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Maximal dispersion of adaptive random walks
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Maximum entropy random walks (MERWs) are maximally dispersing and play a key role in optimizing
information spreading in various contexts. However, building MERWs comes at the cost of knowing beforehand
the global structure of the network, a requirement that makes them totally inadequate in real-case scenarios. Here,
we propose an adaptive random walk (ARW), which instead maximizes dispersion by updating its transition
rule on the local information collected while exploring the network. We show how to derive ARW via a
large-deviation representation of MERW and study its dynamics on synthetic and real-world networks.
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In the last decade we have assisted with a wave of new
works studying extreme (rare) events associated to dynamical
processes evolving on complex networks [1–17]. The neces-
sity to understand unlikely events comes from the fact that,
although rare, their appearance determines the future of the
system under study, which may be potentially catastrophic,
e.g., earthquakes [1]. In this context, researchers have fo-
cused on random walks and their load and flow properties
[2,3,15,17] for models of traffic in transportation [11,16] and
communication networks [4], or on epidemic models and ex-
tinction events [6], or again on general order-disorder [8] and
percolation transitions [9,10] to corroborate the robustness of
networks. In these settings, rare events are often driven by
internal noise, and their understanding could provide us with
control mechanisms to keep away from harmful scenarios
[5,6,8,10].

Among all dynamical processes evolving on networks,
discrete-time biased and unbiased random walks (URWs)
stand out as simple and insightful models of diffusion pro-
cesses on discrete topologies [18].

A fundamental property of random walks is their ability
to homogeneously spread over the whole network. Mathe-
matically, the spreading capability of a random walk can be
characterized by measuring the entropy production rate. In
many scenarios, it is indeed of uttermost importance to de-
sign random walks that maximise such entropy production
rate in order to spread the most homogeneously. To pic-
ture this, imagine having equal-size groups of random walks
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with different colors running on a network; at each time,
the most homogeneous spreading is obtained with an equal
proportion of colors on every node. Such a well mixing, or
maximal dispersion, turns out to be particularly useful when
information about a node state (e.g., its healthy or infected
condition, its availability, etc.) needs to be homogeneously
spread to all other nodes in the network [19–21], a sought
after property for transportation and ad-hoc networks [22].
It is known that a random walk achieves maximal dispersion
when it travels all trajectories of the same length with uniform
probability. Such a property characterises the so-called maxi-
mum entropy random walk (MERW) [20,23] and is used in a
myriad of practical cases: testing network robustness [24,25]
and navigability [26–29], predicting links and communities
[30–33] as well as disease associations [34], or assessing
neutral quasispecies evolution in biology [35], to name a few.
However, in order to build MERW, it is required to know
the topology of the whole network before even exploring it
[20,21,23]. Apart from the expensive computational cost of
defining the stepping rule of MERW (based on calculating
dominant eigenvalue and eigenvector of a N × N matrix, with
N the number of nodes), having global knowledge of the
network beforehand is an heavy drawback that makes MERW
totally inadequate on networks whose structure cannot be en-
tirely determined a priori or changes over time (e.g., growing
networks [36] or temporal networks [37,38]). It is therefore
fundamental to optimally design dispersive random walks
that just make use of local information while exploring the
network. Several attempts have been made in this direction,
although so far finding only approximate solutions (see, for
example, Ref. [21]).

