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Abstract

A typical problem in experimental design theory is to find a block

design in a class that is optimal with respect to some criteria, which

are usually convex functions of the Laplacian eigenvalues. Although this

question has a statistical background, there are overlaps with graph and

design theory: some of the optimality criteria correspond to graph prop-

erties and designs considered ‘nice’ by combinatorialists are often optimal.

In this thesis we investigate this connection from a combinatorial point

of view.

We extend a result on optimality of some generalized polygons, in

particular the generalized hexagon and octagon, to a third optimality cri-

terion. The E-criterion is equivalent with the graph theoretical problem

of maximizing the algebraic connectivity. We give a new upper bound for

regular graphs and characterize a class of E-optimal regular graph de-

signs (RGDs). We then study generalized hexagons as block designs and

prove some properties of the eigenvalues of the designs in that class. Pro-

ceeding to higher-dimensional geometries, we look at projective spaces

and find optimal designs among two-dimensional substructures. Some

new properties of Grassmann graphs are proved. Stepping away from

the background of geometries, we study graphs obtained from optimal

graphs by deleting one or several edges. This chapter highlights the cur-

rently available methods to compare graphs on the A- and D-criteria.

The last chapter is devoted to designs to which a number of blocks are

added. Cheng showed that RGDs are A- and D-optimal if the number of

blocks is large enough for which we give a bound and characterize the best

RGDs in terms of their underlying graphs. We then present the results

of an exhaustive computer search for optimal RGDs for up to 18 points.

The search produced examples supporting several open conjectures.
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Chapter 1

Introduction

1.1 An Overview

Suppose we are to design the following statistical experiment: there are v treat-

ments to be compared on a number of experimental units that can be partitioned

into b blocks of size k with k < v. Typically, the blocks might differ system-

atically but all units in a block are assumed to be alike. For fixed v, b and k,

how should the treatments be allocated to the units to get as much information

as possible from the available data? The latter often means the estimate of the

unknown parameters with the least possible variance. If there are several pa-

rameters, this is a multidimensional problem and a design can be ‘good’ in many

ways, for example minimizing the average variance or minimizing the maximum

variance. If every treatment is allowed to occur at most once per block, we can

describe this experiment as a combinatorial block design.

The optimality criteria can be expressed as convex functions of the non-

trivial Laplacian eigenvalues of the designs or their adjacency graphs. Although

this question has a statistical background, there are suprising connections to

graph and design theory: Some of the most popular optimality criteria can be

translated into graph properties that have been studied by graph theorists in-
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dependently. For example, the D-criterion is equivalent with maximizing the

number of spanning trees and the E-criterion is maximizing the algebraic con-

nectivity among graphs with v vertices and a fixed number of edges. There is

another optimality criterion, the A-criterion, that can be defined in terms of

graph properties as maximizing the ratio of the number of spanning trees and

the number of thickets of a graph.

Not only do some of the most popular optimality criteria correspond to graph

properties, but also optimal designs are often found among designs considered

‘nice’ by combinatorialists: for example, one of the earliest result on optimal

designs is by Kiefer, who showed that 2-designs are optimal among all designs

under the most general criterion ([Kie75]). But it is not clear which designs to

choose if no 2-designs exist. One class of designs that have been suggested to

be good candidates are the regular graph designs (RGDs). These are designs

that are ‘close’ to 2-designs in the sense that every point occurs in the same

number of blocks and any pair of points occurs in either λ or λ + 1 blocks for

some integer λ ≥ 0. The RGDs owe their name to the fact that their adjacency

graph is obtained from a simple regular graph G by adding λ edges between any

two pairs of vertices, for which we will write G + λ ∗ Kv. In 1977, John and

Mitchell posed the following conjecture.

Conjecture 1.1 ([JM77]). If an incomplete block design is D-optimal (or A-

optimal or E-optimal), then it is an RGD (if an RGD exists).

It took 30 years for the conjecture to be proven to be wrong in general

([Bai07]), but it holds if the number of blocks is big enough ([Che92]). Even

for a small number of blocks, RGDs occur as optimal designs in a lot of results.

For example, Cheng proved in [Che81a] that the design with block size 2 with

adjacency graph Kn,n + λ ∗ K2n is optimal with respect to a range of criteria

(see Theorem 2.28). Therefore, regular graphs as so called underlying graphs of

2



RGDs are of interest in optimal design theory.

Another class of optimal designs arise from finite geometries: the general-

ized polygons. Finite geometries and in particular generalized polygons have

been studied famously in the attempt to classify the semi-simple Lie groups.

Some of the results in optimal design theory imply that some finite geometries

are optimal designs. For example, a generalized triangle is a 2-design and as

such optimal by Kiefer’s result. Bailey and Cheng show in [CB91] that partial

geometries and in particular generalized quadrangles are optimal with regards

to several criteria among a certain class of designs. Finite rank-two geometries

and in particular generalized polygons seem therefore to be good candidates for

optimal designs.

That means statisticians and graph and design theorists have been studying

similar problems. In this thesis we want to explore the connections between

experimental designs and graphs and finite geometries from the combinatorial

point of view, where studying finite geometries in the setting of optimal design

theory is a so far completely new angle.

The results in Chapter 3 are a good example for overlapping results in op-

timal design and graph theory and finite geometries. If there exists a finite

generalized 2N -gon with parameters s = 1 and t > 1, then by a well-known

result (see Theorem 3.5), its adjacency graph is isomorphic to the point-line

incidence graph of a finite generalized N -gon with parameters (t, t). The ad-

jacency graph of its dual design is therefore the line graph of the incidence

graph of the N -gon. There exist experimental designs that can be constructed

in a similar way: In [PW75], Patterson and Williams show that the adjacency

graph of a connected two-replicate resolvable design is the line graph of the

point-block incidence graph of a unique symmetric design, that is a design with

v = b. Williams, Patterson and John showed that such a design is A-optimal

among connected two-replicate resolvable designs if and only if the correspond-
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ing symmetric design is A-optimal among symmetric designs ([WPJ76, PW75]).

Combining results from graph theory on the number of spanning trees of the line

graph of a regular graph (see Proposition 2.15) and a result by Gaffke ([Gaf82],

see Proposition 3.3) on the number of spanning trees of the incidence graph

of a block design, we can extend their result to D-optimality (Corollary 3.4).

In particular, it follows that the duals of generalized 2N -gons whose adjacency

graph is isomorphic to the point-line incidence graph of a generalized N -gon are

A- and D-optimal for N = 3, 4 in certain classes of designs (Corollary 3.6 and

Corollary 3.7).

In Chapter 4 we study E-optimal strongly regular graphs and their designs.

The E-criterion is a wonderful example of a criterion that has a strong back-

ground in graph theory. The criterion corresponds to maximizing the smallest

non-trivial Laplacian eigenvalue of the adjacency graph of a block design. This

eigenvalue is also known as the algebraic connectivity of the graph. This def-

inition is due to Fiedler ([Fie75]) who proved as one of the first results that

the vertex connectivity is an upper bound for the eigenvalue. There has been

wide interest on the bounds on this eigenvalue, whose importance is ‘[. . . ] diffi-

cult to overemphasize’, since the larger the algebraic connectivity of a graph G,

‘[. . . ] the more difficult it is to cut G into pieces, and the more G expands’ as

B. Bollobas writes in [Bol98], p. 269. This gives the motivation for this chap-

ter in which we derive a new upper bound for the algebraic connectivity of a

regular graph (Proposition 4.6) using the Higman-Sims technique introduced in

[Hae80]. Together with a new result on the connectivity of the neighbourhood

graph of strongly regular graphs (Proposition 4.2) our result gives a characteri-

zation of some E-best RGDs with strongly regular underlying graph (Theorem

4.8 and Corollary 4.9). Moreover, Proposition 4.2 implies a result on the size

of the connected components of any neighbourhood graph which we apply to

generalized quadrangles and the triangular graph (Corollary 4.3, Proposition
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4.4 and Proposition 4.12). As an application we prove the known facts that the

complete regular multipartite graph and the partial geometries are E-optimal

among all RGDs (Proposition 4.10 and Proposition 4.14). Further we show that

the triangular graph gives rise to an E-optimal design for a certain block size

(Proposition 4.13).

In Chapter 5 we want to go back to looking at finite geometries, in particular

the generalized hexagons. A famous theorem by Feit and Higman asserts that,

unless there are only 2 points on a line, there exist generalized N -gons only if

N = 3, 4, 6, 8, 12 (see for example [Ron89]). By the above mentioned results

by Kiefer, Bailey and Cheng, generalized triangles and quadrangles are optimal

with regards to several criteria among a certain class of designs. In view of this,

we study generalized hexagons in the setting of optimal block designs. There are

some facts that suggest that they might be good candidates for optimal designs.

For one, we have shown in Chapter 3 that the generalized hexagons whose

adjacency graphs are isomorphic to the line graph of the point-line incidence

graph of a projective plane are A-, D- and E-optimal among certain designs.

And secondly, we found by computer search (see Chapter 8) that the generalized

hexagon with 14 points is A- and D-optimal among RGDs with block size 2 and

replication 3. The generalized hexagons are only known for some parameters and

naturally a good understanding of the structure of the adjacency graph is very

important. The generalized hexagons have a distance regular adjacency graph

and we start by computing the eigenvalues and their multiplicities (Proposition

5.1). Although the spectrum is known and a proof using results on distance

regular graphs can be found for example in [BCN89], we want to prove this result

using the combinatorial properties of the generalized hexagon to give an insight

to the structure of the graph. The last results in this chapter narrow down what

kind of designs are in the class of the generalized hexagon (Proposition 5.3 and

Proposition 5.4) and we find a condition that forces a design to have the same
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Laplacian spectrum (Corollary 5.5).

In Chapter 6, we want to move to higher-dimensional structures and search

for optimal designs among rank-two substructures. Since projective planes are

2-designs and therefore optimal, the projective space is a good place to start. Let

V be a vector space of dimension n+1 over GF(q) for any prime or prime power q.

Call any two subspaces U1 and U2 incident if and only if U1 ≤ U2 or U2 ≤ U1. The

set of proper subspaces together with this incidence relation is the n-dimensional

projective space over GF(q). The subspaces of V of dimension i are also called

the elements of type i of the projective space for i ∈ {1, . . . , n}. The set of

the elements of the same type are also called Grassmannians. This definition

has its origin in the example of the projective space but can be generalized to

other classical geometries. The Grassmannians of the projective space give rise

to so called ‘Grassmann graphs’ with the elements of type i ∈ {2, . . . , n} as

vertices, any two of which are joined by an edge if they intersect in a subspace

of dimension i− 1. This is equivalent to the two subspaces of dimension i being

contained in a subspace of dimension i + 1. More generally, the design with the

elements of type i ∈ {1, . . . , n} as vertices and the blocks being the subspaces

of dimension j for some i < j ≤ n are called the {i, j}-truncations and these

are the designs we want to study in this chapter.

But before we study the projective space we start with a simpler substruc-

ture: Suppose we have a maximal chain of n mutually distinct nested subspaces.

There are many ways to exchange the subspaces of dimension i while keeping

the structure of a nested chain. Now, let E be a fixed basis of V and consider

only the chains of mutually distinct subspaces that all admit a basis which is a

proper subset of E . Among these, there are exactly two possible subspaces of

dimension i to complete a chain of n−1 given nested subspaces. The adjacency

graph of the restriction of the {i, j}-truncation to these kind of subspaces is

a subgraph of a Grassmann graph. Since the {1, j}-truncations are 2-designs,
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they are universally optimal (Proposition 6.3) and their duals are optimal among

certain designs (Corollary 6.4). We prove a structural property of the adjacency

graph of the {2, 3}-truncation of this incidence structure (Proposition 6.5) and

we discuss the optimality of these designs by presenting the results of an exhaus-

tive computer search for optimal designs having the same adjacency graph as

the lines and planes (see also Chapter 8). We conclude this section investigating

the {i, j}-truncations with 1 < i < j < n + 1.

Then we proceed to the truncations of the projective space over GF(q).

Again, the {1, j}-truncations are universally optimal block designs (Proposi-

tion 6.11) and their duals are optimal among certain designs (Corollary 6.12).

There has been interest in characterizing the Grassmann graphs in hope to

show their uniqueness, see [BCN89]. For characterizations see for example

[Num90, Num85, Spr78]. In view of this, we are also interested in the structure

of these graphs: It is known that they are distance regular graphs (see for ex-

ample [BCN89], p. 269). We give an easy proof that the adjacency graph of the

{2, 3}-truncation is strongly regular and compute its parameters (Proposition

6.13). Moreover, we prove that if the dimension is odd, any connected strongly

regular graph with the same number of vertices and same degree must have the

same parameters (Proposition 6.14). Further we show some structural proper-

ties of the neighbourhood graphs (Proposition 6.15 and Corollary 6.17) and that

the graph is isomorphic to the Grassmann graph of the hyperplanes, i.e. the

elements of type n (Proposition 6.16). We then move on to the general setting

of the graphs with vertices being the subspaces of dimension i intersecting in

a subspace of dimension j for some constant j < i. These graphs are distance

regular and we compute the parameters.

Stepping away from the background of geometries in Chapter 7, we then

study graphs obtained from optimal graphs by deleting one or several edges.

We show the known fact that the graph obtained from the complete graph by

7



deleting mutually disjoint edges maximizes the number of spanning trees. This

is the motivation for Proposition 7.3, where we show that this is also true for

A-optimality and two deleted edges. By a result by Cheng ([Che81a], see also

Theorem 2.28), the complete regular bipartite graph is D-optimal and a more

recent result by Petingi and Rodriguez shows that this is also true for the com-

plete almost-regular multipartite graph among simple graphs ([PR02], see also

Proposition 2.33). In particular, in their paper Petingi and Rodriguez charac-

terize the D-best simple graphs as being as regular as possible and minimizing

the number of V-subgraphs (these are subgraphs of size three with exactly two

edges) in their complement. We investigate this correspondence by compar-

ing the complete bipartite graph Kn−1,n+1 and the graph Kn,n \ {f} obtained

from the complete regular bipartite graph Kn,n by deleting an edge f . As the

complement of a union of cliques, the graph Kn−1,n+1 minimizes the number of

V-subgraphs in its complement, whereas the complement of Kn,n \{f} has a lot

of V-subgraphs but its vertex degrees differ by at most 1. In this case, the graph

Kn,n \{f} being closer to a regular graph beats Kn−1,n+1 on both the A- and D-

criterion (Corollary 7.7). In fact we can even show the stronger result that the

Laplacian eigenvalues of Kn,n\{f} are majorized by the Laplacian eigenvalues of

Kn−1,n+1 (Proposition 7.5) which implies that Kn,n \{f} performs better on any

criterion that is Schur-concave or Schur-convex than any graph with the same

degree sequence as Kn−1,n+1 (Corollary 7.8). Of course, it can not be true that

deleting any edge from an optimal graph will always result in an optimal graph,

because the performance especially on the D-criterion depends highly on which

edge has been deleted. A good example is deleting an edge from the complete

almost-regular graph Kn,n+1. Although deleting an edge from Kn,n \{f} results

in a graph that performs well on the D-criterion and Kn,n+1 being D-optimal

(by Proposition 2.32), it is easy to find a graph that beats Kn,n+1 with a deleted

edge on the D-criterion. We give an example for n = 3.
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In the last chapter we want to look at designs in large systems, that means

designs with a large number of blocks. Suppose Λ is the Laplacian matrix of

any connected design with v points and b blocks of size k and d̃ is a 2-(v, k, λ̃)-

design on v points and block size k with b̃ blocks. Then for y ∈ N the matrix

Λ[y] = Λ + yΛ̃ is the Laplacian matrix of a design on v points, replication

r + y λ̃(v−1)
k−1

and b + yb̃ blocks of size k. The motivation for Chapter 8 lies in the

following question posed by J.P. Morgan.

Question 1.2 ([Mor11]). Suppose there exists a 2-design d̃ on v points and b̃

blocks and an A-best RGD d on v points and b blocks. Can then an A-best RGD

with b + yb̃ blocks be found by just adding y copies of the 2-design d̃ to d?

We start by investigating the question, what kind of Laplacian matrices

Λ produce optimal designs with Laplacian matrices Λ[y]. A first observation

is that the majorization of eigenvalues is preserved by adding blocks to the

design. More precisely, we can show that if the eigenvalues of a matrix Λ are

majorized by another matrix Λ′, then Λ[y] beats Λ′[y] on any Schur-concave

or Schur-convex criterion (Proposition 8.1). This implies for example that the

graph Kn,n \ {f}+ y ∗K2n (obtained from Kn,n \ {f} by adding y copies of the

edges of the complete graph) beats Kn−1,n+1 + y ∗ K2n on any Schur-concave

criterion, in particular on the A- and D-criteria, for all y ≥ 0 (Proposition 8.3).

Proposition 8.1 also implies that Schur-optimal designs stay D-optimal under

this transformation (Corollary 8.2). We introduce a pre-order on the Laplacian

matrices that is given by the values of the elementary symmetric polynomials

on the non-trivial eigenvalues. The reason for this is that the D-value of Λ[y]

can be written as a polynomial in y whose coefficients are determined by the

elementary symmetric polynomials on the non-trivial eigenvalues of Λ (equation

8.1.2) and the A-value is determined by the D-value divided by its derivative in y

(equation 8.1.3). We show that this pre-order is exactly the order corresponding
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to the performance of the matrices of the form Λ[y] on the A- and D-criterion

if y is large enough (Theorem 8.5). It follows directly from this result that to

find Laplacian matrices Λ that produce optimal designs with Laplacian matrices

Λ[y] for large y, we have to find matrices Λ that maximize the first and second

symmetric elementary polynomials on their non-trivial eigenvalues. This implies

a result by Constantine ([Con86], see also Corollary 8.6) and a special case of a

result by Cheng ([Che92]). While Cheng showed that RGDs are optimal in large

systems with regard to a general type of optimality, we prove it here for A- and

D-optimality (Proposition 8.13 and Proposition 8.15). Our approach lets us give

lower bounds for y such that RGDs are optimal and that A- and D-optimality

of a design are equivalent for large y (Corollary 8.16). We apply the results on

the cycle on v edges (as design with block size 2) and can show with results

from Bailey ([Bai07]) and Stevanovic and Ilic ([SI09]) that Cycle(v) + y ∗Kv is

D-optimal for all y ≥ 0 and A-optimal for large y among all graphs G with v

vertices and v edges (Proposition 8.9).

Therefore, if the dominating RGD for big y can be identified, then this is

also the best design among all designs in the class for large y. This is the

motivation for the rest of the chapter where we show that comparing RGDs in

this setting is equivalent to compairing their underlying graphs. In this way we

obtain lower bounds for y such that the RGDs characterized in Constantine’s

result are optimal (Proposition 8.17 and Proposition 8.18). A new result on

the correspondence of the symmetric elementary polynomials of the Laplacian

eigenvalues of a simple graph and its complement (Proposition 8.19) gives rise to

a new characterization of optimal RGDs for large y in terms of their underlying

graph (Theorem 8.21). With this we can extend Cheng’s result that the complete

regular multipartite graph Kα,...,α is A- and D-optimal among all simple graphs

to the graph Kα,...,α +y ∗Kαm being A- and D-optimal among all graphs G+y ∗

Kαm where G is any connected (multi-)graph in the class of Kα,...,α for large y
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(Corollary 8.22). In the last section of the chapter, we present the results of an

exhaustive computer search for optimal RGDs with connected underlying graph

for up to 18 points. In [JM77], John and Mitchell provided a list of the best

RGDs with v ≤ 12, r ≤ 10 and v ≤ b. To identify the best RGD for big y,

we are taking the same approach as John and Mitchell and start by generating

all connected simple δ-regular graphs with 5 ≤ v ≤ 13 and 2 ≤ δ ≤ 9, v = 14

and 2 ≤ δ ≤ 5, v = 15 and δ = 4, v = 16, 18 and δ = 3. The other cases were

too extensive to handle. There are two main things we do differently. For one,

we only consider connected regular graphs and secondly instead of calculating

the A- and D-values of the designs for particular values of y, we compute the

values as polynomials in y. In this way, we could extend the list of best RGDs

to v ≤ 14 for all admissible block sizes and v ≤ 18 for block size 2. In particular,

we were able to get some improvements on results of John and Mitchell on the

designs with v = 11 and y = 0. We have restricted our calculations on A-

and D-optimality since there is a list of binary connected E-optimal designs

up to 15 points without the restriction to RGDs by J.P. Morgan which can be

found on www.designtheory.org. For the A- and D-values as polynomials in

y, we find the smallest values yA
0 and yD

0 such that the ordering of the graphs

according to their A- and D-values (evaluated in yA
0 , yD

0 ) stabilize. The main

observation is that in all of our cases yD
0 ≤ yA

0 ≤ δ+1 and the order of the graphs

according to their A-value evaluated in yA
0 and the order according to their D-

value evaluated in yD
0 are the same (Observation 8.26 and Observation 8.28). A

list of all designs can be found in the appendix. The search produced examples

supporting several open conjectures, such as the optimality of the generalized

hexagon or of the complete multipartite regular graphs after adding the edges

of a complete graph any number of times. Moreover, we have found an example

where A- and D-optimality are not equivalent for small y even among RGDs.
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1.2 Original Content

Throughout this text any result that is not my own has been clearly labelled as

such and a reference is given. Below is a summary of my main results in this

thesis.

• Chapter 3: Corollary 3.4, Corollary 3.6 and Corollary 3.7

• Chapter 4: Proposition 4.2, Corollary 4.3, Proposition 4.6, Theorem 4.8,

Corollary 4.9 and Proposition 4.13

• Chapter 5: Proposition 5.3, Proposition 5.4, Corollary 5.5

• Chapter 6: Proposition 6.3, Corollary 6.4, Proposition 6.11, Corollary

6.12, Proposition 6.14, Proposition 6.15 and Corollary 6.17

• Chapter 7: Proposition 7.3, Proposition 7.5, Corollary 7.7 and Corollary

7.8

• Chapter 8: Proposition 8.3, Theorem 8.5, Proposition 8.9, Proposition

8.13, Proposition 8.15, Proposition 8.17, Proposition 8.18, Proposition

8.19, Theorem 8.21, Corollary 8.22 and the results of the computer search
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Chapter 2

Preliminaries

Throughout this text let v, m and n be positive integers.

2.1 Eigenvalues of Real Matrices

The eigenvalues of certain matrices associated with graphs or designs will play

a key role in this thesis. This is why we want to provide here the basic notation,

properties and some general results on eigenvalues of real square matrices that

we will need later. All matrices in this thesis are assumed to have only real

entries.

Throughout this text we denote by In the n×n identity matrix and by Jm×n

the m× n matrix with all entries equal to 1. If m = n we also write Jn. For a

m × n matrix with entries aij for i = 1, . . . ,m and j = 1, . . . , n we write (aij).

Further, the n × n matrix (aij) with diagonal elements aii = xi and aij = 0

whenever i 6= j is denoted by diag(x1, . . . , xn). The transpose of a matrix M is

denoted by MT . If there exist a, b ∈ Q such that M = aIn+bJn, then M is called

completely symmetric. We denote by χM(x) = det(xIn −M) the characteristic

polynomial of a real n × n matrix M . The derivative of χM(x) in x will be

denoted by χ′
M(x). By the Cayley–Hamilton theorem (see for example [CDS79],
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p. 20), any n× n square matrix M satisfies its own characteristic equation, i.e.

χM(M) = 0, and the degree of χM(x) is equal to n. The minimal polynomial

χ̄M(x) is the monic polynomial with the smallest degree such that χ̄M(M) = 0.

Lemma 2.1 ([CDS79], p. 61). Let L be an m× n matrix. Then

xnχLLT (x) = xmχLT L(x).

The multiplicities of the eigenvalues of an n × n matrix M as roots of the

characteristic polynomial χM(x) are called the algebraic multiplicities. The set

of eigenvectors belonging to an eigenvalue ν(M) along with the zero-vector form

the eigenspace to ν(M) and its dimension is called the geometric multiplicity

of ν(M). Throughout this text the multiplicity of an eigenvalue will mean the

algebraic multiplicity, but in the case of symmetric matrices the multiplicities

are the same:

Theorem 2.2 ([CDS79], p. 17). The geometric and algebraic multiplicities of

an eigenvalue of a real symmetric matrix are equal.

Let ν1(M) > · · · > νl(M) be the distinct eigenvalues of an n× n matrix M ,

i.e. the distinct roots of χM(x), with multiplicities m1, . . . ,ml, where l ≤ n.

Since M is a real symmetric matrix, all eigenvalues of M are real and we denote

the spectrum of M by

Spec(M) = (νl(M)ml , . . . , ν1(M)m1).

Proposition 2.3 ([CDS79], p. 20). If M is a symmetric n × n matrix with

spectrum

Spec(M) = (νl(M)ml , . . . , ν1(M)m1),
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then

χ̄M(x) =
l∏

i=1

(x− νi(M)).

Suppose L is an m × m matrix with m ≥ n, having eigenvalues ν1(L) ≥

· · · ≥ νm(L). If

νi(L) ≥ νi(M) ≥ νm−n+i(L)

for all i ∈ {1, . . . , n}, then we say that the eigenvalues of M interlace the

eigenvalues of L. If there exists an integer j ∈ {0, . . . , n} such that

νi(L) = νi(M) for i = 1, . . . , j

and

νm−n+i(L) = νi(M) for i = j + 1, . . . , n,

then the interlacing is called tight.

Theorem 2.4 ([Hae80], p. 9). Let L be a symmetric real square matrix parti-

tioned as follows

L =


L11 · · · L1m

...
...

Lm1 · · · Lmm


such that Lii is square for i = 1, . . . ,m. Let M be the m × m matrix whose

ij-entry is the average row sum of Lij for i, j = 1, . . . ,m.

1. The eigenvalues of M interlace the eigenvalues of L.

2. If the interlacing is tight, then Lij has constant row and column sums for

i, j = 1, . . . ,m.

3. If for all i, j ∈ {1, . . . ,m} the matrix Lij has constant row and column

sums, then any eigenvalue of M is also an eigenvalue of L with not smaller

a multiplicity.
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2.2 Graphs: Basic Concepts and Notation

In this section we will give the basic definitions and results on graphs used in

this thesis. However, a good introduction to graph theory and graph spectra

and more details can be found for example in [Bol98, Big93, CDS79].

In this thesis, a graph G is always finite and can have multiple edges, but

has no loops and no orientation. If the graph has no multiple edges, we will

say the graph is simple. Unless we explicitly say that G is simple, we always

assume that G is a multigraph. The set of vertices of a graph G is denoted by

V (G) and the set of edges by E(G). If u, w ∈ V (G) are joined by an edge f , we

say they are adjacent and we write f = {u, w}. If f = {u, w} for f ∈ E(G),

we also say that u and w are incident with f . A set of graphs with v vertices

and e edges with or without any additional attributes is called a class of graphs.

For the rest of this section, let G be a graph with v vertices and e edges and

V (G) = {u1, . . . , uv} and E(G) = {f1, . . . , fe}.

For u ∈ V (G), the number of edges incident with u is called the degree of

the vertex and we write δ(u). The sequence (δ(u1), . . . , δ(uv)) is called degree

sequence of G and we write (δ1, . . . , δv). If δ = δ(u) for all u ∈ V (G) and a

δ ∈ N, the graph is called δ-regular and if δ(u) ∈ {δ, δ +1} for all u ∈ V (G), the

graph is called almost-regular.

A graph G ′ is a subgraph of G if V (G ′) ⊆ V (G) and E(G ′) ⊆ E(G). The size

of a subgraph G ′ is the number of vertices in V (G ′). For a subgraph G ′ of G

the graph with vertex set V (G) and edges E(G) \ E(G ′) is denoted by G \ G ′.

For a graph G ′ with V (G ′) ⊆ V (G) the graph with vertex set V (G) and edges

E(G) ∪ E(G ′) is denoted by G + G ′.

Any finite sequence w1, . . . , wn of vertices of G such that wi and wi+1 are

joined by an edge for i = 1, . . . , n− 1 is called a walk. A path of length n− 1 in

G is a simple subgraph with n vertices w1, . . . , wn and n− 1 edges such that wi
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and wi+1 are joined by an edge for i = 1, . . . , n− 1; that is a path is a walk with

distinct vertices. The graph is called connected if any two vertices can be joined

by a path. The distance in G between vertices u and w, denoted by dist(u, w), is

the length of the shortest path joining u and w. The diameter of G, denoted by

diam(G), is the maximal distance between any two vertices in G. A closed path

or a cycle of length n−1 in G is a path of length n with vertices w1, . . . , wn = w1.

For example, a cycle of length 1 is a loop, a cycle of length 2 is a pair of parallel

edges and a cycle of length 3 is a triangle. The girth of G, denoted by girth(G),

is the length of the shortest closed path in G. A V-subgraph of G is subgraph

of G of size three with exactly two edges. A clique in G is a simple subgraph of

pairwise adjacent vertices. For example, the following graphs are cliques of size

1, 2, 3 and 4:

For a vertex u let Gu be the subgraph of G with vertex set

V (Gu) = {w ∈ V (G) \ {u}|{u, w} ∈ E(G)}

and edge set

E(Gu) = {f ∈ E(G)|f = {w1, w2}, w1, w2 ∈ V (Gu)}.

Then Gu is called the neighbourhood graph of u.

If G is a clique of size v, the graph is called complete and we write Kv. For

y ∈ N>0, we denote by y ∗Kv the graph on v vertices where any pair of vertices

is joined by exactly y edges. A tree is a simple connected graph with v vertices

and v − 1 edges that contains no cycle.
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A simple graph is called multipartite or m-partite if the vertex set V (G) can

be partitioned into sets V1(G), . . . , Vm(G) such that {u, w} 6∈ E(G) whenever

u, w ∈ Vi(G) for i ∈ {1, . . . ,m}. Let αi = |Vi(G)| for i = 1, . . . ,m. In the

case m = 2 the graph is called bipartite with the convention that α1 ≤ α2. If

G is bipartite and if there exist positive integers δ1, δ2 such that each vertex

u ∈ Vi(G) has degree δi for i = 1, 2, then G is called semiregular of degrees δ1,

δ2. If G is a multipartite graph and {u, w} ∈ E(G) whenever u and w are in

different parts of the vertex partition, then G is called complete multipartite and

we denote G by Kα1,...,αm . The line graph of G is the graph L(G) with vertex

set V (L(G)) = E(G) where any two vertices are joined by a single edge if and

only if the corresponding edges in G have exactly one vertex in common and by

a double edge if both of their vertices coincide.

Example. We want to illustrate the above definitions with the example of the

bipartite graph G = Km,n with 1 ≤ m ≤ n. Suppose the vertices in V (G) are

labelled such that V1(Km,n) = {u1, . . . , um} and V2(Km,n) = {um+1, . . . , um+n}.

