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Abstract 

Rubber components under cyclic loading conditions often are considered to 

have failed as a result of the stiffness changing to an amount that makes the part no 

longer useful. This thesis considers three distinctive but related aspect of the fatigue 

failure exhibited by rubber components. The first considers the reduction in stiffness 

that can result from a phenomenon known as cyclic stress relaxation. The second 

considers fatigue crack growth encountered resulting in potentially catastrophic failure. 

The final issue relates to the complex topography of the resulting fatigue fracture 

surfaces.  

Previous work has shown that the amount of relaxation observed from cycle to 

cycle is significantly greater than that expected from static relaxation tests alone. In this 

thesis the reduction in the stress attained on the second and successive loading cycles as 

compared with the stress attained on the first cycle in a stress strain cyclic test of fixed 

strain amplitude has been measured for elastomer test pieces and engineering 

components. Adopting the approach of Davies et al. (1996) the peak force, under cyclic 

testing to a specific maximum displacement, plotted against the number of cycles on 

logarithmic scales produces a straight line graph, whose slope correlates to the rate of 

cyclic stress relaxation per decade. Plotting the rate of stress relaxation per decade 

against the maximum average strain energy density attained in the cycle reduces the 

data measured in different deformation modes for both simple test pieces and 

components to a single curve. This approach allows the cyclic stress relaxation in a real 

component under any deformation to be predicted from simple laboratory tests (Asare 

et al., 2009).  

Earlier work (Busfield et al., 2005) has shown that a fracture mechanics 

approach can predict fatigue failure in rubber or elastomer components using a finite 

element analysis technique that calculates the strain energy release rate for cracks 

introduced into bonded rubber components. This thesis extends this previous work to 

examine real fatigue measurements made at both room temperature and 70±1ºC in both 

tension and shear using cylindrical rubber to metal bonded components. Dynamic 

testing of these components generated fatigue failures not only in the bulk of the 

component but also at the rubber to metal bond interface. The fatigue crack growth 

characteristics were measured independently using a pure shear test piece. Using this 

independent crack growth data and an accurate estimate for the initial flaw size allowed 
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the fatigue life to be calculated. The fracture mechanics approach predicted the crack 

growth rates accurately at both room temperature and 70±1ºC (Asare et al., 2011).     

Fatigue crack growth often results in rough fatigue crack surfaces. The rough 

fatigue crack surface is, in part, thought to result from anisotropy being developed at 

the front of a crack tip. This anisotropy in strength whereby the material is less strong 

in the direction that the material is stretched might allow the fatigue crack to grow in an  

unanticipated direction. It might also allow the crack front to split. Therefore the final 

part of this thesis examines how, once split, the strain energy release rate associated 

with growth of each split fatigue crack develops as the cracks extend in a pure shear 

crack growth test specimen. The aim being to understand how the extent of out of plane 

crack growth that results might allow a better understanding of the generation of 

particular crack tip roughness profiles. Using a method of extending one split crack at a 

time, whilst keeping a second split crack at a constant length, it has been possible to 

evaluate the initial strain energy release rates of split cracks of different configurations 

in a pure shear specimen. It was observed that, for a split crack in a pure shear 

specimen, the initial strain energy release rate available for crack growth depends on 

the precise location of the split crack. It is also clear that the tearing energy is shared 

evenly when the crack tip is split into two paths of equal length, but as one crack 

accelerates ahead it quickly increases in tearing energy and leaves the slower crack 

behind. It is thought that this phenomenon is responsible for a lot of the roughness 

observed on the resulting fracture surfaces.  
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CHAPTER ONE 

1.0 General Introduction 

 In recent years, industrial competition has led elastomer component 

manufacturers to validate their products analytically prior to manufacture to ensure 

more robust design and to try to reduce product lead times. The prediction of the 

fatigue life of elastomer components, such as tyres, suspension components and engine 

and gearbox mounts, has become a necessary research subject (Busfield et al., 2005). 

An essential prerequisite, therefore, for the finite element simulation of mechanical 

fatigue is an accurate knowledge of the material behaviour. 

 Elastomers exhibit a highly non-linear material behaviour characterised by three 

main phenomena: a non-linear elastic behaviour under static load; a rate dependent or 

viscoelastic behaviour with hysteresis under cyclic loading and the Payne effect 

(Payne, 1962), which involves a substantial decrease in the storage modulus of a 

particle reinforced elastomer with an increase in the amplitude of mechanical 

oscillations. Another important phenomenon is cyclic stress relaxation which is 

observed in elastomer materials. The cyclic stress relaxation involves a reduction in the 

stress attained on the second and successive loading cycles as compared with the stress 

attained on the first cycle in a stress strain cyclic test of fixed strain amplitude. Cyclic 

stress relaxation itself is a manifestation of one specific type of fatigue behaviour of 

elastomeric materials used in engineering applications. A detailed qualitative and 

quantitative understanding of cyclic stress relaxation, therefore, is a necessary step 

towards a scientific evaluation of the fatigue life of a rubber product. 

 In this work, the cyclic stress relaxation behaviour of a cylindrical rubber to 

metal bonded component and test pieces made from carbon black filled natural rubber 

material were measured experimentally. The cylindrical rubber to metal bonded 

component was displaced to different fixed maximum displacements in tension and 

shear deformation modes whilst, the test pieces were deformed to different fixed 

maximum displacements in pure shear deformation mode. The objectives of these  tests 

were first to confirm the linear logarithmic dependence of the force at maximum 

displacement on the logarithm of the number of cycles for successive cycles observed 

by Davies et al. for a wide range of filled elastomer compound test pieces deformed in 

tension (Davies, De, and Thomas, 1996). Secondly, and more importantly, to develop 
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an approach to correlate the rate of cyclic stress relaxation measured in elastomer 

components to that measured in test pieces using an appropriate physical quantity – 

found to be the maximum average strain energy density in this work. This aspect of the 

work has been published in Asare et al., (2009). The method developed in the cyclic 

stress relaxation work was subsequently incorporated into the finite element analysis 

based approach to fatigue life prediction – to account for cyclic stress relaxation 

quantitatively (Asare et al., 2011).  

 Extensive work has been done in the past on the prediction of fatigue life of 

elastomer components. Busfield et al. (2005) presented a fracture mechanics approach, 

which uses finite element analysis techniques, to calculate strain energy release rates 

for cracks located in three-dimensional components, in combination with experimental 

measurements of cyclic crack growth rates of specific strain energy release rates, to 

predict the cyclic crack growth rate and the eventual fatigue failure of an elastomeric 

engineering component in three modes of deformation, namely: tension, simple shear 

and combined shear and tensile (45º angle) deformations. They used a gearbox mount 

with a narrowly shaped middle section which raises the strain energy density in this 

section under deformation and therefore failure initiation in the middle section of the 

elastomer component. Their work was limited to room temperature conditions and also 

prediction of the crack growth in the component after inserting an initial razor cut into 

the middle section of the elastomer component. The cyclic stress relaxation associated 

with fatigue crack growth was also poorly accounted for by pre-stressing the test piece 

for stress strain characterisation to an arbitrary strain for 1000 cycles.  

 The research described here extends this previous work to examine real fatigue 

measurements made at both room temperature and 70±1ºC in both tension and shear 

using the cylindrical rubber to metal bonded component used in the cyclic stress 

relaxation studies. The objective being to validate the fracture mechanics approach to 

fatigue life prediction at above room temperature conditions. The cylindrical rubber to 

metal bonded component generated fatigue failures not only in the bulk of the 

component but also at the rubber to metal bond interface. In calculating the strain 

energy release rates necessary for fatigue life prediction using the finite element 

analysis (FEA) based fracture mechanics approach, the cyclic stress relaxation 

associated with fatigue crack growth in the elastomer component is often poorly 

accounted for by pre-stressing the test piece for stress strain characterisation to an 

arbitrary strain for 1000 cycles. An original method is proposed in this work to 
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quantitatively account for the component cyclic stress relaxation, associated with the 

fatigue crack growth, in the FEA strain energy release rate calculations, by 

characterising the stress strain behaviour of the component material test piece after 

repeated stressing for 1000 cycles, at a maximum average strain energy density 

comparable to that obtained in the component when loaded. The material fatigue crack 

growth characteristics were measured independently using a pure shear crack growth 

test specimen. This independent crack growth data and an accurate estimate for the 

initial flaw size, around the rubber-metal bond edge of the cylindrical component, 

allowed the fatigue life to be calculated. The fracture mechanics approach predicted the 

crack growth rates well at both room temperature and 70±1ºC. This aspect of adopting 

fracture mechanics at elevated environmental service temperatures being entirely novel.  

Fatigue crack growth often results in rough fatigue crack surfaces. The rough 

fatigue crack surface is, in part, thought to result from strain induced strength 

anisotropy in front of the advancing fatigue crack which can then cause the crack to 

split during crack growth. Part of this thesis examines strain energy release rates 

associated with growth of split fatigue cracks, in a pure shear specimen, in an attempt 

to investigate how fatigue crack bifurcation alters fatigue crack surface roughness. 

Using a method of extending one split crack at a time, whilst keeping a second split 

crack at a constant length, it has been possible to evaluate the initial strain energy 

release rate for a split crack at different locations in a pure shear specimen. It was 

observed that, for a split crack in a pure shear specimen, the initial strain energy release 

rates available for crack growth depend on the location of the split crack in relation to 

the central horizontal plane of the specimen. This work also shows that, split cracks 

closer to the central plane of the pure shear specimen possess higher strain energy 

release rates for growth than split cracks displaced further from the central plane. This 

trend becomes more pronounced at higher global strains. It is concluded in this work 

that the observed roughness of fatigue crack surfaces, to a large extent, may be the 

result of a cyclic process involving a fatigue crack tip splitting, the twin growth of both 

split cracks with the one that has a higher energy release rate eventually accelerating 

and leaving behind the lower energy release rate component.  

 In Chapter two a literature review of elastomer materials including their uses 

and properties is presented. The stress-strain behaviour of elastomer materials, cyclic 

stress relaxation and the concept of elastomer fracture mechanics are discussed. This 
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review examines both the experiments done by earlier workers and the theories that 

have been developed to explain the behaviour. 

 In Chapter three the material and experimental methods used to test the 

cylindrical rubber to metal bonded component and test pieces in this work are presented 

in detail. The finite element analysis technique for strain energy release rate 

calculations is also explained.  

 Chapter four presents the results and discussion of the cyclic stress relaxation 

behaviour of the cylindrical rubber to metal bonded component and test pieces. The  

effects of maximum loading displacement and mode of deformation of the component 

on the cyclic stress relaxation rate are discussed. Finally an original approach based 

upon the average strain energy density in the component is proposed to correlate the 

cyclic stress relaxation rate found in the test pieces with the rate measured in the 

engineering components. 

In chapter five, the results and discussion of fatigue life prediction of the 

cylindrical rubber to metal bonded component are presented. It is demonstrated that a 

fracture mechanics based approach can predict the fatigue life of elastomer engineering 

components both at room temperature and for the first time at 70±1ºC. 

 Chapter six presents the results and discussion of FEA calculated strain energy 

release rates of growing split cracks in a pure shear specimen. Chapter seven 

summarises the conclusions and future work for the entire thesis. 
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CHAPTER TWO 

2.0 Literature Review 

2.1 Definition of a rubber and an elastomer  

 An elastomer is a macromolecular material which returns rapidly approximately 

to its initial dimensions and shape after substantial deformation by a weak stress and 

the release of the stress. A rubber is an elastomer which can be, or already is, modified 

to a state in which it is essentially insoluble (but can swell) in a solvent and which in its 

modified state cannot be easily remoulded to a permanent shape by the application of 

heat and moderate pressure (BS3558-1). 

2.2 Properties and uses of elastomers 

 In general elastomers exhibit the following combination of physical properties; 

a low tensile modulus (0.5 – 10 MPa), high extensibility, good strength, low 

permeability and good electrical insulation properties (Morton, 1987). Elastomers are 

used in tyres, in sealing applications, as protection against abrasion and vibration, as 

electrical insulation, in corrosion protection, in conveyor belting applications, and in 

hoses and tubes. Three physical requirements are needed to be fulfilled for a material to 

exhibit rubber-like behaviour: 

1) The molecular chains have to be flexible and the molecular weight has to be 

large with, for the most part, very weak interactions between the molecular 

chains. 

2) The chains should be fairly regular on a molecular level. These chains need to 

be connected to each other in a loose network by chemical bonds, usually via a 

short segment called a cross-link. A molecular weight of about 10 000 between 

junction points is a typical value for vulcanised natural rubber (Brydson, 1988; 

Sperling, 1986). 

3) The glass transition temperature of the material must be below the temperature 

of application of the material (Sperling, 2001). 
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2.3 Types of elastomers 

 Elastomers can be classified into general-purpose elastomers and specialty 

elastomers. This classification is mainly based on suitability of the elastomer for a 

given application. Though general purpose elastomers are widely used, in some 

applications they can become unsuitable. This may be due to insufficient properties 

such as solvent resistance, aging resistance, and/or temperature resistance. As an 

alternative, several special purpose elastomers (specialty elastomers) have been 

developed to meet these needs.  General-purpose elastomers include styrene-butadiene 

rubber (SBR), butadiene rubber (BR), and polyisoprene – both natural rubber (NR) and 

synthetic rubber (IR). Specialty elastomers include polychloroprene (CR), acrylonitrile-

butadiene rubber (NBR), hydrogenated nitrile rubber (HNBR), Butyl rubber (IIR), 

ethylene-propylene rubber (EPR, EPDM), silicone rubber (MQ), polysulfide rubber 

(T), chlorosulfonated polyethylene (CSM), polyacrylate rubber (ACM), fluorocarbon 

rubbers (FKM), chlorinated polyethylene (CM), epichlorohydrin rubber (ECO) and 

ethylene-acrylic rubber (AEM) (Gent, 1992). 

2.3.1 Natural rubber (NR) 

 Natural rubber (NR) is a polymer prepared either by the smoked sheet or the 

hevea crumb process from field latex (Allen and Bloomfield, 1963). The rubber 

consists mainly of linear cis-1,4-polyisoprene with a number average molar mass of 

about 105 –106 and has a glass transition temperature Tg, of approximately –70°C. It has 

the same empirical formula as trans-1,4-polyisoprene called Gutta-percha, (C5H8)n 

having one carbon-carbon double bond for each C5H8 unit, the difference being solely 

in the spatial arrangement of the carbon-carbon bond adjacent to the double bond 

(Treloar, 1975). A diagram illustrating the structure of the repeat units for NR and 

Gutta-percha is given in figure 2.1. These differences give markedly different physical 

properties for the two materials, with NR being rubbery at room temperature while 

Gutta-percha being a crystalline solid.  NR crystallises at low temperature (maximum 

rate at – 26°C) and upon straining. This is a consequence of a high degree of stereo 

regularity, permitting a regular molecular alignment upon stretching. The ability to 

strain crystallise imparts outstanding strength and gives vulcanisates with high crack 

growth resistance at very large gross deformations. Unfortunately, NR also has a high 
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Figure 2.1 (a) cis-polyisoprene (NR)             (b) trans-polyisoprene (gutta percha) 

chemical reactivity with the ambient environment, in particular with oxygen and even 

higher reactivity with ozone (Morton, 1987; Cunneen and Higgins, 1963; Treloar, 

1975). 

2.3.2 Polyisoprene (synthetic) rubber (IR) 

 Isoprene rubber (IR) is a synthetic rubber equivalent to NR with almost the 

same chemical structure, 94-98% of cis-1,4-polyisoprene and 6-2% of trans-3,4-

polyisoprene (Blow, 1971). IR is produced both anionically and by Ziegler-Natta 

polymerisation. NR and IR are both recognised as exhibiting strain induced 

crystallisation. Under large strains these rubbers have extremely high strengths and 

fatigue resistance with IR compounds having a lower modulus than similarly 

formulated NR compositions due to a reduction in the strain-induced crystallisation 

especially at the highest rates of deformation. 

2.3.3 Styrene-butadiene rubber (SBR) 

 Styrene-butadiene rubber (SBR) is the most widely used synthetic rubber with 

the largest global production volume. SBR is a random copolymer of styrene and 

butadiene made by free radical emulsion polymerisation or anionically in solution. The 

most commonly used SBR consists of 23.5% styrene and 76.5% butadiene, with a glass 

transition temperature, Tg, of approximately –53°C (Barlow, 1988). A diagram 

illustrating the structure of the repeat units of SBR is given in figure 2.2. 
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Figure 2.2 Chemical structure of styrene-butadiene rubber (SBR) 

SBR is known as an essentially non strain-crystallising rubber, as under a large strain, 

only limited if any crystallisation can take place. This feature results in significant 

differences between the mechanical properties of NR (a strain crystallising rubber) and 

SBR. SBR has lower tensile strength and tear resistance and it is necessary to reinforce 

all SBR compounds for use in engineering applications with fillers such as carbon 

black to impart more useful properties. It is also quite a common practice to blend SBR 

with other rubbers to improve some of its basic properties. 

2.3.4 Polybutadiene rubber (BR) 

 BR is a homopolymer of butadiene (C4H6) and can be made either by solution 

or emulsion polymerisation. It is a non-polar rubber like NR and SBR, with a very low 

Tg approximately –100°C. The 1,4-polybutadiene is an approximately equal mix of cis 

and trans. Because of the regularity of its structure BR has a tendency to crystallise that 

depends on the amount of cis and trans present (Blow, 1971). A diagram illustrating the 

structure of repeat units is given in figure 2.3. BR is a resilient rubber which is 

commonly used in combination with NR and SBR in long life rubber tyre treads.  

 

 

Figure 2.3 Chemical structure of polybutadiene rubber (BR) 
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2.4 Compounding of a rubber compound  

 None of the elastomers mentioned in section 2.3 have useful properties until 

they have been properly formulated. Rubber compounding is a process of blending the 

rubber with vulcanising agents and other substances to produce a homogeneous mix. 

Ingredients used in a rubber compound may be classified in the approximate order of 

importance as follows (Blow, 1971; Morton, 1987): 

1. Vulcanising agents; these are chemicals which can initiate the chemical cross-

linking of the rubber molecules leading to the formation of a three-dimensional 

macromolecular network. The most common cross linking agents are based 

around a sulphur curing system. 

2. Accelerators; these are substances which can increase the rate of sulphur 

combination with rubber. They are capable of promoting more efficient use of 

sulphur; that is more cross-links, for a given amount of sulphur. They are also 

used to reduce the vulcanisation time. 

3. Activators; these are also used to increase the vulcanisation rate. They activate the 

accelerators, which become more efficient.  The most common system being zinc 

oxide and stearic acid in combination to create soluble zinc ions that activate the 

intermediate reactions involved in cross-link formation. 

4. Fillers; these are added to reinforce or modify physical properties, impart certain 

processing properties, or potentially in lower specification products to reduce 

cost. Carbon black and silica are popular types of fillers which are used to 

increase the stiffness and strength of the elastomers. 

5. Processing aids; these are materials used to modify rubber during mixing or 

processing steps. Processing oils are often used when fillers are mixed with 

rubber. These are hydrocarbon oils and their presence reduces the frictional 

energy during mixing. 

6. Protective agents; these are added to protect the rubber from degradation. The 

types of protective agent used depend on the use of the finished product. Waxes 

are incorporated to protect the rubber against ozone attack while chemicals such 

as 1,2-dihydro-2,2,4-trimethyl-6-phenyl quinoline are used to protect against 

other forms of oxidative degradation. 

7. Additional ingredients can be used for specific purposes but are not normally 

required in the majority of rubber compounds. Examples are retarders (the 
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opposite of accelerators), colouring pigments, blowing aids, deodorants and fire 

retardants. 

Mixing of the compounding ingredients with rubber is usually carried out on a two-roll 

mill or in an internal mixer (Morton, 1987). 

2.5  Vulcanisation 

 A raw rubber often known as an elastomer or occasionally as a gum rubber is a 

soft-flexible material. It shows viscoelastic properties since the molecules interact with 

their neighbours due to forces of attraction and physical entanglements. Without cross-

links, the elastomer only exhibits limited elastic properties. Rubber is tacky when hot 

and slowly crystallises to a rather hard and tough material when stored at low 

temperature (for NR this is below 15°C) (Wood and Bekkedahl, 1946). In the 

unvulcanised state, raw rubber only has rather limited uses but it can be transformed 

into a more useful highly elastic state through a process called vulcanisation. 

Vulcanisation is the chemical treatment of a natural or synthetic rubber by the addition 

of a vulcanising agent such as sulphur, peroxides (or metal oxides) followed by curing 

at elevated temperature and/or pressure into a stable, elastic and resilient material. 

Vulcanisation of rubber creates cross-links, which form chemical bonds between the 

long network chains of the rubber matrix. A diagram illustrating the structure of gum 

rubber before and after vulcanisation is given in figure 2.4 (Barlow, 1988; Chapman 

and Porter, 1988). Measurements of vulcanisation characteristics using an oscillating 

disc rheometer (ODR) or moving-die rheometer (MDR) is common practice in the 

rubber industry to help determine the kinetics of the cross-linking process. An 

oscillating rotor is surrounded by a test compound, which is enclosed in a heated 

chamber. The torque required to oscillate the rotor is monitored as a function of time at 

the temperature chosen for vulcanisation. Figure 2.5 shows a typical torque-time curve 

along with characteristic terms to describe the different behaviours. The scorch time, ts1 

is the time at which the torque is 0.1 Nm above minimum torque. It gives an indication 

of the safe period before the mix becomes impossible to process further due to the 

formation of cross-links (Morrell, 1987). 
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Figure 2.4 Rubber structure: (a) before vulcanisation and (b) after vulcanisation.     
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Figure 2.5 Illustration of the three different curemeter responses (Hamed, 1992). 

