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Abstract 
Physiological and biochemical abnormalities present in patients with Chronic Kidney Disease 

(CKD) have been hypothesised to cause ‘dysbiosis’: pathological alterations to a host organism’s 

resident populations of bacteria. It has been suggested that these microbiological changes may 

contribute to the progression of CKD. This thesis explores the nature of such dysbiotic changes 

in the oral and gut microbiota of animals with experimental uraemia, and considers whether 

modulation of the gut microbiota might be used therapeutically to improve the health of patients 

with kidney disease.  

 

Part 1 

Introduction: There is a high incidence of periodontal disease (PD) in patients with CKD, and it 

has been claimed that low-grade inflammation from PD may contribute to the progression of 

CKD. Here, it is hypothesised that actually the relationship may be the other way round, with 

CKD causing oral dysbiosis that subsequently leads to PD. Results: Using several rodent 

models, it is demonstrated that experimental uraemia reliably induces loss of periodontal alveolar 

bone height in both rats (mean -0.113mm, p<0.001) and mice (mean -0.02mm, p<0.001). 

Uraemic animals have a dysbiotic oral microbiome with increased alpha diversity (Simpson 

Index 0.82 vs 0.75, p=0.054), reduced total bacterial counts (log10 5.80 vs 6.07 log10 cfu/ml, 

p=0.034), a decrease in health-associated taxa (phylum Firmicutes, log10 5.43 vs 5.88 log10 

cfu/ml, p=0.043, and genera Streptococci and Rothia) and an increase in gram-negative taxa 

(phylum Proteobacteria comprising 9.53% of isolates in uraemic animals vs 2.99% in controls, 
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p=0.003). Induced saliva from uraemic animals had a higher urea concentration than that from 

controls (3.73 vs 1.62mmol/L, p=0.007), and bacterial isolates which were under-represented in 

samples from uraemic animals showed reduced tolerance to higher urea concentrations during in 

vitro broth culture. Uraemic animals which were co-housed with healthy animals demonstrated 

significantly less bone loss than those housed with other uraemic animals (-0.109mm vs -

0.149mm, p=0.038), and transfer of oral microbiota from uraemic animals induced more 

periodontal bone loss in healthy germ-free mice than transfer of oral microbiota from health 

animals (-0.042mm, p<0.001). Conclusion: Experimental uraemia causes loss of periodontal 

bone height. Although some of this may reflect the systemic effects of uraemia on bone, the 

demonstration of reproducible dysbiotic effects on the oral microbiome and the effects of co-

housing and oral microbial transfer on periodontal phenotype suggest that uraemic dysbiosis 

plays a key role in the aetiology of PD in the setting of CKD. 

 

Part 2 

Introduction:  Both bacterial generation of uraemic toxins and reduced generation of short-

chain fatty acids have been suggested as possible metabolomic mechanisms that would implicate 

gut dysbiosis in the aetiology of CKD. We sought to characterise gut dysbiosis using rodent 

models of chronic uraemia. Results: Analysis of the gut microbiota of two identically treated 

cohorts of rats, obtained from the same supplier just a few weeks apart, revealed that batch effect 

far outweighed the effect of uraemia on the composition of the gut microbiota (batch effect 

accounting for 9.7% of variance, p=0.007; compared to 4.8% for uraemic vs control animals, 

p=0.227). These batch differences proved to be functionally significant, with the urinary 
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metabolome also showing far greater effects of batch than of uraemia (batch accounting for 66% 

of variance between samples, p=0.001, compared to 48% for uraemic vs control, p=0.007). 

Further cohorts of animals demonstrated similar large variations compared with previous 

cohorts, and urinary metabolomes between batches proved equally dissimilar, with no 

reproducible effect of uraemia. To understand this batch variability in the context of previous 

published work claiming a demonstrable effect of uraemia on gut bacterial populations, a meta-

analysis was carried out of all publicly available NGS sequencing data investigating the effect of 

experimental uraemia on the gut microbiome of rodents. In this combined dataset, the leading 

determinants of variation were batch (69% of variance, p<0.001), primer type (23.9% of 

variation, p<0.001) and host species (rat vs mouse, 13.3% of variance, p<0.001). The presence of 

uraemia did influence sample clustering, but to a very limited extent (1.9% of variance, 

p=0.026). Conclusion: The effect of uraemia on the gut microbiome is minor, and is eclipsed by 

inter-batch variation, which makes it hard to state confidently that ‘uraemic dysbiosis’ occurs in 

the gut. The degree of variability between animals from different batches poses wider questions 

about the reproducibility of animal research in other settings. Alternative experimental strategies 

are discussed, such as longitudinal studies which explore how a given intervention affects the 

microbiota of the same animals over time, using animals as their own controls. 

 

Part 3 

Introduction: Fermentable dietary fibre, such as fructo-oligosaccharide (FOS), has been shown 

to induce significant generation of short-chain fatty acids by the gut microbiota, with a range of 

beneficial effects on health. We sought to establish whether such effects could be demonstrated 
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in experimental uraemia and might offer a microbiome-mediated therapeutic tool for patients 

with CKD. Results: FOS-supplemented diet produced similar and substantial effects on the gut 

microbiota of both control and uraemic animals. Whilst uraemia again accounted for minimal 

amounts of species-level variation between samples (2.4% of variance, p=0.75), diet was 

associated with a large degree of variance (46.3%, p<0.001), including large increases of the 

acetate producing genus Bifidobacterium (27.3% of reads vs 1.7%, p<0.001), and increases in 

propionate- and butyrate-producing taxa including Bacteroidaceae (23% vs 7.4% of reads, 

p=0.006), Marvinbryantia (4.5% vs 0.09%, p<0.001) and Blautia (1.8% vs 0.25%, p<0.001). 

Comparable changes were seen in the microbiota of both uraemic and control animals. Using 

whole genome sequencing metagenomics, the FOS-supplemented diet was associated with 

significant increases in the abundance of carbohydrate metabolism pathways (3.37x106 

reads/sample in all FOS-treated animals vs 2.51x106 in all CELL-treated, p=0.029), including the 

bifid shunt and other bacterial glycolytic pathways, and in pathways involved in the initiation 

(2.26x105 vs 1.12x105 reads/sample, p<0.001) and elongation (4.20x104 vs 8.31x104 

reads/sample, p=0.004) of short chain fatty acids. Animals fed the FOS-supplemented diet 

demonstrated substantial increases in caecal volume, and had significantly lower caecal pH, in 

keeping with the predicted increase in short chain fatty acid production. FOS administration was 

associated with beneficial effects on various aspects of the uraemic syndrome including a 51% 

reduction in serum urea concentrations (p=0.004), a 24% reduction in urine output (p=0.032) and 

a 0.6mmol/L reduction in serum potassium (p=0.02). Conclusion: Fermentable fibre produces 

substantial changes in the gut microbiome of both control and uraemic animals, associated with 

substantial improvements in several aspects of the uraemic syndrome. These results suggest that 
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fermentable fibre supplements may offer benefits to human subjects with CKD if the effects seen 

in experimental animals can be translated into clinical practice. 
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Terminology and key concepts 
 

The following section outlines a brief definition some of the key concepts in microbiome science 

which are used repeatedly in this thesis.  

 

Microbiome and microbiota: These words are often used interchangeably to refer to all 

microorganisms present in a given ecological niche; for example, the oral cavity or the caecum. 

Although the vast majority of these will be bacteria (and often the terms are used to refer 

exclusively to bacteria), properly speaking a range of other organisms including fungi, archaea 

and viruses are also included. The work reported in this thesis concentrates only on bacteria. 

Used more precisely, microbiota refers to the organisms themselves, and microbiome to the 

genetic material in all of the genomes present. 

 

Tools for studying the microbiome: 

• Bacterial culture using traditional growth media (eg blood agar) and aerobic or non-

aerobic incubation techniques was historically used to assess the composition of bacterial 

communities, and still has many advantages. Different bacterial isolates are identified by 

morphological differences between colonies on plates, and can then be grown to purity 

and identified using either phenotypic characteristics (eg microscopic appearance or 

metabolic behaviour using tests such as the coagulase or catalase tests) or by genetic 



15 

 

sequencing. This approach has many advantages (including robust identification of 

organisms at species or even strain level, and subsequent in vitro testing of organism 

function), but is labour intensive and risks excluding analysis of organisms that are 

difficult or impossible to culture. Culture of the oral microbiota of experimental animals 

is described in chapter three. 

• Amplicon sequencing of DNA extracted from biological samples (eg oral swabs or stool) 

allows a comprehensive description of all organisms present in the sample. Marker genes 

are amplified using polymerase chain reaction (PCR) and amplicons are sequenced 

using pooled, high-throughput, next generation sequencing (NGS) with barcoded 

primers to assign sequences to individual samples. The most widely-used gene to study 

bacterial communities is the 16S rRNA gene, which encodes the RNA scaffold for the 

small subunit of the bacterial ribosome: this gene is almost always unique to individual 

bacterial species. The results of NGS analysis of the oral and gut microbiome are 

presented in chapters three and four. 

• Whole genome sequencing (WGS) metagenomics of DNA extracted from biological 

samples involves cutting DNA into fragments and then sequencing all of these fragments 

using NGS techniques and short, random primers. Sequencing is carried out repeatedly so 

that all DNA fragments are multiply sequenced; high-performance computing facilities 

are then required to reconstruct whole bacterial genomes from the sequenced fragments. 

This approach is known as shotgun sequencing and allows analysis not just of the 

composition of the bacterial microbiome, but also of all the genes it contains. Results of 

WGS metagenomics are presented in chapter five. 
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• Metatranscriptomics applies the techniques of WGS metagenomics to reverse-

transcribed DNA created from RNA extracted from samples. It is used to describe the 

functional activity of bacteria. This thesis does not contain any metatranscriptomic work. 

• Metabolomics describes the use of techniques from analytical chemistry such as 1H-

nuclear magnetic resonance (1H-NMR) spectroscopy to quantify metabolites in 

biological fluids such as serum or urine. It may be used to assess the functional 

contribution of bacteria to the host organism through generation of small molecules of 

biological significance, such as various uraemic retention molecules (which have been 

implicated in the aetiology of chronic kidney disease), or short chain fatty acids which 

have various beneficial effects on host health. Results of 1H-NMR metabolomics are 

presented in chapters three and four. 

 

Statistical approaches to microbiome data 

NGS analysis of bacterial samples produces a vast amount of data; for example, 16S amplicon 

sequencing of an oral or stool sample may yield thousands of reads of 250-350 base pair length. 

The following steps are use in the analysis of such data: 

• Pre-processing: reads are assigned to individual samples, trimmed, and primer sequences 

are removed. 

• Binning: sequences are clustered together on the basis of similarity. A range of 

approaches are used, which identify clusters of sequences that are termed either 
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Operational Taxonomic Units (OTUs) or Amplicon Sequencing Variants (ASVs), and 

which are effectively proxies for individual bacterial species. 

• Assigning taxonomy: OTUs/ASVs are compared with published databases to assign a 

taxonomic identity to each. 

At the end of this process an abundance table is created, where for each biological specimen (eg 

an individual oral swab or stool sample), the abundance of several hundred or thousand 

individual species is listed. Various statistical approaches are then typically used to interrogate 

this data: 

• Alpha diversity is a measure of intra-sample diversity, and may simply be thought of as 

the chance of obtaining the same type of organism if two are drawn at random from a 

sample. There are various ways of measuring alpha diversity, including the Simpson and 

Shannon indices. 

• Beta diversity is a measure of how closely the ecology of two biological samples is 

related, and may be calculated using measures such as the Bray or Jaccard indices. Where 

a number of samples are compared, complex patterns of association are typically 

revealed; for example, sample A may be very similar to sample B, but quite different to 

sample C; however, sample B may share a number of similarities to sample C that are not 

shared with sample A. Various mathematical strategies have been employed to visually 

represent this clustering, often employing multi-dimensional modelling; the commonest 

of these is Principal Coordinate Analysis (PCA). Data from PCA can be represented 

using ordination plots where individual samples are plotted on the first two axes from a 

multi-dimensional model; clustering reflects how similar or dissimilar they are to each 
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other and can be quantified by methods including Permutation Analysis of Variance 

(PerMANOVA) or Orthogonal Projection to Latent Squares Discriminant Analysis 

(OPLS-DA). Each axis can be evaluated for how much of the total diversity it describes 

and which individual species contribute heavily to distribution along that axis. 

• The abundance of individual taxa can be compared between samples. This generates its 

own statistical challenges, both in reflecting the compositional nature of microbiome 

datasets and in correcting for multiple hypothesis testing. Various statistical tools have 

been developed to address these, so that it can be said with confidence that a particular 

bacterial species is present in higher abundances in one group of samples than another. 

 

Taxonomic classification 

All living things can be classified based on similarity into a ‘tree of life’, at various taxonomic 

levels. The diagram below illustrates this tree with relevance to the analysis presented in this 

thesis. 

Bacteria constitutes a kingdom within the domain Prokaryota.  

Phylum is the highest-level division with Bacteria, where key phenotypic differences between 

organisms begin to emerge (eg between the chiefly Gram-positive phylum Firmicutes and the 

chiefly Gram-negative phyla Bacteroidota and Proteobacteria). 

Family (where names generally employ the suffix ‘aceae’, eg Enterobacteriaceae or 

Staphylococcaceae) is the lowest level at which the taxonomic identity of an organism can be 

confidently assigned using the relatively short sequences generated by amplicon-based NGS 
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techniques, and has therefore been used as the lowest taxonomic rank for the meta-analysis 

comparison presented in chapter four. 

Species identity can only generally be confidently assigned by full-length sequencing of the 

whole 16S gene (such as that performed on the cultured isolates as presented in chapter three).  

 

 

Reference figure: The hierarchy of the eight major taxonomic ranks used in modern biology. 

Halasz, P, 2007. Retrieved from https://en.wikipedia.org/wiki/Kingdom_(biology), accessed 17th 

January 2022. 

https://en.wikipedia.org/wiki/Kingdom_(biology)
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Introduction: Bacteria and uraemia 
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Bacteria in kidney disease: friend of foe? 

Bacteria are required for the normal development of mammalian kidneys. The kidneys of germ-

free mice, housed in totally sterile conditions, are small and under-developed; a finding 

attributed to the role of the gut microbiota in producing short-chain fatty acids and metabolizing 

key amino-acids which are necessary for normal kidney development [1]. Bacteria are also 

necessary for renal health: germ-free mice have been shown to develop more severe long-term 

kidney damage after an episode of ischaemia-reperfusion injury, and to have an adverse 

inflammatory profile compared to normal, non-sterile animals [2]. 
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Conversely, it was demonstrated decades ago that germ-free rats survive longer after bilateral 

nephrectomy than rats with normal gut microflora, and furthermore that rats mono-, di- or tetra-

colonised with different species of bacteria have a progressive decrease in life expectancy when 

rendered anephric compared to those which remain germ-free. [3] Consistent with this, antibiotic 

treatment to deplete gut bacteria improves outcomes after reperfusion injury, and these effects 

are lost when the gut is re-populated with commensal microbiota. [4] A number of known 

uraemic toxins are bacterial metabolites [5] and absent in germ-free, [1] colon-free [5] and 

bacterially-depleted [6] hosts. Furthermore, it has been suggested that uraemia itself may alter 

the gut microbiome and increase the abundance of toxin-producing bacteria, leading to a 

worsening cycle of dysbiosis, toxin production and increasing renal fibrosis. [7, 8] 

The relationship between gut microbes and kidney disease is complex: the complete absence of 

bacteria harms kidney development and worsens kidney injury in germ-free animals; but in 

conventional animals bacteria may contribute to renal injury. In this thesis I am to probe these 

contradictions and understand better the role of resident bacterial communities in the 

development of kidney disease, and in associated complications such as periodontal disease.  

 

A brief history of medical microbiology 

The human body provides a range of diverse habitats that are inhabited by a vast and complex 

array of microbes. Although the existence of such micro-organisms had been proposed by 

ancient and mediaeval scholars, it was the invention of the microscope by Antonie van 

Leeuwenhoek (1632-1723) that led to the first observations of bacteria – ‘animalcules’ – 

prompting speculation about their role in health and disease (Figure 1, p.41). Over the next three 
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and a half centuries, study of these microbial communities has proceeded at each stage in tandem 

with advances in scientific technology. 

Developments in bacterial culture technique led to the ‘golden age’ of microbiology, with 

scientists such as Louis Pasteur (1822-95) and Robert Koch (1845-1910) helping to deduce key 

tenets of bacteriology. In the last two decades of the nineteenth century, the infectious agents 

responsible for major infectious diseases – diphtheria, typhoid, gonorrhoea, meningitis, leprosy, 

plague, tetanus, syphilis, whooping cough, pneumonia – were discovered at a rate or around one 

per year. [9] Koch’s postulates, which tied individual diseases to specific pathogens, promoted 

the germ theory of disease in which bacteria were viewed as enemies: purveyors of disease and 

agents of decay.  

Despite this, evidence was also emerging of how bacteria could exert beneficial effects. For 

example, in 1917, Professor Albert Nissle was able to confirm evidence that certain bacterial 

strains conferred health benefits by demonstrating that the one German solider in a military 

hospital who did not contract dysentery possessed a strain of Eschericia coli that provided 

colonisation resistance to Salmonella. [10]  E coli strain Nissle 1917 has been described as the 

first recognised probiotic. The use of microbial products in the development of antibiotic 

medications provided further evidence of their potential benefits. 

Further advances in understanding gut microbiology were made in the 1940s and 50s due to the 

development of anaerobic culture techniques, allowing the discovery of many species of bacteria 

that had previously not been studied under aerobic conditions. In the 1960s, work on germ-free 

mice revealed that normal bacteria communities were crucial for normal development and 

physiology, and these insights were employed in exciting new ways by the Gordon group in the 
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early 21st century by demonstrations that disease phenotypes such as obesity could be recreated 

by microbial transfer into otherwise healthy germ free mice. [11] 

The advent of high-throughput genetic sequencing platforms in the late-1990s created the ability 

to survey accurately the large number of resident micro-organisms that are not easily cultured. 

Descriptive studies of bacterial populations, often using high-throughput sequencing of 

molecular identifiers (such as the 16S ribosomal gene which is specific to individual bacterial 

species), led to new interest in the large number of species resident within human hosts, and in 

particular: 

• the variability of microbiota between different hosts, associating with various 

demographic variables such as age, ethnicity or diet, 

• the association of different microbiota with health and disease states.  

The term ‘microbiome’ was increasingly used to describe this newly-understood complexity, 

[12] and early research describing ‘enterotypes’ possessed by different members of the 

population, predisposing to different diseases, [13] captured the scientific and popular 

imagination, although descriptions were confined largely to association rather than clear patterns 

of causation. The human microbiome project was launched in 2007 to describe bacterial 

populations at a range of body sites in healthy and diseased individuals, using census data of the 

16S gene alongside full metagenomic sequencing, and reported in 2012, [14] providing a helpful 

benchmark for subsequent work. 

Whole genome sequencing based on ‘shotgun’ methods (where all DNA is particular samples is 

fragmented and then sequenced with short, random primers), was a technique developed in the 
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early part of the 21st century to allow assembly of entire metagenomes, effectively allowing the 

full metabolic machinery of entire communities of micro-organisms to be surveyed. This, 

coupled with other ‘-omics’ approaches (such as meta-transcriptomics, proteomics and 

metabolomics), began to bridge the mechanistic gap between observing changes in bacterial 

populations and identifying how they might affect host phenotype.  

Interventional studies have led to a deepening understanding of host-microbiome interaction, and 

have using methodologies including: 

• creation of germ-free animals in sterile isolators, allowing study of host physiology and 

disease in the (albeit entirely unphysiological) complete absence of microbial activity.  

• use of broad-spectrum antibiotics, which substantially reduce bacterial load and can help 

to determine the contribution made to complex biological processes by bacteria. 

• inoculation experiments, where one or more individual bacterial strains are administered 

to host organisms to try to alter physiology (for example using ‘probiotic’ preparations of 

healthy commensal bacteria, present in fermented dairy products to treat obesity), [15] or 

to cause disease (for instance in experiments where Fusobacterium nucleatum has been 

implicated in the aetiology of bowel cancer [16]). 

• feeding experiments, where altered diets (such as high-fibre ‘prebiotic’ diets) are used to 

try to manipulate microbial populations and increase the relative abundance of health-

associated organisms, or increase bacterial production of beneficial metabolites; 

• transfer experiments, where entire microbial communities are transferred into germ-free 

or antibiotic-treated hosts, to assess the transmissibility of microbiome-associated 
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phenotypes. Pioneering research transferring microbiota from malnourished Malawian 

children into germ-free mice demonstrated a key role for microbes in the development of 

the kwashiorkor variant of malnutrition, [17] whilst antibiotic-associated colitis 

associated with Clostridium difficile infection is now regarded as almost completely 

curable by transfer of healthy faecal microbiota. [18] 

Interventional studies like these offer the only reliable way of assessing direct causality, and may 

also suggest therapeutic strategies where microbial communities can be restored, transferred, 

used or manipulated to improve health outcomes in the host organism. 

 

Current understandings of the human microbiome 

Each human organism plays host to trillions of microbes, including bacteria, fungi, protists, 

archaea and viruses. Resident bacterial cells alone outnumber host cells in an average human 

male by anything up to ten-fold ([19, 20]).  

By far the largest numbers of bacteria are resident in the colon, followed by the mouth, distal 

small intestine, and skin, as described in Table 1, p. 42. [21] Bacterial populations also exist – 

and may influence health and disease – in other locations such as the vagina, the urinary tract and 

the upper respiratory tract. 

There are significant compositional differences between the microbiota in different body sites, 

Figure 2, p. 41. For example, the microbiome of the healthy vagina is relatively simple, being 

dominated by Lactobacillus species that thrive in and contribute towards its acidic environment; 
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conversely, the microbial communities of the mouth and the gut are far more complex and 

possess organisms from a wider range of bacterial phyla. 

Location-specific microbiota are adapted towards the physiological conditions encountered in 

any particular body site. For example, in the mouth, aerobic organisms are seen in high 

abundances, particularly on surfaces such as teeth which are regularly exposed to air. [22] In the 

gut obligate anaerobes outnumber facultative anaerobes and aerobes by a factor of 100:1. [23] 

The gut microbiota is dominated by bacteria from two phyla, Firmicutes and Bacteroidetes, 

although at species level it has been estimated the each individual may harbour up to 1000 

different individual bacterial species. [24] Although intra-individual variation between different 

sampling points appears higher for the gut than for the oral microbiome (influenced by factors 

including diet, health status and antibiotic used amongst other things), overall it has been shown 

that inter-individual outweigh intra-individual variation. [25] There is significant geographic 

variation between species prevalent in different regions of the gut (for instance, with 

Proteobacteria and Lactobacilli being present in higher abundances in the small gut compared 

with the colon), and even within a particular gut segment the microbiota may be organised such 

that certain taxa predominate in ecological niches such as the villous crypts while others are 

found intra-luminally. [26] 

A variety of functions for the gut microbiota have been demonstrated, including regulation [27] 

and development [28] of the immune system, extraction of energy from food, [29] regulation of 

host energy homeostasis, [30] micronutrient production [31] and maintaining resistance to 

pathogenic invasion. [32] On a functional level, as in the mouth it is believed that considerable 
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redundancy exists within the gut microbiome such that different species in separate hosts may 

provide similar metabolic functions, [14] as illustrated in Figure 3, p. 44.  

 

Chronic kidney disease (CKD) 

Chronic kidney disease (CKD) affects 9.1% of the world’s population and contributed to 1.2 

million deaths globally in 2017. [33] Just over 1 person in 1000 have stage 5 or ‘end-stage’ 

kidney disease, with around 3 million people dependent on renal replacement therapy (via 

haemodialysis, peritoneal dialysis or a kidney transplant) worldwide. [34] In the UK there are 

60,000 patients dependent on renal replacement therapy.[35] The incidence of CKD is rising, 

[36] and the healthcare costs of treatment and especially of renal replacement therapy are 

substantial. [37] 

In the early stages of CKD patients may be entirely asymptomatic and unaware of their 

diagnosis, but demonstrate proteinuria and reduced renal excretory function [38] and are exposed 

to significant risks of cardiovascular disease and other complications. [39] 

 

The definition, staging and epidemiology of CKD 

CKD is present when a patient has markers of kidney damage (including radiological 

abnormalities, proteinuria or reduced excretory function), present for more than three months. It 

is of particular clinical relevance when excretory function is reduced, measured in routine 

clinical practice using the estimated glomerular filtration rate or eGFR, derived from the serum 



37 

 

creatinine (or cystatin C) concentration. Individuals with an eGFR less than 60ml/min/1.73m2 are 

diagnosed with stage 3 CKD; those with an eGFR <30ml/min with stage 4 CKD; and those with 

an eGFR <15ml/min with stage 5 or ‘end-stage’ CKD [38]. These categories are further 

augmented by adding a measure of albuminuria, since excretory dysfunction and albuminuria act 

independently to increase cardiovascular risk, Figure 4, p. 45. 

An individual may develop CKD when the kidneys are damaged for any number of reasons, with 

the leading causes including diabetes mellitus, hypertension and glomerulonephritis. The result is 

a multi-system disease process characterised by fluid overload, anaemia, acidosis, blood 

electrolyte abnormalities, abnormal bone formation and retention of toxic waste products in 

blood; with widespread effects on endothelial cell function, immune system activity, cognition, 

appetite and mood.  There is a high prevalence of cardiovascular disease, and the leading causes 

of death in patients with CKD are cardiovascular disease and infection. [40]  

Kidney transplantation from either a live or cadaveric donor is the treatment of choice for most 

patients with end stage renal disease, offering survival, quality of life and health economic 

benefits compared to other forms of treatment. [41, 42] Where kidney transplantation is not 

possible, or whilst waiting for a suitable organ to become available, patients may be treated with 

maintenance haemodialysis (usually thrice weekly), peritoneal dialysis or with supportive 

(palliative) care. 
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Cardiovascular disease in CKD 

Patients living with CKD have high rates of mortality and morbidity from cardiovascular disease 

[43], as illustrated in Figure 5, p. 46, which demonstrates that patients on dialysis in their third 

decade of life have similar yearly rates of cardiovascular mortality to adults in the general 

population in their eighth decade. 

The histological features of cardiovascular disease in patients with CKD differ from those in the 

general population. Rather than developing discrete, lipid-rich, sub-endoethial deposits as in 

classic atherosclerotic cardiovascular disease, patients with CKD develop widespread medial 

hypertrophy associated with increased vessel stiffness, [44] medial calcification [45] and left 

ventricular hypertrophy. [46] Although traditional cardiovascular risk factors may play a role in 

this process, there are a number of CKD-specific risk factors [47] including salt and water 

overload [48] and dysregulated calcium and phosphate metabolism [49] that play key additional 

roles. 

Much recent research on novel cardiovascular risk factors in CKD has focussed on the role of 

endothelial dysfunction in causing vessel wall disease. There are a number of potential causes of 

endothelial dysfunction in CKD, including shear stress caused by hypertension [50] and 

advanced glycation end-products in diabetic kidney disease [51]. However recent interest has 

focussed on three factors that link CKD directly to the microbiome: 

• the toxic effects of some uraemic retention molecules. 

• the effects of low grade, chronic inflammation. 

• reduced production of short chain fatty acids. 
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Uraemic retention molecules (URMs) encompass a range of small and middle-sized molecules 

that accumulate in serum in patients with CKD as a result of impaired renal clearance; a number 

have been shown to be directly toxic to epithelium (being termed ‘uraemic toxins’), [52] 

including several that are produced by bacterial metabolism of dietary protein (such as indoles, 

phenols and amines). The role of the microbiota in generating these toxins will be explored in 

chapter four of this thesis. 

Chronic inflammation is a feature commonly seen in individuals with CKD, and may arise due 

to low level inflammatory disease in the gastrointestinal tract. For example, rats with induced 

uraemia have been shown to have impaired epithelial tight junction formation, [53] leading to 

what has been termed a ‘leaky gut’ with spillage of bacterial products such as endotoxin into the 

bloodstream, and activation of the innate immune system. [54] A further source of chronic 

inflammation is the mouth, and more specifically the periodontal crevice; and because 

periodontal disease reflects a direct interaction between resident microbial communities (in this 

case, the oral microbiome), and the host organism, I will examine the mechanisms of periodontal 

disease in chronic experimental uraemic in chapter three.  

Short chain fatty acids are products of bacterial fermentation of dietary fibre, have been shown 

to have a number of immunomodulatory and anti-atherogenic properties. [55] Intervening with 

the gut microbiota to increase generation of these molecules may offer a mechanism to improve 

outcomes in CKD. These possibilities are explored in chapter five. 
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The hypothesis of this thesis 

I have sought to investigate the hypothesis that a bi-directional relationship exists between 

uraemia and the body’s bacterial communities, whereby uraemia may influence the composition 

and function of these resident microbial communities, and in reverse that these communities – 

perhaps themselves already altered by disease – may contribute to the disease phenotype of 

uraemia. This bi-directional hypothesis is conceptualised in Figure 6, p. 47. 
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Figure 1: Antonie van Leeuwenhoek. Left: Portait by Jan Verkolje. Right: 1697 illustration of 

microscopic appearances of a drop of pepper water that had been left for three weeks on a shelf. 

Fig. IV is believed to be the first ever image of a bacterium produced in print. “I saw a great 

multitude of living creatures in one drop of water, amounting to no less than 8,000 or 10,000, 

and they appear to my eye through the microscope as common as sand does to the naked eye.” 
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Table 1: Estimate of total bacterial numbers at various body sites. Taken from Sender et al 2016 [20]
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Figure 2: Principal Component Analysis of predicted metagenomes based on 175 biological 

samples taken from different body sites. Each point represents the predicted metagenome of a 

biological samples from the relevant body site of a particular subject, coloured according to body 

site. As this is a PCA plot, the distance between points is proportional to the similarity between 

samples, with the amount of total variance represented by each axis written on the axis label. In 

this case Principal Component 1 (PC1) accounts for 18.039% of the total variance in the dataset, 

and Principal Component 2 (PC2) accounts for 7.47%; relatively small proportions. In simpler 

datasets such as those of smaller numbers of experimental animals, a much higher proportion of 

variance may be captured with just the first two principal components. Taken from Garza et al, 

Nature Microbiology. [56] 
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Figure 3: Functional redundancy in the human gut microbiome. Composition (panels on left) and 

function (panels on right) of the oral (top panels) and stool (bottom panels) microbiomes of 

experimental subjects, showing a basic functional redundancy despite compositional variation; 

very different populations at species level (panels on left) achieve a shared range of common 

biological functions (panels on right). Adapted from ‘Structure, function and diversity of the 

healthy human microbiome’, Nature, 2012 [14]. 
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Figure 4: Staging and cardiovascular risk in CKD. Taken from the Renal Association eCKD 

guide on CKD stages modified from the KDIGO staging [38], available at 

https://renal.org/information-resources/the-uk-eckd-guide/ckd-stages/ (accessed 13th January 

2022). 

https://renal.org/information-resources/the-uk-eckd-guide/ckd-stages/
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Figure 5: Increased rates of cardiovascular mortality in patients on haemodialysis compared to 

the general population (GP). From S Levey et al. 1999 [43].  
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Figure 6: Potential interactions between chronic kidney disease and microbial communities. 
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Chapter 2 

Core methods in microbiome research 
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This chapter covers core methods applicable to each of the following chapters, including 

methods for the induction of experimental uraemia, culture and non culture-based methods for 

assessing microbial communities and metabolomic techniques for evaluating the function of the 

microbiota. Subsequent chapters describe additional techniques relevant to the subject matter of 

the chapter in question, for instance techniques to assess the microstructure of periodontal bone, 

or methods to measure whole body nitrogen balance. In addition, appendix 2 contains detailed 

information on the full range of microbiological techniques used in the work presented in this 

thesis, which exceed the scope of this chapter. 

 

 

 

 

 

 

 

Induction of experimental uraemia 

Chemically-induced uraemia 

Attempts have been made to induce experimental uraemia in animals since at least as early as 

1928. [57] Various chemicals have been used for this purpose including sodium tetrathionate, 

[58] lithium, [59] and acetaminophen, [60] however the most widely-used agent for the chemical 

induction of a uraemic phenotype is the nucleotide base adenine. [61, 62] Adenine is metabolised 

to 2,8-dihydroxyadenine in vivo which has been shown to cause a crystal-associated 
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tubulointerstitial nephritis, [63] mimicking a rare disease process seen in humans. [64] Although 

some have advocated twice daily oral adenine gavage as a way of reducing the variability found 

by using adenine-supplemented feed, [65] dietary adenine supplementation remains the most 

widespread method for chemical induction of uraemia. A variety of protocols can be used to 

achieve different levels of uraemia in both rats and mice, with mice typically only accepting 

lower concentrations of adenine that may produce a more chronic pattern of illness. [66, 67]  

 

Surgically-induced uraemia 

Surgical intervention has been shown to induce reproducible degrees of uraemia in rats 

depending on the amount of renal mass removed, from mild uraemia (one kidney removed), 

through moderate uraemia (80% of renal mass removed) to severe uraemia (88% of renal mass 

removed), compared to a sham operation. [68] The most widely accepted method for surgical 

induction of uraemia is five-sixth (or subtotal) nephrectomy (SNx), which reliably produces a 

model of progressive renal dysfunction, albeit with a not insignificant mortality. [69, 70] 

 

Using a range of approaches 

Different models of experimental uraemia produce different clinical syndromes that recreate 

aspects of human CKD. The different models each have strengths and weakness, meaning that 

using a combination of approaches may improve the robustness of research findings. For 

example, surgical induction of uraemia excludes the possibility of adenine-specific effects on the 
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microbiota (although limited published data suggests that adenine does not cause such effects, 

[71]), and allows co-caging of uraemic and control animals. Chemical induction of uraemia may 

produce more predictable and more significant degrees of uraemia than surgical methods, and 

eliminates perioperative mortality which is especially a feature of surgical models when used in 

mice. Furthermore, induction of chemically-induced uraemia is possible, although difficult, in 

germ-free conditions (through double-irradiation of adenine-containing feed, [1]), allowing 

comparison between germ-free and conventional uraemic animals. 

The models we have elected to use in the studies reported here have included: 

• Chemically-induced uraemia in rats, using a high concentration of adenine (0.75% of 

feed weight) for four weeks, followed by a four week washout period. This model 

generates rapidly progressive induction of uraemia followed by a period of recovery. At 

the time of sacrifice, kidneys in adenine-fed animals are grossly enlarged (Figure 7, p. 

73) and histological examination reveals tubular adenine crystals with surrounding giant 

cell reactions and interstitial inflammation. [72]  

• Surgically-induced uraemia in rats, using subtotal (five-sixths) nephrectomy, which 

causes steadily-progressive loss of renal mass due to hyperfiltration injury in the 

remaining glomeruli. [73, 74] This has been shown by our group to be a robust and 

reliable model of features of human CKD including myocardial bioenergetic dysfunction, 

[75] cardiovascular disease [76] and endothelial dysfunction. [77] 
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• Chemical-induced uraemia in mice, using relatively low-dose adenine in feed (0.15% by 

weight) over a long (18-20 week) period of administration. This has been shown to cause 

a slowly-progressive chronic uraemia with renal fibrosis and associated heart failure. [78] 

 

Use of germ-free mice in microbiome research 

The first colonies of germ-free animals, generally created by delivering newborn animals directly 

into sterile incubators by Caesarian section, were established in the 1940s. [79] The maintenance 

of such colonies is challenging and expensive, requiring dedicated facilities with complex 

filtering of air; sterilization of all equipment, feed and water by autoclaving and irradiation; 

employment of highly trained staff; elaborate and sophisticated maintenance protocols and 

regular monitoring to exclude accidental contamination. [80, 81] 

Such totally sterile animals are deeply physiologically abnormal. The best described evidence of 

abnormal development is in the immune system, because early-life exposure to microbial 

communities has been shown to be crucial for ‘training’ immature immune cells. [82] Effects 

have also been shown in other organs, for instance kidneys from gnotobiotic mice have been 

shown to be small and underdeveloped compared to those of normal laboratory mice. [1] 

Nevertheless, germ-free mice offer the opportunity to establish in absolute terms the relevance of 

bacteria to normal development (such as the implication from the poor development of kidneys 

in germ-free animals that bacterial products are required for normal organ growth). They also 

offer totally sterile hosts, albeit immunologically naïve and under-developed ones, into which 
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transfers of bacterial populations can be carried out without any effect of recent antibiotic 

exposure or the need for transplanted communities to compete with resident ones. 

 

Practical techniques used 

All animal experiments were conducted in accordance with the UK Home Office Animals 

(Scientific Procedures) Act 1986, with local ethical committee approval. All animal work was 

carried out in the Biological Services Units of Queen Mary University of London, at either 

Charterhouse Square or the Wingate Institute, Whitechapel; and complied fully with all relevant 

animal welfare guidance and legislation (UK Home Office Project License number PPL 70/8350 

and P73DE7999).  

All rats used in these experiments were male, outbred Wistar IGS rats obtained from Charles 

Rivers (Kent, UK) at 7 weeks of age.  

All mice used for induction of uraemia were male, wild-type C57BL/6 mice, obtained from 

Charles Rivers at 7 weeks of age.  

Germ-free mice of the same species were obtained from a colony maintained at the Biological 

Research Facility, St George’s University of London, at 8 weeks of age.  

All animals were housed in individually ventilated cages under 12 h light/dark cycles and were 

allowed unlimited access to feed and water. 
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Standard feed used for all animals was the RM1 rodent diet (Special Diet Services, Essex, UK). 

For certain intervention groups, the following other diets were used, also purchased from Special 

Diet Services: 

• RM1 with 0.75% adenine for induction of uraemia in rats 

• RM1 with 0.15% adenine for induction of uraemia in mice 

• AIN-93M with 10% cellulose (CELL) as a low fermentable-fibre diet in rats 

• AIN-93M with 10% fructo-oligosacchrides (FOS) as a high fermentable-fibre diet in rats 

• Standard AIN-93M (AIN) for use in control groups to be compared with the fibre-

supplemented AIN-93M feeds described above. 

 

Chemically-induced uraemia in rats: After a week-long period of acclimatization, intervention 

rats were started on 0.75% adenine containing feed whilst control animals were maintained on 

standard RM1 control diet. The adenine-containing diet was continued for four weeks, followed 

by a washout period of four weeks when all animals received the control diet, after which the 

animals were sacrificed animals were sacrificed by lethal injection of sodium thiopentone (LINK 

Pharmaceuticals, Horsham, UK). Animals were placed in metabolism cages to allow for 24h 

urine collection and faecal pellet collection immediately prior to sacrifice. Other tissues were 

retrieved after sacrifice as described subsequently. 
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Surgically-induced uraemia in rats: After a week-long period of acclimatization, rats underwent 

a two-stage surgical procedure involving either subtotal nephrectomy (SNx) or a sham 

procedure. SNx involved exteriorisation of the left kidney with decapsulation and removal of the 

upper and lower poles and subsequent replacement of the middle pole only, followed by total 

right nephrectomy two weeks later. Sham procedures involved exteriorisation, decapsulation and 

replacement of the left kidney, followed by the same procedure on the right kidney two weeks 

later. Animals were culled eight weeks after the second stage of surgery animals by lethal 

injection of sodium thiopentone (LINK Pharmaceuticals, Horsham, UK). Collection of biological 

specimens occurred as detailed in subsequent chapters. 

 

Chemically-induced uraemia in mice: After a week-long period of acclimatization, intervention 

animals were placed on a modified diet (RM1 with 0.15% adenine), whilst control animals 

remained on standard RM1 diet. Mice were weighed weekly. 24h urine and stool collections 

occurred in the week prior to sacrifice. Sacrifice occurred after 18 weeks on the experimental 

diet by lethal injection of sodium thiopentone (LINK Pharmaceuticals, Horsham, UK), with a 

variety of tissues being preserved for subsequent analysis. 

 

Microbial transfer experiments: Fifteen germ-free C57BL/6 mice were transferred direct from 

their sterile isolator at the Biological Research Facility, St George’s University of London, to the 

Biological Services Unit at Charterhouse Square using a clean but non-sterile specialist animal 

transfer company (Impex, UK) in three separate batches (one batch of seven for receipt of 
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microbiota from control donors, two batches of four each for receipt of microbiota from uraemic 

donors).  

On arrival, each mouse received an oral microbial transfer (OMT) by oral gavage of oral swabs 

previously taken from uraemic or control donor animals. Each donor swab was used to transfer 

into two (or in one case, one) recipient(s); seven were designated control recipients and eight, 

uraemic recipients. Gavage was carried out using a sterile swab thoroughly immersed in 

transport medium that had been inoculated with donor microbiota and frozen since the time of 

sampling, and agitating the swab in the mouth of the recipient mouth for 15 seconds and 

encouraging them to suck on it. After receiving the OMT, the mice were placed in cages 

containing cage contents from the donor animals, which had been frozen at -80o until the time of 

use, to permit ongoing microbial transfer by coprophagy. 

Animals were then maintained in ordinary individually-ventilated cages in an open area of the 

Biological Services Unit, with standard 12h light/dark cycles. They had unlimited access to 

standard RM-1 diet and tap water. Oral swabs were taken to assess the efficacy and durability of 

bacterial transfer at 3-weeks and 9-weeks after transfer in all animals, and all animals were then 

culled, after a 24-hour urine collection, at 18 weeks of age (10 weeks after transfer). 

 

Evaluation of the degree of experimental uraemia 

Physiological assessment: All animals were weighed weekly and underwent 24h urine 

collections in the final week of life. Both weight loss and polyuria are signs of clinical uraemia. 
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Biochemical assessment: Blood samples were obtained by thoracotomy and cardiac puncture at 

the time of sacrifice, and spun down directly to isolate serum which was frozen at -80o until the 

time of analysis. Quantification of serum urea, creatinine, calcium and phosphate concentrations 

was done by IDEXX Bioresearch, Ludwigsberg, Germany.  

 

Clinical uraemia in rats 

Uraemic animals generated by both the chemically-induced and surgically-induced uraemic 

protocols demonstrated an expected phenotype including elevation of serum urea and creatinine, 

weight loss and polyuria (Figure 8, p. 74).  

The chemically-induced uraemia protocol generated a more severe uraemic phenotype, with 

greater elevations of serum urea and creatinine, lower weight and more polyuria. The higher 

urinary volumes may additionally represent the ‘tubular’ phenotype of adenine-fed animals 

(resulting in a defect in urinary concentrating ability). There were no differences between the 

control animals in the two protocol groups. 

 

Clinical uraemia in mice  

Whilst control animals showed steady weight gain through the experimental period, weights of 

uraemic mice rapidly tailed off and then began to fall after 8-10 weeks of adenine-containing diet 

(Figure 9, p. 75). Uraemic mice developed polyuria, passing an average of 7.72ml urine per 24 

hours compared to 1.22ml in controls, p<0.0001 (Figure 10, p. 76). Compared to control mice, at 
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the end of the 18-week period of adenine administration, uraemic animals developed severe 

abnormalities of serum urea and creatinine, Table 4, p. 169. 

 

 

Analysis of microbiota 

Bacterial culture 

Traditionally, the composition of a bacterial community was determined by culturing a sample 

taken from the community on a broad-based culture medium such as blood agar. This allows a 

determination of total bacterial abundance, and by counting colonies according to morphology 

type, and subsequently growing each different colony to purity and identifying the organism (by 

combinations of traditional tests such as catalase, coagulase or urease; or by sequencing 

identifier genes), a measure of community composition can be obtained.  

There are a number of advantages of culture-based techniques (leading to recent renewed 

research interest in these approaches, to complement newer culture-independent techniques) 

[83]: firstly, they allow robust estimation of the abundance of viable bacteria (measured as 

colony forming units per millilitre, or cfu/ml); secondly, they allow confidence species-level 

identification of isolates; thirdly, they allow in vitro testing of bacterial isolates to explore their 

functional potential; and fourthly, they allow organisms to be used in further experimental 

procedures, for example, to test the ability of a potential pathogen to cause disease. 
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The great disadvantage of culture-based methods of determining bacterial community structure is 

that many organisms are difficult or even impossible to culture in vitro, with laboratory-based 

culture imposing a selective pressure that may distort the true relative abundances of different 

members of a community in the host organism. [84] The advent of high-throughput next-

generation amplicon sequencing of bacterial genes allowed the discovery of many previously 

uncultured species, and with it the accurate determination of bacterial populations based on what 

bacteria are actually present in a sample rather than which organisms will grow in in vitro 

culture. For example, the recent discovery of Candidate Division TM7 (or Saccharibacteria) was 

made first through molecular sequencing, before eventually it was possible to grow the first such 

organisms through intensive culturing using epibiont species parasitized by TM7 bacteria [85]. A 

recent metagenomic study of human gut samples identified 1,952 new uncultured candidate 

bacterial species, increasing the known phylogenetic complexity of the human gut microbiome 

by 281% [86]. 

