
1

A Machine Learning-based Framework for Dynamic
Selection of Congestion Control Algorithms

Jianer Zhou, Xinyi Qiu, Zhenyu Li, Qing Li,
Gareth Tyson, Jingpu Duan, Yi Wang, Heng Pan, Qinghua Wu

Abstract—Most congestion control algorithms (CCAs) are
designed for specific network environments. As such, there is
no known algorithm that achieves uniformly good performance
in all scenarios for all flows. Rather than devising a one-size-fits-
all algorithm (which is a likely impossible task), we propose a
system to dynamically switch between the most suitable CCAs
for specific flows in specific environments. This raises a number of
challenges, which we address through the design and implemen-
tation of Antelope, a system that can dynamically reconfigure
the stack to use the most suitable CCA for individual flows.
We build a machine learning model to learn which algorithm
works best for individual conditions and implement kernel-
level support for dynamically switching between CCAs. The
framework also takes application requirements of performance
into consideration to fine-tune the selection based on application-
layer needs. Moreover, to reduce the overhead introduced by
machine learning on individual front-end servers, we (optionally)
implement the CCA selection process in the cloud, which allows
the share of models and the selection among front-end servers.
We have implemented Antelope in Linux, and evaluated it in both
emulated and production networks. The results demonstrate the
effectiveness of Antelope via dynamic adjusting the CCAs for
individual flows. Specifically, Antelope achieves an average 16%
improvement in throughput compared with BBR, and an average
19% improvement in throughput and 10% reduction in delay
compared with CUBIC.

Index Terms—Congestion Control, eBPF, Machine Learning

I. INTRODUCTION

Since the birth of TCP, many congestion control algorithms
(CCAs) have been proposed [1] [2] [3] [4] [5] [6]. However,
none of these individual algorithms can achieve high network
performance across all environments and user requirements.
Two reasons account for this. First, each algorithm is de-
signed for a particular environment. For example, Sprout [7],
C2TCP [8] [9] and Verus [10] are designed for cellular

This work is supported in part by National Key R&D Program of China
(Grant No. 2019YFB1802800), the National Natural Science Foundation of
China (Grant No. 62002149, Grant No. 61902171), the Major Key Project of
PCL (PCL2021A15).

Jianer Zhou and Xinyi Qiu are co-first authors. (Corresponding authors:
Zhenyu Li and Qing Li).

Jianer Zhou and Yi Wang are with the Southern University of Science and
Technology, Shenzhen, China and Peng Cheng Laboratory, Shenzhen, China.
(e-mail: zhouje1005@gmail.com; wy@ieee.org)

Xinyi Qiu, Qing Li and Jingpu Duan are with the Peng Cheng Lab-
oratory, Shenzhen, China. (e-mail: qiuxy@pcl.ac.cn; liq@pcl.ac.cn; du-
anjp@sustech.edu.cn)

Zhenyu Li, Heng Pan and Qinghua Wu are with the Institute of Com-
puting Technology, Chinese Academy of Sciences, Beijing, China. (e-mail:
zyli@ict.ac.cn; panheng@ict.ac.cn; wuqinghua@ict.ac.cn)

Gareth Tyson is with the Hong Kong University of Science and Technology
(GZ). (e-mail: gtyson@ust.hk)

networks; DCTCP [11], pFabric [12] and Swift [13] are
designed for datacenter networks; TACK [14], HACK [15] and
Westwood [16] are designed for wireless local area networks
(WLANs). Second, network environments and application
requirements have evolved over decades. For example, when
CUBIC [2] (the default Linux TCP mechanism) was proposed,
improving bandwidth utilization was the most important goal.
However, for modern cloud gaming or live streaming applica-
tions, latency is much more critical. Our goal is therefore to de-
vise a congestion control selection framework that can achieve
good performance across all environments and requirements,
with sufficient flexibility to evolve over time.

In pursuit of this goal, machine learning based CCAs have
been proposed. These strive to autonomously learn the optimal
CC policy for any given scenario. For example, RemyCC [17]
uses the network parameters, user behavior, flow model and
target function as an input, then derives an appropriate sending
rate as an output. Similarly, PCC-Vivace [18] uses online
learning, while DeepCC [19] and Orca [20] use deep rein-
forcement learning (DRL) to adjust their sending rates based
on network feedback. Further, AUTO [21] and MOCC [22] use
multi-objective reinforcement learning to design CC mecha-
nisms to satisfy different data transfer requirements. However,
deploying such machine learning based CC mechanisms in a
production network has proven complicated, as it is necessary
to continually learn for each environment. Thus, applying such
models in unseen networks decreases their performance [23].
Our goal is to devise a CC framework (based on the CCAs
available in Linux kernel) that can achieve good performance
across all networks and application requirements, while avoid-
ing the complicated deployment issues introduced by other
machine learning mechanisms.

To achieve this target, we introduce a framework called
Antelope. Antelope adjusts the congestion control algorithm
for individual flows according to network and flow state
observed. It collects TCP flow information from the kernel
data-path and delivers the information to user space, where
we can exploit pre-existing machine learning libraries. Us-
ing supervised classification, Antelope then predicts which
CCA could achieve the best performance for that particular
flow. The prediction also takes application-layer needs (e.g.
delay sensitive or throughput sensitive) into consideration.
Antelope then continues to monitor the flow and changes
the CCA dynamically if the network environment or flow
state changes. To coordinate this, Antelope uses eBPF (a new
kernel function which supports more control in the kernel
from user space) [24] [25] to deliver information between

2

the user space and kernel. We have implemented Antelope
in Linux, and also propose remote cloud-based learning as
an alternative implementation to reduce the overhead due to
model training and prediction on individual front-end servers
where the applications run. Through extensive experiments,
we demonstrate that Antelope nearly always chooses the most
suitable mechanism for each flow. Although most of time
Antelope chooses the CCAs which are specifically designed
for that network, we find cases where network fluctuations
lead it to choose other (unexpected) CCAs. We show that these
choices, indeed, result in better performance and confirm that
Antelope selects suitable CCAs adaptively.

Our key contributions are:

• We design and implement Antelope, an adaptive CC
framework which dynamically reconfigures between the
most suitable CCA on a per-flow basis. Antelope only
needs changes at the TCP sender without changing the
TCP socket. As such, Antelope can easily be deployed in
a production environment and the source code is available
for the community.1

• As part of Antelope, we build and train a supervised
classification algorithm (in user space) that can select
suitable CCAs for flows that have similar patterns with
the training data, but also on the flows that have not
appeared before. We show that eBPF, as part of Antelope,
is an effective choice to manage CCAs in the kernel, even
after a TCP flow has been established. The selection can
also be implemented in a centralized cloud server. By
doing so, the models and the selection can be shared
among front-end servers that serve individual flows, and
thus the extra overhead introduced by the machine learn-
ing training and processing is amortised.

• Extensive experiments in a wide area network (WAN),
data center network (DCN) and cellular network show
that Antelope achieves an average 16% improvement in
throughput compared with BBR; compared with CUBIC,
Antelope improves the throughput by 19% on average,
and reduces delay by 10%. Further, Antelope shows
better performance than the state-of-the-art ML-based
mechanisms (Orca and PCC-Vivace). The experiments
also proves the benefits of the shared remote cloud-based
learning in reducing overhead on front-end servers.

While the basic idea of Antelope has been introduced
in [26], this extended version adds two new enhancements to
Antelope: (i) the incorporation of applications’ performance
preferences and the remote cloud-based learning; and (ii) sev-
eral sets of new experiments.

The rest of the paper is structured as follows. Section II
explains our motivation and challenges in detail. Section III
offers an overview of the system. Section IV presents details
of the system and describes the classification algorithm. Sec-
tion V outlines the implementation of the system. We explain
the training and our extensive experiments in Section VI.
Related work is covered in Section VII and Section VIII
concludes the paper.

1https://github.com/antelopeproject/antelope

II. MOTIVATION

A. Why Switch CCAs?

Network environments impact TCP flows. Servers that per-
form data transfer services (e.g. web servers) will usually
deal with TCP flows from diverse network environments. This
may be due to a diversity of clients or because a server has
multiple responsibilities. For example, a front-end server may
receive client requests (e.g. from a 4G network), yet retrieve
content from a back-end server situated in the same data center
(e.g. via Ethernet). Whereas the Ethernet path will support
high bandwidth and low delay delivery, the 4G path will
likely suffer from much higher levels of delay and bandwidth
fluctuations. Using a single network stack with a shared CCA
therefore forces administrators to select which environment to
optimize for.

To highlight this, Figure 1 shows a toy example of the TCP
throughput for different CCAs over datacenter, cellular and
wide area (wired) networks. This is done using the Mahimahi
emulator [27], parameterized as follows. The cellular network
is configured using the public trace data from [20]; the WAN
is setup with an RTT, packet loss and bandwidth of 100ms, 2%
and 2MB/s, respectively; the DCN is setup with 1ms, 0.1% and
1GB/s, respectively. We see that for the DCN network, both the
short and long TCP flows have the highest throughput when
using BBR. For the cellular network, when using C2TCP, the
long flows’ throughput is the best; in contrast, for short flows,
Westwood is the best. For long flows over the WAN, using
CUBIC is the best, but for short flows BBR has the highest
throughput. Despite this, most front-end servers use CUBIC
or BBR to serve all TCP flows [3]. In other words, there is
no one-size-fits-all algorithm.

BBR Cubic
Vegas

Illinois
Westwood

 C2TCP
0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut

DC_short DC_long

BBR Cubic
Vegas

Illinois
Westwood

 C2TCP

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut

Cellular_short Cellular_long

BBR Cubic Vegas Illinois Westwood C2TCP
0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut

WAN_short WAN_long

Fig. 1: Performance of different CCAs in three different
networks.

Network environments are dynamic. Complicating matters
further, network environments may change on the fly. For
example, in the public cloud, it is common for flows to change
paths at ten-second intervals or even faster [28]. Alternatively,
when more cellular users pair with a base station, the buffer
provided to one user becomes smaller. This will impact
performance, e.g. BBR obtains higher throughput with small

3

buffers [3]. Alternatively, ISPs may adjust their network paths
(e.g. via MPLS or SDN), changing existing flows’ RTTs and
buffer sizes. Under such conditions, switching the TCP flows’
CC may improve performance.

Machine learning CC mechanisms are limited. Rather than
adjusting the congestion window or pacing rate using ML,
we build a model to select the CCAs on a per-flow basis.
We do this for two reasons. First, as pointed out by both
Orca [20] and Rein [29], learning-based approaches (e.g.
Indigo [30], Aurora [23]) suffer from performance degradation
and slow convergence when used in unseen conditions. In
contrast, hand-written classic CCAs do not have these two
issues. Second, classic CCAs that have been widely used in
practice, often achieve very good performance in the network
environments for which they are designed (e.g. Westwood [16]
for wireless networks).

