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ABSTRACT

Modelling musical performers’ individual playing styles
based on audio features is important for music education,
music expression analysis and music generation. In violin
performance, the perception of playing styles are mainly af-
fected by the characteristic musical timbre, which is mostly
determined by performers, instruments and recording condi-
tions. To verify if timbre features can describe a performer’s
style adequately, we examine a violinist identification method
based on note-level timbre feature distributions. We first ap-
ply it using solo datasets to recognise professional violinists,
then use it to identify master players from commercial con-
certo recordings. The results show that the designed features
and method work very well for both datasets. The identifica-
tion accuracy with the solo dataset using MFCCs and spectral
contrast features are 0.94 and 0.91 respectively. Significantly
lower but promising results are reported with the concerto
dataset. Results suggest that the selected timbre features can
model performers’ individual playing reasonably objectively,
regardless of the instrument they play.

Index Terms— violinist identification, timbre feature dis-
tribution

1. INTRODUCTION

Musical structures established by composers and their inter-
pretation by performers are two key factors that impact ex-
pressive music performance. The diversity of musical expres-
sion mostly depends on the characterisation or individual in-
terpretation by different performers. In violin performance,
although the performer’s individual style is influenced by left-
hand playing techniques (such as vibrato), it is strongly af-
fected by the bowing gestures such as bow velocity, force,
acceleration or bow-bridge distance. In a previous study [1],
bowing data were acquired and measured using a hardware
systems. However, the use of expensive sensing systems and
complex setups are often intrusive in practice. Timbre features
extracted from audio are capable of characterising violin bow-
ing parameters to a good extent [2], while timbre variations
are characteristic of a performer’s individual preference and
personal style [3].

There are many previous studies focusing on musical ex-
pression analysis and performer classification. Stamatatos
and Widmer [4] proposed a set of features such as time de-
viation and melody lead [5] that capture aspects of pianists’
individual style. Saunders et al. [6] have applied string ker-
nels to the problem of recognising famous pianists by style.
Ramirez et al. [7] developed a machine learning approach to
identify Jazz saxophonists by analysing the pitch, timing, am-
plitude and timbre of individual notes.

There are also prior works on violin expression analysis
and violinist classification. Li et al. [8] developed a dataset
containing 11 expressive characteristics, then selected dura-
tion, dynamics and vibrato features to classify expressions us-
ing Support Vector Mechines (SVMs). Ramirez et al. [9] built
a Celtic violinist classifier using machine learning method.
Molina et al. [10] proposed an approach for identifying violin-
ists on monophonic audio recordings using a musical trend-
based model. Shih et al. [11] extracted articulation and en-
ergy features to compare different playing styles of Heifetz
and Oistrakh. The authors in [12] presents a leading violinist
identification method based on vibrato features and onset time
deviations, while similar statistical methods in the context of
piano performance proved valuable in [13].

To best of our knowledge, most previous works attempted
violinist identification using features of pitch, timing, en-
ergy or vibrato, but the variation of timbre features has never
been used to distinguish violinists. In this paper, we propose
note-level timbre feature distributions to model performers’
playing style, and present a method to identify violinists us-
ing these distributions. The flow chart of our approach is
shown in Figure 1. We firstly construct datasets from solo
musical scale recordings and concerto collections separately,
then annotate onset time of each note manually after audio
data pre-processing, which is introduced in Section 2. Next,
we extract note-level timbre features and standardise them,
followed by representing timbre variation characteristics for
each performer by calculating global histogram distributions
of each feature using all notes played by each performer. This
is presented in Section 3. The details of the experiment setup
as well as the results are discussed in Section 4. Finally,
Section 5 provides conclusions and outlines possible future
developments.



Timbre Feature Feature
Extraction Standardization

l

Music Data Pre- Note
Recordings| ~|processing| [Segmentation

Table 1. Concerto note segmentation dataset (’annotations’
refers to the number of note annotations in each movement).

Data Split and Feature
Result Performer Lo S

Output . . N Similarity (< Distribution
Evaluation Identification . X

Calculation Calculation

Fig. 1. Flow chart of the proposed methodology.

2. DATASETS

2.1. Solo violin dataset

During the European Bilbao project!, thirteen new (white) vi-
olins were designed and built and evaluated within a free cat-
egorisation task by ten professional violinists. In this study,
participants were invited to play a scale on each of the vi-
olins. The recordings were in a large rehearsal room at the
Bilbao conservatory under the same conditions, keeping the
position of the player and the microphone constant. We se-
lected a group of ten players for our dataset, which consists
of 10 x 13 musical scales in total. Each scale contains around
37 notes.

Since we aim to analyse note-level timbre features among
different performers, the onset time label of each note needs
to be accurate. Although there are many automatic onset de-
tectors, the accuracy on violin recordings is not sufficient for
our purposes, therefore we labeled onset times manually.