Any vertex in V1(Km,n) has degree n and any vertex in V2(Km,n) has degree m,

that means Km,n is semiregular with degrees δ1 = n and δ2 = m and the degree

sequence of Km,n is

(
m-times︷ ︸︸ ︷

n, . . . , n,

n-times︷ ︸︸ ︷
m, . . . , m).

If n = m, then Km,n is regular. For i = 1, 2, any two vertices in Vi(Km,n) can

be joined by a path of length 2 and therefore diam(Km,n) = 2. Since Km,n is a

simple graph and only vertices in different parts are adjacent, the shortest cycle

has length 4. For a vertex u ∈ V1(Km,n), the neighbourhood graph Gu contains

all vertices in V2(Km,n) but no other. Because any vertex in V2(Km,n) is only

adjacent to vertices in V1(Km,n), the graph Gu is the union of n isolated vertices.
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The line graph of the complete bipartite graph Km,n has the vertices

{{x, y} ∈ V1(Km,n)× V2(Km,n)}

and any two vertices {x, y} and {w, z} are joined by an edge if and only if

{x, y} 6= {w, z} and either x = w or y = z. That means, L(Km,n) is (m+n−2)-

regular.

Proposition 2.5 ([CDS79], p. 31). The line graph L(G) of a connected graph

G is regular if and only if G is regular or semiregular.

Example. We want to give another example for the line graph of a graph. Let

n ≥ 2 and G be the complete graph on n+1 vertices, that is G = Kn+1. Suppose

we have labelled the vertices such that V (G) = {1, . . . , n + 1}. The vertices of

the line graph of G are the subsets of size 2 of V (G), any two of which are joined

by an edge if and only if they have a non-trivial intersection. This defines a

well-known graph, the triangular graph, which we will denote by T (n + 1).

There are several matrices associated with a graph and they are the main

tools for studying graphs. A straightforward way to express the adjacency re-

lations of the vertices and edges of a graph in a matrix is the following: the

vertex-edge incidence matrix of G is the v × e matrix Av,e(G) whose ij-entry is

1 if vertex ui is incident with edge fj and 0 otherwise, for all i ∈ {1, . . . , v}

and j ∈ {1, . . . , e}. The ij-entry of the matrix Av,e(G)Av,e(G)T is for i 6= j the

number of edges between vertices ui and uj and for i = j the number of edges

that are incident with ui, that is δ(ui). The adjacency matrix of G is the v × v

matrix

A(G) = Av,e(G)Av,e(G)T − diag(δ1, . . . , δv).

The complement of a simple graph G is the graph Ḡ with adjacency matrix

Jv − Iv − A(G).
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Lemma 2.6 ([CDS79], p. 44). The number of walks of length n in G from ui

to uj is the ij-entry of the matrix A(G)n.

Apart from the adjacency matrix, there is another important matrix whose

eigenvalues will play a key role in this thesis: the Laplacian matrix of G,

Λ(G) = diag(δ1, . . . , δv)− A(G).

We call the eigenvalues and the spectrum of A(G) also the eigenvalues and the

spectrum of G and we write Spec(G). The Laplacian eigenvalues and Laplacian

spectrum of G are the eigenvalues and the spectrum of Λ(G). Note that since

both A(G) and Λ(G) are real symmetric matrices, all of their eigenvalues are real.

Throughout this text, we order the eigenvalues ν1(G), . . . , νv(G) of G and the

Laplacian eigenvalues ρ1(G), . . . , ρv(G) of G in weakly decreasing order, that is

ν1(G) ≥ · · · ≥ νv(G) and ρ1(G) ≥ · · · ≥ ρv(G). The Laplacian matrix is positive

definite, hence ρv(G) ≥ 0. Since the row and column sums of the Laplacian

matrix of any graph G are all equal to zero, the Laplacian matrix Λ(G) has the

eigenvector (1, . . . , 1)T with eigenvalue ρv(G) = 0. Due to this, we say that the

other Laplacian eigenvalues ρ1(G) ≥ · · · ≥ ρv−1(G) are the non-trivial Laplacian

eigenvalues of G and we write ρG for the vector (ρ1(G), · · · , ρv−1(G)).

Example. The bipartite graph Km,n has the adjacency matrix that can be

partitioned into blocks in the following way:

A(Km,n) =

 0 Jm×n

Jn×m 0

 .

The characteristic polynomial of A(Km,n) is ([Big93], p. 53)

χA(Km,n)(x) = xm+n−2(x2 −mn)
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and therefore the spectrum of Km,n is

Spec(Km,n) = ((−
√

mn)1, 0m+n−2, (
√

mn)1)

The Laplacian matrix of Km,n is therefore

Λ(Km,n) =

 nIm −Jm×n

−Jn×m mIn

 .

and

Spec(Λ(Km,n)) = (01, mn−1, nm−1, (m + n)1).

Proposition 2.7 ([CDS79], p. 30). Let G be a δ-regular graph. Then

χA(G)(δ) = 0.

Proposition 2.8 ([Big93], p. 43). Let G be a simple graph and Ḡ its comple-

ment, then

Λ(Ḡ) = vIv − Jv − Λ(G)

and

(v − x)χΛ(Ḡ)(x) = (−1)v−1xχΛ(G)(v − x).

Corollary 2.9 ([CRS10], p. 185). Let G be a simple graph and Ḡ its complement,

then

ρv(G) = 0 and ρi(Ḡ) = v − ρv−i(G) for i = 1, . . . , v − 1.

If the graph is regular then there is a direct correspondence between the

ordinary spectrum and the Laplacian spectrum of G. The following proposition

can be found for simple graphs in [Big93], p. 29, but we want to show that it

also holds for graphs with multiple edges.
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Proposition 2.10. If G is a δ-regular graph with eigenvalues ν1(G) ≥ · · · ≥

νv(G), then ρv+1−i(G) = δ − νi(G) for i = 1, . . . , v.

Proof. The Laplacian matrix of G is Λ(G) = δIv−A(G) and for all i ∈ {1, . . . , v}

and any eigenvector X ∈ Rv of A(G) with eigenvalue νi(G) we have

Λ(G)X = (δIv − A(G))X = δIvX − νi(G)X = (δ − νi(G))X.

Corollary 2.11. If G is a δ-regular graph, then ν1(G) = δ.

The Laplacian matrix gives us information on the important class of spanning

subgraphs: a spanning forest F of G with j ∈ {1, . . . , v} components is a disjoint

union of j trees Ti that are subgraphs of G with ni vertices for i = 1, . . . , j, such

that
∑j

i=1 ni = v for some j ∈ {1, . . . , v}. A spanning tree is a subgraph of G

with v vertices that is a tree. The number of spanning trees of G is denoted

by κ(G) and is also called the tree number of G. The following theorem is a

well-known result connecting the tree number and the Laplacian matrix of a

graph.

Theorem 2.12 (Matrix–Tree–Theorem, [CDS79], p. 38). Let j ∈ {1, . . . , v}

and let Λ(G)j denote the matrix obtained from Λ(G) by deleting row j and column

j. Then

κ(G) = det(Λ(G)j).

Before we can state the main results for the Laplacian spectrum of a graph,

we need to study the characteristic polynomial of Λ(G). In fact, the polynomial

already provides us with some information on the structure of the graph. For

any non-empty set J ⊆ V (G) we denote by G.J the multigraph obtained from

G by identifying the vertices in J , thereby replacing the set of vertices J with
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a single vertex. By this process multiple edges and loops may be created. Note

that loops have no impact on the tree number of a graph and can be deleted.

Therefore, we can define κ(G.J) as the number of spanning trees of G.J after

deleting any loops, where we define κ(G.∅) = 0.

Theorem 2.13 ([CDS79], p. 38). Let

χΛ(G)(x) = xv − c1x
v−1 + . . . + (−1)icix

v−i + . . . + (−1)v−1cv−1x + (−1)vcv,

then cv = 0 and for i = 0, . . . , v − 1

ci =
∑

J⊂V (G)
|J |=v−i

κ(G.J)

Let Fj be the set of all spanning forest of G with j components. Then

ci =
∑

F⊂Fv−i

γ(F ),

where γ(F ) =
∏j

k=1 nk for all F ∈ Fj. Here, F is a disjoint union of trees on

n1, . . . , nj vertices.

Corollary 2.14 ([CDS79], p. 39). Let χΛ(G)(x) =
∑v

i=0(−1)icix
v−i. Then

1. cv = 0 and

2.

κ(G) =
cv−1

v
=

1

v

v−1∏
i=1

ρi(G).

In particular, if G is connected, then ρ1(G), . . . , ρv−1(G) > 0.

Example. The complete graph Kv has spectrum ([Big93], p. 17)

Spec(Kv) = ((−1)v−1, (v − 1)1)
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and degree v−1, therefore the only non-trivial Laplacian eigenvalue is δ +1 = v

with multiplicity v − 1. Hence,

κ(Kv) = 1
v
vv−1 = vv−2.

Example. The number of spanning trees of Km,n is

1

v

v−1∏
i=1

ρi(Km,n) =
(m + n)mn−1nm−1

m + n
= mn−1nm−1.

We can also compute the number of spanning trees of a δ-regular graph G

with the following equation

κ(G) =
1

v
χ′

A(G)(δ) (2.2.1)

which can be found in [CDS79], p. 39. We want to compute the number of

spanning trees of the line graphs of regular graphs. The following proposition

can be found in [Big93], p. 40, for simple graphs, but we want to show that it

also holds for graphs with multiple edges.

Proposition 2.15. Let G be a δ-regular graph on v vertices and e edges. Then

the number of spanning trees of its line graph L(G) is

κ(L(G)) = 2e−v+1δe−v−1κ(G).

Proof. By Proposition 2.5 the line graph is regular. A vertex {u, w} ∈ V (L(G))

of the line graph has all the existing edges {u, u′}, {w′, w} ∈ E(G) as neighbours

that are distinct from {u, w}. That means, if G is δ-regular, the line graph is

2(δ−1)-regular and we can compute the number of spanning trees of L(G) with

equation 2.2.1 as

κ(L(G)) =
1

e
χ′

A(L(G))(2(δ − 1)).
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We have the following relations between the vertex-edge incidence matrix of G

and the adjacency matrices of G and L(G) ([CDS79], p. 16):

Av,e(G)Av,e(G)T = A(G) + δIv

Av,e(G)T Av,e(G) = A(L(G)) + 2Iv.

From Lemma 2.1 follows that

xe det (xIv − A(G)− δIv) = xv det (xIv − A(L(G))− 2Iv)

and therefore

χA(L(G))(x) = (x + 2)e−vχA(G)(x− δ + 2).

The derivative is

χ′
A(L(G))(x) = (e− v)(x + 2)e−v−1χA(G)(x− δ + 2) + (x + 2)e−vχ′

A(G)(x− δ + 2).

With χA(G)(δ) = 0 (Proposition 2.7) and setting x = 2(δ − 1) this gives

χ′
A(L(G))(2(δ − 1)) = (2δ)e−vχ′

A(G)(δ).

From equation 2.2.1 follows that χ′
A(L(G))(2(δ−1)) = eκ(L(G)) = vδ

2
κ(L(G)) and

χ′
A(G)(δ) = vκ(G).

Example ([Big93], p. 41). The number of spanning trees of the triangular

graph T (n) is

2
1
2
(n2−3n+2)(n− 1)

1
2
(n2−3n−2)nn−2.

The following bound is given in [DB05] for weighted graphs, that is simple

graphs where every edge has been assigned a positive weight. Of course, we
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can view a multigraph as a weighted simple graph, where the weights are the

multiplicities of the edges. Here, the degree of a vertex is just the sum over the

weights of the edges incident with that vertex.

Theorem 2.16 ([DB05]). Let G be a connected graph, then

ρ1(G) ≤ max{δu + δw|(u, w) ∈ E(G)}

with equality if and only if G is a bipartite regular or semiregular graph.

But the Laplacian eigenvalues are not only good for computing the number of

spanning trees. They also give information on other subgraphs as the following

propositions show.

Proposition 2.17 ([PR02]). Let G be a simple graph with degree sequence

(δ1, . . . , δv) and non-trivial Laplacian eigenvalues ρ1(G) ≥ · · · ≥ ρv−1(G), then

1.
v−1∑
i=1

ρi(G) =
v∑

i=1

δi;

2.
v−1∑
i=1

ρi(G)2 =
v∑

i=1

δi(δi + 1);

3.
v−1∑
i=1

ρi(G)3 =
v∑

i=1

δi(δi + 1)2 + η(G),

where η(G) is the number of V-subgraphs of G.

Proposition 2.18 ([Hae80], p. 17). Let G be a δ-regular simple graph on v

vertices and let ν1(G) ≥ · · · ≥ νv(G) denote the eigenvalues of G. The size of

the largest clique of G is bounded from above by v 1+ν2(G)
v−δ+ν2(G)

. This bound is called

the Hoffman bound.
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Example. The second largest eigenvalue of Kn,n is 0. Since v = 2n it follows

that the largest clique in Kn,n has at most 2n
n

= 2 vertices. Hence, the complete

bipartite regular graph is triangle free for all n > 0. In fact, more generally a

graph G is bipartite if and only if G does not contain any odd cycles ([ADH98],

p. 8).

Among regular simple graphs, there are classes of graphs with high symme-

try. One of the most well-known classes is the following: a strongly regular graph

with parameters (δ, λ, µ) is a connected simple δ-regular graph such that

1. each pair of adjacent vertices has exactly λ common neighbours;

2. each pair of non-adjacent vertices has exactly µ ≥ 1 common neighbours.

Example. The regular complete bipartite graph Kn,n is strongly regular: any

two vertices that are joined by an edge must be in different parts of the vertex

partition and cannot have a common neighbour, that is λ = 0. On the other

hand, if two vertices are not adjacent, that means they are both in the same

part and every vertex in the other part is a common neighbour and therefore

µ = n.

Example. For n 6= 7, the triangular graph T (n + 1) is the unique strongly

regular graph on n(n+1)
2

points, degree 2(n − 1) and parameters λ = n − 1 and

µ = 4 ([Con58, Shr59, Hof60]). For n = 7, there exist precisely three other

graphs with the same parameters, known as the Chang graphs ([Cha60]).

Lemma 2.19 ([BCN89], p. 11). The parameters λ and µ of a strongly regular

graph on v vertices and degree δ satisfy

δ(δ − λ− 1) = (v − δ − 1)µ.

The following proposition tells us exactly what the adjacency matrix and its

spectrum look like if the graph is strongly regular.
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Proposition 2.20 ([BCN89], p. 8). The adjacency matrix A(G) of a strongly

regular graph G with parameters (δ, λ, µ) satisfies the equation

A(G)2 + (µ− λ)A(G) + (µ− δ)Iv = µJv.

Any eigenvalue other than δ is a solution to the equation

x2 + (µ− λ)x + (µ− δ) = 0.

The eigenvalues of G are δ with multiplicity 1 and

ν1,2(G) =
1

2

[
(λ− µ)±

√
(λ− µ)2 + 4(δ − µ)

]

with multiplicities

m1,2 =
1

2

[
(v − 1)∓ 2δ + (v − 1)(λ− µ)√

(λ− µ)2 + 4(δ − µ)

]
.

Example. We can check with the above proposition that our previous calcu-

lation of the spectrum of the regular complete bipartite graph Kn,n is correct:

indeed we have δ = n and

ν1,2(Kn,n) =
1

2

[
−n±

√
n2 + 4(n− n)

]
=
−n± n

2
.

A strongly regular graph is a special case of a distance regular graph. This

is a simple regular graph of diameter diam(G) that allows integers βi, γi, αi for

i = 0, . . . , diam(G) such that for any two points u, w at distance i, there are

precisely γi, βi, αi neighbours of w at distance i− 1, i + 1, i from u respectively.

The numbers βi, γi, αi for i = 0, . . . , diam(G) are called intersection numbers. In

particular, G is regular with degree δ = β0. As for strongly regular graphs, we
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know exactly what the spectrum of a distance regular graph looks like.

Proposition 2.21 ([BCN89], pp. 126, 131). Let G be a distance regular graph

with intersection numbers βi, γi, αi for i = 0, . . . , diam(G). Define the polyno-

mials

ω0(x) = 1, ω1(x) = x and

ωi+1(x) = (x− αi)ωi(x)− γiβi−1ωi−1(x) for i = 1, . . . , diam(G).

The eigenvalues of A(G) are exactly the roots of ωdiam(G)+1(x). The multiplicity

m(θ) of an eigenvalue θ is given by

m(θ) =
v∑diam(G)

i=0
(ωi(θ))2hi

(β0···βi−1)2

,

where

h0 = 1, h1 = β0 = δ and hi+1 =
hiβi

γi+1

for i = 1, . . . , diam(G)− 1.

2.3 Block Designs

Let P and B be non-empty disjoint sets; we say that P is the set of points and B

is the set of blocks. Further, let I be a binary symmetric incidence relation on

P ∪ B such that for any ω1, ω2 ∈ P or ω1, ω2 ∈ B with ω1Iω2 we have ω1 = ω2.

Then d = (P ,B, I) is called a block design. The size of the blocks is assumed to

be a constant k. Although it is possible to have block designs with non-constant

block size, this case will not occur in this text. The number ri of blocks incident

with point i is called the replication number of i. For the rest of the section,

let d = (P ,B, I) denote a block design on v points and b blocks of size k and

replication numbers r1, . . . , rv. The design is called complete if k = v and every

point occurs once in each block and incomplete if k < v. Unless otherwise

29



stated, we will always assume that the designs are incomplete. A class D of

designs is a set of designs on v points and b blocks of size k with or without any

additional attributes.

The point-block incidence matrix of d is the v × b matrix Av,b(d) whose ij-

entry is 1 if point i occurs in block j and 0 otherwise, for i = 1, . . . , v and

j = 1, . . . , b. The adjacency matrix of d is the v × v matrix

A(d) = Av,b(d)Av,b(d)T − diag(r1, . . . , rv).

That is for i 6= j, the ij-entry aij of A(d) is the number of blocks containing both

points i and j. The graph G(d) with vertex set V (G) = P where any two vertices

vi, vj ∈ V (G) are joined by exactly aij edges for i 6= j, is called the adjacency

graph of d. We say that two points are adjacent if they are joined by an edge in

G. Of course, the graph can have multiple edges. The design is called connected

if the adjacency graph is connected. We will always assume that all designs are

connected. The design is called equireplicate, if the replication numbers of all

points are constant; note that this is only possible if bk
v
∈ N. We denote by Dv,b,k

the class of connected equireplicate designs on v points with b blocks of size k

and replication r = bk
v
. For a design in Dv,b,k with replication r, the adjacency

graph is an r(k − 1)-regular graph. In the following, we will describe a design

by writing the b blocks as rows of the k points.

Example. The design given by

1 2 1 3 1 4 1 5 2 3

2 4 2 5 3 4 3 5 4 5

has point and block sets

P = {{1}, {2}, {3}, {4}, {5}}
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B = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}.

The design has block size 2 and the replication of each point is 4. Since any

two points are contained in exactly one block, the design is connected. In fact,

the adjacency graph is the complete graph on 5 points and the design belongs

to the class D5,10,2.

Example. Another example of an equireplicated design is the Fano plane:

A B

C

c

b a5

6

3

7 4

1

2

The points of the design are the points of the plane; here numbered from 1 to 7.

The blocks correspond to the lines of the plane, which include the circle through

3, 5, 6. That means, the design is given by

1 5 7 1 3 4 1 2 6 2 4 5

2 3 7 3 5 6 4 6 7

Therefore k = 3 and r = 3 and the design belongs to the class D7,7,3.

The Fano plane is a good example for a special class of designs: a design is

said to be symmetric if v = b.

The Laplacian matrix of the design d is the Laplacian matrix of the adjacency
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graph, that is

Λ(d) = Λ(G(d)) = (k − 1) diag(r1, . . . , rv)− A(d) (2.3.1)

= k diag(r1, . . . , rv)− Av,b(d)Av,b(d)T

and we can apply all the conventions and results from the previous section to

Λ(d). We will call the Laplacian eigenvalues of G(d) also the Laplacian eigen-

values of d and write ρi(d) for ρi(G(d)), i = 1, . . . , v, and ρd for the vector of the

non-trivial Laplacian eigenvalues ρG(d). There is another graph associated with

the design d: the incidence graph or Levi graph. This is the graph Γ(d) that

has the points and blocks of the design as vertices of which any two are joined

by an edge if they are an incident point-block pair. Since no two points and no

two blocks are joined by and edge, we can partition the vertex set V (Γ(d)) into

V1(Γ(d)) = P and V2(Γ(d)) = B, hence the graph is bipartite.

Example. The incidence graph of the Fano plane, called the Heawood graph, is

the following graph:

1

2

3

4

5

6

7

Here, the black vertices correspond to the points and the white vertices corre-
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spond to the blocks of the Fano plane.

We can see in the Heawood graph, that we also could have interchanged the

colouring of the vertices, i. e. saying the black vertices correspond to blocks and

the white vertices correspond to points. In general however, it does matter which

colour we have assigned to vertices or blocks, but we could switch the meaning

of the colours for points and blocks to obtain a new design. The resulting design

is the dual design d∗ = (B,P , I∗) of d, where BI∗u if and only if uIB for any

u ∈ P and B ∈ B. For convenience we also write I for I∗. Suppose d ∈ Dv,b,k,

then any vertex in V1(Γ(d)) has exactly r neighbours in V2(Γ(d)) and any vertex

in V2(Γ(d)) has exactly k neighbours in V1(Γ(d)). That means d∗ ∈ Db,v,r. A

morphism between designs d and d′ is a map from d to d′ mapping points to

points and blocks to blocks preserving the incidence relations. If a morphism is

bijective, then it is called an isomorphism.

Example. Let k = 2. Then every edge of the adjacency graph G(d) corresponds

to a block. Therefore Av,b(d) = Av,e(G(d)). The dual design d∗ has adjacency

graph G(d∗) with vertex set E(G(d)). Any two vertices are joined by an edge

if they have a vertex in G(d) in common. That means, G(d∗) is the line graph

L(G(d)) of G(d).

2.4 Optimality of Block Designs

The motivation for studying designs in the way it is presented in this thesis

comes from the background of statistical designs of experiments. We want to

give a short introduction to this following [BC09] and [BC13] where more details

and a good overview can be found. For more details see [Bai08] and [SS89].

A statistical experimental design describes the allocation of v treatments to

experimental units. In this setting it is more convenient to think of the set of

units to be partitioned into b blocks of size k together with a function Ξ from
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the set of units to the set of v treatments specifying which treatment is allocated

to which unit (the parameters v, b, k are always given). That is, for a unit ω the

image Ξ(ω) is the treatment allocated to ω. Although units in different blocks

might differ systematically, all units in a block are assumed to be alike. Our

aim is to find out about the treatments and their differences.

For example, suppose we want to test fertilizers on different farms each of

which has several plots. Here, the units are the plots, the blocks correspond to

the farms and of course, the treatments are the fertilizers. We can now partition

the set of units into blocks regarding to which farm the plot belongs. Now, the

farms might be far apart such that the weather or the soil might have an impact

on how well the crops grow, that means the blocks differ systematically, but the

weather or soil on one farm is the same on all its plots.

We can recover our combinatorial definition of a block design as follows:

assume that any treatment is contained at most once per block; the statistical

experimental design is then called binary. Now we can take the v treatments as

points and take the blocks to be sets of points. However, the previous definition

of the Laplacian matrix stays valid for non-binary designs: define the point-

block incidence matrix Av,b(d) of a non-binary design d to have the number of

times point i occurs in block j as the ij-entry. Then the Laplacian matrix Λ(d)

can be defined as in equation 2.3.1. The ij-entry of Λ(d) counts the number of

occurrences of the point pair {i, j} in blocks according to multiplicity. Note that

the adjacency graph might now have loops but we can define a non-binary design

to be connected as before if the adjacency graph is. There can be good reasons

for allowing a treatment to occur more than once per block, for example if self-

interaction is to be studied. But unless otherwise stated, we will assume that

the designs are binary. This does not mean however, that non-binary designs

are not of interest, for example see [BC09]. But most of the designs we are

interested in happen to be binary.
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Now, suppose we have conducted an experiment where we applied treatments

to units in blocks where we allow for now the design to be non-binary. For each

unit ω we measure the response Yω. If ω ∈ B and for some block B ∈ B, we

assume that

Yω = τΞ(ω) + βB + εω, (2.4.1)

where τi is a constant depending on treatment i, βB is a constant depending

on block B and εω is a random variable with expectation 0 and variance σ2.

Moreover, if ω1 6= ω2 then εω1 and εω2 are uncorrelated. Of course, we can add a

constant to all treatment parameters and substract it from all block parameters

without changing equation 2.4.1 and therefore it is impossible to estimate the

individual treatment parameters. But if the design is connected, we can estimate

any linear combination of the form
∑

i xiτi where
∑

i xi = 0. In particular, we

can estimate all pairwise differences τi − τj and get information on which of

the treatments (compared to all other treatments) is best. A linear unbiased

estimator is a linear function of the responses Yω (and therefore is itself a random

variable) such that its expectation is equal to the true value. The best linear

unbiased estimator is the one with the least variance.

We want to study a simple example: let v = 2 and all units form a single

block. Suppose we have allocated the two treatments t1 and t2 to r1 and r2 units.

In this case, the best linear unbiased estimator for the difference τ1 − τ2 of the

parameters of the treatments t1, t2 is the difference of the average responses of

the treatments t1 and t2. Its variance V12 is

V12 =

(
1

r1

+
1

r2

)
σ2,

which is minimized if r1 = r2. If the design is binary, then necessarily k = 2 and

r1 = r2 = 1 and therefore V12 = 2σ2. The following picture shows the likelihood

that the estimator with expectation 2 takes on a particular value for different
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variances if the responses are normally distributed.

−2 −1 0 1 2 3 4 5

0.2

0.4

0.6

0.8 V12 = 1
4

V12 = 1

We see that the smaller V12, the more likely it is that the estimate is close

to the expected value. Moreover, for V12 = 1 the estimator is giving a negative

value and even wrongly suggests that treatment t2 is better than t1 in about 2.3%

of the cases. That means we want to minimize the variance of the estimator in

order to be more likely to choose the right treatment as the best one. The 95%

confidence interval of the estimator, that is the interval that will contain the true

value in 19 cases out of 20, is the interval of length t(r1 + r2 − 2)
√

V12 centered

at the true value, where t(n) is the 97.5th percentile of the t-distribution on n

degrees of freedom. The function t(n) decreases as n increases, with a limiting

value of 1.96, which is near-enough achieved by n = 30. The length of the

interval can therefore be decreased by increasing r1 + r2 or decreasing |r1 − r2|

or σ2. In the above picture, for V12 = 1
4

this is the interval [1, 3] and for V12 = 1

it is [0, 4]. The smaller V12, the smaller the confidence interval and the more

likely it is that our estimate is close to the true value.

But if v > 2 and k < v, things are more complicated. To deal with this case,

we will need the Penrose inverse of the Laplacian matrix Λ(d) of a connected

design d, which is the following matrix:

Λ(d)− = (Λ(d) + 1
v
Jv)

−1 − 1
v
Jv.
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Note that we need the assumption that d is connected for Λ(d) + 1
v
Jv to be

invertible. Now, the variances of the estimators of the pairwise differences can

be computed in the following way.

Theorem 2.22 ([BC13]). Let Λ(d) be the Laplacian matrix of a connected block

design d with Penrose inverse Λ(d)− = (Λ−
ij). If

∑
i xi = 0, then the variance

of the best linear unbiased estimator of
∑

i xiτi is equal to (xT Λ(d)−x)kσ2. In

particular, the variance Vij of the best linear unbiased estimator of the simple

difference τi − τj is given by Vij =
(
Λ−

ii + Λ−
jj − 2Λ−

ij

)
kσ2.

Using the above theorem, we obtain the variance Vij for every treatment

pair {ti, tj} with i 6= j and we have now a multidimensional problem. In this

setting, a statistical experimental design can be ‘good’ in different ways. For

one, minimizing the average of the variances Vij would be one thing to wish for,

this is called the A-criterion. Or minimizing the volume of the multidimensional

analog to the confidence interval, the confidence ellipsoid, is another criterion

called the D-criterion. For v = 2 these criteria are equivalent with minimizing

the variance, but things are different in the multidimensional case. Still, for

both of the just mentioned criteria, the value that we want to minimize can be

expressed as a function of the non-trivial eigenvalues of the Laplacian matrix:

Proposition 2.23 ([BC09]). Let Λ(d) be the Laplacian matrix of a connected

block design d with non-trivial eigenvalues ρ1(d), . . . , ρv−1(d). Let Vij be the

variance of the best linear unbiased estimator of the difference τi − τj, i, j =

1, . . . , v with i 6= j as in Theorem 2.22. Then

V =
1

v(v − 1)

∑
i

∑
j 6=i

Vij =
2kσ2

v − 1

v−1∑
i=1

1

ρi(d)
,

and the volume of the confidence ellipsoid is proportional to the reciprocal of√∏v−1
i=1 ρi(d).
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This is the motivation to define general optimality criteria as functions of

these eigenvalues. More precisely, let Mv be the set of all v × v real symmetric

matrices with row and column sums zero. An optimality criterion is a function

Ψ : Mv → R if it has the following properties.

1. Ψ is convex;

2. for every Λ ∈ Mv the function α 7→ Ψ(αΛ) is monotonic non-increasing

for non-negative α;

3. Ψ is invariant under any simultaneous permutation of rows and columns

by the same permutation – that is, re-labelling the points does not affect

Ψ.

Now a design in some class D of designs is said to be Ψ-optimal if it minimizes

the value of Ψ(Λ) over all Laplacian matrices Λ of designs in D. A design is

said to be universally optimal in some class if it minimizes every Ψ satisfying

the above conditions. Of course, there are a lot of different optimality criteria.

The most popular fall under the umbrella of the following optimality criterion.

For p ∈ (0,∞), a design is Φp-optimal if it minimizes

(∑v−1
i=1 ρi(d)−p

v − 1

) 1
p

among all designs d in a class. For p = 1 we get the A-criterion; the limit

as p → 0 is equivalent to the above definition of the D-criterion; the limit as

p → ∞ is called the E-criterion ([BC09], p. 13). The reason that A-, D-

and E-optimality are the most popular optimality criteria is the application to

statistical experimental designs. But we will see later that all of these three

criteria correspond to interesting graph properties; in particular D- and E-

optimality have been studied by graph theorists extensively in their own right.
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However, we will work mostly with the following equivalent definitions for A-,

D- and E-optimality:

Remark 2.24 ([BC09], pp. 12). A block design is A-optimal if it maximizes

the harmonic mean of the non-trivial Laplacian eigenvalues, which we will also

call the A-value. D-optimality corresponds to maximizing the product of the

non-trivial Laplacian eigenvalues, the D-value, and E-optimality is maximizing

the smallest non-trivial Laplacian eigenvalue, the E-value. We will sometimes

denote the A-, D- and E-values of a design d by A(d), D(d) and E(d) respec-

tively.