 

Identification of cultured bacterial isolates 

The traditional microbiological methods of identifying organisms used gram staining 

supplemented by catalase, coagulase, urease and other functional tests. These may be combined 

into ‘Analytical Profile Index’ (API) kits, which may still be superior to molecular analysis in 

differentiating subspecies that are closely genetically related and which differ more by phenotype 

than by genotype.  
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However, in academic study these in-vitro tests of bacterial have now been largely superseded by 

genetic sequencing of markers genes, or alternatively by spectroscopic tests such as Matrix-

Assisted Laser Desorption/Ionisation Time Of Flight mass-spectroscopy (MALDI-TOF). [87]  

In this study, all cultured isolates were identified using amplification of the whole 16S rRNA 

gene, using the widely-used 27F/1492R primer pair. Genetic sequencing of the whole of the 16S 

gene has been shown to have greater precision than traditional phenotypic methods. [88] Further 

description of the role of the 16S gene is provided below. 

 

Amplicon sequencing 

High-throughput next-generation sequencing of amplified sections of identified genes offers a 

rapid way of describing the total bacterial population in a given sample, without the technical 

challenges and selective pressure exerted by bacterial culture. 

The most widely-used identifier gene is the 16S ribosomal RNA gene, which was first studied in 

the 1970s and developed for robust identification of cultured bacteria in the 1980s. [89] Indeed, 

analysis of variation between ribosomal RNA was critical in helping to define the evolutionary 

lineages of different kingdoms in the ‘tree of life’. [90] 

The prokaryotic ribosome (with a total sedimentation coefficient of 70S) comprises 50S and 30S 

subunits, the smaller 30S subunit comprising a 16S rRNA molecule and 21 associated ribosomal 

proteins. The 16S rRNA provides the scaffold allowing correct assembly of its associated 

proteins, as well as containing the anti-Shine Dalgarno sequence which binds template 
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messenger RNA from which the larger 50S subunit assembles amino acids in the process of 

translation.  

The 16S gene has a number of properties that make it ideal for use in studying bacterial 

populations such as those in the mammalian colon: 

• It is constitutively expressed as a ‘housekeeping’ gene in all bacterial cells. 

• It is not present in eukaryotic cells, allowing the evaluation of bacterial and archaeal 

populations in the presence of host DNA. 

• It has a number of highly conserved regions, allowing the use of universal primers that 

cover all (or almost all) bacterial and archaeal species, 

• It contains nine hypervariable regions that differ significantly between bacterial and 

archaeal taxa. 

The whole gene is approximately 1500bp long, with the nine hypervariable regions (named V1 

to V9) interspersed along its length. Figure 11 (p. 77) shows a schematic of the gene and its 

hypervariable regions, along with the various points along the gene at which common primer sets 

bind to generate amplicons for different types of sequencing [91]. 

Choice of primer pairs for sequencing depends upon the appropriateness of the amplicons 

generated for the required sequencing modality, versus the amount of information contained 

within the amplicon to allow for full identification to genus or species level [92].  

For full identification of an individual bacterial isolate, PCR carried out using the (F27, R1492) 

primer pair allows amplification of almost the whole gene, yielding amplicons suitable for 
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Sanger sequencing. This is usually suitable for identification of an organism to species level, 

however closely related species (for instance within the Enterobacteriaceae family), may have 

16S genes differing only in one or two base pairs in the V4 variable region, or may even have 

identical 16S gene sequences, requiring additional tests (either culture-dependent techniques 

such as Analytical Protocol Index (API) or culture-independent techniques such as whole-

genome sequencing), to allow species-level identification.  

However, for high-throughput/low-cost sequencing strategies such as next-generation 

sequencing using the Illumina MiSeq or older Roche 454 pyrosequencing platforms, shorter 

DNA amplicons (150-500bp) are sequenced, covering one or more of the hypervariable regions 

of the gene. These allow comparisons of amplicon sequence variants (ASVs) or operational 

taxonomic units (OTUs), allowing the composition of populations to be assessed once such 

variants are assigned a probable taxonomic identity on the basis of comparison with a reference 

dataset, such as the Silva reference dataset [93, 94], Greengenes [95] or NCBI BLAST [96]. 

Confident identification on the basis of these shorter amplicons may only be possibly at genus or 

family level. 

Studies have revealed that choice of both primer pairs and sequencing platform can affect the 

ability of sequencing runs to detect different types of bacteria, introducing potential bias into 

experimental datasets. [91, 97, 98]  Reassuringly, the more modern Illumina MiSeq platform 

seems to produce higher quality data than the older 454 pyrosequencing platform, and bias 

introduced by primer pair selection seems to affect measures of beta diversity to a lesser extent 

that it does the relative abundances of individual taxa. [99] 

 



63 

 

Functional studies and metagenomics 

Studies of population composition yield only a certain amount of information. In the context of 

an experimental intervention, they can allow the effect of the intervention on the relative 

abundance of different taxa to be established, but they can at best only allow an inference to be 

made about the possible functional consequences of such changes. Tools such as PICRUSt [100] 

and piphillin [101] construct predicted metagenomes based on 16S abundance data using the 

published genomes of organisms detected by sequencing, but are limited by the range of 

published genomes available and the difficulty of attributing precise taxonomic identities to 

organisms on the basis of short 16S reads. 

A more robust measure of the functional capacity of a bacterial population can be made by 

performing whole genome sequencing metagenomics on extracted DNA. Such methods rely on 

shotgun sequencing, where genomic DNA is sheared into randomly-sized lengths (typically 2-

150kbp), which are roughly sorted according to size and then cloned into vectors and sequenced 

from both ends from known primer sites, or using short, random primers [102]. These mate pairs 

(which do not generally overlap, but are known to run in opposite directions at an approximate 

distance apart), are then clustered into contigs and eventually assembled into a whole (or 

multiple) individual genomes, or are assembled against known reference genomes, Figure 12, p. 

78.  The process of assembly of reads requires a large amount of computing power, generally 

necessitating access to high-performance computing facilities. As with all genetic techniques, the 

sequencing quality of the original reads determines the quality of the final product. A population 

can then be assessed on the abundance of genes it possesses within different functional 
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categories, or from different metabolic pathways, allowing questions of population function to be 

determined and compared between groups. 

 

Statistical considerations in microbiome research 

Data gathered from microbiome analysis is quite different from data types commonly seen in 

other areas of health science. Indeed, the best comparison is with datatypes gathered from 

environmental surveys in ecological science, and many of the statistical techniques used to 

analyse microbiome data have been borrowed directly from ecology. [103, 104] 

Typically, analysis of the microbiome will yield data in the form of an abundance table, where 

the abundance of (often hundreds) of individual bacterial species are recorded in each of the 

samples tested. There are several features of this type of data that make it challenging to analyse 

using conventional statistical techniques. For example, if a conservationist was surveying 

different areas of jungle, they may end up with data that is: 

• sparse, with lots of zeroes (ie, in any particular area of jungle they may not discover any 

examples of particular species which are found in other areas); 

• noisy, with biological replicates from similar regions displaying high degrees of 

heterogeneity, even where experimental technique is excellent; 

• difficult to interpret in terms of relevance to research questions; for instance, a jungle 

may have only a handful of tigers, but they may each be of far more importance than 

hundreds of beetles; 
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• influenced by many different variables; for example, environmental factors influencing 

the proportion of species present at a given jungle location may include temperature, 

humidity, time of day, presence of environmental pollutants, proximity to water, recency 

of forest fires, etc; 

• significantly redundant: the presence of one species may heavily influence the presence 

of another. 

A key method developed in ecology for analysing such datasets is ordination, with various 

techniques available depending on whether the data is quantitative (principal component 

analysis, PCA; correspondence analysis; redundancy analysis), or qualitative (principal 

coordinate analysis, PCoA; non-metric multidimensional scaling, NMDS).  

Each techniques allows the key determinants of variation to be extracted and visualised; typically 

by creating a complex, multidimensional statistical model (with the number of dimensions 

typically being 1 minus the sample number). Samples can then be plotted in two dimensions 

using the first two axes from the statistical model, allowing visual representation of sample 

clustering, identification of outliers and demonstration of key trends. 

 

Detailed description of experimental technique 

Appendix 2 (p. 344) describes in detail the practical basis for the microbiological work presented 

in the rest of this thesis, including: 

• descriptions of bacterial culture techniques and organism identification, 
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• description of extra in vitro bacteriology carried out, including assessing urease activity 

and urea tolerance of individual isolates, 

• methods used for DNA extraction and processing, 

• details of polymerase chain reaction (PCR), 

• details of 16S sequencing using barcoded primers, 

• details of whole-genome metagenomics and subsequent genome assembly and data 

analysis, 

• a note on specific statistical approaches used. 

 

 

Metabolomics 

Metabolomics describes the scientific study of metabolites – small molecules used and produced 

in the biochemical processes of living things – in biological tissues and fluids. Since the primary 

interactions between gut microbiota and host organisms with relevance to health and disease are 

purported to be mediated through such metabolites, the science of metabolomics fits hand in 

glove with the study of microbial populations in understanding the functional implications of this 

complex relationship. 

Although a variety of techniques can be used in metabolomic studies, there are broadly two 

forms of analysis: 

• Untargeted analyses use techniques such as proton nuclear magnetic resonance (1H-

NMR) spectroscopy to study all small metabolites in a biofluid or tissue. These studies 
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are often hypothesis-generating, offering relative quantification of substances between 

different samples across a broad range of molecular classes. 

• Targeted analyses use biological standards and techniques such as gas 

chromatography/mass spectroscopy (GC/MS) to measure absolute quantities of known 

molecules of interest. These techniques are typically used for confirmation of known 

hypotheses. 

 

Chapters three and four both detail untargeted 1H-NMR spectroscopy, used to evaluate broad 

changes in the rat salivary metabolome in uraemic in chapter three and in the rodent urinary 

metabolome in uraemia in chapter four; this technique is briefly explored here. 

 

NMR Spectroscopy 

NMR spectroscopy is a technique that allows identification of the constituent components of a 

chemical mixture by determination of the magnetic fields around individual atomic nuclei. It was 

developed in 1930s New York and won the 1944 Nobel Prize in physics for its pioneer, Isidor 

Isaac Rabi (1898-1988). [105] NMR spectroscopy represents an excellent method for 

identification and relative quantification of small organic molecules in mixed biological 

solutions (such as serum or urine), [106] as well as having other applications including 

determination of the 3-dimensional structure of complex molecules such as proteins. 
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The principles of NMR 

In quantum mechanics, spin is an intrinsic property of elementary particles that is best thought of 

as the vector of angular momentum – the ‘direction’ in which the magnetic field around the 

particle, generated by spin, is ‘pointing’. In essence, such particles behave like small magnets. 

When an external magnetic field is applied to substances in solution, particles in low energy 

states align to the external magnetic field. Application of energy to these particles, using 

radiofrequency radiation at a frequency particular to the particle in question, causes the particle 

to move to a higher energy state and line up against the external magnetic field (this is rather like 

using a finger to apply energy to the needle of a compass, so that it lines up pointing south). This 

causes energy to be absorbed, which is subsequently released when the particle returns to its 

original, lower, energy state (like removing the finger from the compass needle, so that it swings 

back to north). Sensitive radio receivers can detect these absorbances and releases of energy, and 

the energy absorbance at different radiofrequencies can be plotted to produce an NMR spectrum. 

 

Chemical shift 

NMR-spectroscopy can be carried out for any atomic nuclei possessing the property of spin 

(typically those with an odd atomic mass), but most often is carried out either for either 1H 

(‘proton-NMR’), or 13C.  

The amount of energy required to shift particles from low to high energy levels (ie resonance; 

altering their spin states), is proportion to two things: the strength of the external magnetic force 

(which is determined by the settings of the NMR spectroscope), and the local magnetic moment 
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around the particle in question. This in turn my be affected by various local factors, which are 

related to the chemical microenvironment surrounding the nucleus in question.  

 

NMR spectra 

NMR spectra are typically plotted on axes where: 

- The y-axis represents the absorption and subsequent release of energy (radiofrequency 

radiation) – termed the ‘free induction delay’, typically averaged over several  

measurements because the signal is small. 

- The x-axis represents the strength of magnetic field needed to produce resonance. This is 

expressed in ‘parts per million’ (ppm), relative to the strength of field required to produce 

resonance in the 1H nuclei of tetramethylsylene (TMS, Figure 13, p. 79). 

TMS is used as the reference substance because it has 12 1H nuclei in exactly the same electrical 

environments (methyl groups bound to silicon), producing a strong peak, and because the 

electrons in the hydrogen bonds are closer to the 1H nuclei in TMS than in almost all other 

biological substances, meaning the field strength required to achieve resonance is greater than for 

almost all other substances, so TMS is always on the right hand end of NMR spectra. 

The local environment of 1H nuclei – determined by the chemical structure of the substance they 

form part of – influences the frequency at which resonance occurs. Structural factors combine to 

give substances unique spectral signatures, with different peaks being formed by 1H nuclei in 

difference chemical environments, reflecting the following principles: 
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• 1H number – the number of protons in an identical environment is directly proportional to 

the area under the curve of the peak height in question, so the three 1H nuclei in a methyl 

group (-CH3) would have an area under the curve three times that of the one in a 

hydroxyl group (-OH). 

• Shielding – the effect of the external magnetic field is exerted more strongly on nuclei 

with less electron density around them, than on those with more electron density, 

requiring less field strength (lower ppm) to achieve resonance than in those more heavily 

shielded. This depends on the relative electrical charge of other atoms near to the 1H 

nuclei in question, and the extent to which they attract shared electrons away from the 1H 

nucleus. 

• Splitting – if a given group of 1H nuclei is exposed to other nearby 1H nuclei, their 

magnetic fields will interact with the 1H nuclei in question and split this peak into n+1 

subpeaks: a neighbouring -CH2 group will result in a triplet, and a neighbouring -CH 

group will result in a doublet. 

These principles are illustrated in Figure 14 for the NMR spectrum of ethanol, where the three 

different types of 1H nuclei return peaks that can be differentiated by area, shielding and 

splitting. 
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Practical NMR technique 

Modern NMR spectroscopes incorporate extremely strong superconducting magnets cooled by 

liquid helium, to generate extremely strong magnetic fields of up to 20 Tesla (by contrast, the 

earth’s magnetic field is around 0.0001T, and a typical fridge magnet might generate a magnetic 

field of 0.01T).  

Biological samples including urine and saliva underwent prolonged centrifugation to remove 

protein, and were then diluted in D2O solvent containing a pH regulator and TSP (deutritium has 

a very different NMR resonance frequency to 1H, hence using D2O rather than H2O). Some 

samples were diluted further if volumes (particularly for mouse saliva and serum) were 

inadequate. 

A 600 MHz Avance III NMR spectrometer (Bruker Biospin Ltd.) was used for the analysis, 

including a BBI 600 MHz 5-mm Z gradient probe and automated tuning and matching (ATMA 

unit) NMR detector (Bruker Biospin Ltd.). The Nuclear Overhauser Effect Spectroscopy 

(NOESY) method was used to generate 2D NMR spectra. 

The NMR spectral profiles gained were digitised and imported into Matlab (Mathworks) using 

in-house scripts. The raw spectra were adjusted for 24-h urine volumes by multiplying all NMR 

absorbance values by the urine or salivary volume in millilitres. The peaks for water, TSP and 

urea were excised from the raw NMR spectra, which were then aligned to adjust for variation in 

peak shift due to pH differences. Further normalisation was carried out using the probabilistic 

quotient method between samples in order to ensure comparable baselines between samples. 



72 

 

Unsupervised PCA was used to identify sources of variation in the metabolic data. This was 

followed by supervised OPLS-DA analysis to assess differences according to group – for 

instance, uraemic vs control. In-house-developed scripts were used to perform these multivariate 

statistical analyses.  

Positive identification of various metabolites was achieved by identifying their spectral profiles 

and confirming this using Chenomx NMR Suite 8.3 evaluation version (Chenomx, Edmonton, 

Canada), and peak integrals were calculated from metabolite peaks. Comparisons between these 

integrals were used to calculate differences in relative abundance using Microsoft Excel, with the 

Student’s t-test and Welch’s correction used to assess significance. 

All raw NMR data has been uploaded to the Metabolights online repository [107] 

(https://ebi.ac.uk/metabolights/) using the study identifier MTBLS1833.  
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Figure 7: Representative photographs of kidneys from adenine-fed (left) and control (right) 

animals. 
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Figure 8: Evaluation of the degree of clinical uraemia in experimental rats. P values in each 

graph are calculated by Student’s t-test with Welch’s correction for unequal variances. SNx, 

subtotal nephrectomy. 
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Figure 9: Weekly weights of experimental mice. Control animals are shown in blue and uraemic 

animals in red. 
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Figure 10: 24h urine output of experimental mice. Significance is assessed using Student’s t-test 

with Welch’s correction for unequal variance. 
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Figure 11: Schematic of the 16S rRNA gene. The nine hypervariable regions and common primer binding sites are shown. For the oral 

microbiome work presented in this thesis, the 27F/1492R primer set were used to sequence the whole 16S gene for identification of 

cultured isolates, and the 27F/338R (V1/2) primer sets for next generation sequencing. Taken from Kuczynski et al, 2011 [91] 
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Figure 12: Principles of sequence assembly in shotgun metagenomic sequencing. Adapted from Commins, J. et al (2009) [108] 
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Figure 13: Molecular structure of tetramethylsylene (TMS). Taken from Jynto (talk), 

https://en.wikipedia.org/wiki/Tetramethylsilane#/media/File:Tetramethylsilane_2D_flat.svg, 

retrieved on 1st February 2022. 
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Figure 14: Example 1H-NMR spectrum of ethanol, plotted as signal intensity vs. chemical shift. 

There are three different types of H atoms in ethanol regarding NMR. The hydrogen (H) on the -

OH group (red) is not coupling with the other H atoms and appears as a singlet, but the CH3-

 (blue) and the -CH2- (green) hydrogens are coupling with each other, resulting in a triplet and 

quartet respectively. Taken from:  Andel, own work, data from 

SDBSWeb: https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=1300 (National Institute 

of Advanced Industrial Science and Technology, accessed 3rd August 2019) 

  

https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Hydroxyl_group
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https://en.wikipedia.org/wiki/Methyl_group
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https://en.wikipedia.org/wiki/Methylene_group
https://commons.wikimedia.org/wiki/User:Andel
https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=1300
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Chapter three 

The oral microbiome and periodontal disease 
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Introduction 

Periodontal disease (PD) is a complex pathological process in which a bacterial challenge 

presented by a dysbiotic microbial community in subgingival dental plaque [109] drives a 

deregulated immune and inflammatory response which ultimately causes osteoclastic resorption 

of alveolar bone and eventual loss of teeth. [110]  

There is a high prevalence of PD in patients with CKD, and given the close relationship between 

the aetiology of PD and bacterial dysbiosis, we sought to establish whether disruption of the oral 

microbiota caused by chronic uraemia might be the mechanism that explains this. 
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The aetiology of periodontal disease 

Clinical periodontitis is always proceeded by gingivitis: inflammation of gingival soft tissue 

without evidence of alveolar bone destruction. Both gingivitis and PD are preceded by build-up 

of dental plaque, which represents a complex microbial biofilm that may calcify (tartar) and thus 

allow a protected niche for pathological, anaerobic gram-negative organisms to flourish (Figure 

15, p. 114). [111, 112]  

Bacteria which are implicated in the development of periodontitis possess numerous virulence 

factors which allow evasion of immune surveillance. [113, 114] The immune reaction to these 

persistent microbial insults causes soft-tissue inflammation, destruction of bone and ultimately 

loss of teeth; as well as chronic, low-grade, systemic inflammation. [115-117] 

 

Epidemiology of PD in the general population 

Observational studies suggest that the population prevalence of moderate to severe periodontal 

disease is between 15-30% in high income countries, [118-120] with some evidence that the 

prevalence might be higher in low or middle income countries (LMICs). [121] A review of 

several large cohort studies with long follow-up periods in widely separated geopolitical regions 

identified factors associated with faster progression of periodontal pathology, including: 

• increasing age, 

• presence of diabetes, 

• cigarette smoking, 
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• poor oral hygiene routines and dental care, 

• individual genetic factors. 

Genetic defects associated with periodontitis include mutations of genes associated with immune 

modulation and especially of proteins involved in the resolution of inflammation, suggesting that 

hosts that are unable to successfully switch off gingival inflammation may be at particular risk of 

progressing to full-blown PD. [122] Some forms of PD may even demonstrate Mendelian 

inheritance patterns and associations with particular genetic polymorphisms. [123-125] 

 

The oral microbiome 

The Human Oral Microbiome Database collates taxonomic information, including 16S rRNA 

sequences, for all described human oral bacteria. There are estimated to be 700 species resident 

within the human oral cavity and related spaces (eg the pharynx and oeseophagus), with up to a 

third still identified only by 16S genetic analysis and awaiting full taxonomic description. Six 

phyla (Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Spirochetes and 

Fusobacteria),  make up 96% of the total, with a further seven phyla comprising the remaining 

4% of organisms. [126]  In one study, in which nine oral sites were swabbed in five healthy 

volunteers, a total of 141 different bacterial species were identified across six different phyla, 

with different oral sites harbouring significantly different bacterial populations. [127] 

The human oral microbiome is known to differ significantly at species level between individuals, 

but to be significantly conserved over time within individuals. There appears to be a large 

amount of functional redundancy in the oral microbiome, and it has been suggested that looking 
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for functional differences between individuals (for instance, between diseased and healthy 

experimental subjects), may be more relevant than concentrating on species level variation. [128] 

To this end, recent interest has developed in using metagenomic and metatranscriptomic 

approaches to explore the functional activity of bacterial populations in health and disease. [129] 

 

The role of bacteria in the development of periodontitis 

Periodontitis is a complex disease resulting from interactions between oral bacterial communities 

and host defences. Several hypotheses have been advanced to explain the role of bacterial 

communities (present as the oral biofilm plaque) in its aetiology. The categorisation below is 

adapted from Bartold and Van Dyke, 2000 [115]: 

• The non-specific plaque hypotheses, which was first advanced in the 1950s, holds that it 

is simply the burden of plaque present that causes gingivitis and then periodontitis, 

regardless of the particular composition of the bacterial species present. [130] Host 

defences are able to cope with low volumes of bacteria, but in the context of high-volume 

plaque lesions, are overwhelmed by pro-inflammatory bacterial products and 

inflammation ensues.  

This hypothesis was increasingly questioned in the face of mounting evidence that the 

presence of specific bacterial species, rather than simple bacterial burden, seemed to be 

the trigger predisposing to development of periodontal inflammation. 



86 

 

• The specific plaque hypothesis, advanced in the 1970s, was based on the notion that 

plaque samples from patients with periodontal disease demonstrated different 

microbiology from plaque samples taken from healthy controls, with relative decreases in 

Gram-positive bacteria and an increase in Gram-negative phyla such as Proteobacteria. 

The influential concept of red and orange complex bacteria (associated with periodontitis, 

as opposed to the ‘early colonisers’ of the blue, green, purple and yellow complexes, 

Figure 16, p. 115, [131]), was based on this hypotheses, and yet proved insufficient to 

explain fully the aetiology of the disease, since these bacteria are often present at low 

levels and without causing disease in healthy individuals. 

• The ecological plaque hypothesis, advanced in the 1990s, focused on the role of the oral 

environment in the development of periodontitis. [132] For long periods a healthy 

equilibrium may exist between bacterial communities and host defences, but this could be 

upset by a variety of environmental stresses: build-up of plaque due to lapsed oral 

hygiene, smoking, development of diabetes, stress or immunosuppression. The host may 

respond to local inflammation by producing protein-rich gingiva-crevicular fluid, which 

hands a selective advantage to proteolytic Gram-negative bacteria, which then leads to 

worse periodontal inflammation and destruction of bony tissue. 

 

The concept of oral dysbiosis 

The Polymicrobial Synergy and Dysbiosis (PSD) model, builds on the notion that particular 

organisms acting alone may cause periodontitis. However, it suggests that particular ‘keystone 
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pathogens’ may orchestrate wider changes in other bacterial phenotypes, transforming healthy 

oral microbial populations into pathological populations; for instance by conferring the ability to 

evade immune detection and cause persistent and tissue-destructive inflammation. [109] A key 

exemplar of this model is periodontitis associated with Porphyromonas gingivalis colonisation. 

P. gingivalis is a Gram-negative organism from phylum Bacteroidota, which was once thought 

to be a direct cause of periodontitis, after its introduction into non-human primates led directly to 

the development of disease. [133] However, it has since been demonstrated to be introduced into 

organisms without causing disease, for example into complement-deficient animals, [113] or into 

germ-free animals as a mono-culture without other bacterial species being present. [127] As a 

keystone pathogen, P. gingivalis does not cause disease itself, but possesses virulence factors to 

disrupt host defences and coerce otherwise ‘beneficial’ bacteria to induce periodontal 

inflammation. 

A number of changes have been noted in sequenced bacterial populations from individuals with 

periodontitis compared to those from individuals with healthy periodontal tissues: an increase in 

alpha diversity, reduction in health-associated taxa (such as Rothia and Veillonella species), and 

an increase in pathogenic species including from phyla Proteobacteria and Actinobacteria [134, 

135]. Together these changes have been termed dysbiosis, a concept which has generated public 

interest and entered the Oxford English Dictionary in 2018 defined as “an imbalance between the 

types of organism present in a person's natural microflora, especially that of the gut, thought to 

contribute to a range of conditions of ill health”. [136] 
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Periodontal disease in CKD 

The relationship of CKD and oral health is varied and complex. Many patients with CKD, 

particularly in advanced disease, complain of a range of oral symptoms including altered (often 

metallic) taste, halitosis, stomatitis and xerostomia. [137] Such oral symptoms may have 

implications for the quality of life, nutritional status and the general health of patients living with 

CKD. [138] Objectively, both in patients and experimental models, CKD has been shown to 

reduce salivary flow rates and alter salivary biochemistry, with increased concentrations of urea 

and creatinine and high oral pH. [139-141] Furthermore, some research suggests that patients 

with CKD may have limited access to dental care, and have poor oral hygiene routines. [142, 

143] 

 

CKD and periodontal disease 

The most robust evidence available associates CKD with a high prevalence of gingival disease 

and periodontitis. One meta-analysis suggested that roughly 20% of dialysis patients have no 

teeth, and rates of PD were 56.8% in patients with stage 5 CKD and 31.8% in patients with 

milder forms of CKD. [137] Another meta-analysis found a similar, consistent association 

between CKD and periodontitis with an odds ratio of 1.65 compared to the general population. 

[144] Data from the Renal Impairment In Secondary Care (RIISC) cohort of 932 patients in the 

UK found that CKD patients had an odds ratio of 4.0 compared to community-matched controls 

for all forms of periodontitis and 3.9 for the severest form of the disease. [145] In the large 

National Health And Nutrition Examination Survey (NHANES) III dataset from the US, subjects 
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with all stages of CKD had a combined prevalence of periodontitis of 12.9% compared to 7.5% 

in subjects without CKD, and a trend was seen towards a dose-dependent increase in 

periodontitis rates in more severe stages of CKD that reached statistical significance in non-

white populations. [146]  

 

Association with cardiovascular mortality 

There are well described associations in the general population between periodontitis and both 

cardiovascular disease and all-cause mortality. [147, 148] This association holds true in CKD, as 

CKD patients with periodontitis have an increased mortality compared to CKD patients without 

periodontitis, a deleterious effect similar in size to the effect of having diabetes as a comorbidity. 

[149] A similar increase in mortality in CKD patients with periodontitis compared to those 

without was found in a recent meta-analysis, although in this study, researchers did not establish 

a link with cardiovascular disease. [150] Furthermore, CKD patients with periodontitis have been 

shown to have higher levels of systemic inflammation and malnutrition compared to those with 

better oral health, [151, 152] and this systemic inflammatory milieu, driven by periodontal 

inflammation, oxidative stress and endothelial dysfunction, may account for  some of the excess 

cardiovascular disease seen in the CKD patient population. 
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Potential mechanisms underlying the association between CKD and PD 

Periodontal disease may arise in any patient due to a complex interaction between host factors, 

environmental and behavioural factors, and bacteriological factors. [115, 135] Each of these 

domains can be affected when an individual develops CKD, and each may drive the subsequent 

development or progression of periodontitis. 

 

Host factors 

Effects of uraemia on the oral environment 

The flow rate and chemical composition of saliva play crucial roles in determining the oral 

microenvironment. Patients with CKD produce less saliva than controls with normal renal 

function, with an increase in salivary concentrations of both nitrogenous waste products (such as 

urea and creatinine) and electrolytes (including sodium, potassium, and phosphate), likely 

reflecting an overall increase in osmolality in keeping with a reduction in flow rate. [139] These 

changes have also been demonstrated in experimental models of uraemia. [141] Indeed, it has 

been suggested that salivary abnormalities including high pH and increased levels of urea and 

phosphate may protect patients with CKD against caries whilst predisposing them towards 

developing periodontal breakdown. [138, 153, 154]  

Uraemia leads to increased urea levels in gingival crevicular fluid and significant increases in the 

salivary pH both in patients with moderate CKD [155, 156] and in those with advanced disease 

who are undergoing in-centre haemodialysis. [156-158] As an alkaline pH environment provides 

more favourable growth conditions for several periodontal pathogens (such as Porphyromonas 
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gingivalis, Prevotella intermedia, and Fusobacterium nucleatum [159]), these organisms may 

have an ecological advantage  in the periodontal pockets of patients with CKD/ESRD. This 

conclusion is indirectly supported by the higher levels of salivary urea in patients with severe 

periodontal breakdown. [160] 

 

Effects on bone 

CKD - mineral and bone disorder (CKD-MBD) is the term used to describe a spectrum of 

skeletal, biochemical and extra-skeletal calcific abnormalities seen in the presence of CKD. 

[161] Key to the pathogenesis of the disorder is the inability of the failing kidney to hydroxylate 

inactive vitamin D (25-hydroxyvitamin D) into its active form calcitriol (1,25-

dihydroxycholecalciferol). [162] This, along with impairment of renal phosphate excretion, 

systemic ionic hypocalcaemia and skeletal resistance to parathyroid hormone trigger homeostatic 

hormonal responses including elevation of parathyroid hormone (PTH), which is associated with 

increased bone turnover. PTH secretion can, over time, become autonomous, escaping normal 

negative feedback control. Fibroblast growth factor 23, which rises early in CKD, presumably in 

response to hyperphosphataemia, is a potent hypophosphaturic agent that causes loss of 

phosphate from bone, and also antagonises bone mineralisation. [163, 164] Bone tissue biopsies 

are rarely performed in routine clinical practice, with the management of CKD-MBD being 

based around maintaining serum calcium, phosphate, vitamin D, and PTH levels within target 

ranges. [165, 166] However, when biopsies are performed, high-turnover lesions with poor-

quality bone mineralisation are the most common abnormalities seen in untreated patients; [167] 
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and low-turnover lesions associated with suppressed serum PTH levels being especially 

associated with aggressive treatment of elevated PTH. [168] 

Several animal models of chronic uraemia have been optimized over a prolonged experimental 

period to allow the development of associated hyperparathyroidism to mimic human CKD-

MBD. In these studies, periodontitis-associated loss of alveolar bone height and volume relative 

to controls was partially improved when dietary calcium was given to reduce PTH, suggesting 

that PTH may be involved in the aetiology of the alveolar bone loss. [169] Using a mouse model 

of chronic uraemia (induced by partial renal ablation), one study demonstrated a significant 

reduction in cortical alveolar bone height compared to sham controls; these changes were 

exacerbated by a high phosphate diet that drove up serum PTH. [170] Although human data on 

whether CKD-MBD affects the development of periodontal breakdown are sparse, a small study 

of 20 patients with CKD reported that hyperparathyroidism was associated with the enlarged 

facial bones in both women and men, possibly due to increased bone turnover. [171] 

 

Effects on immune system function 

Host immunity plays a crucial role in the development of periodontal breakdown, [172, 173] and 

abnormal immune system function underlies the familial associations of PD. Systemic uraemia 

affects the immune system by several mechanisms including (i) abnormal neutrophil activity, 

[173-175] (ii) increased oxidative stress, [176] (iii) impaired development and maturation of 

immune cells, [173] dysregulated cytokine release [177, 178] and defective barrier immunity. 

[53, 179]   This contributes to what has been described as “maladaptive, uncontrolled and 

persistent” inflammation in patients living with CKD, [180]  who have been described as 
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simultaneously immunosuppressed (with infectious diseases being a key cause of morbidity and 

mortality) and systemically inflamed (which may contribute to chronic cardiovascular risk). 

[181]  

In the specific context of periodontitis, the ability of neutrophils to enter gingival tissues to 

counter bacterial invasion has been well described as an important factor in maintaining gingival 

health, and patients with leukocyte adhesion deficiency-1 disease (which impairs neutrophil 

migration) develop aggressive and early-onset periodontal breakdown. [182] Similar changes in 

neutrophil function have been described in patients with CKD, with the effect of FGF23 being 

demonstrated to prevent neutrophil recruitment into inflamed tissue. [174] This suggests that 

similar defective immune responses may partially underlie the development of PD in patients 

with CKD.  

 

Comorbidity 

The leading cause of CKD globally is diabetes mellitus, which itself is strongly associated with 

the development of PD. [183] The relationship is complex, with poor diabetic control predicting 

increased risk of periodontitis, perhaps through impaired immune function; and treatment of PD 

causing improvement in glycaemic control, suggesting a bidirectional relationship. [184] 

Hypertension can be a primary cause of CKD as well as being a secondary complication of 

disordered sodium homeostasis in patients with CKD from other causes. Hypertension has a 

complex association with PD, with a suggestion that microcirculatory changes in the gum that 

are present in hypertension may cause PD, alongside evidence that PD itself may cause 

hypertension as chronic inflammation leads to endothelial dysfunction and atherosclerosis. [185] 
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The treatment of CKD comorbidities may also cause PD, such as when inflammatory diseases of 

the kidney are treated with corticosteroids or other immunosuppressant medications which have 

been linked to increased incidence of PD. [186] Nutrition has also been linked to the aetiology of 

PD, [187] and with many patients with CKD following tightly controlled dietary advice to limit 

sodium, phosphate and potassium intake, it is possible that nutritional deficiency may also 

explain some of the excess rates of PD in the CKD population. 

 

Environmental and behavioural factors 

Social deprivation has been shown to associate with CKD, [188, 189] and similar factors have 

been shown to associate with poor oral health and the development of PD. [190, 191] Patients 

with CKD may struggle to maintain good oral hygiene routines, with one systematic review 

suggesting that a quarter of haemodialysis patients across a number of studies never brush their 

teeth. [137] The fact that patients on maintenance haemodialysis will generally attend the 

dialysis unit three times per week may limit their ability to engage with dental care.  

 

Bacteriological factors 

Alterations in the flow rate and composition of saliva in patients with CKD may impose a strong 

selective pressure on the oral microbiome and induce changes in community structure that may 

drive the development of periodontitis. Several studies have demonstrated abnormal oral 

bacterial communities in patients with CKD. A study that involved 77 U.S. participants (18 

patients with CKD and 59 non-renal controls) has shown that CKD was associated with lower 
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abundances of health-associated taxa Streptococcus and Veillonella and increased abundance of 

the gram-negative taxon Neisseria; this, in turn, correlated with increased blood concentration of 

pro-inflammatory cytokines, such as IL-18. [192] Similarly, patients undergoing in-centre 

haemodialysis demonstrated increased bacterial diversity, higher abundances of disease-

associated taxa (including genus Neisseria and the ‘red complex’ pathogen Porphyromonas 

gingivalis), and a reduction in some health-associated taxa, including Rothia, compared to non-

renal controls. [193]  

 

Hypothesis 

Patients living with CKD have a high prevalence of PD [144, 145, 194], and it has been 

suggested by some that the association is explained by the chronic, low-level inflammation 

caused by PD driving progressive renal fibrosis. [149, 195] 

However, there are several reasons to support the reverse view, that CKD may directly cause PD. 

Patients with CKD have abnormalities in the flow rate and biochemical composition of saliva 

[139, 140] which may alter the oral microenvironment and exert selective pressure on the oral 

microbiome. Furthermore, patients with CKD have marked abnormalities of bone metabolism 

[196] and immune system function [197] which may also be relevant to the development of PD.  

We hypothesized that CKD may be a cause of PD, challenging current understandings of the 

association between these conditions, and that induction of dysbiosis of the oral microbiota may 

be a critical mechanism in this process.  
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Specific methods 

Animal work 

Chemically-induced uraemia in rats 

The total cohort size was 18 rats. After a week-long period of acclimatisation, nine rats were 

started on the adenine-containing intervention diet whilst another nine were maintained on 

standard control diet. This diet was continued for four weeks, followed by a washout period of 

four weeks when all animals received the control diet, after which the animals were sacrificed. 

Oral swabs were taken from all animals at the point of maximal uraemia for those receiving the 

intervention diet (at the end of the 4-week period of adenine administration).  

 

Surgically-induced uraemia in rats 

The total cohort size was 24 rats. After a week-long period of acclimatization, fourteen 

underwent subtotal nephrectomy (SNx) and ten underwent sham procedures. Oral swabs to 

assess the microbiota were taken four weeks after the second stage of the surgical procedure, to 

parallel those taken in the chemically-induced uraemia protocol.  

 

Additional rats for histological and salivary analysis  

Thirteen additional rats were used to obtain saliva samples for subsequent analysis, and to 

undertake bone staining to assess the bone formation rate. These rats underwent SNx or sham 
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procedures as outlined above (n=6 sham surgery, n=7 SNx), and were otherwise housed 

identically to those in the ‘Surgically induced uraemia in rats’ protocol above. In their final week 

of life, 500µg calcein green (approximately 1mg/kg) was injected intravenously three times at 

48h intervals. The following week induced saliva collection was carried out under terminal 

anaesthesia with ketamine/xylocaine. After full induction of anaesthesia, 1mg pilocarpine was 

injected into the peritoneum, with a further 1mg administered 5 minutes later if there was no 

salivary response. Saliva was then collected over the following 8 minutes using a 100mL pipette 

and 1.5ml Eppendorf tubes. Salivary volume was directly assessed by weighing the filled tubes 

and subtracting the weight of the tube itself. Salivary pH was directly measured using a pH meter 

and narrow-gauge probe (Mettler Toledo, Leicester, UK), before saliva was snap frozen in liquid 

nitrogen and transferred to a -80o freezer until the time of analysis.  

 

Chemically-induced uraemia in mice 

The total cohort size was 20 mice. After a week-long period of acclimatization, ten animals were 

placed on an intervention diet (RM1 with 0.15% adenine), whilst ten remained on standard RM1 

diet. Oral swabs to assess changes in microbiota were obtained prior to starting the experimental 

protocol, and at 2 weeks, 6 weeks, 10 weeks, 14 weeks and 18 weeks after starting it. All mice 

were sacrificed 18 weeks after the start of the experimental protocol (at 26 weeks of age), after a 

24-hour urine collection. Additional orals swabs were obtained prior to the time of sacrifice from 

four ‘donor’ animals in each group, for using in the ‘oral microbial transfer’ experiment 

described below. Additionally, soiled cage contents including bedding and droppings from the 

cages in which these donor animals were housed were frozen for further use as described below. 
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Oral microbial transfer in mice 

Oral microbial transfer was carried out as described in chapter 2. 

Animals were then maintained in ordinary individually-ventilated cages in an open area of the 

Biological Services Unit, with standard 12h light/dark cycles. They had unlimited access to 

standard RM-1 diet and tap water. Oral swabs were taken to assess the efficacy and durability of 

bacterial transfer at 3-weeks and 9-weeks after transfer in all animals, and all animals were then 

culled, after a 24-hour urine collection, at 18 weeks of age (10 weeks after transfer). 

 

Laboratory methods 

Measurement of alveolar bone height 

Heads were removed and jaw specimens obtained from all animals using a guillotine and sharp 

dissection with scissors. Alveolar bone height was measured using a morphometric method 

previously demonstrated to have equal reliability to radiological [198] and histological 

techniques. [199] After any samples (typically mandibles) required for conventional histology, 

micro-CT or scanning electron microscopy were removed, skulls were chemically defleshed by 

incubation in the protease-based detergent Terg-a-zyme ® (Sigma-Aldrich, UK), for 48 hours at 

55oC, with remaining soft tissue being removed mechanically after this. Photographs were 

obtained using a 20x magnification dissecting microscope, and multiple measurements were 

made of the distance between the cemento-enamel junction and the alveolar bone crest using 
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ImageJ software, [200] as outlined by Baker and colleagues, [201] although without the use of 

blue dye. Bone height was measured over the lingual and buccal surfaces of molar roots, and a 

composite measurement for each animal was calculated. These figures are expressed relative to 

the average bone height in control animals, with significance assessed using Student’s t-test with 

Welch’s correction for unequal variances. 

 

Light microscopy 

Tissues removed prior to de-fleshing were fixed in formalin, decalcified using 10% formic acid 

and then embedded in paraffin.  Each jaw was sectioned in frontal buccolingual orientation using 

a microtome (5 mm) and mounted on charged glass slides.  Every tenth section was stained by 

haematoxylin and eosin using an automated slide processor, and then photographed using a 

Nikon Eclipse 80i Stereology microscope using 4/0.13 and 10/0.45 objective lenses. 

 

Immunohistochemistry 

Neutrophils and IL-17 were detected using primary antibodies (Abcam, Cambridge, UK) and 

anti-rabbit (PK-6101) secondary antibody (Maravai LifeSciences, San Diego, US). Sections were 

then viewed and photographed using the same microscope and lens as used for light microscopy 

of the H&E stained slides.   

 



100 

 

Scanning electron microscopy 

This was used to assess for qualitative differences in the growing surface of periodontal bone 

between control and uraemic animals. Samples were transported in 70% ethanol to the Dental 

Physical Sciences unit at the Mile End Campus, QMUL. Samples were rendered totally 

anorganic by treatment with 7% available chlorine sodium hypochlorite bleach for 3 weeks to 

remove all residual soft tissue. This treatment completely removes the periodontal ligament so 

that the teeth could by removed manually to expose the surface of the alveolar bone. All SEM 

imaging was done using 20kV accelerating voltage and a solid state backscattered electron 

(BSE) detector, using a chamber pressure of 50Pa. 

 

Confocal scanning light microscopy  

Samples in 70% ethanol from calcein-injected animals were embedded in polymethyl 

methacrylate (PMMA), and blocks were cut and polished to produce flat surfaces before being 

used for confocal scanning light microscopy (CSLM). This was carried out at the Rockefeller 

Building, Division of Biosciences, University College London using a Leica SPE confocal 

system with an inverted microscope. The PMMA blocks were cover-slipped with glycerol. 

Objectives used were 10/0.45, 20/0.75 and 63/1.3 oil. Images were analysed using ImageJ 

software and a measure of the daily rate of dentine and bone formation calculated at the incisor 

root and lower mandibular border, respectively. The bone formation rate (BFR) was calculated 

using the formula BFR = MAR * (MS/BS) as suggested by the ASBMR Histomorphometry 

Nomenclature Committee [202], where the Mineral Apposition Rate (MAR) was calculated by 
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dividing the distance between the innermost and outermost calcein bands (given 96h apart) by 4, 

and the Mineralizing Surface (MS) and Bone Surface (BS) were measured directly using ImageJ. 

 

Micro CT 

This was carried out on samples embedded in PMMA, to assess bone mineralisation and the 

quality of bone produced between control and uraemic rats. Samples were scanned on the 

MuCAT2 micro-CT system designed and operating in the Dental Physical Sciences unit at the 

Mile End Campus, QMUL. The samples were scanned at 90kV & 180uA at 20 or 22um voxel 

size. Reconstruction was performed with GPU accelerated filtered Feldkamp back-projection 

algorithm and the grey-level data was calibrated to linear attenuation coefficient at 40 keV using 

a multi-material calibration carousel and X-ray modelling software. [203] Quantification of bone 

mineral density was carried out by assessing the mean linear attenuation coefficient of 20 tagged 

regions with a radius of three pixels in three dimensions at each tagged location and a calibration 

voltage of 27.5keV. 

 

Analysis of microbiota 

This was carried out using both culture and non-culture dependent methods, as described 

previously. Additional in vitro culture work to determine the urease activity and urea tolerance of 

all cultured organisms was carried out as described in appendix 2 (from p. 351). Statistical 

methods for culture and sequencing data are as described in appendix 2 (from p. 348). 
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Quantification of salivary urea 

A colorimetric detection kit for urea nitrogen (ThermoFisher Scientific) was used according to 

the manufacturer’s instructions. Samples of saliva were processed at 1:2 and 1:20 dilutions and 

the mean concentration using both dilutions in duplicate was accepted. Corresponding serum 

samples were analysed using the same kit but at 1:20 and 1:40 dilutions to allow comparison. 

