E

zp(y)dy

) 1

p

= C

(
∫
ℝn

ℎp(y)dy

) 1

p

.

�

Remark 3.8. Inequality (3.18) seems to be new even in the Euclidean space.

Let us now show the reverse Stein-Weiss inequality G.

Theorem 3.9 (The reverse Stein-Weiss inequality on G). Let G be a homogeneous group of homo-

geneous dimension Q ≥ 1 and let | ⋅ | be an arbitrary homogeneous quasi-norm on G. Assume

that q ≤ p < 0, � < 0, and
1

p′
+

1

q
+

�+�+�

Q
= 0, where

1

p
+

1

p′
= 1 and

1

q
+

1

q′
= 1. Then for all

non-negative functions f ∈ Lq′(G) and 0 < ∫
G
ℎp(x)dx < ∞, we have

(3.31) ∫
G
∫
G

|x|�f (x)|y−1x|�ℎ(y)|y|�dxdy ≥ C

(
∫
G

f q′(x)dx

) 1

q′
(
∫
G

ℎp(x)dx

) 1

p

,

if one of the following conditions is satisfied:

(a) � > −
Q

p′
;

(b) � > −
Q

q
.

Proof. The proof of similar to the previous theorem, but here we use Proposition 3.1 and the polar

decomposition formula (3.3). �
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