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We show that the most general scalar-tensor theory of gravity up to four derivatives in 3 + 1
dimensions is well-posed in a modified version of the CCZ4 formulation of the Einstein equations in
singularity-avoiding coordinates. We demonstrate the robustness of our new formulation in practise
by studying equal mass black hole binary mergers for different values of the coupling constants.
Although our analysis of well-posedness is restricted to cases in which the couplings are small, we
find that in simulations we are able to push the couplings to larger values, so that a certain weak
coupling condition is order one, without instabilities developing. Our work provides the means for
such simulations to be undertaken by the many numerical relativity codes that rely on the moving
puncture gauge to evolve black hole singularities.

I. INTRODUCTION

Detections of gravitational waves from the mergers of
compact objects permit testing of the strong field, highly
dynamical regime of general relativity (GR) [1–3]. The
current waveforms are tested for consistency with GR,
mainly using methods that parameterise the deviations to
the merger, inspiral and ringdown phases in a general way
[4, 5]. However, to check whether such parameterised de-
viations are well-motivated and consistent in alternative
theories beyond GR, it is necessary to obtain predictions
for specific models [1, 6–11], with numerical relativity the
essential tool for the merger section of the signal.

For a long time, a barrier to obtaining such predictions
was that, for many modified gravity theories of interest,
well-posed formulations were not known, and progress
could only be made using order-reduced methods that
potentially suffer from the accumulation of secular errors
over long inspirals [6, 12–18]. A great deal of effort has
therefore been devoted to find mathematically well-posed
formulations of certain alternative theories of gravity of
interest. The property of well-posedness guarantees that,
given some suitable initial data, the solution to the equa-
tions of motion exists, is unique and depends continuously
on the initial data. Hence, it is an essential prerequisite to
be able to simulate the theory on a computer and extract
waveforms that can then be compared to the predictions
of GR.

Current observations indicate that the deviations from
GR in the strong field regime are small [5]. Therefore, it
makes sense to consider theories arising as small modifi-
cations of GR and effective field theory (EFT) provides
an organising principle. In EFT, one adds all possible
terms allowed by symmetry to the leading order GR La-
grangian. These terms are organised in a derivative ex-
pansion and appear multiplied by dimensionful coupling
constants that encode the effects of the underlying (un-
known) microscopic theory. In pure gravity, after con-
sidering field redefinitions, the leading correction to GR
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starts at six or eight derivatives [19].1 Such theories of
gravity have higher order equations of motion and it is
not yet understood how to obtain well-posed formulations
that capture the long distance physics of interest. How-
ever, there has been promising recent progress [22–25].

Some particular classes of higher derivative theories of
gravity that have received a lot of attention in recent years
are the Lovelock theories [26] in the case of pure grav-
ity, and the Horndeski theories [27] in the case of scalar-
tensor theories.2 Both Lovelock and Horndeski theories
have second order equations of motion, and hence there
was hope that suitable well-posed formulations could be
found. In some remarkable papers, Kovács and Reall have
shown that these theories are indeed well-posed in a mod-
ified version of the harmonic gauge [28, 29]. Subsequently,
work has begun to study some specific scalar-tensor the-
ories within these classes in their highly dynamical and
fully non-linear regimes [30–32].

Generalized harmonic coordinates are appealing be-
cause of the manifest wave-like structure of the equations,
but their practical implementation in numerical simula-
tions necessitates excision. The latter, whilst conceptu-
ally straightforward, can be difficult to implement in prac-
tise. As a consequence, many groups in the numerical
relativity community have opted to use singularity avoid-
ing coordinates such as the BSSN [33–35], Z4C [36, 37]
or CCZ4 [38] formulations in the puncture gauge [39, 40],
which do not require the excision of the interior of black
holes from the computational domain. This strongly mo-
tivates the extension of the results of [28, 29] to singular-
ity avoiding coordinates, to allow such groups to generate
waveforms in these models.

In this Letter we modify the CCZ4 formulation of the
Einstein equations together with the 1 + log slicing [41]
and Gamma-driver [42] gauge conditions and show that

1 A recent argument (that relies on certain assumptions on the UV
completion of gravity) suggests that, to preserve causality in the
six-derivative theories, an infinite tower of higher spin particles
is required [20, 21]; such particles have not been observed, which
would indicate that the couplings of these theories are further
suppressed.