 

NMR spectroscopy of saliva 

Saliva samples were diluted with buffer containing trimethylsilylpropanoic acid (TSP) and 

analysed on an NMR spectrometer (Bruker) operating at 600.22 MHz 1H frequency at Imperial 

College London as per the experimental and statistical methods described in chapter 2. 

 

Specific statistical methods 

Statistical analysis of bone height data 

All data for loss of periodontal bone height was found to be normally distributed when assessed 

by the Shapiro-Wilk test. All testing for significance of difference between two groups was 

carried out using Student’s t-test with Welch’s correction for unequal variances, in GraphPad 

Prism or Microsoft Excel.  
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Analysis of effect of housing on microbiology and bone height 

Two-way ANOVA was carried out in GraphPad Prism to define the significance of the different 

levels of bone loss (dependent variable), according to both housing and treatment class 

(independent variables) in the surgically-induced uraemia experiment. No comparable analysis 

was carried out for the chemically-induced uraemia protocol because it was impossible to vary 

the housing since all animals in a single cage received the same diet. 

 

Analysis of urea tolerance 

Figure 36 (p. 135) plots the proportional increased average growth per sample in uraemic vs 

control animals, calculated as (mean growth in uraemic animals / mean growth in controls) 

where the mean growth in uraemic animals was higher than that in controls; and as (mean growth 

in controls / mean growth in uraemic animals) where the mean growth in controls was higher. 

Linear regression was used to draw a line of best fit between the mean inhibitory concentration 

of urea and the relative competitiveness of different isolates in control vs uraemic animals; 

standard settings in GraphPad Prism were used to accomplish this and Prism software was used 

to calculate the slope and the significance of its gradient. 

 

Data availability 

Raw sequencing data from all samples has been uploaded to the Sequence Read Archive (SRA) 

of the National Centre for Biotechnology Information (NCBI, 
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https://submit.ncbi.nlm.nih.gov/subs/sra/, release date 20th July 2020). It can be accessed using 

the accession number PRJNA648141. 

All raw NMR data has been uploaded to the Metabolights online repository 

(https://ebi.ac.uk/metabolights/, release date 18th August 2020) [107], using the study identifier 

MTBLS1833.  

 

 

 

Results 

Experimental uraemia causes periodontal bone loss in rats  

Chronic uraemia was induced in male Wistar rats using two protocols: chemically-induced 

uraemia (using adenine-containing feed) and surgically-induced uraemia (using subtotal 

nephrectomy, SNx). Examination of de-fleshed heads revealed that uraemic animals generated 

using both experimental protocols displayed significantly more periodontal bone loss than 

controls after an eight-week period of uraemia (an average of 0.113mm less alveolar bone height 

relative to controls, p<0.0001, Figure 17, p. 116, supplementary Table 11, p. 397 in appendix 5). 

Representative images from defleshed jaws reveal that whilst control animals had some degree 

of periodontal bone loss, in the uraemic animal this was so severe that it was actually possible to 

see a clear gap between the bottom of the tooth and the alveolar crest (Figure 18, p. 117). 

https://submit.ncbi.nlm.nih.gov/subs/sra/
https://ebi.ac.uk/metabolights/
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Histological examination of representative samples confirmed a greater distance between 

cemento-enamel junction and alveolar bone ridge in the uraemic than control. Despite this, there 

was only modest evidence of overt inflammatory change, in contrast to periodontal disease seen 

in humans. Higher magnification images in the uraemic specimen revealed subtle changes in 

keeping with inflammatory periodontal disease, including an aggregation of neutrophils and 

early migration of the junctional epithelium compared to images from the control animal (Figure 

19, p. 118). 

Immunohistochemistry revealed significant staining for IL-17 which co-localized with staining 

for neutrophils in areas deep within the alveolar bone in uremic specimens, (Figure 20, p. 119) 

suggesting their possible involvement in reabsorption of bone. 

Micro-computed tomography demonstrated abnormalities of bone formation in uraemic 

specimens, with a non-significant trend towards reduced mineral density (the linear attenuation 

coefficient in bone just below the alveolar bone crest was 1.604cm-1 in controls and 1.547cm-1 in 

uraemic animals, p=0.069; and at sites deeper within the mandibular bone was 1.658cm-1 in 

controls and 1.621cm-1 in uraemic animals, p=0.271, Figure 21, p. 120). 

Scanning electron microscopy of the surface of alveolar bone facing the periodontal ligament 

revealed a smooth surface almost bereft of Sharpey’s fibres in uraemic animals, in contrast to the 

normal, ‘spiky’ bone appearance in controls, suggestive of a failure of bone growth at this 

surface in uraemic specimens (Figure 22, p. 121).  

To evaluate systemic features of chronic uraemia that may affect periodontal bone formation, we 

measured serum concentrations of parathyroid hormone (PTH), calcium and phosphate.  There 

was no difference in serum PTH concentrations between control and uraemic animals (serum 
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PTH 16.95pg/ml in controls vs 12.37 in uraemic animals, p=0.251, Figure 23, p. 122), or in 

serum calcium (2.58mmol/L in controls vs 2.586 in uraemic animals, p=0.841) or phosphate 

(2.19mmol/L in controls vs 2.107 in uraemic animals, p=0.254, Figure 24, p. 123).  

To assess global rates of bone and tooth formation, samples from animals injected with three 

doses of 1mg/kg calcein green at 48 hour intervals the week prior to sacrifice were assessed by 

confocal microscopy to calculate the daily rate of bone and tooth formation (Figure 25, p. 124). 

There were no differences between groups in the rate of dentine formation in the incisor root 

(14.78µm3/µm2/d in sham operated controls vs 15.69 µm3/µm2/d in SNx, p=0.517), or of bone 

formation at the lower mandibular border (4.249µm3/µm2/d in controls vs 3.562µm3/µm2/d in 

SNx, p=0.397), Figure 26, p. 125.  

 

Uraemia is associated with oral dysbiosis  

Oral swabs were assessed using both bacterial culture and next generation sequencing of the 16S 

rRNA gene amplicon to assess the effect of experimental uraemia on the oral microbiota. The 

parallel use of these complementary techniques allowed for evaluation of total bacterial 

abundance, in vitro testing of individual bacterial isolates for their tolerance of high-urea 

environments as well as completing a thorough survey all members of the oral microbiota, and 

not just those which are readily cultured. 

Lower total bacterial counts after 48 hours of incubation under both aerobic and anaerobic 

conditions were seen in samples from uraemic animals (log10 6.07 cfu/ml transport medium in 

controls vs 5.80 in uraemic animals, p=0.034, Figure 27, p. 126); partly accounted for by 
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substantially reduced total counts of the most abundant phylum, Firmicutes (log10 5.88 cfu/ml in 

controls vs 5.42 in uraemic animals, p=0.043).  

Conversely, absolute counts of Gram-negative phylum Proteobacteria were non-significantly 

higher in uraemic animals than in controls (log10 4.12 cfu/ml in controls vs 4.55 in uraemic 

animals, p=0.151), which in the context of reduced overall counts in these animals meant that 

these uraemic animals had significantly higher proportional abundances of Proteobacteria 

(9.53% vs 2.99% of total cultured bacteria, p=0.003, Figure 28, p. 127).  

At genus level, uraemic animals demonstrated lower counts of both the most abundant genus 

Streptococcus (log10 5.56 cfu/ml in controls vs 5.05 in uraemic animals, p=0.017), and the 

second most abundant genus Rothia (log10 5.56 cfu/ml in controls vs 5.23 in uraemic animals, 

p=0.022). Conversely, samples from uraemic animals displayed higher growth of a number of 

minor taxa compared to control samples, which reached significance for the genus 

Acinetobacteria (log10 3.79cfu/ml in uraemic animals, absent in controls, p=0.006, Figure 29, p. 

128).  

Next-generation sequencing of the 16S rRNA gene amplicon was used to confirm the pattern 

seen in the cultural analysis. Proportional abundances of different phyla plotted for each sample 

showed a similar decrease in Firmicutes and an increase in Gram negative phyla Proteobacteria 

and Bacteroidetes in samples from uraemic animals, with Proteobacteria accounting for 22.6% 

of reads in uraemic animals vs 12.5% in controls, p=0.002. Corresponding to the described 

reductions in major taxa and increases in minor ones in uraemic animals, oral communities from 

uraemic animals were found to have higher alpha diversity (signifying more diverse oral 
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communities) than in control animals when measured using the Simpson Index (0.75 in controls 

vs 0.82 in uraemic animals, p=0.045, Figure 30, p. 129).  

Ordination plots for all samples revealed that the most significant source of variation was 

between shipment batches (different batches from the same vendor were used in each 

experiment). However, when ordination for each experiment was plotted separately, there was 

indeed differential clustering between control and uraemic animals, with Permutational Analysis 

Of Variation (PerMANOVA) assessing the significance of separation according to uraemia 

proving significant for the surgically-induced uraemic protocol (R2=0.147, p=0.012) but not in 

the chemically-induced uraemia protocol (R2=0.112, p=0.184, Figure 31, p. 130). 

 

Co-housing alters bacterial communities and affects the severity of periodontal 

disease 

The surgically-induced uraemia protocol allowed us to investigate the influence of either housing 

uraemic rats singly (with uraemic animals), or in mixed cages (uraemic animals with healthy, 

sham-operated, controls). The caging strategy is illustrated in Figure 32, p. 131. 

The uraemic animals that were housed in mixed cages alongside controls developed less 

periodontal bone loss than those housed only with other uraemic animals. Two-way ANOVA 

confirmed that whilst treatment class had the biggest effect on bone loss in these animals 

(accounting for 77% of variance, p=0.001), the contribution of housing also proved significant 

(6.7% of variance, p=0.014). A simple t-test comparing the degree of bone loss between co-

housed and singly housed uraemic animals confirmed that the mixed-cage uraemic animals had 
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significantly less bone loss than those that were singly housed with other uraemic animals (mean 

bone height -0.149mm compared to mean of control animals in those that were singly housed, 

and -0.109mm in those that were mixed-housed, p=0.038), Figure 33, p. 132. 

An ordination plot based on 16S gene sequencing demonstrated that mixed-housed animals had 

an intermediate microbial profile between the singly-housed control and uraemic groups. Two-

way ANOVA carried out for the first two principal components revealed that housing 

significantly affected clustering in component 2 (19.86% of variance, p=0.043), although to a 

lesser extent than treatment class (25.84% of variance, p=0.024). Only treatment class 

significantly affected principal component 1 (treatment 28.48% of variance, p=0.0196; housing 

0.02% of variance, p=0.94, Figure 34, p. 133). 

 

Uraemia alters salivary biochemistry in rats which may explain the observed oral 

dysbiosis 

To assess whether alterations in saliva following the induction of uraemia might be responsible 

for the differences in oral microbiology, induced saliva samples were obtained using pilocarpine 

administration to rats under terminal anaesthesia.  

There were no differences in either the flow rate or pH of induced saliva (supplementary Table 

12, p. 398, appendix 5), however uraemic animals were found to have significantly higher 

concentrations of salivary urea (in proportion to an increase in serum urea) when measured by 

colorimetric analysis (1.62mmol/l in controls vs 3.73mmol/l in uraemic animals, p=0.007, Figure 

35, p. 134).  
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Untargeted proton Nuclear Magnetic Resonance spectroscopy (1H-NMR) was performed to 

characterize biochemical perturbations associated with uraemia and assess the functionality of 

the altered microbiota. Salivary concentrations of acetate were 27% lower in uraemic animals 

compared to controls (122.19 relative units in controls vs 89.11 in uraemic animals, p=0.013), 

and concentrations of lactate 47% lower (although this did not reach significance, 116.81 vs 

61.35 relative units, p = 0.056). Results for other salivary metabolites are listed in supplementary 

Table 13, p. 399, appendix 5. 

In vitro testing was carried out on all bacterial isolates from the cultured analysis, that had been 

deep frozen in pure colonies after initial isolation and identification. There was a positive 

association between the observed growth of an isolate in uraemic animals relative to controls and 

the mean inhibitory concentration of the isolate for urea. Linear regression was used to calculate 

a line of best fit, which proved to be significantly different from horizontal (slope 0.34, p=0.046), 

confirming a positive correlation between urea tolerance and the observed abundance of the 

isolate in uraemic animals relative to controls, Figure 36, p. 135.  

Using Christensen’s urea agar we demonstrated that urease producing organisms were better-

represented among urea-tolerant groups, a trend which did not prove significant (urease positive 

organisms accounting for 14.1% of bacterial growth in uraemic animals and 8.6% in controls, 

p=0.32).  
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Uraemia induces periodontal bone loss and progressive oral dysbiosis in mice 

In order to ensure that these results were not rodent species-specific, experimental uraemia was 

induced in wild-type male C57BL/6 mice using a slowly progressive model of chemically-

induced uraemia. As in rats, uraemic mice displayed increased periodontal bone loss (-0.02mm 

relative to the mean of controls, p=0.0005, Figure 37, p. 136; supplementary Table 14, p. 401, 

appendix 5). 

Oral swabs were taken every four weeks during the experimental period, and next generation 

sequencing of the 16S rRNA gene amplicon revealed progressive changes in samples from 

uraemic animals, characterized by increased heterogeneity between samples, and progressively 

differential clustering on principal component analysis. Significant differences in clustering as 

measured by PerMANOVA emerged between control and uraemic microbiotas at 10 weeks into 

the experimental period (roughly co-incident with the development of significant differences 

between control and uraemic animals in weight, suggestive of clinical uraemia, which first 

became apparent at 9 weeks into the experimental period). These changes persisted at 14 weeks, 

but after 18 weeks of experimental diet, uraemic animals exhibited such significant within-group 

differences meaning that although there was still a marked separation between the clustering of 

uraemic vs control samples on visual inspection of PCA plots, this did not quite reach 

significance when assessed using PerMANOVA (R2 = 0.134, p=0.066). Quantification of 

population variances using permutational analysis of multivariate dispersions (PERMDISP) 

confirmed that samples from uraemic animals became progressively heterogeneous as uraemia 

increased (average distances to median being 6.78 in controls and 18.31 in uraemic animals by 

18 weeks, p=0.012, Figure 38, p. 137). 
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The ANalysis of Composition of Microbiomes (ANCOM) methodology was used to identify 

amplicon sequencing variants (ASVs) that were differentially abundant between groups after 

correction for multiple hypothesis testing. All ASVs more abundant in controls were from the 

dominant phylum Firmicutes, whilst those increased in uraemic animals represented a diverse 

range of organisms from phyla including Actinobacteria and Proteobacteria, and included ASVs 

representing organisms (such as from genus Psychrobacter) that have previously being 

implicated in the development of PD in animals [204]. 

 

Periodontal disease can be transmitted by oral microbial transfer into healthy 

germ-free mice 

We assessed the causative role of bacterial dysbiosis in PD by carrying out oral microbial 

transfer (OMT) from control and uraemic donor mice into germ-free animals. The design of this 

experiment is described in Figure 39, p. 138.  

Germ-free mice receiving OMT from uraemic mice developed substantially more periodontal 

bone loss than those receiving OMT from control mice (-0.042mm to the mean in control 

recipients, p<0.001, Figure 40, p. 139; supplementary Table 15, p. 402, appendix 5).  

The success of OMT was formally assessed by differential clustering on an ordination plot, 

Figure 41, p. 140, and using PerMANOVA. This revealed that transfer of the uraemic microbiota 

accurately established the donor microbiota in recipient animals (non-significant differences 

between donors and recipients, R2 = 0.12, p = 0.158); that although control recipients visually 

clustered with control donors, there did exist significant differences between these groups (R2 = 
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0.196, p = 0.023); but that by far the largest differences existed between uraemic and control 

recipient microbiotas, similar to the difference between uraemic and control donors (R2 = 0.233, 

p <0.001). 

Recipients of oral microbial transfer were found to have stable microbial communities that 

persisted at three and nine weeks after transfer, and which appeared to represent exaggerations of 

the features of the control and uraemic microbiota seen in both the donor mice and in the 

previously described rat and mouse experiments. Thus, at 9 weeks, recipients of uraemic 

microbiota demonstrated reduced bacterial counts (log10 6.2cfu/ml in control recipients vs log10 

5.32 in uraemic recipients, p<0.001), markedly increased alpha diversity (Simpson Index 0.24 in 

control recipients vs 0.94 in uraemic recipients, p<0.0001), and differential clustering on 

ordination plots, in a similar but more extreme direction to the donor communities.  

Microbiotas from control recipients were heavily dominated by bacteria from phylum 

Firmicutes, whilst microbiotas from uraemic recipients displayed heterogenous oral microbial 

communities including high prevalence of various phyla including Firmicutes, Actinobacteria, 

Proteobacteria, Bacteroidetes and Cyanobacteria (Figure 42, p. 141). 
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Figure 15: The stages of gum disease. Taken from https://dentalclinicraipur.com/periodontal-disease-gum-disease-2, accessed 19th 
January 2022. 
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Figure 16: Microbial complexes in subgingival biofilm. Organisms in the red and orange 

complexes have been particularly associated with the development of periodontal disease. 

Adapted from Socransky et al, 1998, [131]. 
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Figure 17: Distance between the cemento-enamel junction and alveolar bone crest measured 

using a dissecting microscope. Each point represents the average of multiple measurements over 

the buccal and lingual surfaces of all molar roots in a single rat, expressed relative to the average 

amount of bone loss in all control animals.  
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Figure 18: Representative images showing greater loss of maxillary alveolar bone in a uraemic 

animal (bottom) compared with a control animal (top), visualised using a dissecting microscope 

at 20x magnification. The loss of alveolar bone is so significant in the uraemic animal that a clear 

gap can be seen between the underside of the tooth and the bone crest between some of the roots.  
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Figure 19: Light microscopy of haematoxylin and eosin (H&E) stained slides of periodontal 

tissue. Top panels: using a 4x objective lens. The blue arrows indicate the loss of bone height in 

the uraemic specimen. Bottom panels: using a 40x objective lens. The highlighted region in the 

uraemic specimen reveals neutrophil aggregation and early downwards migration of the 

junctional epithelium. 
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Figure 20: Immunohistochemistry of rat mandible. Top panels: staining against IL-17 is 

increased in the mucosa and in regions of reabsorption deep within the periodontal bone in the 

uraemic sample; 4x objective lens. Bottom panels: staining against IL-17 (left) and neutrophil 

defensin 4 (right) in the uraemic specimen shows co-localisation of these antigens in areas of 

bony reabsorption; 40x objective lens. 
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Figure 21: Micro-computed tomography in the para-sagittal plane through the molar roots. There 

is a paucity of mandibular bone mineralisation and ragged bone edge in the uraemic specimen. 

Analysis was carried out of the bone mineral density at a selection of sites within the deep and 

superficial periodontal bone; there was a trend towards reduced mineralisation in uraemic 

animals which did not reach significance. 
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Figure 22: Scanning electron microgram of the surface of alveolar bone facing the periodontal 

ligament and tooth roots in macerated specimens. The smoother appearance of the bone surface 

in the uraemic animals reflects reduced mineralisation in Sharpey fibres (composed of type III 

collagen) at the growing surface of the bone. 

  

CONTROL URAEMIC 



122 

 

C o n tro
l

U ra
em

ic
0

1 0

2 0

3 0

4 0
S

e
ru

m
 P

T
H

, 
p

g
/m

l
p = 0 .2 5 1

 

Figure 23: Serum parathyroid hormone (PTH) concentration in control and uraemic rats at the 

time of sacrifice using the chemically-induced uraemia protocol. Significance is assessed using 

Student's t-test with Welch’s correction. 
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Figure 24: Serum calcium (left) and phosphate (right) in control and uraemic rats at time of 

sacrifice according to the surgically-induced uraemia protocol. Significance is assessed using 

Student's t-test with Welch's correction. 
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Figure 25: Confocal scanning light micrographs of calcein-green injected rats, used to calculate 

incisor dentine formation rate and bone formation rate at the insicor root (top) and lower 

mandibular border (bottom). 
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Figure 26: Rates of incisor dentine formation (top) and bone formation at the lower mandibular 

edge (bottom) in control and uraemic rats, as assessed by measurement of calcein green staining 

of bone based on a dosing frequency of 48 hours. Significance is assessed by Student’s t-test 

with Welch’s correction.  
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Figure 27: Total bacterial counts (colony forming units/ml) measured by summing colonies 

counted on blood agar plates grown in aerobic and anaerobic conditions for 48h. Significance is 

assessed using Student’s T-test with Welch’s correction for both separate experimental protocols 

as well as the combined dataset.  
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Figure 28: Community composition of the oral microbiota determined by culture in control and 

uraemic rats. All cultured isolates are included, agglomerated to genus level and expressed in 

terms of their mean percentage contribution to the oral microbial community of each rat.  
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Figure 29: Absolute abundances of each cultured isolate (log10 cfu/ml). Bars show mean and 

standard error for all control and all uraemic animals, significance where shown was calculated 

using the T-test with Welch’s correction. * p<0.05; ** p<0.01.  
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Figure 30: Community composition of the oral microbiota of rats assessed by next generation 

sequencing of the 16S amplicon. Each vertical bar represents the total microbial community for a 

single animal, grouped according to experimental conditions (control vs uraemic), colour is 

applied according to assigned taxonomy at phylum level. Overall, Proteobacteria accounted for 

22.6% of reads in uraemic animals vs 12.5% in controls, p=0.002. 
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Figure 31: Principal coordinate plot showing distance between oral communities assessed by 

next generation sequencing of the 16S amplicon. Each point represents the oral community of an 

individual rat, with symbol shape representing the two experiments performed, which used 

separate batches of animals (circles denote the chemically-induced uraemia experiment, 

diamonds surgically-induced uraemia).  
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Figure 32: Housing of animals in the surgically-induced uraemia arm of the experiment. Of the 

fourteen uraemic rats (red), six were singly housed with other uraemic animals (the two cages 

represented on the right), and eight were mixed-housed with control animals in the same cage 

(the five cages in the middle).  
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Figure 33: Periodontal bone loss, measured and presented as previously, according to housing, 

for animals in the surgically-induced uraemia experiment. Significance between different groups 

as shown were calculated by the T-test with Welch’s correction; analysis by 2-way ANOVA is 

presented in the main text. Singly-housed uraemic animals were those undergoing subtotal 

nephrectomy that were housed with other animals that had undergone subtotal nephrectomy; they 

had more periodontal bone loss than mixed-housed uraemic animals which had undergone 

subtotal nephrectomy but were housed with sham-operated (control) animals (p=0.0375). 
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Figure 34: PCA plot of sequencing data of the oral microbiota of rats in the surgically-induced 

uraemia experiment. Each point represents the oral microbial community from a single animal, 

identified according to treatment class and caging. Mixed-housed animals (two-colour symbols), 

whether control or uraemic, tended to develop an intermediate microbial profile, clustering 

somewhere between the singly-house control and uraemic samples.  
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Figure 35: Urea concentration (mmol/L) in induced saliva and serum samples taken at the time 

of sacrifice in rats after either subtotal nephrectomy or sham surgery. Urea concentration was 

assessed by colourimetric assay and significance was assessed using the T-test with Welch’s 

correction. 
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Figure 36: The mean inhibitory concentration of urea for all cultured isolates from the oral 

microbiota of rats, plotted against their relative observed growth in uraemic vs control animals. 

Each point represents the bacterial species labelled, and the y-axis represents the proportional 

increase in the observed mean growth of that species in uraemic over control animals; zero on 

the y-axis would represent equal growth in control and uraemic animals, positive values 

represent increased abundance in uraemic animals compared to controls and negative values 

increased growth in controls compared to uraemics. Species demonstrating in vitro urease 

activity are shown in pink. The blue and red dotted lines indicate the mean salivary urea 

concentrations in control (blue) and uraemic (red) animals, for comparison purposes. Overall 

there is a positive association (line of best fit) between urea tolerance and increased abundance in 

uraemic animals. 

  



136 

 

C o n tro
l

U re
m

ic
-0 .0 4

-0 .0 3

-0 .0 2

-0 .0 1

0 .0 0

0 .0 1

0 .0 2
P

e
ri

o
d

o
n

ta
l 

b
o

n
e

 l
e

v
e

l 
(m

m
) p = 0 .0 0 0 5

 

 

Figure 37: Distance between the cemento-enamel junction and alveolar bone crest measured 

using a dissecting microscope in mice. Each point represents the average of multiple 

measurements over the buccal and lingual surfaces of all molar roots in a single mouse, 

expressed relative to the average amount of bone loss in all control animals. Significance is 

assessed using Student’s t-test with Welch’s correction. 
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Figure 38: Uraemia induces progressive oral dysbiosis in mice. Principal component analysis 

plots of oral microbial communities assessed at four weekly intervals prior to and after 

commencing an adenine containing diet, by next-generation sequencing of the 16S rRNA gene 

amplicon. Samples from control animals are shown in blue and those from uraemic animals in 

red. For each plot the significance is shown for differential clustering (assessed by 

PerMANOVA) and heterogeneity of variance (assessed by PERMDISP). 
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Figure 39: Experimental design for oral microbial transfer experiment. Oral microbial 

communities from four control and four uraemic donor animals were frozen at the time of 

sampling and then transferred into germ-free animals at eight weeks of age. These animals were 

then conventionally housed, and oral microbial communities were sampled three and nine weeks 

after transfer, before animals were culled ten weeks after transfer, at eighteen weeks of age. 

  

Control donors, n=4 Uraemic donors, n=4 

Control recipients, n=7 Uraemic recipients, n=8 
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Figure 40: Periodontal bone height in recipients of control and uraemic microbiota. Recipients of 

oral microbiota from uraemic donors demonstrated significantly more periodontal bone loss than 

recipients of microbiota from control animals. Each point represents the average periodontal 

bone loss in a single animal as described previously. 
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Figure 41: Principal component analysis from donor and recipient oral communities. The solid 

symbols represent the original donor communities; empty symbols represent recipient samples at 

either three weeks post transfer (triangles) or 9 weeks post transfer (circles).  
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Figure 42: Community composition of recipients of oral communities from control and uraemic 

donors. The microbiomes are assessed by next-generation sequencing of the 16S amplicon at 

nine weeks after microbial transfer, or in donors using the same technique on samples taken just 

before the time of transfer. 
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Discussion 

The results in this chapter demonstrate that experimental uraemia causes periodontal bone loss in 

rodents, as displayed using three separate experimental models in two different host species. 

Uraemic animals from each of these models demonstrated significant greater loss of periodontal 

bone height compared to controls. This phenotype was ameliorated by co-housing uraemic 

animals with control animals, and was reliably transferred into germ-free mice after oral 

microbial transfer, along with stable but dysbiotic oral microbiota. 

The histological changes caused by uraemia showed some similarities with those caused by other 

forms of periodontal disease, including replacement of specialized junctional epithelium [205] 

with proliferating epithelium with sulcal folds, which appears similar to the pocket epithelium 

seen in humans with periodontal disease. [117, 206] There is also evidence of aberrant bone 

formation in the alveolar bone crest adjacent to inflamed periodontal structures, and 

immunohistochemical evidence of immune system activation localized to areas of bone 

destruction.  

However, overall, the significant loss of bone height in uraemic animals was not accompanied by 

a florid periodontal inflammatory response as is commonly seen in other forms of PD. This may 

represent a different, more muted inflammatory phenotype being present in the context of 

uraemic periodontitis. For example, a failure of neutrophil migration has been shown to be a 

primary cause of severe IL-17 driven periodontitis in patients with Leucocyte Adhesion 

Deficiency-1 (LAD-1) disease, [207] and similarly deficient neutrophil activation and migration 

has been described in CKD, [174] along with a tendency to increased inflammatory bone loss. 

[208] Perhaps the lack of overt, neutrophil-rich inflammation in these samples represents an 
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inadequate immune response to oral bacteria, but which may still contribute to the reabsorption 

of periodontal bone via osteoclast activation. 

Alternatively, other systemic features that affect bone growth in kidney disease may be affecting 

periodontal bone formation independently of any effects mediated by the oral microbiota. 

Against this hypothesis, the uraemic animals did not show overt evidence of renal bone disease 

or hyperparathyroidism; this is consistent with other studies which demonstrate that a high 

phosphorus diet in addition to SNx is required to induce frank hyperparathyroidism in rats. [209] 

However, the electron micrographs displaying a lack of Sharpey formation and active bone 

growth at the periodontal crest may suggest that the observed loss of bone height may be 

attributable as much due to a failure of bone growth as it is to an active process of reabsorption – 

there were no obvious reabsorptive lesions. The micro-CT imaging suggested aberrant bone 

formation even deeper in bone, away from the periodontal crest, which may suggest systemic 

effects outweigh local ones mediated by inflammation. However, the transmission of periodontal 

bone loss into otherwise healthy germ free mice through oral microbial transfer as well as the 

reduction in bone loss in co-housed uraemic animals suggests that dysbiotic oral microbiota 

nevertheless have an important causative role, and the calcein-stained samples did not reveal 

obvious deficiencies in the bone formation rate in uraemic samples. 

It is probably too early to define with confidence, on the basis of the data presented here, the 

exact mechanisms behind the reduced periodontal bone height in uraemic animals that has been 

reproducibly demonstrated here, and further experimental work may be helpful in this regard. It 

may be that systemic and local inflammatory factors both contribute to the uraemic periodontal 

disease seen. 
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The loss of alveolar bone height demonstrated in uraemic animals was significant less severe 

than that seen in ligature-induced models of periodontitis in both rats [199] and mice, [210] but  

similar to that seen in periodontitis models employing oral gavage with disease-causing micro-

organisms such as Porphyromonas gingivalis (which variably causes up to 0.03mm bone loss in 

the C57/BL6 mice we used, comparable to the 0.02mm we described, despite C57/BL6 mice 

being known to be relatively resistant to periodontitis). [201, 210] 

The results in each experimental model suggested a common signature of the effects of uraemia 

on oral bacterial communities, consisting of a reduction in overall bacterial counts; an increase in 

alpha diversity; depletion of taxa such as Streptococcus and Rothia which are key components of 

healthy oral microbiotas; [211, 212] and an increase in bacteria (typically non-oral Gram-

negative rods) that have previously been associated with PD. [116, 213] 

Although few studies in humans have described the oral microbiota in the context of uraemia, 

those that have reveal a strikingly similar microbial signature to that observed here. In particular, 

Hu et al. demonstrated significant changes in oral microbial communities in CKD patients when 

compared with healthy controls, with an increase in the phylum Proteobacteria, at the relative 

expense, in proportional terms, of taxa in the Firmicutes phylum, including Streptococcus and 

Veillonella. [192]  Kidney transplant recipients with poor graft function [214] and haemodialysis 

patients [215] have likewise been demonstrated to have dysbiotic oral microbiota, consistent 

with our assertion that uraemia itself induces dysbiosis. 

Increased salivary urea is a possible mechanism driving these changes: the composition of saliva 

uniquely determines the selective pressures on the oral microbiota, and (notwithstanding the 
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limited correlation of bacterial behaviour in liquid culture compared to in vivo biofilms) there 

was a correlation between urea tolerance and increased abundance in uraemic animals. Notably, 

Streptococcus and Rothia isolates, which were present at reduced abundances in uraemic 

animals, did not display in vitro urease activity and showed reduced tolerance of higher urea 

concentrations in broth culture. 

The oral microbial signature of uraemia described here was seen in an exaggerated but stable 

form when microbiota from control and uraemic animals were transferred into previously germ-

free mice. The ability of abnormal microbial communities to stably establish themselves and 

cause PD after transfer into germ-free mice has been previously described, [216, 217] and the 

high degree of periodontal bone loss demonstrated in these animals shows the relevance of oral 

dysbiosis in the aetiology of periodontal disease.  

In rats, co-housing with healthy animals seemed to lessen some of the dysbiotic changes seen in 

uraemic animals, and to ameliorate the associated PD phenotype. It has long been known that co-

housing can affect oral microbiology, [218] and in work recently published by Abusleme et al. it 

has been shown that healthier microbiota may outcompete and even fully replace more dysbiotic 

communities. [219] 

In this study, uraemia was not accompanied by a reduction in salivary flow rates and an increase 

in salivary pH, as shown elsewhere in rodent models of uraemia. [141] This is likely to be a 

consequence of the mechanism we used to induce saliva. Pilocarpine administration overrides 

physiological control of salivary flow rates, and if the mechanism by which high salivary urea 

increases pH is dependent on bacterial hydrolysis of urea to ammonium, it is possible that the 

immediate removal of saliva by pipetting prevented these bacterial effects from taking place. 
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Reduced concentrations of acetic and lactic acid in control samples is consistent with the 

reduction in Streptococcus and Lactobacillus which are known to digest sugars and produce a 

range of organic acids. [220] 

Use of animal subjects excludes confounding factors, such as co-morbidity and dental hygiene 

habits, which may serve as alternative explanations for the high level of PD in human subjects 

with CKD. [138, 221] Use of only male animals (as is common in studies of experimental 

uraemia) may limit generalisability to the whole human CKD population, although population 

data suggests women with CKD suffer a similar incidence of PD as men. [149] 

Additional research could consider the extent to which periodontal bone loss is a result of a 

normal immune reaction to a dysbiotic bacterial burden, or whether the periodontal immune 

reaction in uraemic animals is, in itself, abnormal. More broadly, given that these results 

demonstrate a causative role for uraemia and the aetiology of PD, further research could assess 

whether periodontal inflammation, once established, contributes to renal fibrosis and 

cardiovascular disease, and whether there is a role for dental screening and treatment to improve 

renal and cardiovascular outcomes in individuals with CKD.  

It is proposed that uraemic periodontal disease should be regarded as a novel complication of 

CKD, and that dysbiotic change in oral bacterial communities induced by uraemia plays a crucial 

mechanistic role. 
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Summary: 

• Experimental uraemia reliably induces loss of alveolar bone height in both rats and 

mice. 

• Uraemic animals had a dysbiotic oral microbiome with increased alpha diversity, 

reduced total bacterial counts, a decrease in health-associated taxa and an increase 

in disease-associated Gram-negative taxa.  

• Induced saliva from uraemic animals had a higher urea concentration than that 

from controls. 

• Bacterial isolates which were under-represented in samples from uraemic animals 

showed reduced tolerance to higher urea concentrations during in vitro broth 

culture. 

• Uraemic animals which were co-housed with healthy animals demonstrated 

significantly less bone loss than those housed with other uraemic animals.  

• Transfer of oral microbiota from uraemic animals induced more periodontal bone 

loss in healthy germ-free mice than transfer of oral microbiota from health animals, 

along with transference of a stable, dysbiotic oral microbiota. 

Conclusion: uraemia induces oral dysbiosis that may subsequently affect bone formation at 

the alveolar bone ridge, causing periodontal disease.  
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Chapter 4:  

Batch effect, reproducibility and the effect of 
uraemia on the gut microbiome 
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Introduction: our initial hypothesis 

Uraemic toxins have been shown to be produced by bacterial metabolism of dietary protein in 

the large intestine, [1, 5] leading to interest in the gut microbiome as a potential therapeutic 

target to reduce the cardiovascular morbidity of patients with CKD. [222] Furthermore, the 

absence of bacterially-produced short chain fatty acids (SCFA) has been suggested as a 

contributary factor in the aetiology of the disease. [1] 

We hypothesized, as suggested by Wang et al [7] in an in-silico study based on the results of 

Vaziri et al’s early molecular study of the gut microbiota in uraemia, [223] that uraemia may 
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induce dysbiosis of gut bacterial communities leading to a contraction of beneficial species, 

especially those that produce SCFA, and an expansion of pathogenic, toxin-producing taxa. 

 

Specific methods 

24 wild-type outbred Wistar International Genetic Standard (IGS) rats were obtained from a 

single supplier (Charles Rivers, Kent, UK). For logistical reasons (based on the capacity of 

surgical facilities at the Charterhouse Square Biological Services Unit), the rats were purchased 

in two separate shipment batches. Fourteen were rendered uraemic by undergoing a two-stage 

subtotal (five-sixth) nephrectomy (8 from batch 1, 6 from batch 2), whilst 10 underwent sham 

procedures (6 from batch 1, 4 from batch 2, Figure 43, p. 160).  

There were no differences in animal husbandry or diet between batches. At the time of sacrifice 

8 weeks later, the urinary metabolome was assessed by untargeted proton nuclear magnetic 

resonance (1H-NMR) spectroscopy, and composition of the gut microbiota was assessed by 

sequencing 16S rRNA gene amplicons.  

 

 

Results part 1: Metagenomic and metabolomic batch effects outweigh effects 

of uraemia 

All animals undergoing subtotal nephrectomy developed an expected uraemic phenotype, 

including elevations in serum urea and creatinine, weight loss and polyuria compared to sham-
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operated controls, and there were no gross phenotypic differences between animals from 

different batches (Figure 44, p. 161). 

 

Batch effects outweigh those of uraemia in untargeted analysis of urinary 

metabolomics 

Principal component analysis (PCA) of normalized and aligned urinary NMR spectral profiles 

identified that shipment batch was responsible for the largest source of variance in the 

biochemical data, seen chiefly in principal component 1, which accounted for 38% of variance. 

Surgical treatment accounted for a smaller but nonetheless definite source of variance, with these 

differences being seen chiefly in the second principal component, which accounted for 17.7% of 

total variance (Figure 45, p. 162). 

Separate orthogonal projection to latent structures discriminant analysis (OPLS-DA) models 

were constructed to elucidate biochemical variation associated with shipment batch and 

treatment class, Figure 46, p.163. The model built using shipment batch had a stronger predictive 

power (Q2Y=0.66, p=0.001) than the model built using treatment class (Q2Y=0.48, p=0.007). 

Discriminatory metabolites between the two shipment batches were identified from the OPLS-

DA model, and their relative abundances were calculated from integration of the relevant regions 

of the aligned spectral profiles.  

Animals in batch 1 excreted significantly greater amounts of glycine (141.5 vs 68.5 relative 

units, Benjamini-Hochberg adjusted p<0.001), alanine (29.3 vs 18.0 units, p<0.001) and glucose 

(43.9 vs 19.7 units, p=0.006) than animals in batch 2. They also excreted higher amounts of the 
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potential gut bacterial products acetate (a short-chain fatty acid, 192.2 vs 105.2 units, p=0.003), 

succinate (a bacterial metabolic product of dietary fibre digestion, 97.9 vs 72.6 units, p=0.017), 

and lactate (571.7 vs 188.3 units, p=0.001), compared with those in batch 2. Hippurate was 

almost completely absent from the urine of batch 1 animals but present in urine from all animals 

in batch 2 (6.6 vs 34.5 units, p=0.003). Correspondingly, benzoate, a gut microbially-derived 

precursor of hippurate, was lower in the urine of batch 2 animals compared to those in batch 1 

(111.0 vs 52.1 units, p<0.001, Table 2, p. 164).  

Whilst a high degree of between sample variation meant the batch effect did not reach overall 

significance, on review of individual sample NMR spectra many animals had no detectable 

trimethylamine (TMA), a product of bacterial protein metabolism, including almost all of those 

in batch 1, whereas others (predominantly those in batch 2) had clearly detectable 

concentrations. 

To determine whether these substantial batch variations could have led to erroneous conclusions 

about the effect of uraemia on the urinary metabolome, an OPLS-DA model was built for each 

shipment batch separately using surgical treatment class (subtotal nephrectomy vs sham) as the 

response variable. The model built on the batch 1 profiles was not found to be significant 

(Q2Y=0.265, pQ2Y=0.120), leading to the potential conclusion that the urinary metabolome is not 

influenced by uraemia in these animals. However, a significant predictive model was obtained 

using profiles from batch 2 (Q2Y=0.543, pQ2Y=0.049), despite small sample numbers, suggesting 

that conversely, in these animals, uraemia does indeed determine urinary phenotype. 
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Batch effects outweigh those of uraemia on analysis of the gut microbiome 

To assess whether differences in the gut microbiota between shipment batches and treatment 

classes might underlie these trends in the metabolomic data, sequencing of the V3 hypervariable 

region of the amplified 16S rRNA gene in DNA extracted from caecal fluid was carried out. 

Sequence abundance data underwent isometric log-ratio transformation to allow compositional 

analysis of the different microbial communities. 

Unsupervised PCA of the compositional data revealed that shipment batch had a larger impact on 

sample clustering than did treatment class. Consistent with this, permutational multivariate 

analysis of variance (PerMANOVA) was performed using an ADONIS analysis of a Euclidean 

distance matrix, and confirmed that batch had a small but significant effect on the gut 

microbiome (R2 = 0.097, p = 0.001), whilst treatment class did not (R2 = 0.048, p = 0.227, Figure 

47, p. 165). This was further confirmed by showing that a valid predictive OPLS-DA model 

could be built using shipment batch as the response variable (Q2Y = 0.573, p < 0.05), but not 

when using treatment class (Q2Y = 0.206, p = 0.2).  

The gut microbiotas of animals differed significantly in community structure between batches, 

with samples taken from animals in batch 2 displaying higher alpha diversity than those from 

animals in batch 1, across a range of measures including the Inverse Simpson (40.7 vs 58.5, 

p=0.043) and Shannon indices (4.53 vs 4.81, p=0.046). Conversely, there was no difference in 

alpha diversity between uraemic and control animals (Figure 48, p. 166). 

To explore these differences more closely, populations were assessed on the basis of taxonomic 

assignments of OTUs at phylum, order, class, family and genus levels. Microbiotas in all animals 
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were dominated by phyla Firmicutes (accounting for 83.1% of total reads) and Bacteroidetes 

(14.5%), with all other phyla (Verrucomicrobia, Tenericutes, Proteobacteria, Actinobacteria, 

Saccharibacteria and Deferribacteres) together representing less than 2.5% of total sequences 

when normalized across samples (Figure 49, p. 167).  

Differences in the abundances of OTUs and higher taxonomic groupings were analysed between 

shipment batches and treatment classes using the Analysis of Composition of Microbiomes 

(ANCOM) framework, based on isometrically log-ratio transformed abundance data and 

Benjamini-Hochberg adjustment for multiple hypothesis testing. Differential abundances 

between samples taken from animals in different shipment batches were apparent as high as at 

class level, with animals in batch 2 having higher relative abundances of Pseudomonadales in 

phylum Proteobacteria. No higher order differences were demonstrated between uraemic and 

control animals. 

On further analysis at OTU level it became clear that it was primarily the less abundant OTUs 

which showed significant differences between batches, while OTUs differing significantly 

between uraemic and control animals were generally more abundant. Thus, whilst the relative 

abundance of 33/1110 OTUs (2.97% on the total) differed significantly between shipment 

batches, these represented only 3.80% of total sequences when analysed by the abundance of 

each OTU. However, the six OTUs which differed significantly between treatment classes 

(0.54% of the total) accounted for 5.13% of total sequences when adjusted for abundance. 

These six OTUs showing significant abundance differences between uraemic and control 

animals were all from the family Lachnospiraceae; five from the NK4A136 group and one from 
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the UCG-001 group. All but one showed significant decreases in relative abundance in uraemic 

animals, including the third most abundant OTU overall. 

The 33 OTUs showing significant compositional differences between batches were drawn from 

five different phyla. In keeping with the higher alpha diversity seen in samples from batch 2 

animals, 30/33 differentially abundant OTU between batches were seen in higher abundances in 

animals from this batch. Interestingly bacterial genera known to possess significant metabolic 

potential were prominently represented amongst these differentially-abundant organisms, 

including a number of producers of short-chain fatty acids (Roseburia, Butyricicoccus, 

Butyrivibrio and Acetomaculum), and three from the phylum Proteobacteria (Table 3, p. 168).  

 

 

Results part 2: These effects persist despite adding additional cohorts 

The findings from the previous work indicated that additional cohorts of animals would be 

required to establish how the differential effects between batches and between experimental 

groups (uraemic and control) were manifested. A further cohort of rats was added, as were two 

batches of C57/BL6 mice – one large batch (20 animals, 10 rendered uraemic using adenine 

containing feed and 10 lefts as controls), and a smaller batch of only five animals; three uraemic 

and two control, included to see if similar batch effects apply in mice. In this third rat cohort, 

during the week prior to surgery rats were moved regularly between cages to see if this 

homogenised bacterial populations. 
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Thus a total of 39 outbred IGS Wistar rats, purchased in three separate shipment cohorts; and 25 

C57/BL6 mice, purchased in two separate cohorts were re-analysed together, all of which had 

been obtained from the same supplier (Charles Rivers, Kent, UK) at 7 weeks of age.  

 

Cohort effects again outweigh those of uraemia on the gut microbiome 

As previously described, to enable a direct comparison of bacterial composition between samples 

from all cohorts, amplicon sequencing variants (ASVs) were assigned a taxonomic identity using 

the SILVA database and aggregated at family level (the lowest taxonomic level at which all 

sequences were confidently assigned). 

Ordination of log-ratio transformed abundance data identified that whilst rat cohorts 1 and 2 

clustered closely together (those previously described in this chapter), rat cohort 3 was quite 

distinct from these. This pattern mirrored phenotypic differences between these rat cohorts: 

whilst within each animal cohort, there were significant phenotypical differences between 

control and uraemic animals; nevertheless rats from cohort 3 were heavier and displayed higher 

levels of serum urea and creatinine than those in cohorts 1 and 2 (Table 4, p. 169).  

