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We study black hole binary mergers in certain cubic Horndeski theories of gravity, treating them
fully non-linearly. In the regime of validity of effective field theory, the mismatch of the gravitational
wave strain between Horndeski and general relativity (coupled to a scalar field) can be as large as
10 − 13% in the Advanced LIGO mass range. The initial data and coupling constants are chosen
such the theory remains in the weakly coupled regime throughout the evolution. In all cases that
we have explored, we observe that the waveform in the Horndeski theory is shifted by an amount
much larger than the smallness parameter that controls the initial data. This effect is generic and
may be present in other theories of gravity involving higher derivatives.

I. INTRODUCTION

Detection of gravitational waves produced in stellar
mass black hole binary mergers have revolutionised both
the experimental and theoretical studies of gravity. On
the one hand, the direct detection of gravitational waves
allows for the possibility to perform new tests of general
relativity (GR) in the strong field regime1 and, perhaps,
observe deviations from the established theory. To do so,
one needs to be able to compute theoretical waveforms
from black hole binary mergers in alternative theories of
gravity, see e.g., [1]. This necessity has prompted a lot
of activity in recent years to study dynamics of black
holes in such theories. On the other hand, the current
experimental data suggests that the potential deviations
from GR are small. Whilst it is unlikely that the present
generation of gravitational wave observatories can detect
such deviations, the future third generation of detectors
and/or the space based detectors will provide more data
and with higher precision. Therefore, it is not impossible
that even small deviations from GR can be detected in
the future. However, there is a lack of full gravitational
waveforms in alternative theories of gravity; this implies
some deviations from GR may be undetected.

To theoretically compute waveforms produced in the
strong field regime one needs to work with a theory that
has a well-posed initial value problem. This is not an is-
sue if the corrections to GR are treated perturbatively. In
fact, in recent years, significant progress has been made
in studies of the strong field dynamics of certain alterna-
tive theories of interest using this approach [2–8]. How-
ever, it is well-known that perturbation theory may break
down over sufficiently long times due to secular effects.2

In addition, perturbation theory may miss certain non-
perturbative effects which, even if very small, may be
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1 In this article, by the ‘strong field regime’ we mean the regime

in which the non-linearities of the theory are important.
2 There are recent interesting attempts to re-sum the perturbative

series and hence alleviate these secular effects [9].

detectable over sufficiently many orbits of a binary, as
future generations of gravitational wave detectors expect
to be able to observe. Therefore, it is of interest to treat
alternative theories of gravity fully non-linearly and un-
cover some of their (perhaps) unique physical effects that
may break certain degeneracies.

In this article, when we discuss alternative theories of
gravity, we refer to the ‘strongly coupled regime’ of the
theory as the regime in which the new terms in the equa-
tions of motion that modify GR are comparable (or even
larger) to the original (two-derivative) terms. Conversely,
by the ‘weakly coupled regime’ we will mean the regime
of the theory in which the modifications to the GR equa-
tions of motion are small. This is compatible with still
being in the strong field regime of gravity. It is in the
weakly coupled regime that alternative theories of gravity
make sense as low energy effective field theories (EFTs).

Up until recently, only the so-called scalar-tensor and
the scalar-vector-tensor theories of gravity had been stud-
ied fully non-linearly [10–13]. The reason is that for this
class of theories, it is straightforward to find a well-posed
formulation. For other, more general, classes of theories
involving higher derivatives and yet second order equa-
tions of motion, such as Horndeski or Lovelock theories,
finding a suitable well-posed formulation turns out to
be far more difficult. In fact, it has been shown that
weak hyperbolicity can fail in Lovelock [14] or Horndeski
[15–21] theories if the spacetime curvature and/or the
derivatives of the scalar field become too large, i.e., in
the strongly coupled regime. In a recent breakthrough,
[22, 23] showed that these theories can be strongly hy-
perbolic in certain modified generalised harmonic coordi-
nates in the weakly coupled regime, i.e., when the devia-
tions from GR are small. These theoretical developments
have led to the first studies of the fully non-linear dynam-
ics of black holes in a particular subset of these theories,
namely scalar Einstein-Gauss-Bonnet theory [24, 25].

A more general approach to find well-posed formula-
tions of general alternative theories of gravity has been
proposed by [26, 27]. This proposal is inspired by the
Müller-Israel-Stewart (MIS) formulation of relativistic
viscous hydrodynamics [28–31], and in principle can work
even for theories with higher-than-second order equations
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of motion, as recently shown in [32] for a certain eight-
derivative theory of gravity and in [33, 34] for scalar ten-
sor theories of gravity, albeit with two derivative equa-
tions of motion. Therefore, given these recent theoretical
developments, it is the right time to start probing the
non-linear regime of alternative theories of gravity and
infer predictions for black hole binary mergers.

Building on our previous work [21], in this paper we
study black hole binary mergers in cubic Horndeski the-
ories. Horndeski theories are the most general scalar-
tensor theories of gravity with second order equations of
motion arising from a diffeomorphism invariant action in
four spacetime dimensions [35, 36]. Letting φ be a real
scalar field, then the general action for the Horndeski
theories is given by

S =
1

16πG

∫
dx4
√−g (L1 + L2 + L3 + L4 + L5) , (1)

with

L1 = R+X − V (φ) ,

L2 = G2(φ,X) ,

L3 = G3(φ,X)�φ ,

L4 = G4(φ,X)R (2)

+ ∂XG4(φ,X)
[

(�φ)
2 − (∇µ∇νφ) (∇µ∇νφ)

]
,

L5 = G5(φ,X)Gµν∇µ∇νφ

− 1

6
∂XG5(φ,X)

[
(�φ)

2 − 3�φ (∇µ∇νφ) (∇µ∇νφ)

+ 2 (∇µ∇νφ) (∇ν∇ρφ) (∇ρ∇µφ)
]
,

where R and Gµν are the Ricci scalar and the Einstein
tensor respectively constructed from the spacetime met-
ric gµν , X := − 1

2 (∂φ)2 and V (φ) is an arbitrary potential
for the scalar field, which may include a mass term. Here
Gi(φ,X), i = 2, . . . , 5 are arbitrary functions of their ar-
guments. In this notation, L1 is the standard Lagrangian
corresponding to GR coupled to a scalar field with po-
tential V (φ), and Li, i = 2, . . . , 5, can be interpreted as
higher derivative corrections to GR in the matter sector,
in this case comprised solely by a scalar field φ. The cu-
bic Horndeski theories are given by setting G4 = G5 = 0
in (1). The reason why we consider these theories in
the present paper and in our previous work [21] is be-
cause these theories are known to be well-posed in the
standard gauges used in numerical GR [37]. As we pre-
viously mentioned, the general case has also been shown
be well-posed in [22, 23], but in a modified version of the
generalised harmonic coordinates. While here we only
consider the cubic case for simplicity and convenience,
one may expect that some of our conclusions hold for
more general Horndeski theories.