In this Letter, we solve this longstanding problem by
proposing an adaptive random walk (ARW) that locally up-
dates its stepping rule based on the structure of the explored
network. Without requiring any prior knowledge of the whole
topology, ARW outperforms MERW, as it is maximally
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dispersive on every portion of the network visited and not only
on the whole graph. Via a bridge between large-deviation the-
ory and network science, MERW can be seen as a rare event of
URW. We exploit this to construct ARW as a single-trajectory
rare event sampling algorithm [39,40] that only makes use
of local information available to adapt itself—changing its
transition probabilities step by step—in order to best spread
on the network. Shaping the random walk by only gather-
ing local information is an outstanding property that makes
ARW the only sensible choice for optimising the spreading on
networks with time-varying topology and on heterogeneous
networks. Indeed, imagine having a network composed by
two main modules, connected to each other and topologically
very different. MERW initialised on one of the modules is not
able to maximise dispersion while exploring it as its stepping
rules are based on the “averaged” structure of the whole net-
work. On the contrary, ARW is optimally dispersive in every
exploration phase. In the following, this is made evident by
showing that ARW has an entropy production rate closer to the
maximal one on the visited portion of the graph if compared
with URW and MERW. Moreover, when the network is fully
explored, ARW and MERW have similar mixing properties
and, in the thermodynamic limit, they become the same.

We start by considering an URW X = (X1, X2, · · · , Xn) on
a finite connected and undirected graph G = (V, E ) character-
ized by a set of nodes V and a set of links E . The topology of
the graph is encoded in the adjacency matrix A = {ai j}, where
ai j = 1 if the nodes i and j are connected, and ai j = 0 other-
wise. We also define the degree of node i as ki = ∑

j∈V ai j .
URW dynamics is determined by the stochastic transition
matrix �U , with components

(πU )i j = ai j

ki
, (1)

describing the probability of URW to move from X� = i at
time � to X�+1 = j at time � + 1. We focus on a particular
dynamic observable that characterises the entropic content of
a random walk trajectory,

Cn = 1

n

n∑
�=1

ln kX�
. (2)

Indeed, apart from boundary terms that do not influence our
discussion, Cn is the logarithm of the probability of URW
trajectory divided by the number of time steps n. Noticeably,
by taking the long-time limit of the average over all paths of
Cn, we get the so-called Kolmogorov-Sinai entropy produc-
tion rate hU [20,21,41], i.e., hU = limn→∞〈Cn〉, interpreted as
the mean information generated per time step. For a generic
ergodic random walk, it can be written as

h = −
∑
i, j

ρiπi j ln πi j, (3)

where ρ = {ρi} and π = {πi j} are the stationary distribution
and the transition probability matrix of the random walk.
Eventually, the observable Cn is a random variable of the
random walk process that represents the fluctuating version
of hU , viz., the fluctuating trajectory entropy [42,43].

The finite-time fluctuating nature of Cn around its typi-
cal value hU = ∑

i∈V ρi ln ki is of interest here. A complete

understanding of the fluctuations is given by the probability
density Pn(c) := P(Cn = c), which is known to have the large-
deviation form

Pn(c) = e−nI (c)+o(n), (4)

with the non-negative large-deviation rate function I (c) char-
acterizing the leading behavior of Pn(c) and o(n) denoting
corrections smaller than linear in n. The focus thus moves
onto studying I in Eq. (4), which has a unique zero at c∗ = hU .
The rate function can be calculated by means of the so-called
Gärtner-Ellis theorem [43–45], which states that I is given
by the Legendre-Fenchel transform of the scaled cumulant
generating function (SCGF)

�(s) = lim
n→∞

1

n
lnE

[
ensCn

]
, (5)

as this last is differentiable for a finite graph [45]. In particular,
as URW is an ergodic Markov process, the SCGF can be
obtained as

�(s) = ln ζs, (6)

where ζs is the dominant eigenvalue of the so-called tilted
matrix �̃s = {(π̃s)i j}, with components

(π̃s)i j = πi je
s ln ki = πi jk

s
i = ai jk

s−1
i . (7)

Hence, the likelihood of fluctuations can be studied using the
SCGF � rather than the rate function I .