We want to define another optimality criterion that will be used in this thesis:

let D be a class of designs on v points and define Ψf : D → R by

Ψf (d) =
v−1∑
i=1

f(ρi(d)) for all d ∈ D,

where f : R≥0 → R satisfies the following conditions:

1. f ′′(x) > 0, f ′′′(x) < 0 for x > 0;

2. limx→0+ f(x) = ∞.

Note that these criteria cover the standard criteria: for D-optimality, take

f(x) = − log(x) and for A-optimality take f(x) = x−1. The E-criterion is

also covered as a pointwise limit of criteria derived from functions satisfying the

conditions in the above definition ([CB91]).

As in the case of graphs, there are classes of designs with high symmetry.

One of the most popular are the t-(v, k, λ)-designs, these are designs where each

subset of P of size t is contained in a constant number λ > 0 of blocks. If

k < v, a 2-(v, k, λ)-design is also called a balanced incomplete block design, in

short BIBD. An example is the Fano plane which is a 2-(7, 3, 1)-design. BIBDs
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are the designs with the highest possible symmetry and we will see later that

they are optimal in the most general way. Let Λ be the Laplacian matrix

of a not necessarily binary design. We want to know when the trace of Λ is

maximized. Let miB be the number of occurrences of point i in block B. Then

Λij =
∑

B miBmjB and with
∑

i miB = k we have

Trace(Λ) =
∑

i

∑
j 6=i

Λij

=
∑

i

∑
B

miB

∑
j 6=i

mjB

=
∑

i

∑
B

miB(k −miB)

= bk2 −
∑
B

∑
i

m2
iB.

To compute the optimal solution we will need the following lemma.

Lemma 2.25 ([GP70]). Let m, n ∈ N, then the optimization problem

minimize
n∑

i=1

x2
i

subject to
n∑

i=1

xi = m,

x1, . . . , xn ∈ N≥0

has the unique optimal solution

xi = bm
n
c+ 1, i = 1, . . . ,m− nbm

n
c

xi = bm
n
c, i = m− nbm

n
c+ 1, . . . , n.

Since
∑

i miB = bk, the optimal solution to minimizing
∑

B

∑
i m

2
iB is given

by Lemma 2.25 with m = bk and n = vb as taking b(k− vbk
v
c) occurrences miB

to be bk
v
c+ 1 and the rest to be bk

v
c. This proves the following theorem.
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Theorem 2.26 ([BC09], p. 8). A design d in a class D of not necessarily binary

designs maximizes the trace of Λ(d) among all designs in D if and only if each

point occurs bk
v
c or dk

v
e times in each block. If k < v, the traces of the Laplacian

matrices are maximized by the binary designs; the maximum value is bk(k− 1).

This leads to the following characterization of optimal designs which is one

of the earliest results and is due to Kiefer ([Kie75]).

Theorem 2.27 ([BC09], p. 14). Let Ψ : Mv → R be an optimality criterion. If

there is a design d in a class D of not necessarily binary designs for which Λ(d)

is completely symmetric and has maximum trace, then it is universally optimal

in D. In particular, if Dv,b,k contains 2-designs, then the minimum value of

Ψ(Λ) over Laplacian matrices of designs in Dv,b,k is attained by the 2-designs.

But for most values of v, b, k there exist no 2-designs. To deal with these

cases, one main approach that has been suggested for k < v are the binary

designs where the adjacency matrix has only entries λ and λ+1 off the diagonal

for some λ ∈ N. Drawing an edge between two vertices if the corresponding

entry is λ+1, produces a simple graph, the underlying graph. These designs are

called nearly balanced incomplete block designs, in short NBDs. If the design is

equireplicate with replication r, then d has Laplacian matrix Λ(d) that we can

write with λ = b r(k−1)
v−1

c as

Λ(d) = (r(k − 1) + λ)Iv − λJv − A(G),

where G is a simple, regular graph of degree δ = r(k − 1) − λ(v − 1). For this

reason the design is in this case called regular graph design (in short RGD). If

M(v, δ) denotes the set of all simple, not necessarily connected, δ-regular graphs

on v points then any RGD on v points and b blocks of size k corresponds to

a G ∈ M(v, δ). If the underlying graph is strongly regular, the design is also

called strongly regular graph design, in short SRGD.
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It has been conjectured that if there exist RGDs in a class, then an A-optimal

or D-optimal or E-optimal design is among them ([JM77]). This conjecture has

been proven to be wrong in general ([Bai07]), but in some special cases RGDs

are indeed optimal.

Theorem 2.28 ([Che81a]). Let G = Kn,n + y ∗ K2n for some n, y ∈ N and

n > 0. Then G is the unique graph on 2n vertices and n2 + yn(2n − 1) edges

that minimizes any criterion Ψf . In particular, G is the unique graph that has

the maximum number of spanning trees among all graphs with 2n vertices and

e = n(n + y(2n− 1)) edges.

In the same paper, Cheng partially extended Theorem 2.28 to regular com-

plete multipartite graphs with the following theorem.

Theorem 2.29 ([Che81a]). Let G be the regular complete m-partite graph Kα,...,α

on αm vertices. Then G is the unique simple graph with αm vertices and

α2m(m−1)
2

edges that minimizes any criterion Ψf .

Theorem 2.30 ([CB91]). If Dv,b,k contains a connected strongly regular graph

design d whose Laplacian matrix has eigenvalue rk, then d is optimal over Dv,b,k

with respect to any criterion Ψf . In particular, d is A-, D- and E-optimal.

Moreover, the dual design d∗ is also optimal over Db,v,r with respect to the same

criteria.

The last part of the above theorem can be generalized as follows: suppose d

is any design in Dv,b,k; then d has the Laplacian matrix

Λ(d) = rkIv − Av,b(d)Av,b(d)T

and its dual design d∗ has the Laplacian matrix

Λ(d∗) = rkIb − Av,b(d)T Av,b(d).
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The eigenvalues of Av,b(d)Av,b(d)T and Av,b(d)T Av,b(d) are the same including

the multiplicities apart from |b− v| extra zeros. It follows that the last part of

the above theorem can also be written as follows.

Proposition 2.31 ([BC09], p. 25). A given design d ∈ Dv,b,k is Φp-optimal

over Dv,b,k if and only if the dual design is Φp-optimal over Db,v,r.

2.5 Optimality and Graphs

In this section we want to go into detail in what way A-, D- and E-optimality

correspond to graph properties. Let G be a graph on v vertices and e edges and

let ρ1(G) ≥ · · · ≥ ρv−1(G) be its non-trivial Laplacian eigenvalues.

D-optimality We have seen that for the number of spanning trees the follow-

ing equation holds:

κ(G) =
cv−1

v
=

1

v

v−1∏
i=1

ρi(G).

Since a design is D-optimal if it maximizes the product of its Laplacian eigen-

values, its adjacency graph maximizes the number of spanning trees among all

graphs that give rise to a design with the appropriate parameters. Therefore, we

call a graph D-optimal if it maximizes the number of spanning trees among all

graphs on v points and e edges. The number of spanning trees has been studied

widely by graph theorists and has a number of applications, see for example

[Shi74, NP06, PBS98, Che81a, CM85]. For instance, consider a graph as a net-

work. If there is a spanning tree, then any two vertices can communicate and

maximizing the number of spanning trees therefore maximizes the reliability of

the network.

The next proposition gives an upper bound for the tree number that is

reached if and only if the graph is the complement of a union of cliques, that is

a complete graph or a complete multipartite graph.
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Proposition 2.32 ([PR02]). For any simple graph G on v vertices with degree

sequence (δ1, . . . , δv) and tree number κ(G) we have

κ(G) ≤ vv−2 exp
(
−2η(Ḡ)

3v3

) v∏
i=1

(1− 1 + δi

v
)

δi
δi+1 ,

where η(Ḡ) is the number of V-subgraphs of the complement of G. The above

inequality is an equality if and only if Ḡ is a disjoint union of cliques.

Using the above proposition, Petingi and Rodriguez show in the same paper

the following special case of Theorem 2.28.

Proposition 2.33 ([PR02]). The almost-regular complete multipartite graph

Kα1,...,αm where |αi| ∈ {n, n + 1} for i = 1, . . . ,m for some n ∈ N>0, maximizes

the number of spanning trees among all simple graphs with the same number of

vertices and edges.

Recall that we denote by y ∗Kv the complete multigraph on v vertices where

any pair of vertices is joined by exactly y edges. If we add a subgraph of y ∗Kv

to itself, the following proposition might give in some cases an easier method to

compute the tree number of the resulting graph.

Proposition 2.34 ([NP06]). Suppose G is a subgraph of y∗Kv on l ≤ v vertices

and y ≥ 1. Then

κ(y ∗Kv ± G) = y(vy)v−l−2 det(vyIl ± Λ(G)).

A-optimality Let χΛ(G)(x) =
∑v

j=0(−1)jcjx
v−j be the characteristic polyno-

mial of Λ(G). Theorem 2.13 states that

cj =
∑

J⊂V (G)
|J |=v−j

κ(G.J).
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For u, w ∈ V (G), a spanning tree of G.{u,w} corresponds to a spanning forest in

G with two parts, one containing u and the other containing w. Such a spanning

forest is called a thicket separating u and w. On the other hand, the coefficients

can be computed ([Bro06]) as

cj =
∑

J⊆I,|J |=j

∏
i∈J

ρi(G)

and in particular

cv−2 =
v−1∑
j=1

∏v−1
i=1 ρi(G)

ρj(G)
.

Since A-optimality of a design with adjacency graph G is maximizing the har-

monic mean of the non-trivial Laplacian eigenvalues, A-optimality is equivalent

to maximizing

cv−1

cv−2

=
vκ(G)∑

u,w∈V (G) κ(G.{u,w})
(2.5.1)

among all graphs giving rise to a design with the appropriate parameters.

A-optimality has an important application to electrical networks: suppose

the graph G represents an electrical network where we assigned each edge a

resistance of one-ohm. Given any two vertices i and j, the effective resistance

Rij between them is the voltage of a battery which, when connected to the two

vertices, causes a current of 1 ampere to flow. There is a connection between

the effective resistance, thickets and spanning trees:

Rij =
number of thickets separating i and j

κ(G)
;

for more details see [BC09], pp. 29, and [Bol98], pp. 39, 296. Now, with the

A-value defined as in equation (2.5.1), we see by taking the sum over all pairs

i 6= j on both sides that the A-value is inversely proportional to the sum over
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all effective resistances.

E-optimality E-optimality corresponds to maximizing the smallest non-tri-

vial Laplacian eigenvalue of G. As with D-optimality, this too is an area that

has been studied extensively by graph theorists. In particular, there has been

wide interest on the bounds on this eigenvalue, which is also called algebraic

connectivity of the graph. This definition has its reason in the correspondence

between the eigenvalue and the connectivity of the graph. For example, the

graph is connected if and only if the algebraic connectivity is strictly positive

([Fie75], see also Corollary 2.14) and the vertex connectivity (i.e. the minimum

number of vertices that need to be deleted to disconnect the graph) is an upper

bound if the graph is not complete. We will also need the following main results

on the algebraic connectivity.

Theorem 2.35 ([Fie75]). Let δmin be the smallest degree in a simple graph G.

Then

ρv−1(G) ≤ vδmin

v − 1
.

Let U be a subset of the vertex set V (G) of a simple graph G. Then the

edge-boundary S(U) is the set of edges of G from U to V (G) \ U .

Theorem 2.36 ([Bol98], p. 270). Let G be a simple graph. For U ⊂ V (G) we

have

|S(U)| ≥ ρv−1(G)|U ||V (G) \ U |
v

.

Theorem 2.37 (Exercise 50 in [Bol98], p. 289). Let δmax be the maximal degree

of a simple graph G and let

α =
2ρv−1(G)

δmax + 2ρv−1(G)
.

Then for every U ⊂ V (G) with |U | ≤ v
2

there are at least α|U | vertices not in U
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that are joined to vertices in U .

This means, the larger the algebraic connectivity the harder it is to discon-

nect the graph. For example, if the graph represents an electrical network this

means the larger the algebraic connectivity the more robust that network is to

cut wires, or generally to flow failing to go through edges.

There are many more results on upper bounds in terms of various properties

of the graph, see for example [Kir01, Kir00, LLT05, GB06].

2.6 Majorization and Schur-Optimality

For this section let I = {1, . . . , v− 1}. A stronger optimality criterion than Φp-

optimality arises from the theory of majorization. All of the following definitions

and an extensive overview can be found in [MO79].

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn such that x1 ≥ x2 ≥ · · · ≥ xn

and y1 ≥ y2 ≥ · · · ≥ yn. We say that the sequence x is majorized by y, if

l∑
i=1

xi ≤
l∑

i=1

yi for l = 1, . . . , n− 1.

and
n∑

i=1

xi =
n∑

i=1

yi.

Let A ⊂ Rn. A function Φ : A → Rm such that, if x is majorized by y then

Φ(x) ≤ Φ(y), is called Schur-convex. If, in addition, Φ(x) < Φ(y) whenever x is

not a permutation of y, then Φ is called strictly Schur-convex. The function Φ

such that, if x is majorized by y then Φ(x) ≥ Φ(y), is called Schur-concave and

strictly Schur-concave if in addition Φ(x) > Φ(y) whenever x is not a permuta-

tion of y. A design is called Schur-optimal if its non-trivial Laplacian eigenval-

ues majorize the non-trivial Laplacian eigenvalues of any competing design. A

Schur-optimal design minimizes any Schur-convex function and maximizes any
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Schur-concave function of the non-trivial Laplacian eigenvalues. An example for

Schur-concave functions are the elementary symmetric polynomials

Sj(z) =
∑

J⊆I,|J |=j

∏
i∈J

zi.

for 1 ≤ j ≤ v − 1 and S0(z) = 1 for any vector z = (z1, . . . , zv−1) ∈ Rv−1.

Proposition 2.38 ([MO79], p. 78). For j = 1, . . . , v − 1, the function Sj is

increasing and Schur-concave on Rv−1
≥0 . If j 6= 1, then Sj is strictly Schur-

concave on Rv−1
>0 .

Since the D-value is the product over all non-trivial Laplacian eigenvalues,

the D-value is Sv−1(ρd) and is therefore Schur-concave. Since we can write the

A-value as the ratio (v − 1)Sv−1(ρd)
Sv−2(ρd)

, by the following proposition the A-value is

a Schur-concave function as well.

Proposition 2.39 ([MO79], p. 80). The ratio
Sj

Sj−1
is Schur-concave on Rv−1

>0

for j = 1, . . . , v − 1. If j 6= 1, then the ratio
Sj

Sj−1
is strictly Schur-concave on

Rv−1
>0 .

Suppose there exists a design d whose non-trivial Laplacian eigenvalues are

majorized by the Laplacian eigenvalue of any other design. By the above propo-

sitions we know that d is A- and D-optimal and as the following proposition

asserts, this is also true for the Φp-criterion.

Proposition 2.40 ([BC09], p. 14). If a design is Schur-optimal within any

class of designs then it is also Φp-optimal for all p, in particular A-, D- and

E-optimal.

We will need the following fact about elementary symmetric polynomials

which can be found in [Mac95], p. 21.

jSj(z) =

j∑
l=1

(−1)l−1Sj−l(z)
v−1∑
i=1

zl
i (Newton’s Identities). (2.6.1)
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The symmetric polynomial omitting one coordinate will be denoted by

Sj;l(z) :=
∑

J⊂I\{l},|J |=j

∏
i∈J

zi,

or generally omitting all coordinates zi for i ∈ J ⊂ I by Sj;J(z). We have

([BB65], p. 34)
v−1∑
l=1

Sj;l(z) = (v − 1− j)Sj(z). (2.6.2)

The elementary symmetric polynomials occur as coefficients of the characteristic

polynomial of a matrix:

Proposition 2.41 ([Bro06]). Let M be a v×v matrix with eigenvalues ν1, . . . , νv,

then

χM(x) =
v∑

j=0

(−1)jSj(ν1, . . . , νv)x
v−j.

Corollary 2.42. Let Λ be a Laplacian matrix of a design with Laplacian eigen-

values ρ1(d), . . . , ρv(d). Then

Sj(ρ1(d), . . . , ρv(d)) = Sj(ρ1(d), . . . , ρv−1(d)) ∈ N

for j = 1, . . . , v − 1 and Sv(ρ1(d), . . . , ρv(d)) = 0.

Proof. This follows from Theorem 2.13 and Proposition 2.41. Since ρv(d) = 0

and Sv(ρ1(d), . . . , ρv(d)) is the product over all eigenvalues of Λ, the statement

follows.

2.7 Finite Geometries

By Theorem 2.26 and Theorem 2.30 structures that are ‘nice’ from the combi-

natorial point of view are optimal under a wide range of criteria. This is the

reason why we want to look more closely at other such ‘nice’ designs and see if
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they give rise to optimal designs as well.

First of all, we want to define what a geometry is. As before we have points

as our basic elements, but there is no reason to stop with blocks. We can

extend block designs to higher-rank incidence structures having points, blocks

(then called ‘lines’), planes and so on. Let Ω be a finite non-empty set and

{Ω1, . . . , Ωn} a partition of Ω with n ≥ 2 and Ωi 6= ∅ for i = 1, . . . , n. We

will call elements α ∈ Ωi of type i for i = 1, . . . , n. Further, let I be a binary,

reflexive and symmetric incidence relation on Ω. Then (Ω1, . . . , Ωn, I) is called

incidence structure of rank n. An incidence structure G = (Ω1, . . . , Ωn, I) is

called geometry of rank n if

1. for any ω and ξ of the same type with ωIξ follows that ω = ξ;

2. if any set of pairwise incident elements, called a flag, can be extended to

a maximal flag of n elements.

We will deal with higher rank a little later, but for now we want to look closer at

rank-2 geomtries. Of course, we can think of a rank-2 geometry as a block design

and can apply all the conventions, definitions and results from the previous

sections.

Example. Again, the Fano plane (see page 31) is a good example in this case.

Here, we have points and lines and a flag is for example a single point. Since

there is always a line incident with that point we can extend any flag to a

maximal flag consisting of an incident point-line pair.

The Fano plane is the smallest example for one of the most popular geome-

tries, the projective planes ; a projective plane is a rank-2 geometry satisfying

the following additional conditions.

1. any two points are incident with exactly one common line;

2. any two lines are incident with exactly one common point;
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3. there exist four points each three of which are not incident with the same

line.

Of course, the Fano plane satisfies the first two conditions. In the labelling as

in the picture on page 31, the points 2, 3, 4, 6 are four points of which at most 2

are incident with a common line.

The projective planes belong to the most famous class of rank-2 geometries;

the finite generalized N-gons for an N ∈ N>0. These are geometries G with an

incidence graph Γ(G) that satisfies the following conditions:

• every vertex of Γ(G) is on at least two edges;

• Γ(G) is connected, bipartite and has diameter N and girth 2N .

Example. The Fano plane is a generalized triangle. Its incidence graph, the

Heawood graph, is connected, bipartite and 3-regular. Its diameter is 3 and it

has girth 6.

A finite generalized polygon that allows finite constants s and t such that

any point lies on t + 1 lines and there are s + 1 points on a line is said to have

parameters s and t which we will denote by GN(s, t).

Example. In the generalized 2-gon with parameters s and t every point is

incident with every line and vice versa. That means, G2(s, t) has the incidence

graph Ks+1,t+1.

Switching the meaning of lines and points of GN(s, t) gives the dual design,

which is of course GN(t, s).

Example. We have seen that in the Heawood graph it does not matter which

colours we assign to points and blocks of the Fano plane. That means, the dual

of the Fano plane is the Fano plane itself.

51



Generalized N -gons are very important in the theory of geometries, because

they build up a special class of higher rank geometries with nice properties,

called ‘buildings’. These kind of geometries are a well studied area, see for

example [Ron89] and [AB08] for an introduction. The next theorem is one of

the most fundamental results in this area.

Theorem 2.43 ([Ron89] p. 30). Let N ∈ N>0. A finite generalized N-gon has

either s = t = 1 or N ∈ {2, 3, 4, 6, 8, 12}.

But not only do we know that for (s, t) 6= (1, 1) there exist generalized N -

gons only for certain N , we can say even more about the parameters:

Theorem 2.44 ([BCN89], p. 201). Let N ∈ N>0. Let (s, t) be the parameters

of a finite generalized N-gon. If s > 1 and t > 1 then

1. N 6= 12;

2. if N = 4 then s ≤ t2 and t ≤ s2;

3. if N = 6, then st is a square and s ≤ t3 and t ≤ s3;

4. if N = 8, then 2st is a square and s ≤ t2 and t ≤ s2.

Since we can think of rank-2 geometries as block designs, we can apply the

results from the previous sections on optimality and in fact for (s, t) 6= (1, 1) we

already know that some are optimal:

for N = 3, the distance between any two vertices of the incidence graph

is at most 3. Therefore, any two points lie on at least one line and any two

lines intersect in at least one point. We want to show that any two points

are incident with exactly one line and dually, any two lines are incident with

exactly two points. Assume, this is not true and for j ∈ {1, 2} there exist

elements ω1, ω2 ∈ Ωj and ξ1, ξ2 ∈ Ωi for i ∈ {1, 2} \ {j}, such that

ω1Iξ1, ω2Iξ1 and ω1Iξ2, ω2Iξ2.
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Then Γ(G3(s, t) contains the closed path (ω1, ξ1, ω2, ξ2, ω1) of length 4. This is

a contradiction to girth(Γ(G3(s, t)) = 6. It follows, that any two points are on

exactly one line and any two lines intersect in exactly one point. Hence, the gen-

eralized triangle and its dual are both 2-designs and Theorem 2.26 gives us uni-

versal optimality in this case. Note that we have shown that the first two prop-

erties for a projective plane are satisfied. For the last one we need to construct

four points of which no three are on the same line. Since girth(Γ(G3(s, t)) = 6,

there exist at least three distinct lines with three distinct intersection points

P1, P2 and P3. On every line there are at least three points, hence the lines P1P2

and P1P3 contain points Q and P . Since the intersection of any two lines is

unique, Q and P are distinct from P1, P2 and P3. Because any two points lie

on a common line, the line QP exists and it intersects with every other line in

exactly one point. In particular, QP intersects P1P3 in a point Z that is distinct

from Q and P . The following picture shows the points and lines we have just

constructed.

Q

P

h

P2

P1

P3

Z

Now, the points P2, P3, Q and Z are four points of which no three are on a

common line. This means, generalized triangles with at least 3 points on a line

are projective planes and in fact they are exactly the projective planes ([AB08],

p. 180).

Now, for N = 4, the adjacency graph is strongly regular on (s + 1)(st + 1)

vertices with degree s(t + 1) and parameters λ = s− 1 and µ = t + 1 ([BCN89],

p. 200). The eigenvalues of the adjacency matrix are s(t + 1), s − 1 and

−(t + 1) by Theorem 2.20 and the largest Laplacian eigenvalue is therefore

53



s(t + 1) + (t + 1) = (s + 1)(t + 1). The generalized quadrangle, denoted by

GQ(s, t) in the following, is a design with replication t + 1 and block size s + 1.

Since the largest Laplacian eigenvalue equals rk, it follows from Theorem 2.30,

that GQ(s, t) is A-, D- and E-optimal among equireplicate binary designs.

The generalized quadrangle is an example of an important class of geome-

tries that all satisfy the properties of Theorem 2.30, the partial geometries: a

partial geometry with parameters s, t, α ∈ N is an incidence structure of rank 2

satisfying the following axioms:

1. any line contains s + 1 points, any point lies on t + 1 lines;

2. two lines meet in at most one point;

3. if the point u is not on the line h, then there are precisely α incident pairs

(w, h′), where w is a point of h and h′ is a line through u.

As the generalized quadrangles, the partial geometries are A-, D- and E-optimal

among binary equireplicate designs by Theorem 2.30.

But we want to study higher rank geometries. First of all, here are two

examples that both have the symmetric group Sn+1 as automorphism group.

Example. For i = 1, . . . , n let Ωi be the set of subsets of {1, . . . , n + 1} of size

i. Any two subsets are called incident if one is contained in the other. This

defines a geometry which we will denote by G(n) in the following chapters.

Example. Let q ≥ 2 be a prime or a prime power. Let V be an (n + 1)-

dimensional vector space over the finite field GF(q). For i ∈ {1, . . . , n}, let

PGi(n, q) denote the set of subspaces of V of dimension i and let PG(n, q) be

the corresponding projective space, that is the incidence structure

PG(n, q) = (PG1(n, q), . . . , PGn(n, q),≤).
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Proposition 2.45. PG(n, q) is a geometry of rank n.

Proof. The properties of a geometry are quickly verified: if two subspaces of the

same dimension are incident, they have a non-trivial intersection and therefore

must coincide. Any flag can be extended to a maximal flag by the Basis–

Extension Theorem.

For the rest of this chapter, let G = (Ω1, . . . , Ωn, I) be a geometry and n > 2.

We want to apply the theory we have for optimal block designs also to G. How

can we do that? We can get back to a rank-2 structure from a geometry by just

taking two different types of elements, say points and lines, and forget about

the rest of the elements and use as incidence relation the relation induced by

the geometry. This incidence structure is

Tr(G) = (Ωi, Ωj, I ′), for i < j,

where ωI ′ξ if ωIξ for all ω ∈ Ωi, ξ ∈ Ωj and is called {i, j}-truncation. For

convenience we will write I for I ′.

Example. Let j > 1. The set of points and the set of elements of type j of the

geometry G(n) form the {1, j}-truncation. For example, for n = 4 and j = 2

this is

Ω1 = P = {{1}, {2}, {3}, {4}, {5}}

Ω2 = B = {{1, 2}, {1, 3}, . . . , {1, 5}, {2, 3}, . . . , {3, 4}, {3, 5}, {4, 5}}.

The neighbours of the point {1} in the adjacency graph are {{2}, {3}, {4}, {5}}.

The design has block size 2 and replication 4. The adjacency graph has degree

r(k − 1) = 4.

Example. The subsets of {1, . . . , n+1} of size 2 and 3 form the {2, 3}-truncation
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of the geometry G(n). For example for n = 4 the design has the following points

and blocks

Ω1 = P = {{1, 2}, {1, 3}, . . . , {1, 5}, {2, 3}, . . . , {3, 4}, {3, 5}, {4, 5}}

Ω2 = B = {{1, 2, 3}, {1, 3, 4}, {1, 2, 5}, {1, 4, 5}, {1, 2, 4}, {1, 3, 5},

{2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}

and the neighbours in the adjacency graph of the point {1, 2} for example are

{2, 3}, {1, 3}︸ ︷︷ ︸
block {1,2,3}

, {1, 4}, {2, 4}︸ ︷︷ ︸
block {1,2,4}

, {1, 5}, {2, 5}︸ ︷︷ ︸
block {1,2,5}

We will see the truncations of the geometries from our examples in detail in

Chapter 6.
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Chapter 3

Two-replicate Resolvable

Designs

A connected design dres with replication r = 2 whose set of blocks can be

partitioned into two sets such that any point is incident with one block of each

set is called two-replicate resolvable design. Let dsymm denote a (possibly non-

binary) symmetric equireplicate design with v points, replication r and b = v

blocks of size k = r. Patterson and Williams show in [PW75] that every two-

replicate binary design dres is uniquely determined by a symmetric equireplicate

design dsymm by taking the vertices of the incidence graph Γ(dsymm) as blocks

of the design dres and the edges of Γ(dsymm) as points of dres. The design dres

has vk points, 2v blocks, replication 2 and block size k.

Example ([WPJ76]). Let dsymm be the design with blocks being the rows of

B1 : 1 2 3

B2 : 2 3 4

B3 : 3 4 1

B4 : 4 1 2.
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The incidence graph Γ(dsymm) of dsymm is

1

2

3

4

B1

B2

B3

B4 ,

whose edges are the points of the design dres. Any two points (x, Bi) and (y, Bj)

are incident in dres if either x = y or i = j. That means, the blocks of dres are

the sets {(x, Bi)|x = 1, 2, 3, 4 and (x, Bi) ∈ E(Γ(dsymm))} for i = 1, 2, 3, 4 and

the sets {(x, Bi)|i = 1, 2, 3, 4 and (x, Bi) ∈ E(Γ(dsymm))} for x = 1, 2, 3, 4. Any

point of dres is contained in exactly two blocks, either the one corresponding to

the first or to the second coordinate.

Because the points of dres are the edges in Γ(dsymm), any two points of dres

are in either 0, 1 or 2 blocks depending on the number of vertices on which the

edges coincide. For k < v, the latter case occurs if and only if Γ(dsymm) is not

simple, that is if dsymm is not binary.

Patterson and Williams show in [PW75] that if ρ is a Laplacian eigenvalue

of dsymm, then 1±
√

1−ρ
2

are Laplacian eigenvalues of dres, proving the following

proposition.

Proposition 3.1 ([PW75]). For k = 2, a connected binary two-replicate re-

solvable incomplete block design is E-optimal among all connected binary two-

replicate resolvable designs iff the corresponding symmetric design is E-optimal

among all symmetric designs; in particular, if the corresponding symmetric de-

sign is a BIBD.

If dres is connected then its A-value A(dres) is the following function of v, k
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and A(dsymm), the A-value of dsymm ([WPJ76]):

A(dres) =
vk − 1

vk − 2v + 1 + 4(v − 1) 1
A(dsymm)

,

and this proves the following proposition.

Proposition 3.2 ([WPJ76]). A connected binary two-replicate resolvable in-

complete block design is A-optimal among all connected binary two-replicate

resolvable designs iff the corresponding symmetric design is A-optimal among

all symmetric designs; in particular, if the corresponding symmetric design is a

BIBD.

Since dsymm is symmetric and equireplicate of replication r, it follows that

Γ(dsymm) is regular of degree r. Since G(dres) is the line graph of Γ(dsymm),

Proposition 2.15 tells us that for e = |E(G(dsymm))|

κ(G(dres)) = 2e−v+1re−v−1κ(Γ(dsymm)).

The number of spanning trees of Γ(dsymm) is closely related to the number of

spanning trees of G(dsymm) as the following result by Gaffke shows.

Proposition 3.3 ([Gaf82]). Let d be a connected incomplete block design on v

points and b blocks of size k. Then

κ(Γ(d)) = kb−v+1κ(G(d)).