2 We note that Lovelock theories are only non-trivial in spacetime
dimensions higher than four.
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at least certain classes of these higher derivative scalar-
tensor theories of gravity can be well-posed in singularity
avoiding coordinates. Following the EFT philosophy, we
consider the most general parity-invariant scalar-tensor
theory of gravity up to four derivatives (4∂ST) [43]:

I = 1
16π

∫
d4x
√
−g
[
− V (φ) +R+X

+ g2(φ)X2 + λ(φ)LGB
]
,

(1)

where X ≡ − 1
2 (∇µφ)(∇µφ), V (φ) is the scalar potential,

g2(φ) and λ(φ) are smooth functions of the scalar field φ
(but not of its derivatives), and

LGB = R2 − 4RµνRµν +RµνρσR
µνρσ , (2)

is the Gauss-Bonnet Lagrangian. Since well-posedness
is a necessary but not sufficient condition for a stable
numerical evolution, we demonstrate that our formulation
works in practise by evolving a selection of binary black
hole mergers.

We follow the conventions in Wald’s book [44]. Greek
letters µ, ν . . . denote spacetime indices and they run from
0 to 3; Latin letters i, j, . . . denote indices on the spatial
hypersurfaces and they run from 1 to 3. We setG = c = 1.

II. MODIFIED CCZ4 FORMULATION

The equations of motion (eoms) derived from (1) in
the modified harmonic gauge introduced by [28, 29], and
supplemented by constraint damping terms, are given by:

Rµν − 1
2 Rg

µν − P̂ βµν
α ∇βCα (3)

+ κ1
[
n(µCν) + 1

2κ2 n
αCα g

µν
]

= Tφµν − 4Hµν ,
�φ[1 + 2g2(φ)X]− V ′(φ)− 3X2g′2(φ)
− 2g2(φ)(∇µφ)(∇νφ)∇µ∇νφ = −λ′(φ)LGB , (4)

where Cµ = Hµ+ g̃ρσΓµρσ are the constraints, and Hµ are
the source functions that parametrize the underlying co-
ordinate freedom of the theory; P̂ βµν

α = δ
(µ
α ĝν)β− 1

2δ
β
αĝ

µν

and the two additional auxiliary (inverse) metrics g̃µν and
ĝµν can be chosen as

g̃µν = gµν − a(x)nµnν , ĝµν = gµν − b(x)nµnν , (5)

where nµ is the unit (with respect to the spacetime metric
gµν) normal to surfaces of constant x0. Assuming that i)
the initial data surface is spacelike for all three metrics,
ii) the null cones of the three metrics do not intersect and,
iii) the physical metric gµν has the innermost null cone,
requires that 0 < a(x) < b(x) or 0 < b(x) < a(x). If the
ordering of the null cones of gµν and g̃µν is interchanged,
then one has the alternative condition −1 < a(x) < 0 <
b(x) [28, 29]. The damping coefficients κ1 and κ2 in (3)
must satisfy the bounds κ1 > 0 and κ2 > − 2

2+b(x) [45].
The terms in the right hand side (r.h.s.) of (3) are

given by

Tφµν = 1
2
{

(∇µφ)(∇νφ)(1 + 2g2(φ)X)
+ gµν

[
g2(φ)X2 +X − V (φ)

] }
, (6)

Hµν = 2Rρ(µCν)ρ − C(Rµν − 1
2Rgµν)− 1

2R Cµν
+ Cαβ (Rµανβ − gµνRαβ) , (7)

with

Cµν ≡ λ′(φ)∇µ∇νφ+ λ′′(φ)(∇µφ)(∇νφ) , (8)

and C ≡ gµνCµν .
In (S10) of the Supplemental Material [46] we provide

the usual 3+1 conformal decomposition of the eoms (3)–
(4), which were first written down in [47, 48]. In order to
evolve the system, we need to prescribe evolution equa-
tions for the gauge variables, namely the lapse α and shift
vector βi. In this Letter we propose the following gener-
alizations of the 1+log slicing condition for the lapse and
Gamma-driver for the shift [45]:

∂tα = βi∂iα− 2α
1+a(x) (K − 2Θ) ,

∂tβ
i = βj∂jβ

i + 3
4

Γ̂i
1+a(x) −

a(x)
1+a(x) αD

iα .
(9)

In this work we show that in the weakly coupled regime,
(9) together with (S10) form a strongly hyperbolic system
of partial differential equations. The outline of the proof
is provided in Section III, and the details can be found in
[45]. In Section IV we show the robustness of our formu-
lation by simulating black hole binaries in the theory (1)
for the first time.

III. WELL-POSEDNESS

In this section we study the well-posedness of (S10)–(9)
in the weakly coupled regime, that is, when the higher
derivative terms in the eoms are much smaller than the
two-derivative ones.