In our previous paper [21] we studied gravitational col-
lapse of a massless scalar in spherical symmetry in certain

cubic Horndeski theories3 given by the choices

G2(φ,X) = g2X
2, (3)

G3(φ,X) = g3X, (4)

where g2 and g3 are arbitrary dimensionful coupling con-
stants that we can tune. This particular choice of G2

is well-motivated by EFT [38], while this choice of G3

is a matter of simplicity and convenience. Both choices
have been extensively considered in the literature (e.g.
[39]). One of the main results of [21] was to identify the
region in the space of initial conditions and couplings
such that the solution in the domain of dependence of
the initial data surface remained in the weakly coupled
regime of the theory on and outside black hole horizons
if any are present, see Section II for more details. This
is relevant in the context of EFT to justify that one can
consistently keep only the leading order terms beyond
GR, i.e., Horndeski, and neglect the otherwise (presum-
ably) infinite number of higher derivative corrections. At
the same time, it is consistent to treat the theory fully
non-linearly, as we do here.

In the present paper we consider the same theories as
in [21], namely (3)–(4). For the initial data, we choose
two boosted lumps of scalar field, with amplitudes chosen
so that they quickly collapse into black holes, thus form-
ing a black hole binary. Whilst most of the scalar field
is absorbed by the black holes during the initial collapse
stage, a scalar cloud remains in their vicinity throughout
the lifetime of the binary. This scalar cloud can interact
with itself and with the black holes and, over sufficiently
long times, give rise to interesting effects. Furthermore,
since spacetime curvature can source the scalar field via
the Einstein equations, it is conceivable that when the
spacetime curvatures are large, i.e., in the merger phase
of a binary, one can observe sizeable deviations from GR.
We mostly consider massive scalar fields and we restrict
ourselves to a choice of potential V (φ) = 1

2m
2φ, where m

is the mass of the scalar field. The reason is that the cor-
responding scalar cloud can remain in the vicinity of the
black holes for longer and hence there is a greater chance
of producing larger deviations from GR. The initial sep-
arations and velocities of the scalar lumps are tuned so
that the black holes that form describe an eccentric bi-
nary that merges in 5 orbits. As we shall see in Section
III, eccentric binaries seem to be particularly well-suited
to detect small deviations from GR since the system en-
ters the strong field regime in every close encounter of
the binary and not only in the merger phase. It is not
clear if circular binaries would also exhibit a build up
of the deviations from GR during the inspiral phase and
not only in the merger phase. If they do, then one should
expect an even larger deviations from GR. We leave this
interesting problem for future work.

3 Whilst in this paper the initial data was chosen to be spherically
symmetric, our code did not assume spherical symmetry.
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Finally, we choose the coupling constants g2 and g3
such that on the initial data surface, the solution lies
well inside the weakly coupled regime and we monitor
that the solution remains in this regime throughout the
evolution; this is necessary to ensure the consistency of
the truncated EFT.

Note that for the cubic Horndeski theories, the natu-
ral frame to consider is the Einstein frame. This would
not be the case had we considered more general Horn-
deski theories such as L4 [40]. On top of this, since mas-
sive scalar fields cannot propagate to the wave-zone, the
waveforms presented in Section III would look the same
in the Einstein and Jordan frames respectively.

The rest of the paper is organised as follows: In Sec-
tion II we describe our methods, numerical techniques
and construction of suitable initial data. Section III con-
tains the main results of the paper. In Section III A, we
present the waveforms computed in various cubic Horn-
deski theories and we compare them to the waveforms
obtained in GR coupled to a scalar field. In Section III B
we discuss the properties of the scalar cloud surround-
ing the black holes and in Section III C we show that in
our simulations, the weak coupling conditions are satis-
fied throughout the evolution of the binaries. In Section
III D we analyse the mismatch between GR and Horn-
deski. In Section IV we summarise the main results of
the paper and we discuss future directions for research.
The convergence tests are presented in Appendix A.

We adopt the following notation: Greek letters
(µ, ν, ρ, . . . ) to denote full spacetime indices and Latin
letters (i, j, k, . . . ) for purely spatial indices. We adopt
the mostly plus metric signature and G = c = 1. Mass
scales with respect to the ADM mass of the spacetime.

II. METHODS

A. Equations of motion

The equations of motion for the theories that we con-
sider in this article are given by equations (2.2)− (2.3) in
our previous paper [21]. In our numerical implementa-
tion, we write these equations in the usual 3+1 conformal
decomposition form and use the CCZ4 formulation of the
Einstein equations [41, 42] (see also [43]). We use the re-
placement κ1 → κ1/α and fix the constraint damping
parameters to κ1 = 0.1, κ2 = 0, κ3 = 1. The matter con-
tribution to the Einstein equations as well as the scalar
field equations of motion written in the 3+1 form can be
found in Appendix A of [21].

B. Initial Data

For initial data, we consider the superposition of two
boosted equal scalar field bubbles. Each individual scalar
bubble is spherically symmetric and has some in-going
momentum, which prompts a quick collapse into a black

hole without any outgoing scalar wave while leaving some
leftover dynamical scalar hair surrounding the black hole.
Whilst the individual scalar bubbles satisfy the Hamil-
tonian and momentum constraints, the superposition of
the two does not; however, we place them sufficiently far
apart so that the initial constraint violations due super-
posing the two scalar bubbles are sufficiently small. Fur-
ther details and explicit form of the constraint satisfying
scalar bubble profiles used can be found in [21].

For binary systems, we boost the individual profiles
with a Galilean boost with velocity ~v. This can be im-
plemented in the scalar momentum by adding to it (with
the appropriate sign) the Galilean boost:

Π(t, ~x)
∣∣
t=0

= Πoriginal(t, ~x)
∣∣
t=0
− 1

α~v · ~∇φ(t, ~x)
∣∣
t=0

, (5)

where α is the lapse function. Such a boost is valid for
small velocities and avoids the obstacle of having to eval-
uate the initial data at different times for distinct points,
as one would need to do to implement a proper Lorentz
boost. Doing the latter would be unfeasible for non-static
initial data.

To superpose the initial data of two scalar bubbles, A
and B, boosted in opposite directions, we use:

ψ = ψA + ψB − 1 ,

Kij = γm(i

(
KA
j)nγ

nm
A +KB

j)nγ
nm
B

)
,

φ = φA + φB ,

Π = ΠA + ΠB ,

(6)

where ψ is the conformal factor associated with the in-
duced metric on the initial data surface, γij , so that
γij = ψ4γ̃ij and γ̃ij is flat. The initial data correspond-
ing to each of the individual scalar bubbles is conformally
flat, so γ̃ij = γ̃Aij = γ̃Bij = δij , and satisfies KA = KB = 0.
For K = 0 and a conformally flat spatial metric, the con-
dition for Kij reduces to Ãij = ÃAij+Ã

B
ij , where Ãij is the

conformal traceless part of the extrinsic curvature given
by Ãij = ψ−4Kij . In our simulations, we initialise the
lapse and shift vector as α = 1 and βi = 0.