However, calculating the probability of fluctuations is only
a first step towards the prediction and control of rare events.
It is indeed important to also understand how these extreme
events are created in time. In this context, we construct the
driven process [46–48] associated with a given fluctuation
Cn = c. This process is a locally biased version of URW
[12,47] and its transition probability matrix is given by

(πs)i j = (π̃s)i j rs( j)

rs(i)ζs
= ai jk

s−1
i rs( j)

rs(i)ζs
, (8)

where rs is the right eigenvector associated with ζs. The driven
process is still Markovian and ergodic and can be interpreted
as the effective dynamics of the subset of paths of URW
leading to a fluctuation Cn = c [12,13,47]; to match such a
fluctuation [49], the Laplace parameter s must satisfy

c = � ′(s). (9)

Eventually, the entropy rate of the driven process can be
obtained taking Eq. (8) and plugging it into Eq. (3) and can
be expressed in terms of the SCGF [12] as

h(s) = �(s) + (1 − s)� ′(s). (10)

In Sec. II of the Supplemental Material (SM) [63] we show
that h(s) in Eq. (10) has a global maximum for s = 1, i.e.,

h(1) = �(1) = ln ζ1, (11)

where ζ1 is the dominant eigenvalue of the adjacency matrix
A. Replacing s = 1 in the driven process, Eq. (8) gives MERW

(π1)i j = ai jr1( j)

r1(i)ζ1
, (12)
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allowing us to interpret MERW on a network as a biased
random walk creating a rare event fluctuation—given by re-
placing s = 1 in Eq. (9)—of URW [12].

This result shows, on the one hand, that we can sample a
particular rare event of URW by simulating MERW and, on
the other hand, that MERW can in principle be obtained from
URW by opportunely conditioning on a certain rare event of
the observable Cn in Eq. (2). The latter observation is key to
introduce our adaptive random walk (ARW). As we will show
in the following, such ARW, through successive local adapta-
tions of URW, reaches maximum entropy while exploring the
network, i.e., much before the entire graph has been visited,
and eventually converges to MERW on the whole network. To
construct ARW, we develop here an algorithm based on a rare
event sampling scheme [39,40,50–53]. According to this, the
random walk updates its transition probability matrix at each
time step, in order to typically visit a specific rare event of
URW, obtained fixing s = 1 in Eq. (9). We refer the reader to
Sec. I of the SM [63] for a general formulation of the sampling
algorithm valid for all additive observables and s ∈ R.

Formally, ARW is a discrete-time process Y = (Y1, Y2, · · · ,
Yn), where Yn ∈ V is the position of ARW on the graph at time
n. The core of ARW is based on an adaptive power method to
solve the following dominant eigenvalue equation:

�̃1r1 = ζ1r1, (13)

which is known to be cardinal to construct MERW in Eq. (12).
More in detail, our adaptive power method simulates single
Markov chain transitions with importance sampling [54]. In
particular, supposing that ARW is located on the node i at
time n, i.e., Yn = i, the next step is proposed according to an
estimate of MERW in Eq. (12) that reads

(
π

(n)
1

)
i j = 1

Z

ai jr
(n)
1 ( j)

r (n)
1 (i)r (n)

1 (i0)
= ai jr

(n)
1 ( j)∑

j′∈V ai j′r
(n)
1 ( j′)

, (14)

where Z is the normalisation factor, i0 is an a priori fixed node,
and r (n)

1 is the nth time estimate of the eigenvector centrality
[39,40]. This last is given by the stochastic-approximation
[55] formula

r (n+1)
1 (i) = r (n)

1 (i) +

+ λ(n)1Yn=i

(∑
j∈V ai jr

(n)
1 ( j)

r (n)
1 (i0)

− r (n)
1 (i)

)
,

(15)

based on an asynchronous update via the indicator function
1Yn=i and on the learning rate λ(n). The indicator function
selects the ith component of the eigenvector centrality to be
updated only when the process Y , at the nth time step, has vis-
ited node i. Additionally, the learning rate λ(n)—commonly
used in stochastic approximation protocols [50,51,55,56]—
expresses how much of the information that has been learnt up
to time n is used to update r1 in the next time step. Note that,
in the following, all ARW simulations are obtained by using a
learning rate λ(n) = 1/((n + 1)β ), with β = 0.1, in Eq. (15).
Although there is no theory to a priori determine the learning
rate, there are mathematical conditions that λ needs to satisfy,
and one can carry out numerical simulations on benchmark
networks to finely tune the value of β. We show how to do
so in Sections III and VI of the SM [63] (see Fig. S2-S6,