It follows with r = k that

κ(G(dres)) = 2e−v+1kb+e−2vκ(G(dsymm)),

proving the following corollary.
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Corollary 3.4. A connected binary two-replicate resolvable incomplete block

design is D-optimal among all connected binary two-replicate resolvable designs

iff the corresponding equireplicate (possibly non-binary) symmetric design is D-

optimal over all symmetric designs, in particular if it is a BIBD.

That means the above example of a two-replicate resolvable design is also

D-optimal. Moreover, the corollary shows that A- and D-optimality of designs

among connected binary two-replicate resolvable incomplete block designs are

equivalent. This is not true in general, there are many examples where an

A-optimal design is not D-optimal (see [Bai07]).

The following theorem shows, that we can apply these results on certain

generalized polygons. For the rest of this chapter let (s, t) 6= (1, 1).

Theorem 3.5 ([BCN89], p. 201). Let n ∈ N>0 and let (s, t) be the parameters

of a generalized n-gon. If s = 1, then n is even, say n = 2N , and the adjacency

graph of the generalized 2N-gon is the point-line incidence graph of a generalized

N-gon with parameters (t, t).

Proof. To highlight the correspondence between the adjacency and incidence

graphs of N - and 2N -gons we want to present a short proof of the theorem.

The incidence graph of GN(t, t) has diameter N and girth 2N , hence is the

adjacency graph of a generalized 2N -gon G2N(1, t) if we take every edge to

represent a line. Note that the incidence graph of GN(t, t) is bipartite, that

means that the points of G2N(1, t) can be split up into two groups such that

any two points in the same group are not on a common line. Conversely, the

adjacency graph of G2N(1, t) has diameter N and girth 2N . To show that it is

precisely the incidence graph of a generalized N -gon with parameters s = t, we

need to prove that it is bipartite. But this follows from the fact that the graph

cannot contain any odd cycles ([ADH98], p. 8).

We have mentioned before that if we have a design with block size 2, the
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adjacency graph of the dual design is the line graph of the adjacency graph.

That means, the adjacency graph of G2N(t, 1) is the line graph of the incidence

graph Γ(GN(t, t)).

Example. The generalized 2-gon G2(2, 2) has the regular complete bipartite

graph K3,3 as incidence graph. Therefore, K3,3 is the adjacency graph of a

generalized quadrangle G4(1, 2) and the line graph L(K3,3) is the adjacency

graph of G4(2, 1).

Example. The Fano plane is a generalized triangle with parameters s = 2 and

t = 2. Its incidence graph, the Heawood graph (see page 32), is the adjacency

graph of the generalized hexagon G6(1, 2). The adjacency graph of G6(2, 1) is

the line graph of the Heawood graph, which is also known as the (2, 3, 7)-Bower

graph. We can speak of ‘the’ generalized hexagon in these cases, because the

ones with parameters (1, q) and (q, 1) for any prime power q ≤ 8 are unique

([BCN89], p. 204).

For the other cases, we want to use Proposition 3.2. By [BCN89], p. 203, a

2N -gon has the parameters r = t + 1, k = s + 1 and

1. if N = 2 then v = k(st + 1) and b = (t + 1)(st + 1);

2. if N = 3 then v = k(1 + st + s2t2) and b = (1 + t)(1 + st + s2t2);

3. if N = 4 then v = k(1 + st)(1 + s2t2) and b = (1 + t)(1 + st)(1 + s2t2).

That means G2N(s, 1) satisfies the conditions of Proposition 3.2 and Corollary

3.4 for N = 2, 3, 4, and G2N(s, 1) is an A- and D-optimal design among re-

solvable designs if the corresponding GN(s, s) is A- and D-optimal among all

symmetric designs. For N = 3, we have shown earlier that the corresponding

G3(s, s) is a 2-design and is as such universally optimal. Thus we have the

following corollary.
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Corollary 3.6. The generalized hexagons with t = 1 and s > 1 are A- and

D-optimal among binary resolvable connected designs with replication r = 2.

In particular, the generalized hexagon with the (2, 3, 7)-Bower graph as ad-

jacency graph is A- and D-optimal among binary two-resolvable designs.

For N = 4, a generalized octagon G8(s, 1) is determined by a generalized

quadrangle G4(s, s). In this case we can not directly apply Proposition 3.2 and

Corollary 3.4, because we only know that G4(s, s) are A- and D-optimal among

connected binary equireplicate designs (see Proposition 2.30). This means we

have to restrict the class of two-resolvable binary designs to designs that cor-

respond to a binary symmetric design. We have seen that these are the two-

resolvable binary designs where any two points occur in at most one block.

Corollary 3.7. The generalized octagons with t = 1 and s > 1 are A- and D-

optimal among binary two-resolvable connected designs with simple adjacency

graph.
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Chapter 4

On the Algebraic Connectivity

of Regular Graphs

Throughout this chapter, let G be a simple connected regular graph on v vertices

with degree δ, where 1 < δ < v − 1. Recall that we order the eigenvalues of G

in decreasing order, that is δ = ν1(G) ≥ ν2(G) ≥ · · · ≥ νv(G).

4.1 On the Neighbourhood Graphs of Strongly

Regular Graphs

Lemma 4.1. Let G be a strongly regular graph with degree δ and parameters λ

and µ. The neighbourhood graph Gu for any vertex u ∈ V (G) is regular and has

degree λ.

Proof. Any vertex in Gu has exactly λ common neighbours with u since G is

strongly regular.

Proposition 4.2. Let G be a strongly regular graph with degree δ and parameters

λ and µ. If

λ > 1
2

(
λ− µ +

√
(λ− µ)2 + 4(δ − µ)

)
,
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then the neighbourhood graph Gu of any vertex u ∈ V (G) is connected.

Proof. Suppose there is a vertex u such that Gu is not connected and let C(Gu) be

a connected component of Gu of size γ < δ. We divide the adjacency matrix of

G into 16 block matrices Mij according to u and the vertices of C(Gu), Gu \C(Gu)

and G \ {u,Gu}. Let m̄ij denote the average row sum of Mij. Then the matrix

M = (m̄ij) is of the form

M =



0 γ δ − γ 0

1 λ 0 δ − (λ + 1)

1 0 λ δ − (λ + 1)

0 γ(δ−(λ+1))
v−(δ+1)

(δ−γ)(δ−(λ+1))
v−(δ+1)

δ − δ(δ−(λ+1))
v−(δ+1)


.

The characteristic polynomial of M is

χM(x) = (λ− x)(δ − x)

(
x2 +

(
δ(δ − 1)− λ(v − 1)

v − δ − 1

)
x +

δ(2δ − λ− v)

v − δ − 1

)

and the vector (1, 1, 1, 1)T is an eigenvector of M with eigenvalue δ. Since by

Lemma 2.19 the parameters of a strongly regular graph satisfy

µ(v − δ − 1) = δ(δ − λ− 1),

it follows that

δ(δ − 1)− λ(v − 1)

v − δ − 1
=

δ(δ − λ− 1)

(v − δ − 1)
− λ = µ− λ

and

δ
2δ − λ− v

v − δ − 1
=

δ(δ − λ− 1)

(v − δ − 1)
− δ = µ− δ.

Therefore,

χM(x) = (λ− x)(δ − x)(x2 + (µ− λ)x + µ− δ)
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and the eigenvalues of M are

δ, λ, 1
2

(
λ− µ±

√
(λ− µ)2 + 4(δ − µ)

)
.

By Theorem 2.4, the eigenvalues of M interlace the eigenvalues of the adjacency

matrix of G and it follows directly that

ν2(G) = 1
2

(
λ− µ +

√
(λ− µ)2 + 4(δ − µ)

)
≥ λ.

Corollary 4.3. Let G be a strongly regular graph with degree δ and parameters

λ and µ. If λ = ν2(G), then the size of every connected component of Gu is

divisible by λ + 1.

Proof. Since ν2(G) = 1
2

(
λ− µ +

√
(λ− µ)2 + 4(δ − µ)

)
, if λ = ν2(G) then λ =

δ−µ
µ

, that is δ = µ(λ + 1). Let u be a vertex of G and Gu the neighbourhood

graph. Now, if Gu is connected, then the size of Gu is δ which is divisible by λ+1.

Suppose Gu is not connected. Then we can divide the adjacency matrix of G into

16 block matrices Mij according to u and the vertices of a connected component

C(Gu) of Gu of size γ < δ, Gu \ C(Gu) and G \ {u,Gu}. The 4 × 4 matrix of the

average row sums of these block matrices is exactly the matrix M in the proof

of Proposition 4.2. Again, the eigenvalues of M interlace the eigenvalues of the

adjacency matrix of G. Since λ is an eigenvalue of G, the interlacing is tight.

It follows with Theorem 2.4 that all matrices Mij have constant row sums, in

particular

γ(δ − λ− 1)

v − δ − 1
∈ N.

From Lemma 2.19 it follows that

γ(δ − λ− 1)

v − δ − 1
= γ

µ

δ
=

γ

λ + 1
∈ N,
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hence γ is divisible by λ + 1.

Proposition 4.4. Let G be a strongly regular graph on (s + 1)(st + 1) vertices

with degree s(t + 1) and parameters λ = s − 1, µ = t + 1. The neighbourhood

graph Gu has at most t + 1 connected components whose size is divisible by s.

Proof. Since λ = s − 1 = ν2(G), by Corollary 4.3 the size of any connected

component of Gu is divisible by λ + 1 = s. Because Gu has s(t + 1) vertices,

there are at most t + 1 components of size s.

Example. Let t > 1. The generalized quadrangle GQ(s, t) has a strongly

regular adjacency graph with parameters satisfying the conditions in the above

proposition. For any vertex u, the neighbourhood graph Gu contains the t + 1

cliques of size s corresponding to the points (distinct from u) on the lines through

u. This is the maximal size of a clique, since the size of the largest clique is

bounded from above by the Hoffmann bound (see Proposition 2.18); in this case

for t > 1 the bound is

v
1 + ν2(G)

v − δ + ν2(G)
= v

1 + λ

v − δ + λ
= s + 1 +

s + 1

st
< s + 2.

Because Gu has exactly s(t + 1) vertices, the neighbourhood graph consists of

exactly t + 1 cliques of size s. Note that if a strongly regular graph with these

parameters has the property that Gu is a union of t + 1 cliques of size s for any

vertex u, then it is the point graph of a generalized quadrangle ([BCN89], pp.

29).
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4.2 A New Bound on the Algebraic Connectiv-

ity of Regular Graphs

Lemma 4.5. For x ∈ R≥0, 1 < δ < v − 1 and v ≥ 3

(x(v − 1)− δ(δ − 1))2 + 4(v − δ − 1)δ(v − 2δ + x) > 0.

Proof. For x ≥ 0 and 2δ ≤ v the statement is of course true.

Now, let v < 2δ and

f(x) = (x(v − 1)− δ(δ − 1))2 + 4(v − δ − 1)δ(v − 2δ + x).

The derivative of f(x) is

f ′(x) = 2
[
(v − 1)2x + δ(3(v − 1)− δ(v + 1))

]
and has root

x0 = δ

(
δ(v + 1)− 3(v − 1)

(v − 1)2

)
.

For v < 2δ and v ≥ 3 we have

δ(v + 1)− 3(v − 1) > v
2
(v + 1)− 3(v − 1)

=
v2 + v

2
− 3v + 3

=
v2 − 5v + 6

2

=
(v − 3)2 + v − 3

2

≥ 0.

Therefore, x0 > 0 and since f(x) is a quadratic polynomial with positive leading
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coefficient it follows that f(x) attains its minimum at x0. Since v > δ − 1,

f(x0) =
4vδ(v − δ − 1)3

(v − 1)2
> 0

and therefore

f(x) > 0 for all x ∈ R≥0.

Proposition 4.6. Let v ≥ 3 and let F : R≥0 → R,

F (x) =
x(v−1)−δ(δ−1)+

√
(x(v−1)−δ(δ−1))2+4(v−δ−1)δ(v−2δ+x)

2(v−δ−1)
.

Further, let G be a regular graph with degree δ. For a vertex u ∈ V (G) let Gu

denote the neighbourhood graph. If Gu is not connected, let δ̄C(Gu) denote the

average degree of the connected component C(Gu) and

ηu = max
C(Gu)

{
max

{
δ̄C(Gu), F (δ̄C(Gu))

}}
.

If Gu is connected, let δ̄u denote the average degree of Gu and

ξu = F (δ̄u).

Then

%(G) = max
u∈V (G)

{{ηu|Gu not connected } ∪ {ξu|Gu connected }}

is a lower bound for ν2(G) and therefore δ − %(G) is an upper bound for the

algebraic connectivity of G.

Proof. Case 1: Gu is connected

We divide the adjacency matrix of G into 9 block matrices Mij according to
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u and the vertices of Gu and G \ {u,Gu}. With δ̄u denoting the average degree

of Gu, the matrix of average row sums is

M =


0 δ 0

1 δ̄Gu δ − δ̄Gu − 1

0
δ(δ−(δ̄Gu+1))

v−(δ+1)
δ − δ(δ−(δ̄Gu+1))

v−(δ+1)


and has the characteristic polynomial

χM(x) = (δ − x)

(
x2 +

(
δ(δ − 1)− δ̄Gu(v − 1)

v − δ − 1

)
x +

δ(2δ − δ̄Gu − v)

v − δ − 1

)
.

The eigenvalues of M are δ and

δ̄u(v−1)−δ(δ−1)±
√

(δ̄u(v−1)−δ(δ−1))2+4(v−δ−1)δ(v−2δ+δ̄u)

2(v−δ−1)
.

Note that by Lemma 4.5 all eigenvalues of M are real. By Theorem 2.4 the

eigenvalues of M interlace the eigenvalues of the adjacency matrix of G, hence

ν2(G) ≥ δ̄u(v−1)−δ(δ−1)+
√

(δ̄u(v−1)−δ(δ−1))2+4(v−δ−1)δ(v−2δ+δ̄u)

2(v−δ−1)
= F (δ̄u).

This is true for any vertex u with connected neighbourhood graph, in particular

if the right hand side of the above inequality is maximized.

Case 2: Gu is not connected

For any connected component C(Gu) we divide the adjacency matrix of G

into 16 block matrices Mij according to u and the vertices of C(Gu), Gu \ C(Gu)

and G \ {u,Gu}. Let γ denote the size of C(Gu) and δ̄C(Gu) denote the average
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row sum of Mij. Then the matrix of average row sums is

M =



0 γ δ − γ 0

1 δ̄C(Gu) 0 δ − (δ̄C(Gu) + 1)

1 0 δ̄C(Gu) δ − (δ̄C(Gu) + 1)

0
γ(δ−(δ̄C(Gu)+1))

v−(δ+1)

(δ−γ)(δ−(δ̄C(Gu)+1))

v−(δ+1)
δ − δ(δ−(δ̄C(Gu)+1))

v−(δ+1)


and has the characteristic polynomial

χM(x) = (δ̄C(Gu) − x)(δ − x)
(
x2 +

(
δ(δ−1)−δ̄C(Gu)(v−1)

v−δ−1

)
x + δ

2δ−δ̄C(Gu)−v

v−δ−1

)
.

By Theorem 2.4 the eigenvalues of M interlace the eigenvalues of the adjacency

matrix of G, hence

ν2(G) ≥ max
{
δ̄C(Gu), F (δ̄C(Gu))

}
.

This is true for any connected component C(Gu), in particular if the right hand

side of the above inequality is maximized.

The following lemma tells us how the function F (x) in Proposition 4.6 be-

haves and what the values for ηu are in the different cases.

Lemma 4.7. Let v ≥ 3, 1 < δ < v − 1 and F : R≥0 → R,

F (x) =
x(v−1)−δ(δ−1)+

√
(x(v−1)−δ(δ−1))2+4(v−δ−1)δ(v−2δ+x)

2(v−δ−1)
.

Then

• F is increasing on R≥0

• F is strictly convex on R≥0

• if δ = 2 then

– if v = 4, F (x) ≤ x if x = 0 and F (x) > x else;
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– if v < 4, F (x) ≤ x if x ∈ [0,
√

4− v] and F (x) > x else;

– if v > 4, F (x) > x for all x ≥ 0.

• if 2 < δ < v − 1 then

– if v ≤ 2δ then

F (x) ≤ x for x ∈
[
0, 1

2
(δ − 2 +

√
(δ + 2)2 − 4v)

]

and F (x) > x else;

– if 2δ < v < 1
4
(δ + 2)2 then F (x) ≤ x for

x ∈
[
−1

2
(δ − 2−

√
(δ + 2)2 − 4v), 1

2
(δ − 2 +

√
(δ + 2)2 − 4v)

]

and F (x) > x else;

– if v = 1
4
(δ + 2)2 then

F (x) ≤ x for x = 1
2
(δ − 2)

and F (x) > x else;

– if v > 1
4
(δ + 2)2 then F (x) > x for all x ≥ 0.

Proof. Since

(x(v − 1)− δ(δ − 1))2 + 4(v − δ − 1)δ(v − 2δ + x) > 0

for 1 < δ < v−1 and x ≥ 0, and with Lemma 4.5 we can compute the derivative

of F as

F ′(x) = v−1
2(v−1−δ)

+ (v−1)((v−1)x−(δ−1)δ)+2δ(v−δ−1)

2(v−δ−1)
√

(x(v−1)−δ(δ−1))2+4(v−δ−1)δ(v−2δ+x)
.
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Suppose there exists x1 > 0 such that F ′(x1) ≤ 0, then

(v − 1)
√

(x1(v − 1)− δ(δ − 1))2 + 4(v − δ − 1)δ(v − 2δ + x1)

≤ (v − 1)((v − 1)x1 − (δ − 1)δ) + 2δ(v − δ − 1).

Squaring both sides gives

(v − 1)2(x1(v − 1)− δ(δ − 1))2 + 4(v − δ − 1)δ(v − 2δ + x1)

≤ ((v − 1)((v − 1)x1 − (δ − 1)δ) + 2δ(v − δ − 1))2.

The left hand side of the inequality is

(v−1)2[(v−1)2x2
1+2δ(3(v−1)−δ(v+1))x1+δ(6δ2+δ3−3δ(4v−3)+4(v−1)v)]

and the right hand side equals

(v − 1)2
[
(v − 1)2x2

1 + 2δ(3(v − 1)− δ(v + 1))x1

]
− δ2(3(v − 1)− δ(v + 1))2.

It follows

−4δv(δ + 1− v)3 ≤ 0,

a contradiction to δ < v − 1. Therefore, F ′(x) > 0 for all x ∈ R>0 and the map

F (x) is strictly increasing for all x ≥ 0.

The second derivative F ′′(x) is

F ′′(x) =
2vδ(δ + 1− v)2

((x(v − 1)− δ(δ − 1))2 + 4(v − δ − 1)δ(v − 2δ + x))
2
3

.

Since the numerator and denominator are strictly positive for all x ≥ 0 by

Lemma 4.5, we have F ′′(x) > 0 for all x > 0 and therefore F (x) is strictly

convex on R≥0.
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We want to solve the equation F (x) = x. This equation is satisfied if

√
(x(v − 1)− δ(δ − 1))2 + 4(v − δ − 1)δ(v − 2δ + x) = x(v− 1− 2δ)+ δ(δ− 1).

Squaring both sides and subtracting the right hand side gives

4δ(δ + 1− v)
(
x2 − (δ − 2)x− (2δ − v)

)
= 0. (4.2.1)

The equation has the solutions

1
2

(
δ − 2±

√
(δ + 2)2 − 4v

)
.

First of all we note that for v > 1
4
(δ + 2)2 and δ ≥ 2 there are no solutions of

equation 4.2.1 in R, and therefore F (x) > x for all x ∈ R≥0 in this case.

Suppose 4v ≤ (δ + 2)2. We start with the case δ = 2: here, there are no

solutions for v > 4. If v = 4, then the only solution of equation 4.2.1 is x = 0

and indeed F (0) = 0. If v < 4, then

1
2

(
δ − 2−

√
(δ + 2)2 − 4v

)
= −1

2

√
42 − 4v < 0

and the positive solution of equation 4.2.1 is
√

4− v and indeed we have

F (
√

4− v) =
√

4− v.

Now let δ > 2. If v ≤ 2δ, then (δ + 2)2 − 4v ≥ (δ − 2)2 and therefore

1
2

(
δ − 2−

√
(δ + 2)2 − 4v

)
≤ 0.
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Hence, the positive solution of equation 4.2.1 is

1
2

(
δ − 2 +

√
(δ + 2)2 − 4v

)
.

If 2δ < v < 1
4
(δ + 2)2, then (δ + 2)2 − 4v < (δ − 2)2 and therefore

1
2

(
δ − 2−

√
(δ + 2)2 − 4v

)
> 0.

Hence, the positive solutions of equation 4.2.1 are

1
2

(
δ − 2−

√
(δ + 2)2 − 4v

)
and 1

2

(
δ − 2 +

√
(δ + 2)2 − 4v

)
.

If v = 1
4
(δ + 2)2, then

√
(δ + 2)2 − 4v = 0 and the only solution to equation

4.2.1 is x = 1
2
(δ − 2).

It remains to show that 1
2

(
δ − 2±

√
(δ + 2)2 − 4v

)
are solutions to the

equation F (x) = x. In fact, we show that 1
2
(δ − 2 + y) are solutions to F (x) = x

for y ∈ {±
√

(δ + 2)2 − 4v}. As in Lemma 4.5, let

f(x) = (x(v − 1)− δ(δ − 1))2 + 4(v − δ − 1)δ(v − 2δ + x).

Then

4f(1
2
(δ − 2 + y)) = (v − 1)2y2 + 2(v − δ − 1)(v(δ − 2) + δ + 2)y

+(2 + 5δ + 2δ2)2 + (4 + δ(δ + 12))v2

−2(4 + 16δ + δ2(2δ + 15))v

= (v − 1− 2δ)2y2 + 2(v − δ − 1)(v(δ − 2) + δ + 2)y

+4δ(v − 1− δ)y2 + (v(δ − 2) + δ + 2)2

−4δ(v − δ − 1)(δ + 2)2 − 4v)
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= ((v − 1− 2δ)y + v(δ − 2) + δ + 2)2

+4δ(v − 1− δ)(y2 − (δ + 2)2 − 4v)).

It follows for y ∈ {±
√

(δ + 2)2 − 4v} that

4f(1
2
(δ − 2 + y)) = [(v − 1− 2δ)y + v(δ − 2) + δ + 2]2,

and therefore

F
(

1
2
(δ − 2 + y)

)
=

1
2
(v − 1)(δ − 2 + y)− δ(δ − 1) +

√
f(1

2
(δ − 2 + y))

2(v − δ − 1)

=
1
2
(v − 1)(δ − 2 + y)− δ(δ − 1) + 1

2
((v − 1− 2δ)y + v(δ − 2) + δ + 2)

2(v − δ − 1)

=
1
2
(v − 1)(δ − 2 + y)− δ(δ − 2)− δ − δy + 1

2
((v − 1)y + vδ − 2v + δ + 2)

2(v − δ − 1)

=
1
2
(v − 1)(δ − 2 + y)− δ(δ − 2)− δ − δy + 1

2
((v − 1)(δ − 2 + y) + 2δ)

2(v − δ − 1)

=
(v − 1− δ)(δ − 2 + y)− δ + 1

2
(2δ)

2(v − δ − 1)

= 1
2
(δ − 2 + y) .

Since F is increasing and convex on R≥0, for solutions x1 ≤ x2 of F (xi) = xi for

i = 1, 2, it follows F (x) ≤ x for x ∈ [x1, x2] and F (x) > x else. For v ≤ 2δ there

are solutions x1 < 0 and x2 ≥ 0 for F (x) = x. But since F is convex, it follows

that F (x) ≤ x for x ∈ [0, x2].
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4.3 A Class of E-optimal SRGDs

Theorem 4.8. Let v ≥ 3. Let G be a strongly regular graph with degree δ and

parameters λ and µ such that

λ ≥ 1
2
(λ− µ +

√
(λ− µ)2 + 4(δ − µ)).

If λ minimizes the average degree of the connected components of all neighbour-

hood graphs in a class of δ-regular graphs on v vertices, then G maximizes the

algebraic connectivity among all graphs in that class.

Proof. Let u ∈ V (G). Any connected component of Gu has average degree λ,

since any neighbour of u has exactly λ common neighbours. With Proposition

4.6 it follows that for all u ∈ V (G)

ξu =
λ(v−1)−δ(δ−1)+

√
(λ(v−1)−δ(δ−1))2+4(v−δ−1)δ(v−2δ+λ)

2(v−δ−1)

= 1
2
(λ− µ +

√
(λ− µ)2 + 4(δ − µ))

is a lower bound for the second largest eigenvalue of G, and in fact we have

equality. Let F : R≥0 → R,

F (x) =
x(v−1)−δ(δ−1)+

√
(x(v−1)−δ(δ−1))2+4(v−δ−1)δ(v−2δ+x)

2(v−δ−1)
.

From Lemma 4.7 follows that F (x) is increasing for all x ≥ 0 and if λ is the

minimal average degree of the neighbourhood graph of any δ-regular graph in

the class, then F (x) attains its minimum at x = λ among all regular graphs in

the class. Note, that F (λ) = ν2(G) ≤ λ by assumption.

Let G ′ be any δ-regular graph and %(G ′) the lower bound for the second largest

eigenvalue ν2(G ′) of G ′ from Proposition 4.6. Then %(G ′) is either an average

degree x ≥ λ or %(G ′) = F (x). Since x ≥ λ ≥ F (λ) and since F (x) ≥ F (λ) for
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all x ≥ λ, the eigenvalue ν2(G ′) is at least as large as F (λ) = ν2(G), the second

largest eigenvalue of G. Therefore, G maximizes δ − ν2(G) among all δ-regular

graphs in the class.

Corollary 4.9. Suppose there exists a strongly regular graph G on v ≥ 3 vertices

with degree δ and parameters λ, µ. If there exist an SRGD with underlying graph

G, then its adjacency matrix and the adjacency matrix of any competing RGD

are the adjacency matrices of G and of a δ-regular simple graph shifted by the

matrix a(Jv−Iv) for some a ∈ N and this preserves the order of the eigenvalues.

Therefore, if λ and µ satisfy the conditions of Theorem 4.8, then

• if there exists an SRGD with underlying graph G with block size k ≤ λ+2,

then it is E-optimal among all RGDs on v points and block size k whose

underlying regular graph has no neighbourhood graph whose minimum av-

erage degree is in the interval [0, λ);

• if an SRGD for block size k = λ + 2 with underlying graph G exists, then

it is E-optimal among all RGDs.

In [CB91], R. A. Bailey and C.-S. Cheng show Ψf -optimality of SRGDs

whose adjacency matrix has eigenvalue −r over Dv,b,k (see also Theorem 2.30).

The above corollary recovers these cases for E-optimality: if we have the equality

λ = ν2(G) in Theorem 4.8, then λ = δ−µ
µ

. That means δ = µ(λ + 1) and the

adjacency matrix of G has eigenvalue µ. For k = λ + 2 and r = −µ, these

are exactly the SRGDs in the result of Bailey and Cheng. The above corollary

shows that for k = λ + 2 the SRGD is E-optimal even if r is not an eigenvalue

of G. The first statement of Corollary 4.9 is not trivial either. There can be

different reasons why the neighbourhood graph of any competing graph has not

a smaller average degree than λ. The next proposition is a good example.

77



Proposition 4.10. Let α, m ∈ N such that α ≥ 2 and αm ≥ 4. The complete

regular multipartite graph Km,m,...,m with α parts of size m maximizes the the

algebraic connectivity among all (α− 1)m-regular graphs on αm vertices.

Proof. The graph Km,m,...,m is a strongly regular graph of degree (α− 1)m and

parameters

λ = (α− 2)m, µ = (α− 1)m.

Since

λ > 0 = 1
2
(λ− µ +

√
(λ− µ)2 + 4(δ − µ)),

the complete regular multipartite graph satisfies the conditions of Theorem 4.8.

All we need to show is that for any graph G on v = αm vertices and degree

(α− 1)m and for any vertex u ∈ V (G) the degree of any vertex in Gu is at least

(α− 2)m.

Suppose there is a vertex w in Gu that has degree δu(w) < (α − 2)m in Gu.

Then w has

δ − δu(w) > (α− 1)m− (α− 2)m = m

neighbours in G \ Gu. But Gu contains already δ = v − m vertices, and w can

have at most m neighbours in G \ Gu.

As a corollary we get the following result by Takeuchi who proved optimality

among Dv,b,k ([Tak61]).

Corollary 4.11. Let v ≥ 4. If an SRGD with block size 2 whose underlying

graph is a complete regular multipartite graph exists, then it is E-optimal among

RGDs.

Proof. The adjacency matrix of any competing RGD is the adjacency matrix of

a regular simple graph shifted by the matrix a(Jv − Iv) for some a ∈ N and this
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preserves the order of the eigenvalues. The proposition follows from Proposition

4.10.

Recall, that we denote by T (n+1) the triangular graph, which is a a strongly

regular graph on n(n+1)
2

points, degree 2(n − 1) and parameters λ = n − 1 and

µ = 4 (see page 19). The vertices correspond to the subsets of {1, . . . , n + 1}

of size 2 any two of which are joined by an edge if they have a non-empty

intersection.

Proposition 4.12. For n > 2, the largest clique in T (n+1) has size n and any

vertex is contained in exactly two maximal cliques.

Proof. All subsets of {1, . . . , n + 1} of size 2 with a common subset of just one

element correspond to a clique of size n. Therefore, any vertex lies in at most

two cliques of at least size n. The second largest eigenvalue of G is ν2(G) = n−2.

The size of a clique is bounded by the Hoffman bound (Proposition 2.18)

v
1 + ν2(G)

v − δ + ν2(G)
= v

n− 2

v − δ + n− 2
= n

n− 1

n− 1
= n

and therefore any vertex lies in exactly two cliques of size n.

Proposition 4.13. If an RGD on n(n+1)
2

points, block size n and replication 2

with underlying graph T (n + 1) exists, then it is E-optimal among RGDs.

Proof. The adjacency matrix of any competing RGD is the adjacency matrix of

a regular simple graph shifted by the matrix a(Jv − Iv) for some a ∈ N and this

preserves the order of the eigenvalues. Since

λ > n− 2 = 1
2
(λ− µ +

√
λ− µ)2 + 4(δ − µ)),

the triangular graph satisfies the conditions of Theorem 4.8. The proposition

follows with Proposition 4.12 and Corollary 4.9.
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In fact, this result is not surprising. The triangular graph is the line graph

of the complete graph. The complete graph is a BIBD with block size 2, hence

the design in the above proposition with blocks being all sets of size 2 with a

common element is just the dual design of a BIBD and is E-optimal among all

equireplicate binary connected designs by Theorem 2.26.

