
Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

DIFFERENTIABLE TIME–FREQUENCY SCATTERING ON GPU

John Muradeli∗, Cyrus Vahidi#, Changhong Wang+, Han Han+, Vincent Lostanlen+,
Mathieu Lagrange+, George Fazekas#

+LS2N, CNRS, Nantes Université #Center for Digital Music
École Centrale Nantes, France Queen Mary University of London, UK

∗john.muradeli@gmail.com firstname.lastname@ls2n.fr f.lastname@qmul.ac.uk

ABSTRACT

Joint time–frequency scattering (JTFS) is a convolutional operator
in the time–frequency domain which extracts spectrotemporal mod-
ulations at various rates and scales. It offers an idealized model
of spectrotemporal receptive fields (STRF) in the primary auditory
cortex, and thus may serve as a biological plausible surrogate for
human perceptual judgments at the scale of isolated audio events.
Yet, prior implementations of JTFS and STRF have remained out-
side of the standard toolkit of perceptual similarity measures and
evaluation methods for audio generation. We trace this issue down
to three limitations: differentiability, speed, and flexibility. In this
paper, we present an implementation of time–frequency scatter-
ing in Python. Unlike prior implementations, ours accommodates
NumPy, PyTorch, and TensorFlow as backends and is thus portable
on both CPU and GPU. We demonstrate the usefulness of JTFS via
three applications: unsupervised manifold learning of spectrotem-
poral modulations, supervised classification of musical instruments,
and texture resynthesis of bioacoustic sounds.

1. INTRODUCTION

Human listening plays a central role in the development and eval-
uation of digital audio effects (DAFx) [1]. Yet, listening tests are
costly and time-consuming as they typically rely on expert par-
ticipants. For this reason, recent publications have proposed to
mimic the behavioral response of the average listener by means of a
computational surrogate [2, 3]. In particular, experimental findings
in auditory neurophysiology suggest that our primary cortex re-
sponds selectively to spectrotemporal modulations at various rates
and scales [4]. Each of these responses may be simulated by an
idealized model known as spectrotemporal receptive field (STRF).
Hence, the space of STRF coefficients appears as a natural candi-
date for comparing two sounds out of context; and indeed, studies
in music psychology have confirmed that Euclidean distances in
STRF space approximate timbre dissimilarity judgments between
isolated musical notes [5].

However, despite its potential for developing perceptually in-
formed audio synthesis, the STRF has received limited adoption
within the DAFx community as well as music information retrieval
(MIR) and machine learning for signal processing (MLSP). Indeed,

Cyrus Vahidi is a researcher at the UKRI CDT in AI and Music, sup-
ported jointly by the UKRI (grant number EP/S022694/1) and Music Tribe.
This work was conducted while at LS2N, CNRS. Changhong Wang is sup-
ported by an Atlanstic2020 project on Trainable Acoustic Sensors (TrAcS).
Copyright: © 2022 John Muradeli et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

we notice three shortcomings in the NSL Auditory–Cortical Tool-
box [6], which we consider to be the reference implementation of
STRF 1. First, it lacks scalability: the code is written in MATLAB,
does not accommodate parallel computing, and is not portable onto
GPU hardware. Second, it lacks flexibility: the toolbox assumes
that the audio input has a sample rate of 16 kHz and subsamples
all subbands in the constant-Q filterbank to 125Hz, even though
the critical sample rate should depend on center frequency so as to
minimize memory usage while avoiding aliasing artifacts. Thirdly,
it lacks differentiability: although the authors do provide a modified
Griffin-Lim algorithm for reconstructing an audio signal from its
STRF coefficients, MATLAB’s NSL and related toolboxes do not
perform reverse-mode automatic differentiation, unlike PyTorch
or TensorFlow. The same three issues are found again in the tool-
box “strf-like-model” of [3], which is a Python port of the NSL
Auditory–Cortical Toolbox using NumPy as its backend 2.

In this paper, we present a Python implementation of “Joint
Time-Frequency Scattering” (JTFS) [7], that is, a fast and numeri-
cally accurate discretization of STRF. While there have been imple-
mentations of JTFS in MATLAB since 20143 4, ours is the first to
support GPU computing and automatic differentiation. To accom-
plish this, we have extended Kymatio5, a library for wavelet-based
processing in Python released in 2019 [8], with code that now con-
stitutes a permanent branch called dafx2022-jtfs6, in WaveSpin, a
library currently under development. We show the potential of the
implementation to different research topics with three examples:
unsupervised manifold learning of spectrotemporal modulations,
supervised classification of musical instruments, and texture resyn-
thesis of bioacoustic sounds. Beyond the demonstrated use cases,
differentiable implementations of scattering have potential to en-
able parametric scattering filterbanks [9] and audio synthesis loss
functions. Our supervised classifier is the first instance of “hybrid
representation learning” [10] which interfaces JTFS with a 2-D
deep convolutional network (convnet). Furthermore, we outline
an activation function for scattering-based neural networks, under
the name of mean-based logarithm (µ–log). We demonstrate state-
of-the-art musical instrument classification results in the setting
of limited annotated training data. For the sake of reproducibility,
we provide open-source code, with experiments reproduced in a
repository named JTFS-GPU7, alongside supplementary material8.