Motivated by the similarity with previous studies of
binary black holes mergers in scalar field environments,
we also tried an alternative way of constructing initial
data by superposing scalar bubbles as suggested in [44].
The construction of [44] produces initial data which is
physically different from (6) but, for the large separations
between the initial scalar bubbles as in our paper, the
amounts of initial constraint violations are comparable.
Therefore, henceforth we will only discuss the evolution
of the binaries constructed using (6).

Using the notation of [21], the initial scalar bubbles

have parameters (A, r0, ω) = (0.21, 5,
√

1
2 ) and a scalar

mass parameter m = 0.5. For an isolated scalar bubble,
this configuration has an ADM mass of approximately
M ≈ 0.53. The mass term in the scalar potential ac-
counts for about 10% of the total ADM mass, while the
contribution of the Horndeski terms for a coupling of
g2 = 0.02 or g3 = 0.05 is of order O(10−5).
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The binaries with the eccentric orbits presented in this
paper are obtained by choosing a “large” initial separa-
tion4 between the centres of the scalar bubbles of D = 40
and an individual scalar boost velocity of |~v| = 0.17; af-
ter the initial gravitational collapse, the resulting black
holes have an initial velocity of 0.042. We calculate nu-
merically that the superposed data has a total ADM mass
of M = 1.0346 ± 0.0001. The values quoted above are
in code units, and the mass parameter m and couplings
g2, g3 will be referred without units henceforth (e.g.,
g2 = 0.02 as opposed to g2 ∼ 0.0214M−2 after taking
into account that the total mass is M = 1.0346).

C. Weak coupling conditions

In order for the Horndeski theories to be valid EFTs,
the basic requirement is that corrections to the two-
derivative GR terms in the equations of motion on and
outside black hole horizons (if there are any in the space-
time) should be small at all times. Inside black holes
both GR and the Horndeski theories break down but
classically this region is inaccessible to external observers.
Therefore, in practice, we only monitor the weak coupling
conditions (WCCs) on and outside black hole horizons.5

For the cases considered in this paper, the WCCs
translate into the requirement [21]:

|g2 L−2| � 1 , |g3 L−2| � 1 , (7)

where L is the typical length scale estimate for the sys-
tem. This can be computed as

L−1 = max{|Rαβµν |
1
2 , |∇µφ| , |∇µ∇νφ|

1
2 ,m} , (8)

where Rαβµν is the spacetime Riemann tensor and m is
the mass parameter in the scalar field potential.6 We
consider values for the couplings g2 and g3 based on the
valid values of η2 and η3 displayed in Fig. 1 and 10 of our
previous paper [21]. In practice, for massive scalar fields,
the scalar clouds that form near black holes tend to be
more extended, have lower densities and smaller gradi-
ents than in the massless case, thus allowing for larger
couplings without violating the WCCs that may lead to
a loss of the hyperbolicity of the scalar equations.

4 This “large” initial separation makes a circular binary unfeasible
with our computational resources, but it helps to minimise the
errors from the initial data superposition.

5 While the weak cosmic censorship conjecture [45, 46] remains
unproven in the astrophysical settings considered in this paper,
we will assume that in holds. We do not find any evidence against
it in our setting.

6 It turns out that for our choice of couplings and scalar mass
parameter m, near the black holes the contribution of m to L is
always smaller than the metric and scalar curvature terms.

D. Excision

To control the gradients in the interior of black holes
and avoid issues such that a potential loss of hyperbolic-
ity of the scalar equations there, we implement the same
form of excision as in [21]. More precisely, inside black
holes we modify the equations of motion by smoothly
switching off the Horndeski terms (see Appendix C of
[21] for the details of our implementation). This proce-
dure seems justified since the EFT is no longer valid in
these regions of the spacetime. We only implement this
form of excision during the initial stages of the evolution,
while t . 40M , namely during gravitational collapse and
gauge re-adjustment phases. Once the black hole has sta-
bilised, the matter density at its centre is very small and
no loss of hyperbolicity of the scalar equations occurs.
Note that as long as the weak coupling conditions hold,
all horizons should be close to the usual metric horizon
and therefore excising a small enough region well-inside
the metric horizon should not affect the physics in the
domain of outer communications.

This procedure of excision is not necessary with the
resolutions that we used in this paper if the coupling
is sufficiently small. However, for arbitrarily high reso-
lutions, the scalar field gradients near the centre of the
black holes would grow unbounded and one would expect
the code to break down.

E. Gravitational wave extraction

We extract gravitational waves at finite radii by pro-
jecting the Weyl scalar Ψ4 onto the spin-weighted spheri-
cal harmonics on multiple spheres of fixed coordinate ra-
dius in the standard way, obtaining the multipoles ψ`m.
Data on each integration sphere is obtained from the
finest available level in the numerical grid at a given
extraction radius, using fourth-order Lagrange interpola-
tion. We calculate the Weyl scalar Ψ4 using the Newman-
Penrose formalism [47] and the electric and magnetic
parts of the Weyl tensor, Eij and Bij [48]. The latter
can be computed from our evolution variables using the
following expressions adapted to the 3+1 CCZ4 formula-
tion of the Einstein equations:

Eij =
[
Rij +D(iΘj) + (K −Θ)Kij −KimK

m
j

− κ
4Sij

]TF
, (9)

Bij = εmn(iD
mK

n
j) , (10)

where Rij is the 3 dimensional Ricci tensor, Kij the ex-
trinsic curvature, Θ := −nµZµ is the projection of the
CCZ4 vector onto the timelike unit normal vector nµ,
Sij := γ µ

i γ
ν
j Tµν the spatial projection of the stress-

energy tensor, γµν := gµν+nµnν is the induced metric on
the spatial hypersurfaces, εµνρ = nσεσµνρ is the volume
form on such hypersurfaces and [·]TF denotes the trace-
free part of the expression in square brackets. Note that



5

equations (9)-(10) guarantee Eij and Bij are automati-
cally trace-free and symmetric, unlike usual 3+1 ADM
expressions [48], which require that the constraints are
satisfied.

F. Gravitational strain

The natural observable measured in detectors and used
when constructing templates is the gravitational strain.
The strain of a gravitational wave, h, can be obtained
from the Ψ4 Weyl scalar using the transformation [49]:

Ψ4 = −ḧ = −ḧ+ + iḧ× , (11)

where the dot ˙ denotes a time derivative, and h+ and h×

are the usual plus and cross polarisations of the wave.
This gives the strain multipoles ḧ+`m = −Re(ψ`m) and

ḧ×`m = Im(ψ`m), where ψ`m are the amplitudes of each
mode in the multipolar decomposition of the Weyl scalar
Ψ4. To avoid artefacts from finite length of the wave,
discrete sampling and noisy data, we perform the double
time integration in the frequency domain using a fixed
frequency filter [50], with a cutoff of 0.01M−1 for low
frequencies.7 We taper the signal in the time domain
with a Tukey window [51] of width ∼ 40M on each side8

and zero-pad to the nearest power of two. We further
zero-pad the waveform to increase the length by a factor
of eight before applying the fast Fourier transform [52], in
order to increase the frequency resolution of the discrete
Fourier transform and reduce the noise for low frequen-
cies introduced by the discretization. Removing the ini-
tial junk radiation of the inspiral from the time domain
did not result in any significant improvement. Finally,
the signal at null infinity can be obtained by extrapo-
lating the results at finite radii assuming a Taylor series
expansion in 1

r∗ [53], where r∗ = r + 2M log
∣∣ r
2M − 1

∣∣ is
the tortoise radius, after first aligning separate extraction
radii in retarded time, u = t− r∗.