At the start of the test, there is a sudden increase in torque. Then, as the elastomer is 

heated, its viscosity decreases, resulting in a net decrease in torque. Eventually, the 

compound begins to vulcanise and transform into an elastic solid (known as an 

elastomer), and the torque rises. Molecular chain scission may also occur; however, an 

increasing torque indicates that an increase in cross-links is dominant. If the torque 

reaches a plateau (curve b), this indicates a completion of curing and the formation of a 

stable network. If chain scission and/or cross-link breakage become dominant during 

prolonged heating, the torque passes through a maximum and then decreases (curve a), 

a phenomenon termed reversion. Some NR compounds, particularly at high curing 

temperatures, exhibit reversion. On the other hand, some compounds show a slowly 

increasing torque at long cure times often called creeping cure (curve c). This 

behaviour often occurs in compounds that initially form many polysulphidic linkages. 

With extended cure times, these linkages may break down and re-form into linkages of 

lower sulphur rank, thereby increasing the total number of cross-links (Hamed, 1992). 
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2.5.1 The vulcanising systems 

 In general, the type and number of cross-links formed between the network 

chains affect both the physical and chemical properties of the material. The number of 

cross-links depends on the amount and the type of vulcanising agent added. The time 

allowed for curing/vulcanisation also produces different types of cross-links and 

imparts different properties to the rubber vulcanisates. However, only the three kinds of 

cross-link systems that are of commercial importance are discussed in the following 

sections. 

2.5.2 Accelerated sulphur vulcanisation  

 Accelerated sulphur vulcanisation was discovered in the 19th Century in 

separate works carried out by Goodyear and Hancock and is still the most widely used 

cross-linking method. A vulcanising system comprises a mixture of additives required 

to vulcanise or “cure” a rubber. The three main classes of chemicals used for curing in 

this vulcanising system are vulcanising agents, accelerators and activators. Accelerated 

sulphur vulcanisation systems may give mono-, di-, tri- or higher polysulphidic cross-

links and the types of cross-links obtained are determined by the amount and type of 

vulcanisation systems used (the ratio of mass of sulphur to accelerator) (Porter, 1969). 

They also contain main chain modifications such as cyclic sulphides, pendent 

accelerator group, and extra network materials which are primarily vulcanisation 

residues. A diagrammatic representation of the network structure of a sulphur 

vulcanisate is shown in figure 2.6. The accelerated sulphur vulcanisation systems can 

be classified into three types: 

1. Conventional systems (CV); containing high sulphur to accelerator ratios. 

2. Efficient systems (EV); containing high accelerator to sulphur ratios. 

3. Semi efficient systems (Semi-EV); that is, intermediate between 1 and 2. 
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Figure 2.6 A diagrammatic representation of the network structure of a sulphur 

vulcanisate (Chapman and Porter, 1988). 

2.5.3 Conventional sulphur systems 

 Conventional vulcanising systems (CV systems) have a high ratio of sulphur 

(2–3.5 phr by mass) to accelerator (0.5–1.0 phr by mass). These systems contain more 

polysulphidic cross-links (70–80%) than the disulphidic cross-links (20–30%) with a 

relatively high degree of polymer chain modification. These systems give vulcanisates 

which have excellent initial properties like strength, resilience and resistance to fatigue 

and abrasion and are satisfactory for many applications. However, they show poor heat 

and oxidation resistance because the polysulphidic cross-links are thermally unstable 

and can be readily oxidised (Porter, 1968). 

2.5.4 Efficient sulphur systems 

 Efficient vulcanising systems (EV systems) have a low ratio of sulphur (0.3–1.0 

phr by mass) to accelerator (2.0–6.0 phr by mass). They give mainly monosulphidic 

cross-links and less polymer chain modification. EV systems show good heat stability 

and oxidation resistance, but have a poorer resistance to fatigue because of the presence 

of the monosulphidic cross-links (Chapman and Porter, 1988; Skinner and Watson, 

1967).  
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2.5.5 Semi-efficient sulphur systems 

 Semi efficient vulcanising systems are intermediate between CV systems and 

EV systems, with similar levels of accelerator (1.0–2.5 phr by mass) and sulphur (1.0–

2.0 phr by mass) (Porter, 1973). This results in approximately equal amounts of 

monosulphidic and polysulphidic chains to be present in the rubber network. They offer 

a compromise between a good resistance to thermal ageing and a good fatigue life 

performance.  

2.5.6 Peroxide vulcanisation  

 Peroxides are another curing system for rubbers. Unlike sulphur curing, double 

bonds are not required along the polymer chain for peroxide vulcanisation.  Saturated 

rubbers like ethylene propylene rubber and silicone rubber cannot be cross-linked by 

sulphur and accelerators, and organic peroxides are often used for their vulcanisation. 

When peroxides decompose, free radicals are formed on the polymer chains, and these 

chains then combine to form carbon-to-carbon bonds (C-C) which serve as cross-links. 

A diagram illustrating the cross-link system in peroxide vulcanisation is given in figure 

2.7. 

 

 

 

Figure 2.7 Chemical structure of carbon to carbon cross-link in a peroxide cured 

network. 

Peroxide vulcanisates have the best heat resistance when suitable antioxidants are also 

included due to the good stability of C-C cross-links (Bristow, 1970). However, cure 

rates are slow and their formation can require higher temperatures. Long cure times are 

needed to ensure the complete decomposition of the peroxide so that resistance to 
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oxidative ageing is retained. Peroxide vulcanisates have a worse resistance to low 

temperature crystallisation and inferior strength properties compared with sulphur 

vulcanised rubber (Barlow, 1988; Baker, 1988). 

2.6 Rubber-like elasticity 

 Elastomers exhibit a unique property of being capable of being stretched to 

several hundred percents of their original length when loaded and recovering upon 

removal of the load. For most engineering elastomers, extension within the range of 

200% to 1000% is typical. The engineering stress-strain relationship becomes non-

linear at deformations that are this large and much lower. As a result a single parameter 

(Young’s modulus) to describe the modulus of the elastomer is inappropriate. However, 

as is the case with most solids at small strains, the force extension relationship is 

considered to be approximately linear and a small strain elastic modulus is often used 

in engineering practice.      

2.6.1 Rubber-like elasticity (at small strains) 

 Elastomers can be considered to be elastic and isotropic in their undeformed 

state and can, therefore, be characterised by only two fundamental elastic constants. 

The first deals with the materials resistance to compression under a hydrostatic 

pressure. It is termed the bulk modulus B and defined as the ratio of the applied 

pressure to the volumetric strain. The second term is the shear modulus G, which is 

defined as the ratio of the applied shear stress  required to produce a shear strain . 

The other frequently used small strain elastic constants, the tensile modulus E and 

Poisson’s ratio , are related to the bulk modulus and the shear modulus as shown 

below, 

 +

E
G = 

12
 (Eq.2-1) 

 213 
E

B =  (Eq.2-2) 

Elastomers being a unique class of engineering materials have very low shear and 

tensile moduli (in the region of 0.5–10 MPa) while the bulk modulus is typically very 

large (at about 1.5–2.0 GPa). As a result the value of Poisson’s ratio is close to 0.5 

(typically, 0.4995) (Sperling, 2001) and the tensile modulus E is almost exactly equal 

to 3G. For many engineering applications elastomers can be considered as being 
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incompressible and the elastic behaviour at small strains (<10% strain) can be defined 

by just a single elastic constant G (Gent, 1992).   

2.6.2 Rubber-like elasticity (at large strains) 

 There are two main approaches that attempt to describe the large strain 

behaviour of elastomers. These are either molecular models based around the 

configuration entropy of the rubber network (the simplest of which is known as the 

simple statistical theory) and various other phenomenological approaches (Sperling, 

2001).  

1) Molecular approach 

 The molecular approach is based on the random morphology of the rubber 

chain molecular network in three-dimensions and the response of this 

network to the application or removal of a force. 

2) Phenomenological approach 

The phenomenological approach can be based on classical mechanics, and 

just attempts to model the behaviour in a suitable mathematical way without 

assuming any specific arrangement of the polymer molecules. 

Both approaches can result in the derivation of a stored or strain energy function (SEF). 

This is a measure of the amount of recoverable elastic energy W, stored in a unit 

volume of the material having been subjected to a specific state of strain. 

2.6.3 Thermodynamics of elastomer deformation 

 Two phenomena are observed in elastomers, which indicate that elastic 

behaviour and the thermodynamic behaviour are related.  

1. When an elastomer is stretched rapidly, it warms up. Conversely, when a 

stretched specimen is allowed to contract, it cools down. 

2. Under conditions of constant load, the stretched length decreases on heating 

and increases on cooling. 

The two effects are known as the thermo-elastic properties or Gough-Joule effects 

(Treloar, 1975).  It is possible to explain these two phenomena by considering the 

deformation of the rubber in thermodynamic terms. The first law of thermodynamics 

gives the definition for a change in the internal energy, dU: 

WQU ddd   (Eq.2-3) 
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where dQ is the heat absorbed by the system and dW is the work done by external 

force. This equation states that the increase in dU in any change taking place in a 

system equals the sum of the energy added to the system by the heat process, dQ, and 

the work performed on it dW.  

The second law of thermodynamics defines the entropy change dS in any reversible 

process as: 


Q

S
d

d   (Eq.2-4) 

where ϑ is the temperature and dS is the change in the entropy of the system.  

For a reversible process, combining both laws of thermodynamics gives; 

WSU ddd    (Eq.2-5) 

For elastic solids, the work done by the applied stress is important. If tensile force is F 

and l is the initial length of the elastic specimen in the direction of the force, the work 

done in creating an elongation dl is: 

lFW dd   (Eq.2-6) 

The force, F in the tension mode can be expressed from equation 2-6 in the form of 
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The first term refers to the change in internal energy with extension and the second 

term to the change in entropy with extension. From thermodynamic considerations it 

can be shown that: 
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This gives the entropy change per unit extension, 
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, which can be measured. When an 

elastomer is stretched the randomly coiled molecules are straightened and this 

decreases the disorder and hence also decreases the entropy of the network. Therefore, 

the entropy of elongation at constant temperature must be negative. Therefore,  
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Figure 2.8 Stress at constant extension as a function of absolute temperature, at an 

extension of 350% (Meyer and Ferri, 1935)  

This equation allows the internal energy term and entropy term to be evaluated. Meyer 

and Ferri (1935) investigated the relation between the force, at an applied strain of 

350%, against the temperature. Their results are shown in figure 2.8 and indicate that 

the relationship between stress and temperature in the rubbery region, when the 

temperature is higher than the glass transition temperature, is linear and can be 

extrapolated to approximately zero tension at absolute zero temperature. This 

relationship implies that the change in the entropy with an extension is temperature 

independent. The approximately zero intercept indicates that there is virtually no 

change in the internal energy associated with the extension. The small discrepancy 

might be explained by complications caused by the effects of thermal expansion. From 

the thermodynamic theory, it is seen that the deformation of the rubber network 

involves a reversible transformation of work into heat. This thermodynamic concept is 

a basic foundation for the statistical development of the kinetic theory of rubber 

elasticity. 
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2.6.4 The statistical theory of elasticity 

 The statistical treatment requires the calculation of the entropy of the whole 

assembly of chains as a function of the macroscopic state of strain in the sample and 

the derivation of the free energy or work of deformation. The work done in deforming 

the rubber elastically is considered to arise from the decrease in entropy when the 

molecules are forced by deformation to take up a less probable configuration. The 

development of the theory for a cross-linked rubber has been carried out by a number 

of workers; Kuhn (1936), Wall (1942), James and Guth (1943) and Treloar (1943). 

The assumptions of the theory are: 

1. The network contains N chains per unit volume each containing q identical, freely 

jointed links of length l. A chain is defined as a segment of molecules between 

successive cross-links. 

2. The rubber deforms in a manner which causes the configurational entropy of the 

chains to alter, but which results in no change in internal energy. 

3. The distribution of possible end to end distance, r, follows a Gaussian distribution 

in the unstrained state described by a probability density function: 

rrbr
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r=r )dexp(4)dP( 222
3/2
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 (Eq.2-10)            

where 
2

2

2

3

lq
b  . It follows that the root-mean-square distance is given by 

2r = ql  and it is implicit in assuming a Gaussian distribution that r << ql; in 

other words the end to end distance of the chains is much less than their fully 

extended length. 

4. The volume remains unchanged on deformation. (That is the material is 

incompressible). 

5. The cross-links move in deformation as if embedded in an elastic continuum so 

that the components of length in each chain change in the same ratio as in the 

bulk rubber. This is known as the assumption of affine deformation. 

6.  The entropy of the individual chains is given by: 

2

2

2

3

lq

r
CS

k
  (Eq.2-11) 
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where C is arbitrary constant and k is the Boltzmann constant. The entropy of the 

network is the sum of the entropies of the individual chains. 

Using equation 2-11 to calculate the entropy change associated with deforming 

a chain and summed over the assembly of N chains yields: 

)3(
2

1 2
3

2
2

2
1  kNS  (Eq.2-12)               

where S  is the change in entropy of the network per unit volume under a deformation 

in which 1 , 2 and 3 are the three principal extension ratios (the ratios of the 

stretched to unstretched length) along three mutually perpendicular axes. Thus a unit 

cube would be deformed into a cuboid of edge lengths 1 , 2 and 3 . The basic 

assumption of the kinetic theory is that all states of deformation have the same internal 

energy )0( U  and the same non-configurational entropy. Hence, for an isothermal 

reversible process the work W done by the applied forces becomes: 

SSUW    (Eq.2-13) 

The work of deformation per unit volume is then: 
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1  kNW  (Eq.2-14) 

W represents the work of deformation or elastically stored energy per unit volume and 

is also called the strain energy function.  It is convenient to write: 

cm
nRNG

 R
k   (Eq.2-15) 

where n is the number of moles of chains per unit volume,  is the density of rubber, R 

is the gas constant, ϑ is the temperature and mc is the number average molecular weight 

of segments of molecules between successive cross-links. Equation 2-14 becomes:  
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2
1  GW  (Eq.2-16)                  

Thus, the strain energy function represented by equation 2-16 involves only one 

physical constant, G, which may be determined from the degree of cross-linking in the 

rubber. If the assumption of constant volume is applied then; 

1321   (Eq.2-17)                

in simple tensile extension which can be defined in terms of a single extension ratio . 

The two equal contractions in the transverse directions can be derived from the 

incompressibility condition as: 
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
 1

, 321   (Eq.2-18)                          

and equation 2-16 becomes: 
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GW   (Eq.2-19)              

The force per unit undeformed cross sectional area or engineering stress σ required to 

deform the network is given by (Treloar, 1975):  
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W

 (Eq.2-20)           

For an incompressible material the state of deformation is unaffected by the imposition 

of the hydrostatic stress. The differences between any two principal stresses in any 

homogeneous deformation may be determined absolutely. These are given by:  
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232   G                  

 2
1

2
313   G   (Eq.2-21) 

The stress-strain behaviour for particular modes of deformation may be determined 

from equation 2-21 by the substitution of the appropriate relationships for the stresses 

and the extension ratios. Experimental examination of the stress-strain relationships in 

figure 2.9 (tensile stress versus strain plotted with the relation predicted in tension 

using equation 2-20) however, reveals significant deviations between the theoretical 

and experimental results. In simple extension there are two distinct deviations (Treloar, 

1944). This theory is subject to all the limitations imposed by the assumption of the 

Gaussian chain behaviour and in addition to the assumption of affine deformation. The 

theory worked quite well over a limited range of extension ratios ranging from about 

1.0 to 1.3. Above this range, deviations from the theory were apparent, especially in 

uniaxial extensions where, at extension ratios between 1.3 and 5.5, the theory predicted 

a modulus that was higher. At extensions greater than 5.5, the measured stress-strain 

behaviour for an actual elastomer showed a marked upturn which this simple statistical 

theory failed to predict. The deviation at higher strains (>400%) is caused by the effects 

of a finite chain extensibility which is not considered (Wall, 1942; James and Guth, 

1943). In strain crystallising elastomers, strain-induced crystallisation effects, which 

also increase the materials stiffness, dominate at high strains. 
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Figure 2.9 Comparison of statistical theory with experimental data for unfilled 

elastomers by Treloar (1975). 

2.6.5 Phenomenological theories  

 Phenomenological approaches are based upon a mathematical description of the 

stress-strain behaviour and not on molecular or structural concepts of the material, 

assuming an isotropic material in the unstrained state. These theories represent the large 

strain behaviour of both unfilled elastomers and filled elastomers. This, rather general, 

treatment of the stress-strain relations of rubber-like solids started with Mooney (1940) 

before the derivation of the statistical theory, and was further developed by Rivlin 

(1956). Other forms of the stored energy function have been developed by many 

workers since then, a detailed review of Rivlin’s theory and the work of others, 

including the Yeoh stored energy function which was used in all the finite element 

analysis work in this thesis, can be found in Busfield (2000). The Yeoh stored energy 

function was chosen to model the material behaviour in this work because of its 

accuracy in modelling the stiffness behaviour of filled elastomers at large strains. The 

Yeoh stored energy function is also able to accurately predict the stress strain behaviour 

of filled elastomers in different deformation modes using experimental data measured 

in one simple deformation mode such as uni-axial extension. The Yeoh model differs 
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from other higher order models in that it depends on the first strain invariant only. Its 

accuracy at fitting stress strain data at low strains is limited and therefore caution needs 

to be excercised when applying this model at low strains (Gent, 1992). In the following 

section, the theory of Mooney is reviewed. 

2.6.6 The theory of Mooney 

 One of the earliest and most widely applied of the phenomenological theories is 

that due to Mooney (1940). Mooney was concerned with the problem of developing a 

general theory for large elastic deformations. Making use of the assumptions that a 

rubber is incompressible and isotropic in the unstrained state, and that Hooke’s Law is 

obeyed in simple shear, Mooney derived by purely mathematical arguments based on 

the considerations of symmetry, the following stored energy function, 
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which contains two elastic constants, C1 and C2. The first term in equation 2-22 

corresponds to the form derived from the statistical theory with 2C1=Nkϑ. The 

statistical theory is therefore a particular case of the Mooney function corresponding to 

C2 = 0. 

For a simple extension or uniaxial compression, where 2 = 3 =

1

 equation 2-22 

becomes, 
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and the nominal stress is given by 




















1

2
12

1
1

1
2

d

d





 C

C
W

 (Eq.2-24)      

The term C1 was found to be dependent on the cross-link density and was consequently 

related to the elastic constant of the statistical theory (Gumbrell et al, 1953). The origin 

of the C2 term is still not clear, but it can be regarded as a measure of the departure of 

the observed stress-strain relationship from the form suggested by the statistical theory. 

Numerous experiments have been carried out which give support to the applicability of  

the Mooney equation in simple extension for natural rubber and other polymers 

(Grumbell et al., 1953; Mooney, 1940). However, the data of Rivlin and Saunders  
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 (1951) for equibiaxial extension (which is kinematically equivalent to uniaxial 

compression) showed a marked deviation from the Mooney relationship. Figure 2.10 

shows the relationship between the extension and compression. In the extension region 

(1/λ<1) the Mooney line corresponds to a value of C2/C10.8, but in compression (1/λ 

>1), C2 was found to be about zero. Thus, when considering the extension and 

compression data together, it is clear that the Mooney equation is no improvement over 

the statistical theory. Taken as a whole, the Mooney equation does not seem to give a 

closer fit to the experimental data than the statistical theory. The interpretation of 

experimental data using the Mooney equation must be treated with caution since the 

Mooney form of the stored energy function cannot be adequately used to describe the 

mechanical properties of rubber for all possible types of strain, particularly those in 

compression predicted using properties measured in tension. 

 

 

 

 

 

 

Figure 2.10 Mooney plot for data of simple extension and uniaxial compression 

(Treloar, 1975). 



46 
 

2.6.7 Imperfect elasticity 

 The preceding section of rubber-like elasticity was concerned mainly with the 

ideal behaviour of elastomers, which were assumed to follow reversible relations 

between load and displacement. In practice, deviations from such ideal behaviour are to 

be expected. An ideal elastic solid obeys Hooke’s law: stress is proportional to strain. 

An ideal viscous liquid obeys Newton’s law: stress is proportional to rate of change of 

strain with time. Many materials and elastomers in particular, have properties that are 

intermediate between these two cases. The response of these materials, which act 

neither as ideal elastic solids nor as ideal liquids, is known as viscoelastic behaviour. 

While viscous properties might be desired in elastomers for shock damping 

applications, many industrial problems arise as a consequence of excessive viscous 

response. Such common phenomena as stress relaxation, creep, compression set (and 

unrecovered deformations, in general), energy losses during a deformation cycle 

(“hysteresis”), limited rebound, heat generation, temperature rise during flexing and 

cyclic stress relaxation are all manifestations of the inelastic properties of elastomers. 

2.6.8 Stress relaxation, creep, set recovery and hysteresis  

 Stress relaxation is a time-dependent reduction in stress under constant 

deformation. It is usually defined as the loss in stress expressed as a percentage of the 

initial stress. Thus, 

Stress loss (t) %100
o

to 






 (Eq.2-25) 

where 0  is the initial stress and t  is the stress at time t. The rate of stress relaxation 

is then the stress relaxation divided by some function of time. 

Creep is the increase in strain with time at a specified load and is usually expressed as a 

percentage of the initial deflection. Thus, 

Creep (t) %100
i

it 



l

ll
 (Eq.2-26) 

where lt is the length of rubber specimen at time t and li is the initial extended length of 

the specimens. The initial deflection must be measured at a defined initial time to, 

which should be about 10 times longer than the time taken to apply the deformation. 