We first analyze the hyperbolicity of the two-derivative
Einstein-scalar field theory in the modified CCZ4
(mCCZ4) formulation, i.e., (S10)–(9) with λ(φ) =
g2(φ) = 0. We calculate the principal symbol by lin-
earizing the equations around an arbitrary background,
keeping the highest derivative terms and replacing ∂µ →
iξµ ≡ i(ξ0, ξi) with γijξiξj = 1. We get

iξ0U = M0(ξk)U, (10)

where U is the vector of all linearized variables U =
{ˆ̃γij , χ̂, ˆ̃Aij , K̂, Θ̂, ˆ̂Γi, α̂, β̂i, φ̂, K̂φ},3 and M0(ξk) can be
found in Appendix B of the Supplemental Material [46].

The system is strongly hyperbolic if M0 has real eigen-
values and a complete set of eigenvectors that depend
smoothly on the wavevectors ξk for any ξk. The explicit
expressions for the eigenvalues are given in (15),(16), (20)
and (21) setting λGB = g2 = 0; the eigenvectors as well
as the analysis of the propagation of the constraints can
be found in [45].

3 Note that taking into account the constraints det(γ̃ij) = 1 and
Tr(Ãij) = 0, there are 22 independent variables.
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Just as in the standard CCZ4 formulation in puncture
gauge, the different sets of eigenvalues can become degen-
erate for specific combinations of the lapse α and the con-
formal factor χ. The degeneracy that occurs for α = 1

2χ
in our mCCZ4 formulation is the same as in standard
CCZ4. Additional degeneracies occur for α = 1+b(x)

2χ(1+a(x)) ,
α2 = 1+b(x)

χ(1+a(x)) and α = 2(1+b(x))
1+a(x) ; given the ranges of α

and χ together with the conditions that a(x) and b(x)
satisfy, these new degeneracies can be avoided by further
imposing b(x) > 1+4a(x)

3 with either 0 < a(x) < b(x) or
−1 < a(x) < 0 < b(x). However, just as the degeneracy
already present in the standard CCZ4 formulation does
not cause problems in practical applications, nor do the
new ones. Therefore, in practice we do not need to im-
pose this extra condition on b(x) to stably evolve black
hole binaries, see Section IV.

To show that (1) is well-posed in our mCCZ4 formu-
lation in the weakly coupled regime we have to specify
the coupling functions λ(φ) and g2(φ); for simplicity, we
choose: λ(φ) = λGB

4 f(φ) and g2(φ) = g2, where λGB and
g2 are constants that we assume to be suitably small and
of the same order.4 Then, the weakly coupled regime of
the theory corresponds to

L�
√
λ′(φ) ,

√
|g2| (11)

where L is any characteristic length scale of the system
associated to the spacetime curvature and the gradients
of the scalar field.5

The principal part of the full theory, (S10)–(9), can be
written as

M = M0 + δM (12)

where δM = λGBMGB+g2MX are the contributions from
the higher derivative terms that, in the weakly coupled
regime, are small compared to M0. Therefore, to prove
that the full theory is well-posed in an open neighbour-
hood around the Einstein-scalar-field theory, we can pro-
ceed by explicitly computing the eigenvalues and eigen-
vectors of (12) perturbatively and showing that M has
real eigenvalues and is diagonalizable.

Consider one of the eigenvalues6 of the unperturbed
principal part M0, namely ξ with multiplicity Nξ; let
the associated right and left eigenvectors be {vξR,i}N

ξ

i=1

and {vξL,i}N
ξ

i=1 respectively. The perturbed eigenvalues{
ξ + δζξi

}Nξ
i=1

and eigenvectors
{
αξi · v

ξ
R + δwξ

i

}Nξ
i=1

can
be obtained by solving the eigenvalue problem [49],

T ξαξi = iδζξi α
ξ
i , (13)

(M0 − iξI) δwξ
i =

(
iδζξi I− δM

)
(αξi · v

ξ
R) , (14)

4 We assume λGB > 0 without loss of generality.
5 In practice, L−1 = max{|Rµνρσ |

1
2 , |∇µ∇νφ|

1
2 , |∇µφ|}.

6 Here we suppress the subscript 0 on ξ0 to simplify the notation.

where T ξij = vξ†L,iδM vξR,j
vξ†L,iv

ξ
R,i

. Note that (13) ensures that the
r.h.s. of (14) has no components parallel to ξ. Therefore,
the matrix M0− iξI on the l.h.s. of (14) is invertible [49].