Fig. S9, and Table S1), further noticing that our approach,
in order to set off an ‘optimal’ value of β, does not require
comparing the performance of ARW with MERW, or with any
other spreading process that requires global knowledge of the
network.

ARW is randomly initialized on a node of the network
with a normalized random right eigenvector r (0)

1 and evolves
according to the fully local rules in Eq. (14) and Eq. (15). At
each time step it tends to optimize the spreading—aiming at
maximum entropy production—on the portion of the network
visited. In the long-time limit, it will eventually converge to
MERW of Eq. (12) as r (n)

1 → r1, r (n)
1 (i0) → ζ1, and Z → 1.

We insist on the fact that differently from MERW, ARW does
not need to know the full topology of the network since the
beginning, as it learns it on the run. Thanks to this, its entropy
production rate stays always close to the maximum rate on
the visited portion of the graph. This is drastically different
from MERW which does not maximize the entropy while it
explores the graph, but reaches optimal spreading only when
the whole network has been visited.

We show this in Fig. 1(a)–1(c) where we compare the
spreading properties of single trajectories of ARW, MERW,
and URW on two network models, namely Erdös-Rényi, and
Barabasi-Albert, and on a real-world manmade network. The
last network describes an air transportation system: each node
is a city and two nodes are connected if at least one air-
plane flew between the two cities in the time window [11
Jan 2000–10 Jan 2001] [57]. In this last context, maximizing
entropy production rate allows manufacturers, for example,
to homogeneously spread goods around their factories. Each
of the three processes is initialized on a randomly selected
node of the network, and evolves according to its transition
probability matrix. As the walker moves hopping through
previously unvisited links, we calculate its entropy production
rate h (solid line) and compare it with the optimal h̄ (dashed
line) given by the logarithm of the dominant eigenvalue of the
adjacency matrix associated with the portion of graph made by
all (and only) previously visited links. The entropy production
rate h of each process is calculated via a modified version of
Eq. (3), that is

h(M ) = −
∑

(i, j)∈E (n)

ρi(M )πi j (M ) ln πi j (M ). (16)

This takes into account the number of visited links
M = |E (n)| up to time n, where E (n) is the set of visited
links, πi j (M ) = πi j/(

∑
(i, j′ )∈E (n) πi j′ ) if the link (i, j) is in

E (n), while 0 otherwise, and the stationary distribution ρ(M )
is calculated as the left eigenvector of �(M ) = {πi j (M )}.
As the solid green line is indistinguishable from the corre-
sponding dashed one, ARW has always—while exploring the
network—optimal spreading performances. On the contrary,
by comparing the corresponding solid and dashed lines, the
performances of MERW and URW are always suboptimal.
In particular, MERW reaches maximum entropy production—
comparable to that of ARW—only when the whole graph has
been visited.

Moreover, in Fig. 1(d)–1(f) we plot the median (solid line)
of the relative difference between the entropy production rate
h and the optimal h̄, together with first and third quartiles
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FIG. 1. [(a)–(c)] The entropy production rate h, calculated as in Eq. (16) of single trajectories of ARW, MERW and URW (solid lines) is
compared to the corresponding optimal entropy production rate h̄ on the discovered graph (dashed lines). [(d)–(f)] Median (solid lines) and
first and third quartiles (shaded area) of the normalized differences (h̄ − h)/h̄ over an ensemble of 1000 trajectories of ARW, MERW, and
URW. Results are shown for random walks running on the giant connected component of an Erdös-Rényi random graph with 1000 nodes and
average degree 3 in [(a), (d)], a Barabasi-Albert with 1000 nodes and m = 2 [36] in [(b),(e)], and an air transportation network [57] with 3618
nodes and 14142 links in [(c), (f)].

