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Abstract 

Endothelin-1 (ET-1), the potent vasoconstrictor peptide, is synthesised from the 212 

amino acid precursor preproendothelin-1 (ppET-1). ET-1 is strongly implicated in 

cardiac and renal pathologies. However, ET receptor antagonists demonstrated only 

limited efficacy in clinical trials of chronic heart failure (HF) and hypertension. ET-1 

has a short circulating half-life and its plasma measurements have been inaccurate. Thus, 

alternative ppET-1 derived peptides may be more stable and could serve as better 

biomarkers of ET-1 synthesis. Moreover, alternative ppET-1 derived peptides may 

contribute to the biological effects resulting from EDN1 gene expression and may be 

interacting with the vasoconstrictor responses of ET-1 or other mediators. The aims of 

these investigations were to characterise ppET-1 derived peptide products and to 

evaluate their potential as biomarkers of ET-1 synthesis. 

A combination of specific immunoassays and HPLC were used to characterise ppET-1 

processing in human endothelial (EA.hy 926) and epithelial (A549) cells in culture. NT-

proET-1 (ppET-1[18 – 50]), endothelin-like domain peptide (ELDP, ppET-1[93 – 166]) and 

CT-proET-1 (ppET-1[169 – 212]) were identified in conditioned media samples as the main 

ppET-1 derived peptide products. The identities of ELDP and CT-proET-1 were 

confirmed by LC-MS/MS mass spectrometry.  

The three ppET-1 peptides were chemically synthesised and their in vivo clearance was 

investigated in male Wistar rats. Arterial plasma levels after intravenous administration 

of proET-1 peptides showed rapid clearance (<5 min) of NT-proET-1, while CT-proET-

1 had the slowest clearance rate. Studies of proET-1 peptide stability in blood samples 

also showed NT-proET-1 had lower stability. Specific double-recognition site sandwich 

ELISAs optimised for plasma measurements were used to evaluate plasma 

concentrations of ELDP and CT-proET-1 in patients with chronic HF and chronic 

kidney disease (CKD). 

In conclusion, the results described in this thesis provide further evidence linking ET-1 

to cardiac and renal disease processes. But the small differences between healthy 

individuals and patients with cardiovascular or renal disease indicate only a limited 

potential for proET-1 peptides as diagnostic biomarkers of EDN1-linked pathologies.  
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1  INTRODUCTION  

1.1  Identification of endothelin-1 

Endothelium-dependent contracting factor (EDCF) was first described in 1985 (Hickey 

et al., 1985). This peptidic EDCF was isolated, purified, sequenced and cloned by 

Yanagisawa and colleagues in 1988 from the conditioned medium of porcine aortic 

endothelial cells, and named as endothelin-1 (ET-1) (Yanagisawa et al., 1988). The 

human preproendothelin-1 (ppET-1) messenger RNA (mRNA) was cloned and 

complete nucleotide sequence was determined by Inoue et al., 1989. The human ET-1 

gene (EDN1) encodes a 212 amino acid precursor, ppET-1 (Bloch et al., 1989).  

Endothelin (ET) occurs as three isoforms ET-1, ET-2 and ET-3 that are generated from 

three distinct human genes encoding ppET-1, ppET-2, and ppET-3, respectively (Inoue 

et al., 1989). All ET peptides are 21 amino acids long, differ only in their N-terminal 

sequence, contain four cysteine residues forming two intra-chain disulphide bridges at 

Cys1 – Cys15 and Cys3 – Cys11 (Yanagisawa et al., 1988; Inoue et al., 1989) and share a 

common hydrophobic C-terminal with Trp21, which is essential for biological activity 

(Bouallegue et al., 2007) (Table 1.1). 

ET-1 is the principal cardiovascular isoform and the most potent vasoconstrictor peptide 

described yet (Yanagisawa et al., 1988). ET-1 contributes to the maintenance of vascular 

tone in healthy humans (Haynes & Webb, 1994). Nevertheless, ET-1 is also implicated 

in the pathophysiology of cardiovascular diseases including atherosclerosis (Lerman et 

al., 1991) where it has enhanced expression (Winkles et al., 1993) and contributes to 

increased constriction in atherosclerotic human coronary arteries (Kinlay et al., 2001). 
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Table 1.1: Comparison of the amino acid sequences of three human ET isoforms: ET-1, ET-2 and ET-3.  Homologous residues to ET-1 are 

represented as hyphens (-). Cysteine residues at positions 1 – 15 and 3 – 11 form disulphide bridges and are conserved in all peptides. The C-

terminal hydrophobic region is also highly conserved across the three ET peptides. 

 

 

ET peptide 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

ET-1 C S C S S L M D K E C V Y F C H L D I I W 

ET-2 - - - - - W L - - - - - - - - - - - - - - 

ET-3 - T - F T Y K - - - - - - Y - - - - - - - 
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1.2  Processing of proendothelin-1  

Human ET-1 is derived from a 212 amino acid precursor ppET-1 (Bloch et al., 1989). 

The initial step in processing of the ET-1 precursor involves removal of the amino (N)-

terminal signal sequence of ppET-1 by a signal peptidase. This occurs in the 

endoplasmic reticulum (ER) on entry of the nascent protein into the secretory pathway 

(Steiner, 1982). This generates proendothelin-1 (proET-1), which is condensed and 

packed in the trans-Golgi network and then transported to the cell surface by the 

constitutive secretory pathway. Intracellular proteolytic processing of proET-1 occurs in 

secretory vesicles in endothelial cells (ECs) (Harrison et al., 1995). ProET-1 undergoes 

further proteolytic processing by pro-hormone/pro-protein convertases (PCs) at 

carboxyl (C)-terminal of pairs of basic residues (Rockwell & Thornier, 2004). This 

proteolytic processing generates the inactive intermediate big ET-1 (38 amino acid 

residues) following Lys51-Arg52 and Lys91-Arg92 (Kido et al., 1997). In ECs big ET-1 is 

generated from proET-1 via furin (Denault et al., 1995; Blais et al., 2002). The final step 

of ET-1 biosynthesis involves a novel endopeptidase, which is called endothelin-

converting enzyme (ECE) (Yanagisawa et al., 1988).  

ECE cleaves big ET-1 to the biologically active ET-1 and a C-terminal fragment (CTF) 

of big ET-1 (big ET-1[22 – 38]) by selective hydrolysis of the peptide bond at Trp21 – Val22 

residues (Figure 1.1) (Emori et al., 1989; Ikegawa et al., 1990). These studies were also 

performed using pulmonary aortic endothelial cells (PAEC)/bovine aortic endothelial 

cells (BAEC) (Harrison et al., 1995) and this was subsequently confirmed in human 

umbilical vein endothelial cells (HUVEC) (Corder et al., 1995b).  

ProET-1 contains six potential cleavage sites by PCs that are beyond the sequence of big 

ET-1. Based on the human sequence, these potential cleavage sites are at C-terminal of 

Lys-Arg (KR) at 92/93; or Lys-Lys (KK) at 118/119, 144/145, and 154/155; or Arg-Lys 

(RK) at 165/166; or Arg-Arg (RR) at 168/169 (Figure 1.1). However, only two of these 

processing sites (Lys-Arg or Arg-Arg) occur frequently. Cleavage at these residues 

could generate potential proET-1 peptide fragments. This results in the co-secretion of 

the biologically active peptide ET-1 with other peptide fragments, which are generally 

considered to be biologically inert (Struck et al., 2005). However, these peptide 

fragments can act as markers for the release of the active vasoconstrictor ET-1 (Struck 

et al., 2005; Papassotiriou et al., 2006). 
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ppET-1

KRKR

1 17

53 90

proET-1

ECE-1

pre-peptide cleaved by signal peptidase

Trp21–Val22

53 73

Big ET-1

CTF of 

big ET-1
ET-1

74 90

Big ET-1

Cleavage of Trp21 – Val22 bond

via endothelin converting

enzyme (ECE) generates ET-1

and C-terminal fragment (CTF)

of big ET-1.

Double basic amino acid

residues [typically Lys-Arg

(KR) and Arg-Arg (RR)] are

cleaved by pro-hormone

convertases (e.g. furin).

Conserved double basic

residues as potential cleavage

sites in the ppET-1 human

sequence.

168/169118/119

KK│C

144/145 154/155 165/166

KK│G KK│C RK│IRR│SS

 

 

Figure 1.1: Biosynthesis of human preproendothelin-1. The signal sequence (position 

1 – 17) of ppET-1 is cleaved by a signal peptidase. ProET-1 is then proteolytically 

processed by PCs at double basic residues (typically Lys-Arg or Arg-Arg). These sites 

are marked with arrows and indicate cleavage possibly via furin-like convertase. This 

generates the inactive intermediate big ET-1, which is cleaved at a Trp21–Val22 bond 

(Trp73 – Val74amino acid residue numbers based on human ppET-1) by the proposed 

endopeptidase ECE. This generates the vasoactive peptide ET-1 and a C-terminal 

fragment (CTF) of big ET-1. Potential cleavage sites at conserved double basic residues 

are marked with dotted arrows. Cleavage at these sites could generate potential proET-

1 peptide fragments. 
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Two distinct pathways are involved in ET-1 release at the cell surface. Firstly, ET-1 is 

released by the constitutive pathway from vesicles originating from the trans-Golgi 

network as described. Secondly, ET-1 is also released from endothelial cell-specific 

storage granules, called Weibel-Palade bodies by a regulated pathway (Russell & 

Davenport, 1999). This occurs through the regulated pathway in response to an external 

physiological or pathophysiological stimulus including thrombin, hypoxia, and shear 

stress (Lowenstein et al., 2005). Weibel-Palade bodies also store von Willebrand factor 

(vWF), which plays a key role in thrombus formation by facilitating platelet adhesion 

(Turritto et al., 1985). 
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1.3  The role of pro-hormone/pro-protein convertases (PCs)  

There are seven members of PCs identified in humans and other mammals.  Furin is the 

best characterised member with Kex2/kexin being its homologous counterpart in yeast 

Saccharomyces cerevisiae (Fuller & Thorner, 1989). Other mammalian relatives are 

PC1/PC3, PC2, PACE4, PC4, PC5/PC6 and PC7/PC8/LPC/SPC7 (Rockwell & Thorner, 

2004). PCs are calcium-dependent serine proteases. All PCs contain an N-terminal 

signal sequence for directing entry into the secretory pathway, a pro-domain which has 

a role in protein folding and it is essential for activity, a subtilisin-related catalytic 

domain and a variable domain, which in furin and PACE4 includes a cysteine-rich 

domain (Henrich et al., 2003). Furin, PACE 4 and PC5/PC6 enzymes are more 

ubiquitously distributed while PC2, PC1/PC3 and PC4 enzymes are localised to 

endocrine/neuroendocrine cells and testicular spermatids (PC4). 

Full-length furin, the PC6 isoform, PC7 and kexin also contain an additional C-terminal 

transmembrane domain and a short cytoplasmic sequence (Henrich et al., 2003). Furin 

and kexin family of proteases recognise dibasic amino acid motifs typically Lys-Arg and 

Arg-Arg and less frequently Lys-Lys, Arg-Lys or Arg-X-X-Arg (Rockwell & Thornier, 

2004; Bergeron et al., 2000). A cleavage site followed by an Arg represented with a P1 

at the first residue on the N-terminal side of the cleaved peptide bond. In addition, furin 

is also specific for Arg at the -4 position relative to the scissile bond (P4-Arg) (Kido et 

al., 1997; Rockwell & Thornier, 2004). Both furin and kexin require an Arg at P1 and P4 

for cleavage. 

 

Furin and PC7 cleave proET-1 to big ET-1 in ECs (Blais et al., 2002). Similar to furin, 

PC7 requires Arg at P1 and P4 but, in addition, a P2 basic residue is also essential (Blais 

et al., 2002). The processing of proET-1 is not fully characterised in vivo and requires 

further investigation.  
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1.4  Endothelin Converting Enzyme (ECE) 

ET-1 biosynthesis is dependent on the hydrolysis of the intermediate big ET-1 by an 

endopeptidase designated as endothelin converting enzyme (ECE) (Yanagisawa et al., 

1988). ECE was initially proposed by Yanagisawa et al., 1988, with the first clear 

evidence being provided by studies showing the inhibitory effect of phosphoramidon on 

cultured porcine aortic endothelial cells (Ikegawa et al., 1990). ET-1 synthesis was 

markedly suppressed by the metalloprotease inhibitor phosphoramidon due to inhibition 

of ECE resulting in the accumulation of the inactive intermediate big ET-1 in cell culture 

conditioned medium (Sawamura et al., 1991; Ikegawa et al., 1991; Corder et al., 1995b; 

Isaka et al., 2003). This led to the understanding that ECE is a phosphoramidon-sensitive 

neutral metalloproteinase.  

The conformation of human big ET-1 is important for its hydrolysis by ECE (Corder, 

1996). This was confirmed by decreased specificity/interaction of ECE to hydrolyse the 

modified big ET-1 [incorporated with N-hydroxysuccinimide esters of 3-(p-

hydroxyphenyl)propionic acid (HPP) or S-acetylthioglycolic acid (ATG) groups, or 

removal of disulphide bridges] (Corder, 1996). 

Two ECE genes have been cloned and they are referred to as ECE-1 (Shimada et al., 

1995; Xu et al., 1994) and ECE-2 (Emoto & Yanagisawa, 1995). ECE-2 is expressed in 

the trans-Golgi network and shares 59% identity with the amino acid sequence of ECE-

1 (Emoto & Yanagisawa, 1995). ECE-3 was later described and purified from bovine 

iris microsomes and is specific for big ET-3 (Hasegawa et al., 1998). All ECE isoforms 

cleave big ET-1 with the same efficiency (D’Orléans-Juste et al., 2003). The cleavage 

of big ET-2 occurs at the Trp21 – Val22 bond, as in big ET-1, whereas big ET-3 is cleaved 

at the Trp21 – Ile22 bond to produce ET-3. ECE-2 is more selective for big ET-1 than for 

big ET-2 and big ET-3. Immunohistochemical studies shown highest ECE-1 expression 

in cardiovascular endothelium (Whyteside & Turner, 2013).  ECE-1 is the most 

abundant isoform and it is widely expressed in many cells and human tissues (Rossi et 

al., 1995; Valdenaire et al., 1995; Schweizer et al., 1997). 
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1.4.1  Structural features of ECE-1  

ECE-1 is a type II integral membrane-bound neutral metalloproteinase. ECE-1 has 

structural similarity to neutral endopeptidase 24.11 or neprilysin (NEP-24.11) (Malfroy 

et al., 1988) and Kell blood group protein (Lee et al., 1991) and both ECE-1 and NEP-

24.11 are localised on the plasma membrane of human ECs (Waxman et al., 1994; 

Corder et al., 1995b) (Table 1.2, page 11). 

ECE-1 consists of (1) a short N-terminal cytoplasmic domain, (2) a single 

transmembrane helix, and (3) a large extracellular domain that includes the active 

catalytic site (comprising the C-terminal end) and a HEXXH (His591, Glu592, X, X, 

His595) zinc-binding motif (Sansom et al., 1995; Whyteside & Turner, 2013). This 

suggested that ECE-1 has similar topology and cellular location and possibly exist as an 

ectoenzyme converting big ET-l to ET-1 at the extracellular face of the plasma 

membrane (Turner & Tanzawa, 1997). Mutational studies of ECE have established a 

conserved NAYY (Asn566, Ala567, Tyr568, Tyr569) motif to be important for substrate 

binding and unique to ECE (Sansom et al., 1998). 

In contrast to NEP-24.11, ECE-1 is highly glycosylated (ten N-linked glycosylation 

sites) and has ten highly conserved Cys residues. Under reducing conditions ECE-1 was 

estimated to exist with a molecular weight (MWt) of 120 – 130 kD (SDS-PAGE) (Xu et 

al., 1994; Turner & Murphy, 1996). Human ECE-1 was estimated to be ~250 kD (gel 

filtration chromatography) (Corder et al., 1995b). This suggested that ECE-1 has two 

disulphide-linked subunits (Takahashi et al., 1995; Shimada et al., 1996). 

Four human ECE-1 isoforms (ECE-1a – d) are expressed in ECs. These are derived from 

the same gene through alternative splicing of mRNA. They differ from each other in 

their N-terminal cytoplasmic tails (Valdenaire et al., 1995). These tails play a role in 

enzyme targeting and turnover with di-leucine and tyrosine-based motifs affecting 

localisation (Valdenaire et al., 1995). While ECE-1a (758 amino acid residues) and 

ECE-1c (754 amino acid residues) are found on the plasma membrane as ectoenzymes 

(Schweizer et al., 1997), ECE-1b (770 amino acid residues) is located intracellularly 

(Takahashi et al., 1995). Later, Muller et al., 2003 demonstrated in transfected AtT-20 

neuroendocrine cells that both ECE-1b and ECE-1d are located intracellularly in the 

endosomal system. ECE-1b mRNA is widely expressed in a variety of tissues, but ECE-

1a is more abundantly expressed than ECE-1b in ECs (Shimada et al., 1995) and human 
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tissue (Mockridge et al., 1998) but not in primary cultures of smooth muscle cells (SMC) 

(Valdenaire et al., 1999). In contrast, Schweizer et al., 1997 showed ECE-1c mRNA as 

the main isoform expressed in most human tissues while confirming ECE-1a as the 

predominant isoform in ECs. Subsequent studies showed ECE-1c and ECE-1d 

expression in vascular smooth muscle cells (VSMC) (Barker et al., 2001) while all 

isoforms were expressed in ECs. In general, ECE-1 is localised to the luminal surface 

on ECs rather than VSMC (Russell et al., 1998). Even though there is difference in their 

tissue distribution ECE-1a – c isoforms cleave big ET-1 with comparable efficiencies 

(Schweizer et al., 1997).  

 

Both ECE-1 and ECE-2 catalyse the conversion of big ET-1 to ET-1 with a neutral (pH 

6.8) and acidic (pH 5.6) pH optimum, respectively (Emato & Yanagisawa, 1995).  ECE-

2 is localised in secretion vesicles and ECs but not expressed on plasma membrane 

(Emato & Yanagisawa, 1995).  

 

The association between specific ECE-1 isoforms to ET-1 synthesis and factors 

regulating cell-specific expression of ECE-1 isoforms have been unclear (Corder et al., 

1998). In BAEC, Corder & Barker, 1999 found no relation between the level of ET-1 

synthesis or ppET-1 expression with the level of ECE-1 expression (ECE-1a, ECE-1c, 

or all the ECE-1 isoforms).   

  

ECE-1 activity is increased in isolated endothelium-denuded human atherosclerotic 

coronary arteries (Maguire & Davenport, 1998) as well as in rat balloon-injured arteries. 

In rat balloon-injured arteries, in contrast to EC localisation in uninjured vessels, 

immunohistochemical staining located ECE-1 in neointimal SMC in injured arteries 

(Minamino et al., 1997; Dashwood et al., 1999). Furthermore, ECE-1 was detected in 

the intimal and medial VSMC and localised in macrophages and fibrous cap of 

atherosclerotic lesions (Ihling et al., 2001). Upregulation of the ECE-1/ET-1 system was 

also shown to be associated with chronic inflammation and to be present in the early 

stages of atherosclerotic plaque development (Ihling et al., 2001). Together these data 

suggest a possible role of ECE-1 in the vascular remodelling process. Increased ECE-1 

activity may also contribute to increased big ET-1 conversion to ET-1 (Böhm et al., 

2002) that is evident with increased ET-1 levels observed in atherosclerosis (Zeiher et 

al., 1995).  
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 Table 1.2: Distinguishing features of ECE-1 and NEP-24.11. 

 ECE-1 NEP-24.11 

Structure 

● ECE-1 (120 – 130 kD) forms 

covalent disulphide-linked 

dimers (as shown by site-

directed mutagenesis of Cys412 

in rat ECE-1 (Cys428 in human). 

● NEP-24.11 (90 – 100 kD) 

forms a non-covalent monomeric 

structure (Shimada et al., 1996). 

Substrate 

specificity 

● ECE-1 cleaves Trp21 – Val22 

bond of big ET-1 but also 

cleaves bradykinin (Hoang & 

Turner, 1997) substance P, and 

hydrolyses insulin B chain at 

multiple sites with similar 

efficiency to that of big ET-1 

(Johnson et al., 1999).  

● NEP-24.11 has broader 

substrate specificity. Cleaves 

peptide bonds on the N-terminal 

of hydrophobic amino acids 

(Turner & Tanzawa, 1997). 

Atrial natriuretic peptide (ANP) 

and oxytocin are also substrates 

of NEP-24.11. 

Sensitivity to 

inhibitors 

● Phosphoramidon inhibits both ECE-1 and NEP-24.11 but has a 

greater potency (lower Ki) for NEP-24.11.  

● Thiorphan is a potent inhibitor of NEP-24.11 but not ECE-1 

(Turner & Murphy, 1996). 

Metabolism 

of ET 

peptides 

● At lower concentrations (1 µM), NEP-24.11 rapidly degrades ET 

peptides.  
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1.4.2  Analysing the physiological role of ECE-1 in ET-1  

  biosynthesis 

1.4.2.1  Inhibitor studies with protease inhibitors  

In anaesthetised rats, the conversion of exogenously administered big ET-1 to ET-1 was 

observed with increased blood pressure (BP) and airway contractile responses 

(Fukuroda et al., 1990). Phosphoramidon inhibited the BP response of systemically 

administered big ET-1 but not to ET-1 (Fukuroda et al., 1990; Matsumura et al., 1990; 

Corder & Vane, 1995). In contrast, incubation of tissues from guinea pig gallbladder 

with protease inhibitors such as thiorphan inhibitor NEP-24.11 (3 x 10-4 M); or 

metalloprotease inhibitor 1,10-phenanthroline (10-4 M); an angiotensin converting 

enzyme (ACE)  inhibitor captopril (10-4 M); an inhibitor of aspartic proteases pepstatin 

A (10-5 M); an irreversible inhibitor of serine proteases PMSF (10-3 M); a serine protease 

inhibitor E-64; a trypsin-like serine protease inhibitor leupeptin (10-4 M); a 

chymotrypsin-like serine protease inhibitor chymostatin (10-4 M); aprotinin (10-6 M); 

and an inhibitor of aminopeptidases bestatin (10-5 M) before the addition of big ET-1 

were all insufficient to prevent the conversion to ET-1 (Battistini et al., 1995). 