To prove well-posedness we need to verify that the ma-
trices

{
T ξ
}
ξ∈Spec(M0) are diagonalizable and that the per-

turbed eigenvectors depend smoothly on ξk. In [45] we
prove that this holds. Shifting ξ0− βkξk → ξ0, the eigen-
values of the perturbed system can be classified as follows:
Physical eigenvalues: Letting ε = ±1, the 6 eigenvalues
from this sector are split into two corresponding to the
purely gravitational sector,7

ξ0 = α (ε+ 2ηε) , (15)

and four corresponding to the mixed gravitational-scalar
field polarizations,

ξ0 = α (ε+ ηε + σε (16)

±
√

(ηε − σε)2 + ψ2
12 +

(
ψ11−ψ22

2

)2
)
,

where

ηε =
[
2ξiγiµnν − ε

(
nµnν + ξiξjγ

i
µγ

j
ν

)]
Cµν , (17)

σε = g2

2
[
ξi(Diφ)Kφ + ε

(
K2
φ − ξiξj(Diφ)(Djφ)

)]
,

(18)

ψAB = λGBeiAe
j
B

[
LnKij + 1

αDiDjα (19)

+Rij +KKij −K k
i Kjk + 2ξk

(
DkKij −D(iK

k
j)
)]

and {eiA}, A = 1, 2 together with ξi form an orthonormal
triad.
“Gauge-condition violating” eigenvalues:

ξ0 = ±
√

2α
1+a(x) ,

ξ0 = ± 1√
χ(1+a(x))

,

ξ0 = ±
√

3
2
√
χ(1+a(x))

,

(20)

where the last pair of eigenvalues have multiplicity 2.
“Pure-gauge” eigenvalues:

ξ0 = ± α√
1+b(x)

, (21)

where both eigenvalues have multiplicity 4.
Clearly the eigenvalues (15)–(21) are real (recall that in

all cases a(x) > −1 and b(x) > 0), they smoothly depend
on ξk, and hence M is diagonalizable. Therefore, we have
shown that, in the weakly coupled regime, the system is
strongly hyperbolic.

7 The corresponding eigenvectors are null with respect to the effec-
tive metric Cµν = gµν − 4Cµν as described in [50].
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IV. BLACK HOLE BINARY MERGERS IN 4∂ST

We demonstrate the robustness of our proposed
mCCZ4 formulation by simulating equal mass non-
spinning black hole binary mergers in the theory (1).
In all our simulations we have used a(x) = 0.2 and
b(x) = 0.4, and f(φ) = φ, which corresponds to further
imposing that the eoms are invariant under shifts in φ. In
this theory stationary black hole solutions possess a non-
trivial scalar field configuration – so called scalar hair.8
We have implemented our code as an extension to

GRChombo [51, 52]. We follow the method in [53, 54] of
smoothly switching off some of the higher derivative terms
in the eoms well inside the apparent horizon by replacing
λGB → λGB

1+e−100(χ−χ0) with χ0 = 0.15.9 We superpose the
initial perturbative solution for two GR boosted black
holes in [55] as initial data (and hence with vanishing
scalar field) with equal masses m(1) = m(2) = 0.49M ,
separation 11M and initial velocities v(i) = (0,±0.09, 0).
These initial conditions have been tuned to have roughly
circular initial orbits in GR such that the two black holes
merge in approximately seven orbits. We use Bowen-
York initial data for the two boosted black holes [56] with
the Hamiltonian constraint solved approximately using
a perturbative expansion in the linear momentum P i as
in [55, 57]. No further constraint violation arises in the
EFT since the additional non-GR terms in the constraints
vanish for zero initial scalar field [30, 58]. As the scalar
hair grows and the punctures form, constraint violations
become visible inside the apparent horizon (both due to
the puncture and the switching off of the coupling terms
described above). Outside the apparent horizon and in
the weakly coupled regime they stay small provided that
the damping terms in the eoms are chosen appropriately.
For the simulations shown here, the values of the con-
straint damping coefficients have been set to κ1 = 0.35
and κ2 = −0.1.

For each simulation that we have run, we have ex-
tracted the gravitational waves at r = 100M and com-
puted the (`,m) = (2, 2) mode of the plus polarization of
the strain, h+

22, for comparison. The results are shown in
Figs. 1, 2. Since in the theory that we consider the Gauss-
Bonnet term sources the scalar field, it is the associated
coupling constant λGB that plays the most prominent role
and effectively controls the regime of validity of the EFT.
For very small values of the couplings, the waveforms in
4∂ST tend to GR, as expected since the scalar field is
effectively perturbative.10 The differences only become
noticeable in the merger phase (see the bottom panel in
Fig. 1) and they appear as a phase shift in the waveform.
This is expected since the spacetime curvature outside
black holes is largest during this phase.

8 References [1] and [11] use the same convention for the coupling
as in our paper, while there is a factor of 4

√
2 difference with

respect to references [4] and [10].
9 In our coordinates and for non-spinning black holes, the apparent
horizon is accurately tracked by the χ ' 0.3 contour.

10 We emphasize that we still treat the system non-perturbatively,
which allows us to avoid potential issues with secular effects.
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FIG. 1. Top: Comparison of the (2,2) mode of the gravita-
tional wave strain between GR (blue) and 4∂ST in retarded
time, u = t − r∗, where r∗ is the tortoise coordinate, for dif-
ferent values of the couplings, namely small (orange dashed),
medium (green) and large (red). Bottom: Zoom in of the
merger region for the small coupling case.

