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A Large-Scale Measurement and Optimization
of Mobile Live Streaming Services

Zhenyu Li, Jinyang Li, Qinghua Wu, Gareth Tyson, and Gaogang Xie

Abstract—Mobile Live Streaming (MLS) services are one of the most popular types of mobile apps. They involve a (often amateur)
user broadcasting content to a potentially large online audience via unreliable networks. Nevertheless, we still lack a deep
understanding of MLS user behavior that is critical for optimizing MLS systems, despite some active measurements on viewer-side
behavior. Using detailed logs obtained from a major MLS provider, this paper first conducts an in-depth measurement study of both
viewer-side and broadcaster-side behavior. Key findings include large wasteful uploads, strong viewing locality, and traffic dominance
of loyal viewers. Specifically, 33.3% of uploads go unwatched, and the viewership of broadcasters tends to be localized. Inspired by our
findings, we propose EDGEOPT– a centralized control center for MLS services for optimizing both the first-mile and the last-mile
transmission in MLS. Specifically, EDGEOPT reduces wasteful uploading by 71% through adaptive uploading and enhances the replay
quality of popular video segments by 10% via highlights retransmission. EDGEOPT also uses a learning-based content pre-fetching
scheme that boosts the viewing startup by 29.5% and offloads at most 80% of the viewing workload from the edge servers with
peer-assisted delivery.

Index Terms—Mobile live streaming; User behavior; Edge-side optimization; QoE improvement.
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1 INTRODUCTION

The majority of Internet traffic is now video [2], and with
the development of mobile devices, Mobile Live Streaming
(MLS) services like Facebook Live [5], and Periscope [8]
have become important contributors. In MLS, anyone can
be a broadcaster, streaming video anywhere from a mobile
device, which may reach a potentially large audience. This
not only removes the traditional live broadcaster’s reliance
on hardware devices (e.g., computers and cameras) reducing
the threshold for starting a live channel and improving the
service, but also helps build an era of ”live broadcast for the
people”.

MLS services differ from the traditional live streaming
services in that both amateur and professional users can
be broadcasters in MLS services, while the contents in
traditional live streaming services are often professionally
produced (e.g., sports events). This results in several unique
challenges in designing MLS systems. First, as MLS broad-
casters are often amateurs, both the last and first mile are
often unreliable (e.g., 3G/4G), thereby creating potential
consequences for overall Quality of Experience (QoE) [33].
This challenge is exacerbated by the unpredictable nature
of user-generated uploads, making capacity management
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more difficult. For instance, although any user can broad-
cast, their popularity is highly diverse, with some videos
going unwatched, whilst others gain huge traction [35].
Second, both broadcasts and views are much shorter than
traditional live streaming [41]. Hence, viewers are less pa-
tient in waiting for the start of playback [20]. Third, MLS
services often offer time-shifted replay views of broadcasts.
As replay views are in the form of VoD (video-on-demand),
they often require a higher video quality than the live
streaming views [36]. Nevertheless, this contradicts live
streaming, where low latency is the first priority [41].

To address these challenges and streamline MLS sys-
tems, we need a deep understanding of the user behavior
in practical MLS services. Existing active measurements of
MLS services mostly focus on the infrastructure of MLS
platforms [35], [41] (like the CDNs), or the popularity of
broadcasters [35]. Nevertheless, they do not provide a de-
tailed analysis of both the broadcasters’ and the viewers’
behavior in terms of the network resource usage, video
QoE and viewership characteristics, mostly because of the
limitation of datasets.

With the above in mind, we have obtained 10 days of
service logs (1.8TB) from a major MLS service. In contrast
to prior works, our data covers both the first and the last
mile information. The dataset includes 1.9M live broadcasts,
0.4M broadcasters, and 300M views from 2M viewers. In this
paper, we focus on quantifying the challenges faced in MLS
systems, and evaluating a set of optimizations to streamline
the provision of MLS workloads. Specifically, we analyze
the user behavior of both broadcasters and viewers first and
identify significant volumes of wasteful live video uploads
(33.3% of the total upstream traffic). We then proceed to dive
into the reasons behind the wastage. We next investigate
the geographical popularity of broadcasts to examine the
viewership locality in the wild and the impact on video
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QoE. Finally, we characterize the viewership of individual
broadcasters with an aim to find out the loyal viewer. To
the best of our knowledge, this work is among the first to
examine and optimize MLS systems from both the first-mile
and the last-mile aspects. Our measurements reveal four key
observations (§3):

• Wasteful Uploads: We identify significant volumes of
redundant live video uploads, which receive no viewers
(3.3% of total upstream traffic). Waiting for the first
viewer’s arrival and viewer clear-outs during streaming
are the two dominant contributors. These two reasons
constitute 30% of total upstream traffic.

• Prevalent Clear-Outs: 99.9% of broadcasts experience
periods with zero viewers, which we refer to as clear-
outs. The clear-out duration is related to broadcaster
popularity. Excessive clear-out periods contribute the
greatest amount of wastage (23% of total upstream traf-
fic). Moreover, we show that streams are unlikely to
become popular when encountering clear-outs in their
late stages.

• Viewing Locality: Even though notionally these plat-
forms target a global audience, streams of individual
broadcasters tend to attract viewers from a small set
of network regions, indicating a strong viewer locality.
The top regions for individual broadcasters vary greatly.
We show that this locality impacts video performance.
For instance, cross-region delivery of content to viewers
doubles the startup delay, compared with same-region
delivery.

• Loyal Viewers: The “loyal” viewers, who regularly
watch the same broadcasters, are small in number but
generate 59% of the total video data downloaded. These
loyal viewers not only arrive earlier during broadcasts
but also leave later.

Motivated by these observations, we design EDGEOPT, a
centralized control center for MLS services. EDGEOPT opti-
mizes both the first-mile (broadcasters → ingest servers) and
the last-mile (CDN edge servers → viewers) transmission in
MLS. For the first-mile transmission, EDGEOPT uses a de-
cision tree model to predict the attractiveness of individual
broadcasts when clear-outs happen. It then suppresses the
video transmission during clear-outs for uploads, which it
predicts will get zero views. As a result, resource wastage
is reduced by 71%. EDGEOPT exploits these bandwidth
savings to then enhance the quality of highlight segments
for remaining time-shifted views. This scheme improves the
median quality of the retransmitted video segments by 10%,
while introducing only negligible overheads.

For the last-mile transmission, EDGEOPT uses an edge
server pre-fetching strategy, composed of a pre-fetching
location selection scheme based (on our observations of
viewing locality). It also employs a pre-fetching time pre-
diction scheme using a deep neural network. Through this,
we reduce startup delay by 29.5%. EDGEOPT also includes
a peer-assisted delivery scheme that leverages the upload
capacity of loyal viewers to offload traffic from the edge
servers. This scheme can reduce the server load by as much
as 80%.

In the rest of the paper, we provide background about
MLS and introduce our dataset in §2. In §3, we characterize
the user behavioral patterns and provide insights for system
optimization. In §4, we present the design of EDGEOPT,
followed by the evaluation in §5. We survey related work
in §6 and conclude the paper in §7.

2 BACKGROUND & DATASET

2.1 Overview of MLS and Motivation

Overview. We rely on logs shared by a large-scale Chinese
Mobile Live Streaming (MLS) platform.1 This MLS provider
offers the same functionality as popular platforms in West-
ern countries e.g., Periscope [8] and Facebook Live [5].
The platform serves millions of users per day and anyone
can be a broadcaster, streaming their camera feed. When
users start broadcasting, they upload video segments to one
of the ingest servers, which in turn publishes the video
chunks to a Content Delivery Network (CDN). The CDN is
then responsible for disseminating chunks to viewers who
request them via HTTP(s). The videos are also (optionally)
available after the broadcast, offering users time-shifted “re-
play” views. MLS platforms often allow viewers to interact
with broadcasters, typically via text that is synchronized
with a different connection other than the one used for
streaming delivery. We note that some MLS platforms (e.g.,
Taobao Live) also allow broadcasters to invite other users
for co-streaming [22], which mixes the two video sources
and distributes the mixed stream to viewers.