1http://nsl.isr.umd.edu/downloads.html
2https://github.com/EtienneTho/strf-like-model
3https://www.di.ens.fr/data/software/scatnet
4https://github.com/lostanlen/scattering.m
5https://www.kymat.io/
6Time-frequency scattering: https://github.com/OverLordGoldDragon/

wavespin/tree/dafx2022-jtfs
7Experiments repository: https://github.com/cyrusvahidi/jtfs-gpu
8Companion website: https://cyrusvahidi.github.io/jtfs-gpu

DAFx.1

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

280

http://creativecommons.org/licenses/by/4.0/
http://nsl.isr.umd.edu/downloads.html
https://github.com/EtienneTho/strf-like-model
https://www.di.ens.fr/data/software/scatnet
https://github.com/lostanlen/scattering.m
https://www.kymat.io/
https://github.com/OverLordGoldDragon/wavespin/tree/dafx2022-jtfs
https://github.com/OverLordGoldDragon/wavespin/tree/dafx2022-jtfs
https://cyrusvahidi.github.io/jtfs-gpu

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

Figure 1: Scalograms (top) and scale–rate visualizations (bottom) from the joint time–frequency scattering transforms of exemplary audio
signals: (a) amplitude-modulated chirp signal; (b) downward glissando musical instrument playing technique; (c) and (d) are the sounds of
two types of birds, the laughing gull and the Northern goshawk. Each scale–rate visualization shows the response of a second-order 2-D
wavelet ψ of temporal rate α, frequential scale β and orientation θ = ±1 when convolved with the scalogram X . See Section 2 for details
on joint time–frequency scattering.

2. TIME–FREQUENCY SCATTERING

Proposed in [7], the joint time–frequency scattering (JTFS) trans-
form captures the spectrotemporal modulations of a signal at vari-
ous rates and scales. This is achieved by decomposing the signal
with joint wavelet convolutions, nonlinearities, and pooling opera-
tions.

Letψ(t) andψ(λ) denote the basis function (“mother wavelet”)
for the decomposition along the time, t, and the log-frequency axis,
λ, respectively. Both wavelets are complex analytic, of which the
Fourier transform is null for negative frequencies, i.e. ψ̂(ω) = 0
for ω < 0. Our implementation uses the Morlet wavelet, i.e.
a complex sinusoid modulated by a Gaussian envelope, due to
its quasi-optimality in terms of Heisenberg time–frequency un-
certainty. ψλ(t) is the temporal wavelet filterbank dilated from
ψ(t). Convolving a waveform x(t) with each wavelet in ψλ(t)
and applying pointwise complex modulus yields the scalogram
X(t, λ) =

∣∣x ∗ ψλ

∣∣(t), which is a two-dimensional (2-D) time–
frequency image, as shown by the examples in Fig. 1 (top).

To extract the spectrotemporal modulations of an STRF cen-
tered at (t, λ), we decompose the scalogram with a joint time–
frequency wavelet Ψα,β,θ(t, λ). α and β are the temporal rate and
frequential scale, respectively. θ = ±1 is the orientation of the
STRF, with θ = −1 denoting a positive slope while θ = +1 a
negative one. ψα(t) and ψβ(λ) are the temporal and the frequen-
tial wavelet filterbank dilated from their mother wavelets, ψ(t) and
ψ(λ), respectively:

ψα(t) = 2αψ(2αt) and

ψβ,θ(λ) = 2βψ(θ2βλ). (1)

The joint time–frequency wavelet Ψα,β,θ(t, λ) is the outer product
between the temporal wavelet ψα(t) and the frequential wavelet
ψβ,θ(λ):

Ψα,β,θ(t, λ) = ψα(t)ψβ,θ(λ). (2)

We then convolve the scalogram with the 2-D joint wavelet
filterbank Ψα,β,θ(t, λ), apply a complex modulus, and average it

by a 2-D lowpass filter ΦT,F (t, λ). Following [7], we define the
joint time–frequency scattering of X(t, λ) as:

SJTFS
2 x(t, λ, α, β, θ) =

(∣∣X t,λ
∗ Ψα,β,θ

∣∣ t,λ
∗ ΦT,F

)
(t, λ). (3)

The symbol
t,λ
∗ denotes a 2-D convolution over both the time vari-

able t and the log-frequency variable λ. Hence, for each location
around (t, λ) in the time–frequency domain, we obtain a 3-D tensor
indexed by (α, β, θ), capturing spectrotemporal modulation infor-
mation. SJTFS

2 x in Eq. (3) has invariance properties to time-shifts,
time-warps, and frequency transpositions, for a receptive field re-
stricted by the time scale T and frequency interval F . In certain
cases, we may omit frequential averaging in order to preserve equiv-
ariance to frequency transposition. This results in a variant of Eq.
(3):

SJTFS
2 x(t, λ, α, β, θ) =

(∣∣X t,λ
∗ Ψα,β,θ

∣∣ t∗ΦT

)
(t, λ). (4)

Fig. 1 shows the scalogram (top) and the scale–rate visualiza-
tions of JTFS (bottom) for four audio examples. (a) is a synthesized
amplitude-modulated chirp signal of constant chirp rate, see Section
3.2 for details. (b) is a glissando playing technique performed on
the Chinese bamboo flute (dizi); (c) and (d) are the vocalisations of
two species of birds: the laughing gull and the Northern goshawk
(Accipiter gentilis). The first two examples are isolated events with
upward and downward frequency change, respectively, while the re-
maining two are real-world acoustic events with temporal variations
in chirp rate and directionality.