B. Challenges

Rather than devising a one-size-fits-all CCA, we design
and implement Antelope, a framework that can dynamically
switch between the most suitable CCAs for specific flows in
specific environments. This raises four unique challenges.

Selection of CCA. Antelope must design an appropriate
reward function to select the optimal CCA for a given scenario
and for a given application. However, the TCP parameters
alone (e.g. RTT, CWND, in flight and lost packets) are in-
herently limited in their ability to predict throughput, fairness,
delay etc. Solely relying on these parameters to decide the op-
timal CCA is therefore not wise. Worse still, applications may
have different performance needs. For instance, online chat
and cloud gaming are more delay sensitive, while traditional
VoD services are more throughput sensitive. Furthermore,
manually selecting CCAs, even with machine learning support,
is difficult for network operators and domain specialists [31].
This is exacerbated by dynamic network conditions, which
may invalidate historical data used to make such decisions.

Short flows. If a machine learning approach is taken, as the
duration of many flows is short, they may finish before it is
possible to learn which CCA would have been most suitable.
Antelope must be able to rapidly select the most suitable CCA.

Kernel vs. user space. The kernel lacks machine learning
libraries. Thus, we argue it is necessary for Antelope to
implement any machine learning technology in user space, and
enable flexible interaction between user space and the kernel.
Limiting the overhead and delay for such communications is
challenging.

Computation overhead. The computational resources are
limited for front-end servers which run TCP flows for applica-
tions. Machine learning usually introduces heavy computation
overhead. It thus would be better to mitigate the overhead
introduced by the model training and model inference for the
CCA selection in such application servers.

III. ANTELOPE OVERVIEW

Overview. The duration of a TCP flow can be divided into
three phases: connection setup, data transmission and con-

nection closure. Different actions will be performed in these
three phases by Antelope. After the connection setup, the
Information Collection component (in the kernel) will collect
TCP flow information and deliver it to the Mechanism Match
component (in user space). Then during the data transmission
phase, the Mechanism Match component (periodically) selects
the most suitable CCA according to the flow’s characteristic.
The most suitable CCA will then be passed to the Mechanism
Switch component (in the kernel) which will switch to that
CCA in the network stack. When a connection closes, both the
Mechanism Match and Mechanism Switch components will
delete this flow’s records. The overall architecture is shown in
Figure 2.

Kernel

User
Space

Socket

Data Process

Data Collection CC Switch

Online Prediction
Offline Training

Match Data

bpf_map

Mechanism MatchInformation Collection Mechanism Switch

Application

APP requirement API

Fig. 2: High-level components of Antelope.

Information Collection. The Information Collection compo-
nent consists of two sub-modules: the Data Collection module
and the Data Process module. The Data Collection module
runs in the kernel. It collects all TCP flow information and
then delivers it via eBPF to the Data Process module, which
is in user space. The Data Process module aggregates and
formats the data before passing it to the Mechanism Match
component. In Section V we will show how we collect the
information.

Mechanism Match. The Mechanism Match component con-
sists of two sub-modules: Online Prediction and Offline Train-
ing modules, both of which are implemented in user space.
When TCP information is delivered to the Mechanism Match
component, it will dynamically select the most appropriate
CCA to use. This will then be recorded to the bpf map struc-
ture and made accessible in the kernel. The Online Prediction
module relies on several trained models for selecting different
mechanisms, and will return the most suitable one according to
the scores generated by each model. To inform this process,
the Offline Training module will train the matching models
using a reward function. Specifically, we build decision-tree
models using XGBoost. The match component also considers
the performance preferences of different applications. Some
applications (e.g. online chat) are delay sensitive, while others
(e.g. file transferring) are throughput sensitive. The Mechanism
Match component exposes an API to the application to get

4

the applications’ performance preferences. We then predict
the suitable CCAs by considering the flow and network
states as well as the application requirements in the Online
Predication module. Specifically, the reward function reflects
the application’s requirements by assigning different weights
to the throughput and delay. The details of this component are
shown in Section IV. Note that this component can also be
implemented in the cloud, where multiple front-end servers
can share one component to reduce the computation overhead
on individual servers.

Mechanism Switch. The Mechanism Match component
records the flow identifier (by IP and port) and the correspond-
ing CCA for the flow under consideration. Using eBPF, these
information is delivered to the kernel. Then the Mechanism
Switch component (in the kernel) will switch to the selected
CCA. This process is hooked into three Linux kernel functions:
tcp setup, tcp sendmsg and tcp close. In the tcp setup
and tcp sendmsg functions, the hook monitors the bpf map
and will switch the CCAs if instructed. In tcp close, the hook
function sends flow closing signals to the Mechanism Match
and Mechanism Switch components.

IV. PREDICTION AND TRAINING

A. Prediction Module

Overview. The Online Prediction module is the heart of
matching process. Its goal is to predict the optimal CCA based
on the TCP flow information. Figure 3 shows the overview
of the Online Prediction module. It consists of three main
modules: the Statistics Module, Reward Module and Selection
Module.

Selection Module

BBR

statistics
Training Data

CC mechanism

CC Mechanism Selector

Statistics Module

Information Collection
reward

Reward Module

Cubic
C2TCP

flow information

Fig. 3: Online Prediction module overview.
.

As an input, Antelope takes a set of N contiguous ACK
packets (in the order that the ACK packets arrive). We refer
to this set of packets as a data unit. The CCA selection is
then performed on the granularity of each data unit. Once
N packets are recorded, the information is passed to the
Selection Module and Reward Module. The Selection Module
is composed of multiple prediction models for different CCAs.
By comparing the reward predictions made by each model, the
best CCA is selected. When the next data unit is generated,

the Reward Module analyzes its statistics to evaluate the effect
of the last switching CCA.

The models are trained using a collection of tuples (si, ri)
for candidate CCAs. These are used for online training, where
si is the statistical information and ri is the reward value for
the i-th CCA. The output of the Statistics Module and the
Reward Module are used go generate the tuples for online
training. The output of the CC Selection Module is also
directed towards Training Data to inform the training process
which CCA is selected.

Statistics Module. The Statistics Module is responsible for
gathering flow information. It does this by reading flows’
information from the Information Collection component. On
receiving an ACK, the kernel updates the flow’s information,
e.g. RTT , CWND, sending rate, the number of lost packets.
Let dt denote the t-th data unit in a stream, and st refer
to the statistics of dt. For every data unit (every 20 packets
by default, i.e. N = 20), we calculate the statistics based
on the flow information collected for each ACK packet.We
set the data unit size as a tradeoff between computational
overhead and effectiveness. Note, calculating statistics on a
per data unit basis (as opposed to statistics per ACK) reduces
the influence of the network noise in machine learning based
decision making [32]. A summary of the statistics are shown
in Table I.

TABLE I: Statistics generated by the Statistics Module

Category Meaning
sRTT avg The average smoothed RTT.
number The number of ACK packets.
lost The number of lost packets.
time The time to construct data block.
pacing rate max The maximum pacing rate so far.
throughput The average sending rate.
delay min The minimum packet delay so far.

The Statistics Module continuously calculates the statistics
for each data unit and stores them in memory. When the
Selection Module receives the statistics of dt, it predicts the
CCA that dt+1 needs to use. The reward calculated by the
Reward Module is then used to provide feedback on the effect
of dt’s prediction. In this paper, we define rt as the reward
calculated using the statistics of dt. So, the final state (i.e. the
training data for the prediction model) at step t becomes the
vector traint = (st, rt+1).

Reward Module. This module is responsible for calculating
the effectiveness of a given CCA, and returning a predicted
reward. As previously mentioned, this is stored in the Statistics
Module and later used by the Selection Module to choose the
CCA for the next period.

In order to quantify the performance of each CCA, we
define the normalized reward function as Eq 1:

R̂ = R/Rmax =

(
throughput′ − η ∗ loss
max{θ ∗ delay′, 1}

)
/(

pacing rate max

delaymin

) (1)

5

Giessler [33] showed that the effectiveness of a CCA can
be measured by a metric called Power, defined as Power

=
throughput

delay
. It has been shown that when the power

reaches the maximum value, not only the network but also the
individual flows are in their best state. Our reward function (as
shown in Eq 1) is therefore based on the definition of Power
(similar to Orca [20]). We also incorporate loss as a parameter
to adjust the reward function, in order to minimize the packet
loss. When computing the reward function, we set the unit of
throughput as Kbps, the delay as ms, and the loss as number
of lost packets (in one data block interval). η is a parameter
that determines the weight of packet loss to reward function.
In our current implementation, we empirically set it as 1.

Although Power captures the ultimate goal of the congestion
control algorithm (maximizing throughput while minimizing
the delay), in practice it is hard to obtain the maximum
throughput and the minimum delay at the same time. Further-
more, the sensitivity of streams of different sizes to throughput
and delay varies greatly. For example, large flows are usually
throughput sensitive, but small flows are more concerned about
delay. To address this, we add the coefficient δ(≥ 1) into Eq
2 (which defines delay′ used in Eq. 1):

delay′ =

{
delaymin (delaymin ≤ delay ≤ δ × delaymin)

delay o.w.
(2)

After the TCP connection setup completes, δ will be ini-
tialized to 2. As packets are received by the Information
Collection component, δ will increase exponentially with the
number of data units. For example, δ is 2 for the first data
unit, 4 after the second data unit etc. This means that the
reward function will change from delay sensitive to throughput
sensitive when more packets are sent in the flow.

throughput′ =

throughput ∗ ζ +MAX RATE ∗ (1− ζ)
(3)

Finally, throughput′ is defined as in Eq. 3, where
throughput is the measured average throughput,
MAX RATE is the largest value for pacing rate max
(defined in kernel as 223 − 1), the parameters ζ and θ are
used to capture the application preferences on throughput
and delay (ζ ∈ {0, 1} and θ ∈ {0, 1}). Specifically, we define
three modes of applications’ performance preferences: delay
sensitive mode, throughput sensitive mode, and default mode.
In the default mode, both ζ and θ are set to 1, which means
that the CCA with both good throughput and low delay
should have a higher reward value (and therefore should be
chosen). For the delay sensitive mode, ζ and θ are set to 0
and 1 respectively; then the CCAs with lowest delay will be
chosen. On the other hand, for the throughput sensitive mode,
ζ and θ are set to 1 and 0 respectively; then Antelope will
choose the CCAs with the best throughput. Via these two
parameters, Antelope considers the application’s preferences
(throughput or delay sensitive) when choosing the most
suitable CCAs.