2.2. Concerto dataset

To investigate expressive performances of master players, we
created a dataset of violin concerto pieces due to the genre’s
focus on the solo instrument. We selected five concertos writ-
ten by five well-known composers listed in Table 1. These
pieces have all been performed by nine violinists: Jascha
Heifetz, Anne Sophie Mutter, David Oistrakh, Itzhak Perl-
man, Pinchas Zukerman, Isaac Stern, Salvatore Accardo,
Yehudi Menuhin and Maxim Vengerov, who are all leading
master violinists.

To extract note-level timbre features, we first segment the
original music into several clips, then select at least 2 clips
from each movement and annotate onset times for each note
in the clips. The process of segmenting and selecting origi-
nal concerto movements and the onset annotation method are
discussed in [12]. Details of the recordings and the number
of labeled notes in each movement are provided in Table 1.

3. METHODOLOGY

In this section, we present the method of violinist identifica-
tion based on timbre feature distributions. To reduce possible
differences in timbre characteristics due to varying recording
conditions in both datasets, the data was pre-processed first.

'https://www.bele.es/en/bilbao-project-introduction

‘ Composer ‘ Concerto Name ‘ Movement ‘ annotations ‘
1 664
L. V. Beethoven | Violin Concerto in D major, Op.61 11 239
111 352
1 262
J. Brahms Violin Concerto in D major, Op.77 1T 157
111 193
1 204
F. Mendelssohn Violin Concerto in E minor, Op.64 I 201
111 235
1 225
P. 1. Tchaikovsky | Violin Concerto in D major, Op.35 11 177
il 148
1 233
J. Sibelius Violin Concerto in D minor, Op.47 11 200
11 186

Details of this process are introduced in Section 3.1. Tim-
bre feature extraction and violinist identification methods are
presented in subsequent sections respectively.

3.1. Data pre-processing

As outlined in Section 2, in the concerto dataset, recording
conditions including concert hall or studio environment, mu-
sical instrument, microphone configuration and types as well
as the accompanying philharmonic orchestra are different.
This will influence timbre features and the identification per-
formance. In the solo violin dataset, although all performers
used same studio and microphone, it is hard to ensure their
distance and direction from the microphone are kept constant.
Therefore, to make the extracted features more comparable
among performers, we first remove silent regions in each
music clip, then loudness normalisation is applied using the
EBU standard [14]. All steps were completed in Audacity?.

3.2. Timbre feature extraction

We selected features that are either commonly used in the lit-
erature in related tasks, or have been validated in the context
of violin bowing technique recognition in [2]. Six tim-
bre related features are considered. One feature represents
spectral moments (Spectral Centroid), three features describe
primarily the shape of the spectrum (Mel-Frequency Cepstral
Coefficients, Spectral Bandwidth [15] and Spectral Contrast
[16]) and further two are temporal features (RMS energy and
Zero-crossing rate). The reader is referred to [17, 18, 19, 20]
for a detailed discussion of these features. The segmented
notes in both datasets are divided into short overlapping
frames (fs;=44.1 kHz, frame length = 2048, hop size = 512)
and for each frame all features are extracted.

’https://www.audacityteam.org/



3.3. Feature representation and modeling

There are many factors that influence timbre features includ-
ing instruments, performers, and recording conditions. Fur-
thermore, features such as spectral centroid or MFCCs are
also influenced by the note pitch. Therefore, raw features
are not directly comparable between performers. In this re-
search, we assume the variation of timbre features within a
note are mostly affected by performer’s individual playing,
and the distribution of timbre variations could model perform-
ers’ characteristic performance.

3.3.1. Feature standardisation

We calculate the z-score of each feature vector at the note-
level, which means standardising features by removing the
mean and scaling to unit variance, i.e., the standard z-score of
each sample x in the feature vector is calculated using Eq. 1:

z= . ey

where p is the mean value of the feature vector, and o is
the standard deviation.

3.3.2. Feature distributions

We use histograms to calculate feature distributions of all
notes played by each performer assuming these provide com-
pact representations of the violinists’ style, which we can use
later for identification. Particularly, for multi-dimensional
features, we use 2D histograms to model such data distribu-
tions.

Figure 2 shows the global distribution of the 3rd coef-
ficient of MFCCs (c3) for four performers in solo dataset,
where the x axis means the range of standardised feature,
and the y axis presents the frequency. We abbreviate ’Per-
fomerl’ as 'P1’°, and the same abbreviation is applied to all
ten performers. The shape of such distributions are different,
as demonstrated in the figure, which provides the basis for our
hypothesis that these features are capable of characterising
individual differences in performance style well. The sharp-
ness, position of highest bar, and slope are different among the
observed distributions. Based on similar observations across
different performers and features, we assume that such fea-
tures indeed reflect an important aspect of the performer’s in-
dividual timbre characteristics.