The situation is drastically different for large values of
the couplings. For λGB/M2 = 0.05, the binary merges in
only 3 orbits as opposed to the 7 orbits that the black
holes describe in GR with the same initial conditions. In
the 4∂ST theory with large couplings the system can ra-
diate strongly in scalar waves and hence shed energy and
angular momentum more efficiently than in GR, so the
larger the λGB/M2 coupling, the sooner the binary merges
[8, 59, 60]. Furthermore, the formation of the scalar cloud
from an initial zero state may have an effect on the circu-
lar orbits which needs to be carefully quantified. We were
able to increase the coupling to λGB/M2 = 0.1 without
major difficulties where we find that the binary merges
even quicker. It seems possible to increase this coupling
even further, but each increase necessitates a tuning of the
damping parameters κ1 and κ2 to keep the truncation er-
rors under control, and so we leave a full exploration of
the limit to future work.

In Fig. 2 we compare the effect of varying g2 for a
fixed (large) value of λGB. Even if the values of g2 are
large compared to the values used in [54], the effect is
small. The reason is that the typical energy densities of
the scalar field that result from the scalarization process
in the 4∂ST are much smaller than in [54]. In the present
case we have

√
|g2|/L . 0.1 while 0.2 .

√
λGB/L .

0.5 throughout the evolution. It is interesting to note
that changing the sign of g2 gives rise to a phase shift
of roughly π rather than an advancement or delay of the
wave as in [54].

V. DISCUSSION

In this article we have proposed a modified version of
the CCZ4 formulation of the Einstein equations based
on [28, 29], together with a modification of the puncture
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| g 2

=
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FIG. 2. Top: Waveforms for fixed λGB/M2 = 0.05, with differ-
ent values of the Horndeski coupling g2. We see that changing
g2 has a small effect since the dynamics are mainly controlled
by the Gauss-Bonnet coupling λGB. Bottom: The lower plot
shows the difference between the strains for the large couplings
g2/M

2 = ±1 compared to the g2 = 0 case.

gauge extensively used in numerical relativity to simu-
late black hole binary mergers. With these modifications
we have proved the well-posedness of the most general
scalar-tensor theory of gravity up to four derivatives in
the weakly coupled regime in singularity avoiding coordi-
nates. In [45] we also prove well-posedness of the Lovelock
theory of gravity using our formulation. It seems plausi-
ble that one can also extend the well-posedness results in
singularity avoiding coordinates to the general Horndeski
theory - see the argument in [28, 29], which avoids the
explicit computation of the eigenvalues and eigenvectors
of the theory.

We have demonstrated the robustness of our formula-
tion in practise by simulating black hole binary mergers
in the 4∂ST theory (1) for different values of the coupling
constants, with values up to λGB/M2 = 0.1 remaining
stable for the evolution, and compared the waveforms to
those of GR. Treating the theory fully non-linearly al-
lows us to avoid the secular effects of order reduced for-
mulations while capturing the non-perturbative physics.
The dynamics of our model is essentially controlled by the
Gauss-Bonnet coupling λGB , since it is the Gauss-Bonnet
term that gives rise to the scalar hair of the black holes.
For large values of λGB , i.e., λGB ' 0.05/M2, the devi-
ations from GR are large, as one would expect since the
4∂ST theory has a scalar degree of freedom. However,
even for these large values of the couplings, the theory
is weakly coupled. It would be interesting to check the
limits in which one can probe the strong coupling regime
of the theory with our formulation.

The focus of this Letter is on the success of the meth-
ods rather than the phenomenology of the models that we
have considered. Our work, building on previous studies
[28–30], opens up the possibility for detailed study of phe-
nomenologically interesting scalar-tensor theories of grav-
ity with two-derivative equations of motion to the many

existing numerical relativity codes that rely on puncture
gauges. These codes, many of which are crucial for cur-
rent LIGO-Virgo-KAGRA inference, now have the means
to obtain high quality waveform templates in such the-
ories. These template banks can help contrast the pre-
dictions of specific “beyond GR” models with parame-
terised approaches as well as present and future gravita-
tional wave observations.
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Appendix A: Equations of motion

In this section we write down the equations of motion
of the theory, eqs. (3)–(4), in the 3+1 form as we have
implemented in our code. We consider the usual 3 + 1
decomposition of the spacetime metric,

ds2 = −α2 dt2 + γij(dxi + βi dt)(dxj + βj dt) , (A1)

where α and βi are the lapse function and shift vector
respectively, and γij is the induced metric on the t ≡
x0 = const. hypersurfaces. In these coordinates, the unit
timelike vector normal to these hypersurfaces is given by
nµ = 1