Selection Module. This module is responsible for retrieving
the reward predictions across the set of available CCAs (for a
given flow) and then selecting the optimal one. However, short
TCP flows may finish before it is possible for the Reward
Module to calculate the prediction. Thus, we use two types
of predictions: (1) A stream-level prediction which predicts
the most suitable CCA for this flow by analyzing realtime
information (suitable for long flows); and (2) An IP-level
prediction which uses historical information about prior stream
from that IP address or prefix (suitable for short flows). We
describe these below.

Algorithm 1 Stream-Level Prediction Algorithm

1: function STREAMPREDICT(statistics)
2: maxReward← 0
3: predict cc← NULL
4: // cc model map stores prediction models of each CC
5: for cc in cc model map.keys do
6: predict model← cc model map[cc]
7: reward← predict model.predict(statistics)
8: if reward > maxReward then
9: maxReward← reward

10: predict cc← cc
11: end if
12: end for
13: return predict cc
14: end function

Stream-level prediction. The stream-level prediction’s pseu-
docode is shown in Algorithm 1. In Antelope, we train a model
for each algorithm independently so that we can easily extend
the system to new CCAs. At each step t, the Selection Module
observes the statistics (st), and then selects the CCA with
the highest predicted reward. The calculation of predictions
is described in Section IV-B, where we rely on XGBoost
decision trees. Figure 4 shows the architecture of the decision
tree. The number of layers in the decision tree depends on the
complexity of the training data. Put simply, when, for example,
we want to predict BBR’s reward for one stream, we input
the flow information to the BBR prediction model. For each
tree, we get the predicted reward, and then we add up all the
rewards to get the final result. The reward can be obtained
both after a CCA is deployed and prior using offline training.

The computational complexity of XGBoost is O(Kd||x||o+
||x||ologn), where d is the maximum depth of the tree, K
is total number of trees, and n is training data size. Note,
the values of d and K can be set in the training process.
||x||o is the number of non-missing entries in the training
data [34]. As shown in Table I, we have 7 features for
each training data point. Suppose we have n training data,
||x||o is capped at 7 ∗ n. So the computational complexity
is O(K ∗ d ∗ 7 ∗ n + 7 ∗ n∗logn). We set the value for d
and K as 6 and 40 respectively as experimental results show
that these values can avoid overfitting. We can see that the
computational complexity grows with number of training data
(n) in multiples of logn.

IP-level prediction. In IP-level prediction, Antelope selects

6

throughput

lost reward_1

reward_2...

delay_min

lost reward_n

reward_n+1 ...

predict_reward = reward_2 reward_n+...+

prediction model
<n >n

<m >m

<n1 >n1

<m1 >m1
......

Fig. 4: Architecture of the decision tree for prediction.

the CCA based on the historical results of the streams belong-
ing to the same IP or a /24 segment. This allows Antelope to
select an appropriate CCA before a flow has been initiated.
Algorithm 2 presents the IP-level prediction pseudocode. For
each IP range, Antelope records the number of times that each
CCA has been chosen in the flows to that IP space. In order to
adapt to changes in the network, each time a new stream level
prediction is obtained, the IP prediction result will be merged
with the current prediction results. Note, the historical data is
weighted by an coefficient α (0 < α < 1) which is inversely
proportional to the age of the data (the older the data is, the
lower the weight is). Finally, the CCA that has been chosen
most frequently with the highest reward is selected.

Algorithm 2 IP-Level Prediction Algorithm

1: function IP PREDICT(ip, cc mechanism)
2: cc count map← ip CCs map[ip]
3: //Reduce the weight of all historical data.
4: for cc in cc count map.keys do
5: cc count map[cc]← cc count map[cc] ∗ α
6: end for
7: cc count map[cc mechanism]+ = 1
8: //Choose the cc mechanism with the largest count.
9: cc predict← getMaxCountCC(cc count map)

10: //Update the IP and cc mechanism in bpf map.
11: updateBpfMap(ip, cc predict))
12: end function

B. Training Module

The above relies on a trained model that can predict the
reward for a given flow using each CCA available. For training
the XGBoost model, we perform both offline and online train-
ing. XGBoost is a supervised learning algorithm. The training
inputs are data pairs, such as (x̂0, y0), (x̂1, y1)...(x̂n, yn),
where x̂ is the features vector and y is the label. Using this
past input, XGBoost tries to predict the correct label for unseen
inputs.

XGBoost integrates weak tree models to achieve strong tree
models by iterative training. The computation of each decision
tree model is independent. Such parallel computation makes
XGBoost’s learning process fast [34]. The TCP flows may be
quick to finish and Antelope needs to predict CC mechanisms
timely; this is why we choose XGBoost for selection. Algo-
rithm 3 presents the pseudocode for the Training Module. Note
that both offline and online training follow the same process.

Algorithm 3 Training Algorithm

1: function CREATETRAINDATA(statistics t, cc, train data)
2: //train data[cc] is the training data for a specific CC.
3: cc train data← train data[cc]
4: reward t← cal reward(statistics t)
5:
6: pre data.append(reward t)
7: cc count← cc train data.size()
8: cc train data[cc count]← pre data
9: pre data← statistics t

10: //Write training data into files.
11: if cc count > MAX COUNT then
12: write train data(cc train data, cc files[cc])
13: delete(cc train data)
14: end if
15: end function
16: function TRAINMODEL(cc files)
17: for cc file in cc files do
18: cc model← XGBOOST (cc file)
19: //Model persistence.
20: model dump(cc model)
21: end for
22: end function

Offline training. We initiate training in an offline fashion,
where we trigger clients to connect to the server, which then
randomly selects different CCAs to use. This can be done
in an emulated environment, as we show in Section VI. The
servers collect statistical information (s) and the corresponding
ground-truth reward (r). The reward result (rt+1) represents
the reward of the mechanism for the t + 1 data unit. This
provides the training instance for data unit t in a tuple
(st, rt+1). We then use this to train a XGBoost model to
predict the correct reward based on the observed statistical
information in the previous data unit.

Online training. The previous step creates a pre-trained
model for each CCA. We then continue the training in an
online fashion by continually computing the real reward to
measure the accuracy of the predictions in-the-wild. The
reward result and the TCP stats (st, rt+1) for the chosen CCA
are appended to the training data and are used for periodic re-
training. The above training is per-CC not per client-server
pair. That said, the trained models are independent to clients
and servers and can be reused by other servers.

V. IMPLEMENTATION

We have implemented Antelope in both user space and
the Linux kernel (CentOS 8 with kernel version 4.18). We
collect TCP flow information from the kernel and then share
it with user space (via eBPF), where Antelope uses it to select
the most suitable CCA. The suitable CCA for this flow is
then delivered back to the kernel using bpf map. Antelope
then switches the CCA in the kernel. An overview of the
implementation is shown in Figure 5.

7

Cubic BBR VEGAS ILLINOIS WESTWOODC2TCP

Linux Network Stack

Ebpf
ProgramBCC tcp_ack

tcp_init_trans

tcp_sendmsg

tcp_close_state

hook hooks

switchbpf_setsockopt

bpf_hash bpf_map

load

Model Training and Prediction

data collect data transfer

bpf_getsockopt

Fig. 5: Overview of the Antelope implementation.

A. Collecting Flow Information

We use the BPF Compiler Collection (BCC) probe function
to get the TCP flow information [35]. We extract the informa-
tion from struct sock in the kernel. BCC sets different hook
functions in the Linux network stack, which means we can
get information from different hook points. In our system, we
set a hook in the tcp ack function.

The basic unit we collect is the TCP flow and we distinguish
different flows by the saddr, daddr, lport and dport. In
every flow, we collect srtt, mdev, min rtt, packets out,
lost, total retrans, pacing rate and TCP state, which are
all recorded in the struct sock for this flow. For every ACK
that arrives, the hook will be triggered and the information
will be delivered to user space via eBPF.

B. Exchanging Information by ebpf map
To pass flow information from the kernel to user space, we

use the ebpf hash. To pass the suitable CCA from user space
to the CC Switch module in the kernel, we use the bpf map.
The suitable congestion mechanism set via ebpf map is
formatted as a key-value pair: IP+port → CCA. As at the
beginning of a flow, there is not enough information to predict
the best algorithm, we select the default algorithm or the one
based on the historical information associated with that IP.

On receiving an ACK packet, the eBPF’s user space pro-
gram will get flow information from kernel via ebpf hash.
Then the information will be stored in a hashmap (using
IP+port as the key). Periodically (default 20s), the data in
the hashmap will be dumped to disk first and then emptied.
We evaluate the memory usage due to the using of eBPF in
Section VI-I.

C. Switching TCP in the Kernel

We use eBPF to switch TCP mechanisms in the kernel. To
run Antelope, the compiled eBPF program is loaded into the
kernel first. In the eBPF program we use the bpf getsockopt
and bpf setsockopt in the tcp ebpf library to switch to the
corresponding algorithm [25]. We set three hook points in
the kernel to trigger the switching process: tcp init transfer,
tcp sendmsg, tcp close state. For the tcp init transfer
hook, the eBPF program will set the new algorithm based on
the flow’s IP or the default one as we explained in Section V-B.

For the tcp sendmsg hook, we set the new congestion
control algorithm according to the prediction. At the end of
the flow, the hook point in tcp close state will delete the

key-value item for this flow. Since we use an eBPF program,
when we run Antelope and add a new ability to the kernel, it
is unnecessary to rebuild the kernel or to reboot the system.

In the Online Prediction module, once N ACK packets (i.e.
a data unit) are received, the prediction process is triggered
(by default, N = 20). If the prediction process finds another
suitable algorithm for this flow, it updates the ebpf map,
adding the IP+flow ID → congestion algorithm item in the
map. If the new algorithm is the same as the old one, the item
will be set as empty. At the tcp sendmsg hook point, the
eBPF program will check the map. If it gets the name of a
new congestion algorithm in the map, the eBFP program will
set this flow’s congestion control algorithm to the new one. To
avoid switching the algorithm too frequently, we only switch
upon seeing M (default 2) consecutive recommended changes.

Antelope can switch between CCAs that are implemented in
mainstream Linux kernel, currently including BBR, CUBIC,
C2TCP, Vegas, Illinois and Westwood. Antelope chooses these
algorithms as they are wildly used and implemented in the
release version of kernel. It is worth noting that Antelope
can be applied for the dynamic selection of other CCAs
implemented in kernel. Regardless of whether competing TCP
flows use Antelope, individual flows may use different CCAs.
Thus, Antelope inherits the TCP-friendliness of the chosen
CCAs. For example, if Antelope chooses BBR, then it will
take a larger share of the bottleneck bandwidth than CUBIC
in shallow-buffered network.