The triangular graph is also the adjacency graph of a design with block size

3 and replication n− 1 where the blocks correspond to sets of size 3. Since the

map F (x) in the proof of Theorem 4.8 is increasing for x > 0, if there is a regular

graph design where the maximal average degree of the connected components

of the neighbourhood graphs is strictly less than n−1, this design will beat any

existing design with the triangular graph as adjacency graph. In fact, we give a

design that is better for n = 5 in Section 6.1.2.

Proposition 4.14. Let (s+1)(st+α)
α

≥ 4. If an RGD on (s+1)(st+α)
α

vertices, block

size s + 1 and replication t + 1 whose underlying graph is the adjacency graph

of a partial geometry with parameters s, t, α exists, then it is E-optimal among

RGDs.

Proof. The adjacency graph of a partial geometry is a strongly regular graph on

(s+1)(st+α)
α

vertices and degree s(t + 1) with parameters λ = s− 1 + t(α− 1) and

µ = (t+1)α (see [CvL91], p. 92). The eigenvalues are s(t+1), s−α and −(t+1).

Therefore, the parameters of a partial geometry satisfy λ ≥ s− α,−(t + 1) and

we can apply Theorem 4.8. It follows that the partial geometry maximizes

the algebraic connectivity among all graphs with minimum average degree λ

of the neighbourhood graphs. In particular, the partial geometries give rise to

E-optimal designs with block size s + 1.

Note that the above proposition is again a special case of Theorem 2.30 since

−(t + 1) = −r is an eigenvalue of the adjacency graph of the partial geometry.
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Chapter 5

The Generalized Hexagon

Recall that a geometry G = (Ω1, Ω2, I) is a generalized hexagon if its incidence

graph G(G) is a simple connected bipartite graph, the degree of any vertex is at

least 2, diam(G(G)) = 6 and girth(G(G)) = 12. Every line in Ω2 contains exactly

s+1 points for some s ∈ N>0 and every point in Ω1 lies on exactly t+1 lines for

some t ∈ N>0. In these terms, a generalized hexagon is a 1-(v, s+1, t+1)-design

where

v = |Ω1| = s3t2 + s2t(t + 1) + s(t + 1) + 1.

The generalized hexagon is a binary, equireplicate block design with

b = (t+1)(s2t2+st+1) blocks of size k = s+1 and replication number r = t+1.

The adjacency matrix A(G) = (aij) is given by

aij =


0 if i = j,

1 if points i and j are on the same line,

0 else.

Our aim is to understand the adjacency graphs of the designs in the class of

the generalized hexagon and for this a good understanding of the structure of

the adjacency graph is very important. We want to compute the spectrum of
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the generalized hexagon. This has been done in [BCN89], p. 203, using results

on distance regular graphs, but we want to give a proof that gives an insight in

the incidence relation.

Proposition 5.1 ([BCN89], p. 203). The adjacency graph of the generalized

hexagon is a distance regular graph of diameter 3 with intersection numbers

α0 = 0 β0 = s(t + 1) γ0 = 0

α1 = s− 1 β1 = st γ1 = 1

α2 = s− 1 β2 = st γ2 = 1

α3 = (t + 1)(s− 1) β3 = 0 γ3 = t + 1.

The eigenvalues of the adjacency matrix A(G) of the generalized hexagon with

parameters s, t ≥ 1 are

−t− 1, s− 1−
√

st, s− 1 +
√

st and s(t + 1).

Proof. Let A(G) = (aij). We start by computing the il-entry of A(G)2:

v∑
j=1

aijajl =


∑v

j=1 a2
ij if i = l,∑v

j=1,j 6=i,l aijajl else

=



s(t + 1) if i = l,

s− 1 if i and l are on the same line,

1 if dist(i, l) = 2

0 else.

It follows that

A(G)2 = (s− 1)A(G) + s(t + 1)Iv + X,
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where the ij-entry xij of the matrix X is equal to 1 if and only if the point j is

at distance 2 from i and equals 0 anywhere else for all i, j ∈ {1, . . . , v}. Hence

A(G)3 = (s− 1)A(G)2 + s(t + 1)A(G) + XA(G).

The il-entry of the product XA(G) is

v∑
j=1

xijajl =


∑v

j=1 xijaji if i = l,∑v
j=1,j 6=i,l xijajl else.

For fixed i, either xij = 0 or aij = 0 for all j ∈ {1, . . . , v} and therefore∑v
j=1 xijaji = 0 for i = l. If i and l lie on the same line, the second row

equals the number of vertices j that are at distance 2 from i and can be reached

via l. There are st such vertices. Suppose l is at distance 2 from i and let iml

be the path of length 2 from i to l. Then for every point j on the same line as m

and l, the product xijajl equals 1 for every j 6= m, l and 0 for all other j 6= m, l.

Therefore,
∑v

j=1,j 6=i,l xijajl = s−1 in this case. If l is not at distance 2 from i and

does not lie on the same line as i, then l has to be at distance 3 from i. In this

case the sum
∑v

j=1,j 6=i,l xijajl equals the number of vertices j that are at distance

2 from i and are on a path from i to l. Because the adjacency graph has girth

6, the s(t+1) points at distance 1 from i and the s2t(t+1) points at distance 2

from i are distinct points. Any point at distance 2 from i has st neighbours that

are not neighbours of i. Therefore, there are st(s2t(t + 1)) (not distinct) points

at distance 3 from i. Since there are v = s3t2 + s2t(t + 1) + s(t + 1) + 1 points

in total, there must be t + 1 different paths from i to any point l at distance 3.
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Therefore,
∑v

j=1,j 6=i,l xijajl = t + 1 in this case. Hence

v∑
j=1

xijajl =



0 if i = l,

st if i and l are on the same line,

s− 1 if i and l are at distance 2,

t + 1 else

and therefore

A(G)3 = (s−1)A(G)2+(s(t+1)+st−t−1)A(G)+(t+1)Jv+(s−2−t)X−(t+1)Iv.

Replacing X by A(G)2 − (s− 1)A(G)− s(t + 1)Iv yields

A(G)3 = (2s− t− 3)A(G)2 − (s2 − 4s− 3st + 2t + 3)A(G)

+(t + 1)Jv − (s2 − 2s− st + 1)(t + 1)Iv.

The matrix Jv has the vector (1, . . . , 1)T as an eigenvector with eigenvalue v.

The row sum of A(G) is s(t + 1) and therefore, the vector (1, . . . , 1)T is an

eigenvector of A(G) with eigenvalue s(t + 1). All other eigenvalues of Jv are 0

and any eigenvalue ν(A(G)) not corresponding to the vector (1, . . . , 1)T of A(G)

satisfies the equation

x3 = (2s− t− 3)x2 − (s2 − 4s− 3st + 2t + 3)x− (s2 − 2s− st + 1)(t + 1).

The solutions of this equation are

ν(A(G))3 = −(t + 1), ν(A(G))1,2 = s− 1±
√

st.
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Proposition 5.2 ([BCN89], p.203). The spectrum of the adjacency matrix A(G)

of the generalized hexagon with parameters s, t ≥ 1 is

Spec(A(G)) = ((−t− 1)m0 , (s− 1−
√

st)m1 , (s− 1 +
√

st)m2 , (s(t + 1))1)

where

m0 =
vs3

s3 + s2(t + 1) + st(t + 1) + t2
,

m1 =
1
2
st(1 + t)v

s(t− 1)2 + t(s− 1)2 + 3st− (s− 1)(t− 1)
√

st

and

m2 =
1
2
st(1 + t)v

s(t− 1)2 + t(s− 1)2 + 3st + (s− 1)(t− 1)
√

st
.

Proof. We follow [BCN89], and compute the multiplicities by using Proposition

2.21 and need the following parameters and polynomials:

h0 = 1, h1 = s(t + 1), h2 = s2t(t + 1), h3 = s3t2

and

ω2(x) = x2 − (s− 1)x− s(t + 1),

ω3(x) = x3 − 2(s− 1)x2 − (2st + 3s− s2 − 1)x + (s2 − s)(t + 1),

ω4(x) = (x− (s− 1)(t + 1))ω3(x)− st(t + 1)ω2(x).

We can check now our calculations above, since the eigenvalues of the adjacency

graph are the zeros of ω4(x), which indeed are

−(t + 1), s(t + 1), s− 1±
√

st
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with multiplicities

m(−(t + 1)) =
vs3

s3 + s2(t + 1) + st(t + 1) + t2
,

m(s(t + 1)) =
v

s3t2 + s2t(t + 1) + s(t + 1) + 1
= 1

and

m(s− 1±
√

st) =
1
2
st(1 + t)v

s(t− 1)2 + t(s− 1)2 + 3st± (s− 1)(t− 1)
√

st
.

Note that Theorem 2.44 states that either the product st is a square or

(s− 1)(t− 1) = 0.

Proposition 5.3. Any equireplicate binary connected design in the class of the

Generalized Hexagon has at least 3 distinct non-trivial Laplacian eigenvalues.

Proof. Let d ∈ Dv,b,s+1 where v = s3t2 + s2t(t + 1) + s(t + 1) + 1 and b =

(t + 1)(s2t2 + st + 1) and suppose d has only one distinct non-zero Laplacian

eigenvalue. As d is equireplicate, the adjacency graph has two distinct eigenval-

ues, hence must be a complete graph on v vertices ([YYY07]). Then the degree

of each vertex is v − 1, a contradiction.

Now suppose, d has two distinct Laplacian eigenvalues other than 0. Be-

cause d is equireplicate, the adjacency matrix A(d) has two distinct eigenvalues

other than δ. Then there exists a monic polynomial h(x) of degree 2 such that

h(A(d)) = βJv for some β ∈ N. By Lemma 2.6 the ij-entry A(d)2 is the number

of walks of length 2 between the vertices i and j. Hence, the adjacency graph

G(d) has diameter 2. Let u be a point in d. There are less than s(t + 1) dis-

tinct points at distance 1 and less than st2(t + 1) distinct points at distance

2 from u. As the graph has diameter 2, it follows that there are less than

s(t + 1) + st2(t + 1) + 1 distinct points in total, a contradiction.
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Proposition 5.4. Suppose (s, t) 6= (1, 1). Any equireplicate binary connected

design in the class of the generalized hexagon with exactly 3 distinct non-trivial

Laplacian eigenvalues satisfying the condition

(*) for any vertex u there is no block that contains only vertices that are at

distance 3 from u in G(d)

has a distance regular adjacency graph that allows the intersection numbers of

the generalized hexagon.

Proof. Let d be a design satisfying all conditions of the proposition and let

A(d) be its adjacency matrix. Since A(d) has three distinct eigenvalues other

than s(t + 1), then there exists a monic polynomial h(x) of degree 3 such that

h(A(d)) = βJv for some β ∈ N. By Lemma 2.6 the ij-entry A(d)3 is the number

of walks of length 3 between the vertices i and j. If two points are at distance

3, then the corresponding entry of A(d)2 and A(d) equals 0. Therefore, β equals

the number of paths between any two points at distance 3.

Let u be a vertex in G(d). As d satisfies the condition (*), any of the t + 1

blocks containing point w at distance 3 from u contains at least one point at

distance 2 from u. Hence, β ≥ t + 1. Let X be the set of vertices of G(d) at

distance 1 or 2 from u that can be reached via at least 2 paths of length at

most 2. Let m ≥ 1 denote the minimum number of paths of length 2 to such

points. Then there are at most s2t(t + 1) − |X | vertices at distance 2 from u.

Vertices at distance 3 from u can be reached via vertices at distance 2 that either

allow exactly 1 or at least m paths of length 2 to u. In the first case, there can

be reached at most s3t2(t + 1) − mst|X | (not distinct) vertices, because every

vertex reached via one of the vertices in X at distance 2 has at least m paths

going back to the starting vertex u. Via these other vertices in X there can be

γ vertices reached at distance 3 for some integer γ ≤ st|X |. In total, there are
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at most

s3t2(t + 1)−mst|X |+ γ

(not distinct) vertices at distance 3. Hence,

v ≤ 1 + s(t + 1) + s2t(t + 1)− |X |+ s3t2(t + 1)−mst|X |+ γ

β
.

With

v = s3t2 + s2t(t + 1) + s(t + 1) + 1

it follows

s3t2 + |X | ≤ s3t2(t + 1)−mst|X |+ γ

β

and therefore

β ≤ s3t2(t + 1)−mst|X |+ γ

s3t2 + |X |

= t + 1− (t + 1 + mst)|X | − γ

s3t2 + |X |
.

For |X | > 0, it follows (t + 1 + mst)|X | > st|X | ≥ γ and therefore b < t + 1,

a contradiction. Hence, |X | = γ = 0 and β = t + 1, so G(d) contains no closed

paths of length 3 or 4. If there were |X | vertices at distance 2 from u that

can also be reached by a path of length 3 starting at u, then there are at most

s3t2(t + 1)− |X | (not distinct) points at distance 3. With the same arguments

as above it follows that

β ≤ t + 1− |X |
s3t2

,

a contradiction for |X | > 0.

Overall, G(d) contains no closed paths of length 3, 4 or 5 and is distance

regular with the same intersection numbers as the generalized hexagon.

Note that a distance regular graph with the same intersection numbers as
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the generalized hexagon is not necessarily a generalized hexagon, see [BCN89],

p.205.

Corollary 5.5. Any equireplicate binary connected design satisfying the con-

ditions of Proposition 5.4 has the same Laplacian spectrum as the generalized

hexagon.

Proof. Follows directly from the fact that the eigenvalues and their multiplicities

of the adjacency graph are uniquely determined by the intersection numbers

(Theorem 2.21).

For a discussion of A- and D-optimality of the generalized hexagon see Sec-

tion 8.5.4 in Chapter 8.
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Chapter 6

Truncations of the Projective

Space over a Finite Field and a

related Incidence Structure

For i ∈ {1, . . . , n}, let PGi(n, q) denote the set of i-dimensional subspaces of the

vector space V and let PG(n, q) be the corresponding projective space, that is

the geometry

PG(n, q) = (PG1(q, n), . . . , PGn(q, n),≤).

6.1 Truncations of a related Incidence Struc-

ture

Before we look at the truncations of the projective space, we want to start with

a substructure that is easier to handle. For this section, let E = {E1, . . . , En+1}

be a fixed basis of V . Let Σi ⊂ PGi(n, q) denote the set of all subspaces of

dimension i that allow a basis that is a proper subset of E . The substructure

GE
n = (Σ1, . . . , Σn, I)
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of PG(n, q) is a geometry of rank n. For 1 ≤ i < j ≤ n any two elements Ui ∈ Σi

and Uj ∈ Σj are incident if and only if there is a permutation π ∈ Sn+1 such

that

Ui = 〈Eπ(1), . . . , Eπ(i)〉 ⊂ 〈Eπ(1), . . . , Eπ(i), Eπ(i+1), . . . , Eπ(j)〉 = Uj.

For a fixed basis E , the only information that is needed to study this geometry

are therefore the indices of the basis vectors and GE
n is isomorphic to the geom-

etry G(n) = (Ω1, . . . , Ωn,⊆) from Example 2.7 where Ωi is the set of all subsets

of {1, . . . , n + 1} of size i for i = 1, . . . , n.

We want to study the rank-2 truncations

Tri,j(n) = (Ωi, Ωj, I)

for 1 ≤ i < j ≤ n of G(n). The adjacency graph of Tri,j(n) has all subsets of

{1, . . . , n + 1} of size i as points and any two are adjacent if they are contained

in a set of size j. This is equivalent with the subsets of size i meeting in a subset

of size ≥ max{0, 2i− j}. If j = i+1, the truncation is well-known: the Johnson

graph J(n + 1, i) has the set of all i-subsets of {1, . . . , n + 1} as vertex set and

two sets are adjacent if they intersect in a set of size i − 1. We will need the

following lemma.

Lemma 6.1 ([BCN89], p. 255). The graphs J(n + 1, i) and J(n + 1, n + 1− i)

are isomorphic.

For any i ∈ {2, . . . , n}, the notion of the Johnson graph can be extended

to the generalized Johnson graph J(n + 1, i, l) with the sets of size i as vertex

set any two of which are adjacent if they meet in a set of size i − l, for l =

0, . . . , i. If i ≤ j
2
, then max{0, 2i − j} = 0. The adjacency graph of Tri,j(n)

has the generalized Johnson graphs J(n + 1, i, l) for l = max{0, 2i− j}, . . . , i as
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subgraphs. Moreover, the edge set of the adjacency graph G of Tri,j(n) is the

disjoint union of the edge sets of the generalized Johnson graphs:

E(G) =
⋃̇i

l=max{0,2i−j}
E(J(n + 1, i, l)).

This means we can colour the edges of G with i − max{0, 2i − j} + 1 colours

according to which generalized Johnson graph they correspond.

Optimality of the Tr1,i(n)- and Trj,n(n)-truncations

Lemma 6.1 gives the following proposition for i = 2, but we want to prove it

here for all i ≥ 2.

Proposition 6.2. Let i ∈ {2, . . . , n}. The truncation Trn−i+1,n(n) is isomorphic

to Tr∗1,i(n), the dual of Tr1,i(n).

Proof. The dual of Tr1,i(n) has the subsets of size i as points and any two points

are adjacent if they intersect in a set of size ≥ 1.

Consider the map φ : Ωi → Ωn−i+1 where for a set J ∈ Ωi of size i gets

mapped to its complement φ(J) = {1, . . . , n + 1} \ J . The map φ defines a

bijective map Φ : Tr∗1,i(n) → Trn−i+1,n(n) given by the action of φ on the points

of Tr∗1,i(n). Let J ′ ∈ Ωi be a set such that |J∩J ′| ≥ 1. Then J∩J ′ 6⊂ φ(J)∩φ(J ′)

and therefore |φ(J)∪ φ(J ′)| ≤ n + 1− |J ∩ J ′| ≤ n and φ(J) and φ(J ′) are both

contained in a set of size n and Φ is an isomorphism of block designs.

Proposition 6.3. Let i ∈ {2, . . . , n}. The truncations Tr1,i(n) of the geometry

G(n) are universally optimal among all designs (binary or not) on n + 1 points,

replication
(

n+1
i

)
and block size i.

Proof. The truncation Tr1,i(n) is a binary equireplicate block design on n + 1

points. Since any two points are contained in λi =
(

n+1
i−2

)
subsets of size i,
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the truncation is a 2-(n + 1, i, λi)-design. With Theorem 2.26 the proposition

follows.

Corollary 6.4. Let i ∈ {1, . . . , n− 1}. The truncations Tri,n(n) are optimal on

the Φp-criterion among all equireplicate designs.

Proof. This follows directly from Proposition 6.2, Proposition 6.3 and Proposi-

tion 2.31.

The Truncation Tr2,3(n)

Proposition 6.5. The adjacency graph of Tr2,3(n) and the adjacency graph of

Tr∗1,2(n) are isomorphic.

Proof. Two points of the design Tr2,3(n), that is two sets of size 2, are adjacent

if they are contained in a set of size 3. This is the case if and only if they meet

in a set of size 1. On the other hand, in the design Tr∗1,2(n) the points are the

sets of size 2 and two of them are adjacent if and only if they share the same

set of size 1. Hence, sets of size 2 are adjacent in Tr2,3(n) if and only if they are

adjacent in Tr1,2(n).

The adjacency graph of Tr2,3(n) is the triangular graph T (n+1). We already

know that this graph is the line graph of the complete graph Kn+1 which is a

binary 2-(n + 1, 2, 1)-design and as such universally optimal (Theorem 2.26).

As the dual design, the triangular graph is A-, D- and E-optimal among all

binary equireplicate designs on n(n+1)
2

points, block size n and replication 2 by

Proposition 2.31.

John and Mitchell found for n = 4 an A- and D-better design for block size

2 and 3 ([JM77]). But by the above discussion, the adjacency graph of Tr2,3(n)

is also the adjacency graph of an optimal design for block size 4. What can we

say about other block sizes for n > 4? Proposition 4.12 gives us n as a bound
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on the maximal block size for a design with adjacency graph T (n + 1) if n > 2.

For n = 5, the Laplacian spectrum of the triangular graph is (01, 65, 109), the D-

value is 518, 400, 000, 000×15 and the A-value is 105
13

. A pair (r, k) of replication

and block size is feasible, if 8 = r(k − 1), that is k = 2, 3 or 5. For k = 2, we

found the following graph that beats T (6) on the A- and D-criteria.

The Laplacian spectrum of this graph is (01, 73, 86, 94, 151), the D-value is

589, 934, 886, 912 × 15 and the A-value is 17640
2129

. For block size 3, the following

design ([Bai]) beats T (6) on all three criteria.

00 11 22 01 12 23 02 13 24 03 14 20 04 10 21

00 12 24 01 13 20 02 14 21 03 10 22 04 11 23

00 13 21 01 14 22 02 10 23 03 11 24 04 12 20

00 14 23 01 10 24 02 11 20 03 12 21 04 13 22

The Laplacian spectrum of this design is (01, 78, 104, 122), the D-value is

553, 420, 896, 000 × 15 and the A-value is 2940
359

. For block size 5 the graph is

again the adjacency graph of the dual of a 2-design and as such optimal among

equireplicate designs.
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In the case of n = 7, the triangular graph has degree 12. The Laplacian

spectrum of T (8) is (01, 87, 1420), the A-value is 504
43

and the D-value is

6, 266, 608, 900, 058, 816, 862, 941, 609, 984 × 28. A pair (r, k) of replication and

block size is feasible, if 12 = r(k − 1), that is k = 2, 3, 4 or 7. For block size 2,

the graph obtained from the complete bipartite graph K14,14 by deleting seven

disjoint 4-cycles has Laplacian spectrum (01, 106, 1214, 146, 241), the A-value is

22680
1879

and the D-value is 8, 286, 265, 971, 330, 338, 783, 232, 000, 000× 28.

For block size 3, the graph is the adjacency graph of Tr2,3(7). We do not

know whether this design is optimal or not. Because T (8) has already 28 vertices

there is no hope of doing any calculations with the computer. For block size 4

there is no design with adjacency graph T (8) (tested with the DESIGN package

in GAP). For block size 7, the graph T (8) is the adjacency graph of the dual of

a BIBD.

With the triangular graph we have found a graph that, depending on how

we partition the neighbours of a vertex into cliques, gives a non-optimal or an

optimal design.

Remark 6.6. Since J(5, 3) ' J(5, 2) = T (5) the Johnson graph will not be

optimal for all block sizes and all v, i.

6.2 The Truncations of the Projective Space

over a Finite Field

Before we can study the truncations of the projective space PG(n, q) we will

need the following results.

Theorem 6.7 ([Hir79], p.65). Let i ∈ {1, . . . , n}.

1.

|PGi(n, q)| = (qn+1 − 1)(qn+1 − q) . . . (qn+1 − qi−1)

(qi − 1)(qi − q) . . . (qi − qi−1)
.
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2. The number of j spaces through an i space for 1 ≤ i < j ≤ n is

∏j−i+1
l=n−i(q

l − 1)∏n−j
l=1 (ql − 1)

.

Corollary 6.8. The projective space PG(n, q) contains qn+1−1
q−1

points,

(qn+1−1)(qn−1)
(q2−1)(q−1)

lines and (qn+1−1)(qn−1)(qn−1−1)
(q3−1)(q2−1)(q−1)

planes.

Let i ∈ {1, . . . , n} and U1, U2 ∈ PGi(n, q). The smallest subspace of V that

contains both U1 and U2 is the sum U1 +U2 of dimension j = 2i−dim(U1∩U2).

Proposition 6.9. Let i ∈ {1, . . . , n} and U1, U2 ∈ PGi(n, q) and let j =

2i− dim(U1 ∩ U2).

There are

|PGn−j−1(n− i− 1, q)| = (qn−i − 1)(qn−i − q) . . . (qn−i − qn−j−2)

(qn−j−1 − 1)(qn−j−1 − q) . . . (qn−j−1 − qn−j−2)

elements of PGj(n, q) that contain both U1 and U2

Proof. This follows directly from Theorem 6.7.

For 1 ≤ i < j ≤ n

Tri,j(n, q) = (PGi(n, q), PGj(n, q), I)

denotes the truncation containing all elements of PGi(n, q) and PGj(n, q). In

the case that j = i + 1, the truncation is also called a Grassmannian.

The follwing proposition is known for i = 2, see for example [BCN89], p.

268, but we want to prove it here for all i ≥ 2.

Proposition 6.10. Let i ∈ {2, . . . , n}. The truncation Trn−i+1,n(n, q) is iso-

morphic to Tr∗1,i(n, q), the dual design of Tr1,i(n, q).
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Proof. Consider the map φ : PGi(n, q) → PGn−i+1(n, q), where for a subspace

Ui ∈ PGi(n, q) the image φ(Ui) ∈ PGn−i+1(n, q) is defined to be the n − i + 1-

dimensional space Un−i+1 with

Ui ⊕ Un−i+1 = V .

The map φ defines a map Φ from the dual design Tr∗1,i(n, q) of Tr1,i(n, q) to

Trn−i+1,n(n, q) given by the action of φ on PGi(n, q). We want to show that Φ

is an isomorphism. Since dimV = n + 1 the map Φ is bijective. Now, suppose

Ui and U ′
i meet in a subspace U with dim U ≥ 1. It follows for φ(Ui) = Un−i+1

and φ(U ′
i) = U ′

n+i−1 that U 6⊂ Un−i+1 ∩ U ′
n−i+1. Therefore,

dim(Un−i+1 ∪ U ′
n−i+1) = dimV − dim U ≤ n

and Un−i+1 and U ′
n−i+1 are both contained in a common n-dimensional space.

Hence Φ is preserving the adjacency relation.

Optimality of Tr1,j(n, q) and Tri,n(n, q)

Let 1 < j ≤ n. The truncation

Tr1,j(n, q) = (PG1(n, q), PGj(n, q), I)

has vj = qn+1−1
q−1

points and any point is contained in

rj =
(qn − 1)(qn − q) . . . (qn − qj−2)

(qj−1 − 1)(qj−1 − q) . . . (qj−1 − qj−2)

elements in PGj(n, q).
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An element in PGj(n, q) contains

kj =
qj − 1

q − 1

points and any two points are contained in

λj =
(qj − 1)(qj−1 − q)

(q2 − 1)(q2 − q)

elements in PGj(n, q) ([BCN89], p.269).

Proposition 6.11. The truncations Tr1,j(n, q) are universally optimal among

all designs (binary or not) on vj points, replication rj and block size kj.

Proof. The truncation Tr1,j(n, q) is a binary equireplicate block design with

PG1(n, q) as points and PGj(n, q) as blocks. Since any two points are contained

in λj blocks, the truncation is a 2-(vj, kj, λj)-design. With Theorem 2.26 the

proposition follows.

Corollary 6.12. The truncations Tri,n(n, q) are optimal on the Φp-criterion

among all binary equireplicate designs.

Proof. Since the truncation Tri,n(n, q) is the dual of Tr1,n−i+1(n, q) by Proposi-

tion 6.10, this follows directly from Proposition 6.11 and Proposition 2.31.

The Truncation Tr2,3(n, q)

There are

v = |PG2(n, q)| = (qn+1 − 1)(qn − 1)

(q2 − 1)(q − 1)

lines in PG(n, q). Every line lies in

r =
qn−1 − 1

q − 1

98



planes and any two lines are contained in either no or exactly one plane. In fact,

two distinct lines lie in the same plane if and only if they intersect in a single

point. Any plane contains q2 + q + 1 distinct lines. Thus, the adjacency graph

G(Tr2,3(n, q)) of Tr2,3(n, q) is regular and has v vertices and degree

δ =
qn−1 − 1

q − 1

(
q2 + q

)
.

Of course, for any fixed basis E , the graph G(Tr2,3(n, q)) contains the subgraph

given by the truncation of GE
n, i.e. the triangular graph T (n). In fact, for any

two adjacent vertices in G(Tr2,3(n, q)) we can always find a basis E such that

the vertices are points in the truncation of the corresponding GE
n.

The following proposition (in fact its generalization to all Grassmannians)

can also be found in [BCN89], p. 269.

Proposition 6.13. The graph G(Tr2,3(n, q)) is strongly regular with parameters

λ = qn−1 + qn−2 + . . . + q3 + 2q2 + q − 1

µ = (q + 1)2.

The spectrum of G(Tr2,3(n, q)) is

Spec(G(Tr2,3(n, q))) = ((−(q + 1))m2 , (∆− (q + 1))m1 , δ1),

where

m1 = q(∆ + 1)

m2 = = v − 1−m1.

and

∆ =
√

(λ− µ)2 + 4(δ − µ) = qn−1 + qn−2 + . . . + q.
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Proof. We start by computing the parameter λ which counts the number of

common neighbours of any adjacent pair of vertices. Let h1, h2 ∈ PG2(n, q) be

two distinct lines and X ∈ V a vector such that

h1 ∩ h2 = 〈X〉GF(q).

We want to compute the number of lines that lie in a plane with both h1 and

h2. Any line other than h1, h2 containing the subspace 〈X〉GF(q) is in the same

plane as h1 and as h2. There are qn−1
q−1

− 2 of these, this is the number of one-

dimensional subspaces in the GF(q)-vector space V/〈X〉 other than h1/〈X〉GF(q)

and h2/〈X〉GF(q). Of course, all (q3−q)(q3−q2)
(q2−1)(q2−q)

lines in the plane spanned by the

basis vectors of h1 and h2 whose spans do not contain the subspace 〈X〉GF(q) are

also in the same plane as h1 and h2. In total, there are

λ =
qn − 1

q − 1
− 2 +

(q3 − q)(q3 − q2)

(q2 − 1)(q2 − q)

= qn−1 + qn−2 + . . . + q3 + 2q2 + q − 1

distinct lines that lie on a plane with both h1 and h2.

To compute the parameter µ, that is the number of common neighbours of

any non-adjacent pair of vertices, let h1, h2 be any two skew lines. The number

of lines h that are in a plane with both h1 and h2 must satisfy dim(h ∩ h2) =

dim(h ∩ h1) = 1. Since dim(h1, h2) = 4, this is the number of ways of choosing

a one-dimensional subspace from both h1 and h2.

Hence, there are

µ =
(q2 − 1)(q2 − 1)

(q − 1)(q − 1)
= (q + 1)2

lines in a plane with both h1 and h2.

From Proposition 2.20 it follows that all eigenvalues of the adjacency matrix
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G(Tr2,3(n, q)) are δ with multiplicity 1 and

ν1 =
1

2

[
(λ− µ) +

√
(λ− µ)2 + 4(δ − µ)

]
= ∆− (q + 1)

with multiplicity

m1 =
1

2

[
(v − 1)− 2δ + (v − 1)(λ− µ)√

(λ− µ)2 + 4(δ − µ)

]
= q(∆ + 1)

and

ν2 =
1

2

[
(λ− µ)−

√
(λ− µ)2 + 4(δ − µ)

]
= −(q + 1)

with multiplicity

m2 =
1

2

[
(v − 1) +

2δ + (v − 1)(λ− µ)√
(λ− µ)2 + 4(δ − µ)

]
= v − 1− q(∆ + 1).