Motivation. In contrast to traditional live streaming ser-
vices, where broadcasts are often from professional users
(e.g., TV program makers), MLS services allow any user to
be a broadcaster. That said, both amateur and professional
users are often present. With many broadcasts (especially
from amateur users) available, individual broadcasters often
find it hard to gain a large audience. Indeed, as we will show
in §3, a large amount of content (33.3% of total upstream
traffic) that is uploaded does not obtain any viewers. As
such, service providers strive to mitigate the wasted up-
loads while keeping user-perceived quality unchanged. The
mitigation, however, requires a deep understanding of user
behavior.

Another unique feature of MLS services is that both
broadcasts and views are much shorter than traditional live
streaming [41]. Hence, viewers are less patient in waiting
for the start of playback. While reducing the startup delay
through pre-fetching and caching is promising, this depends
on several key decisions, such as where to cache and what
to prefetch.

Finally, while a low video bitrate is helpful for reducing
the latency from broadcasts to their live viewers, it reduces
the video quality for time-shifted “replay” views (who are
less delay-sensitive due to buffers). We thus need to consider
the quality of both live streaming and later time-shifted
“replay” views when allocating uplink bandwidth as in [36].
To do so, we also need a detailed analysis of user behavior
and a solution to decide the bandwidth allocation.

1. Due to a non-disclosure agreement, we do not share the name.
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Motivated by the unique features and requirements of
MLS services, we present a detailed analysis of user be-
havior in a large-scale MLS service and propose EDGEOPT,
a system that optimizes both the first-mile (broadcasters
→ ingest servers) and the last-mile (CDN edge servers →
viewers) transmission.

2.2 Dataset Description
We rely on over 1.8TB of logs, covering 10 days of anony-
mous access shared by a major anonymous MLS service.
The dataset covers all broadcasters and viewers within
the examined period. Within the logs, one live broadcast
corresponds to a unique broadcast ID. Viewing logs with the
same broadcast ID can therefore be connected.

The service logs consist of 1.9M live streams by 0.4M
broadcasters; this covers 98 years’ worth of video content.
For viewers, we have logs including 300M views by 2M
viewers, with an aggregated streaming period of 4,394 years.
Within each log entry, the major data fields cover four
categories:

1) User-specific: Anonymized user (broadcast ID, resp.),
which uniquely identifies a user (broadcast, resp.);
anonymized client/server IP,2 BGP-Prefix, ASN, and
province-level geographical location.

2) Session-specific: Data volume, duration of the session,
direction (upload or download), download traffic rate,
and video chunk bitrate.

3) Viewer-side QoE: Various QoE metrics, including startup
delay, number of buffering events, buffering duration,
and the number of retries before successful playback or
user giving up.

4) Operating environments: Network connection type (e.g.,
4G or WiFi), platform type (e.g., Android or iOS).

Although the examined MLS also supports desktop ac-
cess, 99+% of both the broadcasting and viewing traffic
contained in our dataset is from mobile devices.

Limitations: As in other measurement-driven studies [28],
[35], [41], our dataset covers only one MLS service provider.
Given the huge number of sessions contained in the dataset
and that the examined service provides similar functional-
ities as in other popular services (e.g., Facebook Live), the
observations made in this paper as well as the optimiza-
tions are likely to be applicable to others. Nevertheless, to
facilitate research in this area, we make our dataset publicly
available. 3 We also note that the 10-day duration of the
dataset prevents us from drawing longitudinal conclusions.
We, therefore, focus on session-level analysis that does not
require long periods of observation.

Ethical Considerations: We took a number of steps to en-
sure the ethical use of data. We have no access to the content
of broadcasts, and can only observe metadata (e.g., session
duration). The logs are routinely gathered for operational
purposes, and no extra data collection was triggered. All
the user information, including user ID, IP address, ASN,
and even the broadcast ID, is anonymized. We are unable,
and not allowed, to link logs to users.

2. The anonymization is done using Crypto-PAn [4].
3. https://www.dropbox.com/s/nmwh75syvi6duxv/MLS-

DATA.7z?dl=0
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Fig. 1. The number of views received per broadcaster and broadcast.
We later define Light, Medium, and Heavy broadcaster groups (Table
2). The x-axes are on a logarithmic scale.
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Fig. 2. Duration (i.e., broadcasting length) per broadcaster and broad-
cast. The x-axes are on a logarithmic scale.

3 MLS USER BEHAVIOR IN THE WILD

We start by analyzing user behavior for both broadcasters
and viewers. Specifically, we present an overview of user
behavior, followed by a detailed analysis of video segments
that go unwatched. This later informs our optimizations
for the first-mile transmission. We then proceed to analyze
geographical popularity and viewer loyalty. This guides the
later design of optimizations for the last-mile transmission.

3.1 Characterizing User Behavior

Overall Popularity: We first present the overall statistics of
the platform. Figure 1(a) presents the distribution of views
per broadcaster during the examined 10 days, and Figure
1(b) depicts the number of views per broadcast. Although
an elite group of broadcasters do gain hundreds of thou-
sands of views, we find that a significant fraction never
exceeds 10, and almost a quarter never have any viewers.
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Fig. 3. Distributions of watching completeness for each view, and the
number of views for every viewer. The x-axes are on a logarithmic scale.

TABLE 1
Viewing statistics for different connection types. Mix means connection

type switches within the viewing.

# view Data volume Avg. view length
WiFi 80.3% 71.5% 6.06

Cellular 7.4% 4.1% 0.42
Mix 11.5% 23.7% 140.24

Others 0.8% 0.7% 2.15

Despite this, we notice that the App on the broadcaster
side keeps uploading content regardless, thereby wasting
resources without anybody viewing the content.

We next align this with the duration of streams. Fig-
ure 2(a) presents the duration of content broadcasted per
broadcaster, whereas Figure 2(b) presents the duration of
individual streams. Unsurprisingly, the platform is domi-
nated by short-form content. The majority of broadcasts last
below 10 minutes, whereas viewing times are significantly
shorter (median ≈10s). This observation is consistent with
Periscope [8] and Facebook Live [5], but contrasts sharply
with e-sports platforms like Twitch [10], [16], [47] which
have a longer broadcast duration (median exceeds 100 min-
utes).

Impact of Connection type. We further breakdown viewing
statistics by the network connection type, and present the
results in Table 1. We observe a WiFi-dominated system,
where WiFi carries 71.5% of the download data, and 80.3%
of the total viewership. Interestingly, we observe that view-
ers regularly switch their connection types in the middle of
the viewing (e.g., from 4G to WiFi). This occurs for 11.5% of
views. In 53% of the connection-switching views, the con-
nection types change within cellular genres (e.g., from 3G to
4G), indicating that the viewer moves to a different network
environment. In a quarter of the cases, WiFi connections are
replaced by cellular connections, while the opposite switch
type (i.e., from cellular to WiFi) happens in 22% of cases.
The latter two switch types potentially indicate a bad initial
connection, since most of these switches occur in the initial
stage of broadcasts (median first 5%). Noticeably, these
viewing sessions with connection-switching are the longest
(140s vs. an overall average of 10s). This is likely because
longer viewing sessions are the only ones that warrant
performing switches in the access network. The prevalent
connection type switching also shows the importance of
improved user mobility support through techniques such
as QUIC or MPQUIC [51].

Note, we have also looked into the broadcaster’s connec-
tion type, and found a similar WiFi-dominated pattern.

Wasted Uploads. Despite the short-form content, we find
viewers often quit viewing before the end of the broadcasts.
To understand this better, we define watch completeness ratio
as the ratio of the view duration over the broadcast duration.
A value of 1 indicates that an entire stream is viewed.
Figure 3(a) presents the watch completeness ratio per view.
We see that around 30% of views have a completeness
ratio of under 0.01%. The median watch completeness is
around 0.1%, and only 10% of streams have over 10% of
their bytes consumed. These results show further evidence
that a significant fraction of unwatched content is needlessly
uploaded from broadcasters.