Principal coordinate analysis revealed that the two mouse cohorts clustered distinctly from each 

other and from the rat samples (Figure 50, p. 170). Although it appears in Figure 45 that rat 

cohorts 1 and 2 cluster together, Permutational Analysis of Variance (PerMANOVA) confirmed 

that significant differences between these groups existed in a reduced dataset containing only 

these samples (although explaining only 12.2% of variance, p=0.003, Figure 51, p. 171). 
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PerMANOVA confirmed that uraemia itself did not affect clustering in the combined dataset of 

all samples (explaining only 2.33% of variance, p=0.196), whilst cohort and species strongly did 

(explaining 27.5% of variance, p<0.001; and 29.6% or variance, p<0.001; respectively). 

 

Major differences in composition occur between cohorts 

Comparison of cohorts at phylum level revealed that all microbial profiles were dominated by 

the phyla Firmicutes and Bacteroidota, which accounted for an average of 72.8% and 26% of 

bacterial abundance, respectively, across all samples (98.8% of total reads, results that mirror 

findings in other studies of rodent microbiota). Differential abundance at phylum level was most 

pronounced between microbiotas from hosts of different species, with five of eight bacterial 

phyla present showing significant relative abundance differences between rat and mouse samples 

(including the second-most abundant phylum overall, Bacteroidota, which represented 46.2% of 

sequences from mice, but only 19.4% of those from rats, difference in log-ratios between groups 

p<0.001, Figure 52, p. 172).  

Cohort differences were also prominent across the dataset, with samples from rat cohort 3 

displaying lower relative abundances of Firmicutes (70.9% in cohort 3 vs 83.6% in cohorts 1 and 

2, p<0.001 between log-ratio transformed values), higher relative abundances of Bacteroidota 

(28.9% in cohort 3 vs 14.7% in cohorts 1 and 2, p<0.001), and also significant differences in 

relative abundances of minor phyla including Verrucomicrobiota, Deferribacterota, 

Desulfobacterota, and Patescibacteria compared to samples from rat cohorts 1 and 2.  



158 

 

In contrast to species and cohort effects, across the whole dataset there were no significant 

differences between the log-ratio transformed relative abundances of any of the phyla 

represented between uraemic and control animals (Figure 53, p. 173). 

 

Detailed analysis to determine individual taxa which were differentially 

abundant between control and uraemic animals in different cohorts 

The ANCOM [224] and Phylofactor [225] packages in R were used to conduct a detailed analysis 

of each individual experimental cohort for taxa displaying differential abundances between 

uraemic and control microbiotas at each taxonomic level between species and phylum. The 

results of these analyses are shown in Appendix 3, p. 374. 

Briefly, the outcomes were mixed. In some cohorts (eg rat cohort 2 and mouse cohort 1) there 

were a number of taxa showing differential abundances between experimental groups, sometimes 

at relatively high taxonomic levels; in other cohorts there were absolutely no differentially 

abundant taxa. There was no consistent pattern seen across all cohorts. 

 

The effect of uraemia on the 24-hour urinary excretion of common bacterial 

metabolites is similarly inconsistent between cohorts 

1H nuclear magnetic resonance (NMR) spectroscopy was performed on 24-hour urine samples 

from all animals except those in mouse cohort 2. Peak integrals were calculated for ten 

metabolites associated with the gut microbiota. These included acetate, propionate, butyrate, 
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lactate, acetoin, trimethylamine, trimethylamine-N-oxide (TMAO), indoxyl-sulphate (IS), 

benzoate, and hippurate, with abundance being expressed as a ratio to the abundance of urinary 

creatinine. 

Clear species differences were evident between rat and mouse samples for many of the 

metabolites. However, even when mouse samples were excluded from the analysis, cohort 

differences proved more significant than the effect of uraemia for all metabolites except IS, 

propionate and butyrate.  

In the whole dataset, the only metabolite to be significantly affected by uraemia was the well-

described uraemic toxin IS, excretion of which was increased in uraemic animals. However, this 

overall increase in IS excretion was driven by animals in rat cohort 3 and mouse cohort 1; in rat 

cohorts 1 and 2 no difference in daily IS excretion was noted between the control and uraemic 

animals. Rats in cohort 3 had greater elevation of serum urea and creatinine than those in the 

other rat cohorts; it is possible that this may have explained the difference, although it remains 

problematic that different cohorts, treated identically, develop different degrees of uraemia. 

Species-dependent differences were seen in TMAO excretion with uraemia: this uraemic toxin 

was excreted in excess amounts by uraemic rats compared to control rats but the opposite pattern 

was seen in the mice. 

Modest and only partially consistent results were seen in the excretion of short-chain fatty acids. 

Uraemic mice excreted reduced amounts of butyrate compared with control mice, whilst uraemic 

rats excreted less acetate but more propionate than controls ( 

Figure 54, p. 174, supplementary Table 16, p. 404, appendix 5). 
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Figure 43: Outline of experimental procedures. Time in weeks is shown along the top of the figure. Animals arrived in two batches, 

three weeks apart, at age 7 weeks, and after a week-long acclimatisation period, underwent a 2-stage subtotal nephrectomy or sham 

procedure. 8 weeks after the second stage of this procedure, after a 24-hour urine collection, they were sacrificed and samples of 

serum and caecal fluid collected. 

Batch 1, n=14 

Batch 2, n=10 
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Figure 44: Animal data at the time of sacrifice. Differences were seen for each parameter 

between uraemic and control animals, but not been similarly treated animals in different patches. 

Significance was assessed for each parameter by 2-way ANOVA by treatment and by batch: 

Weight at time of sacrifice (p=0.033 for treatment, p=0.586 for batch, by 2-way ANOVA); 24h 

urine volumes immediately before sacrifice (p=0.0009 for treatment, p=0.256 for batch, by 2-

way ANOVA); serum urea at time of sacrifice (p<0.0001 for treatment, p=0.392 for batch, by 2-

way ANOVA); serum creatinine at time of sacrifice (p<0.0001 for treatment, p=0.645 for batch, 

by 2-way ANOVA). 
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Figure 45: Ordination plot of principle component analysis (PCA) of normalised and aligned 

NMR spectra from untargeted 1H-NMR spectroscopy of 24 hour rat urine collections. Samples 

separated when analysed by batch chiefly in the first principal component, which accounted for 

38% of total variance; and separated when analysed by surgical treatment chiefly in the second 

principal component, which accounted for 17.7% of variance. 
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Figure 46: Untargeted 1H-NMR spectroscopy of 24 hour rat urine collections. Loadings plot from an orthogonal projection to latent 

squares discriminant analysis (OPLS-DA) model built using shipment batch as the response variable, back-plotted as an NMR 

spectrum with peak height indicating covariance with batch (downwards deflections indicate substances more abundant in animal 

urine from batch 1; upwards deflections indicate substances more abundant in animal urine from batch 2). The line is coloured 

according to the significance of the association, adjusted for multiple testing using the Benjamini-Hochberg method; black indicates 

non-significance between groups. Peaks are labelled with the identity of the responsible substance. 
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Substance Batch 1  Batch 2  pǂ Uraemic  Control  pǂ 
Acetamide 28.803 28.126 0.930 24.867 34.845 0.001 
Acetate 192.187 105.217 0.010 160.957 138.128 0.776 
Acetoin 9.593 8.767 0.192 8.957 9.674 0.188 
Alanine 29.330 18.013 0.001 23.765 24.923 0.809 
Allantoin 28.996 29.158 0.967 25.391 35.508 0.054 
Benzoate 110.964 52.071 <0.001 82.269 87.564 0.809 
Betaine 55.595 39.399 0.129 47.318 49.834 0.809 
Citrate 119.823 112.407 0.752 126.188 99.414 0.127 
Creatinine 140.283 152.104 0.642 131.066 171.189 0.027 
Dimethylamine 21.667 21.548 0.967 19.390 25.504 0.054 
Dimethylglycine 15.669 12.643 0.124 14.725 13.538 0.677 
Formate 2.873 3.007 0.967 1.995 4.575 0.127 
Glucose 43.856 19.678 0.018 34.385 30.208 0.809 
Glycine 141.491 68.457 <0.001 105.888 112.505 0.809 
Hippurate 6.559 34.509 0.010 14.556 27.501 0.533 
Lactate 571.659 188.265 0.005 402.362 388.686 0.922 
m-hydroxyphenylacetate 7.086 5.944 0.827 5.387 8.632 0.600 
2-oxoglutarate 167.931 182.841 0.642 183.945 158.543 0.533 
Phenylacetate 13.308 8.148 0.001 10.380 11.982 0.600 
Pyruvate 5.064 6.344 0.659 4.855 7.028 0.600 
Succinate 97.877 72.642 0.044 85.106 88.682 0.809 
Taurine 37.782 29.758 0.573 23.957 51.946 0.009 
Trimethylamine 5.214 16.793 0.124 13.864 4.549 0.159 
Trimethylamine-N-oxide 42.391 32.387 0.253 34.013 44.547 0.267 
Trigonelline -0.013 -0.024 0.218 -0.023 -0.009 0.059 
Urocanate 2.764 1.001 <0.001 2.056 1.799 0.776 

 

 

Table 2: Normalised relative concentrations of selected urinary metabolites (relative units). ǂ P 

values calculated using Student’s t-test with Welch’s correction for unequal variances, 

subsequently adjusted to limit the false discovery rate to 0.15 using the Benjamini-Hochberg 

procedure. Values in bold are significant at this level. 
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Figure 47: Next generation sequencing of the 16S rRNA gene amplicon from caecal fluid. 

Untargeted principal component analysis of log-ratio transformed species (OTU) abundance by 

sample, showing closer clustering associated with shipment batch than with treatment class. 
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Figure 48: Alpha diversity of gut bacterial communities. Alpha diversity was higher in batch 2 

than batch 1 when analysed by the Inverse Simpson Index (40.7 vs 58.5, p=0.043 by Student’s 

T-test with Welch’s correction). 
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Figure 49: Relative abundances of major phyla in each sample. Each sample is represented by a 

vertical bar; grouped by batch and treatment group. There were no significant differences when 

analysed by batch or by treatment groups. 
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OTUs showing composition differences between batches (1 vs 2) by genus 
Increased in batch 1 Increased in batch 2 
Ruminoclostridium (2) 
Citrobacter 

Lachnospiraceae (10) 
Ruminoclostridium (4) 
Anaerococcus (2) 
Roseburia (2) 
Bacteroides (2) 
Subdoligranulum 
Butyricicoccus 
Butyrivibrio 
Ruminococcus 
Acetomaculum 
Lactobacillus 
Pasteurella 
Pseudomonas 
Enterohabdus 
Mollicutes sp 

OTUs showing composition differences between treatment classes (uraemic vs control) 
Increased in uraemia Increased in control 
Lachnospiraceae Lachnospiraceae (5) 
 

 

Table 3: Taxonomic attributions of OTUs differentially abundant when analysed by shipment 

batch and treatment class. Differential abundance was assessed using the Analysis of 

Composition of Microbiomes (ANCOM) framework with alpha set at 0.05 and a cutoff value of 

0.6. 
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 Rat cohort 1 Rat cohort 2 Rat cohort 3 

 Ct Ur p Ct Ur p Ct Ur p 
Weight 510.66 468.5 0.063 511.8 484.3 0.422 537.8 525.1 0.482 
24h urine 
output 23.83 49.3 0.006 25.8 37.4 0.28 24.2 53.2 <0.001 
Serum 
urea 6.11 14.4 <0.001 5.9 12.8 <0.001 8.3 24.9 <0.001 
Serum 
creatinine 27.16 74.2 <0.001 28.5 70.5 <0.001 32.5 96.3 <0.001 

 

 Mouse cohort 1 Mouse cohort 2 

 Ct Ur p Ct Ur p 
Weight 31.09 24.4 <0.001 36.1 21.4 <0.001 
24h urine 
output 1.22 7.7 <0.001 1.6 4.1 0.169 
Serum 
urea    9.2 68.2 0.081 
Serum 
creatinine    27 115.7 0.059 

 

Table 4: Characteristics of animal cohorts. Mice in cohort 1 were not bled, but were managed 

exactly the same as those in cohort 2. 
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Figure 50: Principal component analysis of all mature gut microbiota samples in the dataset. 

Each point represents the gut microbiota of a single experimental animal, coloured according to 

cohort with squares representing control and triangles representing uraemic animals. 
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Figure 51: Principal component analysis of a reduced dataset containing only rat cohorts 1 and 2 

from the full dataset. Colouring and shapes are the same as in the previous figure. Although in 

the previous figure these cohorts seemed to cluster together, here it can see that the microbiotas 

of animals in different cohorts were largely separate. 
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Figure 52: Relative abundance data aggregated to phylum level for all samples. Each bar 

represents the sequenced microbiota of a single animal, which are clustered according to cohort 

and treatment class (control vs uraemic).  
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Figure 53: Relative contributions towards microbial composition of each bacterial phylum 

represented in the dataset, grouped according to treatment class. The y-axis measures relative 

abundance (percent); p-values are calculated using Welch’s t-test based on log-ratio transformed 

relative abundance data. 
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Figure 54: The effect of experimental uraemia on the urinary excretion of common bacterial 
metabolites. The metabolite:creatinine ratio for each metabolite based on integration of peak 
heights from NMR spectral profiles generated from analysis of 24-hour urine samples is shown, 
alongside the mean and standard error. 
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Results part 3: a meta-analysis of published datasets 

The data presented so far in this chapter, which suggests that the effect of uraemia is minor, 

inconsistent and far less important than batch effects in predicting gut microbiota, are at odds 

with previously published data which have promoted the idea of ‘uraemic dysbiosis’ being a 

significant phenomenon. 

Most notably, Vaziri et al demonstrated that 175 operational taxonomic units were differentially 

abundant in the gut microbiota of rats following either subtotal nephrectomy or sham surgery, 

concluding that uraemia profoundly affects the gut microbiota. [223] This study has proved 

influential on numerous review articles that have propagated the idea of ‘uraemic dysbiosis’. 

[226-231] However, the Vaziri study comprised only a small number of animal subjects (five 

control and six uraemic rats, from a single cohort), and other animal studies have yielded 

contrasting and sometimes conflicting results. [71, 232, 233]  

As each of these published animal studies employed only a single, small cohort of animals, it is 

challenging to disentangle the biological effect of uraemia from simple cage effects. Wide 

variations in sequencing strategies and bioinformatic techniques risk further amplifying 

artefactual differences and obscuring real biological effects. 

To seek to assess the extent of batch variation across the published literature, and to seek trends 

which may exist but fail to reach significance in individual studies because of small sample sizes, 

a meta-analysis was conducted in which publicly available gut microbiome data from two online 

repositories were re-analysed, comprising a total of 127 rodents across ten experimental cohorts 
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in seven published studies, to attempt to find common microbial signatures seen across different 

experimental groups that may be confidently attributed to the effect of uraemia. 

 

Meta-analysis methodology 

The Short Reads Archive (SRA) operated by the National Centre for Biotechnology Information 

(NCBI) was searched for relevant studies, using the search term (uraemia OR uremia OR kidney 

OR renal) AND (microbiome OR microbiota) AND (rodent OR rat OR mouse OR mice). This 

search returned gut microbiome data from 412 samples across fourteen separate studies, which 

were assessed for suitability for inclusion using the Run Selector facility. Eligibility criteria 

were: use of rodent subjects, use of experimental techniques to induce chronic (>2 weeks) 

uraemia, and the use of non-culture dependent, DNA-based tools to assess the gut microbiota. 

Exclusion criteria included the use of experimental interventions, other than the induction of 

uraemia; however, in some studies employing a four-group design (eg, control, control plus 

intervention, uraemic, uraemic plus intervention), data from animals in the non-intervention 

control and uraemia groups were included. 

Eight studies were excluded: three because there was no induction of uraemia, two which used 

RNA rather than DNA sequencing; one which employed an acute kidney injury rather than a 

chronic kidney disease model; one which studied kidney tissue rather than gut samples, and one 

which included only human samples. 
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The remaining six studies were included [71, 179, 232-235], including published results reported 

in the previous chapter (Randall 2019) which comprised data from two cohorts of animals 

(termed Randall2019a and Randall2019b). Each of these studies have been published in a peer-

reviewed journal. 

One of these studies (Al-Asmakh2020, [235]) included sequencing samples from the ileum, 

caecum, and colon for each animal; we elected to include only caecal samples in this analysis to 

match the majority of the samples from other rat cohorts. 

Data was also included from two further cohorts (Randall 2021a and Randall 2021b) which were 

described earlier in this chapter (as rat cohort 3 and mouse cohort 1); and are also publicly 

available via the SRA.  

Finally, phylochip microbiome data from the older, Greengenes repository, was obtained for a 

final study, Vaziri 2013, [223] which was the first major study to claim to show the effect of 

uraemia on the gut microbiome. All other phylochip datasets in the Greengenes repository were 

screened for eligibility using the criteria above but none were suitable. 

The full design of the meta-analysis is documented in Figure 55, p. 187. 

 

Results 

Of the seven published studies included in the meta-analysis, three were designed to investigate 

bacterial production of uraemic toxins, [179, 233, 234] three to investigate gut-acting 
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medications for the improvement of the uraemic syndrome (only samples from non-intervention 

animals were included), [71, 232, 235] and one was primarily to investigate the effect of uraemia 

on the gut microbiome itself. [223] Full details about the experimental conditions used in each 

experiment are available in the published experimental write-ups, and are summarised in Table 

5, p. 188.  

In total, data was included from 127 animals; 73 rats across six cohorts (33 control and 40 

uraemic) and 54 mice across four cohorts (28 controls and 26 uraemic). There were significant 

differences between these datasets in the methods used to induce uraemia, the age of animals at 

the time of sacrifice, the sample types studied, and in the methods of DNA analysis, primer pairs 

and sequencing depths used. 

Data were downloaded from the online repositories; raw sequencing data were re-analysed using 

the DADA2 pipelines and taxonomic identities assigned using the Silva reference database. 

There was a broad but non-significant positive correlation between sequencing depth (mean 

reads per sample) and observed species richness (amplicon sequencing variants, ASVs, per 

sample); Spearman rank coefficient 0.55, p=0.133. 

 

Cohort and host species are the key drivers of variation across all datasets 

Sequencing data from different cohorts were agglomerated at family level (the lowest taxonomic 

level at which all ASVs were assigned a clear identity) and combined to allow broad trends in 

variation to be visualized across all datasets. After centred log-ratio transformation, redundancy 
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analysis revealed clustering to be most significantly influenced by cohort, with the Al-

Asmakh2020 and Kikuchi2017 cohorts clustering completely apart from other samples and only 

the Randall2019a and Randall2019b cohorts, which comprised animals obtained a few weeks 

apart from the same supplier, displaying broadly overlapping ordination Figure 56, p. 174.  

Permutational analysis of variance (PerMANOVA) of the log-ratio transformed datasets was 

used to establish how much variation could be attributed to different independent experimental 

variables; this revealed that cohort accounted for the largest amount of variation (69% of 

variance, p<0.001), with host species (rat vs mouse) accounting for 13.3% of variance (p<0.001). 

Other significant associations were found between clustering and primer type (V1/V2 vs V3 vs 

V3/V4, 23.9% of variation, p<0.001), method of inducing uraemia (surgery vs adenine feed, 

13.2% of variation, p<0.001), sequencing methodology (454 pyrosequencing vs Illumina, 9.7% 

of variance, p<0.001) and sample type (faeces vs caecal fluid, 6.7% of variance, p<0.001); 

although many of these variables were closely associated with cohort. 

Treatment effect (control vs uraemic) did influence sample clustering, but to a much lesser extent 

(1.9% of variance, p=0.026). 

 

Certain community shifts between control and uraemic samples may be shared 

between cohorts 

To understand what aspects of sample variance may allow control and uraemic samples to be 

separated across all cohorts, scores and loadings from the redundancy analysis were interrogated. 
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This revealed that whilst control and uraemic samples were not significantly separated in axes 1 

and 2, when the redundancy analysis model was further explored, it was discovered that there 

was a significant shift between control and uraemic samples in both axes 3 and 4 directions (axis 

3 represented 14.3% of total variance and axis 4 represented 6.7%, Figure 57, p. 190). Overall 

there was a vector of [-0.035,-0.046] between the spatial mean of all uraemic samples compared 

to the spatial mean of all control samples (p=0.045 and p=0.009, respectively); furthermore there 

were uniform negative vectors of movement in both axes between the spatial mean of uraemic 

and control samples within each individual cohort, implying the same microbial shifts are 

occurring in all datasets. 

Loadings for these axes were compared to establish which particular taxa were responsible for 

the observed trends (Table 6, p. 191). Samples associated with a downwards (‘uraemic’) 

deflection on axis 4, the more strongly correlated with treatment class, displayed increased 

relative abundances of families including Peptostreptococcaceae, Clostridiaceae and 

Prevotellaceae; and reduced abundances of families Akkermansiaceae and two highly abundant 

taxa, Lactobacillaceae and Oscillospiraceae. A ‘uraemic’ deflection along axis 3 was also 

associated with an increase in Prevotellaceae and Christenellaceae, which had both also been 

increased in axis 4. Peptococcaceae and Akkermansiaceae were associated with opposite 

deflection in the two axes, likely reflecting different effects in different cohorts. 
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Significant compositional differences exist between experimental cohorts 

Each experimental dataset was agglomerated at phylum level, and community composition was 

plotted for each sample to allow comparison between cohorts (Figure 58, p. 192).  

Significant differences were evident between rat and mouse sequencing cohorts, with the 

dominant phylum in rats being Firmicutes, accounting for 76% of reads in rat samples vs 40% in 

mouse samples (p<0.001), whilst in mouse samples the most abundant phylum was 

Bacteroidetes (58.7% of sequencing reads in mouse samples but only 9.9% in rat samples; 

p<0.001). Mouse samples were generally simpler than those from rats, with the contribution of 

these major taxa accounting for an average of 98.4% of reads in mice, but only 84% in rats 

(p<0.001).  

The Al-Asmakh2020 and Kikuchi2017 appeared to be outliers compared to other rat cohorts. In 

the Al-Asmakh2020 cohort there was a very substantial increase in taxa that were represented at 

a lower abundance overall, especially Proteobacteria and Actinobacteria, in uraemic animals, 

accounting for an average of 39.9% and 9.4% of reads, respectively, in this group. Conversely 

samples in the Kikuchi2017 cohort were very simple, with reads from the phylum Firmicutes 

accounting for 98.5% of reads across all samples and uraemia having little discernible effect.  

The Vaziri2013 dataset was analysed differently from the others because of the differences 

between phylochip and sequencing data. The phylochip system records mean fluouroscopic 

intensities for 4255 probes across 43 separate taxa, and the assigned taxonomies did not always 

align with the more modern Silva taxonomy used for sequencing reads in the other datasets. 
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Furthermore the reported values per phylum reflect as much the composition of the phylochip 

itself as necessarily the relative abundances in the bacterial DNA. Because of this, only the top 

12 phyla were included in the bar chart analysis in Figure 58, representing a slightly different 

range of taxa than the twelve phyla seen in the other cohorts. Notwithstanding this, a similar 

picture emerged to other rat samples, with the Firmicutes phylum being predominant. The 

relatively high abundances of minor phyla in the Vaziri2013 samples may reflect increased 

prominence of these probes in the design of the phylochip. 

 

Uraemia may increase alpha diversity in rats, but effects are inconsistent across 

cohorts 

Alpha diversity using a variety of measures (observed ASVs per sample and the Chao1, ACE, 

Shannon, Simpson, Inverse Simpson and Fisher indices) was calculated in all cohorts using raw 

sequencing abundance data (the Vaziri2013 cohort was not included in this analysis because the 

nature of the phylochip analysis makes the results incomparable directly with sequencing 

methodologies), supplementary Table 17, p. 406, appendix 5. 

When all samples were analysed together, there were no significant differences in alpha diversity 

between control and uraemic animals. However, samples from rats were found to have higher 

alpha diversity than samples from mice across most measures, significantly so for observed 

ASVs per sample (338 in rats vs 232 in mice, p=0.006), and the related Chao1 and ACE indices.  
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Among rat samples, those from uraemic animals showed higher alpha diversity than those from 

controls across all measures; significantly so for the Shannon (4.135 in control vs 4.656 in 

uraemic, p=0.011), Simpson (9.952 vs 9.975, p=0.01) and Inverse Simpson (40.74 vs 62.59, 

p=0.012) indices. Although this was chiefly driven by the highly diverse uraemic samples in the 

Al-Asmakh2020 cohort, a trend towards increased alpha diversity was seen universally across all 

measures of diversity in every rat sequencing cohort. 

A far less obvious picture was seen in mouse samples, with no measures of alpha diversity 

showing significant differences between control and uraemic samples. There were no convincing 

patterns of association on the level of individual cohorts, with some showing increased diversity 

in controls (eg Kikuchi2019) and some increased diversity in uraemic animals (eg 

Randall2021b). 

Beta dispersion was assessed in control and uraemic groups within each cohort to test the 

hypothesis that uraemia increases the heterogeneity of gut communities. Rat samples were 

significantly more heterogeneous than mouse communities overall (average distances of 

individual points to group median 0.399 vs 0.312, p<0.001), however uraemic animals did not 

demonstrate increased beta dispersion compared control animals either in the whole dataset 

(0.352 in controls vs 0.364 in uraemic animals, p=0.53); or at species level analysis (in either rats 

or mice); only in the Al-Asmakh2020 cohort was there a significant difference between diversity 

(with uraemic animals displaying increased heterogeneity of dispersion, 0.22 vs 0.44, p=0.003). 

This association was not significant in any other cohort and in a number, the trend was reversed 

with uraemic samples being less heterogenous than controls. 
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Samples from control and uraemic animals cluster apart in most cohorts 

Plots of redundancy analysis ordination for log-ratio transformed datasets at the level of 

individual ASVs were constructed for all cohorts (Figure 59, p. 193). Samples from uraemic 

animals clustered separately from those from control animals in most cohorts, and this was 

confirmed using PerMANOVA which quantified significant between-group differences 

associated with uraemia in seven of the ten cohorts. Nevertheless, significantly divergent 

clustering attributable to cage effects was seen in a number of cohorts; perhaps especially 

affecting control samples, in the Mishima2015, Nanto-Hara2020, Randall2019a and 

Randall2021b cohorts. 

 

In some cohorts, uraemia may affect the relative abundances of health and 

disease-associated taxa 

The ANCOM methodology was used to assess differential abundances of all bacterial subtaxa 

between control and uraemic samples in all cohorts, at each taxonomic level between individual 

ASVs and phyla. These results are summarised in supplementary Table 18, p. 410, appendix 5.  

In two cohorts (Al-Asmakh2020 and Vaziri2013), a classically dysbiotic picture emerged with 

reductions in health-associated, gram-positive taxa (prominently genus Lactobacillus, also 

Bacteroides and Akkermansia), and an increase in gram-negative bacteria (including families 
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from the class Gammaproteobacteria, such as Enterobacteriaceae and Pseudomonadaceae; and 

subtaxa from class Actinobacteria including Corynebacteriaceae and Bifidobacteriaceae).  

These changes were not seen universally, and in some cohorts – including notably two of the 

cohorts which did not show significantly differential clustering in ordination plots and 

PerMANOVA (Randall2019a and Kikuchi2017) – there were no differentially abundant taxa 

between control and uraemic groups at any taxonomic level after adjustment for multiple-

hypothesis testing. In other cohorts, conflicting results were seen, such as in the two mouse 

cohorts Mishima2015 and Nanto-Hara2020, where some Lactobacillus species were actually 

seen to increase in abundance in samples from uraemic animals. 

To assess whether similar trends were seen across multiple groups, but perhaps not reaching 

statistical significance because of small samples sizes, the mean relative abundance of all 

families was calculated in control and uraemic samples in all cohorts except Vaziri2013, where 

the use of Phylochip molecular identification makes proportional abundances unreliable. Results 

for the five most abundant taxa, and three others representing taxa previously identified by 

ANCOM as potentially influenced by uraemia, are presented in Figure 60, p. 194. 

There were no families for which uraemia caused uniform changes in all cohorts. However, two 

highly prevalent taxa showed a trend to reduced abundances in uraemic animals (eg 

Lactobacillaceae, the second most abundant family overall, which had at least slightly lower 

relative abundances in 7/8 cohorts where it was detected, and Lachnospiraceae, fifth most 

abundant family overall, which had lower  relative abundances in 7/9 cohorts). A number of taxa 

showed relatively uniform increases in uraemic animals, including several families from the 
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phylum Firmicutes (Clostridiaceae, increased in 9/10 cohorts; Erysipeltrichaceae, increased in 

7/9 cohorts; Peptostreptococcaceae, increased in 6/7 cohorts), two from phylum Bacteroidota 

(including the second most abundant family overall, Muribaculaceae, increased in 6/8 cohorts, 

and Tannerella, increased in 6/7 cohorts); and two from phylum Actinobacterota (Eggerthella, 

increased in 7/9 cohorts; and Bifidobacteriaceae, increased in 4/4 cohorts). Other highly 

abundant families (eg Oscillospiraceae or Ruminococcaceae) did not show anything approaching 

a uniform association with uraemia. 
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Figure 55: Consort diagram of meta-analysis. 

 

Search of NCBI SRA database for using search 
terms: (uraemia OR uraemia OR kidney OR 
renal) AND (microbiome OR microbiota) AND 
(rodent OR rat OR mouse OR mice) 

- 412 individual samples 
- In 14 published studies 

Excluded 8 studies (296 samples): 

- Three did not include 
generation of experimental 
uraemia 

- Two featured RNA not 
DNA sequencing 

- One studied acute uraemia 
- One studied kidney 

samples (not microbiome)  
- One studied human 

microbiota 

Added two further experimental 
cohorts, one of mice and one  of 
rats, which were previously 
unpublished but which are 
available on the SRA database. 

- 17 mice 
- 12 rats 

Added a further rat cohort which 
was publicly available in the 
older Greengenes repository. 

- 11 rats 

- 127 samples 
o 73 rats in six cohorts 
o 54 mice in four cohorts 

- Across seven published studies 
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Table 5: Protocols for animal cohorts and techniques used for molecular characterisation of gut 

microbiota in the datasets included in this study. * The publicly available phylochip data from 

the Vaziri2013 [223] dataset consists of mean fluouroscopic intensity data from 4,522 probes 

each consisting of a 25bp DNA strand against a portion of the 16S gene unique to one bacterial 

taxon. Each of these probes was treated as a separate ASV for the purposes of phyloseq analysis.  

Cohort Host 
speci
es 

Number 
(control/urae
mic) 

Method 
for 
induction 
of 
uraemia 

Age at 
time 
of 
sacrifi
ce  

Samp
le 
type 

Molecular 
study 
method 

16S 
regio
n 
studi
ed 

Sequencin
g depth 
(mean 
reads/samp
le) 

Assign
ed 
ASVs 
in 
dataset 

Al-
Asmakh20
20 

Rat 12 (6/6) 0.75% 
adenine 
feed 

14w Cecal 
fluid 

Illumina  V3/V
4 

182,389 2,453 

Kikuchi20
17 

Rat 13 (6/7) 5/6 
nephrecto
my 

42w Feces 454 
pyrosequenc
ing 

V1/V
2 

3,000 550 

Kikuchi20
19 

Mous
e 

10 (5/5) 0.2% 
adenine 
feed 

16w Feces Illumina  V1/V
2 

34,366 369 

Mishima20
15 

Mous
e 

12 (6/6) 0.2% 
adenine 
feed 

15w Feces 454 
pyrosequenc
ing 

V1/V
2 

8,297 1,022 

Nanto-
Hara2020 

Mous
e 

15 (8/7) 0.2% 
adenine 
feed 

16w Feces Illumina  V1/V
2 

30,890 631 

Randall20
19a 

Rat 14 (6/9) 5/6 
nephrecto
my 

18w Cecal 
fluid 

Illumina  V3 175,607 1,331 

Randall20
19b 

Rat 10 (4/6) 5/6 
nephrecto
my 

18w Cecal 
fluid 

Illumina  V3 193,520 1,228 

Randall20
21a 

Rat 12 (6/6) 5/6 
nephrecto
my 

18w Cecal 
fluid 

Illumina  V1/V
2 

12,481 712 

Randall20
21b 

Mous
e 

17 (9/8) 0.15% 
adenine 
feed 

26w Cecal 
fluid 

Illumina  V1/V
2 

19,393 983 

Vaziri2013 Rat 11 (5/6) 5/6 
nephrecto
my 

16w Feces Phylochip All NA* NA* 
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Figure 56: Ordination plot of redundancy analysis of combined, log-ratio transformed data from 

all sequencing samples, agglomerated at family level. Each point represents an individual 

sample; circles represent samples from control animals and triangles samples from uraemic 

animals; colours represent samples from different cohorts. 
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Figure 57: Ordination plot showing axes 3 and 4 from the RDA model of all samples. Each point 

represents an individual sample, coloured according to treatment. Ellipses represent different 

cohorts. 
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 Axis 3; 14.3% of variance Axis 4; 6.7% of variance 

Family Loading Family Loading 

Increased in uraem
ia 

Peptococcaceae 0.337 Peptostreptococcaceae 0.51 

Prevotellaceae 0.285 Clostridiaceae 0.416 

Christenellaceae 0.272 Erysipelatoclostridiaceae 0.251 

Akkermansiaceae 0.244 Prevotellaceae 0.198 

Peptostreptococcaceae 0.235 Christenellaceae 0.11 

D
ecreased in uraem

ia 

Eggerthellaceae -0.115 Peptococcaceae -0.11 

Erysipellaceae -0.137 Oscillospiraceae -0.112 

Muribaculaceae -0.162 Lactobacillaceae -0.236 

Streptococcaceae -0.185 Rikenellaceae -0.249 

Erysipelatoclostridiaceae -0.23 Akkermansiaceae -0.262 

 

Table 6: Loadings for axes 3 and 4 in the RDA model. These axes showed significant 

associations with the shift in spatial means between control and uraemic samples (p=0.045 and 

p=0.009, respectively). The five families most positively and negatively associated with each 

axis are listed along with their respective contributions to the model. 
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Figure 58: Proportional community bacterial abundances at phylum level in all experimental cohorts. Rat cohorts are on the top row 
and mouse cohorts below. Each vertical bar represents a sample from a single animal, grouped within cohorts with control samples on 
the left and uraemic samples on the right. Because of the nature of phylochip analysis, the Vaziri2013 cohort included data for 43 
cohorts including many making negligible contributions to the overall population; for the Vaziri2013 cohort only the 12 most 
abundant cohorts are shown and a different legend is provided to reflect the different taxonomy used in phylochip analysis compared 
to more taxonomic assignments. 
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Figure 59: Ordination plots of composition-transformed data for all cohorts at the level of individual ASVs. Each point represents a 

sample from an individual animal, coloured according to treatment (control vs uraemic). R2 and p-values from PerMANOVA analysis 

of the same data are superimposed on each plot. Divergent clusters between similarly treated animals seen in the Mishima2015, 

Nanto-Hara2020, Randall2019a and Randall2021b are attributed to caging effects. 
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Figure 60: Relative abundances of different families of the most abundant bacterial families in 

control vs uraemic animals within different experimental cohorts. Each point represents the mean 

relative abundance of that family of bacteria in samples from either control or uraemic animals 

from an individual cohort of animals, and the lines connect control and uraemic animals in the 

same cohort. None of the average differences in means shown were significant at an alpha of 

0.05. 
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Discussion 

Lack of reproducibility in pre-clinical animal research remains a major challenge in experimental 

biology, [236] and is at least partially explained by variation between animal microbiomes. [237] 

Animal research has been based on the assumption that whilst experimental animals in different 

facilities may have differences at species level between their gut microbiota, [238] at a 

population level, in healthy laboratory animals on identical diets, these diverse collections of 

microorganisms achieve a shared set of basic metabolic functions – an assumption supported by 

evidence of significant functional redundancy within gut microbial communities [239]. The work 

presented in this chapter suggests these assumptions may not be valid. 

 

Sequencing and metabolomic data 

In the first half of this chapter, the data presented confirms that significant batch variations exist 

between the gut microbiota of laboratory animals, and associates them with multiple, major 

variations in a range of urinary metabolites, with the potential for significant downstream effects 

on wider areas of host phenotype.  

For example, circulating hippurate has been suggested as a biomarker for gut microbial diversity, 

associating with the risk of metabolic syndrome; [240] however, these results suggest it may be 

totally absent in the urine of experimental animals based on shipment batch. Likewise the 

biological relevance of dietary amines has been demonstrated through the association of 

trimethylamine (TMA) and its metabolite trimethylamine-N-oxide (TMAO) with cardiovascular 
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disease, [241, 242] including in patients with chronic kidney disease. [243] However, these 

results suggest that rats purchased from the same supplier in different shipment batches may 

metabolize dietary amines in quite different ways, potentially questioning the generalisability of 

research based on individual batches of animal subjects.  

Since the diet of animals in each group was identical, differences in bacterial metabolic pathways 

are likely to underlie these differences in the urinary metabolome. Certainly, a number of 

bacterial taxa which we demonstrated to be differentially abundant between cohorts are known to 

have metabolic significance, including several that are major sources of short chain fatty acids 

and associated with beneficial health outcomes, [244-246] and several from the phylum 

Proteobacteria that has recently been shown to contribute significantly to functional variation 

between gut metagenomes. [247] 

These results are also broadly consistent with recent work suggesting that in CKD, 

concentrations of known uraemic toxins rise in plasma because of impaired urinary excretion, 

rather than an increase in gut production of these toxins. [248] Although we demonstrated a 

modest increase in the 24-hour urinary excretion of IS across all samples (p=0.04), this was 

driven by results in rat cohort 3 and mouse cohort 1. Thus, as well as failing to demonstrate any 

gross shifts in gut microbiota in uraemia, we have also provided additional evidence against the 

idea that an altered microbiota might be driving the progression of uraemia through increased gut 

biosynthesis of toxins, popularised in notions of a ‘gut-kidney axis’. [227, 249] 

The rodent gut microbiome is a complex community of several hundred different bacterial 

species that possesses significant metabolic potential of immense relevance to the host organism. 
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It has previously been demonstrated that this community differs according to a variety of factors 

including host age [250] and genetics. [251, 252] caging arrangements, [250, 252, 253] bedding 

material and water sterilization technique [254] and vendor shipment batch. [251] Xiao et al 

generated a catalogue of the mouse metagenome by sequencing faecal material from 184 mice, 

and found that vendor was a prime determinant in variation at a genetic and function level. [255] 

We have provided further evidence to validate the findings of significant differences between 

cohorts and have shown by NMR metabolomics that these changes have significant functional 

implications. 

 

Meta-analysis 

The use of a meta-analysis to apply the insights around batch variation to repository data from 

other published animal studies is relatively novel. In clinical research, the use of meta-analyses is 

common, and when correctly performed, such studies are often considered to constitute the 

highest form of evidence.  [256, 257] Conversely, whilst in basis sciences research, narrative 

reviews of published data are common, attempts to synthesis and re-analyse data from disparate 

studies using meta-analysis tools are rare. [258, 259] This is regrettable, since as we demonstrate, 

standardised datasets (eg 16S gene amplicon sequencing results) allow data from different 

studies to be compared easily, resulting in far larger experimental groups and allowing genuine 

trends in data to be uncovered which transcend batch variation and may be obscured in studies of 

small sample size. 
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In this meta-analysis, we re-analysed and compared all datasets available in public repositories 

that describe the effects of chronic experimental uraemia on the gut microbiome of rodents. The 

overwhelming picture that emerged was of between-cohort differences which eclipsed the effect 

of experimental intervention in explaining the observed variation between samples. Although it 

is possible that differences in experimental technique and sequencing methodologies may 

account for some of these cohort differences, we suggest that the majority is likely to be 

accounted for by baseline differences in the gut microbiome of animals raised in different animal 

facilities. The fact that there was significant heterogeneity between cohorts in the effect (or lack 

of effect) caused by experimental uraemia (for instance, between the Al-Asmakh2020 and 

Vaziri2013 cohorts, where large effects were associated with uraemia, and the Kikuchi2017 and 

Randall2019a datasets where there was very little observable effect), poses significant questions 

about the generalizability of rodent research in any biological experiments where the gut 

microbiota might play a significant physiological or pathological role. 

Significant differences between rat and mouse samples illustrate how gut microbiota adapt 

closely to different host environments and suggests that effects seen in one species may not 

generalise to others. This also implies that extra caution should be used in extrapolating findings 

from rodent microbiome research to humans. 

However, a few broad effects of uraemia on the gut microbiome emerged from comparing 

different cohorts together. None of these trends were seen in all cohorts, implying there is no 

distinct and reproducible signature of uraemia on the gut microbiome; however each of the 

following features were seen in the majority of cohorts, implying that the common factor of 
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uraemia may be causative: increased alpha diversity (in samples from rats), an increase in 

opportunistic taxa less commonly seen in gut communities, including subtaxa from phyla 

Firmicutes, Bacteroidota and Actinobacterota, and in the Al-Asmakh2020 and Vaziri2013 

cohorts, from class Gammaproteobacteria; and a decrease in core, health-associated taxa, 

particularly Lactobacillus and Lachnospiraceae. 

The fact that shared cross-cohort effects were so hard to describe despite control and uraemic 

samples clustering separately in most cohorts highlights that cage effect represents a major 

source of experimental bias in microbiome research. In the experimental cohorts included in this 

meta-analysis, caging was according to treatment class in almost all (ie control animals housed 

with other controls, and uraemic animals with other uraemic animals), often because the 

practicalities of administering a modified feed or performing surgery required that control and 

uraemic animals were housed apart. The consequence of separate housing is that when samples 

are analysed, it becomes impossible to distinguish the effects of uraemia on the microbiota from 

the diverging effects that would be seen between any two groups of animals housed in separate 

cages. Profound cage effects were seen between different groups of similarly-treated animals in a 

number of the cohorts analysed (Mishima2015, Nanto-Hara2020, Randall2019a and 

Randall2021b), and in several of the cohorts there were ASVs present in high abundance in one 

experimental group but totally absent in the other group, which are highly likely to reflect cage 

effects rather than the biological effect of uraemia. Interestingly, the fewest changes seen 

between control and uraemic groups were seen in cohorts where attempts had been made to 

reduce caging effects, either by moving animals between cages prior to the initiation of surgery 

to homogenize microbial populations (Randall2021a), by housing control and uraemic animals 
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together after post-operative recovery (Randall2019a and Randall2019b), or by housing all 

animals in individual cages (Kikuchi2017). 

Reassuringly, the effects described in each experimental cohort are broadly the same as those 

reported by the authors in the original descriptions of their research. They also broadly reflect 

findings in human cohorts, where common findings in patients with CKD compared to healthy 

controls have included an increase in Clostridia, [260-263] Bifidobacteria, [264] and 

Gammaproteobacteria; [230, 260, 261, 265-267] and a decrease in Lactobacillus[265] and 

different species from the family Lachnospiraceae. [230, 261, 263, 264, 267, 268] However, 

results between human cohorts appear just as contradictory as for rodent cohorts, with results 

from a number of studies diverging from the trends we have reported for most of the taxa 

mentioned above, including Clostridia, [265, 267] Bifidobacteria [260, 265] and  Lactobacillus. 

[260, 262] Although many human cohorts reported a reduction in alpha diversity in patients with 

CKD, [261, 263-265] others have reported in line with our findings in rats that alpha diversity 

rises in uraemia. [8, 269, 270] It is possible that the dietary restrictions encouraged for human 

subjects with CKD, rather than the effect of uraemia itself, causes these conflicting results.  

The broad trends that emerged of the effect of uraemia on the gut microbiome are biologically 

plausible and may suggest that the gut microbiome has a contributary role in the development of 

CKD. Reductions in core microbial communities may reflect the changing biochemical 

environment of the gut, as nitrogenous waste and changes in pH may alter selective pressures 

and allow opportunistic organisms to multiply at the expense of usual microflora. The two major 

taxa to show reduced abundances in uraemic animals – Lactobacillaceae and Lachnospiraceae – 
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are both highly metabolically active and associated with production of short chain fatty acids 

which have a variety of beneficial health outcomes. [55, 271] Reductions of both taxa have been 

described in a pattern of ‘dysbiosis’ associated with other diseases, [228, 272, 273] as have 

increases in Gammaproteobacteria [274, 275] which we have shown to be variably increased in 

the gut microbiota of uraemic animals. These latter organisms possess the metabolic potential for 

production of toxic molecules from metabolism of dietary protein [52, 247] and so their 

increased abundance in uraemic animals may directly contribute to adverse renal and 

cardiovascular outcomes. 