Set is a specific deformation, which remains when a material is released from the force 

imposed on it. Thus, set measures the ability of the elastomer to recover its original 
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dimensions. When the deformation is tensile, it is referred to as tension set. Hence, 

tension set is defined as: 

Set (t) %100
oi

ox 




ll

ll
 (Eq.2-27) 

where lx is the recovered length, lo is the initial length and li is the extended length 

(Gent, 1992). Energy lost during loading and unloading cycles in a cyclic test is termed 

hysteresis. Here the energy dissipated during a loading cycle is considered as the area 

between the loading and the unloading cycle. Examples are shown in Figure 2.11 taken 

from Lindley (1974b). For an unfilled elastomer, the magnitude of the energy loss at 

extension ratios below 3 is quite small. Payne and Whittaker (1972) showed that at 

higher extension ratios in excess of 4 with strain crystallising elastomers, such as 

natural rubber, the amount of hysteresis was dramatically increased due to the 

formation and the dissolution of strain induced crystals during the loading cycle. This 

hysteresis, expressed as the fraction of the energy input lost, increases as the fraction of 

particulate filler is increased. Payne (1962) and Deeprasertkul (2000) attributed this to 

the breakdown and reformations of the agglomerates of the carbon black particles that 

can themselves dissipate energy. 
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Figure 2.11 Hysteresis loops for natural rubber taken from Lindley (1974b). (a) 

The first cycle loops for unfilled natural rubber extended to various strains and 

(b) first, second and tenth cycle loops for a natural rubber that contains 50 phr of 

carbon black. 

(a) 

(b) 
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2.6.9 Cyclic stress relaxation 

 Many engineering components undergo repeated stressing. Under repeated 

stressing it is well known that rubber materials exhibit cyclic stress relaxation. Under 

specific conditions for many components, this results in fatigue failure such as that 

described by Busfield et al. (2005), Papadopoulos et al. (2008) and Busfield et al. 

(2002). Cyclic stress relaxation involves a reduction in the stress attained on the second 

and successive loading cycles as compared with the stress attained on the first cycle in 

a stress strain cyclic test of fixed strain amplitude. This cyclic stress relaxation 

behaviour is sometimes mistakenly referred to as the Mullins (1948) effect. This is 

inappropriate, as the classical Mullins effect describes behaviour where if the maximum 

strain experienced previously by the rubber is exceeded, the stress strain curve returns 

to the value measured in the virgin cycle. The relaxation phenomenon has been studied 

for simple extension by Derham and Thomas (1977), McKenna and Zappas (1981), 

Davies et al. (1996) and Pond and Thomas (1979), but not for other deformation 

modes. It was found that the fractional relaxation or creep rate was strongly dependent 

on the maximum stress as well as the composition of the compound. In particular the 

filler content and the ability to strain crystallise appears to be important in enhancing 

the relaxation rate. Rubber in engineering applications experiences many modes of 

deformation. One of the key aims of this thesis is therefore to examine how cyclic 

stress relaxation might be predicted in more than one mode of deformation. In chapter 

4, results of cyclic stress relaxation measurements on test pieces and cylindrical bonded 

elastomer components will be presented and discussed.    

2.7 Fracture mechanics 

 A fracture mechanics approach that was based upon an energy balance approach 

was originally developed by Griffith in 1920 for brittle materials. Griffith observed that 

the stress needed to fracture bulk glass was much less compared with the theoretical 

stress needed for breaking atomic bonds in the glass. Griffith conducted experiments on 

glass fibres which showed an increase in the fracture stress of the glass fibre samples as 

the diameter decreased. Griffith attributed the observed reduction in strength of the 

bulk glass compared with its theoretical strength and the increase in the fracture stress 

of the glass fibre with a decrease in its diameter to the presence of microscopic flaws 

(cracks) in the bulk of the glass material. In an effort to quantitatively assess the 
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influence of these flaws on the strength of the material Griffith assumed that, a crack in 

a strained sheet of glass will grow if the elastic stored energy released due to the crack 

growth was greater than the free energy required to create a new surface. He thus 

established a fracture criterion expressed in differential form as shown in equation 2-

28. 
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where SE is the surface free energy per unit area, U is the total elastic energy stored in 

the sheet, c is the crack length, t is the sheet thickness and the subscript l indicates that 

the differentiation is carried out at constant overall extension so that the externally 

applied forces do no work. The adoption of the elasticity solution for the stress 

distribution in a loaded sheet containing an elliptical hole, made it possible for Griffith 

to calculate the differential for a crack in an infinite sheet. The results generated in his 

experiments containing flaws of a given size were in agreement with measurements of 

the surface energy of molten glass using the expression in Equation 2-28 above. 

2.7.1 Fracture mechanics of rubber 

 The problem of crack growth in elastomers was originally studied by Rivlin and 

Thomas (1953). They extended the Griffith criterion for the growth of a crack in a 

brittle material to the case of vulcanised rubber. Griffith’s approach can be applied to 

elastomers since it is not limited to small strains and linear elastic responses. However, 

the decrease in elastic strain energy in elastomers is not used only to increase surface 

free energy of the cracked body, but it is also partly transformed to other forms of 

energy, like irreversible deformations of the bulk of the material and dissipative 

processes at the crack tip. These dissipative processes at the crack tip occur in a 

relatively small volume of the material compared with the overall dimensions of the 

body. The three factors that determine the magnitude of the dissipation are: the 

viscoelastic properties of the elastomer, the strain in the crack tip region and the rate at 

which the crack is growing. Therefore, the energy required to drive a crack at a 

particular rate is a material characteristic and is defined as strain energy release rate 

which is also sometimes known as the tearing energy, T (Rivlin and Thomas, 1953). 

dA

dU
T   (Eq.2-29) 

where A is the area of a single fracture surface.  
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The detail of the crack tip is a very important aspect of the fracture process as stated 

earlier. In the work of Thomas (1955) he showed that a relationship exists between the 

strain energy release rate and the strain distribution around the tip of a crack of a 

defined radius in a test piece. Considering an incision of the form of two parallel sided 

slits terminated by a semicircle in a test piece, he proposed: 
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where W is the elastic stored energy per unit volume of the rubber at the crack tip at an 

angular distance α from the pole, h is the thickness of the specimen and rt is the radius 

of the semi-circle (figure 2.12). 

Using equation 2-30 he showed that:  
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where Wt is a suitable average of W and d is the diameter of the model crack tip. 

Calculations of the strain energy release rate using the relation proposed, considering 

the over-all forces or strains applied to the test piece (Rivlin and Thomas, 1953), and 

that determined considering the strain distribution around the crack tip (Thomas, 1955) 

compared excellently. Thomas (1955) further showed that when test pieces were 

extended to tensile rupture, Wt in Equation 2-31 becomes the work to break per unit 

volume of rubber, Wb, and Equation 2-31 takes the form, 

bbdWT   or 
b

b d

T
W   (Eq.2-32) 

where db is the diameter of the strained crack tip that results in a tensile rupture. 

He verified this relationship experimentally by measuring the strain energy release rate 

of test pieces having modelled tip diameters in the range of 1mm to 3mm and found 

T/db to be fairly constant and approximately equal to the work to break (Wb) in tensile 

tests. 
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Figure 2.12 Schematic diagram for the shape of a crack tip used in equation Eq.2-

30 (Thomas, 1955). 

Following the work of Thomas (1955), extensive research has been carried out by other 

workers on the crack tip such as the work of Gent and Henry (1967). Andrews (1961, 

1963) showed by applying a microscopic technique that, a combination of hysteresis 

and large displacements results in blunting of the crack tip in highly deformable 

materials. Andrews provided better understanding of the crack tip strain distribution 

and thus confirmed Thomas’ (1955) conclusions. Rice (1968) developed a 

mathematical method which related the local crack tip conditions to the strain energy 

release rate known as the J-integral. The integral expresses an energy balance in a 

volume of material surrounding a crack tip. Rice showed that the value of the integral is 

independent of the choice of integration path. Hence, the path can be chosen close to 

the crack tip to give a measure of local crack tip conditions. The integration path may 

also be chosen to follow the boundaries of the specimen. Mars and Fatemi (2002) 

reported that under this condition the integral turns out to be equivalent to the strain 

energy release rate. It can be inferred, therefore, that the strain energy release rate is a 

measure of the intensity of local crack tip fields for a given material and crack tip 

geometry. 

α 

2rt
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2.7.2 Analytical expressions for the strain energy release rate, T, for some test 

piece geometries 

 For rubber, we cannot assume that strains, and therefore stresses, are 

infinitesimal hence analytical calculation of T for a particular case may be very 

difficult. Rivlin and Thomas (1953), however, presented several different test pieces for 

which analytical expressions for T may be derived.  

 

 

 

Figure 2.13 Types of tear test-pieces (a) trouser (b) pure shear (c) angled (d) split 

and (e) edge crack (Busfield, 2000). 

(a) (b)

(c) (d)

(e) 
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Rivlin and Thomas (1953), Greensmith and Thomas (1955), Thomas (1960) and Lake 

et al. (1969) used differently shaped test pieces of the same material to test the 

hypothesis that the energy required to grow a crack at a given rate is geometrically 

independent and hence a material characteristic alone. Diagrams of the test piece 

geometries they used are shown in figure 2.13. The resulting relationships for 

calculating T for the different geometries are given below: 

1. The trouser test crack growth measurement: 

Ww
h

F
T 0

2



 (Eq.2-33) 

where F is the applied tearing force, λ is the extension ratio in the legs, h is the 

specimen thickness in the unstrained state, w0 is the total width of the test piece and W 

is the elastic stored energy density in the legs of the test piece that are in simple 

extension. 

2. The pure shear crack growth test: 

This is preferred for crack growth studies because the crack grows at a constant rate for 

a specified applied strain. This enables the strain energy release rate to be determined 

as the complications caused by the stress concentration effects at the crack tip are 

eliminated. The strain energy release rate is given by, 

0WlT    (Eq.2-34)                               

where W is the elastic stored energy density in the region of the test piece which is 

subjected to the pure shear state and l0 is the unstrained distance between the two 

parallel clamps. 

3. The angle crack growth test: 
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where F and t are again the applied force and the test piece thickness and θ is the angle 

between the separating legs. 

4. The split crack growth test: 

{[T  FA λAsin θ + FB (λA cos θ - λB)]/t} - w0 (WA – WB) (Eq.2-36) 

where FA and FB are the forces applied to the respective pairs of legs, λA, λB and WA, 

WB the corresponding extension ratios and stored energy densities respectively in the 

legs. 2θ corresponds to the angle of the opening (tan θ = FA / FB) and w0 and t are the 

width and thickness of the test piece. 



55 
 

5. The edge crack in a tensile crack growth test piece: 

In this case the strain energy release rate is given by  

kWcT 2  (Eq.2-37) 

where W is the elastic stored energy density in the bulk of the material at large  

strains, c is the crack length, and k is a changing strain dependent term, given as, 

λ
k

π
  (Eq.2-38) 

where λ is the extension ratio (Lake, 1970). 

2.7.3 Microscopic flaws 

 The work of Griffith in 1920 indicated the existence of intrinsic flaws in 

materials. Work by Mars and Fatami (2003) suggested that the fatigue phenomenon in 

elastomers consists of two stages: the crack nucleation stage and subsequently the crack 

growth stage. This view of the fatigue phenomenon assumes that no inherent flaws pre-

exist in the elastomer material contrary to the observations made by Griffith in his 

work. Tsunoda (2001) in his work noted that fatigue crack initiation may arise from 

accidental scratches and nicks on the moulded or cut surface of the elastomer material. 

Further to that, Gent and Tompkins (1969) suggested that even if such scratches and 

nicks are carefully avoided by moulding the rubber material against polished glass 

surface, the breaking strength of the rubber is not increased dramatically. This implies 

that other sources of flaws such as dirt, dust particles, local inhomogeneities in cross-

link density and filler particle distributions may be present in the material. An approach 

for estimating the size of intrinsic flaws in a material is by using equation 2-37 and 

taking T to be T0 and c to be c0. Here, T0 is the threshold strain energy release rate and 

c0, the edge crack length at T0, the intrinsic flaw size. The threshold strain energy 

release rate may be described as the special energy release rate when the crack tip 

energy losses are minimised. Lake and Thomas (1967) carried out cyclic crack growth 

tests where they defined the minimum tearing limit at which cyclic crack growth will 

occur. They suggested that below T0 crack growth was solely attributed to chemical 

attack by ozone. It is interesting to note that, the average size of intrinsic flaws has been 

found by this approach to be independent of the material compound formulation and of 

the order of 25 to 50μm. The work of Abraham (2002) and Kingston and Muhr (2012) 

suggest that there are flaws in commercial rubber components that have lengths in 

excess of 200µm. Abraham (2002) showed that the large scatter normally occurring in 
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a set of fatigue tests on rubber compounds could be eliminated by introducing regular 

flaws of 200µm throughout the test samples. It is useful to recall, however, that the 

rubber material type and formulation has effect on the strength of the elastomer. It 

appears that, there is no clear distinction between the crack nucleation and subsequent 

growth states as suggested by Fatami (2003). What then appears to be important is the 

rate at which an existing flaw of a given size grows for a specific set of loading 

conditions.   

2.7.4 The cyclic fatigue crack growth phenomenon 

 In the work of Rivlin and Thomas (1953) they established that the energy 

required to grow a crack in a material at a given rate is a material characteristic. It is 

also generally observed that the extent of crack growth during a loading cycle is 

determined by the maximum strain energy release rate achieved in the loading cycle 

and that, the extent of crack growth is not affected very much by the manner in which 

the maximum strain energy release rate was achieved even for relatively viscous 

materials (Gent et al., 1964). The relationship between crack growth rate per cycle and 

the strain energy release rate may be represented mathematically in the form: 

)(
d

d
Tf

n

c
  (Eq.2-39) 

The crack growth rate per cycle and the strain energy release rate relationship is known 

as the crack growth characteristic of the material because it is independent of the test 

piece geometry. Lake (1983) presented typical curves of the crack growth characteristic 

for NR and SBR materials measured under relaxing conditions. Figure 2.14 (Lake, 

1983) shows three distinct regions of crack growth characteristics. In region I the strain 

energy release rate, T, is less than the threshold strain energy release rate T0 and hence 

no mechanical crack growth occurs (Tsunoda, 2001). Below T0, crack growth is caused 

by ozone degradation and the crack growth characteristic may be expressed as: 

  z3zd

d
ROk

n

c
  (Eq.2-40)  

where kz is the rate constant due to ozone, [O3] is the ozone concentration and Rz is the 

crack growth rate. The chemical reaction between ozone and carbon-carbon double 

bonds, which are present in the backbone of natural and various olefin rubbers, is very 

rapid, resulting in molecular scission. Ozone attacks rubbers above a critical tensile 
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stress equivalent to a strain energy release rate of about 0.1 J/m2 for unprotected NR 

and SBR compounds. 

 

 

Figure 2.14 Crack growth per cycle, dc/dn, as a function of strain energy release 

rate, T, for unfilled NR (●) and SBR (o). The inset shows the region near the 

threshold strain energy release rate for mechanical fatigue, T0, plotted on a linear 

scale (Lake (1983)). 

 

Above this critical energy level, the rate of crack growth is proportional to ozone 

concentration (O3) and independent of the strain energy release rate as expressed by 

equation 2-40. In region II, the crack growth is dependent on both ozone attack and 

mechanical factors in a somewhat linear and additive fashion. This may be expressed 

mathematically as: 
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 0tzd

d
TTAR

n

c
  (Eq.2-41)                               

where At is a crack growth constant for region II. In region III, the power law 

dependency between crack growth rate and T has been found for many rubbers as well 

as for non-rubbery materials. Thus; 

T
dn

dc
  (Eq.2-42)   

where χ and ψ are constants, characteristic of region III. For natural rubber ψ is about 2, 

and for SBR, ψ is about 4. In general, ψ lies between 2 and 6 for most elastomers, 

depending mainly on the rubber and to a lesser extent on secondary factors such as 

compounding ingredients. At the highest values of strain energy release rate, dc/dn 

approaches the velocity of the elastic waves in rubber, about 50ms-1. Thus; 

cTT   (Eq.2-43) 

where Tc is the critical strain energy release rate, where catastrophic tearing takes place. 

2.7.5 The characteristics of steady state cyclic crack growth 

 Lake and Thomas (1967) showed that the surface energy for elastomers amount 

to about 2 Jm-2. The work of Greensmith et al. (1960), shown in figure 2.15, confirmed 

that unfilled SBR which does not undergo strain crystallisation at large strains, that a 

specific value of T is required to propagate a crack at a specific rate. Typical values of 

T for crack growth have been shown to lie in the region of 0.5 – 10 kJm-2 which is 

considerably greater than the surface energy of elastomers. This confirms that other 

irreversible changes occur as the crack is extended. The magnitude of the strain energy 

release rate depends significantly on the irreversible energy losses that take place as the 

crack is extended. These energy loss processes are dependent on temperature and so is 

the crack growth versus strain energy release rate relationship. The relationship 

between crack growth rate, temperature, and strain energy release rate is presented in 

figure 2.16 for unfilled SBR, NR and FT black filled SBR. Figure 2.16(a) which 

represents a plot for an unfilled SBR shows that strain energy release rate increases 

with increasing crack growth rate and decreasing temperature. Mullins (1959) pointed 

out that this dependence highlights the influence of visco-elastic energy dissipation 

processes. However, for the strain crystallising rubber NR, Figure 2.16(b), the effect of 

temperature on the rate of tear is much lower.  
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Figure 2.15 The strain energy release rate, T versus crack growth rate (r) for an 

unfilled SBR using the various test piece geometries shown in Figure 2.13.  - 

trousers;  - pure shear;  - angled and  - split (Greensmith et al., 1960). 

 T
 / 

kJ
.m

-2
 

r / cm.s-1 



60 
 

 

 

 

 

Figure 2.16 The effect of crack growth rate and temperature on strain energy 

release rate, T for (a) unfilled SBR, (b) unfilled NR and (c) FT black filled SBR. 

(Greensmith and Thomas, 1955). 
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In this case, strain crystallisation has the dominant influence on the crack growth 

behaviour and, according to Tsunoda (2001), the high strain energy release rate 

observed in NR, over a wide range of crack growth rates and temperatures, could be 

attributed to the high energy losses associated with the heat of strain crystallisation. 

The plot for carbon black filled SBR represented in Figure 2.16(c) demonstrates a 

plateau at low crack growth rates and at low temperatures. This plateau shows that a 

wide range of tear rates can exist for a specific strain energy release rate which results 

in the formation of knotty crack growth. Beyond this region, knotty crack growth does 

not occur and as a result the carbon black loading is responsible for a minimal increase 

in strain energy release rate compared with that of unfilled SBR. This leads to the 

conclusion that initiation of knotty crack growth depends on both crack growth rate and 

temperature. Tsunoda (2001) observed that even in the presence of carbon black, the 

crack growth behaviour is governed mainly by visco-elastic effects. In the presence of 

carbon black the strain energy release rate can, over certain ranges, decrease with 

increasing crack growth rate due to the onset of some degree of strength anisotropy. 

This phenomenon is also called crack tip blunting or knotty-tearing and is thought to be 

caused by strain-induced crystallisation or the presence of carbon black. “Knotty” 

tearing consists of a discontinuous stick-slip process, in which the tear develops 

laterally or even circularly under increasing force until a new tear breaks ahead and the 

tear force drops sharply. The tear pattern then repeats itself. Figure 2.17 (c) presents an 

example together with three other types of tear with their respective force and tear 

patterns. Steady tearing results in macroscopic surface roughness: small deviations 

from the tear path produce stick-slip tear and longer deviations give knotty-tearing. 

Apart from crystallisation mechanical energy loss due to hysteresis is also related to the 

visco-elastic properties of the material. The degree of dissipation is determined by the 

internal viscosity of the material which is a function of temperature. Williams et al. 

(1955) developed an equation which rationalises the temperature dependence of 

viscosity for glass-forming liquids. The equation is known as the WLF equation and is 

given as, 

SM
'
2

SM
'
1

t
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)log(

TTC

TTC
a




  (Eq.2-44) 

where TS = Tg +50oC, and TM is the temperature at which the test is conducted. '
1C  and 

'
2C are the WLF constants which have been found to vary from polymer to polymer 

(Sperling, 2001). Andrews (1964) used a WLF type relation to correlate rupture data at 
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various temperatures for non-crystallising elastomers. He observed that there is a close 

correlation between the strain energy release rate and the internal viscosity. Tsunoda 

(2001) carried out work on an unfilled SBR. In Figure 2.18 (Tsunoda, 2001) as 

expected the strain energy release rate, T available to drive a crack at a given rate 

decreased with increasing temperature as the visco-elastic losses decreased. The data 

were then shifted using Equation 2-44, taking '
1C = 8.86 and '

2C = 101.6 for unfilled 

SBR, to form the WLF relationship (Figure 2.19) (Tsunoda, 2001). The fact that the 

results from different temperatures superimposed in the fast crack growth rate range is 

also expected since the large visco-elastic losses at these rates were likely to dominate 

the crack growth process. The data in the slow crack growth range does not 

superimpose as well. This is where rough fracture surfaces developed suggesting that 

here the effective tip diameter, d also varied with temperature. Tsunoda (2001) 

remarked that fracture surfaces at a given rate become rougher with increasing 

temperature. This could be attributed to cavitation occurring more readily due to 

increased temperature. With increasing temperature the extent of cavitation increased 

as the elastic modulus decreased and hence d increased, resulting in rougher fracture 

surfaces. The strain energy release rate and hence the crack growth behaviour of an 

unfilled rubber depends on the nature of the backbone of the polymer molecule, the 

molar mass and the concentration and nature of cross-links. Depending on the 

vulcanisation process employed (Tsunoda, 2001), widely different strengths for the 

same polymer backbone can be produced, even when compared at similar degrees of 

cross-linking. Brown et al. (1987) investigated the effect of vulcanising systems on the 

strain energy release rate for mono-sulphide, poly-sulphide and peroxide cross-linked 

systems. The results are presented in Figure 2.20. From the plot, where the shear 

modulus is indicative of the cross-link density, the strain energy release rate required 

for a crack to grow at 10ms-1 decreases with increasing shear modulus in all three 

vulcanising systems. The observed ranking of the strength was poly-sulphide cross-

links had the greatest strength followed by mono-sulphide cross-links with the peroxide 

system producing the weakest cross-linked network. The decreasing order of strength 

follows an increase in the bond strength of the cross-link. Mullins (1959) concluded in 

his work that mechanically weak cross-links presumably re-distributed local stresses in 

the network by breaking and reforming during deformation. It is assumed that the poly-

sulphidic cross-links break before the main polymer backbone chain under the high 
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stresses around the crack tip resulting in higher strength for the poly-sulphidic cross-

links than for C-C cross-links. 