D. Parameters Continuity

When dynamically switching between CCAs, it is important
to ensure continuity in the flow parameters. For example, the
new CCA should be initiated with the CWND of the previous
CCA. Two kinds of parameters are related to this continuity:
(i) Common parameters such as sending rate (CWND or pac-
ing rate); and (ii) Measurement parameters such as RTT and
packet loss rate. In the Linux kernel, the above parameters
are recorded in the struct sock, which is maintained by all of
the CCAs. For the sending rate, when switching to a new CCA,
we use the same value as before. For measurement parameters,
we also inherit the same values. This is because different
CCAs use the same module to calculate these parameters
and it will therefore not affect the measurement parameters’
accuracy. We will validate the continuity of parameters in
Section VI-C.

Except for these common parameters, different CCAs may
have their own specific parameters. These parameters are
completely different. For example, BBR has pacing gain,
cwnd gain and full bw cnt; CUBIC has round start,
epoch start and sample cnt; Westwood has bw ns est;
Vegas has do vegas now. C2TCP is based on CUBIC, so
its specific parameters are the same with CUBIC. This means
that a newly initiated CCA may also have to bootstrap new
parameters. To address this, as all of these parameters have
default values, we simply use their default values when
switching to a different CCA. Note, this is similar to what
Rein [29] does.

8

E. Application Requirements

Antelope uses an API to receive application requirements,
i.e. the App. requirement API in Figure 2. The API has two
variables: key and type. We set application’s port number
as key to distinguish which application it is. type is set as
1, 2 or 3 which means default (consider both throughput
and delay), delay or throughput sensitive mode respectively.
The API can be used after developers create TCP socket.
This information is passed to Antelope’s Mechanism Match
component and then used to set the weight of the throughput
and delay in Eq. 1 for different flows. Through this, Antelope
will show preference towards either delay or throughput
when selecting the corresponding CCAs. Note that for each
CCA, we train 3 models that correspond to the 3 application
preference modes. The type parameter indicates which model
should be used for CCA selection. If the application does not
set the API, by default, Antelope will consider both the delay
and throughput and choose the CCA that is balance between
delay and throughput.

F. Remote Cloud-Based Learning

To reduce the computation overhead introduced by the
Online Prediction and Offline Training modules on individual
end servers, our framework can host certain components
in the cloud, as an alternative option to perform training
locally. Figure 6 presents the architecture of the cloud-based
implementation. This implementation divides Antelope into
two parts: the end server and the learning cloud. The Informa-
tion Collection and Mechanism Switch components are both
operated on the end server, whereas the Mechanism Match
component is placed in the learning cloud. TCP information is
passed to the learning cloud using HTTPS from the end server.
The most suitable CCA is then computed using the Online
Prediction and Offline Training modules and sent back from
the learning cloud to the end server via HTTPS. To reduce the
connection overhead introduced by HTTPS, we use long-live
HTTP sessions between the learning cloud and the end server.

Note, this implementation has two main benefits. First, it
reduces the computational overhead introduced by the Online
Prediction and Offline Training modules in end server. Sec-
ond, by centralizing the process, more TCP information can
be accumulated to improve the effectiveness of the training
results. However, the main downside is that this creates a
communication overhead between the learning cloud and the
end server. In Section VI-I we will evaluate both of the benefit
and cost of the learning cloud.

VI. TRAINING AND EXPERIMENTATION

In this section we describe the training process of Antelope
and then show the effectiveness of Antelope. Training and
evaluation are based on both an emulated environment and
production networks.

A. Testbeds

For both training and evaluation, we rely on a network
emulator and a real world deployment. We first describe their

ApplicationApplication

Kernel

User
Space

Learning Cloud

Online Prediction
Offline Training

Socket

bpf_map

Data Process

Data Collection CC Switch

Match Data

End Server
Socket

bpf_map......

HTTP GET

HTTP SEND

CC Switch

Match Data Data Process

Data Collection

End Server

Mechanism MatchInformation Collection Mechanism Switch

HTTP SEND
APP requirement API

Fig. 6: The architecture of the cloud-based learning
implementation.

setups here and delineate the specifics later when presenting
the results.

Emulated testbed. We use Mahimahi, a network emulation
tool which can evaluate different network environments either
(1) by configuring the delay, bandwidth and queue parameters;
or (2) by replaying packet behaviour from a real network [27].

We setup two client processes connected to two servers,
and direct all of their flows via Mahimahi. One client sends
requests to one server and then the server sends files back. To
produce background traffic, the other client sends requests to
the other server. All of the requests use TCP and go through
the same Mahimahi network. The file sizes are randomly
chosen (see later). We change the size of request to emulate
different background traffic effects.

Real network testbed. To test Antelope in a more realistic
context, we also run it in a production network. We install
Antelope on a public cloud (at several locations). We place
server instances in Asia, North America, Europe and the
Middle East. Each instance runs the same file server software
used in the emulated testbed. We then issue requests from our
campus in Shenzhen, China.

B. Training

To evaluate Antelope, we must first train its prediction
model. The training data obtained through the emulated envi-
ronment helps us construct the initial prediction model, and
then the feedback from the real-world experiments supports
the optimization of the model.

Emulated Training. We test more than 30 network envi-
ronments using Mahimahi (their characteristics are shown in
Table II2.). We emulate a WAN with low bandwidth and a large
RTT; and a DCN using high bandwidth and a small RTT. We
also use 6 cellular LTE traces provided in Mahimahi to test
cellular network environments.

We use BDP (Bandwidth*RTT) to describe the size of the
queue buffer. In our emulated network environment, we set the

2All of our environment’s setting values are those that have been tested by
iperf or ping

9

5*BDP in WAN and 0.1*BDP in DCN, following the setting
in [12]. In the cellular network we do not set its BDP as it is
emulated by the traces [27].

We generate request flows of different sizes (flow size
between 1KB and 50MB). The training procedures for each
parameter combination are repeated 3 times. We run all CCAs
in each setup and collect the training data for each CCA.
Specifically, for every network environment, we set the sender
to a fixed CCA then randomly switch to other algorithms
to observe their performance. We then use this data to train
Antelope’s initial XGBoost model. It should be noted that the
environment we use to train is different from the environment
for the performance evaluation (in Section VI-C).

TABLE II: Range of evaluated env. during the training.

BW (Mb/s) RTT(ms) BDP Back. traffic
12-8000 1-100 0.1-6 1KB-50MB

Real World Training. After the initial training performed
within the emulated environment, we further train Antelope
in our real network testbed. We envisage this to be the de
facto approach: each server will start with a generic pre-trained
model, and then iteratively improve it in an online fashion.

We train using both inter- and intra-continental scenarios
by locating clients and servers in two continents and in the
same continent, respectively. Clients (located in our campus)
use a wired network to access these servers by default. RTT
and bandwidth for intra-continental setups are approximately
30ms, 2.4Mb/s; and for inter-continental cases, are approxi-
mately 200ms, 2.4Mb/s respectively. In order to measure the
effectiveness of the CCAs in different time periods, every 6
hours, clients send requests to servers (at 09:00, 15:00 and
21:00). We first randomly pick any CCAs and then select the
algorithm using Antelope. For each request, the server sends
back different randomly sized files (1KB-50MB) just as with
the emulated testbed. Each request and the corresponding reply
form a new TCP flow. Each experiment lasts for half an hour.
In total, we run experimentation over one week and train over
50K TCP flows (7K each day). For the rest of this section, we
use the combination of emulated and real world training data
for evaluation.

C. Performance Evaluation

We first show how Antelope switches between CCAs (in-
cluding BBR, CUBIC, C2TCP, Vegas, Illinois and Westwood)
and how the TCP parameters change. We then describe the
performance of Antelope in both evaluation and production
environments.

1) Validating Switching Mechanism: We first validate that
when network condition changes (e.g. novel congestion is
encountered), Antelope can switch CCAs in the kernel without
causing issues. To test this, in the emulated network environ-
ment, we initiate a flow from the client to the server. We
then, after a period of time, add background traffic between
the second client and server to trigger congestion (using
CUBIC). We monitor which CCAms are selected and validate

0 5 10 15 20 25 30
0

10

T(
M

b/
s)

The change of the background traffic.

BBR Antelope

0 5 10 15 20 25 30

5
10

T(
M

b/
s)

The throughput of BBR and Antelope.
BBR Antelope

0 5 10 15 20 25 30
Time(s)

BBR
Cubic

Illinois
C2TCP

The process when Antelope switches mechanisms.

Fig. 7: Performance of Antelope vs. other CCAs.

Antelope’s capacity to dynamically switch without degrading
performance. As a baseline, we compare against vanilla BBR.

In Figure 7, the top plot shows the rate of background
traffic, the middle plot shows the throughput of Antelope vs.
BBR, and the bottom plot shows the CCAs that Antelope
switches between. Unsurprisingly, we see that the throughput
of both Antelope and BBR decreases as the background traffic
grows. However, the throughput of BBR decreases much more
than Antelope. This occurs because Antelope dynamically
switches between algorithms to reflect the new operating
conditions. This is demonstrated in the bottom plot of Figure 7,
which depicts the CCAs selected by Antelope during the
experiment. At the beginning, Antleope selects BBR; when
the background traffic arrives, it switches between CUBIC,
Illinois and C2TCP. After this exploratory phase (appox. 5
seconds), Antelope switches to C2TCP stably. This occurs
because C2TCP learns (correctly) that when competing with
CUBIC, C2TCP achieves the best performance.

0 500 1000 1500 2000 2500
0

100

SR
TT

(m
s) Cubic BBR Cubic Illinois C2TCP Westwood Cubic

0 500 1000 1500 2000 2500

50
100

CW
ND

0 500 1000 1500 2000 2500
Packets

2.5
5.0

Pa
cin

g
ra

te 1e6

Fig. 8: The continuity of parameter values in the sock struct
structure when Antelope switches between different CCAs.

We next wish to validate that Antelope can perform these
switches without undermining the pre-existing TCP parameters
used by the previous CCA. Figure 8 presents the change of
srtt, CWND and pacing rate when Antelope switches between
different CCAs in one experiment. We can see that the 3
parameters change smoothly when Antelope switches between
CCAs.

2) Performance Evaluation in Emulated Networks: We next
compare the performance of Antelope in an emulated net-
work (using Mahimahi) against BBR, CUBIC, C2TCP, Vegas,

10

Illinois and Westwood, as well as two ML-based CCAs that
provide kernel implementations: PCC-Vivace and Orca. PCC-
Viavce uses online learning to adjust the sending rate; for Orca,
we use the trained model that is provided by Orca’s authors.
Finally, we also compare against another CC switching mech-
anism, Rein [29], which uses a rule-based algorithm to select
the CCA. As Rein’s source code is not open, we implement
Rein according to the algorithm it provides in the paper: using
CUBIC by default, switching to BBR in a small buffer network
and switching to Westwood for WiFi connections.