   

Likewise neither captopril nor kelatorphan was able to block the pressor activity of big 

ET-1 in the anaesthetised rats (McMahon et al., 1991). However, thiorpan dose-

dependently inhibited the pressor response to big ET-1, but this inhibition was less 

potent than phosphoramidon (McMahon et al., 1991). These metalloprotease inhibitors 

(phosphoramidon, kelatorphan, and thiorphan) have equal potency for NEP-24.11 and 

since kelatorphan and thiorphan were unable to inhibit ECE activity, it confirmed that 

ECE and NEP-24.11 are distinct members of the metalloprotease family.  These results 

collectively showed evidence that ECE-1 is a phosphoramidon-sensitive 

metalloprotease. 
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1.4.2.2  Inhibitor studies in endothelial cells 

Incubation of big ET-1 with cultured ECs in the presence of phosphoramidon inhibited 

ET-1 production (Ikegewa et al., 1990; Corder et al., 1995b). Similarly, in cultured 

vascular ECs and VSMC phosphoramidon inhibited the conversion of exogenous big 

ET-1 to ET-1 (Ikegewa et al., 1991). Higher concentrations of phosphoramidon were 

required to inhibit endogenous sysnthesis of ET-1 in comparison to those required to 

inhibit exogenous big ET-1 (Corder et al., 1995b). Consistent with intracellular 

synthesis of ET-1 in the secretory vesicles, this was indicative of intracellular hydrolysis 

of the endogenous peptide, which is relatively inaccessible to phosphoramidon (Corder, 

2001).  

Phosphoramidon and thiorphan are zinc metallopeptidase inhibitors. While NEP-24.11 

is inhibited by both (at nM concentrations), ECE-1 is only sensitive to phosphoramidon 

(at µM concentrations). Phosphoramidon inhibits other metallopeptidases such as 

bacterial metalloendopeptidase thermolysin, which has similar substrate specificity as 

NEP-24.11. 
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1.4.2.3  Functional studies  

Although, ECE-1 has been proposed to be the physiological ECE that hydrolyses the 

Trp21 – Val22 bond in big ET-1 to generate vasoactive ET-1 (Yanagisawa et al., 1988; 

Turner & Murphy, 1996) it is still not known whether or not ECE-1 is the only enzyme 

involved in this process. Yanagisawa et al., 1998 reported developmental defects in 

cardiac- and neural crest-derived tissues in a targeted null mutation of ECE-1 gene in 

mouse (ECE-1-/-) that was virtually identical to the defects seen in ET-1 and ETA-

deficient embryos (Yanagisawa et al., 1998). In order to further investigate the role of 

ECE-2 in cardiovascular development Yanagisawa et al., 2000 generated a null mutation 

in ECE-2 by homologous recombination. ECE-2-/- knockout (KO) mice were healthy 

into adulthood and fertile in both sexes (Yanagisawa et al., 2000). However, when they 

were bred into an ECE-1 null background, defects in cardiac outflow structures became 

more severe than those in ECE-1-/- single KO embryos.  More interestingly, tissue levels 

of ET-1/ET-2 measured in whole-embryo extracts from ECE-1-/- and ECE-2-/- mutant 

embryos were similar to those from ECE-1 (48% reduction in ET-1 levels when 

compared to controls) without increases in big ET-1 levels (Yanagisawa et al., 2000). 

This indicated that protease(s) distinct from ECE-1 and ECE-2 can activate mature ET-

1/ET-2 in vivo (Yanagisawa et al., 2000).  

Furthermore, Barker et al., 2001 characterised ECE-1 isoforms in bovine pulmonary 

artery smooth muscle cells (BPSMC), and used an antisense oligodeoxynucleotide 

(ODN) for ECE-1c (the predominant isoform in BPSMC) to test the effect of ECE-1 

depletion on ET-1 synthesis. Treatment with ECE-1c antisense ODN specifically 

reduced ECE-1c mRNA levels and ECE-1 protein, but had a negligible effect on ET-1 

synthesis (Barker et al., 2001). This suggested that the physiological role of ECE-1 in 

ET-1 biosynthesis is not clear and still needs to be further elucidated. 
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1.5  Alternative processing pathways of ET-1 synthesis 

As well as metalloproteinases (Okada et al., 1990), serine and aspartic proteases 

(Ikegawa et al., 1990) can also cleave big ET-1 to produce ET-1. These include matrix 

metalloproteases (MMPs) and human chymase, which produce the vasoactive peptide 

ET-1[1 – 32] and ET-1[1 – 31], respectively.  

 

 

1.5.1  Matrix metalloproteinase-2 

Matrix metalloproteinase-2 (MMP-2, gelatinase A) is a zinc-dependent proteinase 

secreted from vascular endothelial and SMC (Li et al., 1999). MMP-2 cleaves human 

big ET-1 at Gly32 – Leu33 bond (Fernandez-Patron et al., 1999). TIMP-2 is an 

endogenous inhibitor of MMPs with preferred effects on MMP-2 (Woessner, 1998) 

inhibited MMP-2–dependent conversion of big ET-1 (Fernandez-Patron et al., 1999). 

 

 

1.5.2  Chymase 

Incubation of big ET-1 with purified human connective tissue mast cell chymase (a 

chymotrypsin-like serine protease) produced ET-1[1 – 31] by cleaving at the Tyr31 – Gly32 

bond of big ET-1 (Nakano et al., 1997). In endothelium-denuded human umbilical 

venous smooth muscle, ET-1[1 – 31] does not bind to ET receptors at physiological 

concentrations but is converted by enzymatic activity to ET-1 (Maguire & Davenport, 

2004; Davenport & Maguire, 2006). In human bronchial smooth muscle cells ET-1[1 – 

31] is hydrolysed by ECE-1 and NEP-24.11 and is a trachea and vascular smooth muscle 

constricting peptide. 
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1.6  Factors regulating ET-1 biosynthesis in endothelial cells   

ET-1 biosynthesis is dependent on regulation and transcription of ET-1 mRNA (Rubanyi 

& Polokoff, 1994).  Transcriptional factors that are involved in the regulation of ET-1 

gene expression with relevance to atherosclerosis and diabetes include activator protein-

1 (AP-1), hypoxia inducible factor-1 (HIF-1), nuclear factor κB (NFκB), vascular 

endothelial zinc finger 1 (Vezf1), GATA binding protein-2 (GATA-2) and GATA-4, 

and nuclear factor of activated T-cells (NFAT) (Stow et al., 2011). Moreover, DNA 

methylation and histone modifications as well as post-transcriptional modifications that 

affect mRNA stability also modulate EDN1 expression (Stow et al., 2011). 

Transcriptional factors can be activated by stimuli such as thrombin (Yanagisawa et al., 

1988; Marsen et al., 1995), angiotensin II (Ang II)  (Emori et al., 1991; Imai et al., 

1992), growth factors [transforming growth factor-β (TGF-β)] (Lee et al., 2000; 

Rodríguez-Pascual et al., 2003), cytokines [tumour necrosis factor-α (TNF-α)], insulin 

(Oliver et al., 1991; Hattori et al., 1991; Hu et al., 1993), hypoxia (Kourembanas et al., 

1991; Kang et al., 2011), reactive oxygen species (ROS) (Kahler et al., 2001; Ruef et 

al., 2001), low density lipoprotein (LDL) (Boulanger et al., 1992), epinephrine, and 

phorbol ester enhances the secretion of ET-1. By contrast, mediators like calcium 

ionophore (Corder et al., 1993b; Brunner et al., 1994), nitric oxide (NO) (Boulanger & 

Lüscher, 1990), cyclic guanosine monophosphate (cGMP) (Wort et al., 2000), ANP (Hu 

et al., 1992), and prostacyclin (PGI2) (Prins et al., 1994) reduce the release of 

endogenous ET-1. Consensus sequences for these regulators (including shear stress, 

TGF-β, insulin, thrombin, epinephrine, interleukin-1, and Ang II,) are also found in the 

human ECE-1 gene (Valdenaire et al., 1995). 

  



Chapter 1  Introduction 

17 

 

1.6.1  Fluid shear stress 

Fluid shear stress regulates ET-1 mRNA in a biphasic manner (Yoshizumi et al., 1989; 

Malek et al., 1999). ET-1 gene expression is stimulated at low shear stress (4 – 5 

dyn/cm2) (Harrison et al., 1998). In contrast, fluid shear stress at physiological 

magnitude (6 h, 20 dyn/cm2) suppressed ET-1 mRNA expression by 5 – 10-fold in 

cultured BAEC (Malek et al., 1993) and HUVEC (Sharefkin et al., 1991). Exposing 

primary cultures of HUVEC to laminar shear stress transiently upregulated ppET-1 

mRNA, reaching its maximum after 30 min. When HUVEC were exposed to long-term 

laminar shear stress (24 h), ppET-1 mRNA and ECE-1a mRNA levels (most abundant 

ECE-1 isoform in HUVEC) were downregulated (Morawietz et al., 2000). 

Downregulation of ppET-1 mRNA and ET-1 release occurs in a shear stress magnitude 

dependent manner (Morawietz et al., 2000). Protein kinase C (PKC) inhibitor calphostin 

C (1 µM) did not hinder shear-induced downregulation of ET-1 and forskolin (10 µM) 

an activator of adenylate cyclase (AC) had no significant effect on cyclic adenosine 

monophosphate (cAMP) levels in response to shear stress of up to 60 min (20 dynes/cm2) 

and resulted in significant downregulation of ET-1 mRNA (Malek et al., 1993). These 

data suggest that the regulation of ET-1 by shear stress (of magnitude 20 dynes/cm2) in 

aortic endothelium is independent of PKC and cAMP (Malek et al., 1993). HUVEC 

were not affected by PKC, cAMP or tyrosine kinase inhibition (Morawietz et al., 2000). 

Steady laminar shear stress (20 dyn/cm2) increased endothelial nitric oxide synthase 

(eNOS) mRNA levels (Malek et al., 1999). The mechanism of this effect could result 

from shear stress induced activation of Ca2+ dependent eNOS, which inhibits ET-1 

(Malek et al., 1999). Inhibition of eNOS (by L-NAME, 500 μM) prevented the 

downregulation of ppET-1 mRNA by shear stress (Morawietz et al., 2000). 

 

Increase in ET-1 release following short periods of mechanical stretch was demonstrated 

in ECs (Macarthur et al., 1994; Hishikawa et al., 1995) and in human atherosclerotic 

coronary arteries in vivo (Hasdai et al., 1997). 
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1.6.2  Krüppel-like factor 2 (KLF2) 

The most important mechanism regulating ET-1 gene expression in ECs in response to 

fluid shear stress is through the activation of a transcription factor, Krüppel-like factor 

2 (KLF2). Expression of KLF2 is specific for ECs where it mediates the effect of fluid 

shears on ET-1 expression. This response is blocked by siRNA for KLF2 (Parmar et al., 

2006). Inhibition of flow-induced upregulation of KLF2 in ECs caused significant 

decrease of the regulation of upregulated genes such as eNOS (Parmar et al., 2006). 

Downregulation of interleukin-8 (IL-8), Ang-II, and ET-1 was abolished at the mRNA 

level (Parmar et al., 2006). Overexpression of KLF2 in HUVEC potently induces eNOS 

and inhibits the induction of key adhesion molecules such as vascular cell adhesion 

molecule 1 (VCAM-1) and E-selectin (through NFκB-dependent pathway), but not 

intracellular adhesion molecule-1 (Feinberg et al., 2004). 

 

KLF2 inhibits activation of pro-inflammatory cytokines including TNF-α, LPS, and 

thrombin (Atkins & Jain, 2007). KLF2 inhibits protease-activated receptor-1 (PAR-1), 

which is the principal receptor of thrombin. Therefore, KLF2 inhibits thrombin-induced 

activation of cytokine/chemokine such as IL-6, IL-8, and monocyte chemoattractant 

protein-1 (MCP-1) (Atkins & Jain, 2007). 

 

1.6.3  Calcium (Ca2+) ionophores 

Stimulation of ECs with Ca2+ ionophores for short periods increase ppET-1 mRNA 

expression (Tasaka & Kitazumi, 1994) while longer stimulation suppress ET-1 synthesis 

(Corder et al., 1993b). Calcium ionophore, A23187, inhibited ET-1 release from 

cultured HUVEC (Russell et al., 1998). The inhibitory effect of A23187 was unaffected 

by NOS inhibitor NG-monomethyl-L-arginine (0.2 mM) or COX inhibitor indomethacin 

(10 µM). Therefore, inhibition of ET-1 release by A23187 was independent from NO or 

prostacyclin synthesis in BAEC and EA.hy 926 cells (Corder et al., 1993b). Calphostin 

(PKC inhibitor) suppressed basal ppET-1 expression in ECs (Malek et al., 1993), 

indicating a role of specific PKC isoforms in the regulation of ET-1 gene expression.  

 

  

http://www.ncbi.nlm.nih.gov/nuccore/833253
http://www.ncbi.nlm.nih.gov/nuccore/833253
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1.6.4  Thrombin 

Thrombin stimulates ppET-1 gene expression and ET-1 release in macrovascular 

[HUVEC and bovine pulmonary artery endothelial cells (BPAEC)] and microvascular 

cells [human endothelial cell line (HMEC-1)] with highest induction occurring at 4 U/ml 

after 2 h (Marsen et al., 1995). Thrombin stimulated ppET-1 mRNA and ET-1 peptide 

induction was mediated by phosphorylation and activation of protein tyrosine kinase 

(PTK) through PKA and PKC-independent pathway (Marsen et al., 1995). This 

conclusion was reached using selective PTK inhibitors herbimycin A (1 μmol/L for 6 h) 

and genistein (6 μg/ml for 30 min) before thrombin stimulation, which reduced ppET-1 

mRNA expression and thrombin-stimulated ET-1 peptide synthesis to control levels in 

HUVEC and HMEC-1, and below control levels in BPAEC (Marsen et al., 1995). 

Phorbol ester (an activator of PKC) transiently induced ppET-1 mRNA but had no effect 

on ET-1 peptide synthesis. Thrombin stimulated ppET-1 mRNA was unaffected by 

inhibition of PKC using sangivamycin (0.1 μmol/L for 30 min) and calphostin C (0.1 

μmol/L for 30 min). Forskolin (20 μmol/L for 2 h) had no effect on thrombin stimulated 

ppET-1 mRNA levels and ET-1 peptide synthesis.  

 

In contrast, thrombin stimulated ppET-1 mRNA in porcine aortic ECs can be mediated 

by PKC (Kitazumi & Tasaka, 1993) and immunoreactive (ir) ET-1 release was inhibited 

by PKC inhibitors H7 [91-(5-isoquinolinesulphonyl)-2-methylpiperazine)] and 

staurosporin (Kohno et al., 1992). 

 

 

1.6.5  Bacterial lipopolysaccharide (LPS) 

Treatment of BAEC with bacterial lipopolysaccharide (LPS) (10 µg/ml) resulted in a 

concentration-dependent increase in ET-1 release and increased ppET-1 mRNA 

expression (Douthwaite et al., 2003). Increase in ppET-1 mRNA transcription was 

relatively small in comparison to increase in ppET-1 mRNA levels and the degree of 

induction of ET-1 release (Douthwaite et al., 2003). Therefore, decreased mRNA 

degradation and increased stability were more likely to be the key contributing factors 

to the increased mRNA levels. LPS increased ppET-1 mRNA stability by approximately 

2-fold (Douthwaite et al., 2003). Jersmann et al., 2001 also stated that TNF-α and LPS 

act synergistically to upregulate expression of endothelial cell adhesion molecules such 
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as intercellular adhesion molecule-1 (ICAM-1), E-selectin and VCAM-1, which are 

important mediators in the regulation of leukocyte trafficking from the blood to the site 

of inflammation.  

  

 

1.6.6  Insulin 

Insulin stimulated ET-1 levels (2-fold) in the conditioned medium from BAEC (Potenza 

et al., 2005). Pre-treatment with a PI3K inhibitor, wortmannin, had no significant effect 

on insulin-stimulated ET-1 secretion while MAPK (MEK1/MEK2) inhibitor PD-98059 

abolished this effect of insulin. Therefore, suggesting MAPK-dependent pathways (but 

not PI3-kinase-dependent pathways) are involved in insulin mediated ET-1 secretion in 

BAEC. 

The mRNA expression of ppET-1 and ET receptors was increased in diabetic rats (STZ-

induced diabetic rats) when compared to age-matched controls (Matsumoto et al., 2004). 
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1.7 Regulation of ET-1 synthesis in other cell types: vascular 

smooth muscle cells, cardiomyocytes, airway epithelial 

cells and expression in cancer cells 

Although ECs are the primary source of vascular ET-1 production, other cell types such 

as VSMC, cardiomyocytes, macrophages (Ehrenreich et al., 1990), leukocytes, and 

fibroblasts can also synthesise ET-1 (Nunez et al., 1990). In addition to cardiovascular 

system, tubular epithelial cells, mesangial cells and podocytes of the kidney also 

synthesise ET-1 (Kohan, 1997). In non-ECs, ET-1 synthesis is low, if any, but in 

pathological conditions, it can be induced by several stimuli (as described in the previous 

section 1.6 for ECs).  

 

1.7.1  Vascular smooth muscle cells 

In contrast to ECs, ppET-1 mRNA was not constitutively expressed in quiescent cultures 

of rat aortic VSMC. Nevertheless, vasoconstrictor peptides [Ang II, arginine-

vasopressin (AVP) and ET-1 itself], growth factors [TGF-β, platelet derived growth 

factor AA (PDGF-AA) and epidermal growth factor (EGF)] induced ppET-1 mRNA 

expression in rat (Hahn et al., 1990) and human VSMC (Resink et al., 1990). This was 

rapid but with transient kinetics (peak at 3 – 5 h and return to basal within 7 h) (Resink 

et al., 1990). Thrombin induced ppET-1 mRNA expression in rat aortic SMC with 

maximal effects at 4 U/ml after 80 min incubation (Lepailleur-Enouf et al., 2000). In 

addition, glucocorticosteroids can also increase ET-1 secretion in VSMC. A pure 

glucocorticoid agonist, RU 28362 at 100 nM increased ET-1 secretion by 3.3-fold after 

1 h (Morin et al., 1998). 

In healthy saphenous and mesenteric veins, and mesenteric and internal mammary 

arteries, ET staining in medial SMC was undetectable (Howard et al., 1992). This 

suggested that in VSMC, there is very low ET-1 synthesis, if any. However, cultures of 

VSMC explanted from diseased human coronary artery, thoracic aorta, left internal 

mammary artery, saphenous vein, and HUVSMC (human umbilical vein vascular 

smooth muscle cells) secreted ET-1 (Yu & Davenport, 1995). In HUVSMC, the level of 

release was lower than ECs (Yu & Davenport, 1995).   

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275436/#bib112
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275436/#bib88
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TNF-α (maximal stimulation with 10 ng/ml) and interferon-γ (IFN-γ) (fixed 

concentration at 1000 U/ml) incubated in combination over 48 h significantly increased 

ppET-1 mRNA and the expression of ET-1 in human VSMC derived from internal 

mammary artery and saphenous vein (Woods et al., 1999). IL-1β, (up to 10 ng/ml), IL-

6 (up to 10 ng/ml), and bacterial endotoxin (up to 10 ng/ml) did not produce an additional 

increase in ET-1 production (Woods et al., 1999). 

 

1.7.2  Pulmonary arterial smooth muscle cells (PASMC)  

ET-1 is synthesised from pulmonary arterial smooth muscle cells (PASMC) and plays a 

key role in the pathology of vascular remodelling in pulmonary artery hypertension 

(PAH) (Tchekneva et al., 2000; Wort et al., 2001). ET-1 upregulates proliferation of 

human primary PASMC only in the presence of stimuli such as serum (Lambers et al., 

2013) through an ETA receptor-mediated mechanism (Panettieri et al., 1996). Davie et 

al., 2002 showed increased ir-ET-1 with 10% foetal bovine serum (FBS) or TGF-β1 (10 

ng/ml), while cicaprost (10−10 – 10−7 mol/L for 24 h), a PGI2 analogue, inhibited the 

proliferation of PASMC. TGF-β1 (10 ng/ml), as well as increasing ir-ET-1, it also 

increased PASMC proliferation (Davie et al., 2002). In this study, ET-1 reduced the 

inhibitory effects of cicaprost and forskolin on DNA synthesis (Davie et al., 2002). In 

contrast to TGF-β1 (1 – 10 ng/well for 24 h), hypoxia (exposure to 0% O2 for 24 h) did 

not increase ppET-1 mRNA or ET-1 production in PASMCs (Markewitz et al., 2001).    

  

ET-1 also increased the de novo synthesis and deposition of extracellular matrix (ECM) 

components; collagen type-I and fibronectin, which involved TGF-β1 and connective 

tissue growth factor (CTGF), respectively (Lambers et al., 2013).  Inhibition of ETA 

receptor (with BQ-123) or ET-1 synthesis using phosphoramidon decreased serum 

induced proliferation of human PASMC, confirming an autocrine role for ET-1 (Wort 

et al., 2001). 
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 1.7.3  Cardiomyocytes 

Cultured neonatal rat cardiomyocytes incubated with ET-1 (10-7 M) over 6 h induced 

muscle-specific gene expression [myosin light chain 2 (2.6-fold), α-actin (1.6-fold) and 

troponin I (3.6-fold)], in a dose dependent manner and the actions lasted up to 24 h (Ito 

et al., 1991). ET-1 transiently induced transcriptional activation of proto-oncogene c-

fos, however the levels were undetectable after 6 h. These results supported the notion 

that ET-1 may function as a hypertrophic factor for cardiomyocytes.  