In Fig. 1, we visualize JTFS coefficients before averaging,
i.e. |X ∗ Ψα,β,θ|, with one scale–rate combination for each of
the audio examples. All visualizations cover the complete time t
and log-frequency λ axes, and both directions of θ. For instance,
Fig. 1 (a) bottom displays the JTFS obtained by convolving X(t, λ)
with Ψ9,5,−1 and Ψ9,5,1 respectively, taking complex modulus and
lowpass filtering. 9 and 5 denote the temporal rate and frequential
scale indices, respectively. The scale–rate visualizations of (b),
(c), and (d) are obtained in the same way. As can be seen in

DAFx.2

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

281

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

the first two isolated examples (a) and (b), the direction of the
spectrotemporal patterns are clearly captured: the JTFS energy
concentrates on θ = −1 for upward frequency changes in (a), while
for the downward frequency variations in (b), θ = +1 dominates
the spectrotemporal modulations. The main directions of frequency
modulations of each isolated event in examples (c) and (d) are also
captured. We explore these two examples further in Section 5 in a
task of audio texture resynthesis via JTFS coefficients.

3. SIMILARITY RETRIEVAL

3.1. Motivation

In this section, we compare the abilities of audio representations to
serve as a similarity measure between audio signals with real-world
factors of variability. We design a sound synthesizer to generate
a dataset of amplitude modulated chirp (AM/FM) signals, that is
controlled by three parameters: carrier frequency (fc, in Hz), am-
plitude modulation frequency (fm, in Hz) and chirp rate (γ, in
octaves/second). Such amplitude and frequency modulations are
typically found within musical instrument playing techniques [11].
We visualize similarity of the synthesized signals on a manifold
embedding and assess recovery of the synthesizer parameters under
several audio representations: Mel-frequency cepstral coefficients
(MFCCs), time scattering (Scattering1D), time–frequency scatter-
ing (JTFS), spectrotemporal receptive fields (STRFs) and OpenL3
embeddings. MFCCs result from computing a log-mel spectrogram
(logmelspec) followed by a discrete cosine transform (DCT). The
cortically-inspired spectrotemporal receptive field (STRF) transfor-
mation serves as a representation of spectrotemporal modulations
[3]. OpenL3 embedding is a deep feature representation that results
from training L3-Net for audiovisual correspondence [12].

3.2. Synthetic Dataset of Modulated Chirps

We define a generator g of exponential “chirps” with three factors of
variability: a carrier frequency fc, an amplitude modulation (AM)
frequency fm, and a frequency modulation (FM) rate γ. Denoting
by θ the triplet (fc, fm, γ), we have for every θ:

gθ : t 7−→ ϕw(γt) sin(2πfmt) sin

(
2πfc
γ log 2

2γt
)
, (5)

where ϕw is a Gaussian window of characteristic width equal to
w. The AM/FM signal gθ has an instantaneous frequency of fc2γt

and an essential duration of w/γ. Thus, it covers a bandwidth w,
independently from θ. We set w = 2 octaves in the following.

We highlight a physical correspondence of the synthesizer
parameters to the wavelet variables in Section 2. fc corresponds to
the log-frequency λ of first-order scattering wavelets. Amplitude
modulation frequency fm can be adequately described by second-
order temporal wavelet rate α. The chirp rate γ accounts for a
relationship between frequential wavelets of scale β and rate α, i.e.
β = α

γ
.

We apply Eq. (5) for 16 values of fc, fm, and γ, arranged in
a geometric progression; hence yielding a dataset of 163 = 4096
audio signals in total. We vary fc between 512Hz to 1024Hz;
fm, between and 4Hz to 32Hz; and γ, between 0.5 and 4 oc-
taves/second respectively. Fig. 2 illustrates the constant-Q trans-
form of two chirp signals of 512Hz fundamental frequency, with

chirp rates γ = 0.5 and γ = 4 octaves per second and equal
bandwidth 2 octaves9.

Figure 2: constant-Q transform of two AM/FM signals with chirp
rate γ = 0.5 (left) and γ = 4 (right) octaves/second, respectively.
Both cases have a carrier frequency fc of 512Hz, a modulation
frequency fm of 3Hz, and a bandwidth equal to two octaves.

3.3. Manifold Learning and Visualization

To visualize similarity relationships between the AM/FM signals,
we apply the Isomap algorithm for unsupervised dimensionality
reduction [13]. Isomap assembles a geodesic distance matrix by
using neighborhood relationships from high-dimensional Euclidean
distances. We first compute the MFCCs, Scattering1D and JTFS
coefficients, STRFs and OpenL3 embeddings over the dataset of
AM/FM signals. Under the Isomap algorithm, we consider each
representation separately. To compute the nearest neighbor graph,
we consider the 40 nearest neighbors for each transformed data
point. We select three components for the manifold visualization.
The audio dataset described in Section 3.2 characterizes three inde-
pendent degrees of freedom, therefore we postulate that Isomap will
reveal whether the coordinates of an audio representation reflect
similarities within the AM/FM signals. Musical instrument playing
techniques are a class of signals that vary significantly in amplitude
and frequency modulation content. A recent publication showed
that distances on the K-nearest-neighbor graph of JTFS reflected
human similarity judgements between playing techniques [2].

We compute time–frequency scattering coefficients by means
of our newly introduced implementation. We transform each of
the 4096 signals synthesized via Eq. (5), setting J = 14 octaves,
Q = 8 filters per octave and T = 1000 ms. We omit frequential av-
eraging to preserve equivariance to pitch transposition (see Eq. (4)).
We set J = 14 to enable analysis of slower modulations via the tem-
poral filterbank, with center frequencies reaching approximately 0.1
Hz. We also compute time scattering (Scattering1D) coefficients
using Kymatio [8], setting Q = 1 and J = 14 with global tempo-
ral averaging. Time scattering does not capture spectrotemporal
patterns beyond a log-frequency interval 1/Qf , where Qf is the
quality factor (ratio of center frequency to bandwidth). Hence, by
setting Q = 1, which results in Qf = 2.5, we guarantee that the
scalogram contains at least one amplitude modulation cycle, given
a modulation frequency of at least 4Hz and a chirp rate of at most
4 octaves per second.