The emulated network is similar to the setup described
earlier. However, to differ from the training environment, we
use different traces and parameters in Mahimahi (as described
below). All the throughput and delay results are the averages
taken from 30 runs.

WAN. To evaluate a WAN environment, we set the link’s
delay and bandwidth to 100ms and 120Mb/s in MahiMahi.
The queue length is 5*BDP and the queue is tail drop first.
We introduce background traffic via requests to another server,
which is also connected via MahiMahi. As we introduce
background traffic, the resulting packets loss rate is between
1% to 2%. We run three groups of experiments, consisting
of long, short and mixed flow sizes. For long flows, the size
of the requested files is randomly selected from between 3MB
and 50MB. For short flows, the size is randomly selected from
between 1KB and 3MB. To generate a mixture of flows, we
also run experiments where we randomly select sizes between
1KB and 50MB.

Figure 9 compares the performance of different CCAs in
this environment. The x-axis is the delay and the y-axis is
throughput. For delay, the marker is the average value and the
end of the line is the 95-th percentile value. For throughput,
the value of the line is the average value. The mechanism
which is on the top left corner is the best. The figures show
that, in a WAN environment, Antelope achieves the highest
or second highest throughput compared with other CCAs
when requesting long, short and mixed-size files. The average
delay of Antelope is in the middle compared with other
CCAs. We find that for most of the time, Antelope chooses
CUBIC or C2TCP, not BBR (see Table III for more details).
Antelope achieves an average of 30% more throughput than
BBR in total. Rein’s performance is close to CUBIC as WAN
has a large buffer (Rein switches to CUBIC in large buffer
environments). PCC-Vivace performs poor when transferring
short files, possibly because it has not converged to its optimal
before the end of the transfer. Orca’s performance also varies
greatly. Recall that Antelope is also much more lightweight
than Orca or PCC-Vivace, as it is built on the CCAs available
in main-stream Linux kernels.

DCN. We evaluate the DCN environment in a similar fashion
to WANs using MahiMahi. We set the bandwidth as 8Gb/s.
The length of the router queue is 0.1*BDP with tail drop
first. The packet loss rate introduced by the background
traffic is about 0.1%-0.2%. We set the flow size following
DCTCP [11], which shows that while the flow size ranges
from 2KB to 50MB, most of the flows are small (as web
search dominates). As such, we set the background traffic size

in DCN as follows: 50% flows are less than 100KB, 40% flows
are between 100KB to 1MB and 10% flows are between 1MB
to 50MB. The size of requested files is the same as in the WAN
experiment.

Figure 10 shows the performance of different CCAs in the
DCN environment. The meaning of the x-axis and y-axis are
the same as Figure 9. From the figure, we see that C2TCP and
CUBIC have very high delay and low throughput in the DCN
environment. Antelope and BBR achieve the best performance.
BBR has good performance for small BDP networks [3],
which is why BBR’s performance in a WAN (which has
a large BDP) is not as good. In the DCN environment,
Antelope chooses BBR for most of the time (see Table III for
more details), so its performance is close to the best. Rein’s
performance is very close to CUBIC in DCN. This is because
in a DCN, the flows are too short to perform switching.
Antelope overcomes this by using IP-level prediction, which
performs the selection based on historical observations. Note
that, as Orca and PCC-Vivace are not targeted for DCNs, we
do not compare them for fairness.

Cellular network. We use the traces provided by MahiMahi
to emulate cellular networks. The traces are collected from T-
Mobile, ATT and Verizon’s LTE network in walking, driving
and stationary conditions [27]. Importantly, this differs from
those traces used in the training (see Section VI-B).

Figure 11 compares the performance of different CCAs in
this setup, where we can see that C2TCP achieves the highest
throughput as it is specifically designed for cellular networks.
Although BBR has very short delay, its throughput is low.
As Antelope chooses the most suitable CCA (see Table III
for more details), its performance is one of the highest. As
Rein does not have a switching rule specifically for cellular
networks, its performance is not stable (sometimes close to
CUBIC, sometimes close to BBR). PCC-Vivace also performs
poorly, possibly because of its poor adaptability in highly
dynamic networks [20]; Orca again is not stable in terms of
performance.

Summary. In each environment, we see that different algo-
rithms achieve the optimal performance. For example, C2TCP
achieves high performance in WAN and cellular networks but
perform poorly in DCNs; BBR’s throughput is very high in
DCNs, but very low in cellular networks. As Antelope selects
the most suitable algorithm, its performance is consistently
one of the best in all the environments. This is particularly
helpful for servers, which need to handle flows from WANs,
DCNs and cellular networks at the same time (which is
common for servers in the cloud [36]). However sometimes
Antelope may make wrong actions brought by the limitations
of machine learning algorithm. That is why when Antelope
is first applied in a new network environment, it needs online
training to improve its learning effectiveness. Overall, in the
three network environments, Antelope achieves an average
of 16% improvement in throughput and 3.5% reduction in
delay (for short flows) compared with BBR. Compared with
CUBIC, Antelope achieves an average 19% improvement in
throughput, and a 10% reduction in delay. Rein, another CC
switching mechanism, does not adjust to variable network

11

200 250 300
Delay(ms)

0

5

10

15

20

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
s) BBR

Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(a) WAN long

100 120 140 160
Delay(ms)

0

2

4

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
s) BBR

Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(b) WAN short

150 200 250 300
Delay(ms)

0

5

10

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
s) BBR

Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(c) WAN mixed

Fig. 9: Comparison of throughput and delay for different CCAs in an emulated WAN environment. For delay, the marker is
the average value and the end of the line is the 95-th percentile value.

1.50 1.75 2.00 2.25 2.50
Delay(ms)

0

200

400

600

800

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
s)

BBR
Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Rein

(a) datacenter long

1.75 2.00 2.25 2.50
Delay(ms)

60

80

100
Av

er
ag

e
Th

ro
ug

hp
ut

(M
b/

s)
BBR
Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Rein

(b) Datacenter short

1.50 1.75 2.00 2.25 2.50
Delay(ms)

0

100

200

300

400

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
s)

BBR
Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Rein

(c) Datacenter mixed

Fig. 10: Comparison of throughput and delay for different CCAs in an emulated data center environment. For delay, the
marker is the average value and the end of the line is the 95-th percentile value.

0 250 500 750
Delay(ms)

0

5

10

15

20

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
s) BBR

Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(a) Cellular long

10 20 30 40
Delay(ms)

0

5

10

15

20

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
s) BBR

Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(b) Cellular short

0 100 200 300 400
Delay(ms)

0

5

10

15

20

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
s) BBR

Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(c) Cellular mixed

Fig. 11: Comparison of throughput and delay for different CCAs in an emulated cellular network environment. For delay, the
marker is the average value and the end of the line is the 95-th percentile value.

conditions and performs poorer than Antelope. The ML-
based mechanisms (PCC-Vivace and Orca), while being more
heavyweight, require a longer time to converge, and thus are
less stable in terms of performance.

3) Performance In-the-Wild: To evaluate Antelope’s effec-
tiveness in production networks, we use our testbed on the
public cloud (see Section VI-B). We setup servers in 5 cities
located in 4 continents (Beijing, New York, London, Sydney
and Dubai). Every 6 hours, we send requests from our campus
(Shenzhen in China) to each of those servers. The clients con-
nect to the Internet either from wired networks or via LTE. For
the wired networks, the RTT between Shenzhen and Beijing,
New York, London, Sydney and Dubai ranges from 70ms to
180ms. For LTE networks, the RTT between them are close to

the wired networks but fluctuate more (affected by the cellular
network). All of the servers’ bandwidth is 4Mb/s (depending
on the server’s package configuration we purchased in the
public cloud). The sizes of the requested files are randomly
selected between 3MB to 50MB, as discussed in Section VI-B.
For each configuration, we repeat the experiment 30 times and
average the results. Specifically, the sizes of the requested files
are 3MB, 5MB, 10MB, 15MB, 20MB, 25MB, 30MB, 40MB,
50MB. Each request uniformly chooses a file at random for
transferring. For each CCA, we send 30 requests (one by one)
to one server in each run. As we have 5 servers, we send 150
requests for each CCA in each run. As we take 3 runs per
day and our experiment lasts one week, totally we send 3,150
request for each CCA.

12

Wired network. Figure 12a presents the results when clients
use wired networks, where the x-axis shows the delay and the
y-axis shows the throughput. The marker in the middle of each
ellipse shows the mean average value of delay and throughput.
The ellipses show the standard deviations from the average re-
sults. Antelope, BBR and Orca achieve the highest throughput.
However, whereas the throughput’s standard deviation is lower
for BBR, its delay range is much higher compared to Antelope.
We find, for over 85% of the time, Antelope chooses BBR in
this setup (see Table III for more details). This is unsurprising
as it has been proven that BBR achieves the best performance
in inter-continental environments [3]. Antelope also utilizes
C2TCP for 10% of the time and CUBIC for 5%, resulting in
the differing performance compared to BBR. As Rein’s fixed
threshold for distinguishing large or small buffers cannot adapt
to the production network, it switches between CUBIC and
BBR irregularly. This means its final performance is between
BBR and CUBIC.

LTE network. Figure 12b reports results in the LTE network.
Antelope and BBR achieve the highest throughput, but it
has worse delay. Most of time Antelope chooses BBR (see
Table III for more details). However when the the delay
becomes large, other CCAs (e.g. C2TCP) are chosen. As
we observed in the emulated networks, the two ML-based
approaches (Orca and PCC-Vivace) fail to achieve as high
throughput as Antelope.

150 200
Delay(ms)

0

1

2

3

4

5

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
s) BBR

Cubic
Pcc-Vivace
Orca
C2TCP
Vegas
Illinois
Westwood
Antelope
Rein

(a) Wired network

150 200 250
Delay(ms)

2

3

4

5

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
s) BBR

Cubic
Pcc-Vivace
Orca
C2TCP
Vegas
Illinois
Westwood
Antelope
Rein

(b) Cellular network

Fig. 12: The results of different CCAs in the
inter-continental production environment.

D. Dissecting CC Selection

In this subsection, we analyze which CCAs Antelope selects
for each of the environments under study. Table III shows the
CCAs that Antelope selects in each environment for different
kind of flows. The percentage reflects how long the specific
CCA is used across the whole life of the flow and it is the
average across all flows.

In the emulation environment, shown in Table III, we divide
the flows into long, short and mixed type. We see that, for
the WAN, Antelope switches between CUBIC and BBR. For
long flows in WAN, CUBIC is chosen while for long flows
Antelope chooses BBR most of time. This is probably because
WANs are large buffer networks and for long flows, CUBIC
can occupy the bandwidth and buffer. But for short flows, they
usually finish before they can occupy the buffer.