To get a handle on the low completeness ratio, Figure
3(b) presents the number of streams viewed by each viewer.
We find most viewers watch a large number of distinct
videos. The median view count per user is 18, and 22%
of viewers watch at least 100 live broadcasts. Thus, we
conjecture that many users skip between videos looking
for content of interest. This skipping means that users only
watch a small fraction of a stream’s content. We find that
76% of intervals between two consecutive views are under
1 second, indicating this is indeed the case. To confirm this,
we adopt the approach in [19] to separate per-user request
sequences into individual sessions. Specifically, we fit a 2-
component Gaussian Mixture Model (GMM) to determine
the maximum interval between two consecutive views in
one session, which is 43.5s. Using this threshold, we then
separate requests into individual sessions. As a result, 50%
of sessions contain at least 5 video requests, with a maxi-
mum of 2,819 and an average of 13 requests. 10% of sessions
exceed 33 video requests, revealing a set of highly active
users who skip extensively.

The above results reveal that a significant volume of
content is uploaded to the servers, yet never consumed. In
total 33.3% of upstream traffic is wasted. This is attributed to
both zero-viewed broadcasts and the low watch complete-
ness ratio. We make a breakdown analysis of the unwatched
content in §3.2.

Broadcaster Clustering: Due to the diversity of broadcast
behaviors observed above, we next cluster broadcasters into
groups to better understand their patterns. To this end, we
choose 5 features: (i) the number of live broadcasts (Feature
1, F1), (ii) the total broadcasting duration (F2), (iii) the
number of active days (F3), (iv) the total view count (F4),
and (v) the total view duration (F5). We first use Z-Score [9]
and Principal Component Analysis (PCA) [7] to preprocess
the data, on which we apply K-Means [6], experimenting
with K from 2 to 10. We select K=3 due to a relatively small
Davies-Bouldin Index [13].

Table 2 presents the results. The broadcasters can be
divided into three main categories: Light (L), Medium (M),
and Heavy (H). We thus return to Figure 1(a), which seg-
mented results based on these three groups. The least
active/popular broadcasters (Light) account for the vast
majority (∼ 90%). We speculate that this type of broadcaster
is new to the system, or just experimenting with the live
function in the app. The fraction of medium active broad-
casters is relatively small (∼ 10%), but their level of activity
and popularity is far more than the Light cluster. Such
broadcasters have formed a live broadcast habit, and may
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TABLE 2
Clustering results for broadcasters (the statistics are shown in median).

Label % F1 F2 F3 F4 F5
Light 89.0 2 0.4 1 11 0.1

Medium 10.8 15 8 6 336 14
Heavy 0.2 18 31 10 210,423 29,841
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Fig. 4. An illustration of waiting time and clear-out.

broadcast every day. The most active/popular broadcasters
(Heavy) are distinct from the other two types though: These
are the ”stars” of the platform. Although the fraction of these
broadcasters is small (0.2%), they contribute a dispropor-
tionately large amount of upstream and downstream traffic.

3.2 Characterizing Unwatched Segments
We already know that 33.3% of upstream traffic is wasted
(i.e., never viewed). However, despite that 29% of live
broadcasts are never watched overall, only 3.3% of upstream
traffic is wasted due to this. Instead, the majority of waste
comes from two other kinds of unwatched broadcast seg-
ments (i.e., partially unwatched streams), which we examine
for the first time: (i) 7% of upstream traffic is wasted while
waiting for the first viewer to arrive (termed the waiting
time); and (ii) 23% of upstream traffic is wasted because all
viewers exit before the broadcast ends (termed a clear-out).
For illustration, Figure 4 presents an example stream from
our dataset. The purple segment (waiting time) highlights
the initial 10% of the stream with no viewers, while the three
red clips (clear-outs) show where all viewers have exited.

Waiting for the First Viewer: Overall, 7% of upstream
traffic is wasted because contents are uploaded before the
first viewer arrives. Figure 5 presents the waiting time
distribution for broadcaster groups. We find that, in most
Heavy broadcasters’ streams, the first viewer arrives within
10s, while for broadcasters in the Light and Medium group,
most of their streams must wait for ∼ 1 minute.

Clear-Out Period: A clear-out refers to when all viewers
cease consuming a stream, either permanently or temporar-
ily. 23% of total upstream traffic is wasted due to clear-outs
(i.e., an upload continuing even if all viewers have left).
Clear-outs occur across the whole spectrum of broadcasters:
99% of broadcasts (that have been watched at least once)
experience clear-outs, whose lengths range from millisec-
onds to hours. Figure 6 plots the distribution of the clear-out
duration for each broadcaster group. Although the median
clear-out duration for Light and Medium broadcasters is
around 40s, about 60% of clear-outs for Heavy broadcasters
never exceed 1 second, indicating that the clear-out length
is related to popularity. In addition, we note that clear-outs
are likely to occur more than once per broadcast (4 times
median).
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Fig. 5. Waiting time distribution for each type of broadcaster.
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Fig. 6. Clear-out duration distribution for each type of broadcaster.

We also find in 50% of all cases, the interval between
clear-outs is no more than 3 seconds, suggesting that a
clear-out is likely to be closely followed by another one.
This observation indicates that, once a broadcast has started
to lose attraction (i.e., experiencing several clear-outs), it is
unlikely to regain it. To confirm this, we split the broadcast
between the starting points of clear-outi and clear-outi+1

into B 30-sec bins, and count the maximum number of
online viewers (v) for each bin. An example of this is shown
in Figure 8. We then record the run length (R) of unpopular
bins (whose v ≤ 1). Finally, we define the unpopular fraction,
f , as f = R

B . For example, in Figure 8, B = 3, R = 2, and
thus f = 2/3. The larger the value of f , the less popular
the segments between the two clear-outs are. We present
the distribution of f in Figure 7(a) over all clear-outs for the
three types of broadcasters, where we observe a bi-modal
distribution: for Light/Medium broadcasts, in most cases
(75+%), a clear-out means that the following content is not
popular (f = 1). For Heavy broadcasts, in 40% of cases,
even if a clear-out happens, it gains more than one viewer
within 30 seconds (f = 0).

Next, we examine the correlation between the unpopular
fraction, f , of a clear-out and its (normalized) start position,
where we represent the start position as the time offset
(relative to the stream’s start time) where the clear-out
happens normalized by the stream duration. We plot the
results as a heatmap in Figure 7(b), where a darker color
implies more clear-outs are within this area. We find that
the clear-outs with f=0 mostly occur at the initial stage
of the broadcasts: for L/M/H live broadcasts, they occur
at 0.11, 0.03, and 0.003 (median) of the broadcast lifetime,
respectively. These early clear-outs are probably due to the
small number of viewers in the early stage, and clear-outs
will thus accidentally occur. In contrast, those clear-outs
with f=1 usually happen in the late stages of the broadcasts
(their median start positions are 0.65, 0.72, and 0.99 for
the L/M/H broadcast, respectively). That said, the clear-
outs occurring in the late stage of broadcasts indicate the
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Fig. 8. An illustration of unpopular fraction calculation.

content is losing attraction, and thus can be suppressed to
save traffic. We later confirm this implication in §4.2, using
a decision tree model.

3.3 Geographical Popularity

Defining Locality: We next investigate the geographical
popularity of broadcasters with a focus on whether the
viewership of individual broadcasters is concentrated on a
handful of networks. This is important if edge caches or
peer-assisted delivery were to be deployed. Since we are in-
terested in users’ network footprint, we use the BGP-Prefix
and ASN+Province of the user’s IP address to represent
the location. Note that we use the ASN+Province combi-
nation, as a given ASN may have a presence in multiple
provinces [40].