G. Waveform mismatch

In order to estimate the difference between two wave-
forms, we compute the mismatch between the strain re-
sulting from each wave. First, given the strain of two
waves, h1(t) and h2(t), one can compute the overlap, O,

7 This choice affects the noise in the strain, but low frequencies
have negligible effects in the final computation of the mismatch.
Furthermore, adding a cutoff for the high frequencies resulted in
no improvement.

8 This choice reduces noise, but it does not affect the results in any
meaningful way, as the signal is essentially zero in this region.

using the frequency domain inner product [54–56]:

O(h1, h2) =
Re (〈h1, h2〉)√
〈h1, h1〉 〈h2, h2〉

, (12)

〈h1, h2〉 = 4

∫ fmax

fmin

h̃∗1(f)h̃2(f)

Sn(f)
df , (13)

where h̃(f) denotes the Fourier transform of the function
h(t), ∗ denotes complex conjugation, Sn(f) is the power
spectral density (PSD) of a detector’s strain noise as a
function of frequency f (e.g., updated Advanced LIGO
sensitivity design curve [57]), fmin and fmax is the lowest
and highest frequency cutoffs of the PSD of the detec-
tor or the frequency minimum/maximum imposed by the
timestep and duration of the simulation. Notice that for
h1 = h2, 〈h1, h2〉 is real.

Then, we compute the mismatch by maximising the
overlap over time and phase shifts of the second wave,

hδt,φ2 (t) = h2(t+ δt)eiφ:

mismatch = 1−max
δt,φ

O(h1, h
δt,φ
2 ) . (14)

Noticing that h̃δt,φ2 (f) = h̃2(f)eiφe2πiδt and

O(h1, h
δt,φ
2 ) =

Re
(
eiφe2πiδt 〈h1, h2〉

)√
〈h1, h1〉 〈h2, h2〉

, (15)

then maximising over phase shifts corresponds to simply
taking the absolute value of 〈h1, h2〉 as opposed to the
real part. Maximising over time shifts is more subtle be-
cause the discrete domain implies the Fourier transform
changes by more than a mere phase e2πiδt. Hence, we
perform the time shift maximisation numerically. To al-
low for continuous time shifts, we interpolate the data
h1,2(t) and re-sample appropriately after the time shift.
The number of points when re-sampling the time series
does not affect the final result. When comparing two
gravitational waves, the length of the time interval used
for the Fourier transform and the size of the frequency
domains used for integration are the same for all waves
(taking into account time shifts). All in all:

mismatch = 1−
max
δt

∣∣〈h1, hδt2 〉∣∣√
〈h1, h1〉 〈h2, h2〉

. (16)

H. Numerical scheme

The equations of motion are evolved with GRChombo
[49, 58, 59], using MPI, OpenMP and templated
SIMD/vector intrinsics to obtain a good performance
in the most common architectures. GRChombo uses the
Chombo adaptive mesh refinement libraries [60]. We use
a tagging criterion that triggers the regridding based
on second derivatives of both the scalar field and the
conformal factor. GRChombo implements the usual punc-
ture gauge for the evolution of the gauge variables and
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N = 3 Kreiss-Oliger (KO) dissipation, with fixed σ = 1
in all our simulations. As of boundary conditions, we use
Sommerfeld boundary conditions and take advantage of
the reflective/bitant symmetry of the binary problem to
evolve only half of the grid. Sixth order spatial sten-
cils are used in order to improve phase accuracy of the
binaries [61]. Time updates are still made with a fourth-
order Runge-Kutta scheme, which implies that the global
convergence order cannot be higher than four.9 For
the results presented in this paper, we have a Courant-
Friedrichs-Lewy factor of 1/4, a coarsest level resolution
of ∆x = 16

7 , with 8 additional refinement levels, and a

computational domain of size 10243.

III. RESULTS

In this section we present the results of our numeri-
cal simulations for the various Horndeski theories that
we have considered and we compare them to GR. To
carry out the comparison, we consider standard GR cou-
pled to a massive scalar field (with same mass parameter
m = 0.5 as in Horndeski). We comment on the massless
scalar field case in Section III B. We have also consid-
ered the evolution of a black hole binary in vacuum GR
with the same total ADM mass and initial velocities for
the black holes. In this case, the binary describes many
more orbits before merger, as expected, since no energy
is transferred to the scalar field. We will not comment
any further on this case since it is not relevant for the
kind of comparisons that we carry out.

We have constructed superposed initial data for GR
coupled to a massive scalar field and for Horndeski the-
ories. One could question whether different results arise
from small differences in the initial data. As discussed in
[21], the effect of the Horndeski terms in the initial data is

proportional to g2A
2

r20
and g3Aw

2

r40
depending on the theory.

For the values of the couplings g2 and g3 that we consider,
this results in a difference of order O(10−5) between the
Horndeski and the GR counterpart. To confirm that the
small Horndeski corrections in the initial data do not af-
fect the subsequent evolution, we evolved the equations
of motion of the Horndeski theories using initial data con-
structed for GR. Clearly this procedure introduces extra
initial constraint violations proportional to the Horndeski
couplings. However, our results from the Horndeski theo-
ries initialised with GR initial data and those results ob-
tained using proper Horndeski initial data do not exhibit
any significant or quantitative difference. Therefore, we
conclude that the differences observed between GR and
Horndeski theories are caused by the evolution with dis-
tinct evolution equations and not by the extremely small

9 Notice that this allows us to use the usual KO dissipation stencils
that are commonly implemented with fourth order finite differ-
ences.

−10 0 10
x/M

−20

−10

0

10

20

y
/M

BH1,Horndeski

BH1,GR

BH2,GR

FIG. 1. Orbits of the two black holes in Horndeski for g2 =
0.02 and GR. For clarity, in the Horndeski case we only show
one of the black holes.

differences in the initial data. Henceforth, for the Horn-
deski theories we will only present results obtained with
Horndeski initial data.

In Fig. 1 we display the trajectories of the punctures
on the orbital plane for GR and for a Horndeski theory
with g2 = 0.02. This figure shows that after the first
close encounter of the binary, the trajectories that the
black holes follow in GR and in Horndeski are visibly
different. Interestingly, the black holes seem to recombine
to the same trajectory in the final stages of binary. In
the following subsections we will quantify the differences
in other observables such as the gravitational strain.