 

Limitations of this research 

Interpretation of the significance of the microbial trends reported here is limited by the relatively 

short reads produced by high-throughput amplicon sequencing, with many ASVs being identified 

confidently only at genus or family level. For example, in the Nanto-Hara2020 cohort, fifteen 

ASVs from the genus Muribaculaceae were present at increased abundances in uraemic animals 

whilst nine were present at reduced abundances in controls; these differentially expressed ASVs 

accounted for a total of 39.3% of all sequencing reads in this cohort. It is not clear why some of 

these species increased in uraemic animals whilst other decreased, and it is possible that 

functional differences at species level are responsible, especially since Muribaculaceae are 

known to possess significant metabolic potential. [276] Although prediction of functional 

properties on the basis of published whole genome sequencing has been suggested as a possible 

low-cost solution to this problem (using packages such as PICRUSt [100] and piphillin [101]), 
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such packages are only as good as the range of published genomes available, and for families 

such as Muribaculaceae which are predominantly described in mice, coverage is currently much 

scantier than for organisms that commonly colonize humans. After trial runs which matched a 

disappointingly small proportion of ASVs to published genomes, we felt that proceeding with 

such an approach with the data presented here would introduce an unacceptable degree of 

unreliability. 

Our results are of limited generalisability to humans with uraemia, because CKD in humans is 

far more complex than experimental uraemia in rodents. It is plausible that a range of other 

factors in human populations (for example, dietary restrictions recommended to control serum 

potassium and phosphate concentrations, or the effects of comorbidities like diabetes, obesity, 

hypertension, cardiovascular diseases or oral medications used to treat these conditions), may 

lead to significant changes in the gut microbiota of patients with CKD compared to healthy 

controls. These results do, however, question the extent to which any observed gut microbial 

changes may be attributable solely to uraemia. 

 

Further research 

Future research should focus on the following unanswered questions: Firstly, microbiological 

studies, to try to determine what features of organisms, or consortia of organisms, make them 

particularly susceptible to the effects of uraemia, or to possess the adaptability to survive within 

a uraemic milieu. Longitudinal studies showing how communities evolve over time as a host 



203 

 

 

organism becomes uraemic may be helpful in this regard, as may in vitro testing of urea 

tolerance by batch culture. Secondly, functional studies using different -omics techniques 

(metagenomics, metatranscriptomics and metabolomics) may determine ways in which bacterial 

metabolic potential may differ in uraemic versus control microbiomes, and suggest how this may 

affect the host organism. Thirdly, therapeutic studies may consider whether seeking to 

manipulate the gut microbiome in uraemia carries the potential to reduce progression of kidney 

disease and prevent its complications. Rather than viewing the gut microbiota as purely a 

problem, there is the potential that successful manipulation of the metabolic machinery it 

contains may evoke benefit for the host organism. 

 

Conclusions 

These results challenge the assumption that in healthy organisms, different microbial 

communities achieve a common set of basic metabolic functions despite variation in the 

individual species present [14, 277].  It can no longer be assumed that healthy laboratory 

animals, purchased from the same supplier, are metabolically similar. The inherent microbial 

dissimilarity and associated metabolic differences between animals in different batches provides 

a significant source of experimental variation. Many products from bacterial metabolism in the 

gut are known to have beneficial effects (such as the short chain fatty acids), or deleterious ones 

(eg ‘uraemic toxins’ such as amines, phenols and indoles), and if different batches of animals 

possess microbiota that produce such substances in greater or lesser amounts, the phenotype of 

the host organisms may be significantly different. 
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This also highlights the need for single-centre trials to be confirmed by multi-centre studies in 

clinical research. There is substantial evidence that human microbiota vary by ethnicity, diet and 

geographical location, and that these differences are linked to metabolic differences in the host 

organisms; [278-280] drugs showing benefit in one group of individuals cannot be assumed to do 

so universally until they have been shown to do so. 

Such batch variations could easily lead to spurious positive results. For example, a group that 

demonstrates an effect in response to an experimental intervention with a small group of animals 

may decide to increase the number of animals in order to publish their findings; they purchase 

new animals from the same supplier, but fail to reproduce their earlier results because the new 

additions have significantly different microbial metabolic potential. Even worse, they may have 

carried out interventional procedures on one batch of animals, and then used animals from a 

different batch as controls, with exaggerated differences between groups reflecting underlying 

differences in microbiomes rather than any effect of the experimental procedure. The alternative 

in each case – to re-run the whole experiment with animals purchased in a new, single batch – 

may be prohibitively expensive, may fail to reproduce the initial results, and seems to stand 

against the second of the ‘Three R’s’ governing ethical use of animals in research: the reduction 

of the number of animals used [281]. 

An alternative to using multiple batches of experimental animals would be to run longitudinal 

studies, in which each animal serves as its own control, before and after an experimental 

intervention. This gets around the problem of their being no clearly identified, objective ‘normal’ 

control microbiome across experimental units, and goes some way to suggesting mechanistic 
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associations (eg if one bacterial species rises in proportional abundance after the induction of 

uraemia compared to before it, whilst another falls in proportional abundance, it may reasonably 

be supposed that the former is better adapted to a uraemic environment than the latter). However, 

such longitudinal studies reduce, but do not abolish, batch effects; and may also risk conflating 

the effects of increasing age with those of the experimental intervention. 
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Summary 

• Comparison of two identically treated cohorts of rats, obtained from the same 

supplier just a few weeks apart, revealed that batch effect far outweighed the effect 

of uraemia on the composition of the gut microbiota. 

• These batch differences were functionally significant, with the urinary metabolome 

also showing far greater effects of batch than of uraemia. 

• Addition of extra batches of animals revealed even wider batch effects among rats, 

and that similar batch effects are also seen in C57/BL6 mice. 

• In a meta-analysis carried out of all publicly available NGS sequencing data, the 

leading determinants of variation were batch primer type, host species (rat vs mouse 

and method of inducing uraemia. Intervention effect (control vs uraemic) did 

influence sample clustering, but to a much lesser extent. 

• Across all datasets there was the suggestion that abundances of certain taxa may be 

affected by experimental uraemia, with uraemia often being associated with a 

reduction in abundances of Lactobacillus and Lachnospiraceae, and increases in 

Clostridiaceae and Proteobacteria. 

 

Conclusions: 

• Contrary to what has been widely asserted, there is limited evidence that uraemia 

disrupts the composition of the gut microbiota, and gut dysbiosis caused directly by 

uraemia probably does not play a major role in the aetiology of CKD. 
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• Evidence of a high degree of variability between the gut microbiomes of animals 

from different experimental batches poses major challenges to a wide range of 

animal research and may underlie the difficulties sometimes experienced in 

reproducing experimental research. 
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Chapter 5 

Modulating the gut microbiome to ameliorate 
uraemia  
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Introduction 

The gut microbiome has been proposed as a potential mechanistic factor in explaining the 

different patterns of diseases between traditional African and modern Western populations for 

many years. Denis Burkitt (1911-1993) popularised the notion that many diseases common in 

Western populations shared a common aetiology in the absence of fibre in Western diets heavy 

in processed food, [282-284] a hypothesis that earned him the nickname ‘fibre man’ (Figure 61, 

p. 245).  
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Burkitt’s hypothesis chiefly concerned the bulking effects of dietary fibre, because far less was 

known at the time about the detailed composition of the gut microbiota and its metabolic 

potential than has been discovered since.  

The impact of diet on the gut microbiota was underlined by a series of seminal studies in the 

modern microbiome era. In 2010 De Filippo et al published a detailed analysis of the stool 

microbiota of children living in mud huts in Burkina Faso compared to Western children in the 

European Union; there were substantial differences in microbiota with the African children 

having far higher proportions of Bacteroidetes (including the hitherto unknown genus 

Xylanibacter) and Western children having far higher abundances of Firmicutes, including taxa 

such as Clostridia. Correspondingly, the African children had significantly higher faecal levels 

of short chain fatty acids (Figure 62, p. 246). [278]  

Similar patterns of association between individuals eating traditional, plant-based diets and those 

eating Western diets higher in animal fats and protein have been demonstrated between African 

and Amerindian populations and Americans, [285] between Bangladeshi and American children, 

[279] and between Africans living in Africa and African Americans eating a Western diet. [280] 

In the latter study, metabolomic analysis revealed that a Western diet was associated with higher 

stool bile acid concentrations whilst an agrarian African diet was associated with higher levels of 

short chain fatty acids. 

Similarly, several animal studies have demonstrated that similar changes can be induced in 

experimental animals fed diets of different compositions. Turnbaugh et al demonstrated that the 

gut microbiota of germ-free mice which had been ‘humanised’ by inoculation with human gut 
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contents could be manipulated by a switch between a plant-based and a high fat diet; 

subsequently they demonstrated that these communities could be successfully transferred into 

other germ-free mice. [286] Devkota et al showed that a switch from a plant-based to a milk-

based diet led to altered gut microbiota, with an increase in species tolerant to bile acids that 

were associated with colitis. [287] Martinez-Medina et al similarly demonstrated that a Western 

diet encouraged overgrowth of pathological species and disrupted epithelial tight-junctions, 

leading to increased gut inflammation. [288] 

 

Short chain fatty acids 

Short chain fatty acids are aliphatic open-chain carboxylic acids. The most important biological 

species are acetate, propionate and butyrate, which have 2, 3 and 4 carbon backbones, 

respectively; Figure 63, p. 247. 

 

Production of SCFAs 

SCFA are produced by a range of metabolic pathways present in different bacteria, with 

metabolic cross-talk between bacterial species with cooperative metabolic machinery adding to 

the complexity. [289-292] Although SCFA production is possible from non-carbohydrate 

sources (including fats, proteins and longer polypeptides), species with this potential have been 

estimated to account for less than 1% of the gut microbiota, and fermentable carbohydrate, 
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broken down by bacterial glycosyl hydrolases, remain the main substrate for gut SCFA 

production. [293] 

Below is an outline of the more common metabolic pathways for production of the three 

commonest SCFA: 

Acetate: Acetic acid is present, pre-formed, in many foods (for instance, vinegar is 4-8% 

acetic acid, and dietary acetic acid has been linked to a number of positive health 

outcomes, [294]). However much of the body’s absorbed acetate arises as a result of 

bacterial fibre fermentation, and the metabolic pathways for this are widely distributed 

among a range of different anaerobic bacterial taxa, through the action of pyruvate 

oxidase on pyruvate generated by glycolysis of simple sugars broken down from complex 

dietary fibres by microbial hydrolysis. [293, 295]  

Propionate: In contrast to acetate production, production of propionate and butyrate is 

only achieved by certain bacterial taxa and may involve different pathways in different 

bacterial species. Propionate metabolism may be achieved in Bacteroidetes and 

Negativicutes via the succinate pathway (some Negativicutes may also use the acrylate 

pathway to produce propionate from lactate), and by the propanediol direct from deoxy-

hexose in Lachnospiraceae. [296] 

Butyrate: Butyrate production begins with the combination of two acetyl-CoA molecules 

to form acetoacetyl-CoA, which is then reduced to butyryl-CoA. To reduce butyryl-CoA 

to butyrate, there are two major bacterial pathways. In Faecalibacterium prausnitzii (part 

of the family Ruminococaceae), and Eubacterium rectale, Roseburia spp and other 
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Lachnospiraceae, the enzyme butyryl-CoA:acetate CoA-transferase consumes further 

acetate to produce butyrate; [297] in other bacterial species such as Coprococcus (f. 

Lachnospiraceae) and some species from family Clostridiaceae, the enzyme butyrate 

kinase achieves this reduction. Overall, the ability to produce butyrate is highly variable 

in these families with highly closely-related species possessing or not possessing the 

necessary enzymes. [298] 

These pathways are described in Figure 64, p. 248. Considerable metabolic cross-talk occurs 

between organisms with different metabolic activity, sometimes characterised as an interaction 

between ‘primary degraders’ such as Bifidobacteria, Bacteroides species and Ruminococcus 

bromii, which are involved in the initial steps of metabolising complex carbohydrate fibre into 

simple sugars and SCFAs including acetate and propionate, and secondary fermenters (typically 

Firmicutes) which utilise these simple sugars and acetate to produce butyrate, Figure 65, p. 249. 

[299] In vitro batch fermentation experiments have shown that the gut pH may also be a major 

factor in influencing the activity of different pathways, with a lower pH (5-6) favouring the 

secondary fermenters and increased butyrate production, and a higher pH (6-6.5) favouring the 

primary fermenters and acetate and propionate production. [300, 301] 

 

Concentration and distribution of SCFAs 

Key post-mortem studies have shown that the principal site of SCFA production in humans is the 

caecum, where levels are around tenfold higher than in the distal small gut. SCFA, being acids, 
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lead to a significant decrease in intra-luminal pH in the caecum, and along the rest of the colon, 

as SCFA concentrations fall, the pH rises. In humans, the proportional production of the three 

principal SCFA are 60:20:20 between acetate, propionate and butyrate when measured in colonic 

samples. Concentrations are a thousand-fold lower in portal blood compared with colonic fluid. 

[302] It has since been shown that the liver effectively removes all butyrate produced in the gut 

on first pass metabolism, with none reaching the peripheral circulation, and only acetate 

produced in the gut achieving measurable concentrations in the systemic circulation. [303, 304] 

Urinary excretion of SCFA in humans has been estimated to be around tenfold lower for 

propionate than for acetate, and around tenfold lower for butyrate than for propionate, with 

acetate representing around 95% of urinary SCFA. [305, 306] 

 

Cellular effects of SCFAs 

SCFAs interact with cells by two primary mechanisms:  

• By entry into cells through cell surface transporters: both the monocarboxylate 

transporter MCT1 (which transports monocarboxylates including pyruvate and lactate 

into cells in symport with protons), and the sodium-coupled monocarboxylate transporter 

SMCT1 (which transports a similar range of molecules in symport with sodium) have 

been demonstrated also to transport SCFAs into colonocytes. [307, 308] Butyrate may 

also enter cells by direct diffusion in its undissociated, lipid soluble form. 
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• By the G-protein couple receptors, such as the GPR109A on the cell surface of 

colonocytes, which primarily responds to nicotinate but which also demonstrates affinity 

for butyrate, [309] or GPRs 41 and 43 which are widely expressed and previously viewed 

as orphaned, but have now been demonstrated to possess SCFAs as primary ligands. 

[310] 

They have been demonstrated to have a variety of effects on a wide range of cells: 

• Maintaining gut barrier functions: SCFAs have been shown to enhance the barrier 

function of the colon, both through increased mucus secretion [311] and through 

improved colonocyte tight junctions. [312] 

• An energy source: Butyrate is the preferred energy source of colonocytes, contributing 

around 75% of their energy needs. [313, 314] Any butyrate absorbed into the portal blood 

is then removed by the liver, and along with the significant amount of absorbed 

propionate, is used for gluconeogenesis; it is estimated that SCFAs together contribute 

around 10% of the body’s energy needs. [315, 316] Further positive metabolic effects 

may include SCFAs reducing insulin resistance (partly through inducing intestinal 

gluconeogenesis both directly and via neurohormonal mechanisms involving GPR41), 

and improved lipid homeostasis. [317] 

• Regulation of appetite: Acetate, the only SCFA reaching significant levels in the 

systemic circulation, has shown to be a powerful regulator of appetite. In rodent studies 

this has been shown to be due to direct effects on the hypothalamus, [318] and this has 
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been suggested in human studies to be a key mechanistic link between observed 

alterations in the microbiome and the population prevalence of obesity. [319] 

• Neuropsychiatric effects: In animals models of depression and anxiety, depressed animals 

have been shown to have bacterial dysbiosis associated with reduced production of 

SCFA, [320] and to respond positively to administration of exogenous preparations of 

SCFA. [321] Humans with major depressive disorders have likewise been shown to 

demonstrate low levels of SCFA and depleted levels of bacterial species involved in 

SCFA production. [322-325] SCFA have been identified as one aspect (along with other 

gut generated molecules such as neurotransmitters) of a broad ‘gut-brain’ axis that has 

the potential to offer new insights and therapeutic options in human psychiatric disease. 

[326, 327] 

• Reducing gut inflammation and malignancy through several mechanisms: 

o Inhibition of histone deacetylases: Histones are large proteins with numerous 

alkaline amino acid side chains (usually lysine or arginine), that allow them to 

bind and wind up DNA strands to prevent them from becoming tangled or 

damaged. This ability to bind DNA tightly is compromised when histones are 

acetylated; a class of molecules called histone deacetylases (HDAC) removes 

these acetyl residues thus allowing DNA to be more tightly bound to histones and 

be less liable to damage. [328] These molecules also make DNA less open to 

transcription, and so affect cellular function. Intracellular butyrate has been shown 

to be a powerful inhibitor of HDACs, with the potential for improved colonocyte 
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function by a range of constitutive gene expression. [329, 330] HDAC inhibition 

also allows for increased transcription of glutathione-s-transferases (GSTs) which 

reduce oxidative stress and inflammatory drive. 

o Inhibition of nuclear factor kappa beta (NFkB):  Butyrate acts via GPR109A on 

colonocytes to inhibit NFkB. Unchecked, this can, under pro-inflammatory 

conditions migrate into the cell nucleus and cause transcription of a range of 

inflammatory mediators leading to gut inflammation. 

o Activation of p53: Butyrate has been shown to activate p53, a prominent tumour 

suppressor gene that acts as a transcription factor for various other genes such as 

p21, with the anti-proliferative and pro-apoptotic effects. [331, 332] 

• Wider immunomodulatory effects: These effects occur typically through activation of 

GPR41 and 43, which have been shown to have important chemotactic properties. Mice 

not expressing these receptors in intestinal tissues struggle to clear bacterial intestinal 

infections, [333] whilst activation of these receptors leads to IL-10 driven, tolerant TH1 

responses, maintaining intestinal homeostasis, reducing colitis and promoting tolerance 

of commensal gut bacteria. [334] SCFA have also been shown, via both GPR41 and 43, 

but also high HDAC inhibition, to reduce production of the inflammatory cytokines IL-6 

and IL-8, and to reduce vascular inflammation when stimulated by lipopolysaccharide or 

tumour necrosis factor alpha [335] and induce B and T regulatory cells. [336, 337] 
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Modulating the gut microbiome 

The task of improving human health by manipulating the gut microbiome has been attempted for 

over a century, since Cheplin and Rettger used live preparations of Bacillus acidophilus (now 

known as Lactobacillus) to transform the microbiota of experimental subjects. [338] The 

accumulating evidence of association between plant-based diets and healthy outcomes, along 

with a growing appreciation of the wide range of positive physiological effects caused by short-

chain fatty acids has led to many modern attempts to manipulate the microbiome. 

Broadly, two approaches have been tried, for which consensus definitions are provided below: 

• Probiotics describe ‘live microorganisms which when administered in adequate amounts 

confer a health benefit on the host’. (The International Scientific Association for 

Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of 

prebiotics, Nature Reviews Gastroenterology and Hepatology, 2017).  [339] 

• Prebiotics describe ‘substrates that are selectively utilized by host microorganisms 

conferring a health benefit’. (Food and Agriculture Organization and World Health 

Organization Expert Consultation on health and nutritional properties of powder milk and 

lactic acid bacteria, 2001). [340] 

In addition, numerous other constituents of food may have physiologically active components 

confering benefits to health, including fish oils, vitamins, flavonoids, polyphenols and 

neurotransmitters; many have contributed to the growth of interest in ‘functional foods’. [341] 
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Various studies have shown that probiotic preparations can alter gut microbial communities and 

confer benefits to health in a number of different areas of medicine, often when administered 

alongside prebiotics in preparations that have been termed ‘symbiotic’. For example, Perraudeau 

et al recently demonstrated improvements in glycaemic control in type two diabetics using a 

preparation of five different anaerobic bacteria and inulin, a classic prebiotic. [342] However, the 

challenges of culturing, storing and finding stable preparations of live bacteria for distribution 

and administration provide a challenge in turning experimental success into real-world clinical 

interventions. [343] 

 

Prebiotics and dietary fibre 

Prebiotic preparations, in contrast, are generally stable compounds that are easily stored and 

transported. They may prove more acceptable to patients because many are natural parts of plant-

based foods. Furthermore, because they offer significant amounts of metabolic substrate, they 

may also prove effective in driving the generation of beneficial metabolites such as short chain 

fatty acids in addition to effects they may exert in manipulating the community composition of 

the microbiome. 

The use of the term ‘prebiotic’ overlaps significantly with the term ‘dietary fibre’: both terms 

describe indigestible molecules that pass through the upper gastrointestinal tract intact and act by 

selectively stimulating particular species of bacteria in the colon. However, there are prebiotics 

that are not fibre (such as dietary polyphenols [344] or polyunsaturated fats [345]), and various 
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types of dietary fibre – especially insoluble forms such as cellulose or lignins – which do not 

exert prebiotic effects, Figure 66, p. 250. [339] 

The best studied prebiotics are all types of dietary fibre: 

• Fructo-oligosaccharides are short chain polysaccharides (with a degree of polymerisation 

of between 3 and 10 monosaccharide units), mostly of the form Glu-Fru(n); where Glu 

represents glucose and Fru represents fructose. Fructose molecules are linked by beta (2-

1) bonds, with most molecules including a terminal, alpha-linked glucose molecule. [346] 

They can be extracted from a number of foodstuffs including onions, leeks and chicory, 

with the highest known concentrations occurring in the Jerusalem artichoke and the blue 

agave plant. They are somewhat sweet and used extensively in the food industry because 

of their flavour and lack of calories. 

• Galacto-oligosaccharides are similarly sized polymers made up of galactose and glucose 

subunits, they are typically produced by fermentation of milk products, such as in the 

popular fermented milk drink keffir, [347] as well as being produced synthetically from 

lactose using yeast enzymes. [348] 

• Inulins are fructose polymers of longer chain lengths than fructooligosaccharides; with 

degrees of polymerisation between 10 and 60 subunits. Chain length has been linked to 

both the speed of fermentation [349] and to the types of bacteria which preferentially 

metabolise different types of fibre. [350] 
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• Lactulose is perhaps the simplest form of fibre that exists, being a simple disaccharide of 

fructose and galactose. It is discussed further below, along with previous evidence for its 

effectiveness in liver and renal disease as well as its probiotic effects. 

• Other oligosacchrarides including xylooligosaccharides, [351, 352] isomaltosaccharides 

[353] and yeast-based mannan oligosaccharides [351] have each been shown to have 

beneficial prebiotic effects in humans and animals. 

• Human breast milk oligosaccharides have been extensively studied, because they 

represent the third biggest chemical component of human breast milk, and yet are entirely 

non-absorbable by the human neonate and serve instead to allow a healthy gut 

microbiome to develop, dominated by the genus Bifidobacterium. [354] This has been 

shown to produce colonisation resistance to bacterial and viral infections [355] as well as 

a range of immunological and metabolic benefits. [356] 

 

Additional benefits of fermentable fibre in CKD: removal of nitrogenous waste 

As well as their beneficial metabolic and immunological properties, short chain fatty acids are 

also potentially of benefit in the context of renal impairment by simple virtue of their acidity. 

Significant generation of SCFA in the caecum has the effect of lowering the luminal pH, with the 

potential to lead to significant increases in gut excretion of nitrogenous waste. 
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Much of our knowledge about these potential effects of SCFA production comes from the 

widespread clinical use of lactulose (which as discussed above is the simplest form of 

fermentable fibre and has potent prebiotic effects), in the treatment of hepatic encephalopathy. 

[357, 358] This is a condition sharing with CKD a primary causative role for retained 

nitrogenous waste; in the case of hepatic encephalopathy, ammonia; which is not converted into 

urea because of defective hepatic urea cycle activity, and may accumulate in individuals with 

decompensated liver disease leading to impaired consciousness and coma.  

Lactulose is a synthetic disaccharide formed from the basic sugars galactose and fructose. It is 

produced commercially by the isomerisation of lactose, but is also produced in normal milk 

during heat treatment so that small amounts are present in pasteurised milk (Figure 67, p. 251). 

Lactulose cannot be metabolised by mammals, [359] and although a very small fraction of oral 

intake is absorbed and excreted unchanged by the kidney, [360] the majority passes intact to the 

large gut where it is hydrolysed by bacteria into lactate and acetate. [361] This lowers gut pH 

[362, 363].  It has been shown that lactulose administration increases the nitrogen content of 

stool (principally through increased incorporation of nitrogen in bacterial protein, although also 

through ammonium dissolved in the soluble fraction of stool), with an attendant 23% reduction 

in the urea generation rate. [364] The explanation of this ‘nitrogen fixing’ effect of lactulose 

relates to the effect of a more acidic gut pH on the ratio of the ammonium ion (NH4+) to 

ammonia (NH3). The pKa of ammonia is 8.9 at 37o, [365] meaning that at a normal blood pH of 

7.4, the majority of ammonia exists in NH3 form, although some is present as ammonium (NH4+).  

The gut lining is relatively impermeable to NH4+, but freely permeable to NH3, meaning that in 
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the presence of an acidic gut environment, a strong pH gradient causes freely permeable NH3 

ammonia to diffuse into the gut, where it is ionised into NH4+ ammonium which cannot diffuse 

back into the blood, and which may then be incorporated into bacteria or excreted in solution in 

the liquid component of stool. It has been shown that in dogs, at a caecal pH of <6.0, the normal 

flow of ammonia from gut to blood is reversed, and the colon actually becomes an organ of 

nitrogen excretion. [366] 

 

Other beneficial effects of lactulose and other forms of fermentable fibre:  

• Lactulose may provide a beneficial selective pressure for acidophilic bacteria such as 

members of the phylum Firmicutes, at the expense of other phyla such as Proteobacteria, 

which have been associated with disease. Although some clinical studies have failed to 

demonstrate significant changes in the gut microbiota associated with lactulose 

administration, [367] others have shown positive effects, [368] as have a number of 

animal studies. [369, 370] Such a change may reduce the burden of proteolytic digestion 

and production of a range of harmful products such as indoles, amines and cresols. 

• Lactulose produces osmotic laxative effects contributing to reduced intestinal transit 

time, as well as to excretion of water, sodium, potassium, creatinine and hydrogen ions. 

Since constipation is a common problem in patients with CKD, these effects may be of 

clinical relevance and may be shared with other forms of fermentable dietary fibre [346, 

353, 371, 372]. 
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The range of effects of lactulose are summarised in Figure 68, p. 252. Lactulose has previously 

been trialled as a therapy in CKD with promising results, [373-376] although studies have been 

limited by short duration and a limited amount of clinical data collected.  

 

Hypothesis 

We sought to establish whether a high-fibre, prebiotic diet in animals with experimental uraemia 

might lead to successful manipulation of the gut microbiome in both control and uraemic 

animals, leading to potential health benefits including: 

• removal of nitrogenous waste from the body through the gut 

• a reduction in renal injury through the anti-inflammatory effects of short-chain fatty 

acids. 

 

 

Pilot data: using lactulose to improve outcomes in experimental uraemia 

An initial attempt was made to study these effects through administration of lactulose to rats with 

experimental uraemia. These attempts were unsatisfactory because of methodological difficulties 

in administering lactulose to rats, and although there were positive outcomes in terms of 

successful manipulation of the gut microbiome (with significant increases in SCFA producing 

bacteria) and a reduction in serum urea, the validity of these results were compromised by 
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overall loss in weight and reduced oral water intake in the rats administered lactulose, likely due 

to bacterial contamination of the lactulose solutions. Results from these experiments are 

summarised in Appendix 4. 

 

 

Main experiment: using fructo-oligosaccharide to improve outcomes in 

experimental uraemia 

Introduction 

Fructo-oligosaccharides consist of short-chain length fructose polymers, generally with a 

terminal glucose molecule, as represented in  

Figure 69, p. 253. Commercial preparations of FOS consist primarily of the GF2, GF3 and GF4 

molecules, and the same molecules lacking the terminal glucose, termed inuobiose (F2), 

inulotriose (F3) and inulotetraose (F4). The latter molecules are generally produced in 

production techniques involving the enzymatic degradation of longer chain inulins extracted 

from plant sources such as chicory root, the former by fructofunanosidation of sucrose. [377] 

FOS preparations have previously been demonstrated to have significant effects on the rodent 

microbiome, including especially increasing relative abundances of primary fibre degraders 

Bifidobacterium. [378, 379] Although there is some suggestion that high dose FOS 

supplementation may decrease butyrate producing organisms, [380] there is evidence that in the 

longer term they cause increased production of gut butyrate [381] and that a number of specialist 
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butyrate producing organisms (including Roseburia species and Faecalibacterium prausnitzii) 

grow well in FOS-supplemented growth media. [382] FOS preparations have been shown to 

cause increased production of all SCFA fractions in several in vivo experiments. [349, 383-385] 

Cellulose was chosen as a suitable control diet to compare with addition of FOS to rodent feed. 

The need for an additional, non- (or less-) fermentable form of dietary fibre was felt to be 

necessary in assessing the effect of FOS of rodent diets for two reasons: 

• Since the energy present in the fibre fraction of food is not readily available to 

mammalian hosts (except by virtue of bacterial fermentation), an animal consuming a 

certain quantity of a standard rodent diet with the addition of say 10% FOS would be 

consuming less energy that an animal consuming the same amount of an unaltered diet. 

• All forms of dietary fibre are expected to have bulking effects in addition to any effects 

exerted through bacterial metabolic products; using cellulose-added diets as a control for 

FOS-added diets offered a way of getting around these confounders to isolate the 

metabolic effects of FOS. 

Cellulose is the most abundant organic polymer on earth, being the chief constituent of plant cell 

walls and contributing to almost 60% of the biomass of wood. It has the chemical formula 

(C6H10O5)n, consisting of up to thousands of β-linked (1-4) molecules of D-glucose, as shown in 

Figure 70, p. 254.  

Cellulose is well tolerated in rodent diets, and associated with significant increases in stool 

volume. [386] Although there is evidence of limited bacterial metabolism of cellulose in rats, 
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[387, 388] nevertheless it has been shown to be much more resistant to fermentation than other 

forms of fibre (such as FOS) in a number of studies. [389-392] Thus it was felt to be a suitable 

control which was relatively resistant to bacterial fermentation and not associated with 

significant SCFA production. 

 

Methods 

Generation of experimental diets 

The experimental diet AIN-93M is a well-established rodent diet that was derived by the 

American Institute of Nutrition in order to supply in standardised and reliable forms all of the 

nutritional needs of laboratory rats. It contains 5% fibre in the form of cellulose. [393] It was 

used as the basis for generation of experimental diets, ordered from Special Diet Services, Essex, 

UK; based on standard pelleted AIN-93M. These two diets were: 

• 90% standard AIN-93M plus 10% powdered cellulose (hereafter referred to as the CELL 

diet) 

• 90% standard AIN-93M plus 10% powdered fructo-oligosaccharide, derived from 

chicory root (hereafter referred to as the FOS diet). 
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Animal work 

A total of 97 wild-type outbred Wistar IGS rats were purchased in four separate batches from 

Charles Rivers, Kent, UK. They were used in two main experiments, to investigate the effects of 

the FOS-containing diet on: 

• Chemically-induced uraemia, cohorts 1 and 2 

• Surgically-induced uraemia, cohorts 3 and 4 

The use of two cohorts of animals for each experiment, and two models of chronic uraemia, was 

to reduce the chance that the batch effects described previously would compromise the validity 

experimental findings. The different cohorts are described in Table 7, p. 255. 

All rats arrived at 7 weeks of age, and during a week-long acclimatisation period were moved 

between cages at least twice to allow gut microbial communities to homogenise. 

For the first experiment (chemically-induced uraemia), rats were rendered uraemic as described 

in chapter 2, using a four-week course of 0.75% adenine containing RM1 diet, with control 

animals receiving control diet (standard RM1). Animals were then randomised to receive 

experimental diets according to the proportions in Table 7 and sacrificed with collection of 

samples after 24 urinary and stool collection four weeks later. 

For the second experiment (surgically-induced uraemia), subtotal nephrectomy or sham 

procedures were carried out as detailed in chapter 2. Four weeks after the second stage of 

surgery, animals began to receive experimental diets according to the proportions in Table 7. 

Animals in cohort 3 were sacrificed with collection of samples after 24 urinary and stool 



229 

 

 

collection four weeks later. Caecal samples from this cohort were used to whole-genome 

metagenomic sequencing as detailed later. Animals in cohort 4 underwent 24-hour urine and 

stool sampling at the same stage as those in cohort 3, but then received broad spectrum antibiotic 

treatment with neomycin 0.5mg/kg/d and vancomycin 1mg/kg/d administered in drinking water 

for 10 days. After this period they underwent repeat 24-hour stool and urinary collection and 

then were sacrificed with collection of other samples. 

The experimental protocols for all animals are summarised in Table 8, p. 256. 

 

Calculation of total urine, stool and feed nitrogen 

Total nitrogen content of urine, stool and diet was measured using elemental analysers at the 

Department of Geography, Queen Mary University of London, Mile End Campus. 

Stool and feed: 

The wet weight of samples was accurately measured before the samples were freeze dried, the 

dry weight measured, and the samples were crushed. 11.66% cysteine and 46.65% urea were 

used as standards, and two random replicates were run for each sample. Analysis was carried out 

using a Thermo Flash Elemental Analyser 1112. After purging of air, a twin furnace protocol 

was used, with oxidation catalyst in the left-hand column and reduced copper in the quartz 

column. After the furnace columns were two inline scrubbers; the first 20% silica gel and 80% 

soda lime to remove excess water, and the second 100% soda lime to remove carbon. A final 

magnesium perchlorate filter was used to remove any residual water. A standard CHNS 
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separation column was then used before total nitrogen was quantified using a Thermal 

Conductivity Detector. 

Urine: 

Due to the extremely high nitrogen content, samples were diluted 1:250 in deionised water with a 

resistivity of >10MΩ. Standards of potassium nitrate at varying concentrations were used as 

standards, and two replicates were run for each sample. Analysis was then run using standard 

protocols on a Skalar Formacs HT TN (ND25) elemental analyser. 

 

Whole genome metagenomic sequencing of the gut microbiome 

Faecal samples from the surgically-induced uraemic cohort were used for whole-genome 

sequencing (WGS) metagenomic analysis of the gut microbiota. Samples from this cohort were 

chosen for this analysis instead of samples from one of the chemically-induced uraemia cohorts 

in order to avoid any influence of orally-administered adenine on gut bacteria. 

DNA was extracted using the Qiagen PowerSoil kit, as described previously, and sent for WGS 

using the Illumina Novaseq 4000 system, with the library prepared using the TruSeq Nano DNA 

kit, via Macrogen, Seoul, South Korea. Subsequent genome assembly was carried out by a 

collaborator (Professor Lesley Hoyles) at Nottingham Trent University, before analysis of 

abundance tables for organisms (according to 16S sequencing identities), COG functional 

classes, CAZy carbohydrate pathways and KEGG modules were analysed in house using the 

ALDEx2 package in R. [394] 
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Results 

Diets with added fibre were well tolerated by both control and uraemic rats 

For animals in cohort 1, weekly weights for all adenine-fed animals were static throughout the 

period of adenine administration, while weight in control animals rose rapidly during this period. 

After transfer to the experimental diet (AIN-93M, CELL or FOS), there was a period of fast 

catch-up growth in all uraemic animals with no differences between animals taking different 

diets. At the time of sacrifice, control animals were substantially heavier than other animals 

(mean 550g compared to means of 438g, 425g and 424g in the AIN, CELL and FOS groups 

respectively; p<0.001 by one-way ANOVA), with no differences between uraemic groups on 

different diets, Figure 71, Figure 72; p. 257 & 258. 

Animals receiving the FOS diet consumed less diet than animals in other groups. Significance 

was seen only when the FOS diet was compared to uraemic animals receiving AIN diet (mean 

FOS consumption 25.3g vs mean AIN consumption 31.23g, p=0.039 by Tukey’s post-hoc 

analysis), Figure 73, p. 259. 

These results were validated in the second adenine cohort; and in surgically-induced uraemia, 

cohort 3. In both of these cohorts, control animals were heavier than their uraemic counterparts; 

overall the animals in the chemically-induced cohort were lighter than those in the surgically-

induced group because the animals were two weeks younger at the time of sacrifice (because of 
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the additional 2-weeks required between the stages of surgery), and because the degree of 

uraemia is greater in the chemically-induced model, Figure 74, p. 260. 

 

The FOS diet significantly affected the macroscopic appearance of the lower gut, its contents, 
and stool  

Fibre supplementation using the CELL diet, but not the FOS diet, increased stool weight in 

uraemic animals compared to AIN diet, Figure 75, p. 261. Stool pellets from CELL animals had 

a notable paler and drier appearance than those from the other two groups, Figure 76, p. 262. 

There was a marked discrepancy between the appearance of colons and caeca at the time of 

sacrifice between FOS treated animals and all other groups. Animals being administered the FOS 

diet had much heavier caeca than other groups (7.188g compared to 3.625g, 4.238g and 4.013g 

in control, AIN and CELL groups, p<0.0001 for all comparisons, Figure 77, p. 263). Their caecal 

contents were liquid and contained gas, whereas the caecal contents from other groups had a 

viscous consistency, similar to putty, Figure 78, Figure 79; p. 264 & 265.  

The pH of caecal fluid was assessed directly after sacrifice using a calibrated pH probe. The 

mean pH in FOS treated animals was 6.451; significantly lower than in control (pH 7.178, 

p=0.0002), AIN fed (pH 7.34, p<0.0001) and CELL fed (pH 7.5, p<0.0001) animals 

(significance between groups assessed by post-hoc Tukey test after one-way ANOVA). The 

differences between other groups were not significant, Figure 80, p. 266. 
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These results, again, were validated in the confirmatory rat cohorts. In both control and uraemic 

animals in both the chemically-induced and surgically-induced cohorts, FOS treated animals had 

significantly heavier caeca than CELL treated animals, and the caecal pH was lower in animals 

on the FOS diet than in those receiving the CELL diet, Figure 81, Figure 82; p. 267 & 268. 

 

 

The FOS diet significantly reduced serum urea through increased gut clearance of 
nitrogenous waste 

Serum urea in FOS-fed uraemic animals in cohort 1 was more than 50% lower than serum urea 

in uraemic animals receiving AIN diet, (mean serum urea 10.7mmol/L in FOS-fed vs 

22.2mmol/L in AIN-fed animals, p=0.004 by Tukey’s post-hoc test following one-way 

ANOVA), Figure 83, p. 269. 

In the confirmatory cohorts, similar finds were seen in the chemically induced cohort: serum 

urea was 25.81 and 14.08mmol/L in the CELL and FOS groups respectively,  a 45.4% reduction 

in the FOS treated group, p<0.001). Across both surgically-induced uraemia cohorts, which 

resulted in a milder uraemic phenotype, there was nevertheless a significant 18.1% fall in serum 

urea from 12.96 to 9.84mmol/L in FOS treated animals (p=0.001), Figure 84, p. 270. 

By contrast, FOS feeding did not affect either serum creatinine or creatinine clearance in any of 

the cohorts; results from cohort 1 are shown in Figure 85, p. 271.  

Total nitrogen balance was calculated in the surgically-induced cohort. The FOS diet led, in 

uraemic animals, to a significant increase in stool nitrogen excretion (p=0.002), coupled to a 
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decrease in urinary nitrogen excretion. There were no differences between groups in total 

nitrogen intake, Figure 86, p. 272. 

 

Antibiotic treatment abolishes the urea-lowering effect of the FOS diet 

Animals from cohort 4 were bled eight weeks after the second stage of surgery, and then 

administered broad spectrum antibiotics (neomycin and vancomycin to target both gram positive 

and gram-negative organisms) for ten days before sacrifice. 

Whereas before antibiotic treatment, the FOS-fed animals had lower serum urea than those fed 

the CELL diet, after antibiotics this difference between groups was abolished, Figure 87, p. 273. 

 

Fermentable fibre lowers serum potassium 

Across both adenine treated cohorts, rats treated with FOS diet had lower serum potassium 

concentrations than those fed with both CELL and AIN diets (mean serum potassium in FOS fed 

animals was 4.6mmol/L, lower than means serum potassium in CELL fed animals of 5.2mmol/L, 

p=0.026; and in AIN-fed animals of 5.4mmol/L, p=0.02). In control animals, both CELL and 

FOS diets non-significantly decreased serum potassium compared to AIN, Figure 88, p. 274. 
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Fermentable fibre reduces polyuria and increases stool water content 

Both FOS-fed and CELL-fed animals were less polyuric than AIN-fed uraemic animals, passing 

on average 38.3ml and 40.1ml of urine per 24 hours, compared with 51.1ml in AIN-fed animals 

(p=0.032 for FOS-fed and p=0.058 for CELL-fed compared to AIN-fed). Correspondingly, they 

were less polydipsic, with FOS-fed animals drinking an average of 62.1ml and CELL-fed 

animals an average of 66.9mls compared to 75.5ml in AIN-fed uraemic animals (p=0.001 for 

FOS-fed and p=0.14 for CELL-fed compared to AIN-fed), Figure 89, p. 275. 

The reduction in polyuria is likely to be partially attributable to increased water clearance in 

stool. In uraemic animals, those fed FOS diet had a higher liquid fraction of stool (46%) than 

those fed CELL (35.6%, p=0.0025 by Sidak’s multiple comparison test after 2-way ANOVA), 

Figure 90, p. 276. 

 

Fermentable fibre, but not induction of experimental uraemia, has significant effects on 
composition of the gut microbiota 

Metagenomic data assembled from the whole-genome sequencing run of DNA extracted from 

the caecal fluid of animals in cohort 3 (surgically-induced uraemia) was used to determine the 

composition of the caecal bacterial community at species and higher taxonomic levels. The gut 

microbiota of twenty-four animals was compared: 

• Subtotal nephrectomy, CELL diet, n=6 

• Subtotal nephrectomy, FOS diet, n=6 



236 

 

 

• Sham surgery, CELL diet, n=6 

• Sham surgery, FOS diet, n=6 

 

Each sample contained a very similar total of observed species, implying that the sequencing 

depth was perfectly adequate and additional depth would be unlikely to yield any further 

compositional information, Figure 91, p. 277. 

Alpha diversity was assessed by a number of standard measures including the Shannon, Simpson 

and Inverse Simpson indices. Diet proved a significant source of variation in alpha diversity 

between samples (two-way ANOVA p=0.0027 by Shannon, p=0.0041 by Simpson and p=0.0037 

by Inverse Simpson indices); the FOS diet was in each case being associated with reduced alpha 

diversity, Figure 92, p. 278. 

Principal coordinate analysis confirmed that the main determinant for clustering between 

samples was diet, and that intervention class (uraemic vs control) caused minimal effect. 

Confirming this, Permutation Analysis of Variance (PerMANOVA) revealed that 46.3% of 

variance could be attributed to diet (p<0.001) whilst only 2.4% could be attributed to 

intervention class (p=0.75), Figure 93, p. 279. 

Sequencing reads were assigned taxonomic identities on the basis of k-mers using the GTDB 

classifier (https://gtdb.ecogenomic.org/), one of the most accurate and extensive genome-based 

databases available, curated by the University of Queensland. The 853 species represented 529 

genera, 223 families and 48 phyla. 

https://gtdb.ecogenomic.org/
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Bacterial composition was plotted at phylum level and confirmed earlier observations, that 

microbiota were similar between samples taken from animals on the same diet, regardless of 

intervention type. Microbiotas in the CELL groups had high abundances of phyla Firmicutes, 

Bacteroidetes and Verrucomicrobiota (these consisted largely of genus Akkermansia); whereas 

microbiotas in the FOS fed group had far lower relative abundances of Verrucomicrobiota and 

Firmicutes and instead high proportional abundances, more than 50% in some cases, of phylum 

Actinobacteria, which consisted largely of genus Bifidobacteria. These organisms were present 

at only very low levels in CELL fed animals, Figure 94, p. 280. 

The ALDEx2 package in R was then used to determine at the level of phylum, family, genus and 

class which taxa were differentially abundant between groups according to intervention class or 

diet. Effect plots were constructed at species level to visualise the degree to which changes in 

differential abundance of different organisms could be attributed either to intervention class or 

diet. These revealed no species differentially abundant based on intervention class, but multiple 

species differing in abundance between CELL and FOS treated groups, Figure 95, p. 281. 

At each of these taxonomic levels, the ALDEx2 ‘aldex.kw’ and ‘aldex.ttest’ functions were used 

to perform firstly a one way ANOVA to determine differences in means before groups, before-

post-hoc Dunn tests were carried out to determine differences between individual groups and the 

t-test to determine differences according to diet and intervention class. All were adjusted for 

multiple hypothesis testing using the Benjamini-Hochberg method. 
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As suggested by the dispersion plot above, there were virtually no differences between control 

and uraemic groups receiving the same diet type as defined by post-hoc Dunn’s tests, or between 

control and uraemic groups in the whole cohort determined by the T-test, at any taxonomic level.  

By contrast, diet caused extensive changes in bacterial composition: of the 48 phyla detected, 14 

were over-represented in CELL treated animals and 3 in those receiving FOS; these differentially 

abundant taxa were some of the most abundant taxa in the dataset, representing 63.6% of all 

organisms (44.6% of organisms belong to phyla significantly over-represented in CELL fed 

animals, 19% to phyla significantly over-represented in FOS fed animals.) 