Demand Aggregation: To explore the potential of network-
level demand aggregation, we compute the percentage of
views that come from the top k regions, where k ∈ {1, 2, 3}.
We exclude the Light broadcasters to reduce the random-
ness introduced by inactive users. Figure 9 presents the
proportion of views that fall into the top three regions on
a per-broadcast and per-broadcaster basis. We see a large
fraction of broadcasts attract views from just a few locations.
About half of live broadcasts receive over 50% of their total
viewership from just 3 ASN+Provinces. This percentage is
30% when considering each broadcast’s top 3 BGP-Prefixes.
This suggests strong network localized viewing patterns.
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Fig. 9. Percentage of views contributed by the top three regions.

The above observation is also mirrored from the broadcast-
ers’ point of view, with an even larger (+5%) proportion
of views generated from their top locales. Moreover, the
concentration of views can be observed at a global level: the
top 50 (2%) ASN+Provinces or top 500 (5%) BGP-Prefixes
contain 80% of all viewers. This later inspires us to propose
a pre-fetching scheme to better localize content (§4.4).

We also examine whether the top regions of individual
broadcasters differ from each other, or if they overlap with
the global top regions (i.e., the regions contributing the most
traffic globally). To this end, we extract for each broadcaster
b the top 10 regions contributing the most downstream
traffic from b’s streams (rb for short). We then calculate
the Jaccard Coefficient [21] for every pair of broadcasters
(ri, rj). A higher coefficient implies more overlap between
the top regions of the two broadcasters. Figure 10 plots the
distribution of the coefficient.4 We observe a small median
Jaccard coefficient (0.11 at ASN+Province level and 0 at
BGP-Prefix level), indicating broadcaster-specific locality.

We further report for each (Medium or Heavy) broad-
caster, the Jaccard coefficient between the set of their top 10
regions and the set of top 10 regions globally (blue/green
lines in Figure 10). The global top regions are largely defined
by Heavy broadcasters, with a median coefficient of 0.81
at ASN+Province level, and 0.66 at BGP-Prefix level. In
contrast, the ones from the Medium group deviate from
the globally popular locations significantly, indicating the
need for per-broadcaster predictions for techniques like pre-
fetching (§4.4).

Impact on QoE: We observe that, despite strong viewer
locality, the majority of streams (from servers to viewers)
cross network boundaries: 88.6% of the views transmit
data across ASN+Province boundaries, whereas 99.8% of
broadcasts stream to a different BGP-Prefix.

The above indicates significant scope for localizing traffic
via techniques such as pre-fetching and peer-assisted deliv-

4. We excluded Light broadcasters to prevent randomness.
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Fig. 10. Overall small Jaccard coefficient indicates broadcaster-specific
locality.

ery. To understand the potential QoE benefits, we calculate
four relevant viewer metrics5: (i) startup delay, (ii) number
of buffering events, (iii) buffering duration, and (iv) number
of connection retries before success or abandonment. We cal-
culate these metrics for each network region (ASN+Province
or BGP-Prefix) that has a CDN server receiving over 10
views. We separate views into those that come from the
same region and those that come externally. Finally, we
calculate the ratio of the two averages for each metric as
vsame/vcross.

Figure 11 presents the distribution of ratios across all
considered network regions. In most cases, the ratio is less
than 1, which means the QoE metrics are better for same-
region delivery. Specifically, in half of the cases, cross-region
delivery doubles the startup delay and buffering duration
(the most important two metrics for video streaming), com-
pared with same-region delivery. In addition, the ratio is
smaller in the same BGP-Prefix delivery than in the same
ASN+Province case, which is expected as BGP-Prefix is a
smaller network region. This confirms that bringing content
closer to consumers (e.g., via pre-fetching) could signifi-
cantly improve QoE.

3.4 Loyal Viewers

We finally inspect “loyal viewers”, who regularly view in-
dividual broadcasters. We posit such viewers may be highly
predictable and therefore suitable for optimization via pre-
dictive content pre-fetching. To the best of our knowledge,
we are the first to explore loyal viewers in this domain, with-
out reliance on explicit information (e.g., follower list [28]).

5. We do not consider the live streaming delay (i.e., the time elapsed
from the live event occurring at the broadcaster to being displayed
at the viewer) because it depends on several factors, including the
encoding time at the broadcaster side, the first-/last-mile delay, the
CDN delay, as well as the buffering and decoding time at viewer side.
This paper focuses on the first-/last-mile delay. Interested readers are
referred to [22] for details of reducing CDN delay.
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Fig. 11. Distribution of same region
cross region

QoE metrics in ASN+Province net-
works (a) and BGP-prefix networks (b).

TABLE 3
Clustering results to find loyal viewers (the statistics are shown in

median).

Label % Ratio of # Ratio of dur.
Normal viewers 85 6.25% 0.01%

Borderline loyal viewers 13 18.18% 0.94%
Core loyal viewers 2 27.78% 12.41%

Identifying Loyal Viewers: To determine whether viewer v,
who has watched broadcaster b’s streams, is a loyal viewer
of b, for each pair of (v, b) we extract 2 features: (i) the ratio
of view counts to broadcast number; and (ii) the ratio of
the total viewing time to the total live broadcasts’ duration.
To extract broadcaster and loyal viewer relationships, we
perform clustering for pairs of (v, b) on the above 2 features
using K-means. We experiment with K from 2 to 10, and set
K to 3, due to the relatively small DBI.

The clustering results are shown in Table 3. The
viewer/broadcaster pairs are divided into 3 main sub-
populations, with the least loyal group (normal viewers)
accounting for the largest proportion (85%). In contrast, the
level of loyalty within the other 2 groups (borderline/core
loyal viewers) is stronger. For the core group, the viewers
watch more than a quarter of a broadcaster’s streams, and
the viewing duration is higher than the other groups. We
will refer to the two groups of viewers, except normal
viewers, as loyal viewers hereafter.

Characterizing Loyal Viewers: We next inspect loyal view-
ers’ characteristics across the entire dataset. In a live broad-
cast, on average, loyal viewers account for only 12% of
the total viewers. Yet they generate the majority of down-
load traffic: the median percentage of download volume
contributed by loyal viewers per stream is 18% and 55%
for Medium and Heavy broadcasters, respectively. In total,
59% of video data is downloaded by loyal viewers, which
suggests that optimizing for this small fraction of users
would be disproportionately beneficial.
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separate viewers into loyal viewers and all.

Another interesting observation is that, compared with
normal viewers, loyal viewers’ viewing is more proactive
in terms of their arrivals and departures. To quantify this,
we inspect the position where loyal/normal viewers ar-
rive/depart, and plot the results in Figure 12. Loyal viewers
start watching earlier than normal users (median position
0.32 vs. 0.44), and leave later (median position 0.56 vs.
0.50). Furthermore, the viewing sessions of loyal viewers
are significantly longer than that of normal ones (432s vs.
11s, on average). The above confirms that, unlike normal
viewers who tend to frequently switch broadcasts (§3.1),
loyal viewers consume persistently. As such, we posit that
loyal viewers are potentially good candidates for stable
peers in peer-assisted delivery [26].

To get a deeper understanding of these loyal viewers, we
investigate whether loyal viewers share the same locality
(ASN+Province) as the broadcaster. To this end, we define
Overlap Degree (O) as:

O(locsbrd, locsloy) =
locsbrd ∩ locsloy

min(|locsbrd|, |locsloy|)
(1)

where locsbrd denotes the set of top 10 regions where the
broadcaster broadcasts. locsloy indicates the set of top 10
regions where the loyal viewers generate the most views.
The higher the O is, the more similar the two sets of regions
are (i.e., the more overlap). The resulting distribution of O
for the broadcasters who have loyal viewers is presented
in Figure 13. We observe that the median overlap degree is
0.5. This suggests that half of the loyal viewer population
is within the same region as the broadcaster. Furthermore,
for as many as 40% of broadcasters, their O value equals 1.
The high overlap is probably because they share the same
locality or dialect. We further prove this by inspecting the
overlap degree for broadcasters vs. all their viewers (see
Figure 13). We again see a higher overlap degree, where
O values of more than 50% of broadcasters equal 1. The
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Control

Highlight
Retransmission

Popularity Prediction Arrival Time Prediction Broadcaster Top-Region

Broadcast-History Base

Highlight
Retransmission

Adaptive
Uploading

Peer-Assisted
Delivery

Edge
Pre-Fetching

Fig. 14. The system structure of EDGEOPT. The camera indicates the
broadcaster; the phones indicate consumers. The upper block is cen-
trally hosted. The servers (bottom) are distributed at the edge. Blocks
and arrows are color-coded to indicate components that contribute to
the same optimization.

above results highlight the value of location-based broadcast
recommendations in MLS.