 

 

Figure 2.17 Schematic diagrams illustrating force–time relationships and crack 

paths for different types of crack growth (Papadopoulos, 2006). 

Crack growth Graph 

Direction of crack Direction of 

(a) smooth crack 

(b) steady crack growth 

(c) stick-slip crack 

(d) knotty crack growth 
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Figure 2.18 The effect of temperature on the T/r relationship for unfilled SBR 

(Tsunoda, 2001). 

 

 

 

 

 

 

 

 

 

Figure 2.19 Superposition of the data given in Figure 2.18 using the WLF shift 

factor aT (Tsunoda, 2001). 
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Figure 2.20 Effect of the vulcanising system and cross-link density on the crack 

growth behaviour for unfilled NR at a crack growth rate of 10µms-1 (Brown, 

Porter and Thomas, 1987). 

2.7.6 Effect of test variables on fatigue crack growth  

 A number of factors are known to affect cyclic fatigue crack growth tests: the 

maximum and minimum loading limits (also expressed as the R-ratio), the test 

frequency and the test temperature. The R-ratio is defined as the ratio of the minimum 

test displacement to the maximum test displacement in a displacement controlled cyclic 

test or the ratio of the minimum load to the maximum load in a load controlled cyclic 

test. When the R-ratio is equal to zero, the loading condition is said to be fully relaxing 

whereas when the R-ratio is not equal to zero the loading condition is said to be non-

fully relaxing. Lake and Lindley (1964) observed in the case of NR materials a 

decrease in the crack growth per cycle under non-fully relaxing loading conditions.  
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Figure 2.21 shows the difference in crack growth rate per cycle when the minimum 

strain energy release rate in a loading cycle is about 6% of the maximum, the threshold 

strain energy release rate is effectively increased and the crack growth per cycle at 

higher strain energy release rates is reduced by a factor of 10. Strain crystallisation in 

the highly strained region around the crack tip is thought to be responsible for this 

behaviour. According to Thomas (1974) the crystals melt as the strain decreases to 

zero. As a result increments of crack growth occur on subsequent extension before 

strain crystallisation takes place. SBR materials are non-crystallising and the 

phenomenon is not present. In the experimental work of this thesis only NR materials 

were examined. In order to avoid the complications arising from non-fully relaxing 

loading conditions, all crack growth experiments were carried out under fully relaxing 

conditions for both test pieces and elastomer components. Another difference between 

non-crystallising and strain crystallising elastomers is their response to the frequency of 

cyclic testing.  

In the case of non-crystallising materials such as SBR, the total crack growth is 

a result of two components; the time dependent and a dynamic crack growth 

component. Ellul (1992) reported on the significant effect of frequency on non-

crystallising rubbers which reflects the time dependent component of the cyclic crack 

growth, which is superimposed onto the dynamic crack growth component. This time 

dependent component dominates the behaviour at low frequencies and reflects the 

steady tearing that can arise in these non-crystallising rubbers. For strain crystallising 

elastomers the crack growth does not occur in a time dependent manner and cracks can 

only propagate above a given critical applied strain energy release rate. Consequently, 

the time dependent component is much less important and the cyclic frequency has 

only a very small effect on the crack growth per cycle. However, if the frequency is 

high, especially for bulky components, excessive heat can be generated and the 

predominant cause of failure is now no longer mechanical cyclic crack growth but 

rather as a result of elevated temperature degradation. The effects of temperature are 

significant on non-crystallising elastomers. 
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Figure 2.21 The crack growth per cycle, dc/dn, as a function of maximum strain 

energy release rate, T, for different minimum tearing energies, Tmin. Tmin = 0% 

and Tmin = 6% of the maximum (Lake and Lindley, 1964). 
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Figure 2.22 Cyclic life, N as a function of temperature for unfilled NR and SBR 

determined using tensile test specimens (Lake and Lindley, 1964). 
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Figure 2.22 shows the difference in the fatigue life with increase in temperature 

between NR and SBR unfilled materials. The decrease in the fatigue life of SBR is 104- 

fold compared with a 4-fold decrease for the unfilled NR when the temperature is 

raised from 0°C to 100°C. In the case of carbon black filled materials, a general 

increase in the crack growth rate with increasing temperature is observed in both NR 

and synthetic rubbers. 

2.7.7 Fatigue life prediction 

 Traditionally, the fatigue characteristics of materials, including rubbers, were 

determined by a “Wöhler” curve, also known as S-N curve (S denotes the applied 

dynamic stress σ for a stress controlled test or, alternatively, strain ε for a strain 

controlled test, and N is the number of cycles to failure). Normally, the dynamic stress 

range (or strain range) is plotted against the number of cycles to failure on a 

logarithmic scale (Gent, 1992). With elastomer materials, the results obtained from this 

approach would be specific to the particular specimen geometry and loading conditions 

which may not be representative of the typical service conditions for a given 

engineering component. Therefore, it is not possible to derive specific materials data in 

order to calculate the failure of any component geometry. In addition, long testing 

times would be required to obtain the S-N data for a wide range of geometries and the 

scatter in the measured results can be large. Jerrams et al. (2012) have shown that the 

scatter in fatigue life predicted by the S-N (Wöhler) curve approach can be greatly 

reduced by using the equi-biaxial bubble inflation test method. On real design and 

development projects, it is frequently observed that the S-N prediction and measured 

fatigue lives can be out by factors in excess of three orders of magnitude. The inability 

of the S-N method to reliably predict the fatigue life of rubber engineering components 

has led to development of an alternative approach. 

  Busfield et al. (2005) presented a fracture mechanics approach, which uses 

finite element analysis techniques to calculate strain energy release rates for cracks 

located in three-dimensional components, in combination with experimental 

measurements of cyclic crack growth rates of specific strain energy release rate, to 

predict the cyclic crack growth propagation rate and the eventual fatigue failure of an 

elastomeric engineering component. Lake (G. J. Lake, 1995) reviewed the fracture 

mechanics approach adopted in the work of Busfield et al. (2005). According to 

Busfield (2000) it is likely that as a crack increases in size, geometric effects in the 
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region of the crack will alter the magnitude of the strain energy release rate, T. 

Therefore, an analytical or finite element based technique could be employed to 

establish a relationship between the changes in strain energy release rate T with the 

change in crack size c in the form shown in equation 2-45 below:  

T = F(c) (Eq.2-45) 

By combining Equations 2-42 and 2-45 it is possible to derive a single functional 

relationship between the cyclic crack growth rate and the size of a crack, 
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d
c

n

c   (Eq.2-46) 

Rearranging the above equation and integrating allows a prediction of the number of 

cycles to failure, Nf to be established thus: 
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 (Eq.2-47) 

Employing a fracture mechanics based approach, Busfield et al (2005) successfully 

predicted the number of cycles to grow a crack, located in a bonded gearbox mount, to 

within a factor of 2 accuracy in three modes of deformation namely: tension, simple 

shear and combined shear and tensile (45º angle) deformations. Their work was limited 

to room temperature conditions and also a prediction of the crack growth in the 

component after inserting an initial razor cut into the middle section of the elastomer 

component. This thesis discusses an extension of their work by using the fracture 

mechanics approach to predict the fatigue life of a bonded cylindrical elastomer 

component at room temperature and for the first time at 70±1ºC in tension and shear 

deformation modes. The cylindrical geometry of the components studied in this work 

resulted in fatigue failure not only in the bulk but also at the rubber to metal bond 

interface. In chapter five, fatigue life prediction results for the bonded cylindrical 

elastomer components studied are presented and discussed.  

2.7.8 Fatigue crack surfaces  

 The study of fatigue crack surfaces has been the subject of scientific research 

for many decades. In many cases fatigue crack surfaces are observed to be rough. The 

roughness associated with fatigue crack surfaces is prominent when one compares the 

surface morphology of a sharp razor cut to that obtained after the crack has grown to 

steady state rate in an elastomer material. Papadopoulos (2008) reviews this 

phenomenon in a work which investigates rate transitions in fatigue crack growth in 
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elastomers. The rough fatigue crack surface is, in part, thought to be the result of the 

fatigue crack splitting during fatigue crack growth. Thomas (1958) in an explanation of 

the transition from sharp razor cut crack tip to a rough steady state crack tip suggested 

the rough crack tip to consist of multiple sharp crack tips. The study of fracture 

surfaces in elastomer materials is usually qualitative because no single technique can 

readily describe all the features present or can accurately describe the fracture surface 

structure. Fukahori and Andrews (1978) studied 2D fracture surface microscopic 

images by counting the number of steps crossing a reference line and weighted these 

according to their apparent depth. They differentiated the degrees of roughness by 

assuming that the broader the step lines, the deeper the steps, with the deeper steps 

casting a greater shadow. The technique gives an indication of the roughness at various 

parts of the fracture surfaces but; it would be challenging to differentiate small 

variations in depth. They observed fracture surface roughness in rubber at various 

values of strain energy release rate (tearing energy) under steady tearing and noted that 

there is a direct relation between the rate of propagation and the nature of the crack tip. 

They reported a general observation that increased crack growth rate due to an increase 

in the strain energy release rate results in smoother elastomer fracture surfaces. Gent 

and Pulford (1984) used a similar method to measure the distance between steps of the 

surface texture of 2D images. They attributed the variation in roughness to the joining 

of secondary cracks originating from flaws and filler particles. Furthermore, they 

observed that for the more tear resistant materials, the height of the steps was greater. 

Quantitative analysis of fracture surface roughness is not a simple task since there is no 

widely accepted parameter. Although there is general agreement that fatigue crack 

surfaces become rough with crack growth and that the extent of roughness is linked to 

the strain energy release rate associated with the crack growth, there is no general 

agreement as yet on the mechanisms responsible for the creation of the rough fracture 

surfaces. Gent et al. (2003) investigated why cracks turn sideways by considering a 

rubber sheet with a small edge crack subjected to a far-field simple extension. They 

calculated the strain energy release rate for crack growth in both the forwards and the 

sideways directions. They observed that when the imposed extension is large, the strain 

energy release rate at which a small sideways crack will initiate is found to be about 

60% of that for forwards crack growth for their specific material. In this thesis, finite 

element analysis results of strain energy release rate associated with growth of split 

fatigue cracks compared with, the strain energy release rate of a single straight crack 
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through the horizontal centre-line of a filled Natural Rubber pure shear specimen is 

presented. The objective of this study being to investigate the effect of fatigue crack 

bifurcation on the generation of fatigue crack surface roughness by examining the 

behaviour of the characteristic strain energy release rates associated with growth of 

split fatigue cracks. Chapter six of this thesis discusses the results of the crack 

bifurcation studies. 

2.8 Finite element analysis (FEA) 

 The finite element method is a numerical analysis technique for obtaining 

approximate solutions to a wide variety of engineering problems. Although originally 

developed to study stresses in complex engineering structures, it has since been 

extended and applied to a broad field of engineering disciplines. Because of its 

diversity and flexibility as an analysis tool, it is has received much attention in industry 

and academia. 

2.8.1 The FEA concept 

 Engineers are often called upon to solve problems in which either the geometry 

or some other feature is irregular or “arbitrary”. Without much effort, the necessary 

governing equations and boundary conditions for these problems are established but 

one sees immediately that no simple analytical solution to the equations of state can be 

established. Analytical solutions to problems of this type seldom exist. One possibility 

is to make simplifying assumptions – to ignore the difficulties and reduce the problem 

to one that can be handled. Sometimes this procedure works; but, more often than not, 

it leads to serious inaccuracies or wrong answers. With the increased computer power 

available today it has become possible to retain the complexities of the problem and to 

still find an approximate numerical solution. In a continuum problem of any dimension, 

the field variable (whether it is pressure, temperature, displacement, stress, or some 

other quantity) possesses infinite values because it is a function of each generic point in 

the body or solution region. As a result, the problem is one with an infinite number of 

unknowns. The finite element method regards the solution region as built up of many 

small, interconnected sub-regions or elements. Since these elements can be put together 

in a variety of ways, they can be used to represent exceedingly complex shapes. The 

finite element discretisation procedures reduce the problem to one of a finite number of 

unknowns by dividing the solution region into elements and by expressing the 
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unknown field variables in terms of assumed approximating functions within each 

element. The approximating functions (sometimes called interpolation functions) are 

defined in terms of the values of the field variables at specific points called nodes or 

nodal points. Nodes usually sit on the element boundaries where typically neighbouring 

elements are connected. The nodal values of the field variable and the interpolation 

functions for the elements completely define the behaviour of the field variable within 

the elements. For the finite element representation of a problem the nodal values of the 

field variable become the unknowns. Once the unknowns are found, the interpolation 

functions define the field variable throughout the assembly of the elements. A feature 

of the finite element method is its ability to formulate solutions for individual elements 

before putting them together to represent the entire problem. For example if one is 

treating a problem in stress analysis, the force-displacement or stiffness characteristics 

of each individual element can be found and the characteristics of the individual 

elements are assembled to find the stiffness of the whole structure. In essence, a 

complex problem is reduced to a series of greatly simplified problems (Huebner et al., 

2001).  

 Another advantage of the finite element method is the variety of ways in which 

one can formulate the properties of individual elements. There are basically three 

different ways. The first approach to obtaining element properties is called the direct 

approach because its origin is traceable to the direct stiffness method of structural 

analysis. The direct approach can be used for relatively simple problems. Element 

properties obtained by the direct approach can also be determined by the variational 

approach. Whereas the direct approach can be used to formulate element properties for 

only the simplest element shapes, the variational approach can be employed for both 

simple and sophisticated element shapes. A third and even more versatile approach to 

deriving element properties has its basis in mathematics and is known as the weighted 

residuals approach. The weighted residuals approach begins with the governing 

equations of the problem and proceeds without relying on a variational statement. This 

approach is advantageous because it affords a means to extend the finite element 

method to problems where no functional is available. The method of weighted residuals 

is widely used to derive element properties for nonstructural applications such as heat 

transfer and fluid mechanics (Huebner et al., 2001).  

 Regardless of the approach used to find the element properties, the solution of a 

continuum problem by the finite element method always follows an orderly step-by-
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step process. A general summary of how the finite element method works is listed 

below (Huebner et al., 2001): 

1. Discretise the Continuum – The first step is to divide the continuum or solution 

region into elements. A variety of element shapes (Figure 2.23) may be used, and 

different element shapes may be employed in the same solution region. For instance, 

when analysing an elastic structure that has different types of components such as 

plates and beams, it is not only desirable but also necessary to use different elements in 

the same solution.  

2. Select interpolation functions – The next step is to assign nodes to each element 

and then choose the interpolation function to represent the variation of the field variable 

over the element. The field variable may be a scalar, a vector, or a higher-order tensor. 

Often, polynomials are selected as interpolation functions for the field variable because 

they are easy to integrate and differentiate. The degree of the polynomial chosen 

depends on the number of nodes assigned to the element, the nature and number of 

unknowns at each node, and certain continuity requirements imposed at the nodes and 

along the element boundaries. The magnitude of the field variable as well as the 

magnitude of its derivative may be the unknowns at the nodes. 

3. Find the element properties – Once the finite element model has been 

established (that is, once the element and their interpolation functions have been 

selected), we are ready to determine the matrix equations expressing the properties of 

the individual elements. For this task, one of the three approaches mentioned earlier: 

the direct approach, the variational approach, or the weighted residuals approach may 

be used. 

4. Assemble the element properties to obtain the system equations – To find the 

properties of the overall system modelled by the network of elements all the element 

properties must be “assembled”. In other words, we combine the matrix equations 

expressing the behaviour of the elements and form the matrix equations expressing the 

behaviour of the entire system. The matrix equations for the system have the same form 

as the equations for an individual element except that they contain many more terms 

because they include all nodes. The basis for the assembly procedure stems from the 

fact that at a node, where elements are interconnected, the value of the field variable is 

the same for each element sharing that node. 
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5. Impose the boundary conditions – Before the system equations are ready for 

solution they must be modified to account for the boundary conditions of the problem. 

At this stage we impose known nodal values of the dependent variables or nodal loads. 

6. Solve the system equations – The assembly process gives a set of simultaneous 

equations that must be solved to obtain the unknown nodal values of the problem. If the 

problem describes steady or equilibrium behaviour, then a set of linear or nonlinear 

algebraic equations are solved. If the problem is unsteady the nodal unknowns are a 

function of time, and a set of linear or nonlinear ordinary differential equations are 

solved. 

7. Make additional computations if desired – Many times the solution of the 

system equations can be used to calculate other important parameters. For instance, in a 

structural problem the nodal unknowns are displacement components from which 

element strains and stresses may be calculated. Similarly, in a heat-conduction problem 

the nodal unknowns are temperatures, and from these heat fluxes may be calculated. 

 

 

Figure 2.23 Different types of element shapes (Abaqus Manual, 1998). 
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2.8.2 Typical procedures for developing a finite element model using an FEA 

programme 

 Busfield (2000) detailed five separate stages involved in developing a typical 

finite element model as given below: 

1. Determination of the most suitable type of analytical model to accurately 

represent the component behaviour. Factors that require consideration are: sources of 

the geometrical shape of a design, its expected structural behaviour when subjected to 

loads, typical applied loads and material properties. 

2. Mesh generation. The model is broken up into finite elements to form a mesh of 

elements and nodes. In some cases, in rubber FEA, the mesh deforms at large strains to 

an extent whereby certain elements assume unacceptable shapes, and aspect ratios. 

When this occurs, ‘rezoning’ is required. This process takes the stress state from the 

deformed mesh and maps the solution onto a new mesh created by the user that has the 

same overall geometric shape with smaller element distortions. In this way, the analysis 

can be resumed. 

3. Definition of the boundary conditions and the material properties of all the 

elements. An input deck is then assembled, which describes the geometric problem in a 

tabulated form. 

4. This input deck can then be submitted to a dedicated equation solver working 

on a powerful computer. This will calculate a numerical solution for the mesh being 

considered with the appropriate boundary conditions and material properties. 

5. Analysis of the results to determine whether the numerical solution is 

satisfactory. The analysis is followed by the post-processing phase, where an 

examination is done on such quantities as nodal displacements, stress contours, failure 

criteria, distribution of contact forces, strain energy contours and so on. A successful 

rubber analysis requires: a non-linear FEA code preferably with the necessary materials 

test data input and good pre- and post-processing software which is closely coupled to 

the solver to generate the model and allow a careful interrogation of the analysis 

results.  

As stated in stage 3 above, an input deck is required to describe the problem under 

consideration. The data required is given below: 

Header - Statement to define the problem, the title section, and the format of the output 

files. 
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Geometry - Define the positions, in co-ordinate space of the nodes and the spatial 

arrangement of the material about the nodes using elements. 

Material Definition - Ascribe the type of model as 1D-2D-3D and the type of material. 

For elastomers this is most usually achieved by using a Hyperelastic material 

definition, which describes the mechanical behaviour of an elastomer using a strain 

energy function. 

Boundary Conditions - Define the global displacements, symmetry constraints and the 

relationships prescribed by Multi-Point Constraints (MPCs) where nodes can be tied 

together. 

Step Definition - Define the type of analysis and the actual loading conditions. 

2.8.3 Types of FEA models 

 Engineering structures can be complex in their shape and state of loading hence 

creating a full 3D finite element analysis model can be both time consuming and 

difficult to solve. A 3D solid with insignificant dimension in one direction which is 

loaded in the plane of the body may be modelled as a plane stress finite element model 

(2D) to simplify the problem. Similarly a 3D solid which is infinitely long with a 

geometry and loading conditions that do not vary in its longitudinal direction may be 

modelled as a plane strain finite element model (2D) to simplify the problem. When 

faced with a problem which cannot be reduced to a 2D model to enable ease of 

analysis, recourse is often made to various symmetry approximations to simplify the 

model geometry namely: Axial symmetry, planar symmetry, cyclic symmetry and 

repetitive symmetry. It is important however, that the loading and constraints 

conditions are applied to the model in such a way that they truly reflect the symmetry 

of the problem (Fagan, 1992). 

2.8.4 Axial symmetry 

 This type of symmetry takes into account a constant variable distribution in the 

circumferential direction. This type of a problem is similar to those of plane strain, 

since the distributions and loading experienced in axial symmetry problems are limited 

to two directions which are the radial and axial directions (Figure 2.24(a)). 
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2.8.5 Planar symmetry  

 An appropriate example of this is a flat plate with a hole loaded uniformly. 

Modelling a quarter of the flat plate is adequate. It is critical to apply the correct 

constraint conditions throughout the model; that is the horizontal displacements must 

equal zero along the vertical line of symmetry and the vertical displacements must 

equal zero along the horizontal line of symmetry (Figure 2.24(b)). 

2.8.6 Finite element analysis of elastomers  

 FEA of elastomers became a reality for the elastomer component design 

engineer in the early 1980s with commercial finite element programmes such as 

MARC®. Since that time, additional FEA programs such as ANSYS® and ABAQUS® 

have incorporated analysing elastomer-like materials (Gent, 1992). In this work, the 

commercial software Abaqus CAE (version 6.6-1) was used to create all the FEA 

models and the analysis and results output were made by Abaqus solver and Abaqus 

viewer (version 6.6-1) respectively. The filled natural rubber material was modelled as 

hyperelastic using the Yeoh stored energy function (SEF) (Busfield, 2000) for all the 

FEA modelling and analysis done in this work. 