A. Waveform strain

In this subsection we compare the waveform strain for
eccentric binaries in GR and in different Horndeski the-
ories. For the latter, we consider both the G2 and the
G3 theories for different values and signs of the coupling
constants. In Figs. 2 and 3 we present the (`,m) = (2, 2)
mode of the plus polarisation of the strain, h+, extrapo-
lated to null infinity using 6 radii between 50−150M , for
theG2 andG3 theories respectively. The strain for higher
(`,m) modes exhibits qualitatively similar features.
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FIG. 2. Comparison of gravitational wave between Horndeski theory with g2 = 0.02, g2 = 0.04 and GR in retarded time,
u = t − r∗, where r∗ is the tortoise radius. Displaying the (`,m) = (2, 2) mode of the plus polarisation of the strain, h+

22,
extrapolated to null infinity. There is a visible misalignment between GR and Horndeski that builds up over time, becoming
larger during the merger phase.

Referring to Figs. 2 and 3, the two peaks that can be
seen at t ∼ 400M and t ∼ 850M correspond to the bursts
of radiation emitted during the first two close encounters
of the eccentric binary10 before the final merger phase.
The latter starts at around t ∼ 1100M and ends by t ∼
1200M , depending on the theory and the value and sign
of the coupling constants. As for the final state, since
the class of theories that we consider do not admit hairy
black holes [62, 63], the end state of the evolution is a
Kerr black hole surrounded by a scalar cloud. For the
runs shown in Figs. 2 and 3, the estimated parameters
of the final black holes are summarised in Table I. Note
that any junk radiation caused by the initial constraint
violations or choice of initial data is very small on the
scale of these figures, but still visible in the first ∼ 50M .

As Figs. 2 and 3 show, the waveforms obtained in GR
and in the various Horndeski theories that we considered,
coincide during the initial stages of the binary, but a clear
misalignment builds up over time, starting from the sec-
ond close encounter of the binary and becoming more

10 It may be useful for the reader to match the gravitational wave
signal in these figures with the visual animation of one of our sim-
ulations: https://www.youtube.com/watch?v=uOed4AG1ulg.

TABLE I. Parameters of the final state Kerr black hole for
each coupling g2 and g3. Values estimated from the final
apparent horizon and errors estimated from the differences
between medium and high resolutions.

Coupling Final Mass MF /M Spin Parameter a/M
GR 0.973± 0.001 0.676± 0.001

g2 = 0.005 0.973± 0.001 0.676± 0.001
g2 = 0.02 0.973± 0.001 0.675± 0.001
g2 = 0.04 0.973± 0.001 0.673± 0.001
g3 = 0.05 0.975± 0.001 0.680± 0.001
g3 = −0.03 0.972± 0.001 0.672± 0.001

pronounced in the merger phase. This misalignment is
much larger than the smallness parameter controlling the
weak coupling conditions of the initial data. In subsec-
tion III C we will provide evidence showing that a suitable
local weak coupling condition remains small during the
whole evolution of the binary and hence, in our setting,
the Horndeski theories should be valid (and predictive)
classical EFTs. The large misalignment that we observe
in Figs. 2 and 3 is a cumulative effect arising from the lo-
cally small differences between GR and Horndeski, and it
gets enhanced whenever the system enters the strong field
regime, which happens in each close encounter of the ec-
centric binary and in the merger phase. This is expected

https://www.youtube.com/watch?v=uOed4AG1ulg
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FIG. 3. Comparison of gravitational wave between GR and Horndeski theories with g3 = 0.05 and g3 = −0.03, in retarded
time, u = t − r∗, with r∗ the tortoise radius. Displaying the (`,m) = (2, 2) mode of the plus polarisation of the strain, h+

22,
extrapolated to null infinity. As in the G2 theory, Fig. 2, we observe a misalignment that builds up over time.

since the corrections to GR are sourced by spacetime and
scalar curvature and those become more important pre-
cisely in the strong field regime. Therefore, eccentric bi-
naries seem to be useful to potentially detect deviations
from GR sourced by curvature through the built up of
small cumulative effects and their enhancement in the
close encounters. It is conceivable that linearising the
Horndeski theories around GR may allow one to com-
pute some of the misalignment (at least for some small
enough couplings) during the merger phase since its du-
ration is relatively short and secular effects may not be an
issue. However, it seems unlikely that such an approach
would be able to capture the cumulative large deviations
that arise from successive close encounters of an eccen-
tric binary, such as in the examples considered here. The
relatively long times that we have evolved the binaries
require a full non-perturbative treatment of the theory
to avoid potential secular effects.

For the G2 theory (3), a positive g2 coupling induces
a delay of the waveform when compared to GR, whilst
a negative g2 gives rise to an advancement of the signal.
On the other hand, for the G3 theory (4) the effect is the
opposite: a positive g3 coupling leads to an advancement
of the signal while a negative g3 leads to a delay when
compare to the GR waveform. In general, the observed
misalignment between GR and Horndeski seems to be a
rather generic effect that does not depend on the specifics

of the theory. Of course, the details such as the amount
or the sign of the deviations will depend on the details
theory under consideration. Therefore, we are tempted
to conjecture that gravitational strain computed in gen-
eral Horndeski theories of gravity that do not admit equi-
librium hairy black holes but with dynamical long-lived
scalar clouds surrounding black holes will be misaligned
with respect of the GR signals. Finally we note that the
peak amplitude of the waveforms seems to be very simi-
lar across all theories and couplings. We will point out in
the Section IV how this misalignment may be potentially
detected in gravitational wave observations.

Note that the final state of GR and Horndeski simu-
lations for g2 ≤ 0.04 seems to have the same exact mass
and only tiny differences in spin (see Table I). This is
counter-intuitive given the differences that the gravita-
tional waveforms exhibit and it could be related to the
fact that the trajectories of the black holes in the two
theories visibly differ in the intermediate stages of the
binary, but coincide again near the merger phase (see
Fig. 1). The physical mechanisms behind this observa-
tion may be related to the frequency shifts analysed in
subsection III D. The fact that the initial and final state
coincide and yet the waveforms are different indicates
that, at least for equal mass non-spinning binaries, the
degeneracy between the class of Horndeski theories that
we have considered and GR is broken. This suggests that
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FIG. 4. Comparison of re-aligned h+
22 between Horndeski the-

ory with g2 = 0.02, g2 = 0.04 and GR. The waves were aligned
so the peak of the amplitude of the complex strain coincides.

the degeneracy between GR and Horndeski may also be
broken for unequal mass non-spinning configurations. It
would be interesting to study the effects of the intrinsic
spins in alternative theories of gravity.

When comparing the waveforms between different the-
ories, one might alternatively want to align the main
peaks. However, clearly the misalignment would not dis-
appear; it would simply be translated along the time axis.
This can be seen in Fig. 4, where the misalignment is now
seen at the early encounters of the inspiral. This shows
that the gradual phase shift is a physical effect that can-
not be ignored by a constant phase shift and does not
depend on how one does the comparison. For long lived
inspirals beyond the strong field regime simulated with
numerical relativity, the effect would be enhanced and the
misalignment would be present regardless of the time or
phase shift considered.