 

Ang II (10-6 M) upregulated ppET-I mRNA by 3-fold over control levels as early as 30 

min (Ito et al., 1993). After 2 h, ppET-1 gene expression had returned to basal levels and 

remained constant during 24 h (Ito et al., 1993). Ang II incuded ET-1 release was both 

concentration- and time-dependent.  

 

Phorbol ester, tetradecanoylphorbol-acetate (TPA) (10-7), which is a PKC activator, and 

a Ca2+ ionophore, ionomycin similarly induced the expression of muscle specific genes 

(Ito et al., 1991). Both TPA and ionomycin mimicked the effects of Ang II and ET-1 

(Ito et al., 1993). Ang II-induced ppET-1 gene expression was completely inhibited by 

a PKC inhibitor, H-7 (10-5 M). An antisense oligonucleotide used against the coding 

region of ppET-1 mRNA inhibited the Ang II-stimulated ppET-l mRNA and protein 

synthesis (Ito et al., 1993). This supported the role of endogenous ET-1 to Ang II-

induced cardiac hypertrophy. 

 

 

1.7.4   Airway epithelial cells  

Human bronchial epithelial cells stimulated with LPS and various inflammatory 

mediators, such as IL-1 (IL-1r3, IL-Iα) and TNF-α, increased ppET-I mRNA expression 

and ET-I release (Nakano et al., 1994; Michael & Markewitz, 1996). After a 24 h 

incubation of cultured guinea pig tracheal epithelial cells LPS (1, 5, 10 µg/ml), TNF-α 

(5, 10 ng/ml), and IL-1β (1, 5 ng/ml) enhanced basal ET-1 release (Yang et al., 1997). 

Pre-treatment with dexamethasone (100 nM, over 24 h), a corticosteroid that is 

commonly used in the treatment of asthmatic patients, reduced LPS- (10 µg/ml), TNF-

α- (10 ng/ml) and IL-1β- (1 ng/ml) mediated ET-1 release by 48%, 31%, and 38%, 

respectively (Yang et al., 1997). Dexamethasone (100 nM) also reduced FBS (10%) and 



Chapter 1  Introduction 

24 

 

IL-2-stimulated and basal ET-1 release in adenocarcinomic human alveolar epithelial 

cells (A549) (Calderón et al., 1994).  

Human bronchial epithelial cells derived from asthmatic patients express higher ET-1 

levels, while ppET-1 mRNA expression (determined by in situ hybridisation) was 

undetectable and low in healthy controls and chronic bronchitis, respectively (Vittori et 

al., 1992). Hydrocortisone (10-6 M) treatment of asthmatic bronchial epithelial cells for 

48 h reduced ET-1 release (Vittori et al., 1992). 

 

1.7.5  Cancer cells  

Human cervix (HeLa) and larynx (Hep-2) derived epithelial carcinoma cell lines express 

ppET-1 mRNA under basal conditions in which LPS (10%) stimulated ET-1 release by 

62 and 8.5-fold, respectively (Shichiri et al., 1991). ET-1 stimulated (10-3_10-9 M, 72 h) 

proliferation of HeLa and Hep-2 cells was inhibited by nicardipine (10-7 M), a 

dihydropyridine calcium-channel blocker (Shichiri et al., 1991). 

Androgens downregulate ET-1 synthesis in androgen-sensitive prostate adenocarcinoma 

cells (LNCaP), while TGF-β-1, IL-1α and EGF upregulated ET-1 gene expression in 

androgen-insensitive PC-3 and DU145 cells (Granchi et al., 2001). In contrast, neither 

of factors had an effect on ECE-1 gene expression (Granchi et al., 2001). These suggest 

that ET-1 might have a role in the progression of prostate cancer. Higher ET-1 and ETA 

receptor expression but lower ETB receptor expression detected in advanced prostate 

cancer further supports this role (Nelson et al., 1996). 

 

  

http://en.wikipedia.org/wiki/Dihydropyridine
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1.8  Endothelin receptors 

Two ET receptor subtypes, ETA and ETB, have been identified, cloned and sequenced 

(Arai et al., 1990; Sakurai et al., 1990; Saito et al., 1991). Both receptors belong to the 

seven-transmembrane domain, G protein-coupled rhodopsin-type receptor superfamily. 

ET-1 has similar affinity for both ETA and ETB receptors. ET-1 and ET-2 have equal 

binding affinity and efficacy at the ETA receptors while ET-3 is less potent (Arai et al., 

1990; Sakurai et al., 1990; Davenport, 2002) (Table 1.3). All ET isoforms have equal 

affinity for ETB receptors (de Nucci et al., 1988; Rubanyi & Polokoff, 1994; Love et al., 

2000).  

Table 1.3: Affinity of ET peptides for ETA and ETB receptors.  

ET receptor ET peptide selectivity  

ETA ET-1 = ET-2 ≫ ET-3  

ETB ET-1 = ET-2 = ET-3 

 

ETA receptors predominate on VSMC mediating vasoconstriction (pressor response) 

(Davenport et al., 1995; Maguire & Davenport, 1995; Love et al., 2000).  A small 

density (<15%) of ETB receptors are also expressed on VSMC, where their activation 

contributes to vasoconstriction (Clozel et al., 1992; Maguire & Davenport, 1995). ETB 

receptors are mainly expressed on the vascular ECs (Summer et al., 1992), where their 

activation results in vasodilatation (depressor response). This is mediated by the release 

of endothelium-derived vasodilators NO and PGI2 (de Nucci et al., 1988; Verhaar et al., 

1998) (Figure 1.2, page 36). ETB receptors mediate anti-proliferative and anti-

inflammatory actions by releasing NO. They were also shown to stimulate apoptosis in 

rat aortic VSMC (Cattaruzza et al., 2000). 

Distribution of ET receptors shows species, regional, and developmental differences 

(Fukuroda et al., 1994b). Thereby, based on this difference, vasoconstrictor responses 

mediated by ET receptors vary depending on the vascular bed (Davenport & Maguire, 

1994). Contractile activities of ET isoforms were in the order of ET-1 > ET-2 = ET-3 in 

human isolated bronchus (Advenier et al., 1990). In human arteries and veins ET-2 as a 

vasoconstrictor was equipotent with ET-1 (Maguire & Davenport, 1995). 

http://pharmrev.aspetjournals.org/content/54/2/219.full#ref-35
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In contrast to ETA receptors being more prevalent in cardiovascular system, ETB 

receptors are expressed at high densities particularly in the lung, kidney and liver (Kuc 

et al., 1995; Johnström et al., 2002) where they mediate clearance of ET-1 from the 

circulation (Fukuroda et al., 1994a). In the kidney, ETB receptors comprise 70% of the 

receptors present in both cortex and medulla (Neuhofer & Pittrow, 2009). Collecting 

duct (CD) is the main renal site of ET-1 production and a CD-specific epithelial cell KO 

of ETB receptor gene (CD ETB KO) caused sodium (Na+) retention and thereby salt-

sensitive hypertension (Ge et al., 2006). In contrast, endothelial cell specific ETB 

receptor KO (with preserved CD ETB expression) had impaired endothelium-dependent 

vasodilatation (EDD) without altering BP, even with increased plasma ET-1 

concentrations (Bagnall et al., 2006). Thus, these investigations suggested that ETB 

receptors in the CD are important in the control of BP and mediate natriuretic effects of 

ET-1. More recently the epithelial sodium channel (ENaC), which is the main regulator 

of Na+ reabsorption in the CD, has been shown to be regulated mainly via the ETB 

receptors (Bugaj et al., 2012). 

The effects of blocking ETB receptor system was investigated in wild-type and ETB 

receptor KO using a mouse model of vascular remodelling (induced by blood flow 

cessation in the carotid artery). This demonstrated worsening of vascular remodelling in 

ETB receptor KO mice after injury (Murakoshi et al., 2002). 

In disease states, expression of ET receptors shows regional differences. Some of these 

findings are as follows: in a rabbit model of diabetes mellitus (DM), kidneys had 

increased ETA receptor binding sites, but not ETB in the cortex and medulla (Khan et al., 

1999). In chronic HF patients, ETA receptors were upregulated in hearts (Pönicke et al., 

1998), while ETB receptors can be downregulated (Zolk et al., 1999). This in turn results 

in reduced clearance of ET-1 and increased circulating levels, which together with 

increased ETA receptor sites contributes to pathological changes. In pulmonary arteries 

of patients with PAH, the expression of both ET receptors were upregulated (Davie et 

al., 2002). Both receptors can mediate vasoconstrictor action of ET-1 (McCulloch et al., 

1998). In atherosclerotic arteries Bacon et al., 1996 reported increased expression of ET-

1 without altered expression of ET receptors in ischaemic heart disease. 
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1.8.1  ET receptor antagonists and clinical trials 

Although there is strong evidence that ET-1 expression is increased and likely plays a 

pivotal role in vascular pathologies, ET receptor antagonists (ERAs) have been 

disappointing in clinical trials of HF and hypertension (Packer et al., 2005). However, a 

non-selective ERA bosentan (Tracleer, Actelion Pharmaceuticals) (Rubin et al., 2002), 

and an ETA selective antagonist ambrisentan (Letairis, Volibris, GlaxoSmithKline) 

(Vatter & Seifert, 2006) have been approved for the treatment of pulmonary arterial 

hypertension (PAH).   

There are four structural classes of ERAs. These are peptides, sulphonamides, 

carboxylic and myceric acids (Palmer, 2009). Sitaxentan (highly ETA selective) and 

bosentan (non-selective) both belong to a sulphonamide group of ERAs and sitaxentan 

due to hepatotoxicity was withdrawn from the market (Galiè et al., 2011) after receiving 

regulatory approval for PAH in Europe in 2007.  

In human clinical trials of hypertension and HF, ERAs had little or no benefit. Instead 

they were associated with adverse effects including fluid retention (Weber et al., 2009; 

Battistini et al., 2006; Mann et al., 2010) and liver toxicity (Galiè et al., 2011). Fluid 

retention was indicated by weight gain, reduction in haemoglobin and increased 

incidence of oedema, which occurred in spite of diuretic use. Hypotension, renal 

dysfunction and reduction in arterial oxygen saturation were other important side effects 

observed in acute HF (Coletta et al., 2002).  

Table 1.4 summarises clinical trials of ERAs in patients with HF. In the REACH-1 trial, 

long-term effects of bosentan were investigated in patients with chronic HF for 

improvement in clinical symptoms. Patients treated with a higher dose of bosentan had 

dose-dependent worsening of chronic HF and renal insufficiency (Packer et al., 2005) 

(Table 1.4, a). Short term administration of bosentan (1 g, twice daily) to 36 patients 

with symptomatic HF over 2 weeks improved systemic and pulmonary haemodynamic 

(decreased mean arterial pressure and vascular resistance, increased cardiac output but 

heart rate was unchanged) (Sütsch et al., 1998). After bosentan treatment, plasma levels 

of ET-1 were increased while baseline levels of other hormones (norepinephrine, plasma 

renin activity, and Ang II) were unchanged. Increase in plasma ET-1 levels was a 

consequence of blocking clearance of ET-1 via ETB receptors (Kelland et al., 2010). 

This effect of bosentan was a common feature of dual ETA/B antagonism and it was 

http://www.sciencedirect.com/science/article/pii/S0024320512004122#bb0320
http://www.sciencedirect.com/science/article/pii/S0024320512004122#bb0955
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observed in other studies including in patients with PAH (Hiramoto et al., 2009). 

Moreover, ETB gene mutations were also associated with an increase in ET-1 

concentration (Gariepy et al., 2000). A lower dose of bosentan evaluated in ENABLE-

1 and -2 trials (Table 1.4, b), and darusentan investigated in HEAT and EARTH trials 

(Table 1.4, c and d) were all associated with side effects.   Darusentan (50, 100 and 300 

mg/day) (DORADO-AC trial) administered over 14 weeks in patients (n = 734) with 

resistant hypertension, with existing co-morbidities [type-2 DM and chronic kidney 

disease (CKD)] produced greater decreases in SBP and DBP but the treatment was 

unable to achieve the target BP goal (change from baseline to week 14) (Weber et al., 

2009; Bakris et al., 2010).   

ET antagonists have also been evaluated in cancer. Zibotentan, an ETA selective 

antagonist (10 and 15 mg/day) was used in 312 patients with metastatic castration-

resistant prostate cancer over ~4 months. Time to progression (165 progression events) 

was evaluated as the primary end-point. There was an improvement in overall survival 

time. However, the primary outcome was unchanged and peripheral oedema (placebo 

vs. zibotentan; 11% vs. 45%), dyspnoea, and cardiac failure were reported as adverse 

effects (James et al., 2010). 

A possible limitation of these trials could be evaluation criteria of treatment 

outcomes/primary end-points. As such, achieving a target BP may be difficult due to 

compensatory mechanisms. A more reliable measurement criterion is required to 

investigate the effects of these treatments, as well as monitoring adverse effects. 

Moreover, whether ERAs add further benefit to those already achieved with commonly 

used ACE inhibitors or whether beneficial effects can be sustained, have not been 

evaluated fully due to incomplete investigations. In general, clinical investigations 

suggested that selective ETA receptor antagonists in which beneficial effects of ETB can 

be preserved, may be superior to non-selective ETA/B antagonists. 
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Table 1.4: Failed clinical trials of ERAs investigating clinical outcomes in patients with heart failure. Modified from Kohan et al., 2012. 

Table 1.4 cont: 

Study & 

Disease 

ERA & Dose Receptor Number 

of 

patients 

Duration  Primary end-point Observations 

(a) REACH-1 

Chronic HF 

Bosentan   

500 mg b.i.d 
ETA/B 369 ~6 m 

Change in clinical 

symptoms (NYHA  

class or worsening of 

HF) 

- No clinical benefit with bosentan 

- Higher risk of worsening in the placebo 

group 

- Increase in hepatotoxicity and  decrease in 

haemoglobin with bosentan 

(b) ENABLE 1 

& 2 

Chronic HF 

Bosentan   

125 mg b.d 
ETA/B 1611 18 m 

Death and chronic HF 

hospitalisation  

- Fluid retention. Weight gain (approx. 0.6 

kg) and reduction in haemoglobin 

- Increase in liver enzymes 

(c) HEAT 

Chronic HF 

Darusentan 

10, 25, 50, 

100, or 300 

mg/day 

ETA 157 3 w 

Change in cardiac 

index and wedge 

pressure at the end of 

treatment 

- More adverse events (including death and 

worsening of HF) at higher doses without 

further improvements on haemodynamics 

in comparison to lower doses.  

(d) EARTH 

Chronic HF   

Darusentan 

10, 25, 50, 

100, or 300 

mg/day 

ETA 642 24 w 

Change in LV end-

systolic volume at 24 

w from baseline 

- Cardiac remodelling, clinical symptoms or 

outcomes were not improved 

- Worsened  HF in 11% and death of 5% of 

patients  

 (e) RITZ-1 

Acute HF 

Tezosentan  

24 – 72 h, 

50 mg/h (i.v.) 

ETA/B 669 ~1 m 

Symptoms of 

dyspnoea, death or 

worsening HF 

- No improvement of symptoms of 

dyspnoea 

- Worsening of HF 
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Abbreviations: (a) Packer et al., 2005; (b) Coletta et al., 2002; (c) Lüscher et al.,2002; (d)Anand et al., 2004; (e)Coletta & Cleland, 2001; (f)Louis et 

al., 2001; (g) Teerlink et al., 2005; (h) Mann et al., 2010; (i) Prasad et al., 2006, m = months, w = weeks, ERA = endothelin receptor antagonist, 

NYHA = New York Heart Association, b.d/b.i.d = twice daily, i.v.= intra-venous, SDP = systolic blood pressure, DBP = diastolic blood pressure, 

ESRD = End-stage renal disease, DM = Diabetes mellitus.  

Study & 

Disease 

ERA & Dose Receptor Number 

of 

patients 

Duration  Primary end-point Observations 

(f) RITZ-2 

Severe chronic 

HF 

Tezosentan 

24 h, 50 – 

100 mg/h 

(i.v.) 

ETA/B 285 ~1 m Haemodynamics 

- Improved dyspnoea score at 24 h 

- Fewer worsening HF events with 50 mg 

dose but clinical outcomes unchanged 

- Adverse hypotensive events 

- Renal function 

(g) VERITAS-1 

& -2 

Acute HF 

Tezosentan   

5 mg/h for 30 

m, then 1 

mg/h for 24 – 

72 h) 

ETA/B 1760 1 m 

Change in dyspnea 

over the first 24 h of 

treatment death or 

worsening of HF at 7 

days  

- Improved haemodynamics without a 

change in mortality 

(h) ASCEND 

Type-2 DM  

Avosentan  

25 or 50 mg 
ETA 1329 ~4 m 

Serum creatinine, 

ESRD, or death 

- Fluid retention and plasma volume 

expansion. Increased risk of developing 

HF and worsening renal function 

- Reduced BP and mirco-albuminuria 

(i)  LV  systolic 

dysfunction 

Enrasentan 

60 – 90 

mg/day 

ETA/B 72 6 m 

Change in  left 

ventricular end 

diastolic volume index  

- Adverse ventricular remodelling despite 

an increase in the resting cardiac index 
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Despite the fact that ET receptor antagonists have been mainly disappointing in human 

clinical trials of HF, upregulation of ET-1 in the renal system is also evident (Benigni et 

al., 1991; Orisio et al., 1993; Sørensen et al., 1994), as demonstrated with increasing 

ET-1 levels and reductions in urinary Na+ excretion. Generally, cortical vasoconstrictor 

actions of ET-1 are mediated by the ETA, while medullary vasodilatation is mediated by 

the ETB receptors (Rubinstein et al., 1995). Hence, selective ETA antagonism was 

suggested to be superior to ETB and ETA/B (Neuhofer & Pittrow, 2009). Indeed, CD was 

also shown to be of major importance for regulation of BP (Ge et al., 2006).  ETA 

blockade using sitaxentan improved cardiovascular risk factors (e.g. proteinuria, BP, and 

arterial stiffness) in patients with CKD (Dhaun et al., 2011, 2013). Therefore, CKD was 

proposed to be a promising target for ERAs (Dhaun et al., 2006). A summary of pre-

clinical and clinical studies showing reductions in proteinuria is provided by Barton, 

2008.  

 

 

1.9  Evolutionary perspective of ET-1 and ET receptors 

Sequence conservation of human ET family genes is restricted to the ET-1 sequence 

(80% homology) and the endothelin-like domain (Arinami et al., 1991). Interestingly, 

the positions of four cysteine residues are completely conserved in the endothelin-like 

domain. The homology between human ET-1 and endothelin-like domain is ~38%. 

Endothelin-like domain is likely to result from exon duplication in an ancestral ET gene 

(Bloch et al., 1989). The sequence of each peptide is highly conserved throughout 

evolution (Table 1.5 and 1.6). Endothelin-like domain therefore, might have an 

important physiological function. However, previous attempts failed to show biological 

activity for ppET-1[110 – 130] when tested at concentrations of 10-10 – 10-5 M (Cade et al., 

1990).  

ET peptides also share a striking sequence homology with sarafotoxins (S6a, S6b, S6c, 

and S6d) (Table 1.5), a snake venom toxin from Atractaspis engaddensis (Kloog et al., 

1988; Landan et al., 1991; Takasaki et al., 1992). Sarafotoxins, like ET peptides, are 21 

amino acids long, contain two disulphide bridges and have a hydrophobic C-terminal 

sequence. In sarafotoxins, the disulphide bridges are essential for binding to ET 

receptors (Rubanyi & Polokoff, 1994), where they mediate vasoconstrictor activities. 

S6b has similar potency for both ET receptors while S6c is a highly selective ETB agonist 



Chapter 1  Introduction 

 

 

32 

 

(Sokolovsky, 1994). Different amino acid residues are substituted with closely related 

residues with the exception of Lys (K) at position 4 and Glu (E) at position 9. S6c differs 

from S6a and S6b as it is the least toxic and has the lowest vasoconstrictor activity. At 

the end of its C-terminal, S6c lacks the characteristic cleavage site of ECE. Furthermore, 

the characteristic dibasic amino acid pair upstream of the first residue in all ET peptides 

was not conserved in the sarafotoxins (Rubanyi & Polokoff, 1994). Therefore, although 

the presence of high sequence homology (60%) led to suggestions of a common 

evolutionary origin (Kloog et al., 1988), sarafotoxins are more likely the result of 

convergent evolution.  

 

Two ET receptors, ETA and ETB, are found only in vertebrates (Hyndman & Evans, 

2007) and are distantly related to G-protein coupled receptor 37 (Hyndman et al., 2009). 

The cDNA sequences show considerable homology (>90%) between human, bovine and 

rat ETA receptor whereas ETB receptors share ~88% homology between human and rat 

(Arai et al., 1993). Despite the high homology in species, they have differences in their 

ligand binding characteristics. As such, S6c, which is more selective for ETB than it is 

for ETA, showed differences in its affinity in human and rat left ventricle (Russell & 

Davenport, 1996). ETA and ETB receptors share ~55% homology in human and other 

species. In human, amino acid sequences of ETA and ETB display only 59% similarity 

(Davenport, 2002). A third ET receptor gene encodes an amphibian-specific receptor 

ETC, expressed in Xenopus (Karne et al., 1990). Evolution of vertebrate ET genes and 

their receptors is illustrated in detail in Braasch et al., 2009.   