Busfield (2000) discusses several constitutive theories for modelling large 

elastic deformations of rubber based on the strain energy density function. Examples of 

such theories include: the Neo-Hookean SEF, the Mooney SEF, the Rivlin SEF, the 

Ogden SEF and the Yeoh SEF. The Yeoh SEF was chosen to model the material 

behaviour in this work because of its accuracy in modelling the stiffness behaviour of 

filled elastomers at large strains. The Yeoh SEF is also able to accurately predict the 

stress strain behaviour of filled elastomers in different deformation modes using 

experimental data measured in one simple deformation mode such as uni-axial 

extension. In a finite element analysis it is possible to employ a range of different types 

of elements to describe the component geometry. The basic shapes available in the 

finite element method vary from a single point of no dimensions to a full volume or 

three-dimensional shape. Rectangular two-dimensional and brick three-dimensional 

elements were used throughout this work. Since elastomer materials are incompressible 

(Poisson’s ratio ≈ 0.5) it becomes necessary with Abaqus to use reformulated (hybrid) 

elements. These elements interpolate the hydrostatic pressure (or the volume change) 

separately. Without this the analysis becomes over constrained and the model would 
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again be locked into its original shape irrespective of the applied forces. Two of the 

most common element formulations applicable to continuum problems are the normal 

and reduced integration elements. A fewer number of integration points are required 

with the reduced integration elements affording less computing time. On the other 

hand, the normal integration element involves calculations at several locations 

distributed in each element which leads to longer computing time. The choice between 

the two, in a typical elastomer component finite element analysis problem, may depend 

on factors such as the strain level expected in the elastomer component being modelled 

and the degree of accuracy to which the relevant field variable is to be calculated.  

2.8.7 Modelling cyclic fatigue crack growth 

 The fracture mechanics approach to fatigue life prediction involves the 

calculation of the strain energy release rate associated with the growth of a crack (this 

could be a pre-existing flaw in an elastomer component). What makes the strain energy 

release rate a suitable parameter for modelling crack growth is the relationship between 

the strain energy release rate and dissipative processes that occur at the crack tip. 

Busfield et al. (1999) evaluated three different methods for calculating the strain energy 

release rate namely: the energy balance, the J-integral and the crack tip closure 

approaches:  

 The J-Integral: This is based on the work of Rice (1968) and it has been 

implemented in the Abaqus FEA software. The advantage of this approach is that it 

requires only a single analysis model to calculate the strain energy release rate.  

 The crack tip closure: This technique measures the forces required to close up 

the nodes on a crack tip and integrates the force by the distance the nodes move when 

unstrained. The work done is evaluated by the integral  .F de, where e is the distance 

to close up the nodes and F is a measure of the nodal force.  

 The energy balance approach: With this approach the difference in the 

magnitude of the internal stored energy (dU) is calculated between two models held at 

a fixed displacement when the crack tip area A is extended by a small area (dA). The 

strain energy release rate is equal to dU/dA. This technique is also known as the node 

release or the virtual crack extension technique. The change in total energy calculated 

when a small crack is extended a small amount is little, therefore it is essential that the 

models are identical remote from the crack otherwise the errors inherent in the finite 
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element technique will mask the changes to the model as the crack is extended 

(Busfield, 2000).   

 

Figure 2.24 A schematic to demonstrate axial symmetry and planar symmetry 

commonly adopted to simplify the finite element modelling of a component 

(Busfield, 2000)  

2.9 Motivation for this study 

As can be seen in earlier discussions, cyclic stress relaxation, a manifestation of 

fatigue which is often mistakenly referred to as Mullins effect and neglected in fatigue 

life predictions, has been studied for simple extension but not for other deformation 

modes. The cyclic stress relaxation rate is found to be different in different modes of 

deformation, yet there is no single parameter which explains the observed difference in 

relaxation rates in the different modes of deformation. Therefore, in this work, cyclic 

stress relaxation will be measure in test pieces and components and for different 

deformation modes. An attempt will be made to correlate the observed amounts of 

cyclic stress relaxation in different modes of deformation using a single parameter. The 

understanding gained from this approach will be used to quantitatively account for the 

cyclic stress relaxation phenomenon in the fracture mechanics approach to fatigue life 

prediction of elastomer components.  

As can be seen in the work of Busfield et al., (2005) described earlier, the 

fracture mechanics approach to fatigue life prediction of elastomer components gives 

good results at room temperature conditions after inserting an initial cut into the 

elastomer component. The applicability of the fracture mechanics approach to fatigue 

life prediction at elevated temperatures, however, is not known. As a result a 

programme of studies will be carried out to validate the fracture mechanics approach to 
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fatigue life prediction at elevated temperatures and without an initial razor cut in the 

elastomer component. 

Fatigue crack growth often results in rough fatigue crack surfaces. The rough 

fatigue crack surface is, in part, thought to result from a strain induced strength 

anisotropy in front of the advancing fatigue crack which can cause the crack to split 

during crack growth. The characteristics of the strain energy release rates associated 

with the growth of split fatigue cracks is not well studied. Part of this thesis will 

examine strain energy release rates associated with growth of split fatigue cracks, in a 

pure shear specimen, in an attempt to understand the effect of fatigue crack bifurcation 

and its relation to fatigue crack surface roughness. 
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CHAPTER THREE 

3.0 Materials, Experimental and FEA Methods 

3.1 Introduction 

 In this chapter the elastomer material, experimental and finite element methods 

used in the study of cyclic stress relaxation, fatigue life prediction using the fracture 

mechanics approach and fatigue crack surface roughness are described in detail. The 

equipment and the test procedures, as well as the conditions that are used to obtain the 

scientific data that are discussed in chapters 4, 5 and 6 are also explained. 

 In the first part of this research, the cyclic stress relaxation of the filled NR 

material and the bonded cylindrical components used in this work was measured. This 

was achieved by loading test pieces of the material and components supplied by 

Trelleborg AVS cyclically to a fixed displacement whilst measuring the force at the 

maximum displacement for each cycle. A detailed description of the experimental 

procedure used is presented in section 3.4. In the second part of this work, fatigue crack 

growth in elastomer test pieces and components were measured experimentally. The 

finite element method was employed to calculate the strain energy release rates 

associated with crack growth in elastomer components. The methods used to 

characterise the elastomer material together with the finite element procedures, and 

crack growth measurements, are also presented in this chapter. The third aspect of this 

work examines the effect of fatigue crack bifurcation (crack tip splitting) on the 

observed roughness of the fatigue crack surfaces. This was achieved by using FEA to 

calculate the strain energy release rates associated with growth of split fatigue cracks in 

a pure shear test piece. In this chapter, the method used to calculate the strain energy 

release rates of split fatigue cracks is also explained. 

3.2 Materials 

 The material used in this work were commercially formulated 65 phr HAF 330 

carbon black filled natural rubber (NR) compound supplied by Trelleborg AVS. The 

hardness of the material, determined using ASTM D2240 test method was 62 IRHD. 

The formulation of the compound is presented in Table 3.1.  
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Figure 3.1 Picture and a schematic of a typical bonded cylindrical suspension 

component 

Height 42mm    
(With metal plates) 

Two metal plates   
(each 2mm thick) 

Rubber part 
(47.5mm diameter) 
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The rubber materials were supplied as rubber sheets of approximately 2mm thickness, 

from which pure shear samples of 175mm width (w), 25mm height (l0 ≈ 14mm) and 

approximately 2mm thickness (t), were prepared as well as dumbbell test pieces using 

an ASTM D412 type C dumbbell die. In addition, simple bonded cylindrical 

suspension mounts were injection moulded using the same compound. Figure 3.1 

shows a picture and a schematic of a typical bonded cylindrical suspension component 

used in this study. It has dimensions of 42mm in height (including bonded metal plates) 

and a diameter of approximately 47.5mm. The two metal end-plates were each 2mm in 

thickness. Figure 3.2 shows a schematic of a pure shear specimen. 

 

 

 

 

 

 

 

Figure 3.2 A schematic of a pure shear specimen 
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Table 3.1 Formulation for the materials used in this study 

Ingredients Type phr 

Rubber SMR10CV 100 

Carbon Black N330(HAF) 65 

Stearic Acid  2 

Zinc Oxide  5 

Accelerator TMTM-75 0.7 

Accelerator MBTS-80 1.5 

Sulphur  1.5 

  

3.3 Material characterisation 

3.3.1 Material stress strain characterisation 

 The mechanical stress strain behaviour of the filled NR material used in this 

research was characterised experimentally at both room temperature (23±2°C) and 

70±1°C. In order to do this, dumbbell specimens were prepared from the rubber sheets 

supplied by Trelleborg AVS using an ASTM D412 type C dumbbell die. The 

equipment used to carry out the measurements at room temperature (23±2°C) was an 

Instron 5567 universal test machine equipped with 1 kN load cell, to measure the force, 

and an optical extensometer to measure the displacement (strain) of the two white 

marks inserted on the front face of the test pieces. The following procedure was 

followed to measure the stress strain behaviour of the test pieces: 

1. Calibrate the load cell and the optical extensometer fitted to the Instron 5567 

universal test machine. 

2. With the dumbbell specimen un-gripped, insert two white marks on the reduced 

width section of the specimen equidistant from the centre and perpendicular to the 

longitudinal axis using a marker pen. 

3. Measure the distance between the two white marks inserted on the dumbbell 

specimen using a Vernier calliper and recorded the distance. Measure the width of the  
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dumbbell specimen at three different points along the reduced width section using a 

Vernier calliper and recorded the values. 

4. Both ends of the dumbbell specimen were gripped and mounted into the 

assembly on the Instron 5567 test machine. 

5. Carefully set up the sample in position and use the optical extensometer to 

measure again the distance between the two white marks to confirm the initial distance 

before testing. 

6. Reset the load cell on the Instron 5567 test machine to zero. 

7. Run the tensile test using a test speed of 50mm/min. 

8. Record the tensile force data from the load cell and the distance between the 

two white marks measured using the optical extensometer to determine the room 

temperature stress strain behaviour of the material.  

To determine the stress strain behaviour at 70±1°C the experiment was repeated 

using an Instron 8801 servo-hydraulic test machine and an environment chamber to 

provide the required temperature equipped with a 1 kN load cell, to measure the force,   

and thermocouples to measure the temperature of the air in the oven. With the sample 

in the environment chamber it was not possible to measure the strain using the optical 

follower, so the strain was recorded manually for the elevated temperature testing at 

70±1°C. The test piece was stretched incrementally by uniform small displacements. 

After allowing the load to equilibrate the load cell output (force) was recorded. The 

displacement between the two white marks on the surface of the test piece was 

manually measured using a travelling microscope. In all stress strain measurements at 

70±1°C the dumbbell sample was carefully mounted into the oven which was already 

heated to 70±1°C and allowed approximately an hour for the sample to thermally 

equilibrate with the surrounding air temperature. For all the stress strain 

characterisation work (both room temperature and at 70±1°C), measurements were 

made on virgin dumbbell samples as well as dumbbell samples softened by cyclic 

loading by 999 pre-cycles. The softening of the dumbbell specimens was done using 

the Instron 8801 servo-hydraulic test machine operated at a frequency of 1 Hz to an 

approximate maximum pre-strain of 90%. The virgin stress strain behaviour was used 

for stiffness and crack initiation region studies whereas the 1000th cycle stress strain 

behaviour was used to calculate strain energy release rates associated with crack growth 

in the elastomer materials and components. 
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3.3.2 Bonded cylindrical component force deflection measurement 

 The force deflection behaviour of the bonded cylindrical component was 

measured at room temperature (23±2°C) and at 70±1ºC (in an oven) using Instron 8801 

servo-hydraulic test machine operating under a static load condition and at a strain rate 

of 50mm/min. The virgin force deflection behaviour and the 1000th cycle force 

deflection behaviour (after softening the component for 999 cycles at a strain energy 

density or displacement equivalent to that found when a dumbbell specimen is 

stretched at 90% strain in tension) were both measured at room temperature and 

70±1ºC for the bonded cylindrical component. 

3.3.3 Equilibrium swelling tests 

 Equilibrium swelling tests were carried out using n-decane as the swelling agent 

to determine the cross-link density of the elastomer sheet materials and that of the 

bonded cylindrical component material. Samples were cut from both the elastomer 

sheet material and the bonded cylindrical component material and weighed using a 

mass balance. The test samples were placed in bottles and n-decane was added to the 

samples in the bottles, until all the samples were fully immersed in n-decane, and the 

bottles were covered. The test samples were carefully removed from the n-decane and 

weighed from time to time to observe the changes in mass. The tests were stopped 

when no further change in mass was observed between subsequent readings of the mass 

of the samples. The cross link density of the elastomer materials was determined using 

the Flory Rehner equation given below: 
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 (Eq.3-1)          

Where: 

N = moles of cross links per unit volume 

VS = molar volume of the swelling solvent 

Φ = volume fraction of polymer in the swollen gel 

χ = polymer-solvent interaction parameter 

3.4 Measurement of cyclic stress relaxation  

 An Instron 8872 Servo-hydraulic test machine was used to measure the cyclic 

stress relaxation behaviour of both the pure shear test pieces and the bonded cylindrical 
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components. Cyclic constant maximum displacement tests with sinusoidal wave form 

at 1 Hz frequency under fully relaxing conditions were carried out on all samples up to 

3000 cycles. The pure shear samples were deformed over a range of maximum strains 

from 20% - 150%. The bonded cylindrical components were deformed in tension, shear 

and compression by the following amounts, expressed as a percentage of the original 

rubber section height, 26% - 92%, 26% - 158% and 16% - 63% respectively. All 

measurements were carried out at 23±2°C. The maximum (peak) force attained at 

maximum displacement was monitored and recorded throughout each test with 1kN 

and 25kN load cells for test pieces and bonded cylindrical components respectively. 

Figures 3.3, 3.4 and 3.5 below show the set up used to measure the cyclic stress 

relaxation of the pure shear test pieces and the bonded cylindrical components. 

 

Figure 3.3 Set up for pure shear cyclic stress relaxation measurement 
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Figure 3.4 Set up for bonded cylindrical component cyclic stress relaxation 

measurement in tension and compression modes of deformation 

 
 

Figure 3.5 Set up for bonded cylindrical component cyclic stress relaxation 

measurement in simple shear mode of deformation  
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 The objective of the cyclic stress relaxation tests was to measure the cyclic 

stress relaxation rates of material test pieces and engineering components in different 

modes of deformation and to establish a correlation between them. Using the maximum 

force versus number of cycles data, a log-log plot was made for both the pure shear 

cyclic stress relaxation and the bonded cylindrical component’s cyclic stress relaxation 

data. The slopes of the straight lines obtained from the log-log plots are a measure of 

the cyclic stress relaxation rate per decade for the respective pure shear samples and the 

bonded cylindrical components at defined test amplitudes. Chapter four presents the 

results and discusses the cyclic stress relaxation measurements. 

3.4.1 Average strain energy density determination 

 Figure 3.6 shows typical force deflection behaviour of an engineering 

component. The area under the force deflection curve gives the stored elastic energy 

(U) in the component. In this work, the stored elastic energy was calculated for the 

different maximum (constant) test amplitudes at which cyclic stress relaxation 

measurements were made. The second cycle force deflection curve for each constant 

amplitude cyclic stress relaxation test was used for the stored elastic energy 

calculations. The second cycle curve was used due to the difficulty of capturing 

completely using the servo-hydraulic test machine the entirety of the first loading cycle. 

This results in a loss of the first ¼ of the first cycle force deflection behaviour leaving 

only ¾ of the first cycle force deflection curve measured. To determine the volume of 

the rubber part of the cylindrical engineering component, the cross sectional area was 

calculated (knowing the component diameter) and multiplied by the height of the 

rubber part of the component. The volume of the pure shear samples was calculated by 

multiplying the dimensions (height, width and thickness) of the test piece. Dividing the 

stored elastic energy by the volume of the rubber part, equation 3-2, gives the average 

strain energy density (J/m3).    

V

U
W   (Eq.3-2) 

where 

U is the stored energy in J 

V is volume of rubber in m3 

W is the average strain energy density in J/m3 

In chapter four a correlation of the cyclic stress relaxation rates of pure shear test  
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pieces and the bonded cylindrical engineering component, measured in different modes 

of deformation, in terms of average strain energy density is presented and discussed.  

 

Figure 3.6 Typical force deflection behaviour of an engineering component; the 

area under the curve is the stored elastic energy in the component at that specific 

displacement 

3.5 Experimental fatigue crack growth measurements 

3.5.1 Pure shear crack growth characterisation  

 To characterise the elastomer material’s pure shear crack growth behaviour, 

pure shear crack growth samples were prepared from the sheets of elastomer materials 

supplied by Trelleborg AVS (figure 3.2). An initial razor cut of 30mm length was 

inserted at one side of the specimens approximately equidistant between the grips. The 

remaining sections of the pure shear test pieces along which the crack would grow were 

identified by inserting vertical marks using a white marker pen at intervals of 

approximately 4mm. As can be seen in figure 3.7, a pure shear specimen under load has 

four main regions of deformation state thus, region “A”, region “B”, region “C” and 

region “D”. Region “A” is undeformed. Region “B” around the crack tip has a complex 

stress field. Region “C” is in pure shear mode of deformation. Region “D” is close to 

the free edge so its behaviour is complex (Rivlin and Thomas, 1953). Inserting an 

initial razor cut of 30mm ensures that edge effects are avoided in the crack growth 

measurement and that the crack grows effectively reducing the region of the test piece 

in pure shear. The pure shear test pieces were gripped and tested using an Instron 8872  

U/J
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servo-hydraulic test machine equipped with a 25kN load cell. The wave form of the test 

was sinusoidal with a frequency of 1Hz. For all the crack growth measurements, care 

was taken to ensure that the initial relative high crack growth rate due to the sharp razor 

crack tip (Thomas, 1958) was eliminated from the measurement by allowing the initial 

razor crack to grow approximately 10mm before starting to record the crack growth 

versus number of cycles data. Allowing the crack to grow about 10mm before 

beginning the crack growth data measurement ensures that the crack tip transforms 

from the initial sharp and smooth razor cut tip to a more typical steady state crack 

growth tip. All the crack growth measurements were carried out under fully relaxing 

conditions. Crack lengths were measured at corresponding number of cycles for tests at 

different amplitudes by visually counting the number of graduation marks crossed by 

the growing crack along the pure shear specimen. Plots of crack length against number 

of cycles were then made to calculate the crack growth rate (dc/dn) for specific 

amplitudes. The 65 phr filled NR material was characterised at both room temperature 

(23±2°C) and at 70±1ºC in an oven.  

 It has been shown (Busfield et al., 1997) that for a pure shear test piece 

(figure 3.2) with unstrained height (l0), thickness (t), width (w), and a crack of size (c) 

the strain energy release rate (T) can be calculated from equation 3-2 below: 

)( xcwt

U
T


  (Eq.3-3) 

where x is a strip of material in the cracked part of the test piece that is not energy free. 

x has been experimentally found to be about 28% of l0 (De, 1994). U is the stored 

energy for a given test amplitude. Using equation 3-3, the strain energy release rates for 

the different pure shear test amplitudes were calculated for both the room temperature 

pure shear crack growth test amplitudes and that measured at 70±1ºC. A plot of log 

dc/dn against log T was made to determine the pure shear line of the material at both 

room temperature and 70±1ºC. The results of the crack growth behaviour 

measurements are presented in chapter five of this thesis.  
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Figure 3.7 A schematic of various regions according to the state of deformation in 

a pure shear sample. All the dimensions are referred to the undeformed state. The 

entire shaded area is region B. 

 

3.5.2 Bonded cylindrical component fatigue crack growth measurement   

 The bonded cylindrical component was tested at different amplitudes and at a 

frequency of 1Hz at room temperature and 70±1ºC to determine the experimental 

number of cycles required to grow cracks to a measurable size. Sinusoidal wave form 

was used in all the tests. No initial razor cuts were inserted into the component and the 

experiment was conducted under fully relaxing conditions. It was observed in the 

experiment that cracks initiated at the rubber-metal bond edge of the bonded cylindrical 

component. The size of the crack was measured by stopping the test and using a depth 

probe (the protruding metallic rod from the end of a Vernier calliper) into the crack. 

Fatigue tests were conducted in tension and in shear modes of deformation. 

Experimental results of number of cycles and corresponding crack length for the 

bonded cylindrical elastomer components are presented and discussed in chapter five.  

3.6 Finite element analysis  

3.6.1 Introduction 

 The finite element analysis technique was used to predict the stiffness of the 

bonded cylindrical component, predict failure initiation sites on the bonded cylindrical 

component and to calculate the strain energy release rate associated with cracks located 

in the bonded cylindrical component and pure shear test pieces. The energy balance  
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technique was used to calculate the strain energy release rate associated with crack 

growth in the elastomer test pieces and components. With this approach, the difference 

in the magnitude of the total internal strain energy dU is calculated between two 

models held at a fixed displacement where the crack tip area A is extended by a small 

area dA. The strain energy release rate is given by equation 3-4. This technique is also 

known as the node release or the virtual crack extension technique. Developing a finite 

element model generally involves the definition of the necessary component or test 

piece geometry, the definition of an appropriate material model, the application of 

boundary conditions and loading, the meshing of the model and then compiling the 

information so that it can be submitted to calculate the solution. In this research work, 

the commercial software Abaqus CAE (version 6.6-1) was used to create all the FEA 

models and the analysis and results output were carried out using Abaqus solver 

(version 6.6-1) and Abaqus viewer (version 6.6-1). A number of models were created 

to predict the component’s stiffness and to model the fatigue crack growth phenomenon 

in the bonded cylindrical component under different modes of fatigue loading. Models 

were also created to calculate the strain energy release rates associated with the growth 

of split fatigue cracks. The following sections describe in detail the FEA models 

created in this work.  

dA

dU
T   (Eq.3-4) 

where  

T is the strain energy release rate (commonly called tearing energy in the rubber 

literature),  

A is the area of a single fracture surface, and   

U is a measure of the internal stored energy. 

3.6.2 FEA model of the bonded cylindrical component to predict stiffness 

 The bonded cylindrical component was first modelled to evaluate its stiffness. 