B. Scalar Cloud

In Fig. 5 we display a snapshot of a binary for the
G2 theory with g2 = 0.005 at a representative instant
of time before the merger. This figure shows that the
energy density of the scalar field (in blue) is localised in
the region near the black holes, being largest near the
horizons. It is in this regions where the spacetime and
scalar field curvatures are largest, even though the WCCs
remain small on and outside the black holes.

For the Horndeski theories that we considered, the ac-
cumulation of non-linear effects is possible due to the
presence of long lived scalar cloud surrounding the black
holes. This scalar cloud survives all the way up to and
well beyond the merger. This is due to the presence of a
mass term in the scalar potential, since it is well-known
(see e.g., [64–69]) that the effective potential that the
scalar field “sees” has a wall that makes it difficult for it
to escape to infinity. A scalar mass parameter of m = 0.5
is comparable to what has been seen to give rise to long
lived scalar clouds [69], though the effects observed in this

FIG. 5. Energy density (in blue) of the scalar field sur-
rounding the binary black holes for the Horndeski theory with
g2 = 0.005 at a representative instant of time during the in-
spiral phase. The apparent horizon of the black holes is shown
in orange. The region where the weak coupling conditions are
larger than one is depicted in brown. Clearly this region is
contained well inside the apparent horizon, as required.
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FIG. 6. Total energy of the scalar field Eφ and maximum
value of energy density ρ on the spacetime (excluding black
holes, by removing from the volume of integration the interior
of apparent horizons) for Horndeski with g2 = 0.005 and a
massive scalar field (in red), the same theory with a massless
field (in blue) and GR with a massive scalar field (in green).
A dashed black line is used to indicate the estimated merger
time for the Horndeski run with a massive scalar field.

paper did not require any fine tuning. We have also car-
ried out simulations of binaries with massless scalars and
the absence of a significant scalar cloud trivially removes
any long term effects of the scalar field on the evolution.

In Fig. 6 we display the evolution of the total energy
of the scalar field Eφ and the evolution of the maximum
of the energy density ρ for GR (green), for the G2 theory
with g2 = 0.005 (red) and for the same Horndeski theory
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but with a massless scalar field (blue). After the initial
gravitational collapse, most of the scalar field is absorbed
by the black holes, but in the massive scalar cases, a long
lived scalar cloud forms around the black holes. After the
first close encounter of the eccentric binary (t ∼ 400M),
the maximum energy density of the scalar cloud is of
order 10−5M−2 for the massive scalar cases (GR and
Horndeski), and it decreases very slowly with time. This
long lived cloud makes it possible for the scalar field to
interact with itself and with the geometry and give rise
to the build up of significant differences in the physical
observables such as the gravitational strain. The theories
that we considered do not admit stationary hairy black
holes [62, 63] so eventually the scalar field will partly
escape to (timelike) infinity and partly be absorbed by
the black hole, but the timescale for this to happen is
very long (much longer than our simulations).

On the other hand, in the massless case, Fig. 6 shows
that a much larger amount of scalar field is absorbed
by black holes during the collapse phase. Furthermore,
both the total energy of the scalar field and its energy
density show a pronounced dip at t ∼ 850M , namely in
the second close encounter of the binary, indicating that
any leftover amount of scalar field in the vicinity of the
black holes gets absorbed. Beyond this point, the energy
density of the scalar field is less than 10−10M−2 while
the total energy is of the order of 10−5M (corresponding
to scalar waves radiated to infinity), and both continue
to steadily decrease with time. By the time the merger
takes place the maximum energy density of the scalar
field is compatible with numerical error. Therefore, we
conclude that in the massless case, after the second close
encounter of the binary, there is basically no significant
amount of scalar field left in the neighbourhood of the
black holes to give rise to any sizeable effect, at least
for the duration of our simulations. As a consequence,
no noticeable differences between GR and Horndeski are
observed in the massless scalar field case.

Comparing Horndeski with GR in Fig. 6 shows that
local differences (in time) in the energy density between
GR and Horndeski for the massive scalar field are not
significant for most of the binary, including the two close
encounters; only during the merger phase one can see
some differences of order 10−5M−2. These results are ex-
pected if the weak coupling conditions are satisfied. Fur-
thermore, the fact that the energy density of the massive
scalar field around the black holes is small during the
highly dynamical stages of the binary is necessary but
not sufficient to ensure that the WCCs are satisfied.

C. Weak coupling conditions during the evolution

The results reported in subsection III A can only be
trusted as long as the Horndeski theories that we consider
are valid (truncated) EFTs. In this subsection we provide
evidence that for the initial data and couplings that we
considered in the paper, the local WCCs (7) are satisfied
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FIG. 7. L2 norm of the weak coupling conditions (7) inte-
grated over the apparent horizon and normalised by the cou-
pling constant g2 or g3. For the binary that we have evolved,
this shows that M2WCC/|g2| . 50 and M2WCC/|g3| . 20,
which in turn implies that |g2| . 0.02 and |g3| . 0.05 to guar-
antee that the WCC (7) is roughly less than one. The dashed
black line corresponds to the peak of the amplitude of the
strain for g2 = 0.02.

at all times, thus ensuring the predictivity of the EFTs.
In Fig. 7 we display the L2 norm of the WCCs (7)

integrated on the black holes’ apparent horizons, as a
function of time for an eccentric binary evolved with the
G2 theory with different values of the coupling constant
g2 and one value g3 coupling for the G3 theory. Exclud-
ing the interior of black holes, the apparent horizons are
where the WCCs have the largest values in the whole do-
main. This plot shows that the weak coupling condition
(7) remains approximately constant during the evolution,
except in the close encounters of the binary and the fi-
nal merger phase. The latter events correspond to the
peaks in Fig. 7 that can be seen at t ∼ 400M , t ∼ 850M
and t ∼ 1100M , when the system enters the strong field
regime. The constancy of (7) during the inspiral phase
is related to the fact the energy density of the scalar field
in the vicinity of the black hole remains approximately
constant during this phase. The fact that the WCCs ex-
hibits local maxima at the close encounters indicates that
in an eccentric binary, we probe the strong field regime
during various phases of the binary and not only near
and during the merger phase as in a circular binary. It is
interesting to see that when one normalises the WCCs (7)
by the coupling constant, the curves for the g2 couplings
collapse onto a single curve, except in regions where the
system is in the strong field regime. This indicates that
the WCC depends on the coupling constant in a trivial
way when the system is not in the strong field regime.

Fig. 7 shows that for our choice of initial data,
M2WCC/|g2| . 50 and M2WCC/|g3| . 20 at all times.
This implies that if we want the WCCs (7) to be roughly
less than one at all times, and hence guarantee that that
the Horndeski theory is a valid EFT throughout the evo-
lution, then one must choose |g2| . 0.02 or |g3| . 0.05.
For values larger than these, the WCCs become comfort-
ably larger than one at different (or all) stages of the
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binary. However, after the initial collapse stage, even for
large values of the coupling g2 well-beyond the regime of
validity of EFT (e.g. g2 = 0.1), the equations of motion
of the scalar field remain hyperbolic throughout the in-
spiral and merger phases as long as the scalar density is
small enough near the black holes.