There has been interest in characterizing Grassmann graphs in terms of

their parameters (an overview of this can be found in [BCN89],pp. 268). The

following result shows that in the case of the lines of the projective space for

odd n, there are no other possible parameters for a strongly regular graph.

Proposition 6.14. For any odd n ≥ 3 and any q ≥ 2 not necessarily a prime

power, any strongly regular graph on

v =
(qn+1 − 1)(qn − 1)

(q2 − 1)(q − 1)

vertices and degree

δ =
qn−1 − 1

q − 1
(q2 + q)
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has the parameters

λ = qn−1 + qn−2 + . . . + q3 + 2q2 + q − 1

µ = (q + 1)2.

Proof. By Lemma 2.19, the parameters λ ≥ 0 and µ ≥ 1 of any strongly regular

graph on v vertices with degree δ satisfy the equation

δ(δ − λ− 1) = (v − δ − 1)µ.

and therefore

λ = δ − 1− v − 1

δ
µ + µ ≥ 0

and

µ ≡ 0 mod g for
v − 1

δ
=

f

g
with gcd(f, g) = 1.

Therefore,

v − 1

δ
= (q − 1)

(qn+1 − 1)(qn − 1)− (q2)(q − 1)

(q2 − 1)(q − 1)(q + 1)q(qn−1 − 1)

=
q2n+1 − qn+1 − qn + 1− q3 + q2 + q

(q2 − 1)(q + 1)q(qn−1 − 1)
.

From

(qn+1 − 1 + q2 − q)(qn − q) = q2n+1 − qn+1 − qn + 1− q3 + q2 + q

follows that

v − 1

δ
=

qn+1 − 1 + q2 − q

(q − 1)(q + 1)2
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=
(q − 1)(qn + qn−1 + . . . + q2 + q + 1) + (q − 1)q

(q − 1)(q + 1)2

=
qn + qn−1 + . . . + q2 + 2q + 1

(q + 1)2
.

Since λ ∈ N, we have v−1
δ
∈ N. Suppose q+1 and qn +qn−1 + . . .+q2 +2q+1

are not coprime, say p is a common factor. Hence

q ≡ −1 mod p.

But then for odd n

0 ≡ (−1)n + (−1)n−1 + . . . + (−1)2 + 2(−1) + 1 mod p

≡ (−1)n + (−1)n−1 + . . . + (−1)2 + (−1) mod p

≡ −1 mod p.

This is only true for p = 1. It follows, that (q+1)2 divides µ, that is µ = (q+1)2x

for some non-negative integer x.

As

λ = δ − 1− v − 1

δ
µ + µ

=
qn+1 + qn − q2 − 2q + 1

q − 1
− x

qn+1 − q3

q − 1

≥ 0,

it follows for n ≥ 3 and q ≥ 2 that

qn+1 + qn − q2 − 2q + 1

qn+1 − q3
= 1 +

qn + q3 − q2 − 2q + 1

qn+1 − q3
≥ x.

But qn+q3−q2−2q+1
qn+1−q3 < 1 for n ≥ 3 and q ≥ 2. Since x is a non-negative integer,
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either x = 0 or x = 1. Therefore, either µ = 0 and λ = δ − 1 or

µ = (q + 1)2

and

λ = qn−1 + qn−2 + . . . + q3 + 2q2 + q − 1.

Note that in the case that µ = 0, by our definition the graph is as a disconnected

union of cliques not a strongly regular graph.

In terms of the structure of the graph we have the following result:

Proposition 6.15. The neighbourhood graph of any vertex of a strongly reg-

ular graph with the same parameters as the adjacency graph of Tr2,3(n, q) is

connected.

Proof. Since

λ = qn−1 + qn−2 + . . . + q3 + 2q2 + q − 1

> qn−1 + qn−2 + . . . + q3 + q2

=
1

2

(
(λ− µ) +

√
(λ− µ)2 + 4(δ − µ)

)
,

the parameters satisfy the conditions of Proposition 4.2.

We have shown in Proposition 6.10 that the truncation Trn−1,n(n, q) is the

dual of Tr1,2(n, q) and that they are both optimal block designs. Although we do

not know whether Tr2,3(n, q) is optimal, we can show that its adjacency graph

is the adjacency graph of an optimal design:

Proposition 6.16. The adjacency graph of Trn−1,n(n, q) is isomorphic to the

adjacency graph of Tr2,3(n, q).
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Proof. The truncation Trn−1,n(n, q) is the dual of Tr1,2(n, q), therefore in its

adjacency graph the vertices correspond to lines and an edge to a pair of lines

meeting in a point. But any two lines meet in a point if and only if they lie in

a common plane, which is the adjacency relation of Tr2,3(n, q).

Corollary 6.17. The largest clique in the adjacency graph of Tr2,3(n, q) has size

qn−1
q−1

and the vertices of the neighbourhood graph of any vertex can be partitioned

into q + 1 cliques of size qn−1
q−1

− 1.

Proof. All lines through a fixed point produce a clique of size qn−1
q−1

in the ad-

jacency graph. Any line contains q + 1 points, so for any of these points there

is a corresponding clique of qn−1
q−1

− 1 lines sharing this point, thus the second

statement of the Corollary follows. Because of the Hoffman bound (Proposition

2.18), the size of the largest clique in the graph is bounded from above by

v
1 + ν2

v − δ + ν2

=
qn − 1

q − 1
,

where ν2 is the second largest eigenvalue of the graph.

The Truncations Tr2,j(n, q), j > 3

Now, let j ∈ {4, . . . , n} and

v = |PG2(n, q)| = (qn+1 − 1)(qn − 1)

(q2 − 1)(q − 1)
.

The adjacency matrix A(Tr2,j) = (alm) has the entries

alm =

 αj if l 6= m and lines l and m lie on the same plane

βj else
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where αj denotes the number of j-dimensional subspaces of V that contain a

fixed plane and βj the number of j-dimensional subspaces containing a fixed

4-dimensional subspace.

Therefore we can write the adjacency matrix as

A(Tr2,j) = αjA(Tr2,3) + βjJvj
= αjA(Trn−1,n) + βjJvj

or

A(Tr2,j) =
αj

αn

A(Tr2,n) + (βj −
αj

αn

βn)Jvj
.

Since

αj+1 =
qn−3 − qj−4

qj−2 − 1
αj and rj =

qj−1(qj − 1)

qn − qj−1
,

we can compute the parameters recursively as

αj = αn

n−1∏
l=j

ql−3(ql−1 − 1)

qn−1 − ql−2
=

qn−2 − 1

q − 1

n−1∏
l=j

ql−3(ql−1 − 1)

qn−1 − ql−2

and

rj = rn

n−1∏
l=j

ql−1(ql − 1)

qn − ql−1
=

qn−1 − 1

q − 1

n−1∏
l=j

ql−1(ql − 1)

qn − ql−1
.

The Truncations Tri,j(n, q), 3 ≤ i < j

There are

v = |PGi(n, q)| = (qn+1 − 1)(qn+1 − q) . . . (qn+1 − qi−1)

(qi − 1)(qi − q) . . . (qi − qi−1)
.

subspaces of dimension i of V . Let PGi(n, q) = {U1, . . . , Uv}.

Let j = i + 1. In this case, the truncation has the adjacency matrix
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A(Tri,i+1) = (aml) with the following entries:

aml =

 0 if dim(Um ∩ Ul) < i− 1 or m = l

1 if m 6= l and dim(Um ∩ Ul) = i− 1

Now, let j > i+1. The adjacency matrix A(Tri,j) = (aml) of the truncation has

the entries

aml =



0 if dim(Um ∩ Ul) < 2i− j or m = l

β0 = 1 if m 6= l and dim(Um ∩ Ul) = 2i− j

β1 if m 6= l and dim(Um ∩ Ul) = 2i− j + 1

β2 if m 6= l and dim(Um ∩ Ul) = 2i− j + 2

...

βj−i+1 if m 6= l and dim(Um ∩ Ul) = i− 1

where βr denotes the number of j-dimensional subspaces containing a fixed j−l-

dimensional subspace for l = 0, . . . , j − i + 1.

It follows for l = 1, . . . , n− 1

βl+1 =
ql − 1

qn+1−(j−l) − 1
βl,

hence for l = 2, . . . , n

βl = β1

t−1∏
t=2

qt − 1

qn+1−(j−t) − 1
=

qn+1−(j−1) − 1

q − 1

t−1∏
t=2

qt − 1

qn+1−(j−t) − 1

where β1 is the number of points in the n + 2− j-dimensional projective space

over V/(Um + Ul).

Of course, for any fixed basis E , the graph G(Tri,j(n, q)) contains the sub-

graph given by the truncation of GE
n, i.e. the union of edges of certain generalized

Johnson graphs. Note that for any two adjacent vertices in G(Tri,j(n, q)) we can
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always find a basis E such that the vertices are points in the truncation of the

corresponding GE
n.
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Chapter 7

Robustness - Deleting Edges

from an Optimal Graph

Throughout this chapter we only consider graphs with at least two vertices, i.e.

binary designs with block size k = 2 and v ≥ 2. We want to compare graphs on

v vertices and e edges on the A- and D-value.

7.1 Deleting Edges from the Complete Graph

The following proposition is a known result. We want to prove it here to illus-

trate the use of the technique introduced in [PR02].

Proposition 7.1 ([Shi74]). Let Gm be the graph obtained from the complete

graph Kv by deleting m mutually disjoint edges (for 2m < v). Then

κ(Gm) = vv−2

(
1− 2

v

)m

and Gm maximizes the number of spanning trees among all simple graphs on v

vertices and v(v−1)
2

−m edges.

Proof. Since the complement of Gm is a union of cliques, we have equality in
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Proposition 2.32 and

κ(Gm) = vv−2

v∏
i=1

(1− 1 + δi

v
)

δi
δi+1 = vv−2

(
1− 2

v

)m

,

where (δ1, . . . , δv) denotes the degree sequence of the complement of Gm. The

product on the right hand side is maximized by the degree sequence ([PR02])

(l, . . . , l︸ ︷︷ ︸
v−g

, l + 1, . . . , l + 1︸ ︷︷ ︸
g

) where
v∑

i=1

δi = vl + g, g < v.

In the case of
∑v

i=1 δi = 2m this is (0, . . . , 0︸ ︷︷ ︸
v−2m

, 1, . . . , 1︸ ︷︷ ︸
2m

), which is the degree

sequence of Gm.

Let y∗Kv denote the complete multigraph on v vertices, i.e. any two vertices

are joined by exactly y edges.

Proposition 7.2. Let G be the graph obtained from y∗Kv by deleting m mutually

disjoint edges (for 2m < v). Then

κ(G) = y(yv)v−m−2(yv − 2)m.

Proof. The Laplacian matrix of the matching given by the 2m removed edges

from y ∗Kv is the 2m× 2m-matrix



1 −1 0 0 0 · · · 0

−1 1 0 0 0 · · · 0

0 0 1 −1 0 · · · 0

0 0 −1 1 0 · · · 0

... · · · · · · · · · . . . · · · ...

0 · · · · · · · · · · · · 1 −1

0 · · · · · · · · · · · · −1 1



.

110



We use Proposition 2.34 to obtain

κ(G) = yv(yv)v−2m−2

det

 yv − 1 1

1 yv − 1




m

= y(yv)v−2m−2(y2v2 − 2yv)m.

Proposition 7.3. Let v ≥ 4. The graph G2 is A-optimal among simple graphs

on v vertices and v(v−1)−1
2

edges.

Proof. We compute the A-value of a graph G as

κ(G)∑
u1,u2∈V (G) κ(G).{u1,u2}

,

which we can write

∑
u1,u2∈V (G)

κ(G).{u1,u2} =
∑

f∈E(G)

κ(G).f +
∑

f 6∈E(G)

κ(G).f

=
∑

f∈E(G)

(κ(G)− κ(G \ {f})

+
∑

f 6∈E(G)

(κ(G ∪ {f})− κ(G))

= (|E(G)| − |E(Ḡ)|)κ(G)

+
∑

f 6∈E(G)

κ(G ∪ {f})−
∑

f∈E(G)

κ(G \ {f}).

Let f1, f2 ∈ E(Kv) such that G2 = Kv \ {f1, f2}. For i = 1, 2 Proposition 7.1

yields

κ(G2 ∪ {fi}) = κ(G1) = vv−2(1− 2
v
).

For any edge f = {u1, u2} ∈ E(G2) the complement of G2 \ {f} is one of the

following graphs
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1.

2.

3.

In the first case, we have v − 4 vertices to choose u1 from and v − 5 vertices

to choose u2 from. That means, there are (v−4)(v−5)
2

choices for f and

κ(G2 \ {f}) = κ(G3) = vv−2(1− 2
v
)3.

For the last two cases, we compute the tree number with Proposition 2.34. In

case 2, there are 4 possible ways to connect f1 and f2 with an edge and

κ(Kv \ { }) = vv−6 det


vI4 +



−1 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1




= vv−2 − 6vv−3 + 10vv−4 − 4vv−5.

In the last case, there are v − 4 vertices to choose u1 or u2 from and 4 ways to

attach f to either f1 or f2. Therefore, this case occurs 4(v − 4) times and

κ(Kv \ { }) = vv−7 det


vI5 +



−1 1 0 0 0

1 −2 1 0 0

0 1 −1 0 0

0 0 0 −1 1

0 0 0 1 −1




= vv−2 − 6vv−3 + 11vv−4 − 6v−5.
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In total this is

∑
u1,u2∈V (G2)

κ(G2).{u1,u2} =
(

v(v−1)
2

− 4
)

κ(G2) + 2κ(G1)− (v−1)(v−5)
2

κ(G3)

−4(vv−2 − 6vv−3 + 10vv−4 − 4vv−5)

−4(v − 4)(vv−2 − 6vv−3 + 11vv−4 − 6v−5)

= vv−5(v − 2)2(v − 1)(v + 4)

−4v(v − 2)(v2 − 4v + 2).

Now, suppose we are deleting two joined edges f1, f2 ∈ E(Kv) from Kv, then

κ(Kv \ { }) = vv−5 det

vI3 +


−1 1 0

1 −2 1

0 1 −1




= vv−5(v3 − 4v2 + 3v)

and adding f1 or f2 yields

κ(G1) = vv−2(1− 2
v
).

Removing another edge f = {u1, u2} ∈ E(Kv \ { }), the complement is one of

the following graphs:

1.

2.

3.

4.
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In the first case we have

κ(Kv \ { }) = vv−5 det

vI3 +


−2 1 1

1 −2 1

1 1 −2




= vv−5(v3 − 6v2 + 9v)

and in the third case

κ(Kv \ { }) = vv−6 det


vI4 +



−3 1 1 1

1 −1 0 0

1 0 −1 0

1 0 0 −1




= vv−6(v4 − 6v3 + 9v2 − 3v − 1).

The second and fourth cases are the same as above. The first case occurs exactly

once. In the second case, we can choose any of the remaining v−3 vertices as u1

or u2 and there are exactly two ways to join f to f1 or f2, therefore the second

case occurs 2(v − 3) times. The third case occurs v − 3 times since there are

again v− 3 choices for u1 or u2 and only one way of joining f with f1 and f2 in

the one vertex. The last case occurs (v−3)(v−4)
2

times since we have v − 3 ways

to choose u1 and v − 4 ways to choose u2. In total this is

∑
u1,u2∈V (Kv\{ })

κ(Kv \ { }).{u1,u2} = vv−4(v3 − 5v2 + 11v − 9).

That means

κ(G2)∑
u1,u2∈V (G2) κ(G2).{u1,u2}

− κ(Kv \ { })∑
u1,u2∈V (Kv\{ }) κ(Kv \ { }).{u1,u2}

=
vv−2(1− 2

v
)2

vv−4(v3 − 5v2 + 12v − 12)
− vv−5(v3 − 4v2 + 3v)

vv−4(v3 − 5v2 + 11v − 9)
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=
2v

(v2 − 3v + 6)(v3 − 5v2 + 11v − 9)

For v ≥ 4, the denominator of the above fraction is strictly positive and therefore

the A-value is maximized if the removed edges are disjoint.

7.2 Deleting an Edge from the Complete Bi-

partite Graph

Let n ≥ 2 and let Kn,n \ {f} be the graph obtained from the regular complete

bipartite graph Kn,n by removing one edge f . Then

|E(Kn,n \ {f})| = n2 − 1 = (n− 1)(n + 1) = |E(Kn−1,n+1)|

and Kn,n \ {f} and Kn−1,n+1 are in the same class of binary designs with block

size 2 and we can compare the two graphs on the A- and D-criterion. Proposition

2.32 gives an upper bound on the number of spanning trees that depends on

the number of V-subgraphs in the complement and the degree sequence of a

graph. The graph Kn,n \ {f} is almost-regular but its complement contains

many V-subgraphs. On the other hand, the complement of Kn−1,n+1 is a union

of cliques and therefore minimizes the number of V-subgraphs, but the degree

of the vertices can differ by 2. We want to compare these two graphs on the

A- and D-criterion; for this we compute the Laplacian eigenvalues of Kn,n \ {f}

first.

Lemma 7.4. Let n ≥ 2, then

Spec(Λ(Kn,n \ {f})) =

(
01,
(

(3n−2−
√

n2+4n−n)
2

)1

, n2n−3,
(

(3n−2+
√

n2+4n−n)
2

)1
)

.
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Proof. The Laplacian matrix of Kn,n \ {f} can be written as

Λ(Kn,n \ {f}) =



n− 1 0 · · · 0 −1 · · · −1 0

0

...

0

nIn−1 −Jn−1

−1

...

−1

−1

...

−1

−Jn−1 nIn−1

0

...

0

0 −1 · · · −1 0 · · · 0 n− 1



.

For a vector X = (x1, . . . , xv) ∈ Rv we have

Λ(Kn,n \ {f})X =



(n− 1)x1 −
∑2n−1

j=n+1 xj

nx2 −
∑2n

j=n+1 xj

...

nxn −
∑2n

j=n+1 xj

nxn+1 −
∑n

j=1 xj

...

nx2n−1 −
∑n

j=1 xj

(n− 1)x2n −
∑n

j=2 xj



.

Of course, the vector (1, 1, . . . , 1)T ∈ Rv is an eigenvector of Λ(Kn,n \ {f}) with

eigenvalue 0.

Now, fix l, p ∈ {2, . . . , n} with l < p. The vector with coordinates xl = 1,

xp = −1 and xj = 0 for all j = 1, . . . , 2n with j 6= l, p is an eigenvector with

eigenvalue n:

(n− 1)x1 −
2n−1∑

j=n+1

xj = 0,
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nxl −
2n∑

j=n+1

xj = n

nxp −
2n∑

j=n+1

xj = −n

nxi −
2n∑

j=n+1

xj = 0 for i = 2, . . . , n, i 6= l, p

nxi −
2n∑

j=1

xj = −(xl + xp) = 0 for i = n + 1, . . . , 2n, i 6= l, p

(n− 1)x2n −
2n∑

j=2

xj = −(xl + xp) = 0.

The same is true if l and p are fixed with l, p ∈ {n + 1, . . . , 2n− 1}. There are

in total 2n− 4 linearly independent vectors of this form.

The vector with coordinates x1 = x2n = 1 and x2 = xn+1 = −1 and xj = 0

for j = 3, . . . , n, n + 2, . . . , 2n− 1 is also an eigenvector with eigenvalue n:

(n− 1)x1 −
2n−1∑

j=n+1

xj = (n− 1)x1 − xn+1 = n,

nx2 −
2n−1∑

j=n+1

xj = nx2 − xn+1 − x2n = −n

nxi −
2n∑

j=n+1

xj = −xn+1 − x2n = 0 for i = 3, . . . , n

nxn+1 −
2n−1∑

j=n+1

xj = nxn+1 − x1 − x2 = −n

nxi −
2n∑

j=1

xj = −x1 − x2 = 0 for i = n + 2, . . . , 2n− 1,

(n− 1)x2n −
2n∑

j=2

xj = −(n− 1)x2n − x2 = n = 0.
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Let s ∈ {−n±
√

n2+4n−4
2(n−1)

}, then

−(n− 1)(s− 1)s = s(2n− 1)− 1.

Therefore, the vector with coordinates x1 = −1, x2n = 1 and xi = s if i ∈

{2, . . . , n} and xj = −s if j ∈ {n+1, . . . , 2n−1} is an eigenvector with eigenvalue

−(n− 1)(s− 1):

(n− 1)x1 −
2n−1∑

j=n+1

xj = −(n− 1) + (n− 1)s = (n− 1)(s− 1),

nxi −
2n∑

j=n+1

xj = ns + (n− 1)s− 1 = s(2n− 1)− 1 for i = 2, . . . , n

nxi −
2n∑

j=1

xj = −(s(2n− 1)− 1) for i = n + 1, . . . , 2n− 1,

(n− 1)x2n −
2n∑

j=2

xj = (n− 1)− (n− 1)s = −(n− 1)(s− 1).

We have found 2n = v linearly independent eigenvectors and their eigenval-

ues. From Theorem 2.2 we know that the algebraic and geometric multiplicities

of the eigenvalues are the same and therefore we have found all eigenvalues.

With

1
2
(3n− 2 +

√
n2 + 4n− 4) ≥ 1

2
(3n− 2 + n) = 2n− 2 ≥ n

for n ≥ 2 it follows, that the Laplacian spectrum with the eigenvalues in in-

creasing order is

Spec(Λ(Kn,n \ {f})) =

(
01,
(

(3n−2−
√

n2+4n−4)
2

)1

, n2n−3,
(

(3n−2+
√

n2+4n−4)
2

)1
)

.

Proposition 7.5. The non-trivial Laplacian eigenvalues of Kn,n \ {f} are ma-
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jorized by the non-trivial Laplacian eigenvalues of Kn−1,n+1.

Proof. We already know the Laplacian Spectrum of Km,n with m ≤ n (see page

20), for Kn−1,n+1 it is

Spec(Λ(Kn−1,n+1)) = (01, (n− 1)n, (n + 1)n−2, (2n)1).

Since n2 + 4n− 4 < (n + 2)2 it follows that

ρ1(Kn−1,n+1) = 2n = 1
2
(4n) > 1

2
(3n− 2 +

√
n2 + 4n− 4) = ρ1(Kn,n \ {f}),

and for j = 1, . . . , n− 2

j+1∑
i=1

ρi(Kn−1,n+1) = 2n + j(n + 1)

> 1
2
(3n− 2 +

√
n2 + 4n− 4) + jn

=

j+1∑
i=1

ρi(Kn,n \ {f}).

With 2n > 1
2
(3n− 2 +

√
n2 + 4n− 4) it follows for j = 1, . . . , n− 1

n−1+j∑
i=1

ρi(Kn−1,n+1) = 2n + (n− 2)(n + 1) + j(n− 1)

= 2n + (n− 2 + j)n + n− 2− j

≥ 2n− 1 + (n− 2 + j)n

≥ 1
2
(3n− 2 +

√
n2 + 4n− 4) + (n− 2 + j)n

=

n−1+j∑
i=1

ρi(Kn,n \ {f}).

Since

1
2
(3n− 2−

√
n2 + 4n− 4) + 1

2
(3n− 2 +

√
n2 + 4n− 4) = 3n− 2,
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we have

2n−1∑
i=1

ρi(Kn−1,n+1) = 2(n2 − 1)

= 1
2
(3n− 2 +

√
n2 + 4n− 4) + (2n− 3)n

+1
2
(3n− 2−

√
n2 + 4n− 4)

=
2n−1∑
i=1

ρi(Kn,n \ {f}).

Corollary 7.6. For the vectors of the non-trivial Laplacian eigenvalues ρKn,n\{f}

and ρKn−1,n+1 and j = 2, . . . , 2n− 1 the following holds:

1. Sj(ρKn,n\{f}) > Sj(ρKn−1,n+1);

2.
Sj(ρKn,n\{f})

Sj−1(ρKn,n\{f})
>

Sj(ρKn−1,n+1
)

Sj−1(ρKn−1,n+1
)
.

Proof. Follows directly from Lemma 7.4 and Proposition 2.38, Proposition 2.39

and Proposition 7.5.

Since the D-value of a graph G is Sv−1(ρG) and since we can write the A-value

of G as the ratio (v − 1)Sv−1(ρG)
Sv−2(ρG)

we have the following corollary.

Corollary 7.7. The graph Kn,n\{f} beats Kn−1,n+1 on the A- and D-criterion.

Note that since the complement of Kn−1,n+1 is a union of cliques, κ(Kn−1,n+1)

is by Proposition 2.32 an upper bound for any graph with the same degree

sequence, and the next corollary follows.

Corollary 7.8. The graph Kn,n\{f} beats any simple graph with degree sequence

(

n−1︷ ︸︸ ︷
n + 1, n + 1, . . . , n + 1,

n+1︷ ︸︸ ︷
n− 1, n− 1, . . . , n− 1)

on the D-criterion
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In fact, we could not find a connected graph that beats Kn,n \ {f} on the A-

or D-criterion for n = 3, 4 or 5 where we searched among all simple connected

graphs on 2n vertices and n2 − 1 edges which we generated with B. McKay’s

program nauty ([McK81]).

7.3 Counterexamples

We have seen that deleting one or two edges from an optimal graph can have

no impact on its optimality within the class. But this is not generally true and

we want to give some counter examples. Of course, the performance of a graph

obtained by deleting an edge on the D-criterion depends on which edge has been

deleted. Here is an example.

Example. Let G be the graph obtained from the complete graph K4 by deleting

any edge. Then κ(G) = 8. Now, there are two kind of edges that can be deleted:

either the graph becomes a four-cycle or a three-cycle with a pendant edge. In

the first case, the number of spanning trees is 4 and it is 3 in the latter.

Example. By Proposition 2.33, the complete bipartite graph Kn,n+1 is D-

optimal among all simple graphs. We have seen that Kn,n \ {f} is a good

candidate for the D-criterion. The complement of Kn,n+1 is again a union of

cliques and contains no V-subgraphs. But in this case it is easy to find a graph

that performs better on the D-criterion than the graphs obtained by removing

an edge f = {v, w} ∈ E(Kn,n+1) from Kn,n+1.

The spanning trees of Kn,n+1\{f} are all the spanning trees of Kn,n+1, except

the ones containing f . The number of these is precisely the number of spanning

forests Tu,w with two parts such that u, w belong to different parts.

Let V1(Km,n) and V2(Km,n) denote the two parts of vertices of the complete

bipartite graph Km,n with |V1(Km,n)| = m and |V2(Km,n)| = n. By [JL04], for
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(s, l) 6= (0, 0) the number of spanning forests of Km,n with l + s parts of which

different parts contain {a1, . . . , al} ⊂ V1(Km,n) and {b1, . . . , bs} ⊂ V2(Km,n) is

f [n, s; m, l] = nm−s−1mn−l−1(lm + sn− sl), for s, l ≥ 0.

Hence Tu,w = f [n, 1; n+1, 1] = nn−1(n+1)n−22n and with κ(Km,n) = mn−1nm−1

(see page 24) it follows that

κ(Kn,n+1 \ {f}) = κ(Kn,n+1)− f [n, 1, n + 1, 1]

= (n + 1)n−1nn − nn−1(n + 1)n−22n.

For v = 2n + 1 = 7 this is

κ(K3,4 \ {f}) = 216.

But the following graph G beats with 231 spanning trees (computed with Math-

ematica) the above graph on the D-criterion:

.
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Chapter 8

Optimal Designs in Large

Systems

8.1 A- and D-optimality in Large Systems

Let L(v, b, k) be the set of the Laplacian matrices of all connected designs (binary

or not) with v points and b blocks of size k. For Λ ∈ L(v, b, k) we will write

ρΛ for the vector of the non-trivial eigenvalues (ρ1(Λ), . . . , ρv−1(Λ)). Let d̃ be a

2-(v, k, λ̃)-design on v points and block size k with b̃ blocks, where λ̃ is minimal

such that a 2-(v, k, λ̃)-design exists. Then for Λ ∈ L(v, b, k) and y ∈ N the

matrix

Λ[y] = Λ + yΛ̃ = Λ + y(vIv − Jv) (8.1.1)

is the Laplacian matrix of a design on v points, replication r+y λ̃(v−1)
k−1

and b+yb̃

blocks of size k. The non-trivial eigenvalues of Λ[y] are vy + ρ1(Λ), . . . , vy +

ρv−1(Λ).

Proposition 8.1. For given v, b, k, let Λ, Λ′ ∈ L(v, b, k) such that the eigen-

values of Λ′ majorize the eigenvalues of Λ. If designs d and d′ with Laplacian

matrices Λ[y] and Λ′[y] exist for an y ≥ 0, then d is A- and D-better than d′.
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Proof. Suppose Λ, Λ′ ∈ L(v, b, k) are Laplacian matrices such that the eigenval-

ues of Λ′ majorize the eigenvalues of Λ. Then of course the eigenvalues of Λ[y]

are also majorized by the eigenvalues of Λ′[y]. Since the A- and D-value are

Schur-concave functions (Proposition 2.38 and Proposition 2.39) the statement

follows.

Corollary 8.2. For given v, b, k, let Λ ∈ L(v, b, k) be the Laplacian matrix of

a Schur-optimal design. If a design d with Laplacian matrix Λ[y] exist for an

y ≥ 0, then d is A- and D-optimal among all designs with Laplacian matrices

Λ′[y] where Λ′ ∈ L(v, b, k).

As an application of this corollary we have the following proposition.

Proposition 8.3. Let Kn,n \ {f} denote the regular complete bipartite graph

with a deleted edge f . The eigenvalues of Λ(Kn,n \ {f})[y] are majorized by the

eigenvalues of Λ(Kn−1,n+1)[y] for all y ≥ 0 and a design with Laplacian matrix

Λ(Kn,n \{f})[y] performs better on both the A- and D-criterion than any design

with Laplacian matrix Λ(Kn−1,n+1)[y].

Proof. By Proposition 7.5, the eigenvalues of Λ(Kn,n \ {f}) are majorized by

the eigenvalues of Λ(Kn−1,n+1).

The D-value of Λ[y] is the product of all non-trivial eigenvalues of Λ[y], that

is

D(ρΛ, y) =
v−1∏
i=1

(vy + ρi(Λ)),

which we can write as polynomial in y ([Bro06]):

D(ρΛ, y) =
v−1∑
j=0

(vy)v−1−jSj(ρΛ). (8.1.2)

The A-value of Λ[y] is the harmonic mean over all non-trivial eigenvalues,
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that is

A(ρΛ, y) = (v − 1)
1∑v−1

i=1
1

vy+ρi(Λ)

=
D(ρΛ, y)∑v−1

l=1

∏v−1
i=1,i6=l(vy + ρi(Λ))

.