The component geometry was modelled in 3D using Abaqus CAE with the rubber part 

having a diameter of 47.5 mm and a height of 38 mm. The elastomer material of the 

component was modelled as hyperelastic material using the Yeoh stored energy 

function. Experimental stress strain behaviour determined using a dumbbell test piece 

was used to derive the three coefficients required for the Yeoh stored energy function 

in Abaqus in order to calculate the deformation state and the reaction forces. The model 
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was meshed with an 8-node linear brick, hybrid, constant pressure elements C3D8H. 

The top surface nodes of the component were constrained in the x and y-translational 

directions and allowed to translate in the z-direction. All the top surface rotational 

degrees of freedom were constrained. All translational and rotational degrees of 

freedom of the bottom surface were constrained. An output request of a summation of 

all the reaction forces of the top surface nodes was made and used together with the top 

surface translation in the z-direction to predict the force displacement behaviour of the 

component. Figure 3.8 below shows the undeformed and deformed FEA models of the 

bonded cylindrical elastomer component in tension. Figure 3.9 shows the undeformed 

and deformed models of the bonded cylindrical component in shear.  
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                                       (a)                                                                                           (b) 

Figure 3.8 A meshed undeformed cylindrical component (a) and a meshed cylindrical component deformed in tension (b)  
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                                    (a)                                                                               (b) 

Figure 3.9 A meshed undeformed cylindrical component (a) and a meshed cylindrical component deformed in simple shear (b)  
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3.6.3 Modelling crack growth in a tensile deformation mode 

 Considering the cylindrical geometry of the bonded elastomer component and 

the nature of the distribution of strain energy in tension, crack initiation and growth was 

predicted to start at the rubber-metal bond edge as this is the region of highest strain 

energy density. The initial assumption was for the crack to grow from the edge along 

the rubber-metal bond interface into the component at both bonded ends. In an effort to 

model this, an axisymmetric model was created using Abaqus CAE and meshed with a 

4-node bilinear axisymmetric quadrilateral, hybrid, constant pressure elements 

(CAX4H). This model describes a crack growth profile where the crack grows 

circumferentially, starting from the rubber metal-bond edge, into the rubber-metal bond 

interface at both bonded ends of the component. In figure 3.10 an undeformed 

axisymmetric model, a deformed axisymmetric model without a crack and a deformed 

axisymmetric model with a crack are shown. The axisymmetric model exploits the 

symmetric nature of the geometry of the bonded component and the loading. It reduces 

a complex three dimensional problem to a much simpler two dimensional problem. In 

figure 3.10 nodes along the central y-axis have their x and z-translational as well as 

their rotational degrees of freedom constrained. Similarly nodes along the symmetry 

imposed x-axis have their y and z-translational and rotational degrees of freedom 

constrained. The crack growth along the rubber-metal bond interface was modelled by 

deforming the model to the displacement of interest and then releasing the nodes along 

the edge of the model. For simplicity, the metal plates at the ends of the bonded 

component were not modelled. In order to determine strain energy release rates for 

cracks of the size of initial flaws around the rubber-metal bond edge, the model was 

meshed with size 0.2 mm for the first 1 mm of crack growth. Results of the stored 

energy versus crack length as well as strain energy release rate and crack length for this 

model are presented and discussed in chapter five. 
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       (a)                                                                                  (b)                                                                               (c) 

Figure 3.10 An undeformed axisymmetric mesh (a), a tension deformed axisymmetric mesh (b) and a tension deformed 

axisymmetric mesh with a crack (c) 
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  (a)                                                                                      (b)                                                                                       (c)       

Figure 3.11 An undeformed half symmetry mesh (a), a simple shear deformed half symmetry mesh (b) and a simple shear 

deformed half symmetry mesh containing two large cracks (c) 
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3.6.4 Modelling crack growth in shear deformation mode 

 Crack growth in a simple shear deformation mode was predicted to initiate at 

the rubber-metal bond edge and propagate along the rubber-metal bond interface due to 

the nature of the strain energy density distribution in the component under deformation. 

To model the component’s fatigue crack growth in shear a half symmetry three-

dimensional model was used exploiting the symmetry found in the cylindrical 

component and the crack growth profile. Figure 3.11 shows an undeformed half 

symmetry model, a simple shear deformed half symmetry model without a crack and a 

simple shear deformed half symmetry model with cracks. The half symmetry model 

was developed in 3D with Abaqus CAE and meshed with an 8-node linear brick, 

hybrid, constant pressure elements C3D8H. The elastomer material was again modelled 

using the Yeoh stored energy function using coefficients derived from the experimental 

stress strain data measured on the dumbbell test pieces. This again allowed the 

calculation of the total stored energy variation associated with the crack growth and 

hence allowed the derivation of the strain energy release rate. To account for small 

changes in the strain energy due to growth of defects (flaws) at the rubber–metal bond 

edge, the model was meshed with a mesh size of 0.2 mm for the first 1 mm of crack 

growth. The virtual crack extension technique was used to calculate the strain energy 

release rate associated with crack growth along the rubber-metal bond interface. 

3.6.5 Modelling crack bifurcation in a pure shear test piece 

 In figure 3.12, a schematic of the finite element analysis models developed for 

the crack bifurcation studies is shown. All the crack bifurcation models were developed 

as 2D plane stress models and meshed with a 4-node bilinear plane stress quadrilateral, 

reduced integration, hour-glass control elements (CPS4R). All the models were seeded 

with a global element seed size of 0.5 mm. The filled natural rubber material was 

modelled as an incompressible hyperelastic material using the Yeoh material model in 

Abaqus CAE (version 6.6-1) using the experimental 1000th cycle stress strain data. In 

all the finite element analysis a full pure shear test piece was modelled. The  models 

developed follow the schematic of figure 3.12, where a single crack (c) splits into two 

cracks c1 and c2 with both cracks parallel to the horizontal centre-line of the pure shear 

test piece and at a vertical distance of x and y, for c1 and c2 respectively, from it. 

Several different instances of the schematic in figure 3.12 were analysed in this work. 
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In each, the vertical distance of split crack c1 above the horizontal plane (x mm) was 

kept constant at 4 mm. The vertical distance of split crack c2 (y mm), however, was 

varied in each case and had values of 0.5 mm, 1 mm, 2 mm, 3 mm and 4 mm 

respectively. For each model instance of the schematic in figure 3.12, with the model at 

a fixed displacement, the length of one crack (say the length of c2) was held constant 

whilst the other crack (c1) was incrementally extended and the overall stored energy of 

the model as well as the crack surface area calculated at each incremental extension. 

This process was repeated for both split cracks (thus c1 and c2) in each of the different 

models. In all the models, split cracks c1 and c2 had initial lengths of 1 mm prior to 

extending one split crack whilst keeping the other constant. For each specified 

displacement, a plot of stored energy in the model against one of the corresponding 

crack surface areas at each incremental crack extension was then made. Following the 

virtual crack extension technique, for a fixed displacement of the model, the strain 

energy release rate of the advancing crack at a given crack length can be determined as 

the negative of the gradient of the total stored energy in the model against the crack 

surface area curve around the crack length of interest. Gradients at specific crack 

lengths along the stored energy against crack surface area curves, therefore, give the 

strain energy release rate crack length relationships for all the different split crack 

profiles. To distinguish between the strain energy release rate data of split cracks c1 and 

c2 in their respective model instances, the following labelling convention was adopted; 

thus, in a model instance where the initial length of split crack c1 was kept constant and 

the crack had at a vertical distance x = 4 mm from the horizontal centre-line of the pure 

shear specimen and, the length of split crack c2 was incrementally extended and the 

crack had a vertical distance y = 0.5 mm, the label for the strain energy release rate data 

is presented as “c1=4mm c2=0.5mm c2 extended”. In the results and discussion section 

in chapter six, graphs of strain energy release rate data for the split cracks are presented 

and labelled following this convention. The strain energy release rate data for a single 

crack in a pure shear specimen is simply labelled as “single crack tearing energy” in 

this work. It is important to mention that, the strain energy release rate of a single crack 

through the horizontal centre-line of a pure shear specimen is a constant.  
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Figure 3.12 A schematic of a pure shear specimen with a crack (c) splitting into 

two cracks c1 and c2: Both c1 and c2 are parallel to the horizontal centre-line of the 

specimen 
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CHAPTER FOUR 

4.0 Cyclic Stress Relaxation  

4.1 Introduction 

 Dynamically loaded engineering components undergo repeated stressing. Under 

specific conditions for many rubber components this results in fatigue failure (Busfield 

et al, 2005). Laboratory tests of vulcanised rubber also suggest that they may 

experience stress relaxation or creep which is substantially greater than might have 

been expected from static measurements (Davies et al., 1996; Pond and Thomas, 1979). 

This cyclic stress relaxation behaviour is sometimes mistakenly referred to as the 

Mullins (1948) effect. This is inappropriate, as the classical Mullins effect describes 

behaviour where if the maximum strain experienced previously by the rubber is 

exceeded, the stress strain curve returns to the value measured in the virgin cycle. The 

relaxation phenomenon has been studied for simple extension by Derham and Thomas 

(1977), McKenna and Zappas (1981), Davies et al (1996) and Pond and Thomas (1979) 

but not for other deformation modes. It was found that the fractional relaxation or creep 

rate was strongly dependent on the maximum stress as well as the composition of the 

compound. In particular the filler content and the ability to strain crystallise appear to 

be important in enhancing the relaxation rate. A possible reason for this is that under 

large stresses the chemical bonds, particularly in the cross-links, can fracture with the 

crystallites acting as stress raisers. A close correlation was found between the amount 

of creep and the molecular scission estimated from the measurements of set and 

changes in the equilibrium swelling by Pond and Thomas (1979).  

 In engineering applications, the rubber experiences many modes of deformation 

and this chapter presents experimental results of cyclic stress relaxation measured in 

other modes of deformation. The chapter also discusses how the various relaxation 

rates from different deformation modes can be inter-related and how relaxation rates 

may be estimated for components of complex shape using data measured from test 

pieces. 
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4.2 Results and Discussion 

 In chapter three, the material and methods used to measure the cyclic stress 

relaxation results presented here were discussed in detail. Stress relaxation 

measurements were made using 65 phr carbon black filled natural rubber material 

prepared as both a flat sheet cut into pure shear test pieces and bonded cylindrical 

engineering components. In figure 4.1 below, typical cyclic stress relaxation behaviour 

of bonded cylindrical engineering components deformed in simple shear to positive 

60mm maximum displacement from zero displacement level is shown.  
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Figure 4.1 The maximum force versus number of cycles data for two bonded 

suspension mounts deformed in cyclic simple shear from 0mm to +60mm 

displacements.  

The relaxation behaviour is typically non-linear as has been observed by earlier 

workers (Davies et al., 1996). The decrease in stress from cycle to cycle is rapid during 

the initial stages of the relaxation with subsequent stress decreases becoming relatively 

less. Clearly the relaxation continues over the entire range of the data and this is 

0mm to +60mm  

i di l t
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contrary to earlier remarks in the general literature that cyclic stress relaxation occurs 

over about 10 cycles or so. The relaxation behaviour in figure 4.1 was also observed for 

the rubber test pieces and also when the components were tested in other modes of 

deformation including simple tension and compression.   

 The mechanism of relaxation has been discussed in earlier papers by Pond and 

Thomas (1979), Derham and Thomas (1977) and Davies et al (1996). It appears to 

involve strain induced crystallisation and the rupture of chemical bonds, especially 

those in the sulphur-sulphur cross-links. These sulphur-sulphur cross-links are 

mechanically weaker than primary carbon-carbon bonds or even carbon cross-links. 

This weakness is believed to promote greater strength as they effectively introduce a 

yielding mechanism (Thomas, 1974). Thus rubber compounds that are designed for 

maximum strength often show greater cyclic stress relaxation. This picture is 

complicated by the presence of filler, which appears to increase the stress relaxation 

rate, making a contribution even in a non-crystallising rubber such as styrene butadiene 

rubber (Pond and Thomas, 1979). The presence of the filler causes strain amplification 

(Mullins and Tobin, 1965) which will both stiffen the materials and will also most 

likely make these effects of cyclic stress relaxation more significant even at relatively 

modest strains. 

 Davies et al. (1996) showed that the cyclic stress relaxation behaviour observed 

in figure 4.1 may be plotted using logarithmic axes. The slope of the resulting plot is a 

measure of the rate of cyclic stress relaxation per decade. Figure 4.2 presents results of 

cyclic stress relaxation measurements made on the pure shear samples for a range of 

different maximum strains. Apart from the initial points taken from the first few cycles, 

the data reduces to simple straight lines. The causes of the less than perfect fit for the 

first point results from the first maximum displacement being attained before a whole 

loading and unloading cycle has been completed as discussed by Davies et al (1996). 

Figure 4.3 shows how the slopes of the lines fitted to data in figure 4.2 change with the 

maximum strain in the test cycle. The cyclic stress relaxation rate shows an 

approximately five fold increase as the deformation is increased from 20% to 150% of 

the original test piece height. 
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Figure 4.2 Plot of log (maximum force) against log (number of cycles) for pure 

shear samples tested at 20%, 40%, 60%, 80%, 100%, 120%, 140% and 150% 

maximum engineering strain. 
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Figure 4.3 Cyclic stress relaxation rate against extension ratio for the pure shear 

test pieces 

The cyclic stress relaxation measurements made on the bonded cylindrical engineering 

components in tensile, shear and compressive deformation directions are presented in 

figures 4.4, 4.5 and 4.6 respectively. In figure 4.7 a plot of the slopes of the lines fitted 

to data in figures 4.2, 4.4, 4.5 and 4.6 are plotted together in terms of maximum 

extension ratio (deformation). For the bonded component, the maximum deformation 

was expressed as a percentage of the component’s original rubber section height. In 

each respective deformation mode it is apparent that the rate of cyclic stress relaxation 

increases with the extent of the deformation in figure 4.7. It is immediately obvious in 

figure 4.7 that the rate of cyclic stress relaxation is very different when compared in 

terms of the respective maximum cyclic deformation for the different deformation 

modes. One approach to the unification of these results is as follows. When a filled 

rubber is deformed, the elastic energy will be stressed in the rubber phase only and will 

thus reflect the deformation of the rubber chains between the cross links. It is thought 

l0 λ 
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that the stress in a chain will be the factor which induces fracture in the chemical bonds 

(in either the main chain or the cross-link) or possibly slippage of the rubber molecules 

over the surface of the filler. These being the two factors most commonly proposed to 

explain cyclic stress relaxation. If so then the maximum average energy density 

proposed by Muhr et al (1988) and adopted by Busfield and Thomas (1999) to model 

indentation hardness may be an appropriate parameter with which to attempt 

correlation between the various different deformation modes. The deformations applied 

to the bonded suspension mount are not perfectly homogeneous, the extension and 

compression modes in particular having non uniform strains. Thus the maximum 

average strain energy density, simply derived by dividing the work done on the sample 

up to working strain by the volume of rubber, was adopted as the parameter to describe 

the cyclic stress relaxation rate. The outcome of presenting the results in this way is 

shown in figure 4.8. This shows that this approach works well and that even for an 

inhomogeneous strain state found in the component the average strain energy density is 

a useful measure.  

 This approach gives promise that it may be applied to more complex 

geometries and loading regimes encountered in engineering applications, so that the 

cyclic stress relaxation for a component may be estimated from laboratory 

measurements to determine the behaviour of the material itself.  
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Figure 4.4 Plot of log peak force (maximum force) against log (number of cycles) 

for the bonded suspension mount at 26%, 40%, 53%, 79% and 92% maximum 

displacement expressed as a percentage of the rubber cylinder height in tension. 
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Figure 4.5 Plot of log peak force (maximum force) against log (number of cycles) 

for the bonded suspension mount at 26%, 53%, 79%, 105%, 132% and 158% 

maximum shear displacement expressed as a percentage of the rubber cylinder 

height. 
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Figure 4.6 Plot of log peak force (maximum force) against log (number of cycles) 

for the bonded suspension mount at 16%, 26%, 42%, 53% and 63% maximum 

compression, expressed as a percentage of the cylinder rubber section height.   
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Figure 4.7 Cyclic stress relaxation rate plotted against the maximum engineering 

strain for the pure shear test pieces and maximum displacement divided by the 

rubber cylinder height for the suspension mount under different deformations 
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Figure 4.8 Cyclic stress relaxation rate plotted against the maximum average 

strain energy density for the pure shear test pieces and the suspension mount 

under different deformations 
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4.3 Conclusion 

 Cyclic stress relaxation has been studied for bonded cylindrical engineering 

components and test pieces. The results of the studies confirm that the cyclic stress 

relaxation rate increases with displacement amplitude (strain) for all directions of 

deformation in test pieces and components. Plotting the cyclic stress relaxation rate in 

terms of average strain energy density, reduces both test piece and component data to a 

single straight line. This suggests a general dependence of the cyclic stress relaxation 

rate only relies on the average maximum strain energy density experienced in a loading 

cycle. The average strain energy density concept presents an approach for determining 

the amount of cyclic stress relaxation of an elastomer component from a measure of the 

material’s cyclic stress relaxation behaviour. 
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CHAPTER FIVE 

5.0 Fatigue Life Prediction  

5.1  Introduction 

 Elastomer components fail at cyclic strain amplitudes much lower than their 

catastrophic tear strength due to cumulative cyclic fatigue crack growth. Fatigue cracks 

usually initiate in regions of high strain energy density in components. In general, the 

rate of crack growth is determined by the geometry of the component and the nature 

and magnitude of the deformation imposed. The empirical approach of stress versus the 

number of cycles to failure (S–N) (W. D. Callister, 1994), which is traditionally used to 

determine the fatigue life of components, has also been adopted by the elastomer 

component industry. An alternative approach to predicting the fatigue life of carbon 

black filled elastomer test pieces makes use of fracture mechanics. Lake (1995) 

reviewed the fracture mechanics approach adopted in the present study. Here, the 

energy required to drive the crack at a given rate is defined as the strain energy release 

rate which is also referred to as the tearing energy T. 

dA

dU
T   (Eq.5-1)           

where A is the area of a single fracture surface of the crack and U is a measure of the 

internal energy stored in the component. The magnitude of T is mostly determined by 

the viscous work that has to be done in the crack tip region. Rivlin and Thomas (1953) 

showed that the relationship between crack growth rate and the strain energy release 

rate is a material property, which is independent of the mode of loading and specimen 

geometry. Similarly, it has been shown by Lindley and Thomas (1962) that a 

characteristic crack growth rate per cycle relationship exists for an elastomer that is 

dependent only on the maximum strain energy release rate attained during the loading 

cycle. Busfield and Ng (2005) reported that the actual strain energy release rate against 

applied loading relationships has been difficult to calculate accurately for anything 

other than the simplest components, hence for more complex component types, 

researchers have resorted to approximate relationships for the strain energy release rate. 

For instance, Lindley and Stevenson (1982) used an approximate fracture mechanics 

approach to predict the fatigue behaviour of engineering mounts loaded in compression  
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where, estimates of fatigue lives were made that were of the correct order of magnitude. 

This technique for predicting fatigue failure has been dramatically extended by the 

arrival of large deformation finite element analysis. It is now possible to calculate the 

strain energy release rate for specific loading configurations for cracks in components 

of any geometry. Gent and Wang (1993) adopted this type of FEA approach to study 

the crack growth behaviour of bonded elastomer suspension components subjected to 

large shear. This technique was successfully used to predict the strain energy release 

rate and hence the mode of failure for these types of components. Busfield et al. (2005) 

extended the FEA based fracture mechanics approach by calculating the relationships 

between strain energy release rate and crack size for a gearbox mount at different 

amplitudes of cyclic fatigue loading and combined with material crack growth rate 

versus strain energy release rate relationships to predict crack growth rate in the 

gearbox mount under different modes of loading. In their work, Busfield et al. (2005) 

made predictions of crack growth rate and therefore fatigue life for room temperature 

conditions. In practice elastomer engineering components usually operate above the 

ambient temperature as a result of hysteresis. This thesis extends the work of Busfield 

et al. (2005) to examine real fatigue measurements made at both room temperature and 

for the first time 70±1ºC. Effort was made in this work to calculate the strain energy 

release rate of small cracks of the order of the size of existing defects (flaws) observed, 

after careful visual inspection, at the rubber-metal bond edge of the cylindrical 

component.  

In chapter three of this thesis, the material, experimental and FEA methods used 

to collect data for the fatigue life prediction of the bonded cylindrical elastomer 

component is explained. Dumbbell specimens, pure shear specimens and bonded 

cylindrical elastomer components were prepared from a 65 phr carbon black filled NR 

material. The dumbbell specimens were used for uni-axial stress strain characterisation 

whereas the pure shear specimens were used for fatigue crack growth characterisation. 

The bonded cylindrical components were used in experiments to validate the predicted 

number of fatigue cycles required to grow a crack in the component to a measurable 

size. 
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5.2 Results and discussions 

  In this chapter, material characterisation results, results of FEA calculations of 

strain energy release rate versus crack length relationships, fatigue life prediction and 

experimentally measured number of fatigue cycles to grow a crack in the bonded 

cylindrical component are presented and discussed. 

5.2.1 Material stress strain behaviour 
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Figure 5.1 Virgin stress strain behaviour of the elastomer material (NR, 65 phr) at 

room temperature obtained from a dumbbell test piece 



119 
 

 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Strain

S
tr

e
ss

/M
P

a

 

 

Figure 5.2 1000th cycle stress strain behaviour of the elastomer material (NR, 65 

phr) measured at room temperature from a dumbbell test piece after softening at 

90% strain for 999 cycles 



120 
 

 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Strain

S
tr

e
ss

/M
P

a

 

 

Figure 5.3 Virgin stress strain behaviour of the elastomer material (NR, 65 phr) at 

70 ºC obtained from a dumbbell test piece 
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Figure 5.4 1000th cycle stress strain behaviour of the elastomer material (NR, 65 

phr) measured at 70 ºC from a dumbbell test piece after softening at 90% strain 

for 999 cycles 

 All the stress strain curves presented above are typical of a filled elastomer 

material and were required in order to use a finite element approach to determine the 

strain energy distribution in the bonded cylindrical component under load. The carbon 

black filled natural rubber material’s mechanical behaviour was initially modelled 

using the virgin stress strain curves of figures 5.1 and 5.3 to observe the regions of high 

strain energy density. Figures 3.8 and 3.9 in chapter three show typical meshed finite 

element analysis models of the bonded cylindrical component. Under both tensile and 

shear deformation directions, the regions of highest strain energy density were 

observed to be around the rubber-metal bond edge of the bonded cylindrical 

component. In general fatigue crack growth initiates in components where the strain 

energy density or stress concentration is the greatest (Busfield et al., 2005). The models 
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of the bonded component under strain allow the strain energy distribution in tension 

and shear deformation modes to be determined and so, it was possible to predict the 

regions where fatigue crack growth and subsequent failure may initiate at both room 

temperature and 70±1ºC.  