 

 

 

 

 

 

http://pharmrev.aspetjournals.org/search?author1=Anthony+P.+Davenport&sortspec=date&submit=Submit
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Table 1.5: Comparison of the amino acid sequences of human ET-1 and the sarafotoxins. Homologous residues to human ET-1 are represented 

as hyphens (-). Cysteine residues at positions 1 – 15 and 3 – 11 form disulphide bridges and are completely conserved in evolution. The C-terminal 

hydrophobic region is also highly conserved across species. Data from Ensemble (http://www.ensembl.org/index.html). 

ET-1 peptide 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Human  C S C S S L M D K E C V Y F C H L D I I W 

Mouse - - - - - - - - - - - - - - - - - - - - - 

Opossum  - - - - - - L - - - - - - - - - - - - - - 

Platypus  - - - - - - L - - - - - - - - - - - - - - 

Chicken  - - - - - - L - E - - - - - - - - - - - - 

Lizard - - - - - - - - - - - - - - - - - - - - - 

Frog  - - - - - - - - - - - - - - - - - - - - - 

Zebrafish - - - - - - - - - - - - - - - - - - - - - 

 

S6A - - - K D M T - - - - L N - - - Q - V - - 

S6B - - - K D M T - - - - L - - - - Q - V - - 

S6C - T - N D M T - E - - L N - - - Q - V - - 

S6D - T - K D M T - - - - L - - - - Q - - - - 

http://www.ensembl.org/index.html
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Table 1.6: Comparison of the EDN1 gene derived endothelin-like domain during evolution. Homologous residues to human endothelin-like 

domain are represented as hyphens (-). Similar to ET-1, cysteine residues at positions 1, 3 and11, 15 are completely conserved in evolution.  

 

Endothelin-

like domain 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Human  C Q C A S Q K D K K C W N F C Q A G K E L R 

Mouse - - - - H - - - - - - - - - - - - - - - - - 

Opossum  - - - - - R - - - - - - V - - - - - - - - - 

Platypus  - - - - N - - - - - - - D - - - - - - - - - 

Chicken  - - - - - - R - - - - L - - - - - - - - - - 

Lizard - - - T N L - - - - - A - - - K - E - - I W 

Frog  - - - - - - - - - - - - - - - - - - - - - - 

Zebrafish - K - - D S Q - - T - S S - - Q D S A - - Q 
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1.10  Vascular actions of ET-1 

1.10.1  Signal transduction and downstream effectors  

ET-1 binding to ETA and ETB receptors stimulates a calcium influx through activation 

of phospholipase C (PLC)-mediated membrane-bound diacylglycerol (DAG) and 

cytosolic inositol triphosphate (IP3) production (Figure 1.2). IP3 initiates the release of 

Ca2+ from intracellular stores (iCa2+) of sarcoplasmic reticulum (SR) and membrane Ca2+ 

channels [L-type voltage dependent Ca2+ (VOC)] to stimulate Ca2+ flux from 

extracellular space (Hirata et al., 1988). DAG activates PKC, which along with increased 

iCa2+ phosphorylates and activates calmodulin-dependent myosin light chain (MLC) and 

mediates ET-1 induced vasoconstriction (Figure 1.2, a). 

Vasodilatation mediated by activation of ETB receptors on ECs involve eNOS-derived 

NO release. Activation of eNOS is Ca2+-calmodulin-dependent. Once produced, NO 

diffuses to the underlying SMC, it activates cytosolic soluble guanylate cylase (sGC), 

which leads to the formation of cyclic guanosine monophosphate (cGMP) (Figure 1.2, 

b). This in turn inhibits the contractile process (Vanhoutte, 2004).  

Increases in iCa2+ activate phospholipase-A2 (PLA2) to produce arachidonic acid (AA), 

which activates the main cyclooxygenase (COX) product PGI2 in ECs (Moncada & 

Vane, 1979). Diffusion of PGI2 to SMC activates adenylate cyclase (AC), which 

produces cAMP and activation of voltage-dependent potassium (K+) channels (Tirapelli 

et al., 2005) result in vasodilatation (Figure 1.2, c).   ETA receptors can lead to activation 

of phospholipase D (PLD), facilitating PKC activation and cellular contraction (Goto et 

al., 1996) and PLA2 releasing AA and prostaglandins such as prostaglandin E2 (PGE2), 

which can contribute to vasoconstrictor responses. 

 

ET-1 mediated activation of signalling cascades involving MAPK and PI3K activate 

transcriptional factors that are involved in regulation of growth/proliferation and 

hypertrophy.

http://www.qiagen.com/products/genes%20and%20pathways/pathwayview.aspx?ID=NM_000928,NM_000300,XM_372769,NM_012400,NM_014589,NM_022819,NM_015715,NM_024420,NM_005090,NM_003706,NM_000929,NM_003560,NM_005084,NM_003561,NM_030821,NM_032562


Chapter 1  Introduction 

 

 

36 

 

ppET-1

EC
ECE

ET-1
Big ET-1

ETB

eNOS

NO

PLA2

Vasodilatation

↑cAMP

L-arginine

AA

PGI2

Plasma membrane SMC

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

IP3

VOC

↑[iCa2+]

CaM

PLCβ

ETA

ET-1

ETB

ET-1

EC

DAG

PKC

Vasoconstriction

AC

K+

GTP

cGMP

IP

↑[iCa2+]

sGC

P2Y ATP

Ca2+

Ca2+

COX

Ca2+

Ca2+

SR Ca2+

Shear stress

Bradykinin

Acetylcholine

↑[iCa2+]

MLCP

[b]

[a]

[c]

(+) Phorbol ester

ATP

↓[iCa2+]

K+

Hyperpolarisation 

Low shear stress

Thrombin

Cytokines

Acetylcholine

NO

PGI2
High shear stress

ETB

(+)

(+)

(-)

(-)

oxLDL

IP3R

ROC

Ca2+Na+

 

Figure 1.2: ET-1 mediated signal transduction pathways. cGMP = cyclic guanosine monophosphate, cAMP =  cyclic adenosine monophosphate, 

CaM = calmodulin, GTP = guanosine triphosphate, ATP = adenosine triphosphate, sGC = soluble guanylyl cyclase, AC = adenyl cyslase, PLC 

= phospholipase C, DAG = diacylglycerol, IP3 = inositol triphosphate, ROC = receptor operated Ca2+ channel, VOC = L-type-voltage operated 

Ca2+ channel, Ca2+ = calcium, iCa2+ = intracellular calcium, eNOS = endothelial nitric oxide synthase, NO· = nitric oxide, AA = arachidonic 

acid, COX = cyclooxygenase 1 and 2, PGI2 = prostacyclin, PKC = protein kinase C, SR = sarcoplasmic reticulum,  MAPK = mitogen activated 

protein kinases. MLC = myosin light chain, IP= prostacyclin receptor, and IP3R = inositol trisphosphate receptors. 



Chapter 1  Introduction 

 

 

37 

 

1.10.2  Mitogenic actions   

On VSMC, ET-1 stimulates c-fos and c-myc expression and has proliferating effects in 

response to stimuli such as Ang II, TGF-β, and PDGF (Komuro et al., 1988). It can also 

act as a mitogen for VSMC by potentiating the actions of other mitogens including EGF 

(Battistini et al., 1993). Moreover, low concentrations of ET-1 (10-9 M), potentiated the 

effects of other vasoconstrictor such as serotonin and norepinephrine, in mammary and 

in coronary arteries (Yang et al., 1990).  In general, the mitogenic action of ET-1 is 

mediated by the ETA receptors (Eguchi et al., 1992; Yang et al., 1999).  

Infusion of Ang II (200 ng/kg/min) stimulated both vascular and renal ET-1 expression, 

and increased ECE activity in vivo. Haemodynamic and proliferative effects were 

completely blocked by ETA receptor antagonism (LU135252, 50 mg/kg/day) (Barton et 

al., 1997b). Thus, ET-1 acting mainly by the ETA receptors mediates vascular 

remodelling. All these studies supported the notion that ET-1 could have a significant 

role in the initiation and development of atherosclerosis. 

  

1.10.3  Inflammatory effects    

Increases in ET-1 levels are associated with elevations in plasma concentrations of pro-

inflammatory cytokines (TNF-α, IFN-γ, IL-1β) (Warner & Klemm, 1996).  In turn, 

inflammatory and pro-thrombotic mechanisms stimulate ET-1 synthesis (Corder et al., 

1995a; Corder, 2001). In cultured macrophages ET-1 stimulated the synthesis of TNF-

α and this was blocked by ETA receptor antagonists BQ-123 or BQ-485. Thus indicating 

an ETA mediated mechanism of action (Ruetten & Thiemermann, 1997). 

Intravenous (i.v.) administration of TNF-α (4 µg/kg) to anesthetised rats resulted in a 

rapid increase in arterial ET-1 levels, reaching maximum levels within 15 min (Klemm 

et al., 1995). Hearts were isolated after treatment with TNF-α (4 µg/kg) and perfused in 

vitro by the Langendorff technique. This was associated with a remarkable coronary 

vasoconstriction (Klemm et al., 1995). Similarly, infusion of TNF-α to healthy 

volunteers increased plasma levels of ET-1 (Patel et al., 2002). These have strongly 

suggested that activation of vascular ET-1 is associated with growth and pro-

inflammatory effects and therefore contribute to the progression of vascular pathologies. 
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1.10.4  Endothelial function 

Transgenic (TG) mice overexpressing human ppET-1 specifically in the endothelium 

(generated using promoter/enhancer regions of the endothelium-specific tyrosine kinase 

receptor Tie-2) showed hypertrophic remodelling, endothelial dysfunction, increased 

vascular NADPH oxidase activity (measured as p67phox and gp91phoxexpression) and 

inflammation in mesenteric small arteries in comparison to non-TG wild-type littermates 

(Amiri et al., 2004). TG mice also had a 3-fold increase in aortic ppET-1 mRNA and a 

7-fold increase in plasma ET-1 levels. This study demonstrated the first in vivo evidence 

for overexpression of endothelial-specific ET-1 with altered vascular structure 

(increased media thickness of mesenteric resistance arteries in TG mice) and function 

(impaired vasoconstrictor responses to ET-1 and impaired vasodilatation of resistance 

arteries in TG mice) without any significant changes in BP. This model had increased 

ETB mRNA and protein levels in TG mice while ETA mRNA and protein levels were 

unaltered. 

 

Endothelium-dependent vasodilatation in human internal mammary arteries was 

improved following acute ET receptor antagonism. As such, a mixed antagonist 

bosentan (3 μM for 20 min) showed the greatest beneficial effect on endothelial function 

[assessed using Acetylcholine (ACh)-induced vasodilatation] while both ETA [BQ-123 

(1 μM for 20 min)] and ETB [BQ-788 (1 μM for 20 min)] receptor antagonists had 

similar, but slightly reduced, effects on maximum relaxation (Verma et al., 2001).   

 

Acute ETA blockade with BQ-123 produced a modest vasodilatation of the coronary 

microcirculation and improved endothelial dysfunction in coronary artery disease 

(CAD) (Halcox et al., 2001). This study measured epicardial diameter and Doppler flow 

velocity (measured coronary blood flow) and calculated coronary vascular resistance 

(CVR) (arterial pressure ÷ coronary blood flow) as parameters to assess endothelial 

dysfunction. In patients with early atherosclerosis, long-term administration (6 months) 

of ETA antagonist atrasentan (10 mg) improved endothelial function (Reriani et al., 

2010a). Furthermore, non-selective blockade of ET receptors in patients with essential 

hypertension increased forearm blood flow (FBF), which was unaffected in controls 

(Cardillo et al., 2002).  All studies supported the role of ET-1 in the regulation of 

endothelial function both in early coronary atherosclerosis and in essential hypertension. 
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1.11 The role of ET-1 in the pathophysiology of cardiovascular 

disease 

ET-1 is highly implicated in various cardiovascular pathologies including 

atherosclerosis, hypertension, PAH, chronic HF as well as CKD. Endogenous ET-1 

production contributes to the maintenance of basal vascular tone and BP (Haynes & 

Webb, 1994; Haynes, 1995). The precise role of ET-1 in the pathogenesis of 

cardiovascular disease was evaluated following treatments with ERAs. The effects of 

ET-1 have been discussed in previous sections but here, existing evidence for the 

upregulation of ET system and the role of ET-1 in the pathogenesis of atherosclerosis, 

hypertension, and chronic HF is briefly highlighted. 

 

1.11.1  Atherosclerosis  

The role of ET-1 in the pathogenesis of atherosclerosis became evident after detection 

of ir-ET-1 (using immunohistochemistry) in VSMC as well as in ECs (Lerman et al., 

1991). Jones et al., 1996 have shown localisation specifically to ECs overlying 

atherosclerotic plaques and fatty streaks without detectable ET-1 in VSMC. A number 

of observations further supported the role of ET-1 in atherosclerosis. These include the 

findings of increased expression of ET-1, big ET-1 and ECE-1 in atherosclerotic arteries 

(Lerman et al., 1991; Zeiher et al., 1995; Bacon et al., 1996; Maguire & Davenport, 

1998); and detection of ET receptors in vasa vasorum of normal blood vessels and at 

regions of neovascularisation of atheromatous vessels (Dashwood et al., 1993). 

Inflammatory and prothrombotic mechanisms elevate ET-1 synthesis (Corder, 2001) 

and consistent with mitogenic actions, these further contribute to ET-1 mediated 

atheroma formation. Such evidence for remodelling after angioplasty was shown by 

Haynes & Webb, 1998. Mechanical pressure and stretch increased ET-1 levels in 

atherosclerotic coronary arteries with the levels correlating with the extent of mechanical 

stress (Hasdai et al., 1997). Macrophages and fibroblasts (Martin-Nizard et al., 1991; 

Ihling et al., 1996; Zeballos et al., 1991), which are abundant in atheromatous plaques, 

also secrete ET-1. In addition to increased ET-1 synthesis, ET receptor density is also 

increased in SMC during remodelling (Dashwood et al., 1998). 
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1.11.2  Hypertension 

In experimental models of hypertension [deoxycorticosterone acetate (DOCA) and Dahl 

salt-sensitive rats], ET-1 induced vascular hypertrophy and increased BP (Larivière et 

al., 1993; Deng et al., 1996), which were reversed by ETA/B antagonist bosentan (Li et 

al., 1994). However, the role of ET-1 in spontaneously hypertensive rats (SHR) has been 

controversial. Interestingly, hypertensive patients have either normal (Davenport et al., 

1995) or low ET-1 levels with the exception of black Africans (Ergul et al., 1996). In 

contrast, patients with pulmonary hypertension had increased ET-1 gene expression with 

an inverse relation with eNOS and the degree of ir-ET-1 in the lungs (Giaid & Saleh, 

1995). 

 

Mice with CD-specific KO of the ET-1 gene (CD ET-1 KO) are hypertensive on a 

normal-Na+ diet and this is exacerbated by high Na+ intake (Ahn et al., 2004). Further 

gene targeting studies that investigated the physiological role of ET-1 and ET receptors 

are described in more detail in Chapter 6, section 6.1.2. 

 

1.11.3             Chronic heart failure 

Plasma levels of ET-1 are elevated in HF (Stewart et al., 1992). Chronic treatment with 

an ETA antagonist BQ-123 (Sakai et al., 1996) or ETA/B antagonist bosentan (Muller et 

al., 1997) improved the survival and haemodynamic parameters in rats with chronic HF. 

However, the beneficial effects were not extrapolated to patients (see Table 1.4, page 

29).  

Cardiomyocyte-specific EDN1 overexpressing mice [generated as α-myosin heavy 

chain promoter-dependent cardiac-specific tetracycline-regulated gene expression 

system (Tet-OFF)] featured activated inflammatory pathway (e.g. NFκB activation and 

IL-6 expression) that was associated with cardiac hypertrophy and premature death 

(Yang et al., 2004). However, combination of ETA and ETA/B receptor antagonists were 

unable to prevent the lethal HF caused in this model (Yang et al., 2004). As a result, the 

role of ET-1 in HF has been controversial.  
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1.12 The area of unmet clinical need and requirement of 

biomarkers 

1.12.1  Endothelial dysfunction 

Endothelial dysfunction is a general term referring to the disruption of normal function 

of the vascular endothelium by impaired production of endothelium-derived relaxing 

factors (EDRF) (NO and PGI2) and increased synthesis of endothelium-dependent 

contracting factors (EDCF) (ET-1) (Vanhouette et al., 2009). 

Dyslipidaemia/hypercholesterolemia, diabetes, hypertension and smoking are 

cardiovascular risk factors that contribute to endothelial dysfunction. It is also closely 

linked to vascular aging with a loss of endothelium-dependent vasodilatation (EDD) 

from middle age to the elderly. Endothelial dysfunction is a key mediator and implicated 

in early stages of progression to atherosclerosis. It is independently associated with 

increased cardiovascular risk (Suwaidi et al., 2000; Endemann & Schiffrin, 2004). 

The mechanism of endothelial dysfunction is characterised by reduced NO 

bioavailability, which could be resulting from either reduced production of NO by eNOS 

or increased breakdown by ROS (Versari et al., 2009). NO is the best described 

vasodilator, which increases its protective role also by inhibiting platelet aggregation, 

adhesion and penetration of macrophages, SMC migration and proliferation, and 

suppression ofET-1 synthesis. Impaired NO production and elevated ET-1 are early 

features of endothelial dysfunction. Greater dysfunction leads to activation of pro-

coagulant and pro-inflammatory mechanisms that initiate a sequence of reactions that 

predispose to atherosclerosis and CAD (Vanhoutte et al., 2009).  

Under physiological conditions, NO is produced by the enzymatic conversion of eNOS 

in presence of substrate L-arginine and the co-factor, tetrahydrobiopterin (BH4) 

(Ghafourifar et al., 2005). Under pathological conditions, reduced bioavailability of BH4 

and a deficiency in L-arginine result in uncoupling of eNOS (Touyz & Schiffrin, 2004), 

and this contributes to the generation of ROS [e.g. superoxide anion (O2
.−) and hydrogen 

peroxide (H2O2)] (Vásquez-Vivar et al., 2003). Elevated O2
.− can reduce NO 

bioavailability by reacting with NO to form peroxynitrite (ONOO-), a strong oxidant 

which can damage cell membranes.   ONOO- oxidises the essential co-factor of eNOS, 

BH4 to its inactive form (Vásquez-Vivar et al., 2001), which together result in a further 

decline in NO production and increased O2
.− formation by eNOS. In addition, increases 
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in endogenous competitive inhibitor of eNOS, NG NG-dimethyl-L-arginine (ADMA) 

(Vallance et al., 1992) and arginase activity (which converts L-arginine to urea and 

ornithine) also cause eNOS uncoupling.  

 

There are other factors that modulate NO release by the endothelium.  Shear stress 

activates Ca2+-dependent eNOS via increased iCa2+ and activated protein kinases (PKs) 

(Vanhoutte et al., 2009). Also in ECs, elevated iCa2+ and PKs activate PLA2, which 

releases AA from membrane-bound phospholipids and then becomes available for 

metabolism by COX. Peroxidase activity on COX transforms AA into endoperoxides, 

which are converted into PGI2, thromboxane A2, prostaglandin D2, prostaglandin E2 

and/or prostaglandin F2a by their selective synthases (Vanhoutte et al., 2009).   

 

The release of NO can be increased by oestrogen, vasopressin, substance P, bradykinin, 

histamine, thrombin and products formed during platelet aggregation [serotonin, 

adenosine diphosphate (ADP)] (Vanhoutte, 2004).  Hypercholesterolemia is a major risk 

factor for human atherosclerosis and increased LDL, especially oxidised-LDL (ox-

LDL), reduces the production of NO, by decreasing the gene expression of eNOS and 

may enhance ET-1 secretion (Ridker et al., 2004). 
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1.12.2 Changes in vascular function with age, predictive of cardiovascular 

disease risk 

Aging is associated with increased vascular stiffness (increased elastase and collagen 

production by VSMC), vascular wall intimal thickness (Virmani et al., 1991) and 

impaired endothelial function (Celermajer et al., 1994). These factors may be the result 

of (1) increased formation of ROS (O2
.−), (2) alteration in the expression and/or activity 

of eNOS, (3) decrease in L-arginine/NO bioavailability (Boulanger & Lüscher, 1990), 

due to increased production of O2
.− and (4) impaired EDD due to reduced endothelium-

mediated relaxation and increased production of vasoconstrictors such as ET-1 

(Goettsch et al., 2001) and COX-2 derived prostanoids (Vessières et al., 2013). These 

have all been suggested as potential mechanisms underlying the impaired endothelium-

dependent vasodilator responses that occur with aging (Küng & Lüscher, 1995; Barton 

et al., 1997a), but the precise triggers have yet to be defined. Other vasoactive factors 

that are affected during ageing also regulate EDN1 gene expression and together could 

contribute to age-dependent changes in vascular function. These include Ang II (Imai et 

al., 1992), TGF-β1 (Hahn et al., 1990) and oestrogen (Morey et al., 1998). 

In response to ACh and Ca2+ ionophore A23187, endothelium-dependent relaxations 

were reduced in the aorta of old rats, with reduced basal release of NO and lower 

expression of eNOS mRNA (Barton et al., 1997a). In the aortas of old rats, contractions 

to norepinephrine were increased while ET-1-mediated contractions were reduced 

(Barton et al., 1997a). Neither endothelium-dependent relaxations nor contractions were 

affected by aging in the femoral artery (Barton et al., 1997a). Age-related impairment in 

ACh-mediated EDD (analysed by FBF) was also reported in man by Westby et al., 2011.  

Co-infusion of ACh with an ETA selective antagonist, BQ-123, improved ACh-mediated 

EDD in older men and this suggested that impairment in age-related vasodilatation is 

partly due to increased vasoconstrictor tone, which is mediated by increased ET-1 levels 

with age. 
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1.12.3  Current methodologies measuring endothelial function 

Endothelial dysfunction affects resistance and conduit vessels in the forearm and in the 

coronary circulation. The forearm vascular bed is commonly accepted as a surrogate for 

assessing endothelial function in the coronary arteries (Wilkinson & Webb, 2001). 