3.5 Takehome Messages

Redundant Uploads: A significant fraction of video content
is uploaded by broadcasters but never consumed, resulting
in 33.3% of total upstream traffic being wasted. About 30%
of live broadcasts go entirely unwatched, but this only
makes up the minority of the wastage. The dominant contrib-
utors are partially unwatched broadcasts (i.e., the waiting
time and clear-outs). Thus, suppressing redundant uploads
of unwatched content could mitigate the traffic load (§4.2).

Excessive Clear-Outs: Clear-outs cause the greatest
amount of wasted upload traffic. Clear-outs are common-
place (99% of broadcasts experience clear-outs) and may last
hours. In particular, clear-outs that happen in the later stages
of a live stream are a good indicator that no future viewers
will arrive. We conjecture that the saved bandwidth could
then be leveraged to enhance the quality of the later time-
shifted “replay” views (§4.3).

Predictable Locality Traits: Broadcasts show strong lo-
calized viewing patterns. Over half of broadcasts receive
>50% (resp. 30%) of their viewership from their top 3
ASN+Provinces (resp. BGP-Prefixes). Notably, the top re-
gions vary significantly among (medium active) broad-
casters. In addition, transferring content from the CDN
servers to the viewers across network boundaries doubles
the startup delay and buffering duration in 50% of cases.
Techniques such as end server pre-fetching to localize the
delivery may therefore improve viewers’ QoE (§4.4).

Loyal Viewers: Some popular broadcasters are viewed
regularly by loyal viewers. Although the number of loyal
viewers is small, they consume the majority of download
traffic (59%). Further, loyal viewers arrive at a broadcast
earlier and also leave later than others. This makes loyal
viewers easy to predict for pre-fetching and peer-assisted
delivery ((§4.5) ).

4 EDGEOPT DESIGN

Inspired by our observations, we propose EDGEOPT to
save resources (for transmission and storage) and improve
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user-perceived video quality. Conceptually, EDGEOPT is a
centralized control plane for MLS services with assistance
from clients.

4.1 Overview
EDGEOPT introduces a set of four optimizations. These are
split between the client and server sides, with both coordi-
nated by a central controller. These optimizations cover both
the first-mile and last-mile, each designed with different
goals. The first-mile control tries to save network and stor-
age resources by suppressing upload wastage via adaptive
uploading (at the client-side). We then reallocate the saved
bandwidth to enhance the quality of time-shifted video
encoding. The last-mile control aims to improve the viewing
experience with prediction-based content pre-fetching (at
the server-side). It also strives to mitigate potential CDN
“hot spots” through peer-assisted delivery, combining both
the clients and servers. All of these optimizations are coor-
dinated centrally via EDGEOPT.

To inform the decision-making, EDGEOPT relies on a
Broadcast-History Base (BHB) that records historical statistics
on a per-broadcaster basis. Note that while logically cen-
tralized, each component in EDGEOPT can be replicated in
a number of networks to improve scalability and respon-
siveness. The rest of this section details each optimization in
turn.

Figure 14 presents an architectural overview of ED-
GEOPT. It consists of several modules, which collectively
deliver the four optimizations. We color-code the figure,
to indicate parts that contribute to the same optimization.
Adaptive Uploading, Edge Pre-Fetching, and Peer-Assisted
Delivery are all coordinated centrally, whereas Highlight
Retransmission operates exclusively on the client (hence
the dotted line border in Figure 14). The bottom left-hand
side camera represents the broadcasters, whereas the phones
indicate consumers. The figure shows that all broadcasts are
streamed via edge servers, whereas the Peer-Assisted Deliv-
ery compliments this with peer-to-peer segment exchange.

4.2 Adaptive Uploading
To mitigate wasted segment uploads when there are
no viewers, EDGEOPT employs Adaptive Uploading (AU).
Specifically, EDGEOPT uses a centrally trained (decision
tree) model to predict the “attractiveness” of a broadcast.
If the broadcast is predicted to be “unattractive”, then the
central AU module instructs the broadcaster (client) to up-
load at a low bitrate (e.g., 144P) until the first viewer arrives,
at which time the bitrate will switch to normal. We consider
a broadcast unattractive if its unpopular fraction, f (defined
in §3.2) equals 1. Put simply, an unattractive live broadcast
will not have more than one viewer simultaneously until the
next clear-out occurs, and this is agnostic to the choice of the
bin length in f ’s definition (§3.2).

We choose a decision tree [27] as our classification model
due to its efficiency and interpretability. We select 3 features
that are easy to measure and understand: (i) the length of
the broadcast so far (lenb); (ii) the number of clear-outs
that have previously occurred in the broadcast (nclear); and
(iii) the maximum f of the broadcast so far (maxf ). We
then train a model to predict for each clear-out whether the

lenb ≤ 50.8

lenb ≤ 163.3maxf ≤ 0.8

nclear ≤ 5.5attractive

unattractive unattractive

unattractive

attractive

True False

Fig. 15. The decision tree trained for clear-out classification. lenb is the
length of the broadcast so far; nclear means the number of clear-outs
that have occurred in the broadcast; maxf is the maximum f of the
broadcast so far.

corresponding unpopular fraction f equals 1. The model can
be trained periodically to incorporate the latest statistics.

We use the first 60% of the clear-out statistics collected
from all broadcasts for training and the rest for testing.
After training, the depth of the resulted decision tree is
245. We further exploit Cost Complexity Pruning (CCP) [27]
to prune the decision tree. The resulting tree structure is
presented in Figure 15. It achieves 85% precision, 96% recall,
and 0.9 F1 on the testing set. The length of the broadcast so
far (lenb) has the biggest impact on the results. This confirms
our previous observation that later clear-outs in a stream are
a sign of losing attraction (§3.2).

We emphasize that, if the broadcast is predicted to be
unattractive, the video keeps uploading but at a lower
bitrate. As such, an incorrect prediction only affects the
first viewer in that they may receive a lower bitrate than
expected. This impact, however, only lasts for a short time
period because the video will soon switch to a normal
bitrate.

4.3 Highlights Retransmission
Besides live streaming, MLS services often allow time-
shifted viewing, where the uploaded live contents are
archived for later replay. However, to keep latency low
during live streaming, broadcasts are usually encoded at a
low quality (i.e., 240P/360P). To enhance the quality of the
video segments that are likely to be replayed, we propose
a highlight quality-enhancement retransmission scheme, which
leverages spare capacity at the broadcaster side during
unwatched periods.

A video is divided into segments of fixed length L (10s
by default, the median viewing duration), and encoded
in two bitrate versions (normal and high) in parallel like
simulcast [12]. The normal quality encoding is uploaded in
real time for live viewing, while the high-quality encoded
version is cached locally for possible transmission. Our
scheme then exploits the spare bandwidth in the clear-
outs during which live uploading is suppressed to a low
bitrate (144P in our design). During these periods, the client
transmits the high-quality versions of the segments that are
likely to be replayed later.

The key challenge is to decide which video segments
should be retransmitted. This priority is calculated locally
by each broadcaster (as indicated by the yellow box below
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the broadcaster’s camera icon in Figure 14). Based on the ex-
amined MLS service team’s experience, time-shifted viewers
are mainly interested in highlight clips (e.g., Teamfights in
the League of Legends game), instead of the entire stream.
Therefore, we order the cached video segments based on the
number of viewers (v) as well as the video quality (Q) in the
live streaming. Specifically, we assign each cached segment
i (high-quality versions) a score Si:

Si =
vi
Qi

, Qi = 1− 1

(2bi + 1)
(2)

where Qi represents the SSIM (structural similarity index) of
the segment, bi is the average bitrate of the segment in live
streaming, and vi is the number of viewers of the segment.
The higher the score is, the higher the priority is for the
segment to be retransmitted.