When evaluating the WCCs (7) on the apparent hori-
zon to produce Fig. 7, one has to be careful as we are ac-
tually dealing with different trapped surfaces. Due to the
slicing condition used, each black hole has a trapped sur-
face that during merger shrinks to the puncture, while a
larger common apparent horizon forms, surrounding the
previous ones [70, 71]. This implies that if one is com-
puting the WCCs (7) on the trapped surfaces collapsing
to the punctures, it will result in unreasonably large val-
ues. To get around this gauge issue, we interpolate the
data for the WCC of the original black hole apparent
horizons just before merger with the data for the com-
mon apparent horizon just after it forms, excluding the
unphysically large values right at the merger. The de-
tails of how one does the interpolation and which data
points are excluded do not affect significantly the bounds
M2WCC/g2 . 50 and M2WCC/g3 . 20.

We close this subsection emphasising that our assess-
ment of the regime of validity of EFT is qualitative at
best and, up toO(1) factors, the unity value of the WCCs
is a mere order of magnitude; a more detailed study is
needed in order to precisely identify this regime for the
cases that we have considered. The conditions (7) are
only local; over time, the small effects accumulate giving
rise to large deviations in some non-local observables such
as the waveforms. In the context of complex scalar field
with a Mexican hat type of potential, in [72] is is proved
that, for sufficiently long times, the truncated EFT will
inevitably deviate from the UV theory. Therefore, one
has to be cautious when using a truncated EFT for very
long times compared to the UV mass scale, even if the
local weak coupling conditions hold (see also [73]).

D. Mismatch

In this subsection we discuss our results for the mis-
match between the GR and Horndeski waveforms. We fo-
cus on the G2 theory with g2 = 0.02 as an example of the
limiting coupling that still satisfies the WCCs. Hence,
the results for the mismatch presented should be under-
stood as upper bounds. The mismatch depends on the
coupling constants in the expected way, and the results
are qualitatively the same for the G3 theory.

In Fig. 8 we compare the frequencies of the real part of
h̃+22, the discrete Fourier transform of the (`,m) = (2, 2)
mode of the strain, extrapolated to null infinity. Inter-
estingly, this figure shows that in spite of both theories
having approximately the same amplitudes for each fre-
quency in the spectrum, the spectrum of the phase of
the complex-valued Fourier transform differs. In range
of medium frequencies, i.e., f ∼ 0.07 − 0.08M−1, GR
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FIG. 8. Real part of h̃+
22, the discrete Fourier transform of h+

22

for positive frequencies. Notice that for frequencies around
f ∼ 0.07M−1, Horndeski and GR align, but for lower and
higher frequencies they separate in phase in opposite direc-
tions. This effect cannot be mitigated by a constant time or
phase shifts of the waveform.
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FIG. 9. Mismatch for h+
22 between GR and Horndeski for

g2 = 0.02, as a function of the final black hole mass (in units
of solar masses, M�). As power spectral densities, we used the
updated Advanced LIGO sensitivity design curve (aLIGODe-
sign.txt in [57], which imposes fmin = 5Hz) and a flat noise
mismatches (Sn = 1). This allows us to estimate a range for
expected mismatches of 10− 13%.

and Horndeski theory agree very well. However, for both
lower and higher frequencies, a significant discrepancy
can be clearly seen. This effect cannot be mitigated by
a constant time or phase shift of the time-domain wave-
form and hence we conclude that it is a physical effect.
This discrepancy of both the high and low frequencies
suggests that Horndeski theory exhibits both an inverse
and a direct energy cascades. It would be interesting
to confirm if this is indeed the case and quantify these
cascades. Note that because the weak cosmic censorship
holds in our scenarios, there is a natural UV cutoff for
the frequencies that are accessible to external observers.
As long as this cutoff is at lower energies, i.e., larger dis-
tances, than the UV cutoff of the theory, then the EFT
should be valid; the fact that the WCCs hold in our case,
indicates that this is indeed the case.
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In Fig. 9 we quantify the mismatch for a detector
setup receiving the plus polarisation of the strain, extrap-
olated to null infinity, between GR and the Horndeski
theory. We restrain ourselves to using the (`,m) = (2, 2)
mode, h+22, as this is the dominant mode an order of
magnitude when compared to higher modes. We use
the updated Advanced LIGO sensitivity design curve
(aLIGODesign.txt in [57], which imposes fmin = 5Hz)
and flat noise (Sn = 1) following the procedure described
in Section II G. We compute the mismatch for black hole
masses in the typical range of stellar mass black holes
binaries observed so far, M ∈ [10, 200]M� [74]. This fig-
ure shows the mismatch varies between ∼ 13% at the
low mass end and ∼ 10% at the high mass end. To con-
firm accuracy of these results, the mismatch between two
different resolutions of the same GR evolution ranges be-
tween 0.3−0.5% for the same mass ranges. As a reference,
for a signal to noise ratio of 25, similar to GW150914 [75],
the minimum expected mismatch for detection is about
0.6% [76, 77]. Additionally, in [56] is it estimated that a
mismatch of 3.5% would result in a 10% smaller detec-
tion rate; therefore, the large mismatches obtained for
big enough values of the couplings suggest that if the un-
derlying theory of gravity was Horndeski with a massive
scalar field, some events may have been undetected if the
black holes had sufficient scalar field surrounding them.

IV. SUMMARY AND CONCLUSIONS

In this article we have studied eccentric black hole bi-
nary mergers in certain cubic Horndeski theories (3)–(4)
with a massive scalar field with mass parameter m = 0.5.
We have chosen initial data and small enough coupling
constants such that a certain local weak coupling con-
dition (7) is satisfied at all times during the evolution.
This condition monitors the size of the Horndeski terms
in the equations of motion compared to GR terms, and
the fact it holds ensures that the EFTs are in their regime
of validity and hence we can trust their predictions.

One of the goals of this article was to identify poten-
tial deviations from GR in some physical quantities that
Horndeski theories of gravity may exhibit. We have ob-
served that locally small deviations from GR build up
over time and get enhanced whenever the system enters
the strong field regime. In the case of the eccentric bi-
naries, this happens during the successive close encoun-
ters of the black holes and in the final merger phase.
Since the modifications of GR are locally small, large de-
viations may still arise in non-local observables, such as
gravitational waveforms, through a cumulative build up.
This cumulative effect gets reflected in the gravitational
waveforms as large shifts with respect to the analogous
waveforms computed in GR coupled to a massive scalar
field with the same mass and angular momentum. Whilst
the details, such as its sign and size, of the observed shift
in the waveforms depend on the details of the theory
and value of the coupling constants, the effect seems to

be generic, at least within the class of Horndeski the-
ories that we have explored here. We conjecture that
the same effect should be present in more general Horn-
deski theories. We have quantified the misalignment of
the (`,m) = (2, 2) mode of the plus polarisation of the
strain, h+22, for one of the Horndeski theories that we have
considered. We find that the spectrum differs both for
low and high frequencies. Furthermore, for large enough
values of the couplings, still in the regime of validity of
the EFT, we find that the mismatch is around 10−13% in
the whole mass range of current detections. This is quite
significant and it suggests that if the underlying theory
of gravity differs from GR, some events where the black
holes have sufficient scalar field surrounding them may
have been and continue to go undetected. For smaller
values of the couplings, the mismatch would be smaller.