Fig. 3(b) and (c) show three-dimensional (3-D) visualizations
of the Isomap embeddings for time scattering (Q = 1) and time–
frequency scattering (Q = 8), respectively. In the case of both
transformations and the application of Isomap manifold learning,

9See companion website: https://cyrusvahidi.github.io/jtfs-gpu

DAFx.3

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

282

https://cyrusvahidi.github.io/jtfs-gpu

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

the dataset of AM/FM signals is represented as a 3-D mesh where
the principal components align independently with fc, fm and γ.
Both transformations with their respective hyperparameters are
capable of disentangling and linearizing fundamental frequency,
tremolo rate and chirp rate, which describe spectrotemporal modula-
tion patterns. Fig. 3(c) visualizes the embedding for time scattering
when Q = 8. In this case, we observe that time scattering lies
on a 2-D manifold that adequately describes fc and γ, yet fails
to account for similarity in fm due to the aforementioned reasons.
Despite time scattering successfully disentangling the 3 factors of
variability when Q = 1 (Fig. 3(b)), other applications may demand
a a greater quality factor in order to better localize in frequency.

As a comparison, we also compute Isomap embedding for the
dataset’s MFCCs (Fig. 3(a)), STRFs (Fig. 3(e)), and OpenL3
embeddings (Fig. 3(f)). We compute MFCCs using librosa V0.8
default parameters, yielding 20 coefficients [14]. STRFs are com-
puted by means of the ‘strf-toolkit‘ [3] using the default parameters
and setting the input duration to 4 seconds. OpenL3 embeddings
are extracted using the music model of the publicly available Python
package10, resulting in 6144 coefficients after globally averaging in
time.

We observe that in the case of MFCCs, the Isomap embedding
forms a curved 2-D manifold, whereas our dataset contains three
factors of variability. Only the fundamental frequency fc clearly
aligns with one of the Cartesian coordinates. Meanwhile, similari-
ties between amplitude modulation rates fm and chirp rates γ are
not represented faithfully. Therefore, neighboring points on the
graph may have very dissimilar values of fm and γ. This is also the
case for STRFs and OpenL3, where proximity relationships in the
Isomap embeddings do not reflect similarity in tremolo rate fm. In
our experiment, the STRF fails to retrieve similarity in amplitude
modulation rates. To determine the cause of this outcome demands
a more thorough investigation as this behavior is contrary to its
theoretical specification. Fundamental frequency and chirp rate are
disentangled onto independent components, yet high chirp rates are
densely clustered for all carrier frequencies.

3.4. Regression from Nearest Neighbors

As a quantitative supplement to the visualizations from the previous
section, we assess regression of the synthesizer’s three parameters
θ = (fc, fm, γ) with K-nearest neighbors regression algorithm
(K-NN). K-NN parameter regression relies on Euclidean distances
between examples in their feature representations. Therefore, its
regression error sheds light on the degree of topological alignment
between feature space and parameter space. Such an alignment is
essential in common audio recognition tasks, as the parameters are
physical correspondents of audio similarity.

For each example, we start from an empty set of neighbors
N0 = ∅. Then at each iteration, we select its closest neighbor by
computing its pairwise Euclidean distance with all other examples.
We stop afterK iterations, resulting in a set ofK nearest neighbors.

Nk+1(θi) = Nk(θi) ∪

{
argmin

θj ̸∈Nk(θi)

∥Sg(θj)− Sg(θi)∥2

}
(6)

We compute an estimate of the parameter θ̃i as the average of its
values at the K nearest neighbors. We define the error ratio as

10https://openl3.readthedocs.io

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Isomap embeddings of a synthetic dataset of amplitude
modulated sinusoidal chirps (see Section 3.2) represented by: (a)
MFCCs, (b) time scattering (Q = 1) and (c) (Q = 8), (d) time–
frequency scattering, (e) STRFs and (f) OpenL3 embeddings. The
configurations for these features are outlined in Section 3.3. The
embedding is fully unsupervised, using acoustic features alone. The
colour range of the markers indicates an increasing value from blue
to red via white, corresponding to the signals’ carrier frequency fc
(left), tremolo rate fm (center) and chirp rate γ (right).

θ̃i/θi, where:

θ̃i =
1

K

∑
θj∈NK(θi)

θj . (7)

We use the same K = 40 nearest neighbor graph computed by the
Isomap algorithm in the previous section. We regress each exam-

DAFx.4

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

283

https://openl3.readthedocs.io

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

ple’s parameters for each of the audio representations and plot their
error ratios in Fig. 4. All feature representations are capable of re-
gressing carrier frequency fc with error ratios close to 1. However,
larger performance discrepancies can be observed in modulation
frequency and chirp rate. Aligned with our observations in Section
3.3, time scattering and JTFS excel at linearizing modulation fre-
quency in the Euclidean space, with error ratios within range of
0.75 to 1.5. Meanwhile, all features except MFCCs extract chirp
rate within error ratios between 0.75 to 1.25.

Figure 4: Error ratios that result fromK-nearest neighbors (K-NN)
regression of the AM/FM signal dataset’s (Section 3.2) three param-
eters: carrier frequency (fc), tremolo modulation frequency (fm)
and chirp rate (γ). We performed K-NN regression via the nearest
neighbor graphs (K = 40) that result from MFCCs, time scattering
coefficients, time–frequency scattering coefficients, OpenL3 em-
beddings and STRFs. We refer the reader to Section 3 for details
on the feature extraction hyperparameters.