In the emulated DCN, flows largely use BBR. This is likely
because in a DCN, the switch’s buffer is limited and the
small buffer limits the performance of CUBIC (as it is a
packet loss based CCA). For the emulated cellular network,
most of the time Antelope chooses C2TCP. This is because
the cellular network’s situation changes rapidly. Among all
of these CCAs, C2TCP is most suitable for such fluctuating
networks. Sometimes Antelope also chooses Westwood (18-
23%). This is because Westwood is designed for wireless
environment (such as WiFi), which have similar characteristics
to cellular networks.

We also inspect the CCAs used in our in-the-wild experi-
ments. We find that Antelope chooses BBR most of time for
the wired setup. This is the same result as the long flows in
the emulated WAN. For the real cellular network, Antelope
chooses C2TCP. Again, this confirms the correctness of our
emulated cellular network, which also selects C2TCP.

In summary, we find that Antelope chooses CCAs that are
specifically designed for that environment. However, some-
times it selects other (unexpected) CCAs. We conjecture that
network fluctuations account for it. Specifically, as Antelope
observes network behavior fluctuations, the corresponding
CCAs do not fit the network environment at that time. Thus,
Antelope changes the CCAs according to the online feedback
of the flows and environment.

E. Addressing Application Requirements

We next inspect how effectively Antelope can adapt to
different applications requirements (i.e. related to delay vs.
throughput). As we explain in Section IV, ζ and θ can be set
as 0 and 1 respectively for delay sensitive requirement, while
for throughput sensitive requirement they can be set as 1 and
0 respectively. Figure 13 shows the throughput when Antelope
is at (i) default; (ii) delay first; or (iii) throughput first mode.
Similarly, Figure 14 shows the delay. We present results across
different emulated environments. The default mode means
that Antelope considers both delay and throughput, whereas
the other two show preferences towards delay or throughput.
Across all networks, from Figure 13 we see that Antelope in
the throughput sensitive mode has a higher throughput than
the default and delay sensitive mode (both for long and short
flows). In contrast, Figure 14 shows that when Antelope is in
delay first mode, its delay is smaller (for both long and short
flows) , compared to the default and throughput first mode.
The results confirm that Antelope can adjust its performance
according to the application’s delay or throughput preferences.
Besides, the DCN throughput and delay are much more
consistent among different modes compared to cellular/WANs,
because in DCN the CC algorithm with best throughput and
lowest delay are the same as Figure 10 shows.

F. Fairness and Friendliness

In this subsection, we discuss the fairness and friendli-
ness for Antelope. We evaluate the fairness between flows
by Jain’s fairness index [37], [38], which is calculated
as: ((

∑n
i=1 thri)

2)/(n ∗ (
∑n

i=1(thri)
2)), where thri is the

13

TABLE III: Summary of which CCAs Antelope selects across different environments and flow types. The percentage
indicates the percentage of the stream that each CCA is used.

Type long flow short flow mix flow

Emulation
WAN CUBIC (59%) BBR (27%) C2TCP

(10%)
BBR (80%) vegas (17%) CUBIC (68%) C2TCP (23%) BBR

(5%)
DCN BBR (98%) BBR (95%) BBR (97%)
Cellular C2TCP (63%) Westwood (21%) C2TCP(52%) Westwood(23%)

CUBIC (15%)
C2TCP (68%) Westwood (18%) Illi-
nois(7%)

Wild Wired BBR (71%) CUBIC (17%) C2TCP (10%)
Celluar C2TCP (51%) BBR (38%) Westwood (7%)

long long long short short short
Flow type

0

10

20

30

40

50

60

th
ro

ug
hp

ut
(M

b/
S)

Thr_first
Delay_first
Default

(a) Datacenter throughput

long long long short short short
Flow type

0

2

4

6

8

10

th
ro

ug
hp

ut
(M

b/
S)

Thr_first
Delay_first
Default

(b) WAN throughput

long long long short short short
Flow type

5

10

15

20

25

30

th
ro

ug
hp

ut
(M

b/
S)

Thr_first
Delay_first
Default

(c) Cellular throughput

Fig. 13: Comparison of the throughput when Antelope’s requirements are set to default, delay sensitive and throughput
sensitive.

long long long short short short
Flow type

1.3

1.4

1.5

1.6

D
el

ay
(m

s)

Thr_first
Delay_first
Default

(a) Datacenter delay

long long long short short short
Flow type

100

200

300

400

500

600

700

D
el

ay
(m

s)

Thr_first
Delay_first
Default

(b) WAN delay

long long long short short short
Flow type

0

200

400

600

800

D
el

ay
(m

s)

Thr_first
Delay_first
Default

(c) Cellular delay

Fig. 14: Comparison of the delay when Antelope’s requirements are set to default, delay sensitive or throughput sensitive.

throughput for the i− th flow. The fairness index ranges from
0 to 1 and a value close to 1 indicates that the flows fairly
share the bandwidth.

First, we evaluate fairness when all flows are Antelope.
Figure 15a shows how Antelope flows compete with other
Antelope flows, where the left y-axis is the throughput while
the right y-axis is the Jain’s index. In the WAN environment
(see Section VI-C), we setup five long flows. Every 5 seconds,
a new flow is added and at 25s all of the five flows compete
for the bottleneck. Starting at 100s, every 5s one of the flows
finishes until 125 all flows are done. We can see that the
bandwidth can be shared evenly across the flows, which is
also evidenced by the average Jain’s index around 0.95. This
is because all of the Antelope flows pick the most effective
CCAs to compete with each other. We find that all of the flows
switch between CUBIC and BBR (the same selection in WAN
for long flows, shown in Table III).

For friendliness, we first compare Antelope with CUBIC in
a WAN environment. This is because Antelope usually selects
CUBIC in the WAN environment (see Table III). We setup one

Antelope and one CUBIC flow at 0s; we then setup a second
Antelope and second CUBIC flows at 20s, and a third Antelope
and CUBIC flow at 40s. Starting at 80s, every 20s, one
Antelope and one CUBIC flows completes. The throughput of
the six competing flows is shown in Figure 15b. We see that
Antelope fairly shares the bandwidth with CUBIC when new
flows enter and leave the network. The Jain’s fairness index
is close to 1, implying Antelope flows shares the bandwidth
with CUBIC flows friendly. We further compare Antelope with
BBR in a DCN environment. The results are presented in
Figure 15c. Again, we see that Antelope shares the bandwidth
fairly.

Discussion. Antelope chooses the CC algorithm that has
the highest reward value, and that may help to maintain the
friendliness in some situation. For instance, in large buffer
networks, flows with CUBIC will occupy all of the bandwidth,
while flows with BBR will have low performance in such
situations. However, Antelope can choose CUBIC for such
flows and compete with CUBIC to achieve better performance

14

and friendliness.

G. Validating Parameter Choice

Recall, η defines the influence of packet loss and δ deter-
mines the influence of delay for reward function in selecting
CCAs. We next inspect the best settings for η (default 1) and
δ (default 2). Figure 16 presents the performance (throughput,
delay) across the emulated DCN, WAN and cellular networks.
For each environment, we experiment with different values of
η and δ. From the figure we can see that, when we set η to 1,
the flow’s performance is superior compared to the values of
0.5 and 1.5. If we set η to 0.5, the performance in the cellular
network is worst. This is because the cellular network has high
packet loss, and the value of 0.5 makes the reward function
less sensitive to loss.

When δ is set to 1, Antelope achieves small delay but also
lower throughput. On the other hand, when δ is set to 3,
the flows’ throughput varies substantially. For example, in the
cellular environment, the throughput is larger, whereas for the
DCN and WAN, the throughput is small. This is because δ will
be 6 for the second data unit in this case, which will make the
flows’ performance more variable. Hence, we set δ’s initial
value as 2 to reduce the fluctuations.

H. Overhead

This section evaluates the extra overhead of Antelope when
we deploy all the three components (i.e. Information Collec-
tion, Mechanism Match and Mechanism Switch, see Figure 2)
on individual front-end servers. The overhead for Antelope
includes three parts: (1) the learning overhead in user space;
(2) the information exchange via eBPF; and (3) the CCA
switching in the kernel.

To evaluate the overhead, we setup a testbed using 4 servers
with two Intel(R) Xeon(R) Silver 4208 CPUs, 16 CPU cores,
128GB memory and 100Gb/s NIC. The servers connect to a
switch with 32 100Gb/s ports. Three servers act as clients to
generate TCP requests to the fourth server which acts as a
TCP sender. We change the traffic volume using the clients’
requests and then calculate the overhead at the sender.

We calculate the overhead of each constituent of overhead
by keeping other two unchanged. For example, when we
calculate the overhead of switching CCAs, we first record
the overhead of running the whole process. We then repeat
the same process but without the switching. We define the
computation overhead as the difference of CPU utilisation
(%) between these two measurements. The time overhead
is simply calculated by recording the time spent in each
function. Table IV presents the results taken as an average
across 10 runs. It is worth noting the CPU overhead is the
computation overhead introduced by all TCP traffic, while the
time consumed (T) is computed on per flow basis.

We see that the overhead introduced by the mechanism
switching (using eBPF in the kernel) is only 0.1%-0.2%, taking
0.001ms even when the traffic rate is 55Gb/s. The interaction
between kernel and user space for TCP stats and control
messages also incurs negligible overhead (the last two rows)

thanks to eBPF. This confirms previous findings that eBPF is
suitable for handling TCP-related operations in the kernel [25].

Unsurprisingly, the learning process incurs the largest com-
putational overhead: about 2-4.8% of CPU usage, where the
prediction time is about 140ms. Note that some flows may be
shorter than the time taken for learning. This is the primary
reason for why we set a default CCA at the beginning of
a flow and apply new CCAs to flows after some time (see
Section III). That said, we note that the CPU overhead is
potentially a little heavy for those servers which have a large
number of concurrent clients. Moving our prediction module
to the cloud could reduce the overhead, which we evaluate in
the following section.

I. Overhead Savings via Cloud Learning

Recall, we introduce the concept of cloud-based learning to
reduce the overhead introduced by Antelope on end servers.
We next evaluate these savings.

Setup. In our testbed, we set one learning cloud server and
10 end servers. Note, the end servers are those that are using
Antelope to send traffic to their clients. 5 end servers are in the
same DCN cloud with the learning cloud server (all loacted
in Shenzhen, China) . The other 5 end servers are in different
DCN cloud (loacted in Beijing, China) and they connect to the
learning cloud server over a WAN. The clients which send file
requests to end servers are in the same DCN with end servers.