Endothelium-dependent vasodilatation is evaluated with use of pharmacological stimuli 

(including ACh, bradykinin, substance P, and 5-hydroxytryptamine) or mechanical 

stimuli by inducing a shear stress response. Flow-mediated dilatation (FMD) uses 

increased shear stress to stimulate the release of NO and induce EDD of the brachial 

artery (Behrendt & Ganz, 2002).  

Alternatively, the functional integrity of the vascular endothelium can be assessed with 

FBF responses to intra-arterial agonists such as ACh (Heitzer et al., 2001). ACh 

stimulates a receptor-mediated increase in NO synthesis and release from the vascular 

endothelium and as a result, can be used to monitor EDD responses (Versari et al., 2009). 

Both FMD and FBF responses to ACh are assessed using a strain-gauge 

plethysmography (mainly mercury-in-rubber, but alternatively indium-gallium gauges 

can also be used). 

Endothelial dysfunction in the microcirculation can be evaluated by the assessment of 

the change in epicardial coronary artery diameter in response to ACh concentrations 

using quantitative coronary angiography and in the microcirculation intravascular 

ultrasound is used to monitor changes in flow (Versari et al., 2009). Additionally, 

Doppler flow velocity measurements in response to ACh can be used to evaluate 

endothelial function. Non-invasive techniques include positron emission tomography 

(PET), which can be used to assess myocardial blood flow in response to vasodilator 

agents such as adenosine, and adenosine triphosphate (Reriani et al., 2010b). 

The advantages and disadvantages of some techniques used for the assessment of 

endothelial function are summarised in Table 1.7. A methodology of an ideal test should 

be non-invasive, reproducible, repeatable, and cheap and it should be specific, provide 

prognosis of subclinical disease processes and risk stratification.   
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Table 1.7: Methods used in the assessment of vascular endothelial function. Data from Coretti et al., 2002, Deanfield et al., 2007 and Reriani 

et al., 2010b. 

Test Vascular bed Outcome measured 

(e.g. change in diameter or 

blood flow) 

Equipment  

 

Advantages Disadvantages 

Coronary 

endothelial 

function testing 

Coronary 

arteries. 

Diameter and BF in 

response to ACh. 

Quantitative coronary 

angiography and 

coronary Doppler flow.  

“Gold standard” 

Reproducible. 

Invasive 

Expensive  

Procedural risks. 

Venous occlusion 

plethysmography 

Forearm 

resistance 

vessels. 

Forearm circumference 

indicative of forearm BF 

Can be coupled with 

brachial artery 

administration of 

vasoactive peptides and 

drugs (e.g. ET-1). 

Strain-gauge 

plethysmography. 

Accurate. 

Reproducible. 

Invasive (requires 

arterial cannulation).   

Unrepeatable.  

Difficult to 

standardise results. 

Procedural risks. 

FMD 

 

Mainly 

brachial, but 

radial and 

femoral arteries 

can also be 

used. 

Diameter of a conduit 

artery in response to shear 

stress. 

 

Ultrasound with Doppler 

and electrocardiogram 

(ECG) monitor. 

  

 

Non-invasive. Require technical 

expertise.  

May not be 

reproducible. 

Expensive equipment. 

Limited for risk 

stratification.  
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Table 1.7 cont: 

Test Vascular bed Outcome measured 

[e.g. change in diameter 

or blood flow (BF)] 

Equipment  

 

Advantages Disadvantages 

Brachial artery 

reactivity test 

Brachial artery. Diameter of brachial 

artery in response to 

shear stress. 

Measures FMD. 

Ultrasound with Doppler 

and electrocardiogram 

(ECG) monitor. 

Non-invasive. 

Easy to use. 

Operator variability. 

Difficulty to 

standardise results. 

Peripheral 

arterial 

tonometry 

(PAT) 

Peripheral 

arteries. 

Post-occlusion pulse 

wave amplitude in 

relation to the baseline. 

Tonometer. Non-invasive. 

Automated/easy to 

use, automatic 

analysis, reliable 

and reproducible. 

Expense of disposable 

finger probes. 

Positron emission 

tomography 

(PET) 

Coronary 

microcirculatory 

vasculature. 

Myocardial BF in 

response to 

adenosine/dipyridamole. 

Tomography. Non-invasive. 

High sensitivity. 

Limited specificity for 

endothelial function. 

Use of isotopes. 

Pulse-wave  Radial, brachial, 

and femoral 

artery.  

Changes in peripheral 

pressure waveform in 

response to β-2 receptor 

agonist (inhaled 

albuterol/salbutamol). 

Tonometry used for 

measurements and 

augmentation index 

(AIx) for quantification. 

Non-invasive. 

Simple and 

portable 

instrumentation can 

be adapted to large 

studies. 

Unpredictable of 

outcome. 
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1.13  Proposed Biomarker(s)  

1.13.1  ET-1 as a biomarker of cardiovascular disease risk     

Plasma levels of ET-1 are elevated in various pathological conditions (McMurray et al., 

1992; Pousset et al., 1997; Goddard & Webb, 2000; Selvais et al., 2000) with the levels 

correlating with disease progression. Despite the strong evidence that shows a role of 

ET-1 in disease development/progression and all the factors that increase ET-1 synthesis 

in disease states, plasma concentrations of ET-1 in healthy subjects are low, ranging 

between <0.3 pg/ml and 3 pg/ml in most studies (Battistini et al., 1993).  

ET-1 is unstable, and due to its short half-life in plasma (Gasic et al., 1992; Corder & 

Vane, 1994) the significance in diagnosis has been controversial. Studies of cultured 

ECs indicate that ET-1 is mainly released abluminally and mediates its actions as a 

paracrine/autocrine factor on smooth muscle cells (Wagner et al., 1992). This likely 

targets ET-1 to ETA receptors on the underlying VSMC, which further decreases the 

amount of ET-1 escaping into the circulation. Particularly in the pulmonary vascular 

bed, ET binding to ETB receptors results in clearance, which further decreases the 

circulating levels of ET-1 (Wagner et al., 1992; Dupuis et al., 1996b). Moreover, ET-1 

is degraded by endopeptidases such as NEP-24.11, which is highly expressed on venous 

ECs (Llorens-Cortes et al., 1992; Abassi et al., 1992).  

All immunoassays for ET-1 required a solid-phase extraction step prior to immunoassay. 

This could result in variations of ET-1 measurements due to differences in recovery, 

type of immunoassay employed and the specificity of the antisera (Davenport & Kuc, 

2002). As a result of the above factors ET-1 is a poor biomarker of vascular ET-1 

production. The levels are likely to reflect a spillover that has not bound to ET receptors. 

  

http://www.ncbi.nlm.nih.gov/pubmed?term=Goddard%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10976777
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1.13.2  Plasma measurements of big ET-1 and C-Terminal fragment 

Proteolytic processing of big ET-1 produces ET-1 and CTF of big ET-1 in equimolar 

amounts. Slower clearance of big ET-1 (Hemsén et al., 1995; Burkhardt et al., 2000) 

and the inactive CTF were assessed as alternative markers for estimation of ET-1 release. 

Plasma levels of big ET-1 were strongly correlated with prediction of 1 year mortality 

in patients with severe HF to a greater degree than ANP (Pacher et al., 1996). The 

radioimmunoassay (RIA) for CTF of big ET-1[1 – 38] was based on an extraction 

methodology and had cross-reactivity of around 82% between the CTF and big ET-1[22 

– 38] and <1% with ET isopeptides (Pacher et al., 1996).  

Cross-reactivity of big ET-1 in RIA often resulted from recognition of the ET[1 – 15] loop 

region (Corder, 1996). At high concentrations there was less cross-reactivity, which 

could suggest equilibrium between an unfolded conformation recognised by antibodies 

specific for ET-1 and a folded conformation where the C-terminal sequence of big ET-

1 folds over ET-1[1 – 15] thereby inhibiting antibody detection. CTF could not be measured 

with sandwich-ELISA due to the presence of only one of the two epitopes necessary to 

generate a signal (Plumpton et al., 1995).  

Changes in plasma big ET-1 levels may not reflect alterations in ET-1 synthesis because 

big ET-1 is cleaved at the tissue level not only into active ET-1, but also into ET-1[1 – 31] 

by the action of chymase (Nakano et al., 1997). These factors limit the use of big ET-1 

and CTF of big ET-1 as sensitive biomarkers of ET-1 synthesis.  

 

1.13.3  ProET-1 derived peptides as alternative markers of ET-1 synthesis 

Sandwich immunoassays were developed covering six positions of the ppET-1 (18 – 53, 

32 – 109, 32 – 181, 94 – 148, 136 – 181 and 168 – 212) and only three ir-proET-1 regions 

(18 – 53, 94 – 148 and 168 – 212) were detected in control subjects and septic patients 

(Struck et al., 2005). As a result, CT-proET-1 was proposed as an alternative to 

indirectly assess ET-1 release (Struck et al., 2005; Papassotiriou et al., 2006).  
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1.13.4  Other biomarkers of vascular function and risk 

Clinical parameters of cardiovascular disease risk include Framingham Risk Score 

(FRS), New York Heart Association (NYHA) and high-sensitivity C-reactive protein 

(hsCRP). However, classifications are imprecise and limited. In order to contribute to a 

better classification, a biomarker should exhibit independent prediction of disease risk 

from conventional parameters and, at the same time, it should provide sensitivity and 

specificity for the underlying disease.  

 

Two commonly used imaging techniques coronary artery calcium (CAC) score, 

measured using computed tomography (CT) and carotid intima-medial thickness 

(cIMT), measured using B-mode ultrasound can discriminate between risk groups and 

are used as subclinical disease biomarkers for CAD risk stratification.  Although CAC 

is simple, fast, and accurate for identification of CAD stenosis severity, extent, and 

distribution, it is associated with low but tolerable radiation exposure. Measuring 

thickening of the intima-media as an early feature of atherosclerosis with cIMT is also 

non-invasive and simple. Nevertheless, there is a need for reclassification improvement 

where circulating biomarkers may provide better risk stratification of cardiovascular 

disease. Biomarkers of vascular disease can be grouped into six main categories  as listed 

in Figure 1.3 (Ridker et al., 2004; Cohn et al., 2004; Iqbal et al., 2012).An overview of 

these biomarkers in relation to disease and associated methodological issues is provided 

in a review by Vasan, 2006. 
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Figure 1.3: Main categories of key cardiovascular biomarkers. 

 

A. Neurohormones: N-terminal-pro B-type natriuretic peptide (NT-proBNP) and 

midregional pro-adrenomedullin (MR-proADM)]; provasopressin or copeptin 

(CT-proAVP); and midregional pro-atrial natriuretic peptide (MP-proANP). 

These neurohormones are released in response to strain on cardiomyocytes, 

haemodynamical stress and to volume expansion, respectively. 

B. Tissue markers of cardiomyocyte injury/necrosis: Troponins (cTnT and 

cTnI). 

C. Inflammatrory and adhesion molecules: hsCRP, IL-6, E-selectin, P-selectin, 

MCP-1, growth differentiation factor 15 (GDF-15), galectin-3, ICAM-1, and 

VCAM-1. 

D. Fibrosis and collagen turnover: CTGF, collagen as an important 

compartment of myocardial ECM and MMPs (particularly MMP-9), which 

degrade collagen are markers of fibrosis and collagen turnover. In addition, 

vWF, tissue plasminogen activator (t-PA), fibrinogen, and D-dimer are possible 

markers of thrombosis. 

E. Oxidative stress related biomarkers: oxLDL. 

F. Lipid metabolism: Apolipoprotein B100 (Apo-B100), Apo-AI. 

 

A. 
Neurohormones

B. 
Cardiomyocyte 
injury/necrosis

C. Inflammatrory 
and adhesion 

molecules

D. Fibrosis and 
collagen turnover

E. Oxidative stress 

F. Lipid 
metabolism
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Although these biomarkers may reflect active disease, they are not sufficiently sensitive 

or specific to identify cardiovascular disease in asympomatic patients (Ridker et al., 

2004; Vasan, 2006). Currently the stable fragment of brain natriuretic peptide (BNP), 

NT-proBNP is the strongest predictor and it is used for the diagnosis and risk 

stratification of patients with HF (Maisel et al., 2002; Masson et al., 2006; McMurray 

et al., 2012). Similarly, in asympomatic patients with HF, high sensitivity cTnT was 

associatied with cardiovascular mortality risk (deFilippi et al., 2010). However, the 

prognostic utility of BNP and troponin measurements in the diagnosis of asymptomatic 

HF patients has yet to be fully evaluated. The ability of NT-proBNP, adhesion and 

inflammatory markers (CRP, soluble ICAM-1, sVCAM-1 sUL-1Ra, IL-6 and 

fibrinogen) in predicting cardiovascular events was evaluated previously and as a result, 

only NT-proBNP provided incremental value for cardiovascular risk prediction over 

traditional markers such as FRS (Blankenberg et al., 2006). Another study compared the 

relationship between neurohormonal markers (MR-proADM, MR-proANP, NT-

proBNP, CT-proET-1, copeptin, neopterin) and vascular function parameters [FMD and 

PAT] in 5,000 individuals (Gutenberg Health Study). Baseline vascular function showed 

strong associations for MR-proANP and baseline pulse amplitude; as well as MR-

proANP and NT-proBNP with brachial artery diameter. For hyperaemic response 

variables, CT-proET-1, MR-proADM, and MR-proANP were related to PAT ratio, 

which is a representative measure of microvascular circulation (Schmabel et al., 2012). 

A number of comparative studies investigated the ability of CT-proET-1[168 – 212] and 

these are summarised in Table 1.8. In general, CT-proET-1 was an independent 

biomarker, as such in acute myocardial infarction (MI), both NT-proBNP and CT-

proET-1 were independent predictors of death and HF (Khan et al., 2007). In diabetic 

patients, Maier et al., 2009 showed a correlation between endothelial markers MR-

proADM, CT-proAVP, CT-proET-1, and MR-proADM and cardiovascular events with 

MR-proANP being the strongest predictor in this patient group. Boyer et al., 2012 

investigated the changes in MR-proADM, MR-proANP and CT-proET-1 during the first 

2 – 4, and 12 – 24 h after therapy in 48 patients with acute decompensated heart failure 

(ADHF). Changes in MR-proANP levels occurred more commonly at 2 – 4 after 

therapy. Changes in CT-proET-1 showed a relation with ejection fraction, heart rate and 

BNP. CT-proET-1 over 2 – 4 h after therapy also positively correlated with Na+ 

concentration.  
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Table 1.8: The prognostic significance of CT-proET-1 in comparison to other cardiovascular biomarkers.  

Study & 

Reference 

Patients Biomarkers Results Conclusion 

Struck et al., 

2005 

Sepsis  Sandwich 

immunoassays  

for ppET-1 

peptide 

sequences 18 – 

53, 32 – 109, 

32 – 181, 94 – 

148, 136 – 181 

and 168 – 212    

Only ppET-1 sequences 18 – 53, 94 – 148 and 168 – 

212 showed strongly elevated ir-proET-1 in sepsis. 

These proET-1 peptides were also detected in normal 

subjects. 

Immunoreactivities of 3 

ppET-1epitopes suggest 3 

proET-1 derived peptides. 

Papassotiriou 

et al., 2006 

Chronic HF (n = 

77), sepsis (n = 116) 

and healthy (n = 

326) 

CT-proET-1  

Big ET-1  

CT-proET-1 significantly correlated with age. 

Elevated CT-proET-1 levels in chronic HF and sepsis 

patients. CT-proET-1 correlated with bigET-1 

measurements. 

The CT-proET-1 assay 

without extraction and lack of 

cross-reactivity may be a 

useful biomarker. 

LAMP study 

Khan et al., 

2007 

Acute MI 

(n = 983) 

CT-proET-1  

NT-proBNP 

Both NT-proBNP and CT-proET-1 were independent 

predictors of death and HF. AUC was 0.76 for both 

NT-proBNP and CT-proET-1. 

CT-proET-1 is a strong 

predictor of adverse 

outcomes. 

 

 



Chapter 1  Introduction 

 

 

53 

 

Table 1.8 cont: 

Study & 

Reference 

Patients Biomarkers Results Conclusion 

Behnes et al., 

2008 

Acute ST elevation 

MI or non-ST 

elevation MI  

(n = 30) 

MR-proADM 

CT-proET-1 

 

3 days after MI median CT-proET-1 in event vs. no-

event group was significantly higher (72.9 vs. 54.4 

pmol/L). MR-proADM levels were 0.69 vs. 0.59 

nmol/L.  AUC for MR-proADM and CT-proET-1 

was 0.71 and 0.76. 

Both MR-proADM and CT-

proET-1 may predict acute 

phase of MI. 

Adlbrecht et 

al., 2009 

Chronic HF 

(n = 786) 

CT-proET-1 

MR-proADM 

BNP 

MR-proADM better predictor of mild to moderate 

HF. ADM is not superior to NT-proBNP in 

predicting outcome. 

BNP can be a better 

biomarker of prognosis at a 

later disease stages. 

Dieplinger et 

al., 2009 

 

Acute destabilised 

HF (n = 137) 

CgA 

CT-proET-1 

NT-proBNP 

Decedents (n = 41) had higher median plasma 

concentrations of CgA (9.7 vs. 6.0 nmol/L), CT-

proET-1 (120 vs. 72 pmol/L), and NT-proBNP (5112 

vs. 2610 ng/L) at baseline than survivors. 

CT-proET-1 added 

independent prognostic 

information in addition to 

NT-proBNP measurement. 

Maier et al., 

2009 

 

Type 2-DM  

(n = 781)  

Median follow up of 

15 months 

 

MR-proADM, 

CT-proET-1 

CT-proAVP 

MR-proANP 

Creatinine 

GFR 

All biomarkers increased in future CV events, 

independently correlated to serum creatinine. 

MR-proANP was the strongest predictor of CV 

events (AUC 0.80), while CT-proET-1 (AUC 0.65) 

was the weakest. MR-proADM and CT-proET-1 also 

correlated with GFR and serum creatinine. 

CT-proET-1 unable to add 

additional value to predict 

future CV events. All 4 

neurohormonal biomarkers 

were related to both kidney 

function and CV events. 
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Table 1.8 cont: 

Study & 

Reference 

Patients Biomarkers Results Conclusion 

GISSI-HF  

 

Masson et 

al., 2010  

 

Chronic and stable 

HF (n = 1,237) 

Median follow-up of 

3.9 years 

MR-proANP, 

MR-proADM, 

CT-proET-1 

and CT-

proAVP or 

copeptin 

All markers were higher in elderly, in patients with 

more severe HF symptoms and reduced eGFR.  MR-

proANP was unable to improve reclassification based 

on clinical risk factors    

AUC for MP-proANP, NT-proBNP, and CT-

proproET-1 was 0.74, 0.73, and 0.71, respectively.  

Although all markers had 

significance independent of 

NT-proBNP, the most 

powerful predictor of 

outcome was MR-proANP. 

GENOA 

study 

 

Habib et al., 

2010 

Hypertensive 

African Americans 

(n = 981) and non-

Hispanic whites  

(n = 812)  

CT-proET-1 

urinary ACR 

Higher CT-proET-1 levels in African Americans in 

comparison to non-Hispanic whites. African 

Americans had a higher prevalence of diabetes, lower 

use of statins, and higher eGFR, SBP, and DBP, and 

greater urinary ACR. 

CT-proET-1 independently 

associated with lower target-

organ damage measures 

(urinary ACR). 

Jankowska et 

al., 2011 

Systolic chronic HF 

(91% men) 

(n = 491) 

CT-proET-1 

NT-proBNP  

Higer CT-proET-1 levels in patients with chronic HF 

when compared to healthy controls.   

CT-proET-1 levels were positively associated with 

age and the disease severity (NYHA class). 

CT-proET-1 increased 

prognostic value of CHF and 

added value to 12-month CV 

mortality in patients with 

CHF. 
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Table 1.8 cont: 

Study & 

Reference 

Patients Biomarkers Results Conclusion 

GISSI-AF  

Lattini et al., 

2011  

 

Hypertensive 

(84.8%, 59.7% AF) 

(n = 382) 

1 year follow-up 

MR-proANP 

MR-proADM 

CT-proET-1 

Copeptin/CT-

proAVP  

NT-proBNP 

hsTnT 

Baseline NT-proBNP, MR-proANP and hsTnT 

were higher in patients older than 70 years, in 

those with HF or LVEF, and those with CAD.  

Highest correlation was between NT-proBNP 

and MR-proANP, which also showed an inverse 

relationship with recurrence of AF. CT-proET-1 

was also associated with the risk of first 

recurrence of AF. 

hsTnT, MR-proANP, NT-

proBNP and CT-proET-1 had 

a modest but statistically 

significant predictive power 

for recurrence of AF. 

KORA F4 

study 

Seissler et 

al., 2012 

Type 2-DM and 

MetS (n = 1,590) 

CT-proET-1 

MR-proADM 

CT-proET-1 and MR-proADM significantly 

elevated in patients with MetS. 

 

PEACE trial 

Sabatine et 

al., 2012 

Stable CAD and 

preserved LVEF 

(n = 3,717) 

MR-proANP 

MR-proADM 

CT-proET-1 

Copeptin 

MR-proANP, MR-proADM, and CT-proET-1 

were independently associated with the risk of 

CV death or HF. 

Increased levels of 

biomarkers may be useful to 

identify patients at higher risk 

of CV death and HF and aid 

selection of responsive 

patients to therapy.  
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Table 1.8 cont: 

Study & 

Reference 

Patients Biomarkers Results Conclusion 

Drion et al., 

2012 

 

Type 2-DM  

(n = 1,225) 

Median follow-up of 

3 or 10 years 

CT-proET-1 

Albuminuria 

 

CT-proET-1 was associated with fatal 

cardiovascular events, all-cause mortality, and 

new-onset albuminuria 

CT-proET-1 improved 

prediction of fatal 

cardiovascular events. 