α (δµt −βiδ
µ
i ) and the extrinsic curvature is given by

Kµν = − 1
2Lnγµν , (A2)

where Ln denotes the Lie derivative along nµ.
The evolution variables are decomposed as,

χ = det(γij)−
1
3 , (A3)

γ̃ij = χγij , (A4)

Ãij = χ

(
Kij −

1
3 γijK

)
, (A5)

Γ̂i = Γ̃i + 2γ̃ijZj , (A6)

where Γ̃i ≡ γ̃klΓ̃ikl, and Γ̃ikl are the Christoffel symbols
associated to the conformal spatial metric γ̃ij .15 Note
that the spatial indices are raised and lowered with the
physical spatial metric γij . In addition, we have the com-
ponents of the Z4 vector [62, 63],16

Θ ≡ Z0 = 1
2 C
⊥ , (A7)

Zi = − 1
2 C

i , (A8)

where

C⊥ = H⊥ +K + 1
α (1 + a(x))Lnα, (A9a)

Ci = Hi + Γi − 1+a(x)
α

[
Diα+ γij

α (∂t − βk∂k)βj
]
,(A9b)

where C⊥ ≡ nµCµ, Γkij are the Christoffel symbols of the
spatial metric and Γi ≡ γijγklΓjkl.

Having defined all the variables, their evolution equa-
tions are given by:

∂⊥γ̃ij = −2αÃij + 2γ̃k(i∂j)β
k − 2

3 γ̃ij(∂kβ
k), (A10a)

15 Note that the conformal spatial metric γ̃ij is unrelated to the
auxiliary spacetime metric g̃µν defined in (5).

16 In our conventions, the Z4 vector Zµ is related to the vector of
constraints Cµ as Zµ = 1

2C
µ.

∂⊥χ = 2
3χ
(
αK − ∂kβk

)
, (A10b)

∂⊥Θ = 1
1+b(x)

{
1
2α
[
R+ 2(1 + b(x))DiZ

i − ÃijÃij

+ 2
3 K

2 − 2(1 + b(x))K Θ
]

−
(

2+b(x)
2

)
Zi∂iα

−ακ1(2 + κ2)Θ
− 1

4α
[
K2
φ

(
1 + 3

2g2
(
K2
φ − (∂φ)2) )

+(∂φ)2(1 + 1
2g2

(
K2
φ − (∂φ)2) )]

−αλGBρGB
}
, (A10c)

∂⊥Γ̂i = −2 Ãij∂jα

+ 2α
1+b(x)

[
(1 + b(x))Γ̃ijkÃjk −

2
3 γ̃

ij∂jK

−
(

3+5b(x)
2χ

)
Ãij∂jχ

]
+γ̃kl∂k∂lβi + 1

3 γ̃
ik∂k∂lβ

l

+ 2
3 Γ̂i(∂kβk)− Γ̂j∂jβi

+ 2
1+b(x) γ̃

ij

(
α∂jΘ− (1 + b(x)) Θ ∂jα

−
(

2+b(x)
3

)
αK Zj

)
−2ακ1γ̃

ijZj

+
(

2 b(x)
1+b(x)

)
α(ÃijZj −DjÃ

ij)

−
(

1
1+b(x)

)
αKφγ̃

ij∂jφ
(
1 + g2(K2

φ − (∂φ)2)
)

−
(

2 λGB

1+b(x)

)
α γ̃ijJGBj , (A10d)

∂⊥φ = −αKφ , (A10e)

where ∂⊥ = ∂t − βi∂i, (∂φ)2 ≡ γij(∂iφ)(∂jφ) and

ρGB = ΩM
2 −MklΩkl, (A11a)

JGBi = ΩiM
2 −MijΩj − 2

(
Ωj[iNj] − ΩjkD[iKj]k

)
,(A11b)

with

Mij = Rij + 1
χ

( 2
9 γ̃ijK

2 + 1
3KÃij − ÃikÃ

k
j

)
,(A12a)

Ni = D̃jÃ
j
i − 3

2χ Ã
j
i ∂jχ− 2

3∂iK, (A12b)

Ωi = f ′
(
∂iKφ − (∂jφ)Ãji − 1

3K∂iφ
)

(A12c)

+f ′′Kφ∂iφ,

Ωij = f ′ (DiDjφ−KφKij) + f ′′(∂iφ)∂jφ (A12d)

and

MTF
ij ≡Mij − 1

3γijM , (A13a)
ΩTF
ij ≡ Ωij − 1

3γijΩ , (A13b)

where M = γklMkl and Ω = γklΩkl.
The remaining variables satisfy the following system of