 In order to calculate the relationship between strain energy release rate and 

crack length in the cylindrical component, both 2D and 3D models (Chapter 3, figures 

3.10 and 3.11) of crack growth at the rubber-metal bond interface were made. To 

calculate the fracture behaviour, the material stress strain behaviour from the 1000th 

cycle stress strain curves shown in figures 5.2 and 5.4 was used. In figure 5.4, the 

experimentally measured 1000th cycle stress strain curve was fitted using a polynomial 

to characterise the experimental data using a Yeoh type stored energy function. This 

provided the necessary number of stress strain points at 70±1ºC needed in the Abaqus 

FEA software to ensure accurate stress strain interpolation by the FEA software. Using 

the 1000th cycle stress strain curves ensured that the initial cyclic stress relaxation, 

described in Chapter 4 (Asare et al., 2010) and which is associated with fatigue crack 

growth was in part accounted for and that the stored energies were not significantly 

over estimated by the FEA models. The results of the stored energy crack length 

relationships at both room temperature and 70±1ºC for different modes of deformation 

are presented and discussed in section 5.5 below. 

5.2.2 Equilibrium swelling test results 

 Figure 5.5 shows the equilibrium swelling in n-decane of a sample taken from a 

component (Component) compared with samples cut from three different rubber sheets 

(S1, S6 and S7). The sheet materials cured from nominally identical materials swell to 

a greater extent in n-decane than materials taken from the component. This indicates 

that the degree of cross linking in the component material was slightly greater than that 

in the sheet material. Using the Flory-Rehner equation (Eq.3-1), a cross link density of 

1.452 x 10-4 mol/cm3 was calculated, from the average absorbed decane measured on 

three different sheets, for the sheet material and 1.609 x 10-4 mol/cm3 for the bonded 

cylindrical component material. The average cross link density of the bonded 

cylindrical component material was found to be about 10% higher than that of the sheet 

material, possibly arising as the sheets were compression moulded whereas the 

components were injection moulded. 
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Figure 5.5 Plot of absorbed n-decane per unit volume of sample for bonded 

cylindrical component sample, sheet samples S1, S6 and S7   

5.2.3 Material pure shear crack growth characterisation 

 Figures 5.6 (a to h) and 5.7 (a to g) present the results of many different pure 

shear crack growth characterisations done at both room temperature and at 70±1ºC. The 

plot of crack length against number of cycles for each test amplitude produces quite 

reliable linear plots with limited scatter, where the slope equals the rate of cyclic crack 

growth at that amplitude. The room temperature pure shear characterisation was carried 

out at strain energy release rates of 10 kJ/m2, 13 kJ/m2, 17 kJ/m2, 20 kJ/m2, 24 kJ/m2, 

26 kJ/m2, 29 kJ/m2 and 35 kJ/m2. The 70±1ºC pure shear characterisation was carried 

out at strain energy release rates of 4 kJ/m2, 7 kJ/m2, 10 kJ/m2, 13 kJ/m2, 15 kJ/m2, 18 

kJ/m2 and 21 kJ/m2. It has been shown that for a pure shear crack growth test piece 

(Chapter 3, figure 3.2) with an unstrained height of l0, thickness t, width w, and a crack 

of size c the strain energy release rate, T is given as Eq.3-3. The strain energy release 

rate for the different pure shear crack growth test amplitudes was thus calculated for 
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both the room temperature tests and for those at 70±1ºC. A plot of crack growth rate 

per cycle dc/dn against the strain energy release rate, T is plotted using logarithmic 

scales in figure 5.8 for both test temperatures. The data shown in figure 5.8 was fitted 

to the power law relationship given by equation 5-2 below: 

XT
dn

dc
  (Eq.5-2)           

Ψ is typically around a value of 2 for natural rubber compounds. A value of 1.8 for 

room temperature and 2.4 for 70±1ºC as is shown in figure 5.8 for the present material 

(NR, 65 phr), is in good agreement with equation 5-2 and results obtained for natural 

rubber materials by earlier workers. Figure 5.8 shows clearly that the material becomes 

weaker at elevated temperatures. This confirms that a rise in the temperature will make 

the material weaker and therefore the fatigue life of elastomer materials and 

components lower (Gent, 1992). This arises as the increase in temperature moves the 

rubber further from the glass transition temperature and hence makes it less 

viscoelastic. This reduction in damping behaviour makes it easier for cracks to 

propagate. Since many elastomer engineering components operate at elevated service 

temperatures, it is important to extend the fracture mechanics approach to fatigue life 

prediction at elevated temperatures to determine the practical applicability of the 

approach.  
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Figure 5.6(a) A plot of Crack length against No. of cycles for 5mm sinusoidal 

displacement amplitude at room temperature   
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Figure 5.6(b) A plot of Crack length against No. of cycles for 6mm sinusoidal 

displacement amplitude at room temperature   
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Figure 5.6(c) A plot of Crack length against No. of cycles for 7mm sinusoidal 

displacement amplitude at room temperature   
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Figure 5.6(d) A plot of Crack length against No. of cycles for 8mm sinusoidal 

displacement amplitude at room temperature     
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Figure 5.6(e) A plot of Crack length against No. of cycles for 9mm sinusoidal 

displacement amplitude at room temperature   
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Figure 5.6(f) A plot of Crack length against No. of cycles for 10mm sinusoidal 

displacement amplitude at room temperature     
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Figure 5.6(g) A plot of Crack length against No. of cycles for 11mm sinusoidal 

displacement amplitude at room temperature   
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Figure 5.6(h) A plot of Crack length against No. of cycles for 12mm sinusoidal 

displacement amplitude at room temperature     
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Figure 5.7(a) A plot of Crack length against No. of cycles for 3mm sinusoidal 

displacement amplitude at 70 ºC   
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Figure 5.7(b) A plot of Crack length against No. of cycles for 4mm sinusoidal 

displacement amplitude at 70 ºC   
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Figure 5.7(c) A plot of Crack length against No. of cycles for 5mm sinusoidal 

displacement amplitude at 70 ºC   
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Figure 5.7(d) A plot of Crack length against No. of cycles for 6mm sinusoidal 

displacement amplitude at 70 ºC   
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Figure 5.7(e) A plot of Crack length against No. of cycles for 7mm sinusoidal 

displacement amplitude at 70 ºC   
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Figure 5.7(f) A plot of Crack length against No. of cycles for 8mm sinusoidal 

displacement amplitude at 70 ºC   
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Figure 5.7(g) A plot of Crack length against No. of cycles for 9mm sinusoidal 

displacement amplitude at 70 ºC   



133 
 

 

 

 

y = 2.366x - 15.398

y = 1.8012x - 13.451

-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

-4.5

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8

log T / Jm-2

lo
g 

d
c/

d
n

 /m

70 degrees
Room temp
Li ( 0 d )

 

 

Figure 5.8 log dc/dn against log T for pure shear characterisation of NR 65 

material at room temperature and 70 degrees Celsius. 
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5.2.4 Experimental and predicted component force deflection behaviour in 

tension at room temperature and 70±1ºC 

 Figures 5.9 and 5.10 show the results of experimental force deflection 

behaviour and FEA prediction of force deflection behaviour of the cylindrical 

component at room temperature and 70±1ºC respectively. The FEA prediction was 

determined using the Yeoh stored energy function characterised using the 1000th cycle 

test piece stress versus strain data obtained at room temperature (figure 5.2) and that at 

70±1ºC (figure 5.4). In figure 5.9 there is good agreement between the experimental 

and predicted component force deflection behaviour until 25mm displacement above 

which the FEA prediction is somewhat greater than the experimentally measured force 

deflection curve. In figure 5.10, the agreement between the measured force deflection 

behaviour and the predicted force deflection behaviour is good until 20mm 

displacement, above which the predicted force deflection behaviour is again greater 

than the experimentally measured behaviour.  

 The observed discrepancies between the measured and FEA predicted 

component force deflection behaviour may be attributed, in part, to the slight difference 

in cross link density between the sheet material, from which the test piece stress strain 

curves were measured, and the bonded component material. In general, it is inherently 

difficult to achieve exactly the same amount of cross link density from batch to batch 

for cured elastomer materials. This picture is complicated by the fact that the 

experimental component force deflection response was determined after cyclically 

loading the component for 999 cycles at a maximum displacement at which the average 

strain energy density, in the component, was calculated to equal that obtained in the 

sheet test piece material stretched to 90% strain. The determination of maximum 

displacements, necessary in experiments, for softening of components and test pieces 

are at best estimates and not the exact required displacements, due to the use of average 

strain energy densities. The maximum average strain energy densities at which the 

bonded component and the sheet material stress strain test piece were softened are only 

of a similar order of magnitude. This difference in the maximum strain energy 

encountered in the component will also introduce a discrepancy between the measured 

and predicted component force deflection behaviour. The situation is further 

complicated at elevated temperatures; because the surrounding experimental 

temperature can be controlled reasonably well but the additional heat generated in the 
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bulk of the sample by the component during a test depends upon factors such as the 

rubber hysteresis and also the rate of heat lost during the test. Clearly this is going to be 

different between the bulky component and the much thinner test sheets. Considering 

these practical difficulties, it is evident from figures 5.9 and 5.10 that Yeoh stored 

energy function measured using the 1000th cycle at both temperatures give 

approximately the correct displacement and that it allows a sufficiently accurate 

measurement of the tearing energy to be made for this work.  
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Figure 5.9 Experimental and predicted 1000th cycle force deflection behaviour of 

NR 65 phr elastomer material at room temperature 
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Figure 5.10 Experimental and predicted 1000th cycle force deflection behaviour of 

NR 65 phr elastomer material at 70 ºC 

5.2.5 Fatigue life prediction and experimental validation 

 To predict the fatigue life of the bonded cylindrical component for a particular 

mode of loading and displacement amplitude, stored energy crack length relationship 

for that amplitude and mode of loading must first be determined using FEA techniques. 

To do this a series of models were made with a wide range of different crack lengths. 

The total stored energy in each model at a specific displacement was calculated using 

the finite element analysis techniques. A graph of the total energy in the model versus 

the crack length was created and the slope of the stored energy crack length curve at 

specific crack lengths determines the strain energy release rate crack length relationship 

for that displacement amplitude (Chapter 2, Eq.2-45). By combining the strain energy 

release rate crack length relationship with the respective power law relationship of 

figure 5.8 (Chapter 2, Eq.2-42), it is possible to derive a single functional relationship 

between the cyclic crack growth rate and the size of a crack in a component (Chapter 2, 
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Eq.2-46). This relationship can be inverted to form 1/(dc/dn) versus crack length. 

Integrating under 1/(dc/dn) versus crack length curve from an initial crack size c0 to a 

final crack size c gives the number of cycles required to grow a crack between those 

limits and hence to predict the fatigue life if c is sufficiently large to cause a 

catastrophic failure.   

 In figures 5.11, 5.16, 5.22 and 5.27, stored energy crack length relationships for 

the bonded cylindrical component deformed in tension and shear at room temperature 

and 70±1ºC respectively are shown. FEA calculated strain energy release rate crack 

length relationship for tensile crack growth (figures 5.12 and 5.17) along the rubber-

metal bond interface of the component show a general trend of increasing strain energy 

release rate with crack length for both room temperature crack growth and at 70±1ºC. 

This trend was also observed in the work of Busfield et al. (2005). Since an increasing 

strain energy release rate implies an increasing crack growth rate, the observed trend in 

tension suggests that the rate of crack growth at the rubber-metal bond interface 

increases with crack length in tension. On the contrary, the FEA calculated strain 

energy release rate crack length relationship for crack growth at the rubber-metal bond 

interface of the bonded component in shear (figures 5.23 and 5.28) initially increased 

through a maximum and then decreased. This suggests an initial increase in crack 

growth rate in shear to a peak value and a subsequent decrease in crack growth rate. 

This trend is observed for both room temperature and at 70±1ºC in shear. This 

phenomenon can be attributed to the cylindrical geometry of the bonded component 

studied in this work. In figures 5.13, 5.14, 5.15, 5.18, 5.19, 5.20, 5.21, 5.24, 5.25, 5.26, 

5.29, 5.30 and 5.31 below plots of 1/(dc/dn) versus crack length for the respective test 

amplitudes and temperature conditions are presented.  

Using the method discussed earlier, the number of cycles required to grow 

cracks at the rubber-metal bond edge of the elastomer component in tension and shear 

at both room temperature and 70±1ºC were calculated as Np and compared with the 

experimentally measured number of fatigue cycles Nm in Table 5.1. It must be noted in 

table 5.1 that the value of c0 in each calculation of Np is an estimate of the initial 

average flaw size observed at the rubber-metal bond edge of the bonded component 

made as accurately as is practical using a careful visual inspection of the rubber-metal 

bond edge. The approach used here of estimating an initial average flaw size at the 

rubber-metal bond edge clearly does not take into consideration any local variations in 

the flaw size. The fatigue life predicted with the fracture mechanics approach generally 
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results in a fatigue life within a factor of 2 of the experimentally measured fatigue life 

cycles which is excellent especially when considering the extent that the predicted 

fatigue life depends on the initial size estimate of the flaw at the rubber-metal bond 

edge of the component. It is apparent in Table 5.1 that the method works well for the 

fatigue life predictions made at both room temperatures and 70ºC irrespective of the 

deformation mode.   

5.2.6 Predicted and measured component fatigue life in tension and shear at 

room temperature and 70 degrees Celsius 
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Figure 5.11 Stored energy against crack length for crack growth in tension at 

5mm, 10mm and 15mm amplitudes respectively at room temperature 
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Figure 5.12 Tearing energy crack length relationship for crack growth in tension 

at 5mm, 10mm and 15mm amplitudes respectively at room temperature 
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Figure 5.13 1/dc/dn versus crack length for crack growth in tension at 5mm 

amplitude at room temperature 
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Figure 5.14 1/dc/dn vrs crack length for crack growth in tension at 10mm 

amplitude at room temperature 
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Figure 5.15 1/dc/dn vrs crack length for crack growth in tension at 15mm 

amplitude at room temperature 
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Figure 5.16 Stored energy against crack length for component crack growth in 

tension at 70 degrees Celsius 
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Figure 5.17 Tearing energy against crack length for component crack growth in 

tension and at 70 degrees Celsius 
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Figure 5.18 1/dc/dn vrs crack length for crack growth in tension at 5mm 

amplitude at 70ºC 
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Figure 5.19 1/dc/dn vrs crack length for crack growth in tension at 10mm 

amplitude at 70ºC 
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Figure 5.20 1/dc/dn vrs crack length for crack growth in tension at 12.5mm 

amplitude at 70ºC 
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Figure 5.21 1/dc/dn vrs crack length for crack growth in tension at 15mm 

amplitude at 70ºC 
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Figure 5.22 Stored energy crack length relationship for shear crack growth at 

5mm, 9mm and 13mm amplitudes respectively at room temperature 
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Figure 5.23 Tearing energy crack length relationship for shear crack growth at 

5mm, 9mm and 13mm amplitudes respectively at room temperature 
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Figure 5.24 1/dc/dn against crack length for shear crack growth at 5mm 

amplitude at room temperature 
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Figure 5.25 1/dc/dn against crack length for shear crack growth at 9mm 

amplitude at room temperature 
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Figure 5.26 1/dc/dn against crack length for shear crack growth at 13mm 

amplitude at room temperature 
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Figure 5.27 Stored energy crack length relationship for shear crack growth at 

5mm, 9mm and 13mm amplitudes respectively at 70ºC 
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Figure 5.28 Tearing energy crack length relationship for shear crack growth at 

5mm, 9mm and 13mm amplitudes respectively at 70ºC 
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Figure 5.29 1/dc/dn against crack length for shear crack growth at 5mm 

amplitude at 70ºC 
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Figure 5.30 1/dc/dn against crack length for shear crack growth at 9mm 

amplitude at 70ºC 
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Figure 5.31 1/dc/dn against crack length for shear crack growth at 13mm 

amplitude at 70ºC 
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Table 5.1 Predicted and measured numbers of fatigue cycles required to grow cracks from estimated rubber–metal bond 

edge flaw size until specified crack size just before failure 

Maximum 

Displacement/mm 
Temperature/ºC 

Tension 

Or Shear 

Range of crack 

Lengths/mm 

Measured No. 

of cycles Nm 

Predicted No. 

of cycles Np 
Np/ Nm 

5.0 23 Tension 0.5-4 723 937 441 145 0.61 

10.0 23 Tension 0.9-10 64 524 116 912 1.81 

15.0 23 Tension 0.5-8 63 494 36 366 0.57 

10.0 70 Tension 0.5-15 163 988 155 454 0.95 

15.0 70 Tension 0.9-11 24 047 22 131 0.92 

9.0 23 Shear 0.5-9 357 009 406 145 1.14 

13.0 23 Shear 0.5-10 168 093 160 189 0.95 

13.0 70 Shear 0.5-7 418 130 182 320 0.44 
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5.3 Conclusion 

 The fracture mechanics approach to fatigue life prediction of engineering 

components has been validated using a bonded cylindrical engineering elastomer 

component for fatigue crack growth within the ‘power law’ region of crack growth 

behaviour. The cylindrical geometry of the engineering elastomer component induced 

rubber-metal bond interface crack growth for both tensile and shear fatigue loading. 

The fatigue crack growth behaviour was successfully predicted for crack growth at both 

room temperature and 70±1ºC to within a factor of 2 for the bonded cylindrical 

component. For the first time, the cyclic stress softening associated with fatigue of 

filled elastomer materials was quantitatively accounted for by softening the dumbbell 

specimens for the stress strain characterisation and subsequent FEA strain energy 

calculations at a strain level deduced following the average strain energy density 

approach. The effect of temperature on the fatigue life of the cylindrical component 

was also well accounted for by the approach of characterising the material stress versus 

strain and the fatigue crack growth behaviour at the elevated test temperature. 

Considering the poor reproducibility of fatigue life predictions in previous work, the 

accuracy of the fracture mechanics approach method to predict the fatigue crack growth 

rate with an accuracy of 2 for the fatigue life at both room temperature and 70±1ºC is 

excellent. 
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CHAPTER SIX 

6.0 Crack Bifurcation in a Pure Shear Test Piece 

6.1 Introduction 

 The study of fatigue crack surfaces has been the subject of scientific research 

for many decades. In many cases fatigue crack surfaces have been observed to be 

rough. The roughness associated with fatigue crack surfaces is prominent when one 

considers the surface morphology of a sharp razor cut to that obtained after the crack 

has grown to steady state rate in an elastomer material. Papadopoulos (2008) reviews 

this phenomenon in a work which investigates rate transitions in fatigue crack growth 

in elastomers. The rough fatigue crack surface is, in part, thought to be the result of 

fatigue crack splitting during fatigue crack growth. Thomas (1958) in an explanation of 

the transition from sharp razor cut crack tip to a rough steady state crack tip suggested 

the rough crack tip to consist of multiple sharp crack tips. The study of fracture 

surfaces in elastomer materials is usually qualitative because no single technique can 

readily describe all the features present or can accurately describe the fracture surface 

structure. Fukahori and Andrews (1978) studied 2D fracture surface microscopic 

images by counting the number of steps crossing a reference line and weighted these 

according to their apparent depth. They differentiated the degrees of roughness by 

assuming that the broader the step lines, the deeper the steps, with the deeper steps 

casting a greater shadow. The technique gives an indication of the roughness at various 

parts of the fracture surfaces but; it would be challenging to differentiate small 

variations in depth. They observed fracture surface roughness in rubber at various 

values of strain energy release rate (tearing energy) under steady tearing and noted that 

there is a direct relation between the rate of propagation and the nature of the crack tip. 

They reported a general observation that increased crack growth rate due to an increase 

in the strain energy release rate results in smoother elastomer fracture surfaces. Gent 

and Pulford (1984) used a similar method to measure the distance between steps of the 

surface texture of 2D images. They attributed the variation in roughness to the joining 

of secondary cracks originating from flaws and filler particles. Furthermore, they 

observed that for the more tear resistant materials the height of the steps was greater. 

Quantitative analysis of fracture surface roughness is not a simple task since there is no  
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widely accepted parameter. Although there is general agreement that fatigue crack 

surfaces become rough with crack growth and that the extent of roughness is linked to 

the strain energy release rate associated with the crack growth, there is no agreement as 

yet on the mechanisms responsible for the creation of the rough fracture surfaces.  

Gent et al. (2003), in a work to investigate why cracks turn sideways considered 

a rubber sheet with a small edge crack subjected to a far-field simple extension. They 

calculated the strain energy release rate for crack growth in both forwards and sideways 

directions. They observed that when the imposed extension is large, the strain energy 

release rate at which a small sideways crack will initiate is found to be about 60% of 

that for forwards crack growth for their specific material. It is clear therefore that for a 

crack to follow what appears at first sight to be a less energetically favourable pathway 

something else must be taking place. Cracks split or bifurcate due to extensive strain 

induced anisotropy particularly at the tip of the crack (Busfield et. al, 1997). This 

anisotropy results from the extensive local strain in the crack tip region and the 

potential for some materials such as NR to experience the onset of strain induced 

crystallisation. In effect it becomes easier for the crack to grow at right angles to the 

applied strain field as this still releases energy, albeit of a lesser amount than in the 

straight forward direction, because the material is much weaker in that direction. 