There were numerous, high-level differences between the microbiota of animals fed FOS- or 

CELL supplemented diets. Broken down by phylum these included: 

• Within the most abundant phylum overall, Firmicutes: 

o Class Clostridia, which were the most abundant class overall and classified within 

the GTDB as subphylum Firmicutes_A, one of the two principal constituent 

classes within the phylum, were significantly over-represented in samples from 

CELL-fed animals accounting for 52.3% on reads in CELL-fed animals vs 31.9% 

in FOS-fed, p=0.0002).  

o Accordingly, the major family within this class, Lachnospiraceae, were likewise 

over-represented in CELL-fed rather than FOS-fed animals (41.8% vs 26.8% of 

total reads, p=0.005); however, at genus level a mixed pattern emerged: 
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 A number of genera within the family Lachnospiraceae were significantly 

increased in FOS-fed rather than CELL-fed samples, including a number 

of well-documented SCFA-producers such as Marvinbryantia (4.5% of 

reads in FOS-fed animals vs 0.09% in CELL-fed, P<0.0001), Blautia 

(1.8% of reads in FOS-fed samples vs 0.25% in CELL-fed, p<0.0001) and 

Dorea (0.98% of reads in FOS-fed vs 0.81% in CELL-fed, p=0.009)  

 Families within the family Lachnospiraceae showing increased abundance 

in CELL-fed animals were largely less-described organisms, uncultured 

and lacking a specific name. These included uncultured genus CAG-95 

(representing 10.2% of reads in CELL-fed samples vs 0.07% in FOS-fed, 

p<0.0001), uncultured genus UBA2882 (8.8% of reads in CELL-fed 

samples vs 0.05% in FOS-fed, p=0.0004), uncultured genus UBA3282 

(2.8% of reads in CELL-fed samples vs 0.12% in FOS-fed, p<0.0001), 

uncultured genus CAG-110 (2.4% of reads in CELL-fed samples vs 0.04% 

in FOS-fed, p<0.0001) and uncultured genus CAG-56 (1.8% of reads in 

CELL-fed samples vs 0.08% in FOS-fed, p<0.0001). Some known SCFA 

producers did increase in cell-fed animals, including genus Kineothrix 

(2.2% of reads in CELL-fed samples vs 0.09% in FOS-fed, p<0.0001) and 

subgenera from genus Eubacteria including Eubacterium_F (5.2% of 

reads in CELL-fed samples vs 0.07% in FOS-fed, p=0.0002), 

Eubacterium_J (0.23% of reads in CELL-fed samples vs 0.023% in FOS-
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fed, p<0.0001) and Eubacterium_R (0.4% of reads in CELL-fed samples 

vs 0.01% in FOS-fed, p=0.0002). 

These results are summarised in Figure 96, p. 283. 

o Class Bacilli, classified in the GTDB database under subphylum undifferentiated 

Firmicutes, were substantially over-represented in FOS-treated animals (6.4% of 

reads in FOS treated organisms compared to 2.6% in CELL treated, p<0.0001), 

although this was driven almost entirely by two outlier samples which as 

discussed in the legends to Figure 93 had high abundances of otherwise poorly 

represented organisms from the order Erysipelotrichales (including genera 

Absiella and Turicibacter). and from the order Lactobacillales (including genera 

Lactobacillus and Enterococcus).  

• Phylum Bacteroidota was the second best represented phylum overall, accounting for an 

average of 27.1% of total reads across all samples, with no abundance difference between 

groups according to diet. However, the two most abundant divisions within it showed 

significant differences between FOS-fed and CELL-fed animals: 

o In FOS-fed animals, family Bacteroidaceae accounted for 23% of all bacterial 

reads compared to 7.4% in CELL fed animals (p=0.006). This was accounted for 

almost entirely by a number of species from genus Bacteroides, including B. 

uniformis (13% of reads in FOS-fed vs 1.99% in CELL fed, p=0.002), B. 

salyersiae (3.55% vs 0.47%, p=0.005) and B. ovatus (3.54% vs 0.17%, 

p<0.0001), although the difference was chiefly driven by increases in a subset of 
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animals and were not seen universally. Conversely, B. intenstinalis was present at 

higher abundances in CELL-fed animals (2.8% in CELL-fed vs 0.17% in FOS-fed 

animals, p=0.02). 

o The other major subtaxa of phylum Bacteroidota to be represented in this dataset 

was family Rikenellenceae, which represented 10.1% of reads in CELL-fed 

animals but only 0.38% in FOS-fed (p=0.002). Almost all of this was accounted 

for by unnamed species sp002358415 from genus Alistipes (10.% of reads in 

CELL-fed vs <0.001% of reads in FOS-fed, p<0.0001). 

Results for phylum Bacteroidota are summarised in Figure 97, p. 284. 

• The phylum Actinobacteriota was massively over-represented in FOS-fed animals 

(27.3% of reads in FOS treated organisms compared to 1.7% in CELL treated, p<0.0001), 

caused entirely by significant increased in a number of species from genus 

Bifidobacterium, including B. animalis (by far the most abundant, accounting for almost 

all sequenced in this genus), and also B. pseudolongus, B. italicum and several others, 

Figure 98, p. 285. 

• Conversely, phylum Verrucomicrobiota was over-represented in CELL-fed animals, 

where it accounted for 13.5% of reads vs 0.11% in FOS-fed animals, p=0.052. 

Akkermansia muciniphilia accounted for almost all of this increase, Figure 99, p. 286. 
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• Phylum Proteobacteria accounted for 1.8% on reads in CELL fed animals but only 

0.98% in FOS-fed, p=0.0008. Families within this phylum showing increased abundances 

in CELL-fed animals included Enterobacteriaeceae, Neisseriaceae and Pasteurellaceae.  

• Abundances of a number of minor phyla were also increased in CELL-fed animals, 

including Deferribacterota (0.19% in CELL-fed vs <0.001% in FOS-fed, p=0.0002), 

Spirochaetota (0.1% vs 0.04%, p=0.048), Patescibacteria (0.06% vs 0.04%, p=0.027), 

Syngergistota (0.02% vs <0.0001%, p=0.0003) and others. No other taxa were 

significantly increased in FOS-fed animals beyond those mentioned above: 

Actinobacterota and the two Firmicutes sub-phyla. 

 

Fermentable fibre, but not induction of experimental uraemia, has significant effects on the 
functional capacity of the gut microbiota 

Analysis of the metabolic potential of the sequenced microbiota was carried out at a high 

functional level using COG identities (Clusters of Orthologous Genes), and then at the lower 

levels of KEGG orthologies and modules. In addition, because of the interest specifically in 

carbohydrate metabolism, CAZy (Carbohydrate Active enZYmes) categories were also 

compared between groups. 

As with the bacterial composition of the microbiota, the presence of uraemia did not affect the 

metagenomic profile of the gut microbiota at all, but FOS- vs CELL-diet strongly did (Figure 

100, p. 287). 
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When analysed by t-test with as the independent variable, none of the 24 major COG metabolic 

categories were different between control and uraemic animals whereas eight major COG 

metabolic categories were present in differential abundances between FOS and CELL diets. 

Most relevantly, genes involved in carbohydrate metabolism were increased in FOS-treated 

animals (diet accounting for 36.2% of variation in carbohydrate gene expression, p=0.029, 

uraemia vs control accounting for only 0.8% of variation, p=0.623), as were genes involved in 

lipid metabolism, including those involved in SCFA synthesis, Figure 101, p. 288. 

 

Carbohydrate metabolism 

Full analysis of individual metabolic pathways involved in carbohydrate metabolism is included 

in Appendix 6, p. 411. Briefly, samples from FOS-fed animals showed increases in various 

glycolytic pathways associated with release of simple sugars from complex carbohydrate 

polymers such as FOS, and also increases in a specific carbohydrate metabolism pathway, the 

fructose-6-phosphate division of the pentose phosphate pathway termed the ‘bifid shunt’ because 

of its centrality in carbohydrate metabolism in Bifidobacteria. 

 

Lipid metabolism 

Animals fed the FOS-diet had higher abundances of three of the four fatty acid metabolic 

modules represented in the database: M00082 (initiation of fatty acid synthesis), M00083 

(elongation of fatty acids) and M00086 (beta-oxidation, acyl-CoA synthesis). Modules M00082 
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and M00083 are directly involved in synthesis of the short chain fatty acids acetate and butyrate 

(Figure 102, p. 289). 
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Figure 61: Denis Burkitt popularised the idea that a deficiency of dietary fibre was a common 

aetiological factor in many diseases highly prevalent in Western populations. “In Africa, treating 

people who live largely off the land on vegetables they grow, I hardly ever saw cases of many of 

the most common diseases in the United States and England – including coronary heart disease, 

adult-onset diabetes, varicose veins, obesity, diverticulitis, appendicitis, gallstones, dental 

cavities, hemorrhoids, hiatal hernias and constipation. Western diets are so low on bulk and so 

dense in calories, that our intestines just don’t pass enough volume to remain healthy.” [283] 
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Figure 62: Differences in gut microbial populations between African (a) and European (b) 

children. African children had higher levels of faecal short chain fatty acids (c) and lower 

abundances of Gammaproteobacteria (d). From De Filippo et al, 2010. [278] 
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Figure 63: Molecular structure of the three commonest short chain fatty acids. Taken from 

Raman, 2016 [395]. 
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Figure 64: Principal routes of bacterial SCFA production. Taken from Deleu et al, 2021. [396] 
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Figure 65: Primary and secondary fibre degrading organisms. Taken from 

https://sites.tufts.edu/absorption/carbdigestion/, last accessed 2nd February 2022. 

 

  

https://sites.tufts.edu/absorption/carbdigestion/
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Figure 66: Dietary or therapeutic substances that may affect the microbiome. The relationships 

between the categories ‘dietary fibre’ and ‘prebiotics’ are illustrated. Taken from Gibson et al, 

2017. [339] 
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Figure 67: Lactulose is a disaccharide of galactose (left) and fructose (right). Taken from 

Wikimedia (Commons), downloaded from 

https://commons.wikimedia.org/wiki/File:Lactulose_structure.svg, last accessed 13th January 

2022. 

 

  

https://commons.wikimedia.org/wiki/File:Lactulose_structure.svg
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Figure 68: Beneficial effects of lactulose on gut transit time, nutrient absorption, the microbiome, 

protein versus carbohydrate metabolism and immune system function. One part of the figure is 

incorrect, in that lactulose fermentation decreases (not increases) gut pH. Taken from Panesar et 

al, 2011 [405] 
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Figure 69: The molecular structure FOS polymers. Sucrose (left, not itself an examples of FOS) 

is a simple disaccharide of glucose and fructose; the FOS molecules 1-kestose (GF2), nystose 

(GF3) and fructofuranosylnystose (GF4) are the 2-, 3- and 4- fructose polymers which are the 

shortest degree of polymerisation FOS molecules; once the degree of polymerisation exceeds 10 

the term FOS is no longer applied and molecules are instead referred to as inulins. Taken from 

Ahmad and Khalid, 2018. [397] 
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Figure 70: The chemical structure of cellulose. Taken from NeuroTIKER, Wikicommons, 

https://en.wikipedia.org/wiki/Cellulose#/media/File:Cellulose_Sessel.svg 
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Cohorts Number Uraemic intervention Groups 

1 32 Adenine-induced uraemia Control, standard AIN, n=8 

Uraemic, standard AIN, n=8 

Uraemic, CELL diet, n=8 

Uraemic, FOS diet, n=8 

2 28 Adenine-induced uraemia Control, CELL diet, n=6 

Control, FOS diet, n=6 

Uraemic, CELL diet, n=8 

Uraemic, FOS diet, n=8 

3 24 Subtotal nephrectomy Control, CELL diet, n=6 

Control, FOS diet, n=6 

Uraemic, CELL diet, n=6 

Uraemic, FOS diet, n=6 

4 13 Subtotal nephrectomy Uraemic, CELL diet, n=6 

Uraemic, FOS diet, n=7 

 

Table 7: Animal experiments carried out to assess the potential for FOS diets to ameliorate the 

phenotype of rat kidney disease. Cohorts 1 and 2 were administered either 0.75% adenine 

containing diet or control diet for 4 weeks to induce uraemia; after which they were switched to 

their experimental diet (AIN, FOS or CELL). Cohorts 3 and 4 underwent either subtotal 

nephrectomy or sham surgery, and then were switched to experimental diets (CELL or FOS) four 

weeks after surgery. 
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  Weeks 
1&2 

Weeks 
3&4 

Weeks 
5&6 

Weeks 
7&8 

Weeks 
9&10 

Weeks 
11&12 

Cull point 

Cohort 

1 

n=8 Control diet AIN diet   Start of week 9 

n=8 0.75% adenine AIN diet   Start of week 9 

n=8 0.75% adenine CELL diet   Start of week 9 

n=8 0.75% adenine FOS diet   Start of week 9 

Cohort 

2 

n=6 Control diet CELL diet   Start of week 9 

n=6 Control diet FOS diet   Start of week 9 

n=8 0.75% adenine CELL diet   Start of week 9 

n=8 0.75% adenine FOS diet   Start of week 9 

Cohort 

3 

n=6 Sham Control diet CELL diet  Start of week 11 

n=6 Sham Control diet FOS diet  Start of week 11 

n=6 SNx Control diet CELL diet  Start of week 11 

n=6 SNx Control diet FOS diet  Start of week 11 

Cohort 

4 

n=6 SNx Control diet CELL diet Abx Start of week 13 

n=7 SNx Control diet FOS diet Abx Start of week 13 

 

Table 8: Experimental protocols for fibre experiment. Interventions rendering rats control (dark 

blue) or uraemic (red) preceded experimental diets; either standard AIN (brown), CELL (light 

blue) or FOS (green). Animals in cohort 4 had blood and urine collected at the start of week 11  

(to allow direct comparison with cohort 3), and then were administered broad spectrum 

antibiotics for 10 days prior to sacrifice. Sham, sham surgery; SNX, subtotal nephrectomy; Abx, 

antibiotics. 
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Figure 71: Rat weights by week of experimental protocol for animal in experimental cohort 1. 

Means and standard errors are shown, grouped according to diet. The control animals had normal 

renal function, all three other groups were rendered uraemic through a four-week period of 

adenine administration, before being started on different experimental diets. 
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Figure 72: Weight at time of sacrifice according to the four experimental groups. 
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Figure 73: 24h diet consumption immediately prior to sacrifice according to the four 

experimental groups in cohort 1. One-way ANOVA demonstrated a significant difference among 

means (p=0.027), with the only significant difference between individual groups being that 

between animals receiving FOS diet compared to those receiving AIN diet (mean FOS 

consumption 25.3g vs mean AIN consumption 31.23g, p=0.039 by Tukey’s post-hoc analysis). 
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Figure 74: Weight at the time of sacrifice between control and uraemic animals on CELL (blue) 

and FOS (green) diets in chemically-induced uraemia (top) and surgically-induced uraemia 

(bottom) confirmatory cohorts. 
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Figure 75: 24h stool weight between animals in cohort 1, grouped according to experimental 

intervention and diet. Significance is assessed by Tukey’s post-hoc test following one-way 

ANOVA. 
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Figure 76: Selection of stool pellets from animals after 24h collection using metabolism cages. 

Pellets from animals fed the CELL diet were bulkier, paler and crumblier; pellets from animals 

fed the FOS diet were darker and softer. 
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Figure 77: Caecal weight measured at the time of sacrifice between experimental groups. 
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Figure 78: Caeca and caecal fluid from rats, photograph during specimen retrieval.  

 

  

    

 

Control (AIN diet) 

 

Uraemic, AIN diet 

 

Uraemic, CELL diet 

 

Uraemic, FOS diet 

    



265 

 

 

 

Figure 79: Colons from experimental rats, photograph during specimen retrieval.  
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Figure 80: Caecal pH measured at the time of sacrifice between experimental groups. 
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Figure 81: Confirmatory data: caecal weight at the time of sacrifice between control and uraemic 

animals on CELL and FOS diets in a second chemically-induced uraemia cohort (top) and a 

surgically-induced uraemia cohort (cohort 3, bottom). Animals receiving the CELL diet are 

shown in blue and animals receiving the FOS diet in green. 
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Figure 82: Confirmatory data: caecal pH at the time of sacrifice between control and uraemic 

animals on CELL and FOS diets in a second chemically-induced uraemia cohort (top) and a 

surgically-induced uraemia cohort (cohort 3, bottom). Animals receiving the CELL diet are 

shown in blue and animals receiving the FOS diet in green. 
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Figure 83: Serum urea at the time of sacrifice between control and uraemic animals. Significance 

is shown using Tukey’s post-hoc test after 1-way ANOVA. 
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Figure 84: Confirmatory data: serum between control and uraemic animals on CELL and FOS 

diets in a second chemically-induced uraemia cohort (top) and both surgically-induced uraemia 

cohorts (cohorts 3&4). Animals receiving the CELL diet are shown in blue and animals 

receiving the FOS diet in green. Blood was taken at sacrifice from animals in cohort 3, and by 

venesection, immediately before commencing antibiotics, but after previously identical treatment 

to experiment 3 animals, from those in experiment 4.
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Figure 85: Serum creatinine and creatinine clearance at the time of sacrifice between control and 

uraemic animals. Significance is shown using Tukey’s post-hoc test after 1-way ANOVA. 
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Figure 86: Total nitrogen balance in control and uraemic animals on CELL and FOS diets in the 

surgically-induced cohorts. Animals receiving the CELL diet are shown in blue and animals 

receiving the FOS diet in green. Significance is assessed using the Student t-test with Welch’s 

correction. 
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Figure 87: Serum urea in CELL- and FOS-fed animals, before and after a week of broad-

spectrum antibiotics. Significance between groups is shown by Tukey’s post-hoc analysis after 

two-way ANOVA. Antibiotic treatment abolished the urea-lowering effect of the FOS diet 

compared to the CELL diet. 

 

 



274 

 

 

C o n tro
l

U re
m

ic
0

2

4

6

8
S

e
ru

m
 p

o
ta

s
s

iu
m

, 
m

m
o

l/
L

p = 0 .0 2

p = 0 .0 2 6

 

Figure 88: Serum potassium at the time of sacrifice between differently fed control and uraemic 

animals in experiments 1 and 2. Significance is shown using Tukey’s post-hoc test after 2-way 

ANOVA. 
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Figure 89: 24h urine output (top) and water consumption (bottom) between differently fed 

control and uraemic animals in experiments 1 and 2. Significance is shown using Tukey’s post-

hoc test after 2-way ANOVA. Brown, AIN diet; blue, CELL diet; green, FOS diet.
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Figure 90: Composition of stool from control and uraemic animals fed CELL or FOS diet. 

Results are from cohort 3 (surgically-induced uraemia). Among uraemic animals there was a 

significant increase in the liquid component of stool, estimated by the difference in stool weight 

before and after freeze drying. Significance is assessed by Sidak’s multiple comparison test after 

2-way ANOVA.  
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Figure 91: Observed species per sample, grouped by intervention type and diet. There were no 

significant differences between groups. 
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Figure 92: Alpha diversity assessed by the Shannon (top) and Inverse Simpson (bottom) indices 

between samples, grouped according to experimental intervention and diet. Significance is 

assessed using Sidak’s post-hoc test after one-way ANOVA. 
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Figure 93: Principal coordinate plot of all samples based on species identity using a k-mers based 

approach. Each point represents the bacterial community of a particular animal subject, identified 

by diet (colour) and intervention (shape). The two outlying animals from the FOS group were 

both control animals and each had abnormally high abundances of (different but related) 

organisms seen only in tiny amounts in other samples; the bacterial composition of one had 52% 

of reads from genus Turicibacter and the bacterial composition of the other was 10.9% Absiella; 

although belonging to different families, these organisms share a common ancestry, both being 

from order Erysipelotrichales, class Bacilli. Despite these abnormalities, these samples otherwise 

shared similarities with other FOS-fed samples including high abundances of Bifidobacterium. 
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Figure 94: Composition of caecal microbiome at phylum level. Each bar represents the bacterial 

community of a particular animal subject, grouped by diet and intervention. The substantial 

proportional increases in Actinobacteriota in FOS-fed animals was almost entirely accounted for 

by an increase in genus Bifidobacterium. 
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Figure 95: Dispersion plots showing the effect of left, intervention class (control vs uraemic), 

and right, diet (CELL vs FOS), on the differential abundance of all species present in the data 

set. Each point represents a different species; those in red showed significantly different 

proportional abundances after correction for multiple hypothesis testing and an alpha value of 

0.05. Note the y-axis scales are different representing the far higher degree of variation between 

microbiota between samples according to diet than according to surgical intervention. 
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Figure 96: Proportional abundances of family Lachnospiraceae, and four genera within this 

family. Of these genera, two (Marvinbryantia and Blautia_A) were increased in FOS-fed animals 

and two (unnamed genus UBA2882 and Eubacterium F) were increased in CELL-fed animals. 

Significance is shown between FOS-fed (green) and CELL-fed (blue) animals within each 

intervention group (control or uraemic) using Sidak’s post-test analysis following two-way 

ANOVA. Diet proved a highly significant determinant of abundances for each taxa shown, as 

documented in the text. 
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Figure 97: Proportional abundances of phylum Bacteroidota and of the two best-represented 

families within this phylum, Bacteroidaceae and Rikenellaceae. Significance is shown between 

FOS-fed (green) and CELL-fed (blue) animals within each intervention group (control or 

uraemic) using Sidak’s post-test analysis following two-way ANOVA.  
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Figure 98: Proportional abundances of the genus Bifidobacterium, which made up a substantial 

proportion of the microbiota of almost all FOS-fed animals in green but was barely present in 

those fed the CELL diet in blue. Significance is shown between FOS-fed and CELL-fed animals 

within each intervention group (control or uraemic) using Sidak’s post-test analysis following 

two-way ANOVA.  
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Figure 99: Proportional abundances of the phylum Verrucomicrobiota, which made up a 

substantial proportion of the microbiota of almost all CELL-fed animals but was barely present 

in those fed the FOS diet. Almost all of these differences were accounted for by genus 

Akkermansia. Significance is shown between FOS-fed in green and CELL-fed animals in blue 

within each intervention group (control or uraemic) using Sidak’s post-test analysis following 

two-way ANOVA.  
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Figure 100: Dispersion plots showing the effect of, left, intervention class (control vs uraemic); 

and, right, diet (CELL vs FOS), on the differential abundance of all KEGG modules present in 

the data set. Each point represents a different KEGG module; those in red showed significantly 

different proportional abundances after correction for multiple hypothesis testing and an alpha 

value of 0.05. Note the difference in y-axis scales, confirming that diet had a far greater effect 

size than uraemia. 
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Figure 101: Read counts per sample of COG category G: carbohydrate metabolism (top) and 

category I: lipid metabolism (bottom). Means and standard deviations are shown. Diet 

significantly increased read counts in FOS-fed animals for carbohydrate metabolism (p=0.029 by 

two-way ANOVA) and lipid metabolism (p=0.022 by two-way ANOVA).
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Figure 102: Count reads per sample of KEGG modules M00082 and M00083. These are the two 

modules involved in biosynthesis of short chain fatty acids (see Error! Reference source not 

found., p. Error! Bookmark not defined.). Diet was a significant determinant of read counts 

for both modules (p=0.0002 for M00082 and p=0.004 for M00083) by two-way ANOVA.  
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Discussion 

The results presented in the previous chapter (chapter 4) questioned whether uraemia exerted any 

reproducible effect at all on the gut microbiota. In contrast, here we demonstrate that fermentable 

fibre massively alters the bacterial composition of the caecal microbiome in a consistent way in 

both control and uraemic animals. The effect of the FOS diet dwarfs any potential effect of 

uraemia, and the results presented here are consistent with published research elsewhere 

documenting similar effects of fermentable fibre on the gut microbiota. [378, 380] It can 

confidently be stated that the gut microbiota in uraemic animals is not fixed, and may be 

modulated by administration of fermentable fibre: if these results can be reproduced in humans, 

the gut becomes a realistic therapeutic target to improve outcomes in patients with CKD, 

regardless of the baseline composition of their resident gut flora.  

The results presented here also suggest that as well as modulating the gut microbiota, 

fermentable fibre may improve several aspects of the uraemic syndrome with potential benefit to 

patients. The commonest reasons why patients with advanced kidney start dialysis are typically 

recognised to be hyperkalaemia, acidosis, fluid overload and symptomatic uraemia (although 

acidosis is rarely a sole indication since it can generally be managed with oral base 

supplementation.) [398, 399]  Fermentable fibre may potentially address each of these problems.  

Disappointingly, we did not show any improvement in renal excretory function as measured by 

serum creatinine or creatinine clearance in these models. We had hoped that the anti-

inflammatory properties of SCFAs might have reduced renal fibrosis. It is not clear whether this 

is simply a function of the particular models of uraemia we chose (SNx does not model 
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inflammatory renal disease, and the adenine model produces such severe renal inflammation that 

any anti-inflammatory effects of SCFA may have been overwhelmed), or whether SCFA 

generation does not offer a realistic prospect of reducing renal fibrosis in any setting. Use of a 

third model of renal injury (such as unilateral ureteric obstruction, a classic model of renal 

fibrosis), may be effective in answering this question. 

 

Improvement in the uraemic syndrome 

Potassium reduction: The FOS-diet lowered serum potassium by 0.6 mmol/L in uraemic rats 

compared to those receiving the unsupplemented AIN diet (p=0.02) and by 0.512mmol/L 

compared to those receiving a CELL-supplemented diet (0.026). The gut as a route for potassium 

excretion in individuals with CKD has been well established for many years, with older 

potassium exchanges resins being supplanted by newer agents in recent years with excellent 

evidence of efficacy. Compared to the 0.5-0.6mmol/L potassium lowering effects we have 

demonstrated using FOS-feed in rats, in human trials, the two most widely-used gut-acting 

potassium binders have been shown to achieve reductions in serum potassium of 0.75mEg/L (for 

patiromer [400]) and 1.1mEq/L (for zirconium, [401]). 

The reason for the significant reduction in serum potassium is not immediately clear from this 

analysis, especially since in health almost all dietary potassium absorption occurs via passive 

transport in the small intestine. [402] Possible potassium-lowering mechanisms due to the effects 

of FOS include incorporation of luminal potassium into actively dividing bacteria, lowering 
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surrounding extracellular concentrations; pH dependent mechanisms in response to the massively 

increased intra-luminal SCFA production, or loss of potassium in the distal colon and rectum 

along with chloride as the colon secretes free water. [403] Another putative mechanism may be 

that reduced ammonium (NH3) absorption leads to reduced urea generation in the liver; since 

urea generation from NH3 generates bicarbonate from CO2, [404, 405] reduced urea generation 

in the context of FOS administration may therefore contribute to higher systemic bicarbonate 

concentrations, metabolic alkalosis and an intracellular shift of potassium. One limitation of this 

work is that we did not measure serum bicarbonate concentration or pH, or faecal potassium, so 

the mechanism of the hypokalaemia seen in these animals remains hypothetical. 

Whatever the mechanism, potassium-lowering effects of fermentable fibre may be especially 

important in humans with CKD. The renal diet suggested for such patients has been noted to be 

deficient in dietary fibre, partly because most forms of fibre come from fruit and vegetables that 

contain high amounts of potassium, making their consumption unsafe. [406] Dietary 

supplementation with synthetic or purified FOS, or other forms of fermentable fibre, may prove a 

safe way to increase dietary fibre with additional potassium-lowering effects. 

 

Reduced urine output: The FOS diet led to a 24% reduction in mean urine output compared to 

AIN-treated animals (from 51.14ml/24h in AIN-fed to 38.8ml/24h in FOS-fed animals, 

p=0.032). Loss of the ability to concentrate urine is a well-recognised part of the phenotype of 

patients with advanced renal disease, often noticed by patients as thirst, and the need to pass 

urine overnight. Ultimately, patients approaching end-stage renal failure begin to develop 
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symptomatic fluid overload, manifested as peripheral and pulmonary oedema, as secondary 

hyperaldosteronism leads to retention of salt and water, despite patients passing increased 

volumes of dilute urine. 

In these rats, despite there being no difference in renal excretory function as measured by 

creatinine clearance, the FOS diet was associated with reduced urinary volumes. A number of 

factors may have been at play, including increased gut clearance of water (as may be evidence 

from the increase liquid fraction of stool in these animals), reduced osmotic diuresis as a result of 

lower serum urea concentrations, and potentially preservation of the medullary osmotic gradient 

as a result of improved tubular function if it could be demonstrated there is less active 

inflammation in the renal interstitium as a result of the immunomodulatory functions of SCFA, 

although prior to histological examination of renal tissue this is impossible to say.  

Either way, the demonstrated fractional increase in stool water may have a number of beneficial 

effects, including: 

• Acting as an additional route of water excretion, allowing increased clearances of fluid 

volume for any given level of renal creatinine clearance, 

• Reducing the energy demand on the renal tubules which is represented by the need to 

concentrate urine; studies in humans have shown that preservation of renal concentrating 

ability may predict better outcomes in CKD, [407] 
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• Softening stool. Constipation is a major problem affecting the majority of patients with 

CKD, and can be difficult to treat. [371] If fermentable fibre softens stool it may offer 

symptomatic benefit to patients.  

 

Urea reduction: The FOS diet reduced serum urea by more than 50% in the severe, adenine-

induced model of uraemia (from 22.2 to 10.7mmol/L, p=0.004), and by 18.2% in the milder, 

surgical model of uraemia (from 12.03 to 9.85mmol/L, p=0.001).  

Results of total nitrogen analysis of feed, urine and stool suggest that the FOS diet does not 

affect dietary intake of nitrogen, but that it causes stool nitogen excretion to be significantly 

increased and urinary nitrogen excretion to be correspondingly reduced. Clearly, the guts of 

FOS-fed animals were macroscopically different from those of AIN or CELL-fed animals, with 

caeca and colons from FOS-fed animals being larger and containing softer contents, along with 

significant amounts of gas (probably methane and hydrogen from fermentation reactions), 

suggesting a high degree of metabolic activity. Importantly, the pH of the gut was significantly 

lower in FOS-fed animals, suggesting significant generation of short chain fatty acids which is 

crucial for the mechanism of gut elimination of nitrogen. Loss of the urea-lowering effect of the 

FOS-diet compared to the CELL-diet after a period of broad-spectrum antibiotic administration 

implies that the activity of the gut microbiota is crucial to the biological effects of FOS. It is 

clear that the FOS diet turns the colon into a major organ or nitrogen excretion. 
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Urea is produced by the urea cycle as the main end product of mammalian protein digestion, and 

the chief route of nitrogen excretion. [408] It accumulates in renal insufficiency as a result of 

impaired renal clearance (and disproportionately in the case of ‘pre-renal azotaemia’ as a result 

of increased tubular reabsorption due to low tubular flow rates). 

Elevated serum urea levels are a key component of the clinical syndrome of ‘uraemia’, and yet 

the precise toxicity of urea has long been doubted, and it has instead been considered a 

biomarker (performing better than serum creatinine in both pre-dialysis and dialysis populations) 

for other toxins that accumulate in parallel with urea. [409] Historically, some animal studies 

have suggested that urea itself is not toxic when administered over short periods into 

experimental subjects, [410, 411] whilst others suggested that it may be associated over 

prolonged exposure with organ damage and increased mortality. [411, 412]  

Healthy human subjects administered 2-3g of urea per kilogram of body weight, eight-hourly 

over a 24 hour period exhibited non-specifical neurological toxicity at serum concentrations over 

around 25mmol/L. [413] Conversely, patients with established renal disease tolerated lower 

doses of oral urea, but exhibited a conditioning response, becoming extremely symptomatic only 

at concentrations >50mmol/L. [414] Accidental ingestion of urea instead of salt caused 80 people 

to be hospitalised in South Africa in 1961, although all patients subsequently recovered. [415] 

Despite largely reassuring evidence of the safety of modestly increased urea concentrations in 

the short or medium term, concern has emerged that chronically elevated urea concentrations 

may be responsible for other ‘degenerative’ aspects of the CKD phenotype. [416-418] In vitro 

evidence has suggested that high urea concentrations may cause vascular inflammation and 
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calcification, [419, 420] adipocyte dysfunction driven by reactive-oxygen species, contributing 

to insulin resistance, [421, 422] leaky gut tight junctions and systemic inflammation [53] and 

protein carbamylation leading to anaemia, atherosclerosis, inflammation and a prematurely aged 

phenotype. [423-425]  

Historically, low protein diets (<0.6g/kg/d) have been advocated as a way of staving off 

symptoms of uraemia and delaying the initiation of renal replacement therapy. [426, 427] 

However, because of concerns that these may compromise the nutritional status of patients (who 

may already be avoiding high-potassium, high-sodium and high-phosphate foods), recent 

guidance has steered away from their routine use in CKD, despite some evidence that when 

supervised closely they can be safe and efficacious. [428, 429] 

Although the evidence for the toxicity of urea, as discreet from other ‘uraemic toxins’ for which 

it may act as a biomarker, is incomplete, there is nevertheless accumulating evidence both of its 

chronic toxicity and of the benefits of lowering dietary protein intake in prolonging the time 

before renal replacement therapy is required in the pre-dialysis context. Therefore, use of 

fermentable dietary fibre potentially offers benefit in this regard by reducing serum urea without 

requiring dietary protein restriction. 

 

Modulation of the gut microbiome 

The metagenomic whole-genome sequencing data was consistent with a dramatic transformation 

of the composition and function of the gut microbiota in FOS-fed animals. 
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Microbial communities in the gut display a crucial phenomenon that has been explored in the 

past decade and termed ‘cross-feeding’. [430] According to this phenomenon, species possessing 

different metabolic pathways can thrive in co-culture by exchanging metabolites; this behaviour 

when investigated between Bacteroides and Bifidobacteria subspecies was so reliable that it 

could be predicted using computer models based on monoculture and co-culture data. [431] 

A classic example of cross-feeding is seen in how bacterial communities process complex 

carbohydrates such as FOS. When communities are exposed to this type of fibre, cross-feeding 

may occur between species described as primary fermenters, which possess hydrolases capable 

of digesting long oligomers into simple sugars and subsequently metabolising them into simple 

fatty acids such as formate, acetate and propionate; and secondary fermenters capable of using 

acetate to produce butyrate, Figure 65, p. 249.  

We demonstrated expansion of three key taxa involved in the primary degradation of dietary 

fibre: genus Bifidobacteria (which has been shown to reproducibly increase in abundance in 

response to dietary supplementation by fermentable fibre in various systematic reviews, [436, 

437]), genus Bacteroides, and the subspecies Ruminoclostridium Bromii_B. 

Genus Bifidobacterium was by far the most abundant taxon in FOS-fed animals. It has long been 

regarded as a health-associated genus, and strains have been used in a number of trials as a 

probiotic in adult and paediatric populations. [169, 438, 439]  They are among the first 

organisms to colonise the gut of newborn infants, because of their unique abilities to degrade the 

human breast milk oligosaccharides. [440] These properties chiefly centre on a unique metabolic 

pathway, termed the ‘bifid shunt’ (or the fructose-6-phosphate phosphoketolase pathway), which 
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allows Bifidobacteria both to generate ATP from a range of 6-carbon sugars including fructose 

and glucose, but also to produce short-chain fatty acids, chiefly acetate, Figure 120. [441, 442] 

At the level of KEGG modules, we demonstrated significant increases in the bifid shunt and in 

other carbohydrate metabolism pathways in FOS-fed animals which is consistent with the 

dramatic increase in Bifidobacterium abundance, and a shift towards a more saccharolytic 

microbial phenotype (see additional data in appendix 6, p. 411). Acetate production both alters 

the gut luminal pH, offering a barrier to infection by pathogenic organisms, [443] but also 

provides a substrate for secondary fermenters. [444] 

Most secondary degraders are from the family Lachnospiraceae, within the phylum Firmicutes. 

This is a highly abundant family (accounting for just over 30% of reads per sample on average), 

and one in which its constituent genera display highly variable metabolic potential. [445, 446] 

Despite the CELL-fed animals having higher proportional abundances of Lachnospiraceae 

overall, this was chiefly driven by unnamed genera including UBA2882 and CAG-95 which have 

relatively poorly described metabolic activity, and overall genes involved in carbohydrate 

metabolism and SCFA synthesis were decreased in CELL-fed animals.  

The dramatic reduction in Akkermansia municiphilia from the microbiota of FOS-fed animals 

was unexpected. These are widely regarded as health-associated bacteria, [432, 433] and are 

known producers of short chain fatty acids. [434, 435] A. muciniphilia is known to be closely 

associated with the mucous layer in the colon, and to generate SCFA via degradation of mucins, 

rather than primarily from dietary oligosaccharides. Therefore it is possible that its relative 
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absence in FOS-fed animals may relate to changes in the mucin layer in these animals, relative to 

those being fed the CELL-diet; or to the organism simply being outcompeted by Bifidobacteria. 

The advantage of having undertaken WGS metagenomics is that regardless of changes in 

individual species abundances, we are able to say with confidence that genes involved in the 

initiation (M00082), elongation (M00083) and acyl-CoA synthesis of fatty acids (M00086, 

which can also be used in reverse to degrade SCFAs as an energy source), were increased in the 

gut microbiota of animals consuming the FOS diet. A number of organisms well described as 

SCFA producers were increased in these animals (eg Marvinbryantia, [449, 450] Dorea [451] 

and Blautia; [293, 452]); regardless of which species are involved, it is clear that a genotype shift 

has occurred in the gut population of these animals in keeping with increased generation of all 

three main SCFAs. Further metabolomic work is needed to confirm that this increase in genetic 

potential does indeed lead to increase faecal, serum and urine SCFA concentrations. 

 

 

Conclusion 

The results presented in this chapter demonstrate that it is possible to modulate the gut 

microbiome to achieve desired therapeutic effects in the host organism. 

We have additionally shown a prebiotic preparation of fermentable dietary fibre to: 

• increase faecal elimination of nitrogen, associated with significant lowering of serum 

urea concentrations, 
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• reduce serum potassium concentrations, 

• reduce polyuria, possibly by increasing the fluid fraction of stool. 

Although not yet quantified, it is likely these effects are mediated through generation of large 

amounts of short chain fatty acids (and this is suggested by a large decrease in caecal pH). In 

addition to the effects described above, SCFA have a range of other well-described benefits to 

health. 

The results of further work is awaited, including: 

• measuring faecal, serum and urine SCFA levels, 

• establishing whether the FOS diet reduces the degree of fibrosis or active inflammation in  

the kidneys of adenine-treated animals, 

• using a different model of renal impairment (unilateral ureteric obstruction) to establish 

whether the FOS-diet reduces fibrosis in this (shorter duration) model. 

It is unclear how these benefits may translate into a clinical context, but similar prebiotic 

preparations have demonstrated good tolerability and safety profiles in trials. 

The way is clear to attempt clinical trials to establish whether fermentable fibre may benefit 

patients, including: 

• Assessing whether fermentable fibre may delay the initiation of renal replacement 

therapy in the pre-dialysis population, 
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• Assessing whether fermentable fibre may slow or even prevent the decline in renal 

function at earlier stages of CKD, 

• Assessing the potential for fermentable fibre to produce beneficial effects on other 

aspects of the uraemic syndrome in individuals living with CKD – such as by improving 

indices of anaemia or CKD mineral and bone disease, 

• Assessing whether the shifts in gut microbiota seen in this experiment associate with 

reduced generation of well-describe uraemic toxins (for example, indoxyl sulphate, p-

cresyl sulphate or trimethyl oxide), 

• Assessing whether fermentable fibre may offer improved quality or length of life in 

patients with advanced CKD who opt to receive supportive care rather than dialysis, 

• Assessing whether fermentable fibre may allow patients receiving maintenance 

haemodialysis to reduce the amount of treatment they receive, 

• Assessing whether fermentable fibre may improve outcomes for renal transplant 

recipients – especially given the potential for SCFAs to reduce inflammation and promote 

immune tolerance. There is already some experimental work suggesting that both fibre 

and direct SCFA supplementation may reduce intestinal dysbiosis after kidney 

transplantation and induce donor-specific tolerance in mice.[453]   

  



302 

 

 

Summary 

• Administration of fermentable fibre, in the form of FOS-supplemented feed, can 

transcend the minimal effects of uraemia to produce substantial effects on the gut 

microbiota of both control and uraemic animals. 

• A fermentable fibre-enriched diet increased SCFA-producing organisms, and 

increased the abundance of bacterial metabolic pathways involved in carbohydrate 

metabolism, and in the initiation and elongation of SCFAs. 

• A fermentable fibre-enriched diet increased the volume of caecal contents and 

decreased its pH, transforming the gut into an organ of nitrogen excretion. 

• A fermentable fibre-enriched diet led to improvements in aspects of the uraemic 

syndrome including by reducing serum urea, reducing polyuria and reducing serum 

potassium. 

Conclusion: Fermentable fibre produces substantial and similar changes in the gut 

microbiome in both control and uraemic animals. These results suggest that fermentable 

fibre supplements may offer significant benefits to human subjects with CKD if this 

research can be translated into clinical practice. 
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Chapter 6 

Conclusions and plans for further work 
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The gut microbiota of a 90kg adult human male have been estimated to weigh approximately 

900g and to constitute roughly 1% of a human’s biomass. [454, 455] This compares to 2% for 

the liver, 1.8% for the brain, 0.35% for both kidneys and 0.18% for the spleen. [456] 

By comparison, the hundred trillion bacteria believed to colonise the guts of each adult contain a 

metagenome roughly one hundred times the size of the host genome, [457] with the total genetic 

diversity of bacteria discovered across multiple human hosts dwarfing human genetic diversity 

one hundred and fifty times. [458] 

As such, the gut microbiome deserves to be treated as of equivalent importance to the host 

organism as other major metabolically-active organs. Unlike host organs, though, its genetic 
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composition can be significantly altered by environmental factors, disease and therapeutic 

strategies; and it can exert negative or beneficial effects on the host as a result. 

This thesis has presented a large volume of work exploring the relationship between bacterial 

communities in the mouth and gut and their host organisms, in the context of experimental 

uraemia. The main findings are summarised below. 

 

Periodontal disease and the oral microbiome 

Both rats and mice with experimental uraemia are shown to have an increased distance between 

the alveolar bone ridge and the cemento-enamel junction. There is histological evidence of a 

failure of bone formation at the growing edge of alveolar bone, although with limited evidence of 

frank periodontal inflammation. The oral microbiota of uraemic animals is altered, with a 

reduction in counts of cultivatable bacteria, significant reductions in Streptococcus and Rothia 

species and an increase in Gram-negative anaerobic species. In vitro evidence suggests that 

increasing salivary urea may exert a selective pressure on bacterial populations favouring the 

growth of organisms associated with periodontal disease. Evidence from co-caging and oral 

microbial transfer experiments suggests that changes in the oral microbiome may transmit or 

modify the periodontal phenotype in recipient host organisms.  

Conclusion: uraemia may induce oral dysbiosis that subsequently affects bone formation at 

the alveolar bone ridge, causing periodontal disease. 
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Uraemia, the gut microbiome and the constraints of experimental techniques 

A substantial heterogeneity exists between the gut microbiotas of animals in different 

experimental batches that eclipses any observable effect of uraemia. Untargeted 1H-NMR 

spectroscopy further revealed that batch effects outweigh the effects of uraemia even in the 

urinary metabolome. The findings were validated by performing a meta-analysis of all available 

datasets studying the effect of experimental uraemia on the rodent gut microbiome in online 

repositories, where again batch variation dramatically exceeds that of uraemia. Broad trends 

were elicited which were present in some or all datasets, and that suggested certain taxa may be 

more or less competitive in the context of the uraemic gut, despite wide variations between 

groups.  

Conclusions:  

1) Contrary to what has been widely asserted, there is limited evidence that uraemia 

disrupts the composition of the gut microbiota. Gut dysbiosis attributable directly to 

uraemia probably does not play a major role in the aetiology of CKD. It is possible that other 

factors in humans with CKD may drive intestinal dysbiosis, such as dietary restrictions or use of 

antimicrobial or gut-acting medications.  

2) Evidence of a high degree of variability between the gut microbiomes of animals from 

different experimental batches poses major challenges to all forms of animal research, and 

may underlie the difficulties experienced in reproducing experimental research in some 

fields. 
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Fermentable fibre and the ability to manipulate the gut microbiome to achieve 

therapeutic effects 

Results in this thesis demonstrate that a diet high in fermentable fibre not only causes dramatic 

changes in the composition and metabolic potential gut microbiome, but also in the physical 

appearance and chemical environment of the gut itself. Supplementation with fermentable fibre 

leads to reductions in serum urea, serum potassium and polyuria, leading to improvements in the 

disease phenotype of the host organism itself.  

Conclusion: these results suggest that fermentable fibre supplements may offer significant 

benefits to human subjects with CKD if this research can be translated into clinical 

practice. 