 

Abbreviations: IR = immunoreactivity, AF = atrial fibrillation, CAD = coronary artery disease, MI = myocardial infarction, Type 2-DM = Type 

2-diabetes mellitus, MetS  = metabolic syndrome, LVEF = left ventricular ejection fraction, LLD = lower limit of detection, NYHA = New York 

Heart Association Class, CV = Cardiovascular, GFR = glomerular filtration rate, CgA = Chromogranin A, CT-proET-1 = C-terminal-

proendothelin-1, HsTnT = high sensitivity troponin T, MR-proADM = midregional proadrenomedullin, NT-proBNP = N-terminal-pro B-type 

natriuretic peptide.  ACR = albumin:creatinine ratio. MR-proANP, MR-proADM, CT-proET-1, Copeptin/CT-proAVP  were all measured using 

chemiluminescence immunoassays (CIA) (BHRAMS), NT-proBNP and HsTnT were measured using electrochemiluminescence immunoassay 

(Elecys), and big ET-1 was measured using ELISA. 
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Cardiovascular disease occurs frequently in patients with renal disease (e.g. CKD) 

(Foley et al., 2005). Similarly, CKD is an independent risk factor for cardiovascular 

morbidity and mortality (Jones et al., 2004). Renal function is assessed using estimated 

glomerular filtration rate (eGFR) but cystatin C and proteinuria are other renal markers. 

Serum creatinine is used to estimate eGFR. However, it is a poor biomarker of early 

CKD. This is because detection of renal dysfunction occurs after extensive tissue 

damage (Hewitt et al., 2004). Thus, there is an unmet clinical need for more sensitive 

biomarkers that will provide earlier detection of renal impairment and potentially reflect 

effectiveness of therapy. Since there is interplay between cardiovascular and renal 

dysfunction, biomarkers investigated in predicting cardiovascular disease risk have also 

been evaluated in renal disease. As such, cardiovascular biomarkers (NT-proBNP, 

hsTnT, proANP, copeptin and proADM) were associated with renal function in patients 

with systolic HF (Bosselmann et al., 2013). 

  

Increased ET-1 production in patients with renal disease and its relation to impaired 

renal function (as a measure of eGFR), through which contributes to the progression and 

maintenance of hypertension and arterial stiffness, has been evident (Dhaun et al., 2006; 

Goddard et al., 2007). Urinary ET-1 excretion is well correlated with renal ET-1 

production (Benigni et al., 1991) and thus it was suggested as a potential biomarker for 

renal injury (Ohta et al., 1991). The diagnostic or prognostic utility of CT-proET-1 in 

patients with CKD has yet to be described.  
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1.14  Hypothesis and aims of this thesis 

1.14.1  Hypothesis 

There is a clinical need for sensitive markers for early diagnosis in both cardiovascular 

and renal pathologies that would reflect changes in progression and treatment outcomes. 

Current methods measuring EDD and the effects of treatments in BP have limited 

diagnostic value. ET-1 is an early contributor to endothelial dysfunction and plays a vital 

role in regulation of BP. However, ET-1 has a short circulating half-life and its 

measurement has limitations.  

The work described in this thesis investigated the hypothesis that other ppET-1-derived 

peptides co-released with ET-1 are more stable in circulation and thus could serve as 

alternative biomarkers of elevated ET-1 synthesis in cardiovascular and renal 

pathologies. ProET-1-derived peptides may be clinically useful as diagnostic biomarkers 

and may provide improved risk assessment. Moreover, their measurement could be 

beneficial for monitoring treatment outcomes of ET receptor antagonists.    

 

1.14.2  Aims 

The general aim of this thesis was to characterise ppET-1 synthesis and to develop 

specific immunoassays for the measurement of proET-1 peptide fragments. Specific 

aspects of the research were: 

(1) To evaluate the release of ET-1 and proET-1 peptides from endothelial 

(EA.hy 926) and epithelial (A549) cell lines (Chapter 3), which were 

identified using immunoassays optimised in Chapter 2. The aim of this 

investigation was to define whether proET-1 peptide fragments released into 

the condition media were stable and whether inhibiting ET-1 synthesis using 

an ECE inhibitor phosphoramidon and/or protease inhibitors had an effect on 

the release of proET-1 peptides. 

(2) These investigations were also required to find optimal conditions for 

collection of conditioned media samples from EA.hy 926 and A549 cells for 

pursuing the purification and characterisation of proET-1 peptides (Chapter 

4). 

(3) To provide sequence identities of the endogenous proET-1 peptides using 

mass spectrometry (Chapter 5). This chapter provides evidence for the 
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identity of a novel ppET-1 derived peptide, which contains an endothelin-like 

domain. 

(4) (A) Evaluate the clearance rates of identified proET-1 peptide fragments in 

the circulation of rats and study their metabolism in whole blood and plasma. 

(B) Using patient samples assess whether stable proET-1 peptides may be 

potential biomarkers of vascular and renal pathologies (Chapter 6). 
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CHAPTER 2 

General materials and methods 
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2.1  MATERIALS  

2.1.1  Reagents and Solutions 

1. 0.2 µm filter paper (Whatman, UK). 

2. 24-well plates cell culture (VWR, UK). 

3. 25G needle (BD MicrolanceTM, USA). 

4. Acetic acid, glacial (CH3COOH) (Analar grade: BDH Laboratory supplies, UK). 

5. Acetonitrile (CH3CN) HPLC grade (Rathburn Chemicals Ltd., Scotland). 

6. Ammonium bicarbonate (NH4HCO3) (Analar grade: BDH Laboratory supplies). 

7. Ammonium sulphate (NH4)2SO4 (Merck, Germany). 

8. Anhydrous sodium sulphate (Analar grade: BDH Laboratory supplies, UK). 

9. Bacitracin, prepared fresh in DMEM (10 mM) and 0.2 µm filter sterilised before 

use (Sigma, UK). 

10. Benzamidine HCl (anhydrous basis) (MWt = 156.61). A reversible inhibitor of 

trypsin, trypsin-like enzymes, and serine proteases (Sigma, UK). 

11. Bio Gel P-30, 100 g fine 45 – 90 µm (wet) (Bio-Rad, Germany). 

12. Bovine serum albumin (BSA) (Sigma, UK). 

13. Carboxymethyl Fractogel, EMD COO- 650 (M) (500 ml) (Merck, Germany). 

14. Centrifugal filter devices Amicon Ultra (MWt cut-off 100 kD) (Millipore, 

Ireland). 

15. Clear 96-well plate (Sterlin, UK). 

16. CNBr activated Sepharose (1 g makes ~3.5 ml) (Amersham-Pharmacia, UK). 

17. Dimethyl formamide (DMF) (Sigma, UK).   

18. Dimethyl sulfoxide (DMSO) (Sigma, UK).   

19. Dulbecco’s Modified Eagle’s Medium - high glucose (DMEM) with 4500 mg/L 

glucose, L-glutamine, sodium pyruvate, and sodium bicarbonate (D6429, Sigma, 

UK). For use 500 ml DMEM is supplemented with 5 ml antibiotics (100 Units/ml 

Penicillin and 100 µg/ml streptomycin) and 12.5 ml HEPES (25 mM) (DMEM+). 

20. Dulbecco’s Phosphate Buffered Saline (without CaCl2 and MgCl2) (Sigma, UK). 

21. Endopeptidase Inhibitors: leupeptin, chymostatin and pepstatin A (Sigma, UK). 

Inhibitor stock solutions chymostatin 100 mM (MWt = 600, 25 mg dissolved in 

417 µl of DMSO, stored at -20°C); 10 mM pepstatin A (MWt = 685.9, 5 mg 

dissolved in 729 µl of DMSO, stored at -20°C); 100 mM leupeptin  (MWt = 426.5, 

100 mg dissolved in 2.344 µl of H2O, stored at -20°C). Peptide inhibitor mix was 
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prepared in DMEM diluting chymostatin and leupeptin at 10 µM, and pepstatin A 

at 10 µM. 

22. Ethanolamine (Analar grade: BDH Laboratory supplies, UK). 

23. EDTA (Ethylenediaminetetraacetic acid) (Sigma, UK). 

24. EDTA solution, 0.5 M (pH 8.0) (Promega, USA). 

25. Ethanolamine-hydrochloride (Sigma, UK). 

26. EZ-Link Iodoacetyl-PEG-Biotin, 50 mg (Pierce reagent 21334, USA). 

27. EZ-Link NHS-LC-LC-Biotin (Pierce reagent 21343, USA). 

28. Falcon tubes, 15 and 50 ml (Beckman, UK). 

29. Float A-Lyser G2 (MWt cut-off 8 – 10 kD) (Spectrum, USA). 

30. Foetal calf serum (FCS) (Sigma, UK). 

31. Formic acid (BDH Laboratory supplies, UK). 

32. Freund`s adjuvant (complete, F5881; incomplete, F5506; Sigma, UK). 

33. Gamma globulins from bovine blood (Sigma, UK). 

34. Glutaraldehyde, 25% (G6257, Sigma, UK). 

35. Guanidine hydrochloride (G-HCl) (Sigma, UK). 

36. HAT Media Supplement (50×) (H0262, Sigma, UK). 

37. Heparin sodium (5,000 Units/ml) (Wockhardt, UK). 

38. HEPES 1M (N-2-Hydroxyethylpiperazine-N′-2-ethanesulfonic Acid), free acid 

(H3375, Sigma, UK). 

39. High-binding, flat bottom 96-well plates, black clear bottom polystyrene (Costar, 

Corning, USA). 

40. High-binding, flat bottom 96-well plates, white solid bottom polystyrene (Costar, 

Corning, USA). 

41. Hydrochloric acid (HCl) 10 M stock (Analar grade: BDH Prolabo, UK). 

42. Imject Mariculture Keyhole limpet Hemocyanin (mcKLH; 2 x 20 mg vials Pierce 

product# 77600, USA). 

43. Lo-Binding ultracentrifugation tubes (Eppendorf, USA). 

44. Low nonspecific binding dialysis membranes (MWt cut-off 10,000, Spectra/Por 

Biotech Cellulose Ester, 8 mm width; 131261, Spectrum, Perbio Science, UK). 

45. Luminex® 100/200 Calibration Kit LX200-CAL (Luminex Corporation, USA). 

46. Luminex® 100/200 Performance verification kit LX200-CON (Luminex 

Corporation, USA). 

47. Luminex® 100/200 Sheath fluid (Luminex Corporation, USA). 
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48. Magnetic beads for NT-proET-1, ELDP, CT-proET-1 immunoassays (Luminex 

Corporation, USA). 

49. Mercaptoethanol (BDH Laboratory supplies, UK). 

50. Methanol (HPLC grade: BDH Prolabo, France). 

51. MTT [1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan Thiazolyl blue 

formazan] powder dissolved in DMEM (0.4 mg/ml) (M2003, Sigma, UK). 

52. Natural slick-seal tubes 0.2 ml, 1.5 ml (Bioquote, USA). 

53. Neutravidin-horeradish peroxidase (N-HRP) (Pierce, USA). 

54. Penicillin/Streptomycin: 10,000 Units/ml Penicillin and 10,000 µg/ml 

streptomycin (Gibco®, Invitrogen, USA). 

55. Peptide mix solution: Prepared at 1 nmol/ml as a mixture of the three peptides, 

NT-proET-1, ELDP and CT-proET-1, in 0.2 µm filtered 0.9% NaCl/0.1% BSA. 

The interim dilution was prepared from a fresh stock in freshly prepared 0.9% 

NaCl/0.1% BSA. 

56. pH indicator strips (non-bleeding), pH 0 – 6 and pH 7.5 – 14 (BDH Laboratory 

supplies, UK). 

57. Phosphate buffered saline (PBS) tablets (P4417-100TAB, Sigma, UK). 

58. Phosphate-buffered saline (PBS): dissolve 1 PBS tablet (Sigma, UK) in 200 ml 

uhq-H2O. 0.01 M phosphate buffer: 0.0027 M KCl, 0.137 M NaCl, pH 7.4, at 

25°C. 

59. Phosphoramidon 100 mM (Peptide Institute, Japan) (MWt = 543.5): 25 mg 

dissolved in 460 µl of sterile PBS, 100 µl aliquots stored at -20°C). Diluted in 

DMEM on the day of experiments. 

60. Polyethylene catheters (PE-50) (BD MicrolanceTM, USA). 

61. Polypep bovine protein digest low viscosity (Sigma, UK). 

62. Polypropylene tubes (5 ml, 75 x 13 mm) (Sarstedt, Germany). 

63. ProClin 300 (SuperCo Analytical, USA). 

64. PTFE porous membrane filter, 40 µm pore size (Alltech, Fisher Scientific). 

65. Q-Sepharose Fast Flow (300 ml) (GE Healthcare Bio-Sciences AB, Sweden). 

66. Rabbit anti-sheep IgG (H+L)-HRP labelled (Immunopure, Pierce Lot# 

1D1062475, USA). 

67. Sep-Pak® 3cc (500 mg) C2 cartridges (Waters, USA). 

68. Sintered glass funnel. 

69. Sodium azide (BDH/Merck, UK). 
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70. Sodium bicarbonate (Analar grade: BDH Laboratory supplies). 

71. Sodium carbonate anhydrous (Sigma, UK). 

72. Sodium chloride (NaCl) (Sigma-Aldrich Chemical Company, UK). 

73. Sodium thiopentone: The anaesthetic was purchased fresh from the supplier and 

made up at the time of surgery (Intraval Sodium, 120 mg/kg i.p.; Merial Animal 

Health Ltd., UK). 

74. Streptavidin (5 mg) (Immunopure, Thermo Science, USA). 

75. Streptavidin-R-Phycoerythrin (Steptavidin-RPE) (Invitrogen, Life Technologies, 

UK). 

76. Succinimidyl 4-[p-maleimidophenyl]butyrate (SMPB) (10 mg, MWt = 356) 

(Thermo Scientific, Pierce, USA). 

77. SulfoLink Coupling Resin (Thermo Scientific, Pierce, USA) (Iodoacetyl-activated 

crosslinked 6% beaded agarose, slurry in 50% glycerol, 10 mM EDTA with 

sodium azide). 

78. Sulfo-succinimidyl 4-(N-maleimidomethyl) (Thermo Scientific/Pierce, USA). 

79. Supersignal ELISA Pico chemiluminescence substrate 250 ml kit (Pierce, USA). 

80. Syringes, sterile, 10 ml (Sherwood medical, UK). 

81. Tissue culture T25 and T175 cm2 flasks (VWR, UK). 

82. TopTip Carbon+ (Graphite) C18 spintips (10 – 200 µl) (Glygen Corp, USA). 

83. Trifluoroacetic acid (TFA) (Rathburn Chemicals Ltd., Scotland). 

84. Tris (base) molecular biology grade (Calbiochem, Germany). 

85. Tris (hydroxymethyl) methylamine (BDH Laboratory supplies, UK). 

86. Triton X-100 (Sigma, UK). 

87. Trypsin, Sequencing Grade Modified (20 µg) (Promega, PRV5111). Trypsin 

Resuspension Buffer (V542A) (supplied with V5111): is composed of 50 mM 

acetic acid.  

88. Trypsin-EDTA Solution (10x) 5.0 g porcine trypsin and 2.0 g EDTA●4Na/L in 

0.9% NaCl (Sigma, UK). 

89. Tween-20 (Sigma, UK).  

90. Urea (VWR, UK). 

91. Vectaspin Micro Anopore 0.2 µm centrifugation tubes, 1.5 ml (Whatman, USA). 

92. White clear bottom Costar 96-well plates (Costar, Corning, USA). 

93. Wistar male rats (Charles River Limited, UK).  
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2.1.2  Equipment 

1. 96-well plate liquid scintillation counter and luminometer (Wallac 1450 

MicroBeta Trilux). 

2. Alltech 24-port vacuum manifold (Grace Davison Discovery Sciences, USA). 

3. Berthold microplate luminometer (Berthold Technologies, GmbH & Co. KG). 

4. ELx405™ Microplate Washer (BioTek). 

5. High-performance liquid chromatography system (HPLC): MERCK Hitachi L-

6200 Intelligent Pump with 2 ml injection loop, with gradient elution capability, 

Shimadzu SPD-6A UV detector that measured absorbance at A280 or A215, and 

Pharmacia LKB Helifrac fraction collector. HPLC columns: ACE C4 (Part 

number: ACE-223-2546); ACE C18 (Part number: ACE-221-2546) with 5 µm 

particle size, 300 Å pore size and 4.6 x 250 mm dimensions; and Jupiter C4 

(Phenomenex, Part Number: 00G-4169-N0) with 15 µm particle size, 300 Å pore 

size and 1 x 25 cm dimensions. 

6. Infinite 200 PRO series (TECAN plate reader). 

7. LTQ Orbitrap XL mass spectrophotometer (Thermo Fisher Scientific). 

8. Luminex 100/200 system (Luminex Corporation, USA).   

9. Techne sample concentrator (Bibby Scientific Limited, UK). 

10. Ultracentrifuge (Beckman Coulter). 

 

2.1.3  Preproendothelin-1 peptides   

ProET-1 peptide fragments NT-proET-1 (ppET-1[18 – 50]), ELDP (ppET-1[93 – 166]) and 

CT-proET-1 (ppET-1[169 – 212]) were chemically synthesised by the University of Geneva. 

Each peptide was initially dissolved in uhq-H2O at a nominal concentration of 100 

nmol/ml. The purity of each peptide was confirmed by HPLC (ACE C4 column, with 

absorbance measured at 280 nm). The concentration of each peptide was determined 

from peak area on HPLC (at A280), and quantified using standard concentrations of 

tyrosine and tryptophan as reference depending on the relative number of tyrosine and 

tryptophan residues in the peptide. Peptide sequences of proET-1 peptides are shown in 

Table 2.2. 

http://www.biotek.com/products/liquid_handling/elx405_microplate_washer.html
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2.1.3.1  Direct infusion of proET-1 peptides on Orbitrap 

Stock concentrations of synthetic NT-proET-1, ELDP and CT-proET-1 at 70, 85 and 59 

nmol/ml, respectively were diluted in 25% acetonitrile containing 0.1% formic acid at 1 

pmol/µl prior to LC-MS analysis on Orbitrap XL mass spectrophotometer (MS) 

(Thermo Fisher Scientific). NT-proET-1 was injected at a flow rate of 2 µl/min while 

ELDP and CT-proET-1 were injected at a flow rate of 1 µl/min over 5 min. 

Comparison of average masses (monoisotopic) of each proET-1 peptide obtained from 

Orbitrap [NT-proET-1 (3,429.797); ELDP (8,637.348); and CT-proET-1 (5,289.660)] 

(Table 2.1) with the monoisotopic masses calculated from ProteinProspector [NT-

proET-1 (3,429.787); ELDP (8,637.367) and CT-proET-1 (5,289.670)] (see Table 2.2 

for amino acid composition), showed mass errors of <0.02 Da. Therefore, the masses of 

synthetic proET-1 peptides were in agreement with the calculated monoisotopic masses. 

This indicated that amino acid sequences of proET-1 peptides corresponded correctly 

with the synthetic peptides. 

 

Table 2.1: Characterisation of proET-1 synthetic standards by direct infusion onto 

Orbitrap. The monoisotopic mass is calculated from the formula: [(m/z) x z] n-1 x H+, 

where m/z = mass-to-charge ratio, (m is the ion mass in atomic mass units in Daltons 

(Da) and z is the number of  elemental charge units), n = number of charges, H+ = mass 

of a proton (1.008 Da). 

ProET-1 peptide 
Observed ion 

(MH+) mass, m/z 
Charge 

Monoisotopic 

Mass 

NT-proET-1 

(ppET-1[18 – 50]) 

1,143.938 3 3,429.798 

858.205 4 3,429.798 

686.766 5 3,429.800 

ELDP 

(ppET-1[93 – 166]) 

720.704 12 8,637.360 

665.340 13 8,637.326  

617.890 14 8,637.358 

CT-proET-1 

(ppET-1[169 – 212]) 

882.450 6 5,289.662 

756.528 7 5,289.651 

662.090 8 5,289.667 
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2.1.4  Preproendothelin-1 antibodies  

Preparation of antibodies for ET-1 and big ET-1 immunoassay were described 

previously (Corder, 2002). Antibodies for proET-1 peptides were also produced 

following described methodologies (Corder, 2002). Details of the proET-1 peptide 

antibodies used in immunoassays are shown in Table 2.1. For assay use all antibodies 

were prepared as affinity purified IgG (Corder, 2002). Synthetic peptide antigens used 

for raising proET-1 antisera and for the affinity purification of IgG were purchased from 

Bachem GmbH (Germany). 

Underlined sequences in Table 2.2 indicate peptides used as antigens to raise specific 

antisera for the development of capture and detection antibodies. Specific IgG were 

purified from antisera using the same antigen coupled to SulfoLink Coupling Resin or 

CNBr-Sepharose; except for ET-1/big ET-1 where the detection antibody IgG was 

purified using ppET-1[54 – 63] coupled to Sulfolink Coupling Resin (Corder, 2002). To 

enable maleimide conjugation of ppET-1[18 – 30] and ppET-1[169 – 186] a C-terminal Cys-

NH2 residue was included in the synthetic peptide used for these antigens. 
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Table 2.2: Antibodies used for proendothelin-1 immunoassays. Amino acid numbering is based on the 212 amino acid sequence for 

preproendothelin-1 (ppET-1) (Bloch et al., 1989). Underlined sequences indicate peptides used as antigens to raise specific antisera for the 

development of capture and detection antibodies. 