Cracks that form like this can now follow multiple pathways. Each individually shares 

some of the strain energy release rate from the initial single crack and so the crack 

growth rate slows down. The key concern now becomes which pathway is followed 

and how far apart do the two cracks have to grow apart for one to accelerate and 

become a dominant single crack tip.  

  It is beyond the scope of this thesis to consider the complications associated 

with modelling strain induced anisotropy. So the task of understanding why cracks 

deviate is not considered in detail. The somewhat simpler initial task is tackled which 

considers how far an already bifurcated crack has to grow, as clearly, understanding 

something about this distance helps understand the extent of the surface roughness of a 

fatigue fractured component. To do this, simple finite element analysis models that 

ignore any significant anisotropy in the strength at the crack tip were made. These 

models were used to model how the strain energy release rate associated with growth of 

split fatigue cracks compare, with the strain energy release rate of a single straight 

crack propagating along the central horizontal plane, in a typical filled Natural Rubber 

pure shear crack growth specimen, at the same strain. The objective of this study being 
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to investigate the effect of fatigue crack bifurcation on the generation of fatigue crack 

surface roughness by examining the behaviour of the characteristic strain energy 

release rates as cracks extend from an already split fatigue crack profile. 

6.2 Results and discussion 

 In figure 6.1, a schematic of a pure shear specimen with a crack c splitting into 

two cracks c1 and c2 is shown. To model a crack into a finite element mesh, nodes 

along the direction of crack growth are released. Figure 6.2 shows typical finite element 

mesh for a pure shear crack growth specimen model with split cracks. The crack is 

modeled over a wide range of lengths by releasing the connection between nodes along 

a predetermined crack growth pathway. With each node release, provided the external 

boundaries do not move, the total stored energy in the model decreases. 

 

 

Figure 6.1 A schematic of a pure shear specimen with a crack (c) splitting into two 

cracks c1 and c2: Both c1 and c2 are parallel to the horizontal centre-line of the 

specimen 

 

 



164 
 

 

(a) 

 

(b) 

Figure 6.2 Deformed finite element meshes of a pure shear specimen showing split parallel cracks c1 and c2 with equal lengths (a) 

and, split crack c2 extended keeping the initial length of split crack c1 constant (b) 

 



Figure 6.3 shows a typical curve of the total stored energy versus crack length 

relationship for a split crack (c2) growing in a pure shear specimen at a global 20% 

strain. 

 

 

Figure 6.3 Stored energy crack length relationship for a split crack (c2) growing in 

a pure shear specimen at 20% strain and, 0.5 mm measured vertical distance (y 

mm) from the horizontal centre-line of the specimen 

 

Since all the finite element models in this work have 1 mm thickness dimension, and 

therefore one crack surface area has the same numerical value as the crack length, the 

negative of the slope (chapter 3, equation 3-4) at a specific crack length along the 

stored energy crack length curve gives the strain energy release rate at that crack 

length. In figure 6.4, the strain energy release rate of a single crack growing in a pure 

shear specimen at 20% strain and that of a split crack (c2) growing at 20% strain are 

shown. Figure 6.4 shows that the strain energy release rate of a single crack growing in 

a pure shear specimen is constant. For the filled NR material used in this work, at 20% 

strain, the strain energy release rate for a single crack growing through the pure shear 

specimen was calculated to be 0.725 kJ/m2.On the other hand, the strain energy release 

rate associated with growth of split crack c2 whiles keeping c1 constant, in figure 6.4,  
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varies. Initially the energy is uniformly distributed over the two cracks, as one of the 

cracks, c2, is extended the strain energy release rate of 0.413 kJ/m2 was calculated at a 

crack length of 0.25 mm.  

 

 

Figure 6.4 Tearing energy crack length relationships for a single and a split 

parallel crack (c2) growing in a pure shear specimen at 20% strain 

The strain energy release rate subsequently increases with extension through to a 

maximum of 0.723 kJ/m2 at the final crack length of 10.25 mm by which point the 

initial split in the crack tip is no longer felt. The increase in strain energy release rate 

for a split crack c2, upon extension of c2 whilst keeping c1 constant in figure 6.4, is due 

to simultaneous creation of new fracture surface as a result of split crack c2 extending 

and transfer of energy from the split crack c1 to c2. At the limit of extension of split 

crack c2, where the area around split crack c1 is almost energy free, the strain energy 

release rate of split crack c2 approaches that of a single crack c in a pure shear specimen  
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at 20% strain which is a constant. It is interesting to note that the strain energy release 

rate crack length curve of split crack c2 in figure 6.4, does not extrapolate back to the 

origin of the graph but to an intercept strain energy release rate of approximately 0.374 

kJ/m2. This is a manifestation of the node release technique for measuring strain energy 

release rates, as the method requires the differences between two different models to be 

compared. Therefore the energy release rate is for a crack length somewhat between the 

two points where the total energy is being calculated. Since any point on the tearing 

energy axis in figure 6.4 corresponds to zero crack length extension, extrapolating the 

split crack c2 curve to the vertical axis determines the strain energy release rate of split 

crack c2 at zero extension. As a result of this slight inaccuracy the strain energy release 

rates calculated at an increase in 0.25 mm of a crack length is considered approximately 

the same as the initial strain energy release rates for a split crack.  

 In figure 6.5, the strain energy release rates for split crack c1 in the five model 

instances described in chapter three are presented. It is important to note that in all of 

the model instances, split crack c1 had a constant vertical distance of 4 mm from the 

horizontal centre-line plane of the pure shear specimen. The trend in the strain energy 

release rate versus crack length relationship is similar in all cases to that observed for 

the split crack in figure 6.4. In all the instances, the strain energy release rate increases 

with crack extension due to the combined processes of new fracture surface creation 

and transfer of energy from split crack c2, which is kept at a constant length, to split 

crack c1. It is interesting to note, however, that when extrapolation of the lines of fit 

through the strain energy release rate data set was made, all the lines converged 

approximately to a point on the tearing energy axis in figure 6.5, showing that at the 

outset all the models converge on a solution whereby the strain energy release rate is 

split evenly between both cracks. Strain energy release rates calculated for split crack c1 

for the different model instances at 0.25 mm crack extension had a mean of 0.356 kJ/m2 

and a standard deviation of 0.006 kJ/m2. It can be inferred from figure 6.5 that at a 

constant vertical distance of 4 mm from the horizontal centre-line of the pure shear 

specimen, the initial energy of split crack c1 in all the model instances is approximately 

constant. In figure 6.5, starting from the tearing energy axis, where split crack c1 has 

zero extension, the strain energy release rate curves of the different model instances of 

split crack c1 follow slightly different paths.  
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Figure 6.5 Tearing energy crack length relationships for split crack c1 (where x = 

constant = 4 mm in all models) for the respective models 

This trend can be attributed to a faster rate of energy transfer from split crack c2, which 

is kept at a constant length when the cracks are closer together at the outset.  

 In figure 6.6, the strain energy release rate results for the different model 

instances of split crack c2 are presented. The trends in the transfer of the strain energy 

release rate from being shared by both cracks to being dominated by a single crack are 

similar to that which has been observed and discussed in figures 6.4 and 6.5 but, unlike 

figure 6.5, strain energy release rate curves for split crack c2 when extrapolated to the 

tearing energy axis does not converge to a single point. In this graph the vertical 

position of the extending split crack, c2, was varied from the horizontal centre-line 

plane of the pure shear specimen. Figure 6.6 suggests that the initial strain energy 

release rates of split crack c2 depend on its vertical distance from the horizontal centre-

line plane of the pure shear specimen, or at least perhaps the proximity of the crack to 

the clamped boundary.  
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Figure 6.6 Tearing energy crack length relationships for split crack c2 (where y 

varied and had values of 0.5 mm, 1 mm, 2 mm, 3 mm and 4 mm) for the respective 

models 

A plot of the initial strain energy release rates for the split crack c2 observed in figure 

6.6 against the respective vertical distances from the central horizontal plane is shown 

in figure 6.7. The initial strain energy release rate of split crack c2 is inversely 

proportional to the vertical distance of the split crack from the horizontal centre-line 

plane of the pure shear specimen. It is important to mention that in a separate analysis a 

single crack modeled in a pure shear specimen, and located 4 mm from the central 

horizontal plane of the specimen, there was no difference between the calculated values 

for the strain energy release rate and that derived for a single crack located in the 

middle of the specimen at the same strain. 
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Figure 6.7 Initial tearing energies of split crack c2, versus measured vertical 

distance (y mm) of the split crack from the pure shear specimen horizontal centre-

line in the respective models at 20% strain 

 

The trend in figure 6.7, therefore, is not caused by edge effects alone. The 16% 

difference in strain energy release rate observed for split crack c2 located at 0.5 mm and 

4 mm vertical distances respectively from the horizontal centre-line plane of the pure 

shear specimen was determined at 20% global strain to the specimen. It was of research 

interest to examine this difference in energy at higher strains. Therefore, split crack c2 

models where “c1=4mm c2=4mm c2 extended” and “c1=4mm c2=0.5mm c2 extended” 

were analyzed further at 40%, 60%, 80% and 100% strains. The difference in initial 

strain energy release rates for split crack c2 at the different strains was calculated and 

has been presented in figure 6.8. The trend in figure 6.8 suggests that, the difference in 

initial strain energy release rate between split cracks with shorter vertical distance 

(y=0.5 mm in this work) from the horizontal centre-line and split cracks with longer 

vertical distance (y=4 mm in this work) from the horizontal centre-line of the pure 

shear specimen increases with strain. 
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 As stated previously several physical processes are thought to be the causes of 

crack tip splitting; prominent among them being the interaction of advancing cracks 

with strain induced crystals or oriented aggregate filler particles in filled elastomers, 

which make the material around the crack tip region anisotropic. Strength anisotropy 

ahead of an advancing fatigue crack implies existence of weak local regions in the 

material around the crack tip. In figure 6.7, depending on the location of split crack c2 

in the pure shear specimen, it had initial strain energy release rates ranging from 

approximately 48 % to 57 % of the energy of a single crack growing through the 

horizontal centre-line of a pure shear specimen at 20 % strain. Figure 6.8 suggests that 

at higher strains split cracks located near the horizontal centre-line in a pure shear 

specimen have higher initial energy than that calculated for low strains. It can be 

inferred, therefore, that the existence of material anisotropy combined with the 

significant initial strain energy release rate available to split cracks, depending on their 

location and the global strain of the material, will cause split cracks to propagate under 

fatigue loading. In figure 6.6, apart from the initial strain energy release rates of split 

crack c2 being a function of the location of the split crack from the horizontal centre-

line plane of the pure shear specimen, at equivalent crack extensions split crack c2 

located nearer the horizontal centre-line released more energy than when farther from 

the horizontal centre-line. This trend suggests that the rate of propagation of split 

cracks at different locations from the horizontal centre-line of a pure shear specimen 

will not be uniform, rather split cracks with higher strain energy release rates will 

propagate faster. This phenomenon will induce energy transfer from split cracks with 

lower strain energy release rates to those with higher strain energy release rates 

subsequently resulting in “arrest” of low energy split cracks. It appears that advancing 

fatigue cracks, in an effort to overcome resistance caused by strain induced crystals and 

oriented aggregate filler particles, split at the tip. The split cracks, depending on their 

location and orientation, exploit the weak regions around the strain induced crystals and 

oriented aggregate filler particles and propagate. The most “energetic” and fast growing 

split crack subsequently gains the energy of the “weak” split cracks which eventually 

results in the “arrest” of the crack. The most energetic and fastest growing split cracks 

extend in length until conditions ahead of it (formation of strain induced crystals and 

presence of oriented aggregate particles) causes it to split and repeat the entire process. 

This cyclic process involving crack tip splitting, the growth of the most energetic split 

crack and the eventual “arrest” of lower energy split cracks, must in some part explain 



172 
 

the rough nature of fatigue crack surfaces compared with the smooth surfaces obtained 

from rapid catastrophic torn surfaces. 

 

 

Figure 6.8 Dependence of the initial tearing energy of split cracks on strain  
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6.3 Conclusion 

 Following the suggestion of Thomas (1958), strain energy release rates due to 

growth of split fatigue cracks in a pure shear specimen have been calculated using 

finite element analysis. Upon extension of one split crack while keeping the second 

split crack at a constant length, all the split cracks studied in this work showed a 

general increase in strain energy release rate with extension; the strain energy release 

rate of the extending split crack approached that of a single crack through the 

horizontal centre-line of a pure shear specimen as the stain energy at the second split 

crack tip region approached zero. Using the method of extending one split crack whilst 

keeping the second split crack at a constant length, the initial strain energy release rate 

available to a split crack was successfully calculated. For a pure shear specimen fitted 

to the behaviour of a filled NR material used in this work, strain energy release rates of 

approximately 48% to 57% were calculated for split cracks at different vertical 

distances measured from the horizontal centre-line plane of the specimen. It was 

observed that the initial strain energy release rate of a split crack is a function of its 

location from the central horizontal plane of the pure shear specimen. Split cracks with 

shorter vertical distance measured from the horizontal centre-line plane had larger 

initial strain energy release rates and this trend is pronounced at higher strains. 

Considering the magnitude of the initial strain energy release rate available to split 

cracks and the general trend of increasing energy release rate with split crack extension, 

it can be concluded that, a cyclic process involving crack tip splits, growth of the most 

energetic split crack, and “arrest” of low energy split cracks may be the mechanism for 

crack advance in the presence of fatigue crack growth inhibitors such as strain induced 

crystals and aggregate filler particles. In conclusion, the observed and well reported 

rough nature of fatigue crack surfaces compared with the smooth surfaces obtained 

from rapid catastrophic torn surfaces in elastomer materials is, to a large extent, a 

byproduct of the cyclic crack split process studied in this work.  

 The next stage in this work would be to examine in much more detail exactly 

how the scale of the initial bifurcation of the crack tip plays an important role in the 

rate of crack growth of the advancing crack tip and again to investigate if it is possible 

to calculate for different sizes of splitting how far cracks have to advance from each 

other before the shortest crack is no longer felt. This can then be used to derive 

empirical measures of how crack surface roughness might develop.  
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CHAPTER SEVEN 

7.0 Summary, conclusions and future work  

7.1 Cyclic stress relaxation 

 This research has analysed fatigue in filled elastomer test pieces and bonded 

cylindrical engineering components. The research work was carried out in three stages. 

Firstly, cyclic stress relaxation was experimentally measured for carbon black filled 

natural rubber test pieces and bonded cylindrical elastomer engineering components. 

Cyclic stress relaxation is a manifestation of fatigue in filled elastomer materials. The 

result of cyclic stress relaxation of filled elastomer materials is significant reduction in 

stiffness of the material, over the first thousand fatigue cycles. This stiffness reduction 

which presents as a “downward” shift of the non-linear stress strain curve of filled 

elastomer materials, possess a design challenge. Neglecting cyclic stress relaxation in 

the design of elastomer components introduces inaccuracies in predicted component 

fatigue life. 

 Quantifying cyclic stress relaxation rate in percent per decade, it was observed 

that the relaxation rate is different for different modes of mechanical loading at the 

same extension ratio. Plotting the cyclic stress relaxation rate in terms of the maximum 

average strain energy density, however, correlates the results of both test piece and 

engineering components tested under different modes of loading into a single curve. 

This suggests a general dependence of the cyclic stress relaxation rate on only the 

maximum average strain energy density experienced in a loading cycle. In conclusion, 

the maximum average strain energy density approach allows the cyclic stress relaxation 

in a real component to be predicted from simple test piece results. 

 This research work was limited to carbon black filled natural rubber as the 

material of study. In order to validate the maximum average strain energy density 

approach for a wide range of elastomer material types, test temperatures, formulation 

and component geometries, future work is required. Cyclic stress relaxation 

measurements must be made using elastomer components made from different rubber 

types, other than carbon black filled natural rubber and of complex geometries other 

than a simple bonded cylinder. Cyclic stress relaxation measurements must also be 

made using test pieces made from the same compounds as those of the complexly 
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shaped elastomer components. The test piece and complex geometry component 

results, must then be correlated in terms of maximum average strain energy density, as 

has been done for carbon black filled natural rubber test pieces and bonded cylindrical 

elastomer component in this research, to establish the validity of the approach or 

otherwise to all elastomer materials and geometries.   

7.2 Fatigue Life prediction of bonded rubber components  

 The fracture mechanics approach to fatigue life prediction of engineering 

components, was validated using a bonded cylindrical elastomer component for fatigue 

crack growth within the “power law” region of crack growth behaviour, in the second 

stage of this research work. The bonded cylindrical geometry of the elastomer 

component induced rubber-metal bond interface crack growth for both tensile and shear 

fatigue loadings. The fatigue crack growth behaviour was successfully predicted for 

crack growth at both room temperature and 70±1ºC to within a factor of 2 for the 

bonded cylindrical component. For the first time, the cyclic stress softening associated 

with fatigue of filled elastomer materials was quantitatively accounted for in the 

prediction by softening the dumbbell specimens for the stress strain characterisation 

and subsequent FEA strain energy calculations at a strain level deduced following the 

average strain energy density approach. The effect of temperature on the fatigue life of 

the bonded cylindrical component was also well accounted for by the approach of 

characterising the material stress strain and fatigue crack growth behaviour at the test 

temperature. Considering the irreproducibility of fatigue life predictions in previous 

work, the accuracy of the fracture mechanics approach to predict fatigue crack growth 

rate within a factor of 2 for the fatigue life at both room temperature and 70±1ºC is 

reasonable. 

 It is worth mentioning that, due to limited supply of bonded cylindrical 

engineering components in this research work, statistical validation of the accuracy of 

the fatigue life prediction could not be made. Future work is required in which larger 

numbers of engineering components, made from different rubber materials and 

compounds, are tested for fatigue crack growth, and subsequent fatigue failure, as well 

as a prediction of the fatigue life using fracture mechanics over a range of temperatures. 

The experimentally determined fatigue life, from large component samples, and the 

fracture mechanics predicted fatigue life can then be evaluated statistically, to establish 

the statistical significance of the factor of two accuracy observed in experiments in this 
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work which involved a relatively small number of components – a total of 65 

components were altogether tested in this research work. 

7.3 Finite element analysis of crack bifurcation in a pure shear specimen 

 The final part of this research work investigated the effect of fatigue crack tip 

splits on the evolution of fatigue crack surface roughness. The approach adopted for the 

investigation involved using finite element analysis to calculate the characteristic strain 

energy release rates associated with growth of bifurcated fatigue cracks in a pure shear 

specimen. As part of this approach, the trends in strain energy release rate versus crack 

extension obtained from growth of bifurcated cracks were examined in an effort to 

identify the mechanisms underlying fatigue crack surface roughness generation.  

 Finite element models were made of single fatigue cracks growing through the 

horizontal centre-line plane of a pure shear specimen. Models were also made of single 

fatigue cracks that initially grow along the horizontal centre-line of a pure shear 

specimen but subsequently split into two crack tips, with both split cracks having 

parallel orientation to the horizontal centre-line plane of the pure shear specimen and at 

known vertical distances from it. Strain energy release rates were then calculated for 

growth of the split fatigue cracks by extending one split crack tip whilst keeping the 

second split crack tip constant. Depending on the vertical distance of the split fatigue 

crack tip from the horizontal centre-line plane of the pure shear specimen, different 

strain energy release rate curves were obtained for the growth of the split crack. It was 

generally observed that, whilst keeping one split crack constant and extending a second 

split crack, strain energy release rate increased with extension. However, comparing the 

strain energy release rate curves at equivalent crack extension, split fatigue crack tips 

that had a shorter vertical separation from the central horizontal plane of the pure shear 

specimen released more energy, upon extension, than those with longer vertical 

distances from the horizontal centre-line plane. Physical phenomena such as strain 

induced crystalisation and crack tip filler particle interaction cause anisotropy and this 

is the source of the fatigue crack tip splitting. Observing the trends in strain energy 

release rates for growing split fatigue crack tips in this work, split crack tips with 

vertical distances nearest to the horizontal centre-line plane in a pure shear specimen 

will preferentially grow since they are the most energetic. This will lead to crack 

“arrest” of the tips with longer vertical distances from the horizontal centre-line plane 

in the pure shear specimen since they possess less energy. The rapid increase in the 
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strain energy release rate, of the split crack tip with shorter vertical distance from the 

central horizontal plane in the pure shear specimen, implies intensification of 

phenomenon such as strain induced crystalisation ahead of the growing tip. When the 

less energetic split crack tip becomes “arrested” the larger stress field developed around 

the advancing crack tip will produce more anisotropy which can repeat the whole cycle 

again.  It appears, therefore, that advancing fatigue cracks, in an effort to overcome 

resistance caused by strain induced crystals and oriented aggregate filler particles, split 

at the tip. Examining the order of magnitude and trends in strain energy release rate 

versus crack extension for split fatigue cracks in a pure shear specimen; it appears that 

a cyclic process involving crack tip splits, growth of the most energetic split cracks, 

and “arrest” of low energy split cracks may be the mechanism for crack advance in the 

presence of fatigue crack growth inhibitors such as strain induced crystals and 

aggregate filler particles in elastomers.  

 In conclusion, the observed and well reported rough nature of fatigue crack 

surfaces compared with the smooth surfaces obtained from rapid catastrophic torn 

surfaces in elastomer materials is, to a large extent, a byproduct of the cyclic crack split 

process studied in this work.  

 Investigations into the characteristic strain energy release rate associated with 

growth of split fatigue cracks, in this work, was limited to two dimension plane stress 

models of a pure shear specimen and a single material type. Future work should be 

carried out to investigate the effect of material type on the trends in the characteristic 

strain energy release rate. The analysis may also be extended to complex three 

dimensional models of split fatigue cracks in elastomer components. It should also be 

extended to attempt to model the amount of anisotropy that is produced under different 

conditions to examine exactly which conditions create the split in the crack in the first 

place.  
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