 

 

Opportunities for further research arising from the findings in this thesis would include: 

• Establishing the role for dental screening and treatment in addressing periodontal 

disease in patients with CKD. It may be that they benefit from standard non-surgical 

periodontal treatment, which has demonstrated efficacy in PD in the general population; 

it may be that such treatment might improve aspects of systemic disease such as chronic 

inflammation, cardiovascular disease and malnutrition. Alternatively, it may be that there 

are ways of addressing particular features of uraemic periodontal disease that are less 
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relevant in periodontal disease in the general population: for instance, dysbiosis caused 

by high salivary urea concentrations. 

• Establishing ways of addressing the problems of batch variation in animal research. 

Because the implications of batch variation between the microbiomes of experimental 

animals are potentially so broad, affecting biological processes not directly associated 

with the gut microbiota, achieving standards to ensure that this variability is minimised 

hold the promise of improving the reproducibility of research across the board. Minimum 

standards should be developed for documenting the origins, husbandry, diet and caging or 

experimental animals; researchers should be encouraged to perform studies in several 

batches of animals and to document whether effects are seen uniformly between groups. 

In specific microbiome studies, using animals as their own controls, comparing 

microbiota before and after a given intervention may prove more effective than the 

traditional approach of comparing the microbiotas of different control and intervention 

animals. 

• Developing the use of meta-analysis in basic sciences research. The use of online 

repositories so that results can easily be compared between similar experiments 

conducting in diverse settings – such as the meta-analysis included in this thesis – allow 

more confident conclusions to be reached without a substantial increase in animal use by 

all groups. 
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• Completing experimental work around the effect of fermentable fibre in experimental 

uraemia, including assessing the effects on SCFA generation and renal fibrosis. In 

particular, confirming that fermentable fibre-enriched diets do increase SCFA 

concentrations, and establishing whether this affects histological evidence of kidney 

fibrosis or inflammation are obvious next steps. 

• Performing clinical trials to assess the efficacy of fermentable fibre in ameliorating the 

uraemic phenotype in patients with CKD. Fermentable fibre is not a magic bullet, and 

CKD is likely for most to remain a progressive illness requiring renal replacement 

therapy for most patients. But if this point can be delayed, if the effectiveness of renal 

replacement therapy can be supplemented, if the systemic effects of renal failure can be 

minimised, then dietary fibre has the potential to be of significant benefit to patients. 

 

Rather than regard the gut as a toxic reservoir of potential pathogens, the results presented in this 

thesis show the potential for bacterial activity to be utilised to provide significant benefit to the 

host. The challenge now is to build on what has been achieved here and try to deliver tangible 

benefits for patients. 
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Appendix 1 – Acknowledgement of the work 
of others 
 

Below is a list of all experimental work completed, identifying and acknowledging the 

contributions of others. 

 

Animal work 

The primary responsibility for all animal work belonged to Julius Kieswich, who carried out all 

purchasing, surgery, diet administration and basic husbandry. David Randall was involved in 

overseeing the experimental design of all experiments, specifying experimental diets, carrying 

out observations relating to metabolic caging (eg making up and measuring 24h urine volumes, 

water consumption, diet intake etc), and carrying out most observations at the time of cull, 

including caecal weights and pH measurements, taking photographs, and retrieving, processing 

and storing most samples. 

 

Analysis of bone loss 

David Randall completed chemical and manual defleshing of all rodent heads. Monometric 

determination of bone loss was carried out by Asil Alsam using a dissecting microscope and 

ImageJ software. Statistical analysis was carried out by David Randall. 
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Preparation of jaw samples for light microscopy and immunohistochemistry 

David Randall developed a method for decalcifying rat jaws using formic acid, and subsequently 

completed this work. Decalcified samples were them embedded by Asil Alsam before being 

sectioned at the Barts Cancer Institute (BCI), or by Steve Cannon at the Blizard Institute. Asil 

Alsam carried out the immunohistochemistry. 

 

Measurement of rat serum PTH concentration 

This was carried out jointly by David Randall and Julius Kieswich. 

 

Micro computed tomography 

David supplied defleshed samples to the micro-CT department at Queen Mary University of 

London, Mile End campus. Scanning was carried out by David Mills, with parameters set by 

Graham Davies. Analysis of images was carried out by David Randall using TomCat software 

developed by Graham Davies. 
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Scanning electron microscopy 

David Randall supplied sectioned and whole (wet) jaw samples to Alan Boyde. They were 

prepared for examination by Alan Boyde and Maureen Aurora and scanned by Alan Boyde. 

 

Cultural microbiology 

All cultural microbiology was carried out by David Randall, including DNA extraction and 16S 

PCR from isolated organisms. John’s transport medium had been produced by Susan Joseph and 

Joe Aduse-Opoku at the Blizard Institute and later the Department of Oral Health, Dentistry and 

Orofacial Sciences at King’s College London. All additional in vitro work (urease activity, urea 

tolerance) was also carried out by David Randall. 

 

NGS sequencing of oral swabs 

David Randall completed all steps, including DNA extraction, PCR, library preparation and 

quantification of DNA for sequencing.  
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Analysis of saliva 

David Randall supervised saliva collection carried out jointly with Julius Kieswich, based on a 

protocol from Gordon Proctor and Guy Carpenter. David Randall qualified serum and salivary 

urea using colorimetric analysis. 

 

NGS sequencing of DNA from stool samples of first two rat cohorts 

David Randall extracted the DNA, which was transferred to Lesley Hoyles for quantification. It 

was then sent to a third party provider for library preparation, PCR and sequencing. Lesley 

Hoyles completed early parts of the subsequent data processing, including trimming of 

sequencing reads, assembly of reads and assignment of taxonomic identities. All subsequent data 

analysis of these samples was carried out by David Randall. 

 

NGS sequencing of subsequent rat and mouse stool samples 

All steps, including DNA extraction, PCR, library preparation and quantification of DNA for 

sequencing, were carried out by David Randall.  

 

Analysis of all NGS bioinformatic data 

This was entirely carried out by David Randall. 
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H1-NMR spectroscopy of urine samples 

A first batch of samples were prepared for analysis by Jonathan Swann at Imperial College. A 

second batch were prepared for analysis by David Randall. All analysis of spectra, identification 

of metabolites, relative quantification and statistical analysis of both batches was carried out by 

David Randall. 

 

Metaanalysis 

All aspects of data retrieval and analysis were completed by David Randall. 

 

Whole genome sequencing 

David Randall collected and processed caecal fluid samples and extracted, purified and 

quantified DNA. Sequencing was carried out by Macrogen. Early steps of data analysis including 

assembly of genomes and functional attribution, which required high-performance computing, 

was carried out by Lesley Hoyles. All subsequent steps were carried out by David Randall. 
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Total nitrogen quantification 

David Randall conveyed samples to the Department of Geography at QMUL, where total 

nitrogen was quantified under the supervision of Michelle Day. David Randall analysed the data 

in the context of total water, feed, stool and urine quantities. 
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Appendix 2: Extra microbiological methods 
 

Processing NGS sequencing data 

Outputs from MiSeq sequencing providers are generally supplied de-multiplexed (ie, reads are 

grouped into individual FASTQ format files for each sample). However, several steps are 

required before the data is in a form in which can be used to perform analyses, and often these 

steps require considerable computing power and memory space. A number of ‘pipelines’ have 

been developed to help semi-automate this process, including QIIME/QIIME2 [459], Mothur 

[460] and DADA2 [461]. The steps presented below are based on the DADA2 pipeline but are 

illustrative of the approaches taken in other sequencing pathways.  

Assessing sequence quality 

This is a step unique to the DADA2 pathway. The FASTQ file format is shown in Figure 103, p. 

368, and includes for each sequence (typically many thousand for gut samples, fewer in lower 

biomass samples), an initial identifier code (beginning with ‘@’), followed by the genetic 

sequence (second line), followed by ‘+’, followed by quality data (based on ASCII scale with, 

generally, punctuation and numbers representing low quality and capitals and lower case letters 

representing the highest), corresponding to each individual base of the genetic sequence.   

The DADA2 pipeline is unique among the NGS pipelines in making use of this quality data in 

order to delineate true sample variants (which can be identified as such when they differ from 

other sequences in high-quality regions of sequencing), from variants due to sequencing artefacts 
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(differences in low-quality regions) [461]. The DADA2 algorithm can plot forward and reverse 

quality plots (eg Figure 104, p. 369 these are shown for sequencing data from two of rat oral 

samples presented in chapter three). The x-axis represents the position along the sequence read 

(up to ~250bp), the y axis is logarithmic representing the quality score at each position: 20 

indicates a 1:100 chance of the assigned base being incorrect, 30 a 1:1000 chance. The green line 

represents the median quality score across all reads in the sample at any individual point in the 

sequence, and the orange lines the inter-quartile range. As expected, quality is much better for 

forward than for reverse reads, which is taken into account during further data processing as 

outlined below. 

Filter and trim 

On the basis of the quality plots, decisions can be made about where to trim sequences (for 

example, based on the quality plots above, a decision may be made to aim for a median quality 

score of >1:1000, and forward reads were trimmed to 230bp length, and reverse reads to 140bp). 

A trade-off must sometimes be made between trimming to eliminate lower quality reads, whilst 

maintaining sufficient overlap (>20bp) to allow forward and reverse reads to be correctly 

aligned. Further decisions can be made within the DADA2 algorithm on the number of errors 

that are accepted in order to maintain alignment quality whilst not rejecting too much sample 

data. 

Dereplication 

Identical reads are then grouped together into unique amplicon sequence variants (ASVs), 

maintaining abundance data to allow for subsequent analysis. 
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Merging paired reads 

Based on a minimum 20bp overlap, forward and reverse reads are combined to form full length 

(in the case of the V1-V2 amplicon, approximately 320bp), denoised sequences. 

Constructing a sequence table 

The earlier-stored abundance data is now used to construct a sequence table indicating the 

frequency by which each individual sequence was seen in each sample. 

Removing chimeras 

Any misassembled sequences (that can be exactly assembled by partial reads from two more-

abundant ‘parent’ sequences) are removed. 

Assigning taxonomy 

Each unique sequence are assigned a taxonomic identity using a publicly available bacterial 

database such as SILVA [93], using a naive Bayesian clustering method. 

 

Further pre-processing  

The output of the DADA2 pipeline is a sequence table, with assigned taxonomy for each of the 

sequences included. Further data processing can be carried out using other software, for instance 

the R package phyloseq [462]. A number of further decisions must be made, and no consensus 

exists on ‘best practice’ in a number of key areas [463], leading to significant concerns about the 

reproducibility of poorly-conducted microbiome research [464]. 
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Treatment of negative ‘kitome’ control samples 

Published evidence suggests that contamination of laboratory reagents and equipment by DNA 

from environmental bacteria is ubiquitous and highly variable between reagent batches, making 

the use of negative ‘kitome’ controls obligatory in amplicon sequencing experiments [465, 466]. 

Several software packages can be used in order to remove contaminating bacterial sequences 

from datasets, including the Cutadapt  package in QIIME, [467] or the Decontam package in R, 

[468] built to work with phyloseq objects. The latter offers options to remove contaminants 

based on the frequency with which they occur adjusted to the DNA concentration in raw DNA 

samples, or based simply on their presence in negative control samples. 

Removal of low abundance bacterial taxa 

Several authors suggest removal of low abundance bacterial taxa, including ‘singletons’ or 

sequences that are present in only one sample, prior to microbiome analysis, in order to avoid 

implicating spurious diversity to variants that actually simply represent sequencing artefacts or 

low level contaminants (for instance this is the approach advocated by McMurdie and Holmes 

[462]). However other studies suggest that singletons and low abundance taxa may actually be 

crucial in understanding microbial variance [469], and that the DADA2 formula, by 

incorporating sequencing quality data, offers the potential to tell true from spurious variation 

[461]. 

Rarefying data 

Differences in sequencing depth can lead to false assumptions about diversity and the differential 

abundance of individual taxa [470]. Rarefaction (where all samples are subsampled at random to 
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the same number of reads, Figure 105, p. 370) offers a solution from environmental ecology to 

even up between-sample differences in sampling depth. However, its use has been characterised 

as wasteful [471] and insufficient in controlling for the problems of depth variation. [97, 472] In 

view of the various new compositional statistical techniques now available (reviewed below), 

rarefying data is increasingly viewed as an outmoded form of data analysis, although it can be 

used to give confidence that sequencing has been performed to an adequate depth, and as a 

measure of the alpha diversity of samples. 

 

Statistical approaches to amplicon sequencing data 

Compositional data analysis (CoDA) 

Next generation sequencing data from microbial communities is unlike much other biological 

data because it represents a (hopefully representative) compositional subset of a larger bacterial 

community, and has a ‘sum to one’ character that renders many standard statistical methods 

inappropriate. [473] For example, an observed rise in the abundance of one species, A, will 

necessarily lead to an observed corresponding fall in other species; it is impossible to tell 

whether these results arise from an absolute increase in species A or an absolute decrease in the 

other species. [472] 

Although technically insoluble, a number of approaches have been developed to handle the 

complexities of compositional data analysis, most based around log-ratio transformation of raw 

data, without requiring rarefaction or other normalisation of data counts. The ANCOM [224] and 
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philr [474] algorithms are each examples of this kind of approach (both requiring pseudocounts 

to be added throughout the sequence table, to deal with the problem of zeroes), and allow the 

following fundamental exploratory tools of ecological analysis to be undertaken. 

 

Alpha diversity 

This is a measure of intra-sample variation, which may be thought of conceptually as the 

probability, if two features are drawn at random from a given population, that they will be of 

different species. In environmental ecology, a field sown with wheat has a low alpha diversity 

whilst a rainforest has high alpha diversity. A number of methods are available for measuring 

alpha diversity, ranging from the raw number of species present within a sample, to indexes 

assessing the relative distribution of species abundance within samples, such as the Simpson 

[475] or Shannon [476] indices. Interestingly, different patterns have emerged in diversity-

disease association studies between the oral microbiome and the gut microbiome: whereas in the 

gut, many disease states are associated with reduced alpha diversity [477]; in the mouth the 

opposite seems to be the case in experimental models, with periodontitis often associating with 

increased alpha diversity, [217] although real-world clinical data suggests that patients with 

stable periodontal disease may show reductions in alpha diversity. [478] 
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Beta diversity 

This is a measure of between-sample variation, and can be calculated using a variety of formulae 

that produce distance matrices between individual samples, such as the Bray-Curtis dissimilarity 

[479] or the Jaccard similarity [480] scores. Phylogenetic distance can be used instead of simple 

presence/absence or abundance data, for instance to calculate the UniFrac distance. [481] 

Although some of these methods are not valid for use with compositional data, the philr 

algorithm used in tandem with a phylogenetic tree allows construction of a dissimilarity matrix 

in Euclidean space, with subsequent plotting of ordination to assess sample clustering. 

Beta diversity scores can be used to construct a distance matrix, which describes how dissimilar 

samples are from each other. Such matrices can be used to construct ordination models using 

various methods, typically employing multiple dimensions, that can then be plotted to give a 

visual representation of how closely related different samples are, to identify outliers, and to 

detect patterns of differential clustering. Advanced statistical techniques such as permutational 

analysis of variance (PerMANOVA) [482] or orthogonal projection to latent squares 

discriminant analysis (OPLS-DA) [483] can be used to assess the degree of variance explained 

by independent experimental variables, and to estimate the significance of any associations. 

Homogeneity of dispersion within groups can be used to assess whether a particular 

experimental condition causes individual samples to disperse from each other using different 

beta diversity indices. [484] 
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Abundance changes in individual taxa 

Using inbuilt functionality in microbiome data processing tools such as Phyloseq, relative 

abundance data can be agglomerated at higher taxonomic levels (genus, family, class, order and 

phylum), and abundance differences can be assessed using the ANCOM tool, which uses a 

variety of conventional statistical parametric and non-parametric tests in log-ratio transformed 

data with correction for multiple-hypothesis testing using the Benjamini-Hochberg method. 

[224] 

 

Analysis of the oral microbiota using bacterial culture 

Analysis of the oral microbiome 

Oral swabs were taken from animals by agitating sterile cotton swabs against the molars of rats 

or mice being held in the scruff position for a period of 30 seconds [127]. Swabs were then 

placed into 100µl of John’s transport medium and transferred directly to the laboratory, where 

they were vortexed for 30 seconds to mobilize cells and 30µl was removed for culture. The 

remaining transport medium and swab was frozen at -80oC for subsequent DNA extraction. 

John’s transport media was made and autoclaved in-house from the following ingredients: 

• Yeast Extract 0.5g 100ml-1  

• Protease Peptone 0.1g 100ml-1  

• Sodium Chloride 0.85g 100ml-1  
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• Cysteine Hydrochloride 0.05g 100ml-1  

• Sodium Hydrogen Phosphate 0.085g 100ml-1  

• Tween 80 0.1ml 100ml-1  

• Glycerol 15ml 100ml-1  

• De-ionised water 85ml 100ml-1  

The pH was adjusted to pH7.0 +/- 0.1 with 1M Sodium Hydroxide. The media was then 

autoclaved and decanted into sterile universal pots and stored at 4o C. 

 

Culture analysis 

Transport medium withdrawn for culture was serially diluted and spread onto blood agar plates 

containing 5% defibrinated horse blood (TCS Biosciences, UK) before being incubated under 

both aerobic and anaerobic conditions (80% N2, 10% H2 and 10% CO2) for 48 hours at 37oC. 

After this, colonies were counted according to morphology and grown to purity on new blood 

agar plates. DNA was extracted using the GenElute Bacterial Genomic DNA extraction kit 

(Sigma Aldrich, UK). PCR products were cleaned up using the NucleoSpin® Gel and PCR 

clean-up kit (Machery-Nagel, Germany), and then identified using Sanger sequencing of the 

whole 16S rRNA gene (Eurofins Scientific, Luxembourg), using the widely-used 27F-1492R 

primer pair. Consensus sequences of forward and reverse reads were assembled using the 

BioEdit Sequence Alignment Editor [485], full length 16S rRNA gene sequences were 

assembled from forward and reverse reads using the CAP3 Contig Assembly Programme [486] 

available online via the Pôle Rhône-Alpes de Bioinformatique Site 
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(http://doua.prabi.fr/software/cap3, last accessed 13th January 2022). All consensus sequences 

were >1400 base pairs in length and the mean length was 1456bp.  

All full-length 16S sequences have been supplied to curators of the rodent oral microbiome 

database where they formed part of the founding collection. [487] 

Isolates were identified by comparing their 16S rRNA gene sequences with reference datasets 

using both the NCBI Nucleotide BLAST database (https://blast.ncbi.nlm.nih.gov/Blast.cgi last 

accessed 13th January 2022), and the Ribosomal Database Project (RDP) [488] online search 

tool (https://rdp.cme.msu.edu/index.jsp last accessed 13th January 2022). In many cases these 

tools agreed on a species level identification for the isolate, but in some cases agreement between 

the two was only at higher taxonomic levels (such as in the case of different species of 

Streptococcus or Enterobacteriaceae). Thus, for all isolates, full-length reference 16S rRNA 

gene sequences for all species within the genus identified by BLAST and RDP search were 

downloaded from the RDP Hierarchy Browser. These reference sequences were aligned with the 

sequences from our research isolates, trimmed to a uniform length and used to construct a 

maximum likelihood tree, using MEGA [489] version 7. Pairwise distances between all isolates 

within a particular genus and all references sequences within that genus were calculated and used 

to generate a distance matrix. 

Species level identification was determined when possible at >98.5% sequence identity. Isolates 

that failed to obtain any match at this level were treated as potential novel species. One was a 

Streptococcus species (4 isolates) with a closest proximity to S. danieliae at 97.33% and another 

was a Pasteurella species (closes match being P. pneumotropica at 94.7%). 

http://doua.prabi.fr/software/cap3
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://rdp.cme.msu.edu/index.jsp
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For the purposes of subsequent in vitro microbiological work (urease testing and calculation of 

the mean inhibitory concentration of urea), where more than one isolate was assigned to a 

particular species identity, differences in in vitro characteristics were resolved for subsequent 

analysis by treating all isolates assigned to one species as urease positive if one isolate of that 

species was urease positive, and all isolates within a single species identification as possessing 

the highest urea tolerance of any isolate in that species. 

 

Analysis of cultured microbiome data 

Once assigned a species identity, the abundance of each isolate (log10 of colony forming 

units/ml) was carried out using Microsoft Excel and GraphPad Prism, using the Student t-test 

with Welch’s correction to assess difference between growth in uraemic animals and growth in 

controls. Comparisons were made at species level and then aggregated to allow comparisons at 

higher taxonomic levels. 

 

Additional in vitro bacterial work 

In vitro assessment of urease activity and tolerance of variable urea concentrations were assessed 

for all bacterial isolates after they were grown to purity on 5% blood agar plates under standard 

aerobic or anaerobic conditions. 

Measurement of urease activity: Urease activity was assessed in all isolates by culturing under 

either aerobic or anaerobic conditions on Christensen’s urea agar (Sigma-Aldrich) at 37oC. A 
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positive urease result was recorded if there was a colour change to purple, and the sample was re-

grown if there was no discernible growth on the top of the agar.  

Calculation of mean inhibitory concentration of urea: Two broths were used to assess bacterial 

growth at different concentrations of urea: Iso-sensitest broth (ThermoFisher Scientific) and 

Brain-Heart Infusion (BHI) broth (SigmaAldrich). The BHI broth was used for some samples 

after they could not be grown after several attempts in Iso-sensitest broth. One isolate (eventually 

identified as Haemophilus parainfluenzae) did not grow in either broth and after researching its 

specific growth requirements in the published literature, eventually grew well after filter-

sterilized hemin and nicotinamide adenine dinucleotide were added to the growth medium.  

Preparations of both broths were prepared at variably stronger concentrations than the 

manufacturer’s instructions would suggest so that when diluted with different concentrations of 

filter-sterilized 60% urea solution, broths with eventual concentrations of 0%, 4%, 8%, 12%, 

18% and 24% urea ensued. 

Bacteria grown to purity on blood agar were then transferred into 2ml sterile phosphate buffered 

saline (PBS). A 1ml aliquot was assessed using a spectrophotometer at 600nm and the remainder 

of the bacterial solution further diluted with sterile PBS to achieve a standard turbidity of 0.5 

McFarland units, equating to a concentration of bacteria of 1.5x108 colony forming units/ml 

(cfu/ml). These solutions were further diluted 50-fold to achieve an approximate concentration of 

3x106 cfu/ml, and then 34µl of this bacterial preparation were added to 200µl of varying 

concentrations of urea broth in a 96-well plate, to achieve 234µl incubations each containing 
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approximately 5x105cfu bacteria in eventual urea concentrations of 0%, 3.3%, 6.6%, 10%, 15% 

and 20%. 

These plates were then incubated at 37o in either aerobic or anaerobic conditions for 24 hours 

before being read on a plate reader at 620nm. The mean inhibitory concentration was defined for 

each organism as the urea concentration at which the optical density of the solution was 

decreased to less than 10% of the difference between 0% urea and control (non-inoculated) 

wells. One isolate did not achieve sufficient growth to allow calculation of MIC. 

 

Analysis of the oral microbiota via next-generation sequencing 

A number of proprietary kit-based methods are available, and we began by using the FastDNA© 

kit from MP Bio, which uses mechanical and chemical means to degrade cell walls and release 

DNA (through bead beating at 24,000 rpm and use of their CLS-TC cell lysis buffer), followed 

by centrifugation to remove complexed protein and cellular debris. DNA is then isolated and 

purified using a silica-based DNA binding matrix, before DNA elution.  

Initial attempts at DNA extraction and PCR were straightforward for oral samples; but from the 

stool samples proved challenging, as despite high concentrations of DNA being extracted, the 

samples amplified poorly due to the presumed presence of PCR inhibitors such as bile acids. In 

response to this we switched technique to use the PowerSoil© kit from Qiagen (formerly 

MoBio), which although otherwise similar to the FastDNA© kit has patented inhibitor-removal 

technology, and samples purified using this kit subsequently amplified well (Figure 106, p. 371). 
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All subsequent oral and gut samples were extracted using this kit, and negative ‘kitome’ control 

[465] were included for all steps of sample extraction for each different reagent batch used. 

 

Primer choice for NGS sequencing 

The Illumina MiSeq sequencing platform is able to generate paired-end reads of up to 300bp, 

meaning that a target region within the 16S gene must be chosen for sequencing. PCR was 

carried out using barcoded 27F/338R primer pairs, targeting the V1/V2 hypervariable region of 

the 16S rRNA gene, which performs well in identifying most common oral and gut bacteria, 

although may bias against the identification of minor phyla such as Verrucomicrobia and 

Tenericutes [97]. 

 

Library preparation for PCR 

To allow massive parallel sequencing of the eluted DNA, a library was constructed using PCR 

with barcoded primers unique to each sample, targeting the V1/V2 hypervariable region of the 

bacterial 16S gene. Primers are shown in Figure 107, p. 372.  

PCR was then carried out in a sterile 96-well plate using Phusion Green Hot Start II High 

Fidelity PCR Master Mix (ThermoFisher Scientific), using an initial denaturation step for 5 mins 

at 98°C followed by 25 cycles of 98°C for 10s, 53°C for 30s, 72°C for 45s and a final extension 

of 72°C for 10 min. The plate was prepared as shown in Figure 108, p. 373. 
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Amplicon sequencing 

Normalisation of DNA concentrations was carried out using SequalPrep™ Normalisation Plates 

(ThermoFisher) and DNA was quantified using either the Quant-iT® PicoGreen™ dsDNA 

Quantitation Kit (ThermoFisher Scientific) or a Qubit® 4 Fluorometer (also ThermoFisher). The 

samples were pooled and sequenced at the Barts & the London Genome Centre, QMUL using an 

Illumina MiSeq 2 x 250 flow cell for paired-end sequencing.  

 

Analysis of NGS data 

The DADA2 2 sequencing pipeline was used according to the available online tutorial (available 

online at https://benjjneb.github.io/dada2/tutorial_1_6.html, last accessed 2nd Feb 2022), and 

default parameters, adjusting filter parameters to achieve maximum quality scores whilst 

achieving sufficient overlap between forward and reverse reads. Subsequent analysis was carried 

out in R using the Phyloseq package. Sequences were aligned against the Silva v128 dataset [93], 

and this database was also used to assign taxonomy. Eukaryotic sequences, and those not 

assigned at phylum level, were expunged, but because of the robustness of the DADA2 

algorithm in delineating true from artefactual sequence variation, no pruning of singletons or 

low-abundance taxa was carried out. Sequence variants were manually removed from all samples 

at the levels found in negative controls from all samples extracted using the same kit using 

Microsoft Excel, and then samples with fewer than 500 reads/sample were excluded from 

subsequent analysis (reflecting the fact that oral rodent samples are typically low biomass).  
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The philr package was then used to adjust all sequence abundance data to composition form, 

using isometric log-ratio transformation. A pseudocount of 0.001 was added to all OTU 

abundances to avoid calculating log-ratios involving zeros. A phylogenetic tree was generated 

using MEGA v7.0 [489], and rooted to a random node using the R package phytools [490]. 

Alpha diversity for each sample was calculated for the compositional data using the 

‘estimate_richness’ function in Phyloseq, and differences between groups were assessed for 

significance using Student’s t-test with Welch’s correction for unequal variance. Ordination was 

carried out using the ‘ordinate’ function in Phyloseq to calculate Euclidean distances in philr 

space.  

Permutational analysis of variance (PerMANOVA) and the PERMDISP test for homogeneity of 

variance [484], were carried out using the R package vegan [491]. Alpha diversity was assessed 

using Phyloseq.  

Differences between groups in the relative abundances of different taxa were calculated at 

various taxonomic levels by using the ‘tax_glom’ function in Phyloseq to produce new phyloseq 

objects with sequence abundance data agglomerated at genus, family, class, order and phylum 

level. The Analysis of Composition Of Microbiomes (ANCOM) methodology [224] was used to 

assess the significance of abundance differences between groups in the compositional data, 

which has built-in correction for multiple hypothesis testing using the Benjamini-Hochberg 

method. Code for ANCOM analysis in R is kindly made available by the author from her own 

web-page (https://sites.google.com/site/siddharthamandal1985/research, accessed 26th August 

2019). 
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Analysis of the gut microbiome 

Sample collection 

For all cohorts, this was carried out using caecal fluid obtained at the time of animal sacrifice. 

The caecum was externalized, perforated and drained of fluid onto squares of clean aluminium 

foil which were directly flash frozen in liquid nitrogen, and subsequently stored at -800. 

 

Processing of caecal samples for first two rat cohorts in chapter four 

DNA was extracted from samples of caecal fluid using the DNeasy PowerSoil kit from 

QIAGEN, used according to the manufacturer’s instructions. All samples were processed using 

the same kit, and a negative ‘kitome’ control was also included with samples. DNA diluted to 

10 ng/μL (in 10 mM Tris HCl pH 8.5) was submitted to the Centre for Genomic Research at the 

University of Liverpool for library preparation and sequencing of the V3 hypervariable region of 

the 16S rRNA gene.  

Initial analysis of this sequencing data was carried out using QIIME v1.9. Paired-end data were 

joined using join_paired_ends.py, and primer sequences removed from split library files using 

cutadapt. OTUs were picked using 99% BLAST identity using usearch; from these, a 

representative set of OTUs was selected. Sequences were aligned (PyNAST) against Silva v128 

[33], and this database was also used to assign taxonomy. Singletons, mitochondria-, 

https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-019-0738-y#ref-CR33
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cyanobacteria- and control-associated OTUs were removed from the OTU table, as were OTUs 

unaffiliated with any taxonomic group.  

Raw sequences were subsequently downloaded from the NCBI Short Reads Archive, and 

imported into R for in-house re-analysis using the DADA2 and phyloseq packages. A 

phylogenetic tree was generated using MEGA v7.0 and rooted to a random node using the R 

package phytools. A pseudocount of 0.001 was added to all OTU abundances to avoid 

calculating log-ratios involving zeros, and then data was then made compositional through 

isometric log-ratio transformation using the R package philr. Ordination was carried out using 

the ‘ordinate’ function in Phyloseq, based on Euclidean distances in philr space. Permutational 

analysis of variance (PERMANOVA) was carried out using the ADONIS command in the R 

package vegan. OPLS-DA models were built using the ropls package in R. Alpha diversity was 

assessed using Phyloseq. Compositional analysis of the microbiota at six taxonomic levels was 

based on isometric log-ratio transformation of raw sequence abundances and adjusted for 

multiple testing using the Benjamini-Hochberg method, carried out using the ANCOM statistical 

framework in R.  

 

Processing of caecal samples and downloaded microbiome data for subsequent rat and mouse 
cohorts in chapter four, including the meta-analysis 

DNA from caecal fluid was extracted using the PowerSoil© kit from Qiagen. PCR was carried 

out in house using barcoded 27F/338R primer pairs, targeting the V1/V2 hypervariable region of 

the 16S rRNA gene. PCR was carried out in a sterile 96-well plate using Phusion Green Hot Start 
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II High Fidelity PCR Master Mix (ThermoFisher Scientific), using an initial denaturation step for 

5 mins at 98°C followed by 25 cycles of 98°C for 10s, 53°C for 30s, 72°C for 45s and a final 

extension of 72°C for 10 min. Normalisation of DNA concentrations was carried out using 

SequalPrep™ Normalisation Plates (ThermoFisher) and DNA was quantified using a Qubit® 4 

Fluorometer (also ThermoFisher). Pooled samples were then sent for next generation sequencing 

at the DNA Sequencing Facility, Department of Biochemistry, University of Cambridge. 

Raw sequences from this analysis were combined with additional sequences downloaded from 

the NCBI Short Reads Archive, to complete the meta-analysis. Datasets downloaded from the 

SRA were converted into fastq format using the fastq-dump software from the SRA toolkit. Raw 

sequences were analysed in R version 3.6.1, using the DADA2 pipeline, [461] with each dataset 

pre-processed separately because of differences in primer pairs and sequencing quality, with 

filtering and trim parameters being optimised for each dataset. One dataset (Al-Asmakh2020) 

used widely separated primer pairs (337F/805R) which meant that after adjusting for quality, 

only a very small proportion of reads could be successfully merged, and so for this dataset the 

decision was made to include only forward reads to avoid bias. Two datasets (Mishima2015 and 

Kikuchi2017) used 454 pyrosequencing instead of Illumina paired-end sequencing, and so only 

longer, forward reads were available for these datasets. 

Amplicon sequencing variants (ASVs) were aligned against Silva v138 to assign taxonomy.  

Raw abundance data of ASVs were used with taxonomic assignments and sample metadata to 

create phyloseq objects for each sequencing run. These phyloseq objects were retained for 
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analysis within each dataset at the level of individual ASVs, but then agglomerated at family 

level and merged to allow analysis of the whole dataset as described below. 

Phylochip data for the Vaziri2013 dataset was substantially different in nature from the 

sequencing data of all the other datasets; partly because of the nature of the data acquisition 

(consisting of fluoroscopic intensity scores for each of several thousand probes on the chip, 

rather than simply those sequences present in the sample), and partly because the taxonomic 

identities attributed to the different 25-mer probes on the phylochip are incommensurable with 

the modern Silva taxonomy. Thus, OTU table, taxonomic and meta-data were combined for this 

dataset to allow it to be individually analysed in phyloseq in parallel with the other datasets, but 

this dataset was not agglomerated and merged into the whole-dataset object for combined 

analysis. 

 

Combined analysis of the whole chapter four metaanalysis dataset 

A combined dataset was constructed to permit comparison between microbial communities from 

all samples (excluding the Vaziri2013 dataset), irrespective of the sequencing methodologies and 

primer pairs used.  

To allow this, taxa from the individual cohort phyloseq objects were agglomerated to family 

level (the lowest taxonomic level at which all sequencing variants received a confident 

taxonomic identity), using the tax_glom function in phyloseq. Taxa were manually renamed 

across datasets to allow comparison of like with like between cohorts; then a combined 
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taxonomy, meta-data and ASV table were used to construct a phyloseq object incorporating all 

samples. 

This data was rendered compositional using centred log-ratio transformation via the transform 

function in the R package microbiome, and redundancy analysis (RDA) was carried out using the 

ordinate function in phyloseq which was plotted using the plot_ordination function. Scores and 

loadings were extracted from the RDA model and used to calculate spatial means and the vector 

between control and uraemic samples within each cohort on the combined RDA axes. The 

ADONIS function in R package vegan was used for PerMANOVA calculations.  

Each cohort was then analysed independently at the level of individual ASVs, without 

agglomeration at higher taxonomic levels. Redundancy analysis and PerMANOVA were carried 

out using the same methods as for the combined dataset. Additionally, alpha diversity analyses 

were carried out on log-ratio transformed datasets using the estimate_richness function in 

phyloseq, and beta dispersion was calculated for control and uraemic groups using the betadisper 

function in vegan. Abundance data from the combined phyloseq object were aggregated to 

phylum level and rendered compositional before being used to generate the bar charts 

demonstrating compositional community abundance. 

To reflect the composition nature of microbiome datasets, and to allow for multiple hypothesis 

correction, testing for ASVs displaying differential abundances according to uraemia was carried 

out for all cohorts using the ANCOM statistical framework. Code for ANCOM 2v1 was obtained 

from GitHub (https://github.com/FrederickHuangLin/ANCOM, last accessed 2nd February 2022) 

and used according to default parameters. ANCOM analysis was carried using data agglomerated 

https://github.com/FrederickHuangLin/ANCOM
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at family, order, class and phylum levels to pick out differences between control and uraemic 

samples at each of these levels. For the data presented in supplementary Table 18, only taxa 

detected at a cut-off of 0.7 were included as significant, and at each level the differentially-

abundant taxa were listed in descending order according to their W score. Also, on this table to 

allow a crude comparison of the significance of association is the 2-sample t-test; in some cases 

this is higher than the set alpha of 0.05, but these all actually had an adjusted significance of 

<0.05 after multiple hypothesis correction. A simple ratio between mean abundance in uraemic 

animals and mean abundance in control animals is presented to show whether uraemic animals 

had increased or decreased abundance relative to controls. 

 

Processing of whole genome metagenomic caecal samples for rat samples in chapter five 

Samples of caecal fluid were taken from one cohort of rats (those treated by subtotal 

nephrectomy) for microbiome analysis. Samples were collected and stored as previously, and 

DNA was extracted for analysis using the PowerSoil© kit from Qiagen. No PCR step was carried 

out, but rather the extracted DNA was sent to Macrogen Inc. for whole-genome metagenomic 

sequencing.  

Sequence data were generated by Macrogen Inc. (Illumina Novaseq 4000; paired-end; 150 bp), 

with the library prepared using the TruSeq Nano DNA kit according to the manufacturer’s 

instructions. Macrogen-supplied data were checked using fastQC v0.11.9 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, last accessed 13th January 2022), 

with an average of 7.23 Gb (± 0.90 Gb) sequence data generated for each sample. No trimming 

about:blank
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of data was required. These files were uploaded to the Sequence Read Archive and are available 

under BioProject PRJNA682232, and used for all subsequent analyses.  

Rat DNA within samples was detected by mapping reads against the rat genome (Rnor_6.0) 

[492, 493] using bwa mem v0.7.17-r1188 [494]. Non-rat DNA was extracted from read files 

using samtools v1.3.1 (http://www.htslib.org/, last accessed 13th January 2022), leaving total read 

pairs in each dataset representing 7.03 Gb (± 0.90 Gb) sequence data. Megahit v1.2.9 [495] was 

used to assemble sequence data for each of the 24 datasets, with only contigs ≥500 nt retained. 

Unassembled reads were then pooled and subjected to a second round of assembly to improve 

the representation of low-abundance sequences [496]. Genes (nucleotide and protein sequences) 

in assemblies were predicted using Prodigal v2.6.3 (default settings), with a total of 7,676,260 

genes predicted across all samples [497]. Protein sequences were sorted using VSEARCH 

v2.15.1 [498], then clustered using MMseqs2 v12.113e3 [499] with 90 % coverage and a 90 % 

cut-off identity. Centroid sequences from each cluster were used to generate a non-redundant 

gene catalogue (n=1,491,110) for determination of gene abundances and functional predictions. 

Gene abundances in each sample were determined as described previously [496]. The command-

line version of eggNOG-mapper v2 (eggNOG 5.0) was used (default settings) to generate 

functional predictions for the dataset [500, 501]: the non-redundant gene catalogue was 

associated with 7,334 KEGG orthologies, 1,065 KEGG modules,152 COG terms and 176 CAZy 

terms. Taxonomic abundance and read count data for archaea and bacteria were generated using 

Kraken2 2.0.7-beta [502] and the pre-compiled Kraken2 GTBD_r89_54k index (downloaded on 

24 November 2020; available from 

https://bridges.monash.edu/articles/GTDB_r89_54k/8956970?file=16378295) [503]. 

about:blank
https://bridges.monash.edu/articles/GTDB_r89_54k/8956970?file=16378295
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Measures of alpha and beta diversity were determined using Phyloseq v1.34.0 [462], with 

species-level data (where counts had ≥1 % relative abundance in each metagenome) rarefied to 

7,663,923 reads prior to analysis. Non-rarefied count data for taxonomic (where counts had ≥1 % 

relative abundance in each metagenome) and functional metrics were subject to analyses using 

ALDex2 v.1.18.0 [394]. 

Microbial gene richness was determined as described previously [496, 504, 505]. Data 

were downsized to adjust for sequencing depth and technical variability by randomly selecting 

30 million reads mapped to the merged gene catalogue (of 1,491,110 genes for each sample and 

then computing the mean number of genes over 30 random drawings). 
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@M00527:100:000000000-BFHC7:1:1101:14912:1598 1:N:0: 

GATGAACGCTGGCGGCGTGCCTAATACATGCAAGTAGAACGCTGAAGGAAGTGC...  

+ 

>A?FF@ABBDFCEGGAEE2GFFE5F3FFHBEFGFGFBDED1AEGHHHHHFHHFBBGB... 

 

 

Figure 103: The FASTQ format. The first line identifies the sample, the second line contains the 

genetic sequence, the fourth line contains quality codes for each base in the genetic sequence. 

 

  



369 

 

 

 

 

 

Figure 104: Quality scoring of next generation sequencing data. The x axis indicates the position 

along the gene and the y axis the log10 quality score. 
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Figure 105: Rarefaction curve of next generation sequencing of the 16S amplicon from DNA 

extracted from oral swabs. Samples from uraemic animals are shown in red generally had higher 

numbers of species (sequence variants) per sample. Such rarefaction curves can be used to assess 

the adequacy of sequencing depth, with lines flattening to horizontal indicating that further 

sequencing is unlikely to reveal further bacterial diversity.  
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C 

 

 

Figure 106: DNA extraction from stool for next-generation sequencing. The 1% agarose gels in 

each picture are loaded in a similar order: (from left to right) DNA ladder, 2 caecal samples from 

chemically-induced uraemic animals, 2 caecal samples from SNx animals, 2 caecal samples from 

sham-operated (control) animals, negative control. A: DNA freshly extracted before PCR, 

showing large amounts of DNA were easily extracted from these caecal samples (corresponding 

DNA concentrations measured using a DeNovix spectrophotometer were 210-325ng/µL). B 

Post-PCR using DNA extracted using the FastDNA© kit from MP Bio. Note the poor 

amplification in all samples of the desired band, and especially in samples 1, 2 and 6. C: Post-

PCR using DNA extracted using the PowerSoil© kit from Mobio (now Qiagen). A clear band is 

seen in all samples, although a significant amount of shearing has occurred during the 

experimental procedure. 
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Forward PCR primer - 27F-YM 

5’- 

AATGATACGGCGACCACCGAGATCTACACXXXXXXXXAGTCAGTCTGTCAGAGTTTGATYMTGGCTC

AG- 3’ 

Reverse PCR primer - 338R-R 

5’- CAAGCAGAAGACGGCATACGAGATXXXXXXXXTATGGTAATTCATGCTGCCTCCCGTAGRAGT -3’ 

 

Figure 107: Barcoded primer design for high throughput pooled sequencing. The primers 

included an adapter sequence (purple) for attachment to the Illumina flow cell; an eight base 

barcode (red) unique to each sample for identification of reads to a particular animal; a 10-base 

primer pad (blue) to alter the Tm of the primer, improving specificity at the expense of product; 

and a 2 base linker sequence (green). The black primer binding sequences are complementary to 

the 27F and 338R sequences of the 16S gene, with the inclusion of a degenerate base (orange) in 

the reverse primer to accommodate a common polymorphism seen in certain species oral 

bacteria and reduce bias against these organisms. 
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A SA-501             

B SA-502 
 

           

C SA-503             

D SA-504             

E SA-505             

F SA-506             

G SA-507             

H SA-508             

 

Figure 108: Plate layout for next-generation sequencing. Forward (SA501 - SA508) and reverse 

(SB701 – SB712) barcoded primers were used in rows and columns, and DNA extracted from up 

to 96 individual samples was added to each well such that each had a unique combination of 

forward and reverse barcodes. For example, reads from the sample placed in the top left hand 

well would be identified by forward reads beginning with the SA-501 barcode and reverse reads 

beginning with the SB-701 barcode. Three other plates using different combinations of primers 

can be created, with the products normalized and pooled allowing DNA from up to 384 samples 

to be sequenced in parallel. 



374 

 

 

Appendix 3: Detailed microbiological 
analysis of sequencing data from chapter 4 
 

 

This appendix describes detailed analysis of NGS sequencing data from the caecal fluid analyses 

in chapter 4, assessed using the PhyloFactor and ANCOM methodologies. 

 

 

The microbial effects of uraemia on individual cohorts of animals are subtle and variable 

Each cohort was examined independently, in non-aggregated datasets based on individual ASVs, 

using phylogentic techniques with log-ratio transformed abundance data. 

No differences in alpha diversity were observed between control and uraemic animals in any of 

the cohorts when assessed using a range of measures including the Simpson and Shannon 

indices. Differences between samples in different cohorts when assessed using the Shannon 

index are explained by differences in sequencing depth between sequencing runs, Figure 109, p. 

379. 

Some degree of differential clustering between control and uraemic microbiotas was seen in 

several of the cohorts; this proved significant based on PerMANOVA in rat cohort 2 and mouse 

cohort 1; significance was not achieved despite the observed separation of samples owing to the 

small sample size in mouse cohort 2, Figure 110, p. 380. 
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Phylogenetic factorisation using the R package PhyloFactor was used to determine which 

taxonomic balances in relative abundance best served to distinguish between control and uraemic 

animals. The top three discriminatory factors for each cohort are described in Table 9, p. 382, 

and represented in Figure 111, p. 381; they generally separated small monophyletic clades or 

single taxa from the rest of the dataset. These splits in the taxonomic tree explained relatively 

small proportions of the total variance (an average of 0.78%, 0.52% and 0.44% of total variance, 

or 1.71% taking the top three discriminant factors together across all five cohorts), and the 

groups split off from the main dataset accounted for small but significant proportions of the total 

abundance data (those split off by the first, second and third factors averaging 3.44%, 1.09% and 

2.18% of the total sequencing data, respectively, meaning that these top three factors accounted 

for an average of 6.71% of all reads across all cohorts). 