ProET-1 peptide sequences 

Capture 

Antibody/ 

Protein 

Conjugate 

Species 

Detection 

Antibody/ 

Protein 

Conjugate 

Species 

ET-1 (ppET-1[53 – 73]): 

CSCSSLMDKECVYFCHLDIIW 

ppET-1[68 – 73]/ 

Glutaraldehyde 
Sheep 

ppET-1[54 – 63]/ 

Carbodiimide 
Rabbit 

Big ET-1 (ppET-1[53 – 90]): 

CSCSSLMDKECVYFCHLDIIWVNTPEHVVPYGLGSPRS 

ppET-1[74 – 90]/ 

Glutaraldehyde 
Rabbit 

ppET-1[54 – 63]/ 

Carbodiimide 
Rabbit 

NT-proET-1 (ppET-1[18 – 50]): 

APETAVLGAELSAVGENGGEKPTPSPPWRLRRS 

ppET-1[18 – 30]/ 

Maleimide 
Rabbit 

ppET-1[42 – 50]/ 

Glutaraldehyde 
Rabbit 

ELDP (ppET-1[93 – 166]): 

ALENLLPTKATDRENRCQCASQKDKKCWNFCQAGKEL

RAEDIMEKDWNNHKKGKDCSKLGKKCIYQQLVRGRKI 

ppET-1[93 – 109]/ 

Maleimide 
Sheep 

ppET-1[155 – 166]/ 

Maleimide 
Sheep 

CT-proET-1 (ppET-1[169 – 212]): 

SSEEHLRQTRSETMRNSVKSSFHDPKLKGKPSRERYVTH

NRAHW 

ppET-1[169 – 186]/ 

Maleimide  
Sheep 

ppET-1[204 – 212]/ 

Glutaraldehyde 
Rabbit 
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2.2  METHODS 

2.2.1  Cell culture 

EA.hy 926 is a hybridoma cell line generated by fusing A549 cells (human 

adenocarcinoma-derived alveolar epithelial cells) with primary human umbilical vein 

endothelial cells (HUVEC), which has characteristics of cultured endothelial cells (ECs) 

(Edgell et al., 1983). Previous studies have shown this is a suitable cell line for studying 

ET-1 synthesis (Saijonmaa et al., 1991; Corder et al., 1993a; Waxman et al., 1994). 

Conditioned media released from EA.hy 926 and A549 cells were used to study the 

effects of protease inhibitors on ET-1 and proET-1 peptide release (Chapters 3) and as 

source of proET-1 peptides for purification and characterisation of proET-1 peptides 

(Chapter 4). 

2.2.2  Chemiluminescence immunoassays 

2.2.2.1  Assay buffers  

A. IgG Coating buffer:  50 mM bicarbonate buffer, pH 9.5 (85 mg Na2CO3, 143 mg 

NaHCO3 in 50 ml uhq-H2O). 

B. Blocking buffer (10x): IgG coating buffer containing 0.5% BSA and 0.05% 

polypep. 

C. Neutralisation-buffer for cell culture media (N-SAB 6.9x conc): 363 mg Tris 

base (0.05 mM), 944 mg HEPES free acid (0.02 mM), 690 mg BSA (0.03 mM), 

276 mg IgG (0.07 mM), 276 mg polypep (0.07 mM), 69 µl Triton X-100 in 19.5 

ml uhq-H2O with phenol red. 5 ml aliquots were stored at -20oC. 

D. Sandwich assay buffer (SAB, pH 7.5): 1 PBS tablet, 1 g BSA (0.5%), 0.4 g IgG 

(bovine gamma globulin) (0.2%), 0.4 g polypep (0.2%), 100 l Triton X-100, 

0.05 g sodium azide in 200 ml uhq-H2O. Filter sterilised (0.2 µm) and 50 ml 

aliquots were stored at -20oC. 

E. Sandwich assay buffer for plasma samples (nSAB, pH 7.5): 0.6 g 

NaH2PO4.2H2O, 5.76 g Na2HPO4.12H2O, 1.17 g NaCl, 1 g BSA, 0.4 g IgG, 0.05 

g sodium azide, 0.01 g heparin sodium salt, 0.1 ml ProClin, 6 ml 0.5 M pH 8.0 

EDTA, 0.4 ml Triton X-100 in 193.5 ml uhq-H2O.  

F. SAB with ProClin: 0.1 ml ProClin in 200 ml SAB. 

G. Wash buffer (PBS with 0.05% Tween-20): 1 PBS tablet and 100 l Tween-20 in 

200 ml uhq-H2O. 
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2.2.2.2  Immunoassays for ET-1 and big ET-1 

Step 1: Black clear bottom and high-binding Costar 96-well plates were coated with 

capture antibodies: 100 l/well of sheep anti-ET-1[16 – 21] IgG (ppET-1[68 – 73]) at 3 g/ml 

in coating buffer, or rabbit anti-human big ET-1[22 – 38] (ppET-1[74 – 90]) at 2 g/ml for big 

ET-1. Plates were incubated overnight at 4°C. 

 

Step 2: Next day, coating buffer was decanted and plates were blocked by adding 250 

µl/well blocking buffer (1x) and incubating for a further 2 h at room temperature. 

 

Step 3: ET-1 standards were prepared at 2000 fmol/ml in sandwich assay buffer (SAB) 

followed by 1 in 4 serial dilutions over the range 1.9 – 2000 fmol/ml. Human big ET-1 

standards were diluted to 300 fmol/ml followed by 1 in 3 serial dilutions over the range 

1.2 – 300 fmol/ml.  

 

Step 4: After blocking, plates were washed 3 times with wash buffer and 50 l of 

biotinylated antibody rabbit anti ET-1[2 – 11] IgG (ppET-1[54 – 64]) was added to all wells. 

100 l of each ET-1 or big ET-1 standard or samples were added to corresponding wells. 

100 l of SAB was also added for non-specific binding and 0 fmol/ml wells. Plates were 

then incubated overnight at 4°C.  

 

Step 5: End-point detection was then carried out after washing plates 3 times with wash 

buffer followed by addition of 100 µl of neutravidin-HRP diluted in wash buffer 

containing 0.5% BSA and incubated for 1 h at room temperature. Plates were then 

washed 4 times with wash buffer and 100 µl of supersignal ELISA Pico 

chemiluminescence substrate mixed at 1:1 ratio was added to all wells. The plates were 

covered and mixed for 1 min on a plate mixer and read using a scintillation/luminescence 

counter (protocol: Isoplate Tropix- reads 1 sec/well).  

 

Both ET-1 and big ET-1 immunoassays are highly specific with a negligible cross-

reactivity (<0.01%) in each assay (Corder, 2002).  
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2.2.2.3  Immunoassays of NT-proET-1, ELDP and CT-proET-1 

Chemiluminescent double-recognition site sandwich ELISAs for NT-proET-1, ELDP 

and CT-proET-1 were performed as described above for ET-1 and big ET-1 using 

antibodies indicated in Table 2.1. Affinity purification and biotinylation of IgG were 

prepared following well-established methods (Corder, 2002).  

Plates were coated with 100 µl of capture antibody at a concentration of 1 µg/ml. ProET-

1 standards were prepared at 1000 fmol/ml in SAB followed by 1 in 3 serial dilutions 

over the range 1.4 – 1000 fmol/ml. After blocking (as in step 2), 25 l of SAB was added 

to all wells. After adding 50 µl of standard or samples plates were mixed at room 

temperature for 30 min. 25 l of biotinylated antibody was added before an overnight 

incubation at 4°C. End-point detection was then carried out in the same way as described 

above for ET-1 and big ET-1 immunoassays (step 5). 

 

2.2.2.4 Immunoassay of ELDP and CT-proET-1 for plasma and urine 

measurements 

White solid bottom and high-binding Costar 96-well plates were coated with the capture 

antibodies (1 µg/ml) specific for ELDP and CT-proET-1. After an overnight incubation, 

plates were blocked (as in step 2) and 25 µl of plasma samples or 100 µl of urine samples 

were added in wells containing 75 µl of nSAB or 50 µl of 3 times concentrated nSAB. 

Standards were prepared in the range 0.09 – 200 fmol/ml in nSAB and 50 µl or 100 µl 

per well was added for plasma or urine measurements, respectively. Following an 

overnight incubation detection of bound peptide was achieved with biotinylated IgG for 

ELDP (ppET-1[155 – 166]) or CT-proET-1 (ppET-1[204 – 212]), respectively. This was in 

conjunction with neutravidin-HRP and chemiluminescent substrate detection as 

described above (step 5). The plate was read using Berthold microplate luminometer (1 

s/well). The lower limit of detection for ELDP was 0.09 fmol/ml in urine and 0.30 

fmol/ml in plasma. The detection limit for CT-proET-1 in plasma was 0.60 fmol/ml.  
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2.2.3 Magnetic bead-based multiplex assays for proET-1 

peptides 

Magnetic beads (Bio-Rad) were coated with corresponding capture antibodies for NT-

proET-1, ELDP and CT-proET-1 (see Table 2.2, page 68) following standard protocols 

(Luminex Corporation).  

(1) White clear bottom Costar 96-well plates were washed with a microplate washer 

(ELx405, BioTek). Magnetic beads for NT-proET-1, ELDP and CT-proET-1 

were prepared as a combination (and protected from light) by diluting stock 

solutions in wash buffer at 1 in 50 for NT-proET-1 and 1 in 100 for ELDP and 

CT-proET-1. A 10 µl volume of the diluted bead combination was added to each 

well (and protected from light). 

(2) 135 µl nSAB was added to the sample wells and to the nSAB standard curve, 

while for the plasma standard curve 120 µl nSAB and 15 µl rat plasma was added 

and mixed on an orbital plate mixer. Standards were prepared in the range 2.1 – 

1500 fmol/ml. 15 µl of standards or plasma samples were added (total volume 

per well 150 µl) and the plate was incubated overnight at 4°C on an orbital plate 

mixer.  

(3) On the next day, after washing plates on the ring magnet plate washer, 25 µl of 

combined biotinylated antibodies were added to all wells and incubated for 2 h 

at room temperature mixing on the orbital plate shaker.  

(4) After washing three times on the plate washer end-point detection was carried 

out by incubating 25 µl/well of 1 in 10 diluted Streptavidin-RPE (Invitrogen) for 

30 min at room temperature on orbital plate shaker. After washing plate 3 times 

on the ring magnet 100 µl/well sheath fluid was added and mixed before reading 

on a Luminex 200 System, which was set to analyse magnetic beads at regions 

45 (NT-proET-1), 36 (ELDP) and 27 (CT-proET-1) in a volume of 50 µl/well 

and to count 50 beads/region. 
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2.2.4 Production of new capture and detection antibodies for 

CT-proET-1 immunoassay 

Initially, the N-terminal sequence SSEEHLRQTRSETMRNSV corresponding to ppET-

1[169 – 186] was used to raise specific antisera for CT-proET-1 immunoassay. The human 

sequence has four homologous residues with the sheep sequence (Table 2.3). This may 

result in some cross-reactivity of sheep CT-proET-1 with the sheep antibodies resulting 

in increased non-specific binding. Therefore, the non-homologous region 

SSEEHLRQTRS (ppET-1[169 – 179]) was used as the new antigen sequence to raise 

specific antisera with the aim of increasing assay sensitivity and specificity. 

 

Table 2.3: Comparison of human and sheep N-terminal sequence of CT-proET-1 

peptide. Bold indicates CT-proET-1 sequence used to raise antisera/purify IgG, hyphens 

(-) represents missing residues where there is no corresponding amino acid residue in 

the sequence for these residues and italics indicates non-homologous residues in the 

sheep sequence. 

  

 
169          179       186 

Human S S E E H L R Q T R S E T M R N S V 

Sheep - - - - - - - - - - L E T I S N S I 
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2.2.4.1  Reagents and solutions  

2.2.4.1.1 Custom synthesised CT-proET-1 peptides 

N-terminal CT-proET-1 (ppET-1[169 – 179])-Cys: H-Ser-Ser-Glu-Glu-His-Leu-Arg-Gln-

Thr-Arg-Ser-Cys-NH2 (SSEEHLRQTRSC) trifluoroacetate salt, MWt = 1431.55 (>95% 

pure, 75% peptide content) (Bachem lot# 3008326, UK).  

Cysteine-amide is added to the C-terminus of the N-terminal sequence to facilitate 

coupling of this peptide to KLH carrier protein (using the maleimide method) and for 

biotinylation of this peptide-antigen with EZ-Link Iodoacetyl-PEG-Biotin. 

C-terminal CT-proET-1 (Lys203-ppET-1[204 – 212]): H-Lys-Tyr-Val-Thr-His-Asn-Arg-

Ala-His-Trp-OH (KYVTHNRAHW) trifluoroacetate salt, MWt = 1311.47 (>97% pure, 

71.8% peptide content) (Bachem lot# 3008325, UK).  

Lysine at the N-terminal of the C-terminal CT-proET-1 sequence is added to improve 

coupling efficiency of the peptide sequence to KLH carrier protein using glutaraldehyde 

and for biotinylation of this peptide-antigen with EZ-Link NHS-LC-LC-Biotin. 

 

2.2.4.1.2 Conjugation buffers 

1. Phosphate Buffer (0.1 M, pH 7.2): 0.19 g KH2PO4 and 0.64 g Na2HPO4 in 50 ml 

uhq-H2O. 

2. Phosphate Buffer with EDTA (0.2 M, pH 7.2/10 mM EDTA): 0.39 g KH2PO4, 

1.27 g Na2HPO4 and 0.19 g Na2EDTA in 50 ml uhq-H2O. 

3. Reaction buffer for CNBr Sepharose: 0.2 M NaHCO3 and 0.5 M NaCl, pH 8.0. 

4. Coupling buffer: 0.5 M sodium bicarbonate (NaHCO3) buffer, pH 8.5 (2.1 g 

NaHCO3 in 50 ml uhq-H2O). 

5. Reaction buffer for SulfoLink coupling resin: 0.1 M Tris-HCl (pH 8.5)/10 mM 

EDTA: 0.22 g Tris-HCl, 0.44 g Tris and 0.186 g Na2EDTA in 50 ml. 

6. Blocking buffer for CNBr Sepharose: 50 mM ethanolamine-HCl in coupling 

buffer, pH 8.0. 

7. Blocking buffer for SulfoLink coupling resin: 10 mM mercaptoethanol. 

8. 5 mM EDTA: 0.09 g EDTA in 50 ml. 
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2.2.4.1.3 Biotinylation of CT-proET-1 peptides and purified IgG 

N-terminal CT-proET-1 peptide: 1.6 mg of SSEEHLRQTRSC (MWt = 1432; peptide 

content 75%; ~838 nmol) was dissolved in 750 µl of 5 mM EDTA. 18 µl of peptide (20 

nmol) was diluted in 1 ml 0.2% formic acid and injected onto HPLC with detection of 

peptide peak by absorbance (A215; ACE C18, 4.6 x 250 mm; eluted with a gradient of 

8% to 24% CH3CN containing 0.1% TFA over 40 min at a flow rate of 1 ml/min; elution 

time 19.1 min). 5.2 mg of EZ-Link Iodoacetyl-PEG-Biotin (MWt = 542) was dissolved 

in 2.28 ml of Tris-HCl pH 8.5/EDTA (2.28 mg/ml). To characterise the HPLC elution 

position of the biotinylation reagent and to facilitate identification of reaction products, 

5 µl of biotinylation reagent (21 nmol) was diluted in 1 ml of 0.2% formic acid and 

injected onto HPLC (conditions as above for synthetic peptide; elution time 34.8 min). 

The biotinylation reagent was reacted with 25% excess over peptide; 250 µl of the 

biotinylation reagent (1.05 µmol) was added to the remaining peptide, and a further 500 

µl of 0.1 M Tris-HCl pH 8.5/10 mM EDTA was added to the reaction mixture before 

incubation at room temperature in the dark for 1 h. The efficiency of biotinylation 

reaction was evaluated after 1 h by injecting 20 µl from the reaction mix onto HPLC 

(conditions as above; elution time of biotinylated peptide product 30.8 min, no unreacted 

peptide). After verification of the successful reaction the biotinylated peptide was 

purified by acidifying the reaction mixture with 6 µl 98% formic acid, and loading the 

entire sample onto HPLC using the same elution conditions as those used for monitoring 

reaction. The purified biotinylated peptide was retained for subsequent antibody 

evaluation. 

C-terminal CT-proET-1 peptide: 6.2 mg of KYVTHNRAHW peptide (MWt = 1311; 

peptide content 71.8%; ~3.4 µmol) was dissolved in 680 µl of H2O (5 µmol/ml), and 0.1 

ml (0.5 µmol) was placed on ice. The pH was adjusted to 8.5 by adding 50 µl of 0.5 M 

NaHCO3, pH 8.5. 1 µl of the C-terminal peptide (5 nmol) was injected onto HPLC with 

detection of peptide peak by absorbance (A215; ACE C4, 300 Å pore size, 4.6 x 250 mm; 

eluted with a gradient of 8% to 24% CH3CN containing 0.1% TFA over 40 min at a flow 

rate of 1 ml/min; elution time 8.4 min). 2.5 mg of NHS-LC-LC-Biotin reagent (MWt = 

568) was dissolved in 176 µl dimethyl formamide (DMF) in a glass tube, and kept on 

ice (4.4 µmol = 25 µmol/ml). 1 µl of biotinylation reagent (25 nmol) was diluted in 0.2% 

formic acid and injected onto HPLC with the elution conditions indicated above (elution 

time 12.8 min). For comparison a sample of biotinylation reagent was hydrolysed in 0.1 
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M NaHCO3 for 1 h at room temperature and then subjected to HPLC (elution position 

of hydrolysed reagent 9.8 min). For biotinylation of the C-terminal peptide, 25 µl of 

biotinylation reagent in DMF (0.625 µmol; 25 % excess) was added to 100 µl of peptide 

(0.5 µmol)  and the reaction mixture was gently mixed and allowed to react on ice for 

20 – 30 min and then at room temperature for 2 h. The efficiency of biotinylation reaction 

was evaluated by HPLC of 1.5 µl samples at A215 and A280 with the elution conditions 

described above (elution time for main biotinylated product 18.7 min). The biotinylated 

peptide was purified by HPLC and retained for subsequent antibody evaluation. 

Peptide specific purified IgG: After affinity purification (section 2.2.4.6) of C-terminal 

(Lys203-CT-proET-1[204 – 212]) peptide specific IgG, the fractions containing the highest 

affinity peptide-specific IgG were determined using the ELISA methodology described 

in section 2.2.4.5. Highest affinity IgG were determined on the basis of highest binding 

peptide-specific IgG to the Sepharose gel. Fractions E – F, H – J and I showed highest 

affinity for the C-terminal peptide. These fractions were concentrated and then subjected 

to dialysis to remove contaminating reagents that could interfere in the biotinylation 

reaction; as described in section 2.2.4.6.3 (step 7).  

Biotinylation of C-terminal peptide specific IgG was carried out as follows. The pH of 

IgG samples were adjusted to 8 by adding 0.5 M NaHCO3 (typically 1 in 10 dilution for 

a post-dialysis IgG solution in 0.9% saline) and then chilled on ice. Biotinylation reagent 

was added at a 100-fold molar excess based on IgG concentrations (0.15 mg IgG = 1 

nmol) determined by Bio-Rad protein assay (section 2.2.5). 5.4 mg of NHS-LC-LC-

Biotin reagent (9512 nmol) was dissolved in 288 µl DMF (33 nmol/µl), and 20 µl was 

added to fractions E – F (1 mg in 150 µl), and 10 µl was added to IgG fractions H – J 

and I and (both 0.5 mg IgG). The biotin-IgG reaction mixture was kept on ice for 1 h 

and then reacted for 2 h at room temperature. Biotinylated IgG was dialysed using a 10 

kD cut-off membranes against 5 L 0.15 M NaCl/0.05 M sodium phosphate buffer pH 

7.2 for 16 – 18 h to remove excess and unbound biotinylation reagent from the 

biotinylated-IgG. Based on post dialysis sample volumes, biotinylated IgG 

concentrations were 1.67, 1.0 and 1.25 mg/ml for E – F, H – J and I respectively. 

Biotinylated IgG were tested at dilutions of ~7.5, 15 and 30 ng/well with 25 µl of the 

appropriate dilution added per well. 
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2.2.4.2 Coupling of synthetic N-terminal peptide of CT-proET-1 to an 

immunogenic carrier protein 

1. 40 mg of Imject Mariculture Keyhole limpet Hemocyanin (mcKLH) (± 0.4) 

(~450 – 13,000 kD) was dissolved in 6 ml 0.1 M phosphate buffer (pH 7.2) and 

chilled on ice. 

2. 10 mg of succinimidyl 4-[p-maleimidophenyl]butyrate (SMPB) (MWt = 356) 

was dissolved in 250 μl DMF. 120 µl of SMPB solution was added to 6 ml of 

mcKLH solution (~5 mg of SMPB) and chilled on ice to 4°C (0.35 µmol/mg 

protein). 

3. The tube containing the reaction mix was covered in foil and incubated at room 

temperature for 2 h to allow the reaction to take place while gently mixing on a 

flat-bed roller mixer. Then to remove any free SMPB the conjugate 

mcKLH/SMPB solution was dialysed (MWt cut-off 10 kD) against 10 mM 

phosphate pH 7.2 in 0.2 M NaCl (5 L) in the dark at 4°C for 2 x 24 h, i.e. changing 

the dialysis buffer after 24 h. On completion of dialysis mcKLH was centrifuged 

for 10 min at 3000 rpm to remove any protein that had become insoluble after 

SMPB reaction. 

4. 6.4 mg of SSEEHLRQTRSC (75% peptide by weight, ~5 mg pure peptide) was 

dissolved in 0.2 M phosphate buffer pH 7.2 containing 10 mM EDTA pre-chilled 

on ice. The peptide was then added to mcKLH, gently mixed and incubated at 

room temperature for 2 h. 