With equation 2.6.2 we have

v−1∑
l=1

v−1∏
i=1,i6=l

(vy + ρi(Λ)) =
v−1∑
l=1

v−2∑
j=0

(vy)v−2−jSj;l(ρΛ)

=
v−2∑
j=0

(vy)v−2−j(v − 1− j)Sj(ρΛ).

Let Dy(ρΛ, y) denote the derivative of D(ρΛ, y) in y, then

A(ρΛ, y) = v(v − 1)
D(ρΛ, y)

Dy(ρΛ, y)
. (8.1.3)

Because the performance of a matrix Λ ∈ L(v, b, k) on the A- and D-criteria

is in this way closely related to the elementary symmetric polynomials of the

non-trivial eigenvalues of Λ, we want to order the matrices accordingly. We

will take the lexicographic ordering corresponding to the elementary symmet-

ric polynomials of the non-trivial eigenvalues of the Laplacian matrices. That

means, for two Laplacian matrices Λ, Λ′ ∈ L(v, b, k) with Spec(Λ) 6= Spec(Λ′),

we will write Λ′ ≺ Λ if there exists an l ∈ {1, . . . , v − 1} such that

Sj(ρΛ) = Sj(ρΛ′), j = 1, . . . , l − 1 and Sl(ρΛ′) < Sl(ρΛ).

This is a transitive relation which we will call the stable order on L(v, b, k). Note

that matrices are indistinguishable in this order if they have the same spectrum.

From equation 8.1.1 it is immediately clear that if Λ′ ≺ Λ, then there exists a

y0 such that D(ρΛ′ , y) ≤ D(ρΛ, y) for y ≥ y0 and we want to show that this is

also true for the A-value.
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Lemma 8.4. Let Λ, Λ′ ∈ L(v, b, k) and

P (Λ, Λ′, y) =
2v−3∑
i=1

piy
i = D(ρΛ, y)Dy(ρΛ′ , y)−D(ρΛ′ , y)Dy(ρΛ, y).

Then the leading coefficients of P (Λ, Λ′, y) are

p2v−3 = 0, p2v−4 = v2v−4 (S1(ρΛ)− S1(ρΛ′)) , p2v−5 = 2v2v−5 (S2(ρΛ)− S2(ρΛ′)) .

If Λ′ ≺ Λ such that l is the smallest index with Sl(ρΛ) − Sl(ρΛ′) > 0, then the

first non-vanishing coefficient of P (Λ, Λ′, y) is

p2v−3−l = v2v−3−ll (Sl(ρΛ)− Sl(ρΛ′)) .

Proof. Since

D(ρΛ, y)Dy(ρΛ′ , y) =
v−1∑
i=0

v−1∑
j=0

(vy)2v−3−j−i(v − 1− j)Sj(ρΛ′)Si(ρΛ)

=
v−1∑
i=0

(vy)2v−3−i

i∑
j=0

(v − 1− j)Sj(ρΛ′)Si−j(ρΛ)

the polynomial P (Λ, Λ′, y) can be written as

P (Λ, Λ′, y) =
v−1∑
i=0

(vy)2v−3−i

i∑
j=0

(v − 1− j) (Sj(ρΛ′)Si−j(ρΛ)− Sj(ρΛ)Si−j(ρΛ′))

and with S0 ≡ 1, its first coefficient is

p2v−3 = v2v−3

0∑
j=0

(v − 1− j) (Sj(ρΛ′)S0−j(ρΛ)− Sj(ρΛ)S0−j(ρΛ′))

= v2v−3(v − 1) (S0(ρΛ′)S0(ρΛ)− S0(ρΛ)S0(ρΛ′))

= 0.
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The coefficient of y2v−4 is

p2v−4 = v2v−4

1∑
j=0

(v − 1− j) (Sj(ρΛ′)S1−j(ρΛ)− Sj(ρΛ)S1−j(ρΛ′))

= v2v−4(v − 1)(S0(ρΛ′)S1(ρΛ)− S0(ρΛ)S1(ρΛ′))

+v2v−4(v − 2)(S1(ρΛ′)S0(ρΛ)− S1(ρΛ)S0(ρΛ′))

= v2v−4 (S0(ρΛ′)S1(ρΛ)− S1(ρΛ)S0(ρΛ′))

= v2v−4(S1(ρΛ)− S1(ρΛ))

and the coefficient of of y2v−5 is

p2v−5 = v2v−5

2∑
j=0

(v − 1− j) (Sj(ρΛ′)S2−j(ρΛ)− Sj(ρΛ)S2−j(ρΛ′))

= v2v−5(v − 1)(S0(ρΛ′)S2(ρΛ)− S0(ρΛ)S2(ρΛ′))

+v2v−5(v − 2)(S1(ρΛ′)S1(ρΛ)− S1(ρΛ)S1(ρΛ′))

+v2v−5(v − 3)(S2(ρΛ′)S0(ρΛ)− S2(ρΛ)S0(ρΛ′))

= 2v2v−5(S0(ρΛ′)S2(ρΛ)− S0(ρΛ)S2(ρΛ′))

= 2v2v−5(S2(ρΛ)− S2(ρΛ′).

If Λ′ ≺ Λ, then Sj(ρΛ) = Sj(ρΛ′) for 1 ≤ j < l; the first non-zero coefficient is

p2v−3−l = v2v−3−l

l∑
j=0

(v − 1− j) (Sj(ρΛ′)Sl−j(ρΛ)− Sj(ρΛ)Sl−j(ρΛ′))

= v2v−3−l(v − 1− l) (Sl(ρΛ′)S0(ρΛ)− Sl(ρΛ)S0(ρΛ′))

+v2v−3−l(v − 1) (Sl(ρΛ)S0(ρΛ′)− Sl(ρΛ′)S0(ρΛ))

= v2v−3−ll (Sl(ρΛ)− Sl(ρΛ′)) .

We can now prove the following theorem.
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Theorem 8.5. For given v, b, k, there exists a y0 such that, if designs with

Laplacian matrix Λ[y] exist for some Λ ∈ L(v, b, k) and y ≥ y0, then their

ordering under the A- or D-criterion is the stable ordering of the matrices Λ.

Proof. Let Λ, Λ′ ∈ L(v, b, k) with Λ′ ≺ Λ. Then there exists an l ∈ {1, . . . , v−1}

such that Sj(ρΛ) = Sj(ρΛ′) for j = 1, . . . , l−1 and Sl(ρΛ) > Sl(ρΛ′). That means,

with Lemma 8.4 that the first non-vanishing coefficient of the polynomial

D(ρΛ, y)Dy(ρΛ′ , y)−D(ρΛ′ , y)Dy(ρΛ, y)

is

v2v−3−ll(Sl(ρΛ)− Sl(ρΛ′)) > 0.

The difference of the D-values D(ρΛ, y)−D(ρΛ′ , y) has of course the first non-

vanishing coefficient vv−1−l(Sl(ρΛ)− Sl(ρΛ′)) > 0. It follows that there exists a

y0, such that

A(ρΛ, y) > A(ρΛ′ , y) and D(ρΛ, y) > D(ρΛ′ , y) for y ≥ y0.

For i = 1, . . . , v−1, we will denote by Li(v, b, k) the set of Laplacian matrices

Λ ∈ L(v, b, k) such that

Sj(ρΛ) = max{Sj(ρΛ′)|Λ′ ∈ L(v, b, k)} for j = 1, . . . , i.

That means, that for i ∈ {1, . . . , v − 2} and for Λ, Λ′ ∈ Li(v, b, k) with Λ′ 6∈

Li+1(v, b, k) we have Λ′ ≺ Λ. We obtain the result by Constantine that is given

in [Con86] in terms of the traces of the Laplacian matices.

Corollary 8.6 ([Con86]). For given v, b, k and 3 ≤ j ≤ v, if designs with

Laplacian matrix Λ[y] where Λ ∈ Lj(v, b, k) exist for some y ≥ y0, then they
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are A- and D-optimal among all designs with Laplacian matrices Λ′[y] with

Λ′ ∈ L(v, b, k) \ Lj(v, b, k).

We want to characterize the Laplacian matrices that are in Lj(v, b, k) for a

j ≥ 1.

Proposition 8.7. For given v, b, k, if a Schur-optimal design with Laplacian

matrix Λ ∈ L(v, b, k) exists, then Λ ∈ Lv−1(v, b, k).

Proof. If Λ is the Laplacian matrix of a Schur-optimal design, then the eigen-

values of Λ are majorized by any Λ′ ∈ L(v, b, k). Since the symmetric functions

are Schur-concave by Proposition 2.38, the matrix Λ then maximizes Sj(ρΛ) for

any j = 1, . . . , v − 1 and it follows Λ ∈ Lv−1(v, b, k).

To characterize the matrices in L1(v, b, k) and L2(v, b, k) we will need the

following results on the elementary symmetric functions on the eigenvalues for

Λ ∈ L(v, b, k).

Proposition 8.8. For given v, b, k and Λ = (Λij) ∈ L(v, b, k), the following

holds:

1.

S1(ρΛ) ≤ bk(k − 1)

with equality if and only if the corresponding design is binary;

2. if S1(ρΛ) = bk(k − 1), then S2(ρΛ) is maximized if and only if

Λii ∈ {b bk(k−1)
v

c, b bk(k−1)
v

c+ 1} and

Λij ∈ {b bk(k−1)
v(v−1)

c, b bk(k−1)
v(v−1)

c+ 1}

for i, j, l, m ∈ {1, . . . , v} where i 6= j and l 6= m;
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3. if S1(ρΛ) = bk(k − 1) and bk
v

= r ∈ N, then

2S2(ρΛ) ≤ (vr(k − 1))2 − v(r(k − 1))2 − vr(k − 1)

with equality if and only if

Λii = r(k − 1) and

Λij ∈ {b r(k−1)
v−1

c, b r(k−1)
v−1

c+ 1}

for i, j ∈ {1, . . . , v} where i 6= j.

Proof. Since S1(ρΛ) = Trace(Λ), the first statement follows with Theorem 2.26.

Now, let Λ ∈ L(v, b, k) such that S1(ρΛ) = bk(k − 1). Since

2S2(ρΛ) =

(
v−1∑
i=1

ρi(Λ)

)2

− Trace(Λ2)

= (S1(ρΛ))2 − Trace(Λ2)

= (bk(k − 1))2 − Trace(Λ2),

maximizing S2(ρΛ) is equivalent with minimizing Trace(Λ2), which we can write

as

Trace(Λ2) =
v∑

i=1

Λ2
ii +

v∑
i=1

∑
j 6=i

(Λij)
2.

The vector (1, . . . , 1)T ∈ Rv is an eigenvector of Λ with eigenvalue 0, and there-

fore ∑
j 6=i

Λij = −Λii for all i = 1, . . . , v.
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Because
∑v

i=1 Λii = bk(k − 1), it follows that

v∑
i=1

∑
j 6=i

(−Λij) =
v∑

i=1

Λii = bk(k − 1)

is a constant as well.

Lemma 2.25 gives for n = v and m = bk(k − 1) the optimal solution for the

diagonal entries Λii is to take bk(k − 1) − vb bk(k−1)
v

c entries to be b bk(k−1)
v

c + 1

and the rest to be b bk(k−1)
v

c. For n = v(v − 1) and m = bk(k − 1), the optimal

solution for the entries Λij with i 6= j is to take bk(k − 1) − v(v − 1)b bk(k−1)
v(v−1)

c

entries to be b bk(k−1)
v(v−1)

c+ 1 and the rest to be b bk(k−1)
v(v−1)

c.

If bk
v

= r ∈ N, the optimal solution for the diagonal entries is then Λii =

r(k − 1) for i = 1, . . . , v, and the optimal solution for the entries Λij with i 6= j

is to take vr(k − 1)− v(v − 1)b r(k−1)
v−1

c entries to be b r(k−1)
v−1

c+ 1 and the rest to

be b r(k−1)
v−1

c. It follows that the minimal value of Trace(Λ2) is

Trace(Λ2) = v(r(k − 1))2 +
(
vr(k − 1)− v(v − 1)b r(k−1)

v−1
c
)(

b r(k−1)
v−1

c+ 1
)

+
(
v(v − 1)−

(
vr(k − 1)− v(v − 1)b r(k−1)

v−1
c
))

b r(k−1)
v−1

c

= v(r(k − 1))2 + vr(k − 1).

and therefore the maximal value of 2S2(ρΛ) is

2S2(ρΛ) = S1(ρΛ)2 − Trace(Λ2)

= (vr(k − 1))2 − v(r(k − 1))2 − vr(k − 1).

With the above proposition, it follows that L1(v, b, k) is the set of the Lapla-

cian matrices of all existing binary designs and L2(v, b, k) is the set of the Lapla-

cian matrices of any existing regular graph designs (RGDs) or nearly balanced
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incomplete block designs (NBDs).

Example. The cycle Cycle(v) on v vertices is the simple, regular adjacency

graph of a binary design with v = b and k = 2. Bailey showed in [Bai07], that

Cycle(v) is D-optimal among connected graphs with v vertices and v edges for

all v ≥ 2 and we can prove that the graph Cycle(v)+y∗Kv is D-optimal among

all graphs G + y ∗ Kv where G has v edges for all y ≥ 0: by Proposition 8.8,

the graph Cycle(v) maximizes S1(ρG) and S2(ρG) among all connected graphs G

with v vertices and v edges. Stevanovic and Ilic ([SI09]) showed, that Cycle(v)

maximizes Sj(ρG) for all j = 2, . . . , v − 1 among all simple connected graphs

with v edges. Since all designs in the class with Laplacian matrix in L2(v, v, 2)

have a simple connected adjacency graph by Proposition 8.8, it follows that

Λ(Cycle(v)) ∈ Lv−1(v, v, 2) and with that we have proved the next proposition.

Proposition 8.9. Any design with Laplacian matrix Λ(Cycle(v))[y] is D-opti-

mal for all y ≥ 0 among connected designs with Laplacian matrix Λ[y] with

Λ ∈ L(v, v, 2) and there exists a y0 such that, if there exists a design with

Laplacian matrix Λ(Cycle(v))[y] and y ≥ y0, then it is A-optimal among all

designs with Laplacian matrix Λ[y] with Λ ∈ L(v, v, 2).

Bailey showed in [Bai07] that that the cycle is the adjacency graph of an

A-optimal binary design only for v ≤ 8 and v = 12. For 9 ≤ v ≤ 11, the

quadrangle of which one vertex is joined to all the remaining v−4 vertices is A-

optimal. For v ≥ 13 the triangle of which one vertex is joined to the remaining

v− 3 vertices is A-optimal; we will denote this graph by C3(v− 3). For v = 12,

both Cycle(12) and C3(9) give A-best binary designs. In the case v = 20, the

performance C3(17) on the A-criterion is a lot better than the performance of

Cycle(20) on the A-criterion:

A(ρCycle(20), 0)

A(ρC3(17), 0)
=

149

285
= 0, 522807,
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but the graph Cycle(20) + K20 beats C3(17) + K20 on the A-criterion:

A(ρCycle(20), 1)

A(ρC3(17), 1)
=

2014224563024993

1979512211726735
= 1, 01754.

The example of the cycle shows that the lower bound for y in Proposition 8.5

might not have to be very large. Our aim is to find out what ‘large’ means; for

this we have to bound the differences of the elementary symmetric polynomials.

Lemma 8.10. Let Λ ∈ L2(v, b, k) and Λ′ ∈ L(v, b, k) and Λ′ 6∈ L2(v, b, k). Then

S2(ρΛ)− S2(ρΛ′) ≥ 1.

Proof. By Corollary 2.42 S2(ρΛ) ∈ N for all Λ ∈ L(v, b, k) and the statement

follows.

Lemma 8.11. The largest eigenvalue of a matrix Λ = (Λij) ∈ L1(v, b, k) is

bounded from above by max{(ri + rj)(k − 1)|Λij 6= 0, i 6= j}.

Proof. The eigenvalues of Λ are the Laplacian eigenvalues of the adjacency graph

of the corresponding design. This graph is connected and has degree sequence

(r1(k − 1), . . . , rv(k − 1)). By Theorem 2.16, the Laplacian eigenvalues of a

connected graph are bounded from above by

max{δu + δw|(u, w) ∈ E(G)}.

It follows that the largest Laplacian eigenvalue of Λ is bounded from above by

max{(ri + rj)(k − 1)|Λij 6= 0, i 6= j}.

Lemma 8.12. Let Λ, Λ′ ∈ L1(v, b, k), then for m = d2v−3
3
e

|Sj(ρΛ)− Sj(ρΛ′)| ≤ (b(k − 1))j2m

(
v − 1

m

)
.
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Proof. By Lemma 8.11 for Λ′ = (Λ′
ij) ∈ L1(v, b, k)

ρ1(Λ
′) ≤ max{(ri + rj)(k − 1)|Λ′

ij 6= 0, i 6= j}.

Since ri ≤ b for all i = 1, . . . , v − 1, we have

|Sj(ρΛ)− Sj(ρΛ′)| ≤
(

v − 1

j

)(
max{(ri + rj)(k − 1)|Λ′

ij 6= 0, i 6= j}
)j

=

(
v − 1

j

)
(2b(k − 1))j.

Since the fraction
2
(

v−1
j+1

)(
v−1

j

) =
2(v − 1− j)

j + 1

is strictly greater than 1 if and only if j < 2v−3
3

, the binomial coefficient 2j
(

v−1
j

)
as a function in j is strictly increasing until j < 2v−3

3
and therefore the maximum

is attained for j = m = d2v−3
3
e.

We get the following result which is given in [Che92] for more general opti-

mality criteria but without a bound on y.

Proposition 8.13. For given v, b, k and y0 = v22m(b(k−1))v−1
(

v−1
m

)
+1, where

m = d2v−3
3
e, if there exist designs with Laplacian matrix Λ[y] with Λ ∈ L2(v, b, k)

and y ≥ y0, then they beat any design with Laplacian matrix Λ′[y] with Λ′ ∈

L1(v, b, k) \ L2(v, b, k) on the D-criterion.

Proof. Let Λ ∈ L2(v, b, k). By Proposition 8.8 S1(ρΛ) ≥ S1(ρΛ′) for all Λ′ ∈

L1(v, b, k) and S2(ρΛ) > S2(ρΛ′) for all Λ′ 6∈ L2(v, b, k). From Corollary 8.10 we

know that S2(ρΛ)− S2(ρΛ) ∈ N>0.

From Lemma 8.12 it follows for y ≥ v22m(b(k − 1))v−1
(

v−1
m

)
+ 1 that

v−1∑
j=3

vv−1−jyv−1−j|Sj(ρΛ)− Sj(ρΛ′)| < 2m(vb(k − 1))v−1

(
v − 1

m

) v−1∑
j=3

yv−1−j
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≤ 2m(vb(k − 1))v−1

(
v − 1

m

)
yv−3 − 1

y − 1

≤ vv−3(y − 1)
yv−3 − 1

y − 1

< vv−3yv−3

≤ vv−3yv−3(S2(ρΛ)− S2(ρΛ′))

+vv−2yv−2(S1(ρΛ)− S1(ρΛ′)).

Lemma 8.14. Let Λ, Λ′ ∈ L1(v, b, k), then for i > j and m = dv−2
2
e

|Sj(ρΛ)Si−j(ρΛ′)− Sj(ρΛ′)Si−j(ρΛ)| ≤ (2b(k − 1))i

(
v − 1

m

)2

.

Proof. By Lemma 8.11 for Λ′ = (Λ′
ij) ∈ L1(v, b, k)

ρ1(Λ
′) ≤ max{(ri + rj)(k − 1)|Λ′

ij 6= 0 i 6= j}.

Since ri ≤ b for all i = 1, . . . , v − 1, we have

|Sj(ρΛ)Si−j(ρΛ′)− Sj(ρΛ′)Si−j(ρΛ)| ≤
(

v − 1

j

)(
v − 1

i− j

)
(2b(k − 1))i.

Since (
v−1
j+1

)(
v−1

j

) =
v − 1− j

j + 1
,

the binomial coefficient
(

v−1
j

)
as a function in j is strictly increasing until j < v−2

2

and the maximum is attained for j = m = dv−2
2
e. Therefore

|Sj(ρΛ)− Sj(ρΛ′)| ≤ (2b(k − 1))i

(
v − 1

m

)2

.
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With the above lemma we get the following result which is again given in

[Che92] for more general optimality criteria but without a bound on y.

Proposition 8.15. For given v, b, k and y0 = 2v−2(b(k−1))v−1(2v−5)
(

v−1
m

)2
+ 1

v
,

where m = dv−2
2
e, if there exists a design with Λ[y] with Λ ∈ L2(v, b, k) and y ≥

y0, then Λ[y] beats any design with Laplacian matrix Λ′[y] with Λ′ ∈ L1(v, b, k)\

L2(v, b, k) on the A-criterion.

Proof. Let Λ ∈ L2(v, b, k). By Proposition 8.8 and Corollary 8.10 S1(ρΛ) ≥

S1(ρΛ′) for all Λ′ ∈ L(v, b, k) and S2(ρΛ)− S2(ρΛ) ∈ N>0 for all Λ′ 6∈ L2(v, b, k).

By Lemma 8.4, the three leading coefficients of the polynomial

D(ρΛ, y)Dy(ρΛ′ , y)−D(ρΛ′ , y)Dy(ρΛ, y)

are

0, v2v−4 (S1(ρΛ)− S1(ρΛ′)) ≥ 0 and 2v2v−5 (S2(ρΛ)− S2(ρΛ′)) > 0.

By Lemma 8.14 for i > j and m = dv−2
2
e

|Sj(ρΛ)Si−j(ρΛ′)− Sj(ρΛ′)Si−j(ρΛ)| ≤ (2b(k − 1))i

(
v − 1

m

)2

.

It follows for y − 1
v
≥ 2v−2(b(k − 1))v−1(2v − 5)

(
v−1
m

)2
that

v−1∑
i=3

(vy)2v−3−i

i∑
j=0

(v − 1− j)|Sj(ρΛ)Si−j(ρΛ′)− Sj(ρΛ′)Si−j(ρΛ)|

≤ (2b(k − 1))v−1

(
v − 1

m

)2
(

v−1∑
i=3

(vy)2v−3−i

i∑
j=0

(v − 1− j)

)

= (2b(k − 1))v−1

(
v − 1

m

)2
(

v−1∑
i=3

(vy)2v−3−i(i + 1)
2(v − 1)− i

2

)

< (2b(k − 1))v−1

(
v − 1

m

)2
v(2v − 5)

2

v−1∑
i=3

(vy)2v−3−i
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= (2b(k − 1))v−1

(
v − 1

m

)2
v(2v − 5)

2
(vy)2v−6−(v−4)

v−4∑
i=0

(vy)i

= 2v−2(b(k − 1))v−1

(
v − 1

m

)2

v(2v − 5)(vy)v−2 (vy)v−3 − 1

vy − 1

= v

(
2v−2(b(k − 1))v−1

(
v − 1

m

)2

(2v − 5)

)
(vy)v−2 (vy)v−3 − 1

vy − 1

≤ (vy − 1)(vy)v−2 (vy)v−3 − 1

vy − 1

< (vy)2v−5

≤ 2(vy)2v−5(S2(ρΛ)− S2(ρΛ′)) + (vy)2v−4 (S1(ρΛ)− S1(ρΛ′)) .

8.2 Comparing RGDs in Large Systems

For the rest of this chapter let bk
v

= r ∈ N, that means L2(v, b, k) is the set

of Laplacian matrices of any existing RGDs. Our aim in this section is to

characterize the best RGDs, since if they exist, they are the best designs for

large y by Corollary 8.6. In particular, if L2(v, b, k) 6= L3(v, b, k) then, if designs

with Laplacian matrix Λ[y] with Λ ∈ L3(v, b, k) exist for y ≥ y0, they beat any

design with Laplacian matrix Λ′[y] with Λ′ ∈ L2(v, b, k) \ L3(v, b, k) on the A-

and D-criterion.

Corollary 8.16. There exists an y0 such that among designs with Laplacian

matrix Λ[y] with Λ ∈ L2(v, b, k) any A-optimal design is D-optimal and vice

versa for y ≥ y0.

Recall that M(v, δ) denotes the set of all not necessarily connected, simple

δ-regular graphs. If we search only among RGDs, we are in fact searching among

regular graphs in M(v, δ): we can write any Laplacian matrix Λ of an RGD with
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λ = b r(k−1)
v−1

c and δ = r(k − 1)− λ(v − 1) as

Λ = (r(k − 1) + λ)Iv − λJv − A(G)

= (δ + vλ)Iv − λJv − A(G),

where G is the underlying graph of Λ, that is G ∈ M(v, δ). The A- and D-values

of the design are D(ρG, λ) and A(ρG, λ) = v(v − 1)D(ρG ,λ)
R(ρG ,λ)

given as in equations

8.1.2 and 8.1.3, where ρG denotes the vector of the non-trivial Laplacian eigen-

values of the graph G and R(ρG, y) = Dy(ρG, y) denotes the derivative of the

D-value as polynomial in y. The Laplacian matrix Λ[y] as in equation 8.1.1

of the design obtained from the RGD by adding y copies of the blocks of a

2-(v, k, λ̃)-design is

Λ[y] = (r(k − 1) + vyλ̃ + λ)Iv − (yλ̃ + λ)Jv − A(G)

which we can write with x = λ + yλ̃ as

Λ[x] = (δ + vx)Iv − xJv − A(G).

We can view this matrix as a function in x ∈ R≥0 and the D-value of Λ[x] is

now D(ρG, x) and the A-value is A(ρG, x). Of course, for Λ[x] being a Laplacian

matrix of an existing design only some values for x will be admissible. But com-

paring designs with Laplacian matrix Λ[x] with Λ ∈ L2(v, b, k) is now reduced

to comparing the values D(ρG, x) and A(ρG, x) among all δ-regular graphs on

v vertices. We can now compute lower bounds for x such that designs with

Laplacian matrix Λ[x], where Λ ∈ L2(v, b, k), characterized in Corollary 8.6 are

A- and D-best.

Proposition 8.17. Let δ = r(k−1)−λ(v−1). Suppose L2(v, b, k) 6= L3(v, b, k).
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For given v, b, k and x0 = 1
v

(
(2δ)v−1

(
v−1
d v−2

2
e

)
+ 1
)
, if there exist designs with

Laplacian matrix Λ[x] with Λ ∈ L3(v, b, k) for x ≥ x0, then they maximize the

D-value among all designs with Laplacian matrix Λ[x] with Λ ∈ L2(v, b, k).

Proof. Let Λ ∈ L2(v, b, k) with underlying δ-regular simple graph G on v vertices

such that S3(ρG) ≥ S3(ρG′) for any δ-regular (not necessarily connected) simple

graph G ′ on v vertices. By Corollary 2.42 S3(ρG)− S3(ρG′) ∈ N>0. Therefore, it

is enough to show that

vv−4yv−4 >

v−1∑
j=4

vv−1−jxv−1−j|Sj(ρG)− Sj(ρG′)|

for x ≥ 1
v

(
(2δ)v−1

(
v−1
d v−2

2
e

)
+ 1
)
. By Proposition 2.16, the Laplacian eigenvalues

of a (not necessarily connected) δ-regular graph are bounded from above by

2δ and therefore |Sj(ρG) − Sj(ρG′)| ≤
(

v−1
j

)
(2δ)j ≤ (2δ)j

(
v−1
d v−2

2
e

)
for all j =

1, . . . , v − 1. It follows that

v−1∑
j=4

vv−1−jxv−1−j|Sj(ρG)− Sj(ρG′)| < (2δ)v−1

(
v − 1

dv−2
2
e

) v−1∑
j=4

vv−1−jxv−1−j

= (2δ)v−1

(
v − 1

dv−2
2
e

)
(vx)v−4 − 1

vx− 1

≤ (vx− 1)
(vx)v−4 − 1

vx− 1

< vv−4xv−4

≤ vv−4xv−4(S3(ρG)− S3(ρG′)).

Proposition 8.18. Let δ = r(k − 1) − λ(v − 1). For given v, b, k and x0 =

(2δ)v−1
(

v−1
m

)2
(v− 3)+ 1

v
, where m = dv−2

2
e, if there exist designs with Laplacian

matrix Λ[x] with Λ ∈ L3(v, b, k) for x ≥ x0, then they maximize the A-value

among all designs with Laplacian matrix Λ[x] with Λ ∈ L2(v, b, k).
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Proof. Let Λ ∈ L2(v, b, k) with underlying δ-regular (not necessarily connected)

simple graph G on v vertices such that S3(ρG) ≥ S3(ρG′) for any δ-regular simple

graph G ′ on v vertices. By Proposition 8.8 S1(ρG) = S1(ρG′) and S2(ρG) =

S2(ρG′) for all G ′ ∈M(v, r(k− 1)− λ(v− 1)). The RGD with Laplacian matrix

Λ[x] is A-better than the RGD with Laplacian matrix Λ′[x] if and only if

D(ρG, x)R(ρG′ , x)−D(ρG′ , x)R(ρG, x) > 0.

By Lemma 8.4, the first non-vanishing coefficient of this polynomial is

3v2v−6 (S3(ρG)− S3(ρG′))

which is an integer by Corollary 2.42. By Proposition 2.16, the Laplacian eigen-

values of a (not necessarily connected) δ-regular graph are bounded from above

by 2δ. Therefore, for m = dv−2
2
e we have

(
v−1
m

)
≥
(

v−1
i

)
for i ∈ {1, . . . , v − 1},

hence

|Sj(ρG)Si−j(ρG′)− Sj(ρG′)Si−j(ρG)| ≤ (2δ)i

(
v − 1

m

)2

.

It follows for x ≥ (2δ)v−1
(

v−1
m

)2
(v − 3) + 1

v
that

v−1∑
i=4

(vx)2v−3−i

i∑
j=0

(v − 1− j)|Sj(ρG)Si−j(ρG′)− Sj(ρG′)Si−j(ρG)|

≤ (2δ)v−1

(
v − 1

m

)2 v−1∑
i=4

(vx)2v−3−i

i∑
j=0

(v − 1− j)

= (2δ)v−1

(
v − 1

m

)2 v−1∑
i=4

(vx)2v−3−i(i + 1)
2(v − 1)− i

2

< (2δ)v−1

(
v − 1

m

)2

v(v − 3)
v−1∑
i=4

(vx)2v−3−i

= (2δ)v−1

(
v − 1

m

)2

v(v − 3)(vx)v−2

v−5∑
i=0

(vx)i
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= v

(
(2δ)v−1

(
v − 1

m

)2

(v − 3)

)
(vx)v−2 (vx)v−4 − 1

vx− 1

≤ (vx− 1)(vx)v−2 (vx)v−4 − 1

vx− 1

< (vx)2v−6

≤ 3v2v−6x2v−6 (S3(ρG)− S3(ρG′)) .