4. TIME–FREQUENCY SCATTERING 2-D:
CONVOLUTIONAL CLASSIFIER

Recent publications have demonstrated time–frequency scattering
as a state-of-the-art feature extractor for music classification tasks,
including detection of the type of instruments played [7] and de-
tection of playing techniques [15] on solo performances. This is
achieved by learning a shallow linear layer over time–frequency
scattering coefficients. Time–frequency scattering is yet to be ex-
plored as a frontend feature extractor to a deep convolutional neural
network (convnet) classifier. Exploiting the 3-D structure of time–
frequency scattering (λ2 = (α, β, θ), λ, t), where the response
of joint second-order wavelet filters across time and frequency
compose the channels, may enhance contrast in spectrotemporal
variations across the time–frequency image. In this section, we
seek to compare audio representations as a frontend to a convnet in
a task of supervised classification of musical instrument solos.

Eq. (8) describes the output of the first layer of 2-D convolution
between the time–frequency scattering image Sx around (λ2, λ, t)
and kernelw, where the multiindex variable λ2 represents the tuple
(α, β, θ).

Y (λ3, λ, t)
∑

λ2,δ,τ

Sx(λ2, λ+ δ − 1, t+ τ − 1)w(λ3, δ, τ) (8)

4.1. Dataset

We perform supervised classification of isolated musical instru-
ments from the Medley-solos-DB dataset [16]. The task of musical

instrument recognition has previously been benchmarked with con-
volutional networks in [17] and joint time–frequency scattering in
[7]. Every example in the dataset consists of a fixed 216 discrete-
time samples at a sampling rate of 44.1 kHz, corresponding to
approximately 3 seconds of audio. Each clip includes the presence
of one musical instrument from a highly imbalanced taxonomy of
8 classes: tenor saxophone, trumpet, flute, clarinet, female singer,
distorted electric guitar, violin and piano, of 123, 149, 155, 251,
318, 404, 2040 and 2401 training samples, respectively. The train-
ing, validation and test subsets consist of a total of 5841, 3494 and
12236 samples, respectively.

4.2. Convolutional Network Feature Design

We parametrize time–frequency scattering such that it yields a 3-D
output that is 44 × 32 along log-frequency and time. To achieve
this, we set J = 13 octaves for the first and second order temporal
wavelet filterbanks. We set Q = 16 filters per octave at first order
and Q2 = 1 at second order. We perform frequential averaging
with the lowpass filter ϕF over a quarter of an octave with F = 4.
We set the support of the temporal lowpass filter ϕT to T = 211,
which is applied to an input ofN = 216 discrete time samples. The
frequential wavelet filterbank has its own set of parameters. Qfr

and Jfr control the number of wavelets per octave and number of
octaves and maximal scattering scale, respectively. We setQfr = 1
and Jfr = 6.

Figure 5: 2-D convnet architecture with a 3-D time–frequency
scattering input tensor. The multiindex variable λ2 = (α, β, θ)
represents the response of a second-order scattering wavelet at
temporal rate α, frequential scale β and spin θ. The 2-D convnet
is an EfficientNetB0 architecture with a classification head over 8
classes (see Section 4 for details).

Our implementation supports outputs in various number of
dimensions. In the case of 2-D output, the variables correspond
to scattering path and time, and first-order and second-order coef-
ficients are concatenated. In contrast, under the “out_3D” mode,
we return 2-D and 3-D tensors, for first-order and second-order
tensors respectively. Since ϕF is not applied to first-order coeffi-
cients, we learn a convolution filter on the first order output and
average pool across log-frequency. We set the convolution filter’s
kernel size to (16, 1), whose support covers an octave. We apply
average pooling to the convolution layer’s output, with a kernel size
of (4, 1) corresponding to the same support of ϕF of a quarter of
an octave. We concatenate the output of this layer with the 3-D
second-order coefficients, resulting in a tensor of size (195, 45, 32)
whose indices correspond to log-frequency and log-quefrency un-
rolled, log-frequency and time. We apply a 2-D batch normalization

DAFx.5

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

284

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

channels kernel size
Conv 195 (7, 7)

Batch Norm, ReLU 195
Max Pool (2, 2)

Conv 390 (5, 5)
Batch Norm 390

SqueezeExcite, ReLU 390
Conv 780 (3, 3)

Batch Norm 780
SqueezeExcite, ReLU 780
Global Average Pool

Linear, ReLU, Dropout 0.5 64
Linear, Softmax 8

Table 1: Table outlining the 2-D convnet architecture that process
the time–frequency scattering tensor. The channels column indi-
cates the number of channels or hidden units output after a layer.

layer to this tensor, which serves as the input into a 2-D convnet.
Table 1 outlines our 2-D convnet that accepts the pre-processed
time–frequency scattering tensor as input. We use a squeeze-and-
excitation layers [18] with a reduction factor of 16.

4.3. Adaptive Logarithmic Compression

Prior to input to the convnet, we apply a transformation to each
time–frequency scattering path, that seeks to match a decibel-like
perception of loudness. The transformation in Eq. (10), µ–log,
consists of mean-based renormalization and a pointwise logarithm.
We compute µ across the training set. When ε is a non-learnable
constant, we refer to this transformation as µ–log. Previous publi-
cations have shown that for music sounds, µ–log transforms each
λ2 such that its histogram of magnitudes is closer to Gaussian [19].
We set ε to the same predefined constant 0.1 per path, which was
chosen based on our observations of the skewness of the magnitude
histograms. To standardize the input features to the convnet back-
end, we compute the mean and standard deviation per λ2 across all
S̃x in the training set.