Note that our approach retransmits the high-quality
versions for at most n (we set n to 10) segments, in order to
reduce the local storage usage for caching the high-quality
versions and the bandwidth for retransmission.

4.4 Edge Server Pre-Fetching
High video startup delays negatively impact viewer QoE
[17], [20]. In §3.3 we observed geographically localized
viewing patterns, indicating that there is scope to reduce
start-up delays by placing content in consumers’ locales.
Due to this, EDGEOPT integrates an Edge Server Pre-Fetching
scheme. This preemptively pushes content to edge servers,
where segments are predicted to be viewed in a given locale.

Overview: We place local cache servers in each region
(ASN+Province or BGP-Prefix) that users share. If a locale
is selected for pre-fetching a particular broadcast, its video
segments will be continuously pushed to the selected cache
server(s) as a stream of Group of Pictures (GoP). Here, a
GoP is set to 120 frames [44]. There are three key challenges
in the pre-fetching scheme design: (i) what to pre-fetch; (ii)
where to pre-fetch; and (iii) when to pre-fetch. We discuss
each of these below.

What To Pre-Fetch: EDGEOPT attempts to push the most
popular content. To achieve this, it relies on the historical
popularity of broadcasters, as this is a good predictor of
future popularity. EDGEOPT pre-fetches all broadcasts of
Medium/Heavy broadcasters as they consistently accumu-
late large audiences (see Table 2).

Where To Pre-Fetch: For each broadcaster, we select the top
k regions from edge server locations where viewers generate
the most historical views on their broadcasts. EDGEOPT
forwards the selected broadcaster’s stream to these k server
locations (regardless of client requests). Clients wishing to
consume a stream then send their requests via their local
cache server. If a local copy exists, it is immediately re-
turned; otherwise, the request is forwarded to the backend
(and then cached for subsequent requests). In all cases, only
the latest GoP is cached, as older ones are not useful for live
streaming.

When To Pre-Fetch: Pre-fetching too early (i.e., long be-
fore a viewer’s arrival) brings no benefits and only wastes
bandwidth resources. Thus, our objective is to ensure the
predicted arrival time, Arvpred, is close to the actual arrival
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Fig. 16. The DNN model for arrival time prediction.

TABLE 4
Description of features used for arrival time prediction.

Index Feature name
Cat. #1 Broadcaster-specific

0 Total number of broadcasts
1 Broadcaster type

[2-9] Broadcast duration features
10 Number of active days
11 Daily median number of broadcast

Cat. #2 Broadcaster viewing-specific
[12-19] View number features
[20-27] View duration features
[28-35] View completeness features

Cat. #3 Arrival time-specific
[36-43] Historical arrival time features
[44-51] Broadcasts of same hour features

Cat. #4 Loyal viewer-specific
52 Number of all unique viewers
53 Number of viewers watched all broadcasts
54 Number of viewers watched > 50% broadcasts
55 Number of loyal viewers

Cat. #5 Broadcast-specific
56 Duration of broadcaster’s last stream
57 View number of broadcaster’s last stream
58 Arrival time of broadcaster’s last stream
59 Broadcast start time
60 Time elapsed from the last broadcast
61 Last broadcast is watched or not
62 Last broadcast’s number of clear-out
63 Last broadcast’s clear-out duration

time, Arvactual. This must reserve sufficient time for the
content to be relayed from the origin server to the edge
before the viewers’ arrival. Formally, Arvpred and Arvactual
should satisfy the following constraints:

Arvactual −Arvpred − trelay ≥ 0 (3)

Arvactual −Arvpred − trelay ≤ ϵ (4)

where ϵ is a very small non-negative number, and trelay is
the time consumption of relay transmission. For trelay , we
use 200ms – the median relay delay in our dataset.

To predict the viewer arrival time, EDGEOPT relies on a
deep neural network based regression model. The architec-
ture is presented in Figure 16. For each broadcast, we gather
64 features in 5 categories (see Table 4) from its broadcaster’s
past 5-day of activity; these statistics are stored in the BHB.
We standardize the feature vectors by using the Robust
Scaler [3], to avoid the influence of outliers. The neural
network first encodes the six multi-dimensional features
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Algorithm 1: Finding & connecting to a good peer
input : Stream ID: sid, Viewer information: viewer

1 edge, peer ← RequestIngress (viewer, sid);
2 if peer!=NULL then
3 connect (viewer, peer, sid);
4 IdleConn (viewer, edge, sid);
5 else
6 connect (viewer, edge, sid);

7 Function RequestIngress(viewer, sid):
8 edge = FindEdge (viewer.NetAddr);
9 if SafeUtilization(edge) then

10 return edge,NULL;
11 peer = FindPeer (sid, viewer);
12 return edge, peer;
13 End Function

14 Function FindPeer(sid, viewer):
// Sort swarm peers by watching lengths

15 swarm← FindSwarm (sid, viewer.NetAddr);
16 loyals← FindLoyalViewers (swarm, sid);
17 for peer ∈ loyals do
18 if peer.used == NULL and peer.pathLen < 3 then
19 peer.used← viewer;
20 return peer;
21 for peer ∈ swarm− loyals do
22 if peer.used == NULL and peer.pathLen < 3 then
23 peer.used← viewer;
24 return peer;
25 return NULL;
26 End Function

P3 P1P2 SP4

✔✔ ✔❌

❌

P5 ❌

Fig. 17. An illustration of valid and invalid peer connections. S is the edge
server, and Pi indicates a peer. The arrows indicate the transmission
directions.

(i.e., six 8-tups) into six new features by six 1-Dimensional
Convolutional Neural Networks (1D-CNNs). Then, the new
features and the remaining features are input into a fully
connected network with three hidden layers.

Noticeably, in order to meet constraints 3 and 4, we
design the following asymmetric loss function to penalize
the overestimation of arrival time, while ensuring that the
difference is no less than trelay :

loss = diff2 × (sign(diff) + α)2 (5)

diff = Arvpred + trelay −Arvactual (6)

where sign(.) is a sign function, which returns -1 if the input
is negative, 1 otherwise. α ∈ (0, 1] is used to penalize the
overestimation. A larger alpha can reduce the chances of
overestimation, and we use α = 0.95 in our experiments.

4.5 Peer-Assisted Delivery

Finally, EDGEOPT proposes a peer-assisted delivery scheme
to alleviate the load on the edge servers that serve view-
ers. This scheme is promising given the existence of loyal
viewers who are more stable during broadcasts. These stable
loyal viewers are good candidates for “super peers”.

To this end, we equip EDGEOPT with a Peer-Assisted De-
livery module (PD), which acts as a centralized control unit
for peer-assisted delivery. Algorithm 1 shows the workflow
of peer management. Specifically, viewers who watch the
same broadcast form a swarm, and all the clients within a
swarm are indexed by the central PD module. The stream is
divided into Groups of Pictures (GoPs). Upon downloading
a GoP, clients of the loyal viewers can share it with other
viewers (peers) in the same swarm.

A new viewer first contacts the central PD module to
discover which edge server to connect to. The PD in turn
locates a nearby edge server and may also return a candi-
date peer. If the edge is not heavily loaded (e.g., resource
utilization < 50%) or there is no available candidate peer,
the viewer will be redirected to the edge server. Otherwise,
the candidate peer will be designated as the viewer’s data
source. The PD module tracks each peer’s status, and in
case of transmission failure, the edge server is used for data
transmission. Each peer also maintains a connection with
the edge server for backup purpose.