We want to characterize the simple regular graphs on v vertices that are

underlying graphs of A- and D-best RGDs for large x. The following proposition

relates the A- and D-values given as in equation 8.1.2 and 8.1.3 of such a graph

with its complement Ḡ.

Proposition 8.19. Let G be a simple (not necessarily connected) graph and Ḡ

its complement. Then

Sj(ρḠ) =

j∑
l=0

(
v − l

j − l

)
(−1)lvj−lSl(ρG).

Proof. By Proposition 2.8, the non-trivial Laplacian eigenvalues of Ḡ are given

by v − ρi(G) for i = 1, . . . , v − 1. Therefore for I = {1, . . . , v − 1}

Sj(ρḠ) = Sj(v − ρ1(G), . . . , v − ρv−1(G))

=
∑
J⊆I,
|J |=j

j∑
l=0

(−1)lvj−lSl;(I\J)(ρG)

=

j∑
l=0

(−1)lvj−l
∑
J⊆I,
|J |=j

∑
L⊆J,
|L|=l

∏
i∈L

ρi(G).

In the last sum, the elementary symmetric polynomial Sl(ρG) occurs as often as

an l-set occurs in a j-set. This is the number of possible ways for choosing a
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j-set with a fixed l-subset, that is
(

v−l
j−l

)
. Hence,

∑
J⊆I,
|J |=j

∑
L⊆J,
|L|=l

∏
i∈L

ρi(G) =

(
v − l

j − l

)
Sl(ρG)

and the statement follows.

That means, if two δ-regular (not necessarily connected) simple graphs G

and G ′ have Laplacian matrices Λ(G ′) ≺ Λ(G) and i is the smallest index such

that Si(ρG) > Si(ρG′), then

vIv − Jv − Λ(G ′) ≺ vIv − Jv − Λ(G) if i is even,

vIv − Jv − Λ(G) ≺ vIv − Jv − Λ(G ′) if i is odd.

Example. Let G be the union of two disjoint triangles. We want to compare

G with the 6-cycle Cycle(6). Both graphs are adjacency graphs of RGDs with

v = b = 6 and block size k = 2 and therefore Λ(G), Λ(Cycle(6)) ∈ L2(6, 6, 2).

The Laplacian spectra are

Spec(Λ(G)) = (02, 34)

and

Spec(Λ(Cycle(6))) = (01, 12, 32, 4).

We can compute the elementary symmetric polynomials as follows:

S1(ρΛ(G)) = S1(ρΛ(Cycle(6))) = 12,

S2(ρΛ(G)) = S2(ρΛ(Cycle(6))) = 54

and

S3(ρΛ(G)) = 108 and S3(ρΛ(Cycle(6))) = 112.
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That means Λ(G) ≺ Λ(Cycle(6)).

The complement of G is the regular complete bipartite graph K3,3 and

Cycle(6) has the complement and

Spec(Λ(Ḡ)) = (01, 34, 61)

and

Spec(Λ(Cycle(6))) = (01, 21, 32, 52).

Therefore,

S1(ρΛ(Ḡ)) = S1(ρΛ(Cycle(6))) = 18,

S2(ρΛ(Ḡ)) = S2(ρΛ(Cycle(6))) = 126

and

S3(ρΛ(Ḡ)) = 432 and S3(ρΛ(Cycle(6))) = 428,

giving Λ(Cycle(6)) ≺ Λ(Ḡ).

Lemma 8.20. Let G and G ′ be simple δ-regular graphs on v vertices. Then

S3(ρG)− S3(ρG′) =
1

3
(η(G)− η(G ′)),

where η is the number of V-subgraphs of G and G ′, that is three vertices with

exactly two edges.

Proof. By Proposition 2.17, if G and G ′ are δ-regular, then S1(ρG) = S1(ρG′) and

Trace(Λ(G)2) = Trace(Λ(G ′)2). Since for any graph

2S2(ρG) = S1(ρG)
2 − Trace(Λ(G)2),

it follows that S2(ρG) = S2(ρG′). With equation 2.6.1 and S0 ≡ 1 it follows for
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any simple δ-regular graph G on v vertices that

3S3(ρG) =
3∑

i=1

(−1)i−1S3−i(ρG)
v−1∑
j=1

ρi(G)j

= S2(ρG)S1(ρG)− S1(ρG)
v−1∑
j=1

ρ(G ′)2
i +

v−1∑
j=1

ρi(G)3.

By Proposition 2.17,
v−1∑
i=1

ρi(G)2 = vδ(δ + 1)

and
v−1∑
i=1

ρi(G)3 = vδ(δ + 1)2 + η(G),

where η(G) is the number of V-subgraphs of G and it follows

S3(ρG)− S3(ρG′) =
1

3
(η(G)− η(G ′)).

By Proposition 8.19, among simple δ-regular graphs on v vertices that agree

on S1(ρG) and S2(ρG), maximizing S3(ρG) is equivalent with minimizing S3(ρḠ).

Theorem 8.21. Suppose L2(v, b, k) 6= L3(v, b, k). For given v, b, k, there exists

an x0 such that, if there exist designs with Laplacian matrix Λ[x] with Λ ∈

L2(v, b, k) for x ≥ x0, then the ones whose underlying graph minimizes the

number of V-subgraphs in its complement are A- and D-best.

The following corollary extends Cheng’s result in [Che81a] on D-optimality

of the complete regular m-partite graph Kα,...,α with x = 0 to large x.

Corollary 8.22. There exists an x0 such that if there exists a design with Lapla-

cian matrix Λ[x] where Λ = Λ(Kα,...,α) ∈ L(αm, b, k) and x ≥ x0, then it is A-

and D-best among all designs with Laplacian matrix Λ′[x] with Λ′ ∈ L(αm, b, k).

144



Proof. Follows directly from Proposition 8.5, Theorem 8.21 and the fact that

the complement is a union of cliques and as such V-subgraph-free.

8.3 A- and D-best RGDs with v ≤ 18

For the rest of this chapter, all considered designs are RGDs with connected

underlying graph and we denote the set of all Laplacian matrices of such designs

by Lc
2(v, b, k). Let Mc(v, δ) denote the set of all connected δ-regular graphs on

v points. Note that this is no restriction if the underlying graphs are already

the adjacency graphs of the designs.

To find the best designs on v points, we follow John and Mitchell’s approach

and first generate all graphs in Mc(v, δ) with the program genreg.exe ([Meh99])

for δ ≤ 9 (the restriction on the degree is made by the program genreg.exe). This

gives us a list of (connected) simple regular graphs whose Laplacian eigenvalues

we can now compare. Any Laplacian matrix Λ ∈ Lc
2(v, b, k) corresponds to

a G ∈ Mc(v, δ), its underlying graph. Therefore, to order the matrices in

Lc
2(v, b, k) corresponding to the A- and D-criterion it is enough to order all

G ∈ Mc(v, δ) corresponding to the value D(ρG, λ) as given in equation 8.1.2

and the value A(ρG, λ) = v(v − 1)D(ρG ,λ)
R(ρG ,λ)

, where ρG denotes the vector of the

non-trivial Laplacian eigenvalues of G and R(ρG, x) = Dx(ρG, x) denotes the

derivative of the D-value as polynomial in x. We can view A(ρG, λ) and D(ρG, λ)

as functions in λ; to make this clearer we will write A(ρG, x) and D(ρG, x) if we

view the values as functions in a variable x and A(ρG, λ) and D(ρG, λ) for their

evaluation in x = λ. Suppose there exist G,G ′ ∈ Mc(v, δ) and a pair r, k

such that G and G ′ are underlying graphs of RGDs with Laplacian matrix in

Lc
2(v, b, k) such that A(ρG, λ0) > A(ρG′ , λ0) where λ0 = b r(k−1)

v−1
c. We know from
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the previous sections that if λ0 is large enough then

A(ρG, x) > A(ρG′ , x) for all x ≥ λ0

or, equivalently the polynomial

P (G,G ′, x) = D(ρG, x)R(ρG′ , x)−D(ρG′ , x)R(ρG, x)

has no roots bigger than λ0, that is if P (x) = 0, then x < λ0. We want

to order the graphs in Mc(v, δ) according to the values A(ρG, λ) for different

values for λ. Let us define this formally: suppose Mc(v, δ) = {G1, . . . ,GM}. Let

rA : {1, . . . ,M} × x → {1, . . . ,M} be a function of the indices of the graphs

in Mc(v, δ) such that for a value λ ∈ N an order on Mc(v, δ) = {GrA(i,λ)|i =

1, . . . ,M} is given by

P (GrA(i,λ),GrA(i,λ)+1, λ) ≥ 0 for all rA(i, λ) = 1, . . . ,M − 1.

The value we are interested in is the value λ0 such that rA(i, x) = rA(i, λ0) for

all x ≥ λ0 and i = 1, . . . ,M .

Here, λ0 still depends on the choice of r and k and the existence of RGDs

with underlying graph G ∈ Mc(v, δ). Instead of computing the exactly values

for λ0, we want find a value xA
0 (not depending on existence of designs) such

that the following is satisfied, in which case we say that the order stabilizes for

xA
0 .

1. There exists an x < xA
0 and an i ∈ {1, . . . ,M − 1} such that

P (GrA(i,x),GrA(i,x)+1, x) < 0;

and
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2. for all x ≥ xA
0 ,

P (GrA(i,x),GrA(i,x)+1, x) ≥ 0.

That means, if the order of the graphs stabilizes for xA
0 then for any admissible

λ ≥ xA
0 we have rA(i, λ) = rA(i, xA

0 ). We denote by rD and xD
0 the equivalent of

rA and xA
0 for the D-values D(ρG, x) with G ∈ Mc(v, δ).

In the rest of this chapter, we present the exact values for xA
0 and xD

0 found

with an exhaustive computer search, for all graphs in Mc(v, δ) with 5 ≤ v ≤ 13

and 2 ≤ δ ≤ 9, v = 14 and 2 ≤ δ ≤ 5, v = 15 and δ = 4, v = 16, 18 and

δ = 3. The other cases were too extensive to handle. We obtain the values by

first guessing a value for xA
0 and xD

0 and then verifying the above two properties

for all graphs in Mc(v, δ). A little needs to be said of how we are computing

the A- and D-values as functions in x. Of course, it would be enough to know

the Laplacian eigenvalues of the graphs in Mc(v, δ). But this approach leads to

long computation times. There is a way to compute the exact A- and D-values

more efficiently. With equations 2.14 and 2.5, we can compute A(ρG, x) and

D(ρG, x) in terms of the coefficients of the characteristic polynomial of Λ[x],

where Λ = Λ(G),

χΛ[x](z) = xv − c2z
v−1 . . . + (−1)lclz

v−l+1 + . . . + (−1)v−1cv−1z,

as

D(ρG, x) = cv−1 and A(ρG, x) =
cv−1

cv−2

.

In fact, it is enough to compute D(ρG, x) since the A-value is determined by

D(ρG ,x)
R(ρG ,x)

. Mathematica lets us compute the coefficients of the characteristic poly-

nomial of an integer matrix exact (depending on a variable or not). To find

the best design for a block size k, we search for the first graph in this order

that gives rise to a block design with block size k. To do this we use the GAP
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package DESIGN ([Soi06]). Because of the high number of graphs in the cases

v = 13 and δ = 6, v = 14 and δ = 4, 5, v = 15 and δ = 4 we only searched for

designs among the best 20,000.

8.3.1 Results

A table of our results is given in tables 8.1, 8.2 and 8.3. We denote by δ the

degree of the underlying regular graph. We list λ = b r(k−1)
v−1

c and the smallest

λ̃ such that a 2-(v, k, λ̃)-design exists (found with GAP). For i ∈ {A, D}, the

values ri(k, 0) and ri(k, λi
0) listed are defined as follows: for λ let ri(k, λ) be

the smallest index in {ri(1, λ), . . . , ri(M, λ)} such that there exist a design with

Laplacian matrix in L2(v, b, k) and underlying graph Gri(k,λ).

8.3.2 Observations, Remarks and Conjectures

Recall that we are computing the A- and D-values of Λ[y] = Λ + y(vIv − Jv) as

polynomials in x = λ + yλ̃, where λ̃ is the smallest value such that a 2-design

on v vertices and block size k exists.

Comparison with the results of John and Mitchell

For all v ≤ 12, the optimal designs we found for y = 0 are isomorphic to the

designs presented by John and Mitchell except for the cases v = 11, k = r = 3

and k = r = 8 and all designs on v = 12 points with underlying 5-regular

graph. All the other designs listed by John and Mitchell for y > 0 have the

same underlying graph as the designs we found.

Remark 8.23. The case v = 10, k = 3, r = 3 + 12y. For b = 10 + 30y the

optimal design we found is isomorphic to the one presented by John and Mitchell

for y = 0. However, for b = 40 + 30y, which is not one of the cases John and
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v k r λ λ̃ δ rA(k, 0) rA(k, λ0) rD(k, 0) rD(k, λ0)

5 2 2+4y 0 1 2 1 1 1 1
5 2 4+4y 0 1 4 1 1 1 1
5 3 3+6y 1 3 2 1 1 1 1
5 3 6+6y 2 3 4 1 1 1 1
5 4 3+4y 2 3 4 1 1 1 1

5 5 2+y 1 1 4 1 1 1 1

6 2 3+5y 0 1 3 1 1 1 1
6 2 4+5y 0 1 4 1 1 1 1
6 3 2+5y 0 2 4 1 1 1 1
6 3 4+5y 1 2 3 2 2 2 2
6 4 6+10y 3 6 3 1 1 1 1
6 4 8+10y 4 6 4 1 1 1 1

7 2 4+6y 0 1 4 1 1 1 1
7 2 6+6y 0 1 6 1 1 1 1
7 3 3+3y 0 1 6 1 1 1 1
7 4 4+4y 1 2 6 1 1 1 1
7 6 6+6y 5 5 6 1 1 1 1
7 7 2+y 1 1 6 1 1 1 1

8 2 3+7y 0 1 3 1 1 1 1
8 2 4+7y 0 1 4 1 1 1 1
8 2 5+7y 0 1 5 1 1 1 1
8 2 6+7y 0 1 6 1 1 1 1
8 3 3+21y 0 6 6 1 1 1 1
8 3 6+21y 1 6 5 1 1 1 1
8 3 9+21y 2 6 4 1 1 1 1
8 3 12+21y 3 6 3 1 1 1 1
8 4 4+7y 1 3 5 2 2 2 2
8 4 6+7y 2 3 4 1 1 1 1
8 4 8+7y 3 3 3 1 1 1 1
8 4 9+7y 3 3 6 1 1 1 1

8 5 5+35y 2 20 6 1 1 1 1
8 5 10+35y 5 20 5 1 1 1 1

9 2 2+8y 0 1 4 1 1 1 1
9 2 6+8y 0 1 6 1 1 1 1
9 3 2+4y 0 1 4 7 7 7 7
9 3 3+4y 0 1 6 1 1 1 1
9 4 4+8y 1 3 4 2 2 2 2
9 5 5+10y 2 5 4 2 2 2 2

Table 8.1: Results of computer search
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v k r λ λ̃ δ rA(k, 0) rA(k, λ0) rD(k, 0) rD(k, λ0)

9 6 4+8y 2 5 4 7 7 7 7
9 6 6+8y 3 5 6 1 1 1 1

10 2 2+9y 0 1 2 1 1 1 1
10 2 3+9y 0 1 3 1 1 1 1
10 2 4+9y 0 1 4 1 1 1 1
10 2 5+9y 0 1 5 1 1 1 1
10 2 6+9y 0 1 6 1 1 1 1
10 2 7+9y 0 1 7 1 1 1 1
10 2 8+9y 0 1 8 1 1 1 1
10 3 3 0 2 6 6 6 6 6
10 3 12+9y 2 2 6 1 1 1 1
10 3 6+9y 1 2 3 1 1 1 1
10 4 2+6y 0 2 6 16 16 16 16
10 4 4+6y 1 2 3 1 1 1 1
10 4 8+6y 2 2 6 1 1 1 1
10 4 10+6y 3 2 3 1 1 1 1
10 5 2+9y 4 4 8 RGD∗

10 5 4+9y 1 4 7 RGD∗

10 5 5+9y 2 4 2 1 1 1 1
10 5 6+9y 2 4 6 1 1 1 1
10 5 8+9y 3 4 1 1 1 1 1
10 5 10+9y 4 4 6 1 1 1 1
10 6 3+9y 1 5 6 16 16 16 16
10 6 6+9y 3 5 3 1 1 1 1
10 7 7+21y 4 14 6 6 6 6 6
10 8 8+36y 6 28 2 1 1 1 1

11 2 2+10y 0 1 2 1 1 1 1
11 2 4+10y 0 1 4 1 1 1 1
11 2 6+10y 0 1 6 1 1 1 1
11 2 8+10y 0 1 8 1 1 1 1
11 3 3+15y 0 3 6 58 58 58 58
11 3 6+15y 1 3 2 1 1 1 1
11 3 9+15y 1 3 8 1 1 1 1
11 4 4+20y 1 6 2 1 1 1 1
11 4 8+20y 2 6 4 1 1 1 1
11 7 7+35y 4 21 2 1 1 1 1
11 8 8+40y 5 28 6 58 58 58 58

Table 8.2: Results of computer search (cont.)
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v k r λ λ̃ δ rA(k, 0) rA(k, λ0) rD(k, 0) rD(k, λ0)

12 2 3+11y 0 1 3 1 1 1 1
12 2 4+11y 0 1 4 1 1 1 1
12 2 5+11y 0 1 5 1 1 1 1
12 2 6+11y 0 1 6 1 1 1 1
12 2 7+11y 0 1 7 1 1 1 1
12 2 8+11y 0 1 8 1 1 1 1
12 2 9+11y 0 1 9 1 1 1 1
12 3 4+11y 0 2 8 1 1 1 1
12 3 7+11y 1 2 3 1 1 1 1
12 3 9+11y 1 2 7 1 1 1 1
12 3 10+11y 1 2 9 1 1 1 1
12 3 13+11y 2 2 4 1 1 1 1
12 4 3+11y 0 3 9 1 1 1 1
12 4 5+11y 1 3 4 1 1 1 1
12 4 6+11y 1 3 7 2 2 2 2
12 5 5+55y 1 20 9 1 1 1 1
12 7 7+77y 3 42 9 1 1 1 1
12 8 6+22y 3 14 9 1 1 1 1

13 2 4+12y 0 1 4 1 1 1 1
13 2 6+12y 0 1 6 1 1 1 1
13 2 8+12y 0 1 8 1 1 1 1
13 5 5+15y 1 5 8 17 19 19 19

14 2 3+13y 0 1 3 1 1 1 1
14 2 4+13y 0 1 4 1 1 1 1
14 2 5+13y 0 1 5 1 1 1 1
14 3 9+39y 1 6 5 1 1 1 1
14 3 15+39y 2 6 4 1 1 1 1

15 2 4+14y 0 1 4 1 1 1 1
15 3 9+28y 1 1 4 1 1 1 1

16 2 3+15y 0 1 3 1 1 1 1
16 3 9+13y 1 2 3 1 1 1 1
16 4 6+5y 1 1 3 1 1 1 1

18 2 3+17y 0 1 3 1 1 1 1
18 3 10+17y 1 21 3 1 1 1 1

Table 8.3: Results of computer search (cont.)
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Mitchell list, we found a design whose underlying graph performs better on the

optimality criteria than the underlying graph of the former case.

Remark 8.24. The cases v = 11, k = r = 3 and k = r = 8. We present an A-

and D-optimal design on 11 points and parameters r = k = 3 and r = k = 8

which John and Mitchell failed to find. Moreover, we also found a design which

does better on the E-criterion than the design they found in these cases. The A-

and D-optimal designs have in both cases the same underlying regular graph,

as have the E-optimal designs.

Remark 8.25. The cases v = 10, k = 5, r = 2 + 9y, b = 8 + 10y.

The case v = 10, k = 5, r = 2. If there exists an RGD, then the underlying

graph has degree 8. We could not find an RGD in this case. John and Mitchell

list the dual of the design with blocks

1 2 1 2 1 3 1 4 1 4

2 4 3 4 3 4 2 3 2 3

(R3 in Clatworthy [Cla73]), which is an RGD. The underlying graph is the

4-cycle Cycle(4), the only 2-regular simple graph on 4 points (connected or

not). The 4-cycle is A- and D-optimal ([Bai07]) among all binary designs with

4 points and 4 blocks of size 2. The cycle also maximizes Sj(ρG) for all j =

2, . . . , v−1 among all simple connected graphs with v edges ([SI09]). Therefore,

by Proposition 8.7 the 4-cycle is D-optimal for all x ≥ 0 among all binary designs

with simple adjacency graph. By Proposition 2.31, its dual is D-optimal among

all binary equireplicate designs. For x = 0, the dual of the Cycle(4) has blocks

1 2 3 4 5 1 2 6 7 8 3 6 7 9 10 4 5 8 9 10

and therefore is D-optimal. The design is not an RGD since the pair {1, 2}
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occurs in 2 blocks, the pair {1, 9} in none. We do not know whether this design

stays optimal after adding blocks of a BIBD.

The case v = 10, k = 5, r = 8. John and Mitchell list the design with blocks

1 2 3 7 8 1 2 4 9 10 1 2 5 6 9

1 3 6 8 9 1 4 6 7 8 1 4 7 9 10

2 3 6 7 10 2 3 8 9 10 2 4 5 8 10

2 5 6 7 9 3 4 5 6 10 3 4 5 7 9

1 3 5 7 10 1 5 6 8 10 2 4 6 7 8

3 4 5 8 9.

The underlying graph has degree 1 and is the only 1-regular simple graph on 10

points. The design is therefore optimal among RGDs for all y ≥ 0. We did not

find this design since we were only searching among connected graphs.

Order Stabilization

There are three main observations:

Observation 8.26. Except for v = 13, δ = 8 and v = 14, δ = 5 we have

rA(k, 0) = rA(k, λ0) = rD(k, 0) = rD(k, λ0).

Let i ∈ {1, . . . ,M} such that rA(k, 0) = rA(i, 0) then

rA(i, 0) = rA(k, λ0), rD(k, 0) = rD(i, 0), rD(k, λ0) = rD(i, λ0),

that means in these cases the A- and D-best designs have the same underlying

graph for λ = 0 and λ = λ0. This is also true for v = 13 and δ = 8 but the

ranks of this graph differ corresponding to the A- and D-value for λ = 0 and

λ = λ0.
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Observation 8.27. Except for v = 14, δ = 5, there is always an order change

from λ = 0 to λ = λ0 for both the A- and D-value, but in all of the cases the

best graph for λ = 0 remains best in both criteria, i.e. the best design with

block size 2 stays best with growing λ. The same is true in the case of the

D-criterion for v = 14, δ = 5, but not for the A-criterion (see also Observation

8.29.

Observation 8.28. Table 8.3.2 shows that xA
0 , xD

0 ≤ δ + 1 and in most of the

cases xA
0 = xD

0 . The worst case is xA
0 = 6 and xD

0 = 5, but in the most cases

xA
0 = xD

0 = 1. These values are considerably lower than the bounds given in

Proposition 8.17 and Proposition 8.15. Moreover, for x ≥ xA
0 the ordering for

the graphs regards to the A- and D-value are the same, that is for

rA(i, xA
0 ) = rD(i, xD

0 ) for i = 1, . . . ,M.

A- and D-optimality

Observation 8.29. By Corollary 8.16, A- and D-optimality among connected

RGDs are equivalent for large y. In all the cases except for v = 14, r = 5, k = 2,

the A- and D-best graphs are the same. But for v = 14, r = 5, k = 2, the

D-best graph for x = 0 is not A-best for x = 0, but becomes A-best for x ≥ 1.

Conjectures

Connected underlying graphs

John and Mitchell searched among all (not necessarily connected) regular graphs,

but except for the case v = 11, δ = 6, where we found better designs, we repro-

duced the same A- and D-best RGDs. That means, John and Mitchell found

that in their cases the best underlying graph is connected.
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v degree xA
0 xD

0

4 2 1 1
4 3 1 1

5 2 1 1
5 4 1 1

6 3 1 1
6 4 1 1

7 2 1 1
7 4 1 1
7 6 1 1

8 3 1 1
8 4 1 1
8 6 1 1
8 6 1 1

9 4 1 1
9 6 1 1

10 3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1

11 4 1 1
6 1 1

12 3 1 1
4 1 1
5 2 2
6 2 1
7 1 1
8 1 1

13 4 2 2
6 3 2
8 4 2

14 3 1 1
4 3 2
5 6 5

15 4 5 4

16 3 1 1

18 3 2 1

Table 8.4: Table showing the values for which the orders stabilize.
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Conjecture 8.30. If G is the underlying graph of an A- or D-best RGD, then

G is connected.

Complete regular multipartite graphs

Observation 8.31. The graphs K2,2,2, K2,2,2,2, K2,2,2,2,2, K2,2,2,2,2,2, K3,3,3 and

K3,3,3,3 stay optimal for all x ≥ 0.

Cheng proved in [Che81a] that regular complete bipartite graphs are the

unique A- and D-optimal graphs for all x ≥ 0 (among not necessarily regular

graphs). He extended his result to complete regular multipartite graphs among

simple graphs. By Corollary 8.22, the complete regular multipartite graphs are

A- and D-best regular graphs for big x.

Conjecture 8.32. Complete regular multipartite graphs stay A- and D-best

RGDs for all x ≥ 0.

Graphs with v + 2 = 2δ

Conjecture 8.33 ([BC93]). The A- and D-best graphs (among regular graphs)

follow the pattern below.

Take the complete bipartite graph with parts of size v
2
− 1 and v

2
+ 1 and

add on the larger part the edges of a circuit on v
2

+ 1 vertices, for example for

v = 10 and δ = 6:
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These graphs are A-, D- and E-optimal for v < 14 which was found by John

and Mitchell [JM77] and also conjectured by Bagchi and Cheng in [BC93]. For

v = 14 we could verify the A- and D-optimality for this graph, too. In the cases

of v = 6 and v = 8 the graph is also E-optimal, in the other cases not.

Graphs with v + 1 = 2δ

Note that by the Handshaking Lemma (see for example [Bol98], p. 4), which

states that a simple regular graph with odd degree must have an even number

of vertices, from v + 1 = 2δ follows that δ must be even and therefore v + 1 ≡ 0

mod 4.

Conjecture 8.34. The A- and D-optimal graphs (among regular graphs) follow

the pattern below.

Take the complete bipartite graph with parts of size v−1
2

and v+1
2

and add

v+1
4

disjoint edges to pair up the vertices of the part of size v+1
2

, for example for

v = 11 and δ = 6:

These graphs are A- and D-optimal for v < 15 and for v = 11 also E-optimal.

Note, that for v ≤ 15 these graphs exist only for v = 7 and degree 4, v = 11

and degree 6, v = 15 and degree 8.
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Proposition 8.35. Let m = v−1
2

and n = v+1
2

and let G be the graph described

above. Then

κ(G) = mn−1nm−1

1 +

n
2∑

l=1

2l

(
n
2

l

)
1

ml


Proof. The number of spanning trees of G is the sum of all spanning trees of

Km,n and all spanning trees containing exactly l of the added edges {e1, . . . , et}

for l = 1, . . . , v+1
4

.

We claim that the number of the latter is

N(n, m, l) = mn−1nm−12l

(
n
2

l

)
1

ml
.

Suppose we have a spanning tree of G containing edges {e1, . . . , el}. Deleting

these edges from the spanning tree results in a spanning forest of Km,n with l+1

roots. To construct a spanning tree of Km,n we have to add l edges, this can be

done in ml ways.

Now suppose we have a spanning tree τ in Km,n. We construct a spanning

tree in G containing the edges l edges from {e1, . . . , et} in the follwing way:

first, choose l edges out of {e1, . . . , et}, call this set F . We want to split τ into l

parts such that the vertices corresponding to the same edge in F are contained

in different parts. For this, choose one vertex from each edge in F , there are

2l possible combinations. Let u1 be the vertex with the smallest label among

these and label the other l− 1 vertices as u2, . . . , ul according to the increasing

distance from u1 in τ , i.e. dist(u1, ui) < dist(u1, ui+1) for i = 2, . . . , l − 1. If

two of them have the same distance, then choose the smaller subscript for the

vertex with the smaller label.

The subgraph τ(ul−1) of τ induced by the vertices {w ∈ V (G)| dist(u1, w) =

dist(ul, u1) + dist(ul, w)} is a rooted tree with root ul that does not contain any

vertices of {u1, . . . , ul−1}. Delete τ(ul) from the tree τ . Repeat this step with
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vertices ul−1, . . . , u2. Then the forest τ, τ(u2), . . . , τ(ul) is a spanning forest of

Km,n that can be completed to a spanning tree in G in a unique way by adding

the edges in F . It follows that

mlN(n, m, l) = mn−1nm−12l

(
n
2

l

)
.

Generalized Hexagons

Recall that a point-line geometry such that the adjacency graph has diameter 3

and girth 6 is called generalized hexagon. A generalized hexagon has parameters

s, t if there are s + 1 points on a line and a point lies on t + 1 lines; if this is the

case, we write GH(s, t). A generalized hexagon GH(s, t) has a distance-regular

adjacency graph on v = s3t2 +s2t(t+1)+s(t+1)+1 points and degree s(t+1).

For more details see Chapters 2 and 5.

When we compare all s(t + 1)-regular graphs for all valid block sizes k, we

compare in the case k = t+1 a generalized hexagon with all other possible block

designs. Is this the A- and D-best RGD for this block size?

Our computer search answers this question affirmative for GH(1, 2) for all

x ≥ 0. The adjacency graph is the Heawood graph (see page 32) which is the

incidence graph of the Fano plane and bipartite 3-regular graph on 14 vertices.

The GH(1, 2) as design has block size 2 and replication 3. The dual design of

GH(s, t) is GH(t, s) (see page 51), in the case of GH(1, 2) this is GH(2, 1), which

is a design on 21 points, block size 3 and replication 2.

What about GH(2, 2)? Unfortunately, in this case the graph has already 63

vertices and there is no hope of solving this problem with the computer.
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Appendix A

The Optimal Regular Graph

Designs for v ≤ 18

Here we give a list of the A- and D-best RGDs for y = 0 and y > 0 in the cases

where they differ. For each design we list the D-value D(y) = D(ρΛ(d), λ + λ̃y)

and the value R(y) = R(ρΛ(d), λ + λ̃y) where R(ρΛ(d), x) = Dx(ρΛ(d), x). The

values of the parameters λ and λ̃ can be found in the table on page 149 and

following. The A-value can then be computed as the ratio v(v − 1)D(y)
R(y)

.
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