µ(λ2) =
1

N

N∑
n=1

∫∫
Sxn(λ2, λ, t) dtdλ (9)

S̃x(λ2, λ, t) = log
(
1 +

Sx(λ2, λ, t)

εµ(λ2)

)
(10)

4.4. Baselines

As a performance comparison to our time–frequency scattering
hybrid convnet, we train a 2-D convnet on top of the Constant-Q
Transform (CQT) and a 1-D convnet on top of time scattering.

We compute the CQT using nnAudio [20] with a hop size of
256 samples, 96 frequency bins, 12 octaves and a minimum centre
frequency of 32.7 Hz, and subsequently convert the amplitudes to
the decibel scale. We standardize the CQT per bin using the means
and standard deviations from the training set. We perform average
pooling over frequency and time with a kernel of size (3, 8), yielding
a (32, 32) time–frequency image for input into a 2-D convnet. To
perform the classification, we use the same 2-D convnet that is
outlined in Table 1, however the successive convolution blocks
have 64, 128 and 256 channels respectively, the third convolution

layer uses max pooling and all max pooling is performed with a
kernel size of 2.

Additionally, we extract time scattering (Scattering1D) coef-
ficients. Time scattering is computed similarly by applying only
a 1-D temporal wavelet filterbank to the first-order scalogram. To
match the setting of JTFS, we setQ = 16 filters per octave, J = 13
octaves and a temporal lowpass filter support of T = 211. We
concatenate first and second order coefficients, yielding a 1423-
dimensional vector for each of the 32 time frames. Note that we
do not average the time scattering coefficients along first-order
log-frequency λ. We also apply the pathwise transformation µ–
log across time scattering paths. Time scattering is structured as
a vector of scattering paths for each time frame (p, t) where the
path multiindex p encompasses both scattering orders. Hence, the
integral in Eq. (9) is over the time variable alone. As the con-
vnet classifier, we implement the same convnet as for CQT and
JTFS, but with 1-D convolution, batch normalization and pooling
operations.

4.5. Training Setup

We train the JTFS based models for 30 epochs and CQT and Scat-
tering1D models for 20 epochs. We use an epoch size of 8192 and
batch size of 32, by means of the AdamW optimizer with an initial
learning rate of 10−3 and weight decay coefficient of 0.1. To set
the learning rate of each parameter in the network, we use a cosine
annealing schedule with a minimum learning rate of 10−11, and
apply warmup by starting at schedule’s lowest point. In order to
compensate for class imbalance in the Medley-solos-DB dataset,
we use a weighted cross entropy (WCE) loss as per Eq. (11), where
N = {N1, ..., N8} is the set of training example supports per class.

WCE = −
B∑
i

max(N)

Nk=yi

yi log(f(xi)) (11)

4.6. Results

In Table 2, we report the classwise and macro-averaged accuracy on
the test set. For each run, we use an early stopping procedure that
checkpoints the model at each epoch. We select the best checkpoint
out the final ten epochs that achieves the higher validation accuracy.
We report the mean test set accuracy over three randomly seeded
runs.

Time–frequency scattering has previously seen performance of
78% accuracy on the Medley-Solos-DB dataset when used with a
shallow linear classifier [7]. Earlier spiral convolutional network
architectures achieved a highest average accuracy of 74% [17]. Our
results show that the addition of a 2-D convnet backend exceeds
the performance of a shallow linear classifier.

JTFS exceeds the average accuracy of CQT and Scattering1D
by roughly 23 and 7 percentage points respectively, while attain-
ing the highest accuracy across the majority of musical instrument
classes. We found that the unsupervised logarithmic transforma-
tion, µ–log, and careful selection of its tunable parameter c were
essential factors for improving performance.

JTFS achieves state-of-the-art musical instrument classification
performance in the regime of limited annotated data. As a refer-
ence, we compute accuracy metrics on the test set using a YAMNet
classifier that was pretrained on the very large AudioSet dataset.
This achieves 93% accuracy with no additional trained layers. Yet
we emphasise a distinction between these tasks; one is trained in

DAFx.6

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

285

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

tenor sax. trumpet flute clarinet female singer dist. guitar violin piano avg

CQT 5.7 80.9 40.2 85.3 84.4 87.8 64.2 98.5 68.4
± 3.8 ± 3.5 ± 5.3 ± 5.1 ± 0.7 ± 1.8 ± 12.8 ± 1.4 ± 1.8

Scattering1D 54.8 70.9 43.9 60.1 93.7 96.1 74.1 98.7 74.0
± 9.8 ± 9.7 ± 8.9 ± 7.9 ± 2.4 ± 1.1 ± 4.3 ± 0.2 ± 2.4

JTFS 71.5 77.8 57.0 59.5 96.3 96.4 93.0 99.8 81.4
± 5.9 ± 8.7 ± 4.3 ± 1.3 ± 0.7 ± 0.0 ± 5.6 ± 0.1 ± 0.6

Table 2: Test set classwise and macro average accuracy for 2-D convnet architectures trained for musical instrument classification on
Medley-solos-DB. Classes are in ascending order (left to right) of number of training set examples. We report the results of CQT, time
scattering and time–frequency scattering frontends for a convnet classifier. See Section 4 for details.

the regime of limited annotated data, while the other has access
to millions of annotated examples. The newly introduced imple-
mentation has enabled a previously unexplored interaction with
learned 2-dimensional deep convolutional networks for supervised
classification. We expect this to enable further research interfacing
JTFS and convnets for audio analysis and synthesis.