(shaded area). The median and the quartiles are calculated
over an ensemble of 1000 trajectories and are used in place
of the mean and standard deviation because of the unknown
distribution of h around h̄. This gives further evidence of the
fact that ARW performs better than MERW (and URW) at
maximizing the spreading while discovering the structure of
the graph. Figure S7 of the SM [63] shows the entropy produc-
tion rates of ARW, MERW, and URW on the graph induced
by the visited nodes, i.e, including links that have not yet been
visited. In this case, ARW is still outperforming MERW and
URW on the Erdös-Rényi graph, but is only marginally better
on the other networks.

The optimal dispersion of the fully local ARW on the
visited links of the network comes at a price: ARW takes
longer than URW and MERW to cover the whole graph. This
is a consequence of (i) an initial so-called warmup phase in
which ARW is localised in the region where it was initialised,
and (ii) a typical exploration time of the network. During
the warmup phase, our process finely tunes the eigenvector
centrality and the transition probability matrix to set off an
efficient exploration of the network. As shown in Fig. S8 of
the SM [63], where we plot the average number of time steps
needed to discover new links, ARW remains indeed localised
in the first few visited links. This is also the main reason
why the network coverage time—the number of time steps
to visit all links—is, on average, 102 − 104 time steps longer
for ARW than for MERW or URW (see Fig. 2). We find that
the coverage time T is related to the total number of links L as

T ∝ Lα, (17)

where α is the scaling exponent. Remarkably, after the initial
warm up—which is evident by the overall upward shift of
ARW power-law fit—the scaling exponents of ARW and

MERW are similar (αA ≈ 2.9, αM ≈ 2.7), but larger than
the one of URW which has no global constraint to satisfy
(αU ≈ 1.3). We remark that optimising entropy production
rate and coverage time are two different tasks with the former
much harder than the latter. Although having both properties
is certainly appealing, our main goal is to optimize dispersion.
However, in an attempt to also optimize coverage time, we
point out that in our studies, the initial right eigenvector r (0)

1
plays a key role in determining the initial warmup time and
the overall accuracy of ARW in optimizing the spreading
while exploring the network (see Fig. S10 of the SM [63]).
We hope that our work will stimulate further investigations to
explore the tradeoff between optimal spreading accuracy and
exploration times.

FIG. 2. Coverage time T for ARW, MERW, and URW as a func-
tion of L, i.e., the number of links in the giant connected component
of Erdös-Rényi graphs with average degree 3 and increasing size.

L042051-4



MAXIMAL DISPERSION OF ADAPTIVE RANDOM WALKS PHYSICAL REVIEW RESEARCH 4, L042051 (2022)

In this Letter, we have proposed an adaptive random walk
that has optimal spreading properties, outperforming the well-
known MERW. Via a large-deviation tilting on the fluctuating
trajectory entropy observable, ARW typically observes a max-
imum entropy production rate while exploring the network,
exploiting only local information. Besides the theoretical nov-
elty driven by a large-deviation study of random-walk rare
events, we believe that our work can be a fundamental step
towards the study of network information spreading [58,59]
in all such cases where no prior knowledge on the network is
available, or when the network is changing in time [37,38,60].
ARW could also be used to study dispersion properties of

other dynamical processes on real networks, e.g., aiming at
optimal exploration in congested networks [61,62]. Further-
more, the algorithm at the core of ARW could also be used
to sample other rare event fluctuations associated with any
additive observables of random walks [39,40].

All the code used in this manuscript is available in GitHub
[64].

F.C. is deeply grateful to Pierpaolo Vivo and Hugo
Touchette for valuable comments and suggestions in the writ-
ing stage of the manuscript.
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