6



coupled partial differential equations:Xkl
ij Yij 0

Xkl
K YK 0

Xkl
Kφ

YKφ I

∂tÃkl∂tK
∂tKφ

 =

 ZÃij
ZK

ZKφ

 , (A14)

where the elements of the matrix are defined as follows,

Xkl
ij = γki γ

l
j

(
1− λGB

3 Ω
)

+ 2λGB
(
γk(iΩ

TF,l
j)

−γijΩ
TF,kl

3 − λGBf ′2MTF
ij MTF,kl

)
,(A15a)

Xkl
Kφ

= λGB

2χ f ′MTF,kl, (A15b)

Yij = λGB

3 χ
(
−ΩTF

ij + λGBf ′2MMTF
ij

)
, (A15c)

YK = 1 + λGB

3

(
−Ω + λGB

4 f ′2M2
)
, (A15d)

YKφ = −λ
GB

12 f ′M, (A15e)

I = 1 + g2(3K2
φ − (∂φ)2) , (A15f)

while the terms on the r.h.s. are

ZÃij = χ
[
−DiDjα+ α

(
Rij + 2D(iZj)

− 1
2 (Diφ)Djφ

(
1 + g2

(
K2
φ − (Diφ)2) )) ]TF

+α
[
Ãij(K − 2Θ)− 2ÃilÃlj

]
+βk∂kÃij + 2 Ãk(i∂j)β

k − 2
3 Ãij(∂kβ

k)
+λGB χ S̃GBij , (A16a)

ZK = −DiDiα+
(

1
1+b(x)

)
α
[
R+ 2DiZ

i +K(K − 2Θ)

+b(x)
( 1

4R+ 2DiZ
i + 3

4 ÃijÃ
ij + 1

2K
2 − 2ΘK

)]
+βi∂iK −

(
3κ1

2(1+b(x))

) (
2 + κ2(2 + b(x))

)
αΘ

−
(

1
2(1+b(x))

)
α
[
(∂φ)2 + 1

4b(x)
(
(∂φ)2 − 3K2

φ

)]
+αg2

b(x)− 2
16(1 + b(x))

(
K2
φ − (∂φ)2) ((∂φ)2 + 3K2

φ

)
+λGB

[
SGBK +

(
3 b(x)

2(1+b(x))

)
αρGB

]
, (A16b)

ZKφ = α
(
−DiDiφ+KKφ

)(
1 + g2

(
K2
φ − (∂φ)2) )

+βi∂iKφ

(
1 + g2

(
3K2

φ − (∂φ)2) )
−(Diφ)

[
Diα

(
1 + g2

(
3K2

φ − (∂φ)2) )
+2αg2Kφ

(
2DiKφ −Djφ

Ãij
χ
− K

3 Diφ

)]
+2αg2(Diφ)(Djφ)DiDjφ− λGB

4 f ′ SGBKφ , (A16c)

where

S̃GBij = 1
3
(
ΩTFij − λGBf ′2MMTF

ij

)
×
[
− βi∂iK +DiD

iα− α
(
ÃklÃ

kl + 1
3 K

2) ]
+αMTF

ij

[
Ω + f ′′(K2

φ − (∂φ)2)− λGBf ′2H
]

+ 1
3 Ω
[
DiDjα+ 1

χ

(
α ÃimÃ

m
j − θ̂ij

)]TF

−2 ΩTF,k
(i

[
Dj)Dkα+ 1

χ

(
α Ãj)mÃ

m
k − θ̂j)k

)]

+ 2
3 ΩTF

ij

(
DkD

kα− α ÃklÃkl
)
− α

[
N(iΩj)

]TF

+2
( 1

3 γij ΩTF,kl + λGBf ′2MTF
ij MTF,kl)

×
[
DkDlα+ 1

χ

(
α ÃkmÃ

m
l − θ̂kl

)]
+α

[
2
(
DkAij −D(iAj)k

)
Ωk

+γij (DkAkl) Ωl − Ω(iD
kAj)k

]
, (A17a)

SGBK = 1
3

(
Ω− λGB

4 f ′2M2
)

×
[
−βi∂iK +DiD

iα− α
(
ÃijÃ

ij + 1
3 K

2)]
+αM

(
1
4 f
′′(K2

φ − (∂φ)2)− λGB

4 f ′2H + 1
3 Ω
)

−α
(
ΩiNi + 1

2 ΩTF,ijMTF
ij

)
− 2αρGB

− 1
2
(
ΩTF,kl − λGBf ′2MMTF,kl)
×

(
DkDlα+ α

χ ÃkmÃ
m
l −

θ̂kl
χ

)
, (A17b)

SGBKφ = − 4
3 M

[
−βi∂iK +DiD

iα− α
(
ÃijÃ

ij + 1
3 K

2)]
+8MTF,kl

[
DkDlα+ 1

χ

(
α ÃkjÃ

j
l − θ̂kl

)]
−4αH , (A17c)

where we have used θ̂kl = LβÃkl+ 2
3
(
αK − ∂iβi

)
Ãkl with

LβÃij = βk∂kÃij + 2Ãk(i∂j)β
k, and

H =− 4
3DiK

(
N i + DiK

3

)
+ 2DiAjk

(
DiAjk −DjAik

)
.