5. TEXTURE SYNTHESIS

Under the context of an audio classification task, feature repre-
sentations of waveforms benefit from invariance to time-shifting,
pitch-shifting and small spectrotemporal deformations. Yet, the
introduction of invariance induces inevitably a loss of information.
Texture resynthesis from time-shift invariant feature is an effec-
tive way to examine what information is preserved and what is
lost. Echoing work from [21], [22], and [7], the following section
demonstrates the procedure of texture resynthesis, illustrates the tex-
ture preservation qualities of time-shift invariant JTFS, and reports
the speed improvement of texture resynthesis with GPU-enabled
JTFS-GPU over MATLAB toolbox scattering.m.

Starting from an audio signal x(t), we first calculate its scat-
tering coefficients Sx. To reconstruct the signal, we initialize a
trial signal y(t) with random noise, and use backpropagation to
update y at each iteration, such that the normalized error E(yn) =
∥Sx− Syn∥/∥Sx∥ is progressively reduced,

yn+1(t) = yn(t) + µ∇E(yn). (12)

While the loss function E(yn) is nonconvex and may have local
minimizers, our goal is not to mathematically invert the forward
scattering operations, but to approximate a sonification of scattering
coefficients Sx. The gradient ∇E(yn) is computed via reverse-
ordered Hermitian adjoints of the forward scattering operations,
detailed in [22]. We adopt the PyTorch backend for gradient com-
putation, as well as a bold driver heuristic to update adaptively the
learning rate µ. The bold driver heuristic increases the learning rate
by a constant factor if the loss decreases and vice versa [23]. The
reconstruction error decreases progressively: it reaches a normal-
ized loss of about 10% after 20 iterations and about 3% after 100
iterations.

In order to illustrate the information that is preserved and lost
in time-shift invariant JTFS, we experiment on the two bird chirps
in Section 2 (see Fig. 1 (c) and (d)) and compare their resynthesis
results with those of second-order time scattering coefficients. The
temporal support of time-shift invariance T is chosen to be 370
ms, which is of the order of three bird calls in example (f) and
thus relevant in a recognition task. We fix the scattering scale
J = 12 and filters per octave Q = 12 in all our experiments. As
shown in Fig. 6, both JTFS and time scattering preserve well the

spacing along frequency axis and the amplitude modulation trend in
each frequency bands. Meanwhile, both lose the precise temporal
location of discrete bird call events because of temporal averaging.
However, a clear distinction between them can be observed in terms
of the frequency band alignment in time. Unlike time scattering,
JTFS manages to recover synchronicity over frequency subbands.

Figure 6: Reconstructed birdcalls from time-shift invariant scatter-
ing coefficients. (a) and (d) are scalograms of the original audio
of two distinct birdcalls. (c) and (f) are the corresponding recon-
structed scalograms from joint time–frequency scattering coeffi-
cients. (b) and (e) from second-order time scattering coefficients.
All of the coefficients are computed with J = 12, Q = 12, enforc-
ing time-shift invariance with a temporal lowpass filter of support
T = 213 samples (370 ms).

To compare the computational speed, we perform texture resyn-
thesis on an audio segment of size N = 216 samples, i.e., around
three seconds; both with JTFS-GPU and scattering.m. We
record the time elapsed during each iteration of backpropagation.
GPU computing accelerates the resynthesis procedure by close
to ten times relative to scattering.m, with an average of 720
milliseconds per iteration.

6. CONCLUSION

Deriving auditory representations that act as proxies for perceptual
similarity is an essential step for the enhancement of generative
audio models and digital audio effects. In this paper, we have
highlighted the need for a scalable computational model of spec-
trotemporal receptive fields (STRF) of the auditory cortex. We
have provided scale–rate visualizations of time–frequency scatter-
ing, analogous to those used in auditory perception research. By

DAFx.7

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

286

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

means of practical examples, we have introduced a differentiable
implementation of time-frequency scattering that is compatible
with modern deep learning frameworks. Through manifold em-
bedding visualizations and parameter recovery, we showed that
time–frequency scattering can adequately serve as a representation
of similarity for AM/FM signals. By using our implementation’s
3-D time–frequency scattering output as a frontend feature extrac-
tor for a 2-D convolutional neural networks classifier, we have
exceeded previous state-of-the art benchmarks on the task of su-
pervised classification of musical instrument solos with limited
annotations. Finally, we have demonstrated resynthesis of a variety
of texture signals via their scattering coefficients, benefiting from a
10× speedup over previous benchmarks.

7. ACKNOWLEDGMENT

We thank the DAFx 2022 organizing committee for their help.

8. REFERENCES

[1] Daniel Pressnitzer and Stephen McAdams, “Acoustics, psy-
choacoustics and spectral music,” Contemporary Music Re-
view, vol. 19, no. 2, pp. 33–59, 2000.

[2] Vincent Lostanlen, Christian El-Hajj, Mathias Rossignol, Gré-
goire Lafay, Joakim Andén, and Mathieu Lagrange, “Time–
frequency scattering accurately models auditory similarities
between instrumental playing techniques,” EURASIP Journal
on Audio, Speech, and Music Processing, vol. 2021, no. 1, pp.
1–21, 2021.

[3] Etienne Thoret, Baptiste Caramiaux, Philippe Depalle, and
Stephen Mcadams, “Learning metrics on spectrotemporal
modulations reveals the perception of musical instrument
timbre,” Nature Human Behaviour, vol. 5, no. 3, pp. 369–377,
2021.

[4] Didier A Depireux, Jonathan Z Simon, David J Klein, and
Shihab A Shamma, “Spectro-temporal response field char-
acterization with dynamic ripples in ferret primary auditory
cortex,” Journal of neurophysiology, 2001.

[5] Kailash Patil, Daniel Pressnitzer, Shihab Shamma, and
Mounya Elhilali, “Music in our ears: The biological bases of
musical timbre perception,” PLoS computational biology, vol.
8, no. 11, pp. e1002759, 2012.