To reduce cross-region traffic, viewers only connect to
peers within the same region. Only peers connected via
WiFi can serve as sources (to avoid issues with mobile data
tariffs). Moreover, in order to prevent peers from being
overloaded, we set several constraints on peer selection.
These constraints are illustrated in Figure 17: (i) A peer can
only serve one viewer (P1 → P5 is invalid); (ii) One viewer
can only have one peer as a data source (P1 → P3 is invalid);
and (iii) The overlay path length from the peer to the edge
server (S in the figure) is at most 3 (P3 → P4 is invalid).
Individual clients also report the data transfer performance
periodically to the PD module, which will instruct the
clients to switch back to the edge server if any performance
issues are detected. In the case of connection switching,
besides the pre-established backup path mentioned before,
the playback buffer at the viewer side will help mitigate
stalls.

Finally, service providers can let viewers opt out of
peer-assisted delivery. The PD module also records the
contributions of each peer, which can be used for incentive
purposes. For example, the participants could be rewarded
with credit points based on their contribution, where the
credit points can be used for in-app purchase (e.g., giving
gifts to broadcasters).

5 TRACE-DRIVEN EVALUATION OF EDGEOPT

In this section, we evaluate EDGEOPT, using our trace data
(see §2.2).

5.1 Evaluation of Adaptive Uploading

We first evaluate the efficacy of our adaptive upload strat-
egy, which reduces the encoding rate for videos predicted
to have zero viewers. In this design, the broadcaster first
contacts the Adaptive Uploading module of EDGEOPT to
decide whether to reduce the encoding rate. Recall that
EDGEOPT centrally makes this decision using the trained
decision tree (see Figure 15).

To evaluate this, we replay the broadcast and viewing
records from our dataset and calculate the potential savings.
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Fig. 19. The number of retransmitted segments per broadcast.

We confirm that EDGEOPT can save as much as 71% of the
data volume during the clear-out period; this accounts for
16.3% of the total uploading traffic. Figure 18 plots, for each
type of broadcaster, the traffic savings. The median saved
amount for all three types of broadcasters is ∼70%, showing
that the adaptive upload scheme can substantially mitigate
the wastage issue. We also notice that only a few broadcast-
ers can save beyond 80%. This is because the encoding rate is
only reduced, rather than being ceased. In addition, we see
that a higher percentage of broadcasters (22%) in the Heavy
group receive zero benefit (when compared to the other
two types, 10%). This is expected as heavy broadcasters are
more likely to be predicted as “attractive” during the whole
course of live streaming.

5.2 Evaluation of Highlight Quality Enhancement
To evaluate the benefits of the highlights retransmission
scheme, we replay the service logs of Medium (M) and
Heavy (H) broadcasters (Light ones are excluded, since
they are inactive). Note that in our experiments, we do not
estimate the available bandwidth (as the first step of our
scheme), since it has been broadly studied (e.g., GCC [14])
and is beyond the scope of this paper. Instead, we rely on
the real bandwidth values recorded in the service logs. After
the trace-driven experiment, we find that, 46% of the M/H
broadcasters’ streams have at least one highlight segment
being retransmitted. We further examine for each broadcast
the number of retransmitted segments and present the re-
sults in Figure 19. On average, 4.4 segments (∼44s video)
are uploaded for replay enhancement, which is beneficial as
our goal is to enhance only the highlights.

Next, we investigate the video quality gain brought
about by the retransmission. To this end, for each retrans-
mitted segment, we compute its quality gain:

gain =
q(bnew)− q(bold)

q(bold)
(7)

where q(bnew) is the bitrate of the retransmitted high-
quality version, while q(bold) is the original bitrate in live
streaming. Figure 20 reports the distribution of quality
improvement for individual retransmitted segments, where
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Fig. 20. Video quality improvement by highlight retransmission for two
types of broadcasters.
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Fig. 21. CDF of error = Arvactual − Arvpred for each broadcaster
type. The x-axis is in second.

we separate the results according to the broadcaster type
(Medium/Heavy). We can observe that the distributions for
Medium and Heavy broadcasters are quite similar – the
median quality gain is 10%, and about a quarter can achieve
30% quality gain.

Overhead Analysis: A broadcaster needs to cache the
high-quality versions of N segments locally for possible
retransmission. As at most 10 segments of a broadcast
are retransmitted, we can only keep the top 10 segments
according to their scores (Eq. 2). In our implementation, we
set the high-quality segments to code at 1080P. Assuming
standard bitrates [1], the estimated storage cost is 116MB
for a broadcast, which is moderate for most mobile devices.

5.3 Evaluation of Edge Server Pre-Fetching

We next evaluate the pre-fetching strategy employed by
EDGEOPT.

Prediction Accuracy: First, we use 5-fold validation to eval-
uate the DNN-based pre-fetching time prediction model.
We plot the distribution of prediction errors (Arvactual −
Arvpred) in Figure 21. We observe that the Heavy broadcasts
are most predictable, with a median error of 4 seconds, while
the value for Medium ones (resp. Light) is 27s (resp. 73s).
We underline that the seemingly high prediction error is
unsurprising, since such pre-publication prediction is proved
to be very difficult [29], [31], due to the uncertainty of
viewers’ interests and little to no information is available
when the broadcast initiates. Further, our intention to avoid
overestimating distorts the model to some degree.

Due to this, our focus is not on attaining a very high
prediction accuracy, but to use the result as a pre-fetching
timing reference. With that in mind, as long as the predicted
value is less than the actual value (i.e., satisfying restrictions
3 and 4) fewer wasteful uploads will occur. In this respect,
our model can meet the constraints in over 99% of cases.
Finally, EDGEOPT helps each broadcast save 10 seconds of
uploading content, on average.

Efficacy of Pre-Fetching. We define the metric view coverage
as the ratio of views localized by pre-fetching, over the
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Fig. 22. View coverage of pre-fetch strategies, when pre-fetch at different
number of locations.
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Fig. 23. Startup speedup ratio for each network region.

number of views for individual broadcasts. The closer the
view coverage is to 1, the better the efficacy of pre-fetching.
We use the first 5 days of viewing records as the training
set (to compute the top regions), and the remaining 5 days
to test. For comparison, we use a baseline strategy where
contents will be pre-fetched to the global top k regions.

Figure 22 presents the results of the average view cov-
erage for all broadcasts when pre-fetching at the k top
locations. We see that, to cover half of the views (i.e.,
view coverage≥0.5), we need to pre-fetch GoPs at only
1 ASN+Province or 4 BGP-Prefixes per broadcast. This is
driven by the highly localized viewing patterns (§3.3). While
fewer cache servers are needed to achieve the coverage in
the ASN+Province configuration, the servers are likely to be
further from the viewers than the BGP-Prefix. Note, a larger
k naturally leads to better results because more replicas are
pre-fetched across regions. But, increasing k > 5 only results
in marginal improvements. Last, the broadcaster-specific
server selection strategy clearly outperforms the baseline
(pre-fetch content for global top locations). This is due to
the broadcaster-specific viewing patterns (§3.3).

Startup Delay Improvement: Next, we empirically evaluate
the startup delay improvement attained by pre-fetching.
Again, the content is pre-fetched to the broadcasters’ top 5
ASN+Provinces. To model the same-region and cross-region
startup delay, we extract (from the dataset) the mean startup
delay values for viewers requesting servers of the same-
region and different-regions. For each network region that is
selected for pre-fetching, Gi, we measure the improvement
of startup delay as the Startup Speedup Ratio:

Ri = 1− delaysi
delayci

(8)

where delaysi is the average startup delay over the views
with both viewers and servers being located in Gi; and
delayci is the average startup delay over the views with
viewers being located in Gi but servers in different regions
other than Gi. We present the full distribution in Figure 23.
This shows that the startup delay of 85% of the cross
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Fig. 24. How variable are everyday’ s M values for server locations (top
50 ASN+Provinces or top 500 BGP-Prefixes).
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Fig. 25. Estimated cache server storage space requirement for server
locations.

ASN+Province views can be improved via pre-fetching. The
median R over all network regions is as high as 29.5%.

Storage Overhead: Finally, we evaluate the storage cost
introduced by pre-fetching content on the regional cache
servers. Assume that at some time point, ti, an edge server
s receives several viewing requests for nti different broad-
casts, and M = max{nti} for all observed time points
in a day. Since only the latest GoP of each broadcast is
cached,6 the maximum storage space required by s can be
approximated by M × c, where c is the size of a GoP7 and
is set to 0.5MB [44].