Table V shows the CPU and time overhead of the whole
system. The results are divided into same cloud and different
cloud setups. We collect the CPU overhead of both the learning
cloud server and the end servers. The time is divided into
three parts: (i) total; (ii) learning time; (iii) communication
time. The total is the time interval which begins when the end
server sends the request to the learning cloud server and ends
when it receives the corresponding CC algorithms’ names.
The learning time is the time that the learning cloud uses to
compute the most suitable CC algorithm. The communication
time is the time taken to send the (HTTP) requests between
the learning cloud and the end server. We change the TCP
traffic volumes of the end servers by changing the bandwidth
setting by Mahimahi and the clients’ file requests (then record
the corresponding overhead). For example 40Mbps means that
all of the clients’ file requests return an average of 40Mbps
TCP traffic at each end server. The results are taken as an
average across 10 runs.

We further evaluate the memory usage due to the use of
eBPF at end servers in Table V. We see that the memory
usage increases as the traffic increases. However, it does not
multiply with the traffic. This is because we deletes the data
recorded by eBPF periodically to reduce memory usage (see
Section V-B). Overall, the memory consumption is reasonable
in practice.

Benefits. From Table V we see that as the training is moved
to the learning cloud, the CPU overhead (introduced by
Antelope) at the end server is reduced. Compared to the
overhead of performing training locally (see Table V), we find
that the load at the end server is to between 0.5% to 1.7%.

15

0 50 100
Time(s)

0

25

50

75

100

Th
ro

ug
hp

ut
(M

b/
s)

flow1
flow2
flow3
flow4
flow5

80

85

90

95

100

Fa
irn

es
s i

nd
ex

 (%
)

Index

(a) Fairness

0 50 100
Time(s)

25

50

75

100

Th
ro

ug
hp

ut
(M

b/
S)

Antelope1
CUBIC1
Antelope2
CUBIC2
Antelope3
CUBIC3

80

85

90

95

100

Fa
irn

es
s i

nd
ex

 (%
)

Index

(b) Friendliness in WAN

0 50 100
Time(s)

0

200

400

600

800

Th
ro

ug
hp

ut
(M

b/
S)

Antelope1
BBR1
Antelope2
BBR2
Antelope3
BBR3

80

85

90

95

100

Fa
irn

es
s i

nd
ex

 (%
)

Index

(c) Friendliness in DCN

Fig. 15: The fairness and friendliness of Antelope in different networks.

200 300 400
Delay(ms)

16.4

16.6

16.8

17.0

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
s)

=1.5 =2
=1 =2
=0.5 =2
=1 =1
=1 =3

(a) Cellular mix

1.9 2.0 2.1 2.2
Delay(ms)

25.5

26.0

26.5

27.0

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
s)

=1.5 =2
=1 =2
=0.5 =2
=1 =1
=1 =3

(b) Datacenter mix

250 300
Delay(ms)

6.4

6.5

6.6

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
s)

=1.5 =2
=1 =2
=0.5 =2
=1 =1
=1 =3

(c) WAN mix

Fig. 16: Comparison of the throughput and delay when we vary η and δ across different environments.

TABLE IV: Summary of resource consumption for Antelope. We present statistics on CPU load and execution time, across
different traffic loads.

Traffic rate 5Gb/s 15Gb/s 25Gb/s 35Gb/s 45Gb/s 55Gb/s
Overh. Type CPU T(ms) CPU T(ms) CPU T(ms) CPU T(ms) CPU T(ms) CPU T(ms)

Mechanism Learning 2% 135 3.6% 138 4.4% 140 4.6% 139 4.6% 138 4.8% 140
Mechanism Switching 0.1% 0.001 0.1% 0.001 0.1% 0.001 0.1% 0.001 0.2% 0.001 0.2% 0.001

Exchange To Data Module 0.16% 0.4 0.49% 0.4 0.68% 0.4 0.91% 0.4 0.95% 0.4 1.0% 0.4
To eBPF Map 0.1% 0.1 0.1% 0.1 0.1% 0.1 0.15% 0.1 0.2% 0.1 0.2% 0.1

TABLE V: Benefit and cost of cloud-based learning.

Traf.
(bps)

Same Cloud Different Clouds eBPF
memory

(MB)
CPU (%) Time (ms) CPU (%) Time (ms)

Cloud End Total Learning Comm Cloud End Total Learning Comm
40M 4.6 0.5 64 62 2 4.6 0.5 164.6 61.9 102.7 3
120M 4.8 0.9 66.8 64.8 2 5.2 0.8 170.7 65.9 104.8 5
200M 5.2 1.1 70.8 69.1 1.7 5.1 1.2 174.3 69.6 104.7 17
280M 5.3 1.2 71.8 70 1.8 5.9 1.2 178.8 70.3 108.5 17.5
360M 5.3 1.4 71.8 70 1.8 6.2 1.5 182.1 78.6 103.5 19
440M 5.8 1.6 72 70 2 6.7 1.7 186.7 80.9 105.8 22

This is consistent for end servers co-located with the learning
server as well as in different clouds.

This is because the end servers offloads the CPU overhead to
the learning cloud server. This leaves greater CPU resources
for application logic locally. As the number of end servers
increase, the relative benefits also increase as the cost can
be amortized. Furthermore, we can dynamically adjust the
learning cloud resources according to the number of end
servers. We conjecture if we use GPU to accelerate the
computation process in learning cloud, we could reduce the
learning time further.

Costs. To implement cloud-based learning, it is necessary for
end servers to communicate with the remote learning cloud

servers. The communication latency between the learning
cloud and the end servers is an extra cost. Table V presents
this latency, confirming that it is very small. Even when
we increase the TCP traffic rate, the communication latency
remains low at just 1∼2ms. For long flows, the latency for
switching CC algorithm is almost negligible. For short TCP
flows, as we have the default CC algorithm to use, such
influence is also acceptable. That said, for end servers residing
in different clouds to the learning server, we see much higher
latency, exceeding 100ms. Such latency may not be acceptable,
especially for the short TCP flows. Therefore, we recommend
to co-locate the end servers and cloud learning server as close
as possible (e.g. in the same DCN).

16

VII. RELATED WORK

TCP varieties. We are not the first to observe that CCAs
can be optimized for different environments. For instance,
Sprout [7], C2TCP [8], ExLL [39] and PBE-CC [40]
are specifically designed for cellular networks. Similarly,
DCTCP [11], pFabric [12], Timely [41] and Swift [13] are
designed for datacenter networks by using Explicit Congestion
Notification [42]. BFC [43] achieves near optimal throughput
and tail latency behavior in datacenter by hop-by-hop control.
TCPLS offers more control to the application by provid-
ing multiplexing, connection migration service in TCP [44].
Orca [20], Libra [45], TCP-Drinc [46] and [23] adjust CCAs’
parameters (e.g. congestion window size) using deep reinforce-
ment learning. In our work, we do not attempt to devise new
CCAs or adjust their parameters but, rather, we dynamically
select the best algorithm for observed network conditions on
demand. DCTCP [11], pFabric [12] and ACC [47] use ECN to
infer the network status (such as buffer and channel capacities)
and then adjust the congestion. Such mechanisms need the
support of routers. Our mechanism only requires end host
support and is therefore easier to deploy.

Selection of optimal CCAs. Most related to Antelope is
Rein [29], which also tries to select the most suitable CCAs for
different networks. Rein relies on rule-based selection. It first
classifies the network environment (e.g. WiFi or wired) and
uses the CCA that is manually designated to this environment.
In contrast, Antelope predicts CCAs more accurately via
machine learning. Furthermore, Rein uses pipe to exchange
information between user space and kernel while Antelope
relies on eBPF. This makes it easier to extend Antelope
with new CCAs and learning mechanisms. TCP-RL [48] is
another work that selects suitable CCAs using reinforcement
learning. However, TCP-RL implements the selection entirely
in user space based on Pantheon [30], which means indi-
vidual applications need to implement support. To improve
CDN performance, Configanator [49] provides programmatic
control for web server’s configuration parameters (such as
CCAs, initRTO, timestamps, version of HTTP and HTTP max
frame size). Antelope only targets CCAs, wheres Configanator
targets the whole web server. Antelope can be extended to
any application (not just a web server) via its kernel-level
integration.

TCP implementation in the kernel. Others have focused on
streamlining updated TCP implementations in kernel space.
This has partly been achieved via eBPF. For example, it is
possible to read TCP flow information from the kernel using
BCC [35], and tcp ebpf [25] has implemented TCP socket
operations (e.g. setting TCP socket parameters) using eBPF.
Such eBPF based operations can let users control TCP imple-
mentations from user space. CCP [50] designs an architecture
which divides the control of TCP from the datapath. We do
not make contributions to this space but, rather, rely on eBPF
to implement Antelope in a flexible and extensible fashion.

VIII. CONCLUSION

In this paper we have designed, implemented and evaluated
Antelope, a system for learning suitable CCAs on a per-flow

basis. Antelope predicts the most suitable CCAs using machine
learning with the network environment, flow states as well as
application requirements as input. We have shown that Ante-
lope can successfully apply the optimal or near-optimal CCAs
across a diverse range of network types. Through this, we can
improve performance without the need for administrators to
manually configure their stacks. We have also shown that the
extra overhead on individual front-end servers can be greatly
saved by implementing the machine learning part in the cloud
and sharing it among front-end servers. Antelope paves the
way for dynamic selection of CCAs.

REFERENCES

[1] J. Postel et al., “Transmission control protocol,” 1981.
[2] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp

variant,” ACM SIGOPS operating systems review, vol. 42, no. 5, pp.
64–74, 2008.

[3] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Queue, vol. 14, no. 5, pp.
20–53, 2016.

[4] J. C. Hoe, “Improving the start-up behavior of a congestion control
scheme for tcp,” ACM SIGCOMM Computer Communication Review,
vol. 26, no. 4, pp. 270–280, 1996.

[5] D. Rossi, C. Testa, S. Valenti, and L. Muscariello, “Ledbat: the new
bittorrent congestion control protocol,” in 2010 Proceedings of 19th
International Conference on Computer Communications and Networks.
IEEE, 2010, pp. 1–6.

[6] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in 15th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 18), 2018, pp. 329–342.

[7] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic forecasts
achieve high throughput and low delay over cellular networks,” in
Presented as part of the 10th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 13), 2013, pp. 459–471.

[8] S. Abbasloo, Y. Xu, and H. J. Chao, “C2tcp: A flexible cellular tcp to
meet stringent delay requirements,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 4, pp. 918–932, 2019.

[9] S. Abbasloo, T. Li, Y. Xu, and H. J. Chao, “Cellular controlled delay
tcp (c2tcp),” in 2018 IFIP Networking Conference (IFIP Networking)
and Workshops. IEEE, 2018, pp. 118–126.