3.4. Violinist identification

In order to quantify these differences, we calculate the sim-
ilarity of distributions of each feature for all performers us-
ing the Kullback-Leibler (KL) divergence [21] Dg 1 (P||Q)
shown in Eq.2. This corresponds to the likelihood ratio be-
tween two distributions and tells us how well the probability
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Fig. 2. Distribution of four performers’ standardised
MFCC (c3) feature in solo dataset.

distribution () approximates the probability distribution P by
computing the cross-entropy minus the entropy.
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For classification, the KL divergence is calculated be-
tween each timbre feature distributions of an unknown per-
former and every known performer in the dataset. Minimum
divergence identifies the unknown performer. Classification
experiments using this approach are presented in the Sec-
tion 4.

4. EXPERIMENTS AND RESULTS

In this section, we first introduce three baseline methods and
identify violinist in our two datasets. Then apply the proposed
novel violinist identification method on the solo violin dataset
and concerto dataset separately, investigating how it performs
in identifying violin players under different conditions.

For each experiment, we test the proposed identifica-
tion method using Leave-One-Group-Out Cross Valida-
tion (LOOCYV) and show the classification result (F-measure)
for all performers in the dataset. The results using each
feature are also discussed and shown separately.

4.1. Baseline methods

We use three classifiers including K-Nearest Neighbour (KNN),
Gaussian Mixture Model with KL divergence (GMM-KL)
and Gaussian Mixture Model with Universal Background
Model (GMM-UBM) as baseline, and MFCCs are set as in-
put feature because these perform best in previous works as
well as in our proposed method. These baseline methods are



Table 2. Violinist identification results using two datasets.

Concerto dataset

Method Feature

Solo dataset

Precision  Recall ~F-score  Precision Recall F-score
KNN MEFCCs 0.253 0.216 0.234 0.469 0.435 0.451
GMM-KL MFCCs 0.279 0.243 0.250 0.588 0.542 0.553
GMM-UBM MEFCCs 0.323 0.316 0.319 0.789 0.763 0.775
Spectral Centroid 0.235 0.236 0.235 0.459 0.438 0.439
RMS 0.170 0.167 0.165 0.789 0.777 0.781
Pronosed Method Spectral Bandwidth 0.179 0.194 0.170 0.370 0.369 0.365
P Zero-crossing rate 0.137 0.135 0.136 0.243 0.246 0.235
Spectral Contrast 0.324 0.283 0.302 0.918 0.908 0.908
MFCCs 0.341 0.333 0.326 0.941 0.938 0.937
used for violinist identification [10], music similarity estima-
tion [22], and violin classification [23], therefore we adopt »
them as baseline to identify violinists for both datasets, the < 00 00 00
details of data split and experiment setup are kept the same as . 00 00 00
in the experiments in Section 4.2 and Section 4.3. & -08
9 0.0 00 00
4.2. Violinist identification using the solo dataset g CONICUNOC »
. . 3 00 00 00
In this experiment, we first select a performer as test per- 2z
z 00 00 00

former, then designate one musical scale that was played with
a certain violin from that performer as test data. Other musical
pieces played with the selected violin from other performers
are left out, whereas the remaining pieces from all perform-
ers (including the test performer) are placed in training set.

We compute the KL divergence between each feature’s
distribution from test performer and the same features for ev-
ery performer in the training data. The similarity results for
timbre characteristics based on six features can be separately
obtained between the test performer and every performer in
the training set. The smaller the KL divergence the greater the
similarity, therefore we treat the performer that corresponds
to the minimum value as the identified performer with each
feature. This is effectively a nearest neighbour classification
scheme.

Table 2 shows the F-measure result of violinist identifica-
tion using each feature distribution separately. MFCCs work
best among all features, which suggests the feature has good
discrimination power on performers. The confusion matrix is
shown in Figure 3 corroborating our observation.

4.3. Master violinist identification using concertos

Next, we assess the same method tested on scales to violin
notes extracted from concerto recordings. In order to avoid
overlapping musical segments between the training and test
sets, we use movement-level LOOCYV in this experiment. We
designate all annotated notes from one concerto played by all
9 performers as the test set, while the remaining recordings
are placed into the training set, thus 15-fold cross validation
is applied in this task. We use same KL divergence calcula-
tion to identify violinist. The results for timbre characteristics
based on six timbre features are also shown in Table 2.
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Fig. 3. Normalised confusion matrix for violinist identifica-
tion using standardised MFCC feature distributions.

Similarly to the results from solo dataset, MFCC and
Spectral Contrast are the best two features for identifying vi-
olinists, which confirms these features are helpful to identify
performers.

5. DISCUSSION AND CONCLUSION

Given the results obtained in Table 2, we conclude that the
proposed method works very well on solo violin dataset
(all performers can be identified correctly) especially using
the MFCC features. Similarly, timbre features are helpful
to recognise violinists from concerto dataset although the
results are somewhat less convincing. The results indicate
that the distribution of note-level standardised timbre feature
can reasonably capture and model the violinists’ individual
playing style.In the future, a larger dataset and additional
features such as vibrato [24] may yield more robust result. To
avoid the influence of accompaniment, we may apply source
separation to isolate the violin performance.
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