The identity of taxa within the groups distinct from the main dataset by these discriminatory 

factors were assessed to determine common patterns across the cohorts, using published full 

length 16S rRNA gene sequences from the Ribosomal Database Project (RDP) and National 

Centre for Biotechnology Information (NCBI) databases alongside the SILVA database 

identities. 

A complex and inconsistent picture emerged between different cohorts, in which different 

phylogenetically-defined sub-taxa responded differently to the effects of uraemia. All groups 

split off from the main dataset in the top three factors in rat cohorts 1 and 2 belonged to the 

family Lachnospiraceae; four of these groups (representing 11 individual taxa across both 
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cohorts) belonged to the NK4A136 group at genus level, while the remaining two groups (which 

together accounted for five taxa) belonged to the UCG-001 group.  

In rat cohort 1, the five taxa split off in factor 1 were from the NK4A136 group that displayed 

close sequence homology (>98.5%) with each other and identified closely (at >98.5 and in some 

cases >99% sequence similarity) with published 16S rRNA gene sequences from the closely 

related genera Hungatella, Lachrimispora and Enterocloster. The factor 2 group comprised two 

taxa from the UCG-001 group, which were near identical to each other and most closely matched 

(although at only 96.2% homology) with the 16S rRNA gene sequence for Dorea longicatena. 

Factor 3 split off a single taxon also from the NK4A136 group, which showed 94.5% sequence 

similarity to Blautia wexlerae. Taxa in each of these groups showed significant decreases in 

isometric log ratio (ILR) balances in uraemic animals (ILR balance 0.148 in uraemic animals, 

p=0.003; balance 0.048, p=0001; and balance 0.016, p=001, respectively). 

In rat cohort 2, only two of the top three factors splitting the dataset proved significant, reveal a 

complex pattern of association.  Factor 1 split off a disparate group of Lachnospiraceae (sharing 

only 95.5% similarity between members) which demonstrated decreased abundances in uraemic 

animals (ILR balance 0.59 in uraemic animals, p=0.001), whereas factor two split off a single 

taxon of Lachnospiraceae, which actually increased in abundance in uraemic animals (ILR 

balance 54.2, p<0.001), despite showing greatest similarity with the Hungatella, Lachrimispora 

and Enterocloster cluster which decreased in abundance in uraemic animals in cohort 1. 

Rat cohort 3 showed the least influence of uraemia on the microbiota, with only one factor (a 

single taxon most closely identified with Ruminococcus champanellensis) showing differential 
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abundance between treatment groups, with increased ILR balances in uraemic animals (ILR 

balance in uraemic animals 0.85, p=0.047). 

In contrast, in mouse cohort 1, multiple factors showed a strong statistical significance in ILR 

balances between treatment groups, splitting off clades that accounted for significant proportions 

of the total amount of sequenced reads. Factors 1 and 2 described taxonomic splits located in the 

phylum Bacteroidota, and centering on family Muribaculaceae, with both clades split off 

showing significantly increased abundances in uraemic animals (ILR balance 13.9 in uraemic 

animals, p<0.001; and balance 158.8, p<0.001; respectively). Factor 3 split off a single taxon 

from the family Lachnospiraceae from the rest of the dataset, which again was significantly 

elevated in uraemic samples (ILR balance 8.29, p<0.001); this had closest sequence homology 

with isolates from the NK4A136 group including 95% sequence similarity with three Blautia 

isolates and others from genera Eisenbergiella, Bariatricus and Tyzerella. 

The method of phylogenetic factorisation does not easily permit adjustment of significance in the 

light of multiple hypothesis testing; therefore, as an additional measure, the ANalysis of the 

COMposition of microbiotas (ANCOM) methodology was used at the level of individual ASVs 

to determine whether any were differentially abundant between control and uraemic animals. A 

similarly inconsistent pattern emerged between cohorts: there were no ASVs differentially 

abundant between treatment groups after multiple-hypothesis testing in three of the cohorts; 

whereas in rat cohort 2 there were four and in mouse cohort 1 there were 19 (Table 10, p. 384). 

No obvious pattern could be discerned that would predict why certain bacterial taxa were likely 

to be over- or under-represented in uraemic animals compared to controls; although for many of 
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the isolates, confident identification was possible only at the level of family meaning selective 

differences at genus, species or strain level may have been relevant. 
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Figure 109: Alpha diversity as assessed by the number of observed sequencing variants per 

samples, and the Simpson index. Each point represents an individual microbial community, 

grouped according to cohort and with control samples shown in blue and uraemic samples in red.  
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Figure 110: Ordination plots of log-ratio transformed, phylogenetically ordered sequence 

abundance data plotted in Euclidean space. Each point represents the gut microbiota of a single 

animal, coloured blue for controls and red for uraemic. The p value reflects the significance of 

differential clustering as determined by PerMANOVA and the contribution of the first and 

second principal components to explaining total overall variance are indicated on the x and y 

axes respectively.  
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C     D 

  

Figure 111: Discriminant ILR balances between control (blue) and uraemic (red) animals in four 

of the experimental datasets. A, rat cohort 1; B, rat cohort 2; C, rat cohort 3; D, mouse cohort 1. 
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Table 9: Discriminatory ILR balances between control and uraemic animals in different cohorts. 

For each cohort, the most strongly discriminatory isometric log ratio (ILR) balances 

distinguishing control from uraemic samples are shown. Columns B and C describe, 

respectively, the number of individual taxa within the smaller group split off from the main tree, 

and the number of taxa remaining in the tree, after the division. Columns D and E detail the 

amount of variance explained by the balance and the p value.  Columns F and G describe the 

average sum relative abundance of all taxa in control samples in that cohort and uraemic samples 

in that cohort. Finally, column H locates the level at which the division occurs in the taxonomic 

tree; which samples are cleaved off in the smaller group. 

 

Factor 
num

ber 

N
um

ber 
group 1 

N
um

ber 
group 2 

Variance 
explained 

p 

 
group 

%
 

uraem
ic 

anim
als 

Sm
aller 

group 
%

 
controls 

Fam
ily 

Rat cohort 1 
1 5 1324 0.002 0.003 0.134 6.569 Lachnospiraceae gp NK4A136 
2 2 1322 0.001 0.038 0.132 0.271 Lachnospiraceae gp UGC-001 

3 1 1321 
0.001
3 0.011 0.233 0.776 Lachnospiraceae gp NK4A136 

Rat cohort 2 
1 4 1222 0.006 0.001 0.109 6.181 Lachnospiraceae gp NK4A136 
2 1 1221 0.002 0.0003 0.487 0 Lachnospiraceae gp NK4A136 
3 3 1218 0.002 0.01 6.017 2.625 Lachnospiraceae gp UGC-001 
Rat cohort 3 
1 5 706 0.003 0.073 8.44 0.554 Erysipelotrichaceae;Turicibacter 
2 1 705 0.002 0.074 0 6.268 Ruminococcaceae;Ruminococcus 
3 1 704 0.002 0.047 4.51 1.967 Ruminococcaceae;Ruminococcus 
Mouse cohort 1 

1 20 963 0.007 <0.001 9.184 2.236 
Prevotellaceae/Bacteroidaceae/Muribaculacea
e 

2 5 958 0.005 <0.001 2.189 0 Muribaculaceae 
3 1 957 0.005 <0.001 2.174 0 Lachnospiraceae gp NK4A136 
Mouse cohort 2 
1 5 961 0.021 0.001 0.121 4.19 Erysipelotrichaceae;Faecalibaculum 
2 17 944 0.014 0.002 0.005 2.054 Clostridia UCG-014 
3 4 940 0.01 0.004 2.516 0.052 Muribaculaceae 
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Highest 
abundanc
e cut-off 

Relative 
abundanc
e in 
control 

Relative 
abundance in 
uraemic  

Proportional 
increase or 
decrease in 
uraemia Phylum Genus 

Rat cohort 1 
None      
Rat cohort 2 
Increased in controls 

0.8 4.576855 0.052634 0.011 Firmicutes 
Lachnospiraceae 
NK4A136 group 

0.7 0.053008 0 
Absent in 
uraemic Firmicutes Colidextribacter 

Increased in uraemic animals 

0.8 0 0.486741 
Absent in 
control Firmicutes 

Lachnospiraceae 
NK4A136 group 

0.6 0.003879 0.095228 23.79 Firmicutes Lachnoclostridium 
Rat cohort 3 
None      
Mouse cohort 1 
Increased in controls 

0.7 0.679957 0 
Absent in 
uraemic Firmicutes Oscillobacter 

0.7 0.231264 0 
Absent in 
uraemic Firmicutes 

Unclassified, f. 
Lachnospiraceae 

0.8 0.535346 0 
Absent in 
uraemic Firmicutes 

Unclassified, o. 
Clostridia 

0.7 2.33424 0.624557 0.268 Bacteroidota 
Unclassified, f. 
Muribaculaceae 

Increased in uraemic animals 

0.9 0.052669 1.935047 36.75 Firmicutes 
Unclassified, f. 
Lachnospiraceae 

0.8 0.032908 0.613343 18.64 Firmicutes Oscillobacter 

0.6 0 0.495447 
Absent in 
control Bacteroidota 

Unclassified, f. 
Muribaculaceae 

0.8 0 1.083519 
Absent in 
control Bacteroidota 

Unclassified, f. 
Muribaculaceae 

0.6 0.05452 0.43393  Firmicutes Lachnoclostridium 

0.8 0 0.770804 
Absent in 
control Firmicutes 

Unclassified, f. 
Lachnospiraceae 

0.6 0 0.642868 
Absent in 
control Bacteroidota 

Unclassified, f. 
Muribaculaceae 

0.9 0 2.174041 Absent in Firmicutes Lachnospiraceae 
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control NK4A136 group 

0.6 0 0.45587 
Absent in 
control Firmicutes 

Lachnospiraceae 
UCG-001 group 

0.8 0 0.723112 
Absent in 
control Bacteroidota 

Unclassified, f. 
Muribaculaceae 

0.7 0 0.22762 
Absent in 
control Firmicutes Incertae Sedis 

0.6 0.035253 0.262314 7.44 Actinobacteriota Enterorhabdus 

0.9 0.135813 2.265105 16.68 Bacteroidota 
Unclassified, f. 
Muribaculaceae 

0.7 0 0.324163 
Absent in 
control Bacteroidota 

Unclassified, f. 
Muribaculaceae 

0.6 0 0.485751 
Absent in 
control Bacteroidota Muribaculum 

Mouse cohort 2 
None      

 

 

Table 10: Amplicon sequencing variants (ASVs) showing discriminant abundance differences 

between control and uraemic animals in each cohort. The ANCOM methodology is used with 

multiple hypothesis correction and a significance cutoff of 0.6. For each ASV the highest 

abundance cut-off (a crude signifier of the strength of association), and proportional abundance 

in control and in uraemic animals is shown, along with the identification at phylum and genus 

level. 
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Appendix four: Pilot data using lactulose to 
modulate the gut microbiome 
 

Methods 

Animal work: Twenty-seven wild-type outbred Wister IGS rats were obtained from Charles 

Rivers and rendered uraemic using the subtotal nephrectomy model as described previously. 

Prior to surgery, rats were swapped between cages each day for a week in order to heterogenise 

resident microbiota. Seventeen underwent SNx and ten underwent sham procedures. Four weeks 

after surgery, lactulose was administered mixed into drinking water to eight SNx animals and six 

controls, with the remaining animals in each group continuing to receive tap water. Details of the 

lactulose administration and the rationale for dosing are given below. Animals were then 

sacrificed four weeks later, eight weeks after the completion of surgical procedures, after 24-

hour individual metabolism caging to allow urine and stool collection. Serum samples were 

obtained at the time of sacrifice and sent for routine biochemical analysis (Idexx, Germany). 

 

Lactulose dosing: Lactulose is available over the counter in the UK at a concentration of 

10g/15ml. Therapeutic doses of lactulose in humans is up to 100g daily in divided dose for 

ammonia reduction in hepatic encephalopathy, with individual dose adjustments being made to 

target 2-3 bowel openings per day of soft stool, or a faecal pH <5.0. [506] In rats, an effective 

dose (ED50) of 3.8g/kg/day has been shown to produce soft stool, with 5.4g/kg/day as a 
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sufficient dose for significant reductions in the insoluble concentration of caecal contents. [507] 

The maximum tolerated dose is 18g/kg/day and the calculated lethal dose 31g/kg/day in male 

Wistar rats. Recent studies investigating the role of lactulose in rodent models used twice daily 

oral gavage (at doses of 2.4g/kg/day [508] or 5g/kg/day [509]), or lactulose mixed with food 

pellets [510], in the case of the oral gavage studies for only a short period of time. In order to 

allow a longer period of treatment to allow for full transformation of gut bacterial communities 

and for the longer-term effects of short chain fatty acid generation to have systemic effects, and 

also because uraemic animals may eat less food as a result of uraemia, lactulose was 

administered in the drinking water, targeting administration of 5g/kg/day, based on mean weekly 

measurements of rat weights. This was then used to calculate the dilution of the 10g/15ml 

lactulose solution in the drinking water for that week. 

 

Analysis of the caecal microbiota: Caecal fluid obtained at the time of sacrifice was loaded 

directly into bead-beating tubes from the ZymoBIONICSTM DNA/RNA Mini Kit, and stored at -

80oC. DNA was extracted according to manufacturers instructions and in-house library 

preparation and PCR of the V1/V2 hypervariable region of the 16S rRNA genes was carried out 

as described earlier. MiSeq sequencing was carried out at the DNA Sequencing Facility, 

Department of Biochemistry, University of Cambridge. 
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Results 

Experimental observations reveal significant problems with the method of lactulose 
administration 

Unfortunately significant problems emerged with using lactulose added to drinking water. Due to 

presumed bacterial overgrowth in the sugary water, the solutions rapidly became brackish and 

discoloured, despite being changed three times per week. 

Basic observations of the experimental animals revealed that for both control and uraemic 

animals, those administered lactulose had lower body weight than those receiving tap water 

(Figure 112, p. 391). 

Urine output was lower in uraemic animals receiving lactulose compared to those receiving 

water, although as expected all animals in the uraemic group were polyuric compared with 

controls, as a result of the loss of urinary concentrating ability which is observed in chronic renal 

insufficiency (Figure 113, p. 392). 

 

 

Lactulose administration may lower serum urea  

Whilst there was no significant difference in creatinine concentration between groups (means 

serum creatinine 96.33umol/L in water treated uraemic animals vs 89.5umol/L in lactulose 

treated animals, p=0.437 by Welch’s t-test); the serum urea was lower in lactulose treated 
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uraemic animals compared to those receiving water (24.9mmol/L in water treated vs 19.8mmol/L 

in lactulose treated; p=0.003, Figure 114, p. 393).  

 

Analysis of gut microbiome 

Samples with fewer than 5000 reads per samples were excluded from subsequent analysis, 

meaning that in the smallest of the experimental groups (sham/lactulose, n=4), only two samples 

remained, meaning that confident conclusions could not be drawn from data from these animals. 

Because of the previously described problems with the experimental method, only a brief 

analysis of the caecal microbiota was conducted in order to establish trends which might inform 

future work. 

Samples from animals treated with lactulose displayed reduced alpha diversity compared to those 

with pure tap water, a trend seen in both control and uraemic animals when analysed by both 

Simpson and Shannon alpha diversity indices, Figure 115, p. 394. 

Uraemic samples were extracted from the dataset and used to ascertain whether lactulose 

administration caused differential clustering. Principal coordinate analysis (PCA) suggested that 

despite some overlap, there may be a difference associated with lactulose administration in axis 

2, although the differential clustering was not significant when assessed by PerMANOVA (R2 = 

0.124, p=0.075), Figure 116, p. 395. 
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A brief analysis of community composition was conducted using the ANCOM methodology as 

described earlier, at all taxonomic levels from individual amplicon sequencing variants up to 

phylum level.  

Differential abundance was clear between lactulose and water treated animals as high a class 

level, with an increase in Actinobacteria, and specifically in ASVs representing the species 

Bifidobacterium animalis, which was substantially over-represented in samples from lactulose-

treated animals. At genus level, a genus from family Lachnospiraceae, which are known to 

contain many species with high metabolic activity including SCFA production, were over-

represented in lactulose-treated animals whilst a genus from family Ruminococcaceae were over-

represented in water-treated animals. This is reflected in compositional bar charts represented in 

Figure 117, p. 396.  

 

 

Discussion 

Addition of lactulose to the drinking water of experimental animal in this pilot experiment was 

methodologically flawed, because of obvious subsequent bacterial contamination of the drinking 

water. This likely led to reduced water intake (based on reduced urine output of lactulose treated 

animals), and reduced body weight. This prevented any robust conclusions to be drawn from the 

reduction in serum urea in these animals, or from subsequent microbiological analysis of their 

caecal fluid. 
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However, a reduction in serum urea is an expected effect of lactulose treatment, and so the 

reduction seen would be in keeping with the anticipated effect. Likewise a significant increase in 

Bifidobacteria and a genus within family Lachnospiraceae are associated with an increase in 

carbohydrate fermenting organisms, typical of animals fed a prebiotic diet. 

Thus, although suggesting that prebiotic treatment may have beneficial effects on the 

biochemical and microbiological profile of animals with experimental uraemia, this pilot work 

was clearly compromised by the method of prebiotic administration chosen, and no firm 

conclusions of efficacy could be drawn. 

Options for further work were either to choose a different method of lactulose administration (eg 

by oral gavage, as reported in other studies [508-510]), or to use a different method type of 

prebiotic. The decision to proceed using an alternative type of prebiotic was made because it was 

desirable to achieve a longer period of prebiotic administration (4 weeks) than is really feasible 

by twice daily gavage, and secondly because other forms of prebiotic are associated with 

production of a broader range of SCFA that lactulose, which really only causes production of 

acetate and lactate. 

Thus, we decided instead to proceed with further experiments based around therapeutic 

administration of diets enriched with fructo-oligosaccharide (FOS). 
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Figure 112: Weight at time of sacrifice according to experimental interventions. 

  



392 

 

 

S N x /w
a te

r

S N x /la
c tu

lo
s e

S h am
/w

a te
r

S h am
/la

c tu
lo

s e
0

2 0

4 0

6 0

8 0

U r in e  o u tp u t  b y  b a tc h
U

ri
n

e
 o

u
tp

u
t 

(m
l)

p = 0 .1 4 p = 0 .0 0 2

 

Figure 113: 24-hour urine collection immediately prior to sacrifice according to experimental 

interventions. 
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Figure 114: Serum urea according to experimental interventions. 
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Figure 115: Alpha diversity measured using Shannon and Simpson indices according to 

experimental interventions. Each point represents an individual sample. 
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Figure 116: Principal coordinate analysis (PCA) of uraemic samples, coloured according to 

lactulose administration. Each point represents an individual sample. 
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Figure 117: Proportional composition of the caecal microbiome of experimental animals. Each 

bar represents the total caecal bacterial community of an individual animal. Horizontal divisions 

are according to subtaxa, coloured by phylum identity. 

  

SNx/water SNx/laculose 
Sham/ 
lactulose Sham/water 
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Appendix 5: Supplementary tables 
 

 Surgically-induced uraemia Chemically-induced uraemia 

 Control Uraemic Control Uraemic 

 -0.0025 -0.08221 0.039521 -0.119470029 

 -0.05962 -0.09504 -0.01958 -0.147320906 

 -0.00041 -0.11127 0.021319 -0.156970029 

 0.009783 -0.17684 0.056736 -0.21431652 

 -0.01401 -0.15502 -0.04897 -0.128790205 

 0.013182 -0.08441 -0.00445 -0.126158626 

 -0.00842 -0.03967 0.054982 -0.108943713 

 0.066801 -0.06467 -0.00543 -0.109272661 

 -0.0048 -0.02476 -0.02528 -0.121772661 

   -0.06885 -0.136100146 

    -0.081641082 

    -0.119141082 

    -0.090084064 
Mean 6.66667E-07 -0.092654444 -6.1E-17 -0.127690902 
p 0.000367808 5.99247E-07 
 

Table 11: Periodontal bone loss in rats. Each point represents the average of multiple 

measurements over the buccal and lingual surfaces of all molar roots in a single rat, expressed 

relative to the average amount of bone loss in all control animals. Means are calculated for each 

group, and significance assessed by the Student t-test with Welch’s correction. 
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Table 12: Rat saliva. Means are calculated for each group, and significance assessed by the 

Student t-test with Welch’s correction. 

Rat Treatment 

8 minute 
salivary 
volume 
(ml) pH 

Salivary 
urea 

Serum 
urea 

1 Uraemic 89 8.1 2.247584 6.11388 
2 Uraemic 71 8.06 5.839821 17.04461 
3 Uraemic 59 7.72 4.010985 10.5611 
4 Uraemic 35 8.58 4.996166 7.43922 
5 Uraemic  8.34 3.995001 7.577415 
12 Uraemic 64 8.27 2.596235 8.772885 
13 Uraemic 38 8.28 2.390108 7.657335 
6 Control 42 7.89 1.542123 3.64635 
7 Control 97 8.09 1.471361 3.341655 
8 Control 23 8.5 1.522976 3.17349 
9 Control 26 8.27 1.757075 4.713615 
10 Control 57 8.3 1.806692 3.494835 
11 Control 40 8.33 1.634031 4.547115 

      
 Ur mean 59.33333 8.192857 3.725129 9.309492 

 Ct mean 47.5 8.23 1.622376 3.81951 

 p 0.415177 0.786144 0.006809 0.007129 
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Table 13: Salivary metabolites measured using 1H-NMR spectroscopy. Significance is calculated between control and uraemic 

animals using Student’s t-test and Welch’s correction. 

Animal Treatment Acetate Lactate 
3-
Hydroxyisovalerate Acetoin Succinate 

Dimethyl 
sulphone Glycerol Formate 

1 Uremic 92.75913 43.57964 31.7378 13.38607 11.73828 9.197662 67.34918 4.230157 
2 Uremic 75.81494 48.00739 37.18551 13.47971 8.766325 13.43784 158.3737 2.038419 
3 Uremic 78.36038 38.72408 32.14409 11.90122 7.097108 8.297988 824.1796 1.289339 
4 Uremic 86.01184 55.7325 20.89384 7.569663 12.32688 5.46744 540.3971 1.56307 
5 Uremic 120.4372 28.77564 24.5643 11.77292 8.721744 11.89906 628.3289 2.525976 

12 Uremic 70.30469 37.49793 29.61918 12.62755 8.419812 7.851297 117.9882 0.63884 
13 Uremic 100.0675 177.1647 34.60687 14.4181 9.699386 11.45069 140.1344 0.334284 

6 Control 123.3265 105.0295 46.37138 15.01217 8.248937 6.291064 536.3801 1.659812 
7 Control 99.41525 179.3148 46.47522 16.68206 13.93438 8.358535 53.31192 2.937516 
8 Control 152.7733 105.7513 19.74186 8.822669 8.973874 3.01561 536.8972 1.662941 
9 Control 136.6578 51.87838 29.16875 10.78286 7.487479 6.303263 102.3334 1.785663 

10 Control 96.50084 135.2961 23.65266 9.704137 6.664695 2.193621 443.8807 1.22179 
11 Control 124.4744 123.5818 22.65013 10.1792 9.933598 4.561678 77.06765 1.295597 

          

 
Uremic 
mean 89.10795 61.35455 30.10737 12.16503 9.538505 9.657425 353.8216 1.802869 

 
Control 
mean 122.1914 116.8086 31.34334 11.86385 9.20716 5.120628 291.6452 1.760553 

 p 0.013495 0.056231 0.824833 0.850656 0.799956 0.007944 0.686922 0.941025 
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Cage Mouse Treatment 
Periodontal 
bone loss 

    
    
1 1 Uraemic -0.01997 

 2 Uraemic -0.01565 

 3 Uraemic -0.03222 

 4 Uraemic -0.01798 

 5 Uraemic -0.012 
2 6 Uraemic -0.01321 

 7 Uraemic -0.01134 

 8 Uraemic -0.01395 

 9 Uraemic -0.02677 

 10 Uraemic -0.00407 

   0.64393 
3 11 Control 0.011774 

 12 Control 0.007064 

 13 Control -0.01146 

 14 Control 0.003214 

 15 Control 0.013359 
4 16 Control -0.00494 

 17 Control -0.00035 

 18 Control 0.003758 

 19 Control -0.00938 

 20 Control -0.01304 

   0.532454 

    
   -0.01672 

   -1.00E-07 

   0.000504 
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Table 14: Periodontal bone loss in mice. Each point represents the average of multiple 

measurements over the buccal and lingual surfaces of all molar roots in a single mouse, 

expressed relative to the average amount of bone loss in all control animals. Means are 

calculated for each group, and significance assessed by Student’s t-test with Welch’s correction. 
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Mouse Cage Donor mouse Treatment Periodontal bone loss 
     
1 1 11 Control recipient 0.009821 

2   Control recipient -0.0051 

3  12 Control recipient -0.00345 

4 2 13 Control recipient 0.005246 

5   Control recipient -0.01101 

6  14 Control recipient 0.006469 

7   Control recipient -0.00069 

8 3 1 Uraemic recipient -0.05503 

9   Uraemic recipient -0.03443 

10  2 Uraemic recipient -0.04711 

11   Uraemic recipient -0.03383 

12 4 3 Uraemic recipient -0.02578 

13   Uraemic recipient -0.05436 

14  4 Uraemic recipient -0.04004 

15   Uraemic recipient -0.04887 

     
   Control recipients 0.000183714 
   Uraemic recipients -0.04243125 
   p 7.16882E-07 
 

Table 15: Each point represents the average of multiple measurements over the buccal and 

lingual surfaces of all molar roots in a single mouse, expressed relative to the average amount of 

bone loss in all control animals. Means are calculated for each group, and significance is 

assessed using Welch’s t-test for unequal variances. 
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Trim
ethylam

ine 
(TM

A) 

Trim
ethylam

ine
-N

-oxide 
(TM

AO
) 

Indoxyl 
sulphate  

Acetate 

Propionate 

Butyrate 

Lactate 

Acetoin 

Benzoate 

Hippurate 

Rat 1 

Control 0.03 0.43 0.02 1.77 0.01 0.12 2.65 3.43 0.56 0.04 
Uraemic 0.08 0.53 0.02 2.00 0.01 0.13 3.06 3.93 0.55 0.04 
p 0.26 0.36 0.92 0.73 0.01 0.62 0.72 0.70 0.82 0.84 

Rat 2 

Control 0.06 0.43 0.02 0.61 0.01 0.09 0.82 1.26 0.20 0.40 
Uraemic 0.34 0.25 0.02 1.32 0.02 0.10 0.81 1.46 0.26 0.28 
p 0.03 0.02 0.96 0.03 0.06 0.45 0.95 0.42 0.35 0.48 

Rat 3 

Control 0.01 0.39 0.01 0.27 0.01 0.10 0.33 0.01 0.12 0.21 
Uraemic 0.04 0.25 0.02 0.70 0.02 0.13 0.59 0.03 0.15 0.12 
p 0.25 0.00 0.00 0.12 0.00 0.23 0.19 0.00 0.50 0.19 

M
ouse 

1 Control 4.61 1.77 0.07 21.97 0.10 0.30 11.05 0.21 0.31 0.22 
Uraemic 2.42 2.72 0.09 19.73 0.11 0.17 7.11 0.34 0.37 0.33 
p 0.09 0.06 0.05 0.79 0.44 0.00 0.31 0.47 0.69 0.48 

All rat 

Control 0.03 0.41 0.02 0.80 0.01 0.10 1.13 1.35 0.27 0.21 
Uraemic 0.13 0.34 0.02 1.31 0.02 0.12 1.51 1.76 0.32 0.13 
p 0.02 0.15 0.13 0.09 0.00 0.12 0.44 0.52 0.48 0.21 

All 
sam

ples 

Control 1.40 0.82 0.03 7.15 0.04 0.16 4.11 1.01 0.28 0.22 
Uraemic 0.83 1.06 0.04 6.89 0.05 0.14 3.21 1.33 0.33 0.19 

p 0.35 0.38 0.32 0.94 0.40 0.26 0.57 0.50 0.42 0.72 

Rat AN
O

VA 

Batch 
effect 21.02 19.70 3.87 43.58 3.66 6.69 51.03 63.34 74.03 46.40 

p 0.00 0.00 0.24 
<0.00
01 0.52 0.28 

<0.00
01 

<0.00
01 

<0.00
01 

<0.00
01 

Treatme
nt effect 14.08 5.46 3.07 6.25 8.72 6.85 0.55 0.37 0.41 4.11 
p 0.01 0.07 0.57 0.05 0.08 0.11 0.52 0.52 0.44 0.11 

AN
O

VA, 
all 

sam
ples 

Batch 
effect 67.22 60.04 74.02 42.87 63.42 65.73 55.09 64.96 33.09 20.05 

p 
<0.00
01 

<0.00
01 

<0.00
01 

<0.00
01 

<0.00
01 

<0.00
01 

<0.00
01 

<0.00
01 0.00 0.01 

Treatme
nt effect 1.36 0.64 1.09 0.01 0.69 1.52 0.66 0.35 0.46 0.26 
p 0.16 0.25 0.04 0.95 0.30 0.08 0.41 0.43 0.57 0.69 
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Table 16: Relative abundances of ten bacterial metabolites in the urine of experimental rodents 

determined by 1HNMH spectroscopy. For each metabolite listed, the mean metabolite:creatinine 

ratio for control and uraemic groups in shown for each cohort followed by the significance, 

assessed using the Student t test with Welch's correction. The same analyses to all rat samples 

analysed as a single group, and then to all samples including rats and mice. At the bottom, the 

results of a two way ANOVA for rat samples only, and then all samples together are presented, 

with each 2-way ANOVA analysis including the effect on the dependent variable 

(metabolite:creatinine ratio) of two independent variables; batch effect (ie the difference between 

cohorts), and treatment effect (control vs uraemic animals). The amount of variance (%) 

explained by the independent variable is followed by the significance of the association.  
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Samples  Observed Chao1 ACE Shannon Simpson InvSimpson Fisher 
         
All Control 264.2727 276.7979 275.3142 4.218349 0.960381 50.06054 48.34638 

 Uraemic 310.2167 323.2466 321.5804 4.48433 0.967609 58.18471 54.64726 

 p 0.241869 0.258507 0.257115 0.071008 0.237533 0.320681 0.442636 
All Rat 338.1639 348.3587 347.4597 4.418917 0.964652 52.91533 54.19312 

 Mouse 231.8519 247.5703 245.2234 4.287315 0.963588 55.86254 48.74272 

 p 0.005922 0.01358 0.011582 0.374035 0.86245 0.723185 0.519674 
All rat Control 304.4815 313.3404 312.5974 4.134649 0.951707 40.73592 48.33108 

 Uraemic 364.9118 376.1674 375.1445 4.644659 0.974931 62.58722 58.84826 

 p 0.268216 0.246968 0.249008 0.011485 0.010399 0.012118 0.181531 
All mouse Control 225.5 241.5605 239.3626 4.299059 0.968745 59.05213 48.36114 

 Uraemic 238.6923 254.0423 251.535 4.274668 0.958033 52.42759 49.15365 

 p 0.809216 0.838598 0.840086 0.913894 0.23955 0.638785 0.958414 
Al-Asmakh2020 Control 97.5 97.5 97.5 3.135402 0.914613 14.29764 11.95862 

 Uraemic 215.8333 215.8333 215.8333 4.822523 0.986176 84.84954 28.13348 

 p 6.15E-05 6.15E-05 6.15E-05 0.000518 0.005946 0.002882 4.36E-05 
Kikuchi2017 Control 286.2 332.498 328.9492 4.937353 0.98775 84.71603 81.62513 

 Uraemic 287.125 333.7404 329.3856 4.958876 0.988051 89.3964 83.00479 

 p 0.943912 0.954696 0.982363 0.817995 0.866277 0.682319 0.789598 
Mishima2015 Control 594.1667 661.5233 652.7835 5.630914 0.993499 162.2519 155.0729 

 Uraemic 590.1667 643.808 635.7291 5.506364 0.990052 116.6685 143.4158 

 p 0.887316 0.584555 0.568712 0.277395 0.145511 0.088232 0.311609 
Kikuchi2015 Control 138.2 138.5 138.5587 4.312634 0.977377 45.81849 21.2936 

 Uraemic 123 123 123.0408 4.245583 0.978734 47.23175 18.3392 

 p 0.02145 0.024108 0.022356 0.343012 0.550787 0.784561 0.018107 
Nanto-Hara2020 Control 82.375 86.1317 85.62427 3.397298 0.944038 18.13115 11.67478 

 Uraemic 129.2857 137.7861 136.3981 3.255075 0.895321 10.15815 19.57703 

 p 0.007956 0.010202 0.009521 0.222875 0.003342 4.78E-05 0.008374 
Randall2019a Control 528.8333 528.8333 528.8333 4.58483 0.965273 41.0663 68.26556 

 Uraemic 551.875 551.875 551.875 4.733444 0.975732 49.25629 70.72847 

 p 0.557495 0.557495 0.557495 0.505193 0.307658 0.560928 0.669956 
Randall2019b Control 599.5 599.5 599.5 4.896129 0.981281 62.42806 76.51418 

 Uraemic 621.6667 621.6667 621.6667 4.98459 0.983421 66.72698 80.73599 

 p 0.73058 0.73058 0.73058 0.684303 0.71 0.787519 0.592132 
Randall2021a Control 105.6667 106.95 106.5639 3.507143 0.925483 15.73231 18.2353 

 Uraemic 111.6667 113.2949 113.3049 3.589526 0.936636 18.21413 19.62634 

 p 0.834565 0.830248 0.81921 0.766181 0.596245 0.498627 0.771918 
Randall2021b Control 155.4444 157 156.407 4.205179 0.969409 33.97849 24.86759 

 Uraemic 143.125 145.3438 144.4432 4.26122 0.975954 44.48003 23.59562 

 p 0.374689 0.404173 0.387341 0.603385 0.082514 0.034534 0.53427 
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Table 17: Alpha diversity in meta-analysis datasets. The range of measures used including 

observed ASVs per sample, and the Chao1, ACE, Shannon, Simpson, Inverse Simpson and 

Fisher indices are listed. Means for individual groups are listed and significance calculated for 

between group differences using Student’s t test with Welch’s correction, in all samples between 

control and uraemic animals and between rats and mice; and then within each individual cohort 

between control and uraemic animals. 
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Cohort  Increased in uraemia Decreased in uraemia 
Al-Asmakh2020 Order Enterobacterales  
  Corynebacteriales  
  Bifidobacteriales  
 Family Atopobiaceae  
  Enterobacteriaceae  
  Bifidobacteriaceae  
  Aerococcaceae  
  Clostridiaceae  
 Genus Klebsiella  
  Coriobacteriaceae UCG-002 

  Faecalibaculum  
  Aerococcus  
 Species:   
 Lactobacillus  10 

 Enterococcus  4 

 Klebsiella 4  
 Atopobiaeceae 3  
 Pseudomonas 5  
 Peptostreptococcus  1 

 Atlantibaculum 1  
 Desulfovibrio 1  
 Bifidobacterium 1  
Kikuchi2017  None None 
Kikuchi2019 Family Peptostreptococcaceae Lachnospiraceae 

 Genus Romboutsia 
Lachnospiraceae NK4A136 
group 

 Species:   
 Atlantibaculum  2 

 Turicibacter  1 

 Klebsiella  1 

 Eschericia  1 

 Clostridium sensu stricta 1 

 Lactobacillus  1 

 Peptostreptococcus 1  
 Bifidobacterium 1  
 Enterobacteriaceae 1  
 Clostridium 1  
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Mishima2015 Class Actinobacteria  
 Order Bifidobacteriales  
  Erysipelotrichales  
 Family Bifidobacteriaceae  
  Erysipelotrichaceae  
 Genus Bifidobacterium  
  Dubosiella  
 Species:   
 Lactobacillus 11  
 Bifidobacterium 4  
 Dubosiella 8  
 Muribaculaceae 3  
 Parabacteroides 1  
Nanto-Hara2020 Family Prevotellaceae  
 Genus Alloprevotella  
 Species:   
 Muribaculaceae 15 9 

 Alloprevotella 1  

 
Lachnospiraceae group 
NK4A136 2  

 Bacteroides caecimuris 1 

 Lachnoclostridium 1  
 Lactobacillus 3  
Randall2019a  None None 
Randall2019b Species:   

 
Lachnospiraceae group 
NK4A136 1 1 

 Colidextribacter  1 
Randall2021a  None None 
Randall2021b Species:   
 Lachnospiraceae 3  
 Muribaculaceae 2  
 Clostridia  1 

 Oscillobacter 1  
Vaziri2013 Phylum NC10 Verrucomicrobia 

  TM7 SPAM 

  Chlorobi  
 Class Chthonomonadetes Verrucomicrobiae 

  12-24  
  TM7-3  
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  Ignavibacteria  
 Order Chthonomonadales Lactobacillales 

  MIZ17 Verrucomicrobiales 

  CW040  
  Ignavibacteriales  
 Family Chthonomonadaceae Lactobacillaceae 

  Unclassified, o. MIZ17 Verrucomicrobiaceae 

  F16  
  Peptostreptococcaceae  
  Ignavibacteriaceae  
 Genus Chthonomonas Pseudanabaena 

  Unclassified, f. F16 
Unclassified, f. 
Planococcaceae 

  Unclassified, o. MIZ17 Pediococcus 

  Bacteroides Prevotella 

  Peptostresptococcus Solibacillus 

  
Unclassified, o. 
Bacillales Lactobacillus 

   Akkermansia 

 Species:   
 Corynebacteria 1 2 

 Chthonomonas 1  
 Bacteroides  2 

 Parabacteroides  1 

 Porphyromonas  1 

 Prevotella  24 

 Rikenellaceae 9 6 

 YS2/4 3  
 Pseudanabaena  1 

 Planococcus  1 

 Staphylococcus  3 

 Lactobacillus  89 

 Pediococcus  3 

 Streptococcus  3 

 Turicibacter  2 

 Clostridium 3  
 Blautia 2  
 Butyrivibrio  1 

 Coprococcus 2 12 

 Eubacterium  1 
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 Moryella 1  
 Roseburia 2 1 

 Ruminococcus 17 1 

 Lachnospiraceae 40 3 

 Peptostreptococcus 1  
 Oscillospirar 1  
 Veillonella 1  
 MIZ17 1  
 Aquabacter  1 

 Eschaericia 1  
 Shigella 2  
 Enterobacteriaceae 8  
 Allobaculum  1 

 p-75-a5  1 

 RF39 1  
 F16/17 2  
 Akkermansia  72 

 CV106  1 
 

 

Table 18: Bacterial taxa showing significant differences in abundance between control and 

uraemic samples at each taxonomic level within each cohort. All significantly differentially 

abundant taxa at an ANCOM cut-off of 0.7 are included; at species level these are aggregated at 

genus level. 

  



411 

 

 

Appendix 6: Metagenomic analysis of 
carbohydrate metabolism in animals fed 
fermentable fibre 
 

The non-redundant gene catalogue from metagenomic sequencing described in chapter 5 was 

compared to the CAZy (Carbohydrate Active enZYmes) database to interrogate further the 

nature of the observed increases in carbohydrate metabolic pathways. The genes set was 

associated with 89 agglomerated categories, including: 

• One auxiliary activity (AA) molecule family, 

• Five carbohydrate binding (CBM) modules, 

• Two carbohydrate esterase (CE) families  

• 48 glycoside hydrolase (GH) families  

• 26 glycosyltransferase (GT) families 

• Five polysaccharide lyase (PL) families. 

 

The auxiliary activity family (AA10) was increased in samples from CELL-treated animals 

(p=0.012 by Kruskal Wallis). This family includes a range of copper-dependent molecules with 

roles in cleaving complex polysaccharides including cellulose.   
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Similarly, two of the carbohydrate binding families (CBM6 and CBM73) which were increased 

in abundances in CELL-treated animals have described functions in binding long molecules such 

as cellulose and chitin.  

Glycoside hydrolase molecules provide the vast bulk of cellular machinery for breaking down 

complex sugars. Of the 48 molecules in this class associated with the dataset, 21 were present in 

significantly increased abundances in FOS-treated animals compared to three in CELL-treated 

animals when assessed by two-way Kruskal-Wallis.  

The 21 GH families increased in FOS-fed animals included a number of major families (GH3, 

GH4, GH13, GH15) with well-described roles in the reduction of complex polysaccharides. 

Enzymes from the GH13 family are the major GH family acting on the alpha-glucosidic bonds 

such as those joining the terminal glucose molecule onto FOS molecules (in association with 

GH15 enzymes which hydrolyse the non-reducing end residues of this metabolism). Conversely, 

GH3 is a major family acting on beta-glycosidic bonds such as those in the backbone of FOS 

molecules. The GH32 family has specific activity against fructans and inulins with a broad 

overlap for FOS fibre; a number of other families increased in FOS-fed animals (eg GH95, 

GH121 and GH127) are core parts of the metabolic machinery of genus Bifidobacteria, Figure 

118, p. 415. 

Of the three GH families increased in CELL-fed animals, at least one (GH94) has a specialist 

role in cellulose degradation; the two others included a carrageenase (GH82) and an alpha-

galactosidase (GH27). 
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Ten of the 26 associated glycosyltransferase (GT) molecules were significantly over-represented 

in CELL-fed animals whilst 8 were over-represented in FOD-fed. GTs may fulfil both synthetic 

and catalytic functions, by molecules that transfer a carbohydrate residue from a donor molecule 

(often a nucleotide) to an acceptor: thus they may be involved in digestion or in synthesis of new 

molecules. 

The GT families increased in CELL-fed were predominant synthetic, including those 

synthesising cellulose for extra-cellular transport (eg the GT2 family), and those involved in 

lipopolysaccharide (LPS) production: the GT8, GT9 and GT25 families. Conversely, a number 

of the GT families increased in FOS-fed animals had wider metabolic roles including the GT1 

family (fulfilling a wide range of glucoryl transferase activities), and families involved in energy 

storage such as GT4, GT5, GT35 and GT51 which each contain enzymes involved in starch, 

glucan and glycogen storage. 

To better understand these metabolic changes at the level of individual metabolic pathways, 237 

KEGG modules were compared; 112 were differentially abundant according to diet by Kruskal-

Wallis adjusted for multiple hypothesis testing, with 68 being increased in FOS-fed and 44 

increased in CELL-fed animals. 

Analysis of individual modules revealed extensive differences between FOS-fed and CELL-fed 

animals, consistent with a substantial shift in energy pathways and metabolites utilisation. 

In FOS fed animals, pathways involved in extraction of simple sugars from complex 

carbohydrate fibres were significantly more abundant than in CELL-fed animals, including 

KEGG modules M00061 (D-glucuronate degradation), M00081 (pectin degradation) and 
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M00631 (D-galacturonate degradation); each consistent with an increase in bacterial metabolic 

machinery for degrading plant-based fibres. 

There was a significant increase in the two pathways used for glucose reduction in some bacteria 

in preference to glycolysis: the Entner Doudoroff pathway (both its non-phosphorylative form, 

M00008; and the semi-phosphorylative pathway, M00633); and the fructose-6-phosphate 

division of the pentose phosphate pathway (M00007, which has been termed the ‘bifid shunt’, 

Figure 119 and Figure 120; p. 416 & 417), and subsequent PRPP synthesis pathway (M00005). 

By contrast, the reductive pentose phosphate cycle (M00166) was over-represented in CELL-fed 

animals. Taken together, these are suggestive of the increased abundance of simple sugars in the 

gut lumen for direct utilisation by bacteria with the correct metabolic pathways. 

FOS-treated animals also showed an increase in metabolic pathways to use short chain fatty 

acids as an energy source, including the methylaspartate cycle (M00740) that produces 

glycoxylate from acetate, and the glycoxylate cycle that utilises glycoxylate for energy 

generation (M00012); and propanoyl-CoA metabolism that allows propionate to enter the Krebs 

cycle via conversion to methylmalonate and succinate (M00741).  
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Figure 118: Count reads per sample of the glycosyl hydrolase 13 and 32 families. The GH13 is 

the major family acting on alpha-glucosidic bonds such as those linking the terminal glucose to 

the fructose residues in FOS fibres; the GH32 family acts specifically to degrade inulins and 

fructans. Significance is shown between FOS-fed (green) and CELL-fed (blue) animals within 

each intervention group (control or uraemic) using Sidak’s post-test analysis following two-way 

ANOVA.  
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Figure 119: Read counts per sample for genes associated with the ‘bifid shunt’; the fructose-6-

phosphate division of the pentose phosphate pathway. Diet was significant (p=0.01) by two-way 

ANOVA. Blue, CELL diet; green, FOS diet. 
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Figure 120: The ‘bifid shunt’. Taken from O’Callaghan and van Sinderen, 2016. [442] This 

pathway, unique to genus Bifidobacterium, allows these organisms to thrive in environments 

with high supply of carbohydrate oligomers, such as in the gut of prebiotic supplemented rats. 
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