[6] Taishih Chi, Powen Ru, and Shihab A Shamma, “Multires-
olution spectrotemporal analysis of complex sounds,” The
Journal of the Acoustical Society of America, vol. 118, no. 2,
pp. 887–906, 2005.

[7] Joakim Andén, Vincent Lostanlen, and Stéphane Mallat,
“Joint time–frequency scattering,” IEEE Transactions on Sig-
nal Processing, vol. 67, no. 14, pp. 3704–3718, 2019.

[8] Mathieu Andreux, Tomás Angles, Georgios Exarchakis,
Roberto Leonarduzzi, Gaspar Rochette, Louis Thiry, John
Zarka, Stéphane Mallat, Joakim Andén, Eugene Belilovsky,
et al., “Kymatio: Scattering transforms in Python.,” Journal
of Machine Learning Research, vol. 21, no. 60, pp. 1–6, 2020.

[9] Shanel Gauthier, Benjamin Thérien, Laurent Alsène-Racicot,
Muawiz Chaudhary, Irina Rish, Eugene Belilovsky, Michael
Eickenberg, and Guy Wolf, “Parametric scattering networks,”
in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 5749–5758.

[10] Edouard Oyallon, Sergey Zagoruyko, Gabriel Huang, Nikos
Komodakis, Simon Lacoste-Julien, Matthew Blaschko, and
Eugene Belilovsky, “Scattering networks for hybrid represen-
tation learning,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 41, no. 9, pp. 2208–2221, 2018.

[11] Changhong Wang, Emmanouil Benetos, Shuge Wang, and
Elisabetta Versace, “Joint scattering for automatic chick call
recognition,” arXiv preprint arXiv:2110.03965, 2021.

[12] Jason Cramer, Ho-Hsiang Wu, Justin Salamon, and
Juan Pablo Bello, “Look, listen, and learn more: Design
choices for deep audio embeddings,” in ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2019, pp. 3852–3856.

[13] Joshua B Tenenbaum, Vin de Silva, and John C Langford,
“A global geometric framework for nonlinear dimensionality
reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[14] Brian McFee, V Lostanlen, A Metsai, M McVicar, S Balke,
C Thomé, C Raffel, F Zalkow, A Malek, K Lee, et al., “li-
brosa/librosa: 0.8. 0,” Version 0.8. 0, Zenodo, doi, vol. 10,
2020.

[15] Changhong Wang, Vincent Lostanlen, Emmanouil Benetos,
and Elaine Chew, “Playing technique recognition by joint
time–frequency scattering,” in ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2020, pp. 881–885.

[16] Vincent Lostanlen, Rachel M. Bittner, and Slim Essid,
“Medley-solos-db: a cross-collection dataset of solo musical
phrases,” Aug. 2018.

[17] Vincent Lostanlen and Carmine-Emanuele Cella, “Deep con-
volutional networks on the pitch spiral for musical instrument
recognition,” 2016.

[18] Jie Hu, Li Shen, and Gang Sun, “Squeeze-and-excitation net-
works,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 7132–7141.

[19] Vincent Lostanlen, Joakim Andén, and Mathieu Lagrange,
“Extended playing techniques: the next milestone in musical
instrument recognition,” in Proceedings of the 5th Interna-
tional Conference on Digital Libraries for Musicology, 2018,
pp. 1–10.

[20] Kin Wai Cheuk, Hans Anderson, Kat Agres, and Dorien Her-
remans, “nnAudio: An on-the-fly GPU audio to spectrogram
conversion toolbox using 1d convolutional neural networks,”
IEEE Access, vol. 8, pp. 161981–162003, 2020.

[21] Joakim Anden, Vincent Lostanlen, and Stephane Mallat,
“Joint time-frequency scattering for audio classification,” 2015
IEEE 25th International Workshop on Machine Learning for
Signal Processing (MLSP), Sep 2015.

[22] Vincent Lostanlen and Florian Hecker, “The shape of
remixxxes to come: Audio texture synthesis with time-
frequency scattering,” in Proceedings of the International
Conference on Digital Audio Effects (DAFx), 06 2019.

[23] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton, “On the importance of initialization and momentum
in deep learning,” in Proceedings of the International Confer-
ence on Machine Learning. PMLR, 2013, pp. 1139–1147.

DAFx.8

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

287

	1 Introduction
	2 Time–Frequency Scattering
	3 Similarity retrieval
	3.1 Motivation
	3.2 Synthetic Dataset of Modulated Chirps
	3.3 Manifold Learning and Visualization
	3.4 Regression from Nearest Neighbors

	4 Time–frequency Scattering 2-D: Convolutional Classifier
	4.1 Dataset
	4.2 Convolutional Network Feature Design
	4.3 Adaptive Logarithmic Compression
	4.4 Baselines
	4.5 Training Setup
	4.6 Results

	5 Texture Synthesis
	6 Conclusion
	7 Acknowledgment
	8 References

@inproceedings{DAFx20in22_paper_25,
 author = "Muradeli, John and Vahidi, Cyrus and Wang, Changhong and Han, Han and Lostanlen, Vincent and Lagrange, Mathieu and Fazekas, George",
 title = "{Differentiable Time–frequency Scattering on GPU}",
 booktitle = "Proceedings of the 25-th Int. Conf. on Digital Audio Effects (DAFx20in22)",
 editor = "Evangelista, G. and Holighaus, N.",
 location = "Vienna, Austria",
 eventdate = "2022-09-06/2022-09-10",
 year = "2022",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 volume = "3",
 doi = "",
 pages = "280--287"
}