(A18)

Appendix B: Principal part of the Einstein-scalar
sector

In this section we write down the principal part of the
Einstein-scalar field theory in the modified CCZ4 formu-
lation. Defining ξ̌0 = ξ0 − βiξi, we have:

iξ̌0 ˆ̃γij = 2iγ̃k(iξj)β̂
k − 2α ˆ̃Aij −

2i
3 γ̃ijξkβ̂

k , (B1a)

iξ̌0χ̂ = 2
3χ
(
αK̂ − iξkβ̂k

)
, (B1b)

iξ̌0φ̂ = −αK̂φ , (B1c)

iξ̌0K̂ = α̂+ 3b(x)α
4(1 + b(x))

(
ξlξk ˆ̃γkl
χ

− γ̃
jk ˆ̃γjk

2

)
+ iαχξi

ˆ̂Γi −
(

2
χ
χ̂

− γ̃
ij ˆ̃γij
2

)
α(4 + b(x))
4(1 + b(x)) , (B1d)

iξ̌0K̂φ = −αφ̂ , (B1e)

iξ̌0Θ̂ = − α

2(1 + b(x))

(
2
χ
χ̂− γ̃ij ˆ̃γij

2

)
+ iαχξi

ˆ̂Γi

2

+ b(x)α
2(1 + b(x))

(
ξlξk ˆ̃γkl
χ

− γ̃jk ˆ̃γjk
2

)
, (B1f)

iξ̌0
ˆ̃Aij =

(
ξiξj −

1
3
γ̃ij
χ

)(
χα̂− α

2 χ̂
)
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FIG. 3. Top: Differences of across resolutions of the phase
difference between the two polarizations of the (`,m) = (2, 2)
mode of the strain. Bottom: Same as in the panel above
but now the difference between the high and the medium
resolution runs has been rescaled by the convergence factor
Qn ≡ hnLR−h

n
MR

hn
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−hn
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order convergence.

+iαχ
(
γ̃k(iξj)

ˆ̂Γk − γ̃ijξk
ˆ̂Γk

3

)

+1
2α
(

ˆ̃γij −
γ̃ij γ̃

kl ˆ̃γkl
3

)
, (B1g)

iξ̌0
ˆ̂Γi = iα

χ(1 + b(x))

(
−4

3ξ
iK̂ − 2χb(x)ξj ˆ̃Aij

+2ξiΘ̂
)
− 1
χ

(
β̂i + 1

3ξ
iξlβ̂

l

)
, (B1h)

iξ̌0α̂ = − 2α
1 + a(x) (K̂ − 2Θ̂) , (B1i)

iξ̌0β̂
i = 3

4(1 + a(x))
ˆ̂Γi − ia(x)

1 + a(x)αξ
iα̂ , (B1j)

Comparing with (10), one can identify the non-vanishing
components of M0(ξk) from the r.h.s. of (B1).

Appendix C: Convergence

In this section we present the convergence tests for
the phase difference between the two polarizations of the
(2, 2) mode of the strain, since this is a rather stan-
dard test. More thorough tests will be presented in [45].
To carry out the tests, we have considered the exam-
ple of a binary black holes merger in the 4∂ST theory
presented in the main text with the coupling constants
λGB/M2 = 0.05 and g2/M

2 = 1 respectively. Therefore,
this example is not in the weakly coupled regime and
hence showing convergence in this case is non-trivial.

We consider three runs on a computational domain
of fixed size ∆ = 512M and three different resolutions
on the coarsest level with grid spacings hLR = ∆/96,
hMR = ∆/128 and hHR = ∆/160 respectively. For each
of these three runs, we added the same number of refine-
ment levels, namely 8 (so the total number of levels is
9). The results presented in the main text were obtained
with the medium resolution.

In Fig. 3 we show the differences between resolutions
the phase difference between the two polarizations of the
(`,m) = (2, 2) mode of the strain. This figure shows that
during the inspiral and merger phases of the binary, the
convergence order is around four and it increases to six
after the merger, which is consistent with the order of
the finite difference stencils used. This mild overconver-
gence that GRChombo exhibits in the phase was already ob-
served in the detailed studies that [64] carried out. The
results of convergence analysis presented in this section
indicate that our simulations are stable and in the con-
vergent regime.
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