To examine the upper bound of M , we first ana-
lyze the variation of M for each server location (top 50
ASN+Provinces or top 500 BGP-Prefixes). To this end, we
compute the coefficient of variation (cv for short) for each
day’s M value of each server location; the results are shown
in Figure 24. We observe a small cv for most server locations:
those top-rank server locations barely vary, with extremely
small cv (< 0.1). The median cv value is only 0.09 for
ASN+Province, and 0.17 for BGP-Prefix.

Given the low variation of each day’s M values for
individual servers, we then proceed to estimate M ’s up-
per bound of Mbound for each server as follows. Assume
that each day’s M values of a server follow a Gaussian
distribution, with the average M̄ and standard deviation
δ. Then M̄ +2.58δ can meet the storage requirement in 99%
of the cases [11]. Considering the influence of the observed
M values, Mbound = max{M̄ + 2.58δ,max(M)}. We can

6. There is no benefit in storing older GoPs for live streams.
7. We assume c is a constant value.
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TABLE 5
Benefits of different configurations of the peer-assisted delivery.

ASN+Province BGP-Prefix
SLR (server load) 80.0% 51.5%

CTR (cross-region) 79.8% 51.5%

then estimate the storage required of the cache server as
Mbound × c. We apply the above estimation method to
each cache server and show the results in Figure 25. The
estimated maximum storage space for nearly all servers
is under 1GB. We argue this is highly feasible for most
streaming systems, and highlights the benefit of restricting
caching to only recent GoPs.

5.4 Evaluation of Peer Assistance
To explore the benefit of EDGEOPT’s peer-assisted delivery
scheme, we develop an event-driven simulator for peer-
assisted live streaming (similar to BitTorrent), where we ob-
tain the upload capacity of a peer using the observed mean
video bitrate of broadcasters in the same ASN+Province as
the peer. Based on the empirical statistics from our dataset,
we set the time taken for viewers to transfer one GoP to
another peer to 1 second. Note that in our simulation, we try
to redirect each individual view to a proper peer, regardless
of the utilization of edge servers, in order to estimate the
maximum potential.

With the above settings, we replay the service logs of
Medium and Heavy broadcasters through our simulator
(we exclude low popularity broadcasters, since they have
too few viewers). We focus on two metrics: (i) Server Load
Reduction (SLR), which represents the reduction in down-
load traffic handled by edge servers; and (ii) Cross-region
Transmission Reduction (CTR), which captures how much
download traffic originally coming from servers in different
regions to the viewer is now conveyed by local peers in the
same region.

We present the results of these two metrics in Table 5.
We see a significant reduction in server load and cross-
region transfers. Even when limiting clients to transferring
to only one peer in the same BGP-Prefix, the server load
is halved. This is because of the localization of viewers
within a few network regions (§3.3). In addition, allowing
clients to connect to peers in the same ASN+Province results
in substantially better performance than restricting them
to the same BGP-Prefix, as it allows clients to select from
a larger pool of peers to download from. One may also
notice that the values of SLR and CTR are close. This is
because, originally, most of the data is transferred cross-
regionly. Hence, reductions in server load naturally result
in reductions in cross-region traffic.

5.5 Discussion
The decision tree model (for predicting the broadcasts’
popularity) and the DNN model (for forecasting the viewer
arrival time) capture the usage patterns of MLS, which
are likely to be stable in the medium-term, e.g., one week.
This has also been partially proved by our trace-driven
experiments, where the training sets are from data of the
first five/six days (out of ten days), and we see that both

models perform well on the test set (i.e., the data of the
following five/four days). Therefore, we posit that a weekly
update is appropriate.

6 RELATED WORK

MLS User Behavior Analysis: The behavioral patterns of
MLS and general live streaming systems have been exam-
ined in several works. Raman et al. [35] explored the video
characteristics, and the social engagement of Facebook Live,
and highlighted many unwatched broadcasts. Li et al. [24]
characterized the user behavior in the PPTV mobile live
streaming system, and they examined the structure of the
abandoned session problem. Ma et al. [28] investigated Inke
Live, and identified differences between MLS and conven-
tional live services. Periscope and Meerkat were examined
in [37], [39], [41] from the perspectives of latency and usage
patterns. There have been several studies of the Twitch live
streaming system [15], [16], [47].

Our measurements differ from the above studies in two
major ways: (i) We explore unwatched broadcasts in depth
for the first time, and find that the greatest source of waste is
partially unwatched streams (as opposed to the unwatched
broadcasts); and (ii) We identify localized viewership at
the BGP-Prefix level, which underpins our subsequent edge
server pre-fetching.

MLS System Optimizations: While we focus on live broad-
cast uploads, resource wastage in the on-demand video
has been examined in [48]. The authors proposed a post-
streaming wastage analysis algorithm to achieve the best
tradeoff between QoE and resource-saving. By using selec-
tive quality-enhancing retransmission, Ray et al. [36] pre-
sented a live broadcast upload framework that improves
the overall QoE for time-shifted viewers. The pre-fetching
technique is investigated in [34], where an app prediction
system is designed, predicting which app will be used next
and ensuring the freshness of the content. In addition, Li et
al. [25] enhance video quality by localizing video delivery
through caching. Yan et al. [43] explore the potential of
caching contents in a CDN by learning from an optimal
caching allocation. There have also been several proposals
for peer-assisted delivery [50] [26] of (mobile) VoD.

Various other video optimizations have been proposed.
Ghabashneh et al. [18] conducted a measurement study on
how CDN caches interplay with the viewing experience.
Based on their observations, they proposed an ABR algo-
rithm incorporated with CDN awareness. Wang et al. [42]
proposed a reinforcement learning based scheme deployed
at the edge CDN server, to dynamically select a suitable
initial video segment for new live viewers, to optimize
viewer QoE. Zhang et al. [49] presented a super resolution
based adaptive video streaming framework, which allows
clients to download low bitrate video segments, recon-
struct and enhance them to high-quality video segments.
Siekkinen et al. [38] provided close to optimal algorithms
for scheduling video chunk uploading for multiple clients
with different viewing delays. There have also been several
studies on improving Adaptive Bit Rate (ABR) in mobile
networks [30], [32], [45], [46]. These studies leverage cross-
layer designs that consider both video content features and
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underlying mobile network or channel information for QoE
optimization.

In contrast to these prior studies, we focus on optimizing
the delivery on the edge for both the first-mile and last-mile
transmission using a data-driven approach. Through the
design of EDGEOPT, we primarily aim to improve resource
usage while improving video QoE.

7 CONCLUSIONS AND FUTURE WORK

This paper has presented a detailed analysis of MLS user
behavior. The main findings include redundant uploads,
highly localized viewer locality, and the predominance of
predictable loyal viewers. Based on these insights, we have
proposed EDGEOPT to optimize the MLS system on the edge
from two perspectives. First, to improve upload resource
utilization in the first-mile, a decision tree based system
has been proposed to reduce the encoding rate of wasteful
uploads. We then reallocate bandwidth resources to a high-
light retransmission scheme to enhance the replay quality.
Second, to streamline the delivery in the last mile, EDGEOPT
adopts a learning-based pre-fetching scheme for reducing
the startup delay, and a peer-assisted delivery for alleviat-
ing edge server loads. Our trace-driven experiments have
shown EDGEOPT’s efficacy in boosting resource utilization
as well as enhancing QoE.

There are a number of future work directions. Although
EDGEOPT mainly focuses on improving resource utilization
and startup latency, we note that the end-to-end live stream-
ing latency is also a key metric for QoE optimization. This
is especially the case for interactive live streaming, where
the broadcaster and viewers should be able to communicate
in real time. We therefore wish to expand EDGEOPT with
solutions to improve the live latency. In addition, the peer-
assisted delivery now assumes a viewer can either get the
data from a peer or from the edge server (but not both).
To overcome this, we plan to explore techniques such as
network coding to enable multiple source delivery.
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