[10] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg, “Adaptive
congestion control for unpredictable cellular networks,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, 2015, pp. 509–522.

[11] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the ACM SIGCOMM 2010 conference, 2010, pp. 63–
74.

[12] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp.
435–446, 2013.

[13] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu, B. Montazeri,
Y. Wang, K. Springborn, C. Alfeld, M. Ryan et al., “Swift: Delay
is simple and effective for congestion control in the datacenter,” in
Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, 2020, pp. 514–528.

[14] T. Li, K. Zheng, K. Xu, R. A. Jadhav, T. Xiong, K. Winstein, and
K. Tan, “Tack: Improving wireless transport performance by taming
acknowledgments,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 15–30.

[15] L. Salameh, A. Zhushi, M. Handley, K. Jamieson, and B. Karp,
“{HACK}: Hierarchical acks for efficient wireless medium utilization,”
in 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC}
14), 2014, pp. 359–370.

[16] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “Tcp
westwood: Bandwidth estimation for enhanced transport over wireless
links,” in Proceedings of the 7th annual international conference on
Mobile computing and networking, 2001, pp. 287–297.

17

[17] K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated
congestion control,” ACM SIGCOMM Computer Communication Re-
view, vol. 43, no. 4, pp. 123–134, 2013.

[18] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey,
and M. Schapira, “{PCC} vivace: Online-learning congestion control,”
in 15th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 18), 2018, pp. 343–356.

[19] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Make tcp great (again?!)
in cellular networks: A deep reinforcement learning approach,” arXiv
preprint arXiv:1912.11735, 2019.

[20] S. Abbasloo, C. Yen, and H. J. Chao, “Classic meets modern: A prag-
matic learning-based congestion control for the internet,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020, pp. 632–647.

[21] X. Li, F. Tang, J. Liu, L. T. Yang, L. Fu, and L. Chen,
“AUTO: Adaptive congestion control based on Multi-Objective
reinforcement learning for the Satellite-Ground integrated network,”
in 2021 USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, Jul. 2021, pp. 611–624. [Online]. Available:
https://www.usenix.org/conference/atc21/presentation/li-xu

[22] Y. Ma, H. Tian, X. Liao, J. Zhang, W. Wang, K. Chen, and X. Jin,
“Multi-objective congestion control,” arXiv preprint arXiv:2107.01427,
2021.

[23] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on internet congestion control,” in
International Conference on Machine Learning, 2019, pp. 3050–3059.

[24] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,
“Creating complex network services with ebpf: Experience and lessons
learned,” in 2018 IEEE 19th International Conference on High Perfor-
mance Switching and Routing (HPSR). IEEE, 2018, pp. 1–8.

[25] L. Brakmo, “Tcp-bpf: Programmatically tuning tcp behavior through
bpf,” NetDev 2.2, 2017.

[26] J. Zhou, X. Qiu, Z. Li, G. Tyson, Q. Li, J. Duan, and Y. Wang, “Antelope:
A framework for dynamic selection of congestion control algorithms,” in
2021 IEEE 29th International Conference on Network Protocols (ICNP),
2021.

[27] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mick-
ens, and H. Balakrishnan, “Mahimahi: Accurate record-and-replay
for {HTTP},” in 2015 {USENIX} Annual Technical Conference
({USENIX}{ATC} 15), 2015, pp. 417–429.

[28] W. Reda, K. Bogdanov, A. Milolidakis, H. Ghasemirahni, M. Chiesa,
G. Q. Maguire Jr, and D. Kostić, “Path persistence in the cloud:
A study of the effects of inter-region traffic engineering in a large
cloud provider’s network,” ACM SIGCOMM Computer Communication
Review, vol. 50, no. 2, pp. 11–23, 2020.

[29] K. Chen, D. Shan, X. Luo, T. Zhang, Y. Yang, and F. Ren, “One rein to
rule them all: A framework for datacenter-to-user congestion control,”
in 4th Asia-Pacific Workshop on Networking, 2020, pp. 44–51.

[30] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and
K. Winstein, “Pantheon: the training ground for internet congestion-
control research,” in 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), 2018, pp. 731–743.

[31] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu, “Interpreting
deep learning-based networking systems,” in Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and protocols for
computer communication, 2020, pp. 154–171.

[32] R. K. Yadav, N. Singh, and P. Piyush, “Genetic cocoa++: genetic
algorithm based congestion control in coap,” in 2020 4th International
Conference on Intelligent Computing and Control Systems (ICICCS).
IEEE, 2020, pp. 808–813.

[33] A. Giessler, J. Haenle, A. König, and E. Pade, “Free buffer allo-
cation—an investigation by simulation,” Computer Networks (1976),
vol. 2, no. 3, pp. 191–208, 1978.

[34] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[35] https://github.com/iovisor/bcc.
[36] A. Saeed, V. Gupta, P. Goyal, M. Sharif, R. Pan, M. Ammar, E. Zegura,

K. Jang, M. Alizadeh, A. Kabbani et al., “Annulus: A dual congestion
control loop for datacenter and wan traffic aggregates,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020, pp. 735–749.

[37] S. Floyd, “Metrics for the evaluation of congestion control mechanisms,”
Tech. Rep., 2008.

[38] F. Yang, Q. Wu, Z. Li, Y. Liu, G. Pau, and G. Xie, “Bbrv2+: Towards
balancing aggressiveness and fairness with delay-based bandwidth prob-
ing,” Computer Networks, vol. 206, p. 108789, 2022.

[39] S. Park, J. Lee, J. Kim, J. Lee, S. Ha, and K. Lee, “Exll: an extremely
low-latency congestion control for mobile cellular networks,” in Pro-
ceedings of the 14th International Conference on emerging Networking
EXperiments and Technologies, 2018, pp. 307–319.

[40] Y. Xie, F. Yi, and K. Jamieson, “Pbe-cc: Congestion control
via endpoint-centric, physical-layer bandwidth measurements,” arXiv
preprint arXiv:2002.03475, 2020.

[41] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based
congestion control for the datacenter,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 537–550, 2015.

[42] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in Proceedings of the 2002 con-
ference on Applications, technologies, architectures, and protocols for
computer communications, 2002, pp. 89–102.

[43] “Backpressure flow control,” in 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22). Renton,
WA: USENIX Association, Apr. 2022. [Online]. Available: https:
//www.usenix.org/conference/nsdi22/presentation/goyal

[44] F. Rochet, E. Assogba, M. Piraux, K. Edeline, B. Donnet, and
O. Bonaventure, “Tcpls: modern transport services with tcp and tls,”
in Proceedings of the 17th International Conference on emerging
Networking EXperiments and Technologies(CoNEXT), 2021, pp. 45–59.

[45] Z. Du, J. Zheng, H. Yu, L. Kong, and G. Chen, “A unified congestion
control framework for diverse application preferences and network
conditions,” in Proceedings of the 17th International Conference on
emerging Networking EXperiments and Technologies, 2021, pp. 282–
296.

[46] K. Xiao, S. Mao, and J. K. Tugnait, “Tcp-drinc: Smart congestion control
based on deep reinforcement learning,” IEEE Access, vol. 7, pp. 11 892–
11 904, 2019.

[47] S. Yan, X. Wang, X. Zheng, Y. Xia, D. Liu, and W. Deng, “Acc: Au-
tomatic ecn tuning for high-speed datacenter networks,” in Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, 2021, pp. 384–397.

[48] X. Nie, Y. Zhao, Z. Li, G. Chen, K. Sui, J. Zhang, Z. Ye, and
D. Pei, “Dynamic tcp initial windows and congestion control schemes
through reinforcement learning,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 6, pp. 1231–1247, 2019.

[49] U. Naseer and T. A. Benson, “Configanator: A data-driven approach
to improving {CDN} performance.” in 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22), 2022, pp.
1135–1158.

[50] A. Narayan, F. Cangialosi, D. Raghavan, P. Goyal, S. Narayana,
R. Mittal, M. Alizadeh, and H. Balakrishnan, “Restructuring endpoint
congestion control,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, 2018, pp. 30–43.

Jianer Zhou received his PhD degree from the
Institute of Computing Technology (ICT), Chinese
Academy of Sciences (CAS) in 2016. He is now
a Research Associate Professor with Southern Uni-
versity of Science and Technology, Shenzhen China.
His research interests lie in network performance, fu-
ture Internet architecture and Internet measurement.

18

Xinyi Qiu received her Master of Engineering de-
gree from Computer Network Information Center
(CNIC) Chinese Academy of Sciences (CAS) in
2018. She is now a engineer at Department of New
Networks Peng Cheng Laboratory, Shenzhen China.
Her research interests lie in network performance,
future Internet architecture and Internet measure-
ment.

Zhenyu Li received the BS degree from Nankai
University in 2003 and the PhD degree in Graduate
School of Chinese Academy of Sciences in 2009.
He is a Professor at the Institute of Computing
Technology, Chinese Academy Sciences. His re-
search interests include Internet measurement and
Networked Systems.

Qing Li received the B.S. degree (2008) from Dalian
University of Technology, Dalian, China, the Ph.D.
degree (2013) from Tsinghua University, Beijing,
China. He is currently an associate researcher in
the Department of Mathematics and Theories, Peng
Cheng Laboratory, Shenzhen, China. His research
interests include reliable and scalable routing of the
Internet, software defined networking, network func-
tion virtualization, in-network caching/computing,
edge computing, traffic scheduling, transmission
control, video delivery, etc.

Gareth Tyson received the PhD degree from Lan-
caster University in 2010. He is an Assistant Pro-
fessor at The Hong Kong University of Science
and Technology (GZ). His research interests include
Internet measurements, web computing and content
distribution.

Jingpu Duan received his B.E. degree from
Huazhong University of Science and Technology in
2013, and his Ph.D. degree from The University of
Hong Kong in 2018. He is currently an assistant
researcher in the Department of Broadband Com-
munication, Pengcheng Laboratory. His research in-
terests include designing and implementing high-
performance networking systems.

Wang Yi (Member, IEEE) received the Ph.D. degree
in computer science and technology from Tsinghua
University in July 2013. He is currently a Research
Professor with the Sustech Institute of Future Net-
works, Southern University of Science and Tech-
nology. His research interests include future net-
work architectures, information centric networking,
software-defined networks, and the design and im-
plementation of high-performance network devices.

Heng Pan received the PhD degree in computer sci-
ence from University of Chinese Academy Sciences
in 2018. He is an Associate Professor at the Insti-
tute of Computing Technology, Chinese Academy
Sciences. His research interests include SDN/NFV,
distributed system and in-network computation.

Qinghua Wu received the Ph.D. degree from
ICT/CAS in 2015. He is currently an Associate
Researcher at ICT/CAS. His research interests lie
in network transport protocol and Internet measure-
ments.