The misalignment that we have observed is a cumu-
lative effect and hence it only occurs if the black holes
are surrounded by a long-lived scalar cloud. In our case
this is possible because of the mass term in the scalar
potential, which ensures that a non-trivial scalar energy
density remains in the vicinity of the black holes for very
long times, thus allowing the scalar field to interact with
itself and with the geometry. We have also considered
massless scalars, but in this case we do not observe any
significant difference between Horndeski and GR. This
is expected because the theories considered do not admit
stationary hairy black holes and, hence, a massless scalar
field gets absorbed by the black holes or disperses to null
infinity on a time scale much quicker compared to the bi-
nary lifetime. In our particular example, the scalar field
is essentially completely absorbed in the second close en-
counter of the binary and by then there has not been
enough time to build up any sizeable deviation from GR.

In this article we considered both G2 and G3 Horndeski
theories and, as we have already mentioned, even though
the initial and final states are the same, both lead to
misaligned waveforms with respect to GR. Therefore, at
least for equal mass non-spinning binaries, the degener-
acy between the class of Horndeski theories that we have
considered and GR is broken. However, we do not see
any visible difference between the waveforms obtained in
the G2 or in the G3 theories. It would be interesting to
investigate if (or how) the degeneracy of the waveforms
is broken in Horndeski theories of gravity. It would be
interesting to extend our studies to unequal mass and
spinning binaries to see if the degeneracy with GR and
with the various Horndeski theories is broken when con-
sidering different mass ratios and non-zero spins.

We have considered Horndeski theories simply as toy
models for EFTs with higher derivatives; in the Horn-
deski case, the higher derivatives are in the matter
(scalar) sector and the equations of motion are of sec-
ond order. However, more fundamental theories of grav-
ity, such as string theory, predict higher curvature cor-
rections of the Einstein-Hilbert action. In general, such
new terms in the action will result in equations of mo-
tion of order higher than two. Refs. [26, 27, 32] have
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outlined how the strong field regime of such theories may
be probed, but it would be very interesting to do so in
the context of a black hole binary. Our work suggests
that in the weakly coupled regime, where these theories
are valid EFTs, some of the problems that may arise in
general, such as loss of hyperbolicity or shock formation,
can be controlled in a physical situation that probes the
strong field regimes such as a black hole binary merger.

The main goal of the present paper is to identify what
features in the physical observables extracted from black
hole binaries in Horndeski theories can allow one to dif-
ferentiate these theories from GR. Given that the correc-
tions to GR have to be locally small in order for these
theories be valid EFTs, non-local observables such as
gravitational waveforms are particularly useful because
small effects can accumulate and, for long enough times,
give rise to large deviations from GR. These or other
deviations from alternative theories of gravity are poten-
tially being undetected by current gravitational wave ob-
servatories. Therefore, our results stress the importance
of modelling waveforms in alternative theories of gravity
treating them fully non-linearly. It would be interesting
to identify other observables where large deviations show
up. In the case of waveforms, until complete waveform
templates are built for alternative theories, a potential
way to detect the misalignment that we have identified is
the following: future space-based gravitational wave ob-
servatories such as LISA are expected to be able to detect
gravitational waves produced in stellar mass black hole
binaries during earlier stages of the inspiral phase. From
these waveforms one should be able to extract the param-
eters of the binary and, by using GR, predict the time
of merger of the binary. Some binaries should enter the
LIGO band in the final stages of the inspiral and merger
phase, thus allowing to contrast the GR prediction for
the merger time with the observation; a certain advance-
ment or delay of the merger could be attributed to the
fact that higher derivative corrections modify GR.
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Appendix A: Convergence

In this appendix we provide some details of the con-
vergence tests that we have carried out. As a representa-
tive example, we considered the binary in the G2 Horn-
deski theory with coupling constant g2 = 0.02, and we
performed three simulations with different resolutions to
study convergence. Our simulations are evolved with a
coarsest level resolution of ∆x = 16

7 (medium resolution),
with 8 additional refinement levels and a computational
domain of size 10243. To carry out the tests, we used one
lower resolution changing ∆x = 8

3 (low resolution) and
one higher resolution with ∆x = 2 (high resolution).

In Fig. 10 we show the error estimates in the
quadrupole mode h22 extrapolated to null infinity be-
tween low, medium and high resolutions and the esti-
mates for the expected error assuming third and fourth
order convergence. We decompose the complex strain
into its amplitude and phase, h`m = h+`m − ih×`m =

hA`me
ihφ`m . We compute these expected errors using the

continuum limit of the convergence factor of order n:

Qn =
(∆xLow)

n − (∆xMed)
n

(∆xMed)
n − (∆xHigh)

n . (A1)

This indicates the convergence order of h22 is consistent
with three.

We also tested convergence of other variables; for in-
stance, the trajectories of the two black holes, xi1(t) and
xi2(t), shown in Fig. 1, can be used to test convergence.
We rewrite these trajectories in terms of the radial dis-
tance between the black holes,

D(t) = |xi1(t)− xi2(t)| , (A2)
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FIG. 10. Convergence test for g2 = 0.02 with different coarse
resolutions: low (3843), medium (4483) and high (5122). Con-
vergence performed on the amplitude and phase of the com-
plex strain, h22, extrapolated to null infinity. ∆t = 0 is the
peak of the amplitude for the highest resolution. This figure
indicates consistency with third order convergence.

and the phase relative to the initial positions,

θ(t) = arccos

[
(xi1(t)− xi2(t))

D(t)
· (xi1(0)− xi2(0))

D(0)

]
.

(A3)
These quantities for the Horndeski theory are shown in
the top panel of Fig. 11 for the same binary as in Fig.
1. The convergence analysis of these quantities across the
three resolutions is shown in the middle and bottom pan-
els of Fig. 11. These figures indicate that both quantities
exhibit between third and fourth order convergence.

For completeness, in Fig. 12 we show the L2 norms11

of the Hamiltonian and the Euclidean norm of the mo-
mentum constraints over the full computational domain.
This figure shows the constraint violations remain stable
at the level of 10−6 − 10−5M−2 respectively throughout

11 For a given quantity Q, we compute L2Q =
√

1
V

∫
V |Q2|dV .
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FIG. 11. Top panel: Radial distance D(t) and relative phase
θ(t) of the black holes’ trajectories as functions of time for
the g2 = 0.02 Horndeski theory. Convergence tests for the
radial distance ∆D(t) (middle panel) and relative phase θ(t)
(bottom panel). Both of these quantities exhibit between third
and fourth order convergence.

the whole evolution, with a significant and sudden reduc-
tion at the merger. Considering the results of our con-
vergence analysis, we conclude our simulations are stable
and in the convergent regime.
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