5. To confirm successful conjugation of peptide to mcKLH carrier protein, a 15 µl 

aliquot from the reaction mix was diluted in 0.5 ml 0.2% formic acid, subjected 

to filtration through a 10 kD cut-off filter (Microcon YM-10, Amicon), and the 

filtrate was injected onto HPLC to demonstrate absence of free unreacted peptide 

(detection by absorbance A215; column: ACE C18, 5 µm, 4.6 x 250 mm; eluted 

with a gradient of 8% to 24% CH3CN containing 0.1% TFA over 40 min at a 

flow rate of 1 ml/min). 

6. CT-proET-1/mcKLH conjugate was dialysed overnight at 4°C using 10 kD MWt 

cut-off dialysis membranes against 500 ml of 0.9% NaCl. 

 



Chapter 2  General materials & methods 

 

 

78 

 

2.2.4.3 Coupling of synthetic C-terminal peptide of CT-proET-1 to an 

immunogenic carrier protein  

1. KYVTHNRAHW was conjugated to mcKLH with glutaraldehyde. A 20-fold 

molar excess of glutaraldehyde (95 µl of 0.8 M) was added to 7.1 mg of 

KYVTHNRAHW (~5 mg pure peptide = 3.8 µmol) dissolved in 1 ml 0.1 M 

phosphate buffer, and placed in the dark for 30 min at room temperature. 

2. mcKLH (20 mg) was dissolved in 4 ml of 0.1 M phosphate buffer and added to 

the glutaraldehyde activated KYVTHNRAHW peptide. The reaction mixture of 

mcKLH and glutaraldehyde–KYVTHNRAHW was left in the dark for 1 h at 

room temperature. Unreacted glutaraldehyde was quenched by the addition of 6 

mg glycine dissolved in 5 ml of 0.1 M phosphate buffer. 

 

2.2.4.4  Sheep immunisation protocol 

To raise antisera conjugated peptides were sent to Ig-Innovations (Llandysul, Wales). A 

standardised immunisation procedure was used with pre-immune sera being collected 

from each sheep before immunisation. For the initial immunisation peptide conjugates 

were diluted with an equal volume of Complete Freund’s adjuvant. Two sheep were 

immunised with each antigen: N-terminal or C-terminal peptide of CT-proET-1. Booster 

injections were administered every 4 weeks over a 4 – 5 month period. Test bleeds were 

collected 2 weeks after each booster injection and evaluated for antigen binding by 

ELISA. Each new antiserum sample was compared to the previous bleed and pre-

immunisation sample. 

 

2.2.4.5  ELISA methodology to evaluate the affinity of antisera   

Black, high-binding 96-well plates were coated with 5 µg/ml streptavidin (Thermo 

Science) and stored at 4°C overnight. On the next day, the plates were blocked with 

blocking buffer. After washing, 100 µl of the biotinylated peptides for N-terminal CT-

proET-1 (ppET-1[169 – 179]) or C-terminal CT-proET-1 (ppET-1[204 – 212]) (see section 

2.2.4.1.3) diluted to 200 pmol/ml were incubated for 4 h at room temperature (N.B. 

previous studies had established that 10 pmol/well gives maximum signal with this 

streptavidin-biotin-peptide-IgG complex). Plates were washed 3 times and incubated for 

24 h with 100 µl antisera dilutions prepared in assay buffer. Plates were washed 5 times 



Chapter 2  General materials & methods 

 

 

79 

 

and end-point detection was carried out by incubating plates for 1 h with rabbit anti-

sheep IgG-HRP conjugate, followed by 5 washes before incubation with 

chemiluminescence substrate.  

 

2.2.4.6  Affinity purification of IgG  

2.2.4.6.1 Coupling of N-terminal peptide of CT-proET-1 to Agarose 

1. 8.2 mg of SSEEHLRQTRSC (4.3 µmol pure peptide) was dissolved in 2 ml of 5 

mM EDTA. An aliquot (10 µl, 21.5 nmol) was retained for HPLC 

characterisation and for comparative estimation of coupling efficiency. 

2. SulfoLink coupling resin (10 ml, 50% slurry = 5 ml gel bed volume) was 

transferred to a column and washed three times with 5 ml reaction buffer (0.1 M 

Tris-HCl pH 8.5 containing 10 mM EDTA). The gel was vacuum dried after 

washing, transferred to a 15 ml tube, and then 2 ml peptide and 5 ml reaction 

buffer was added to react for 1 h at room temperature.  

3. The reaction mix (11 ml including gel) was allowed to settle for 10 min. 200 µl 

of the gel supernatant was transferred to a microcentrifuge tube and centrifuged 

for 3 min at 14000 rpm to remove all fine gel particles. A sample [110 µl (43 

nmol) – equivalent to twice the retained reference sample in step 1] of the 

resultant supernatant was diluted in 500 µl 0.2% formic acid, the pH adjusted to 

3.0 by adding formic acid (98 – 100%), and subjected to HPLC with detection 

by absorbance (A215; column: ACE C18, 5 µm, 4.6 x 250 mm; eluted with a 

gradient of 8% to 24% CH3CN containing 0.1% TFA over 40 min at a flow rate 

of 1 ml/min). The reaction efficiency was determined by comparison of the peak 

area with that obtained with initial sample of reconstituted peptide measured at 

A215. This showed >95% peptide had been coupled to the gel.  

4. Unreacted iodo-groups on the SulfoLink gel were blocked by adding 10 mM 

mercaptoethanol, and reacting at room temperature for 1 h.  

5. The column was washed with 3 – 4 column volumes of sterile-filtered PBS. 

Vacuum dried gel was transferred to a new tube and stored in 10 ml of PBS 

containing 0.02% azide at 4°C until affinity purification of IgG. 
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2.2.4.6.2 Coupling of C-terminal peptide of CT-proET-1 to Sepharose 

1. CNBr Sepharose was prepared according to the protocol described in Corder, 

2002. Briefly, 1.3 g CNBr Sepharose was weighed in a sintered glass funnel with 

a 40 µm porous filter. 1 mM HCl was added to swell the gel, and it was then 

rinsed four times with 50 ml of 1 mM HCl. Using a clean spatula, the swollen 

gel was immediately transferred to a 15 ml Falcon tube. 

2. 9.2 mg of KYVTHNRAHW was dissolved in 1 ml of H2O (~5 µmol pure 

peptide). A sample (1 µl, 5 nmol) was retained for HPLC. The remaining peptide 

solution was transferred to the swollen gel and 6 ml of 0.2 M NaHCO3 containing 

0.5 M NaCl, pH 8.0 was added to initiate the reaction. The gel and the peptide 

were mixed on a roller-bed mixer at room temperature for 2 h.  

3. The reaction efficiency of the 10 ml reaction mix (0.5 nmol/µl) was determined 

as described above (step 3) by HPLC with monitoring of peptide peaks at A280. 

No unreacted peptide was detected, indicating 100% coupling efficiency. 

4. After coupling of the peptide, the gel was blocked by the addition of 

ethanolamine-HCl, pH 8.0, to 50 mM, and then incubated at room temperature 

for 1 h to react.  

5. The gel was poured into sintered glass funnel and the tube was washed with 2 

mM HCl, and followed by sterile PBS as described in the previous section (step 

5). The gel was stored in PBS with 0.02% azide until used for purification of 

IgG. 
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2.2.4.6.3 Sodium Sulphate Precipitation 

Antisera (2 x 40 ml) were measured into 50 ml Falcon tubes. Anhydrous Na2SO4 was 

added to produce an 18% weight per volume (w/v) solution (e.g. 1.8 g per 10 ml 

antiserum). The tube was inverted immediately several times and then mixed on a roller-

bed mixer until all Na2SO4 had dissolved. The serum IgG fraction was precipitated by 

centrifugation at 2000 g for 15 min at 20°C. The supernatant was aspirated and the IgG 

precipitate was reconstituted in PBS to the same volume as the initial antiserum sample 

volume. Affinity purification of antisera protocol was adapted from the previously 

described methodologies (Corder, 2002).  

1. After precipitation of the antiserum with sodium sulphate as described above, the 

N-terminal CT-proET-1 Agarose and C-terminal CT-proET-1 Sepharose gels 

were gently mixed on a roller-bed mixer. Using a glass pipette, the gels were 

transferred to columns fitted with porous PTFE filters and washed three times 

with PBS. 

2. The reconstituted IgG solutions were passed through the corresponding peptide 

gel. The gels were washed four times with 5 ml PBS, and then with 5 ml of 0.5 

M NaCl to remove non-specifically bound proteins. 

3. Specifically bound IgG was eluted into tubes containing 300 µl 0.8 M NaHCO3 

per tube for neutralisation with the following elution conditions: (A) 3 ml 50 mM 

NaCH3COO adjusted to pH 4.5 with acetic acid; (B) 2 ml 50 mM NaCH3COO 

adjusted to pH 4.0 with formic acid; (C) 2 ml 50 mM NaCH3COO adjusted to 

pH 3.5 with formic acid; (D) 2 ml C + 1 M Urea; (E) 2 ml C + 2 M Urea; (F) 2 

ml C + 4 M Urea; (G) 2 ml C + 8 M Urea; (H) 2 ml C + 8 M Urea; (I) 2 ml C + 

2 M G-HCl + 10% CH3CN; (J) 2 ml C + 4 M G-HCl + 10% CH3CN; (K) 2 ml 

C + 6 M G-HCl + 10% CH3CN; (L) 2 ml C + 6 M G-HCl + 10% CH3CN; (M) 2 

ml C + 6 M G-HCl + 10% CH3CN; (N) 2 ml C + 6 M G-HCl + 10% CH3CN; 

(O) 2 ml C + 6 M G-HCl + 10% CH3CN; (P) 2 ml C + 6 M G-HCl + 10% 

CH3CN; (Q) 2 ml C + 6 M G-HCl + 10% CH3CN. 

4. 50 µl PBS containing 1% azide was added to each tube as a preservative and 

mixed gently. 

5. Furthermore, 100 µl of each eluate was diluted in tubes containing 1 ml PBS with 

azide for evaluation of protein/IgG concentration using Bio-Rad protein assay 

(section 2.2.5) and antigen binding.  
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6. The gels were washed with 40 ml of PBS with azide and stored at 4°C. 

7. Peak fractions from step 5 were pooled and concentrated using centrifugal filter 

devices (Amicon Ultra, MWt cut-off 100 kD), and then IgG was dialysed against 

0.9% NaCl using Float A-Lyser G2 (MWt cut-off 8 – 10 kD) to remove salts that 

could interfere with biotinylation of IgG or lead to denaturation of IgG on 

storage. 

8. IgG from dialysed fractions were tested as capture antibodies using sandwich 

ELISA methodology to ensure low non-specific binding and high assay 

sensitivity. Black, high-binding 96-well plates were coated with 100 µl/well of 

N-terminal or C-terminal CT-proET-1 specific IgG at 2 µg/ml and stored at 4°C. 

On the next day, plates were blocked with blocking buffer. CT-proET-1 synthetic 

standard was prepared in the range 25 – 200 fmol/ml. After washing, 50 µl of 

standards or SAB (to determine non-specific binding) were added to the N-

terminal CT-proET-1 (ppET-1[169 – 179]) specific IgG coated wells and mixed at 

room temperature for 30 min. 25 µl of rabbit anti ppET-1[204 – 212] biotinylated 

IgG (Table 2.2) was added to all wells and stored at 4°C. C-terminal CT-proET-

1 (ppET-1[204 – 212]) specific IgG was evaluated with 100 µl/well of the 

biotinylated-peptide antigen at 10 pmol/ml (section 2.2.4.5). The plate was 

mixed at room temperature for 30 min and stored at 4°C for end-point detection 

on the following day. 

 

2.2.5  Bio-Rad protein assay 

The protein concentration of the affinity purified fractions was measured from an IgG 

standard curve as a representative protein solution. IgG was prepared at 1 mg/ml in PBS 

and the standard curve (concentration range 7.8 – 500 µg/ml) was prepared by 1:2 serial 

dilutions in PBS. Stock solution of Bio-Rad reagent was prepared at 1:4 dilution of dye 

reagent concentrate in uhq-H2O, which was then filtered using a 0.2 µm filter paper and 

stored at 4°C. In a clear 96-well plate (Sterlin), 50 µl of standards or samples were added 

in duplicate and 200 µl of the 1:5 diluted (in uhq-H2O) Bio-Rad reagent was added to 

all wells. The plate was incubated at room temperature mixing on orbital mixer for 5 

min. The absorbance was then measured at 595 nm using a spectrophotometer (Infinite, 

TECAN). 
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3.1  INTRODUCTION 

Endothelin-1 is produced from the inactive intermediate big ET-1 by the hydrolysis of 

Trp21 – Val22 bond of big ET-1. This process is catalysed by the physiological endothelin 

converting enzyme (ECE) (Figure 3.1). The first clear evidence of this was provided by 

inhibition of ET-1 release with high concentrations of a metallopeptidase inhibitor 

phosphoramidon. This resulted in accumulation of the big ET-1 (Ikegawa et al., 1990). 

Similarly, in circulation and in isolated vessels, phosphoramidon inhibited the 

conversion of big ET-1 to ET-1 (McMahon et al., 1991; Corder & Vane, 1995; Battistini 

et al., 1995). Along with ET-1 a biologically inactive C-terminal fragment (CTF) of big 

ET-1 is also produced. Phosphoramidon reduced immunoreactive-ET-1 and CTF of big 

ET-1 (22 – 39) (Ikegawa et al., 1990). This proteolytic step can occur in the extracellular 

medium and intracellularly in the secretory vesicles prior to its release (Corder et al., 

1995b; Harrison et al., 1995). Therefore, big ET-1 can be secreted alone or co-secreted 

with ET-1 (Plumpton et al., 1994). 

Endothelial (EA.hy 926) and epithelial (A549) cells were previously used to study the 

intracellular biosynthesis of ET-1 as they express ET-1 mRNA and secrete big ET-1 and 

ET-1 into the culture media in a phosphoramidon-sensitive manner (Saijonmaa et al., 

1991; Corder et al., 1995b; Corder et al., 2002). A phosphoramidon-sensitive ECE 

activity with the characteristics of ECE-1 is localised predominantly in the plasma 

membrane of EA.hy 926 cells and A549 cells (Waxman et al., 1994; Corder et al., 

1995b; Deprez-Roy et al., 2000). However, localisation of ECE-1 to the membranes of 

Golgi apparatus indicated that ET-1 biosynthesis is primarily intracellular (Gui et al., 

1993; Xu et al., 1994) requiring much higher (~10-fold) concentrations of 

phosphoramidon than those required to inhibit membrane bound ECE-1 (Isaka et al., 

2003; Corder et al., 1995b). Thus, phosphoramidon is a more potent inhibitor of 

exogenous big ET-1 cleavage than the endogenous big ET-1 (Corder et al., 1993a). 

EA.hy 926 cells express high NEP-24.11 activity (Waxman et al., 1994), which was 

shown to degrade ET-1 in vitro (Vijayaraghavan et al., 1990) and in vivo (Abassi et al., 

1992). At lower levels (1 µg/ml), NEP-24.11 resulted in the degradation of secreted ET-

1, while at higher levels it resulted in the total cleavage of ET-1 by the Trp21 – Val22 

bond of big ET-1 (Abassi et al., 1993a).  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Deprez-Roy%20I%22%5BAuthor%5D
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Inhibitory effects of phosphoramidon alone and in combination with thiorphan (NEP-

24.11 inhibitor) on the conversion of exogenous big ET-1 to endogenous ET-1 synthesis 

was studied in human cells using HUVEC, EA.hy 926 and A549 cells (Corder et al., 

1995b). While thiorphan (1 µM) had no inhibitory effect on the ECE activity of BAEC, 

in EA.hy 926 cells thiorphan reduced ECE activity by 30% and when used in the 

presence of low concentrations of phosphoramidon (up to 0.1 µM), the ECE activity was 

reduced by 63% (Corder et al., 1995b). In comparison to EA.hy 926 cells, approximately 

25% of the ECE activity of HUVEC was attributed to NEP-24.11. Immunoblot analysis 

identified ECE-1 in the membrane fraction of A549 cells (Deprez-Roy et al., 2000). 

However, in contrast to EA.hy 926 cells, ECE-1b/c, but not NEP-24.11 is involved in 

ET-1 production in A549 cells (Aubert et al., 1998). 

Although ECE-1 and NEP-24.11 have similar structures (see Table 1.2) (Malfroy et al., 

1988) thiorphan, a specific inhibitor of NEP-24.11 has no inhibitory effect on ECE-1 

activity. Therefore, it was suggested that NEP-24.11 is unlikely to function as a 

physiologically relevant ECE-1 activity (Abassi et al., 1993a; Murphy et al., 1994). 

Processing of proET-1 at double basic amino acid residues has the potential to produce 

further peptides that are co-released with ET-1, and which may serve as alternative 

biomarkers of ET-1 synthesis, or have biological actions that complement those of ET-

1. Pilot studies have identified three proET-1 peptides, namely NT-proET-1 (ppET-1[18 

– 50]), Endothelin-like Domain Peptide – ELDP (ppET-1[93 – 166]), and CT-proET-1 ppET-

1[169 – 212] (see description of assays in Chapter 2 and Figure 3.1). These proET-1 peptides 

were shown to be present in conditioned media samples from EA.hy 926 and A549 cell 

lines using specific immunoassays. However, the effects on regulation of their synthesis 

with protease inhibitors have not been investigated. Therefore, the goal of this chapter 

was to examine the effects of phosphoramidon on the synthesis of NT-proET-1, ELDP 

and CT-proET-1. In addition, the effects of other protease inhibitors were also 

investigated. Synthetic peptides corresponding to the identified peptides NT-proET-1, 

ELDP and CT-proET-1 were chemically synthesised and immunoassays were used to 

measure the release of these peptides in the conditioned media samples of EA.hy 926 

and A549 cells. 
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Figure 3.1: Scheme for ppET-1 processing and antibody recognition sites for the 

detection of proET-1 peptides: NT-proET-1, ELDP and CT-proET-1.  Specific 

antisera was raised for NT-proET-1 (ppET-1[18 – 50]); Endothelin-like Domain Peptide–

ELDP (ppET-1[93 – 166]); and CT-proET-1 (ppET-1[169 – 212]). Synthetic peptides 

corresponding to the identified peptides were chemically synthesised. 
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3.2  METHODS  

3.2.1  Cell culture 

EA.hy 926 cells were grown to confluence in T75 cm2 flasks in Dulbecco’s modified 

Eagle medium (DMEM) supplemented with 4500 mg D-glucose/L with 10% (v/v) foetal 

calf serum, 2% HAT medium supplement (50x) (100 μM sodium hypoxanthine, 0.4 μM 

aminopterin, and 16 μM thymidine) and incubated at 37°C in a humidified CO2 

incubator (8% CO2, 92% air). HAT supplement was also routinely added to DMEM for 

all incubations with EA.hy 926 cells. A549 cells were cultured under the same 

conditions, except that HAT supplement was excluded from the DMEM. 

Subcultures were prepared by treating confluent flasks using 10% trypsin prepared in 

warm PBS and seeded into 2 x 24-well plates (2 cm2 growth area per well/ 2.5 x 105 

cells per cm2) in the relevant culture medium containing 10% FCS to give approximately 

70 – 80% confluence on the following day. On the next day, protease inhibitors were 

prepared as described in the next section and incubated on the confluent cells over 6 h 

and 24 h as described in section 3.2.3. Experiments were performed in DMEM without 

serum or penicillin/streptomycin. 

 

3.2.2  Protease inhibitor study 

The protease inhibitors used to study the stability of ET-1 and proET-1 peptides released 

from EA.hy 926 and A549 cells included phosphoramidon and an inhibitor cocktail that 

was composed of 1000 µM bacitracin, 10 µM chymostatin, 10 µM leupeptin, and 1 µM 

pepstatin A (Table 3.1). Phosphoramidon was prepared as a stock concentration of 100 

mM in PBS.  Stock solutions of protease inhibitors were prepared by reconstituting 

leupeptin at 100 mM in uhq-H2O, chymostatin at 100 mM in DMSO and pepstatin A at 

10 mM in DMSO. Furthermore, 1:10 interim dilutions of the stocks were made up in the 

same solutions and they were stored at -80°C. Bacitracin was prepared fresh on the day 

of experiment (MWt = 1,422.7) in DMEM. Confluent cells were initially washed with 

serum-free DMEM and incubated with protease inhibitors (phosphoramidon or inhibitor 

cocktail) in DMEM without FCS. 
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Table 3.1:  The protease inhibitors used in inhibitor cocktail. 

Protease Inhibitor Protease Family 

Targeted 

Inhibitor 

Type 

Concentration 

(µM) 

Bacitracin Proline endopeptidases Reversible 1000 

Chymostatin 
Chymotrypsin-like 

serine/(cysteine) 
Reversible 10 

Leupeptin 
Typsin-like serine and 

some cysteine proteases 
Reversible 10 

Pepstatin A Aspartic acid proteases Reversible 1 

Phosphoramidon Metalloprotease Reversible 1 – 1000 

 

3.2.3  Cell culture incubations with protease inhibitors 

Before the incubation period, confluent cells were rinsed with warmed DMEM (500 

µl/well) and then treated with 300 µl/well of the conditions containing protease 

inhibitor(s). Initial experiments investigated the effect of varying concentrations of 

phosphoramidon from 1 – 1000 µM on the intracellular processing of ET-1 and proET-

1 peptides. The effect of inhibitor cocktail was studied using 10 µM leupeptin, 10 µM 

chymostatin, 1 µM pepstatin A, and 1000 µM bacitracin. Cells were treated in triplicate 

with each test condition using 2 x 24-well plates and incubated in a 37°C humidified cell 

culture incubator with 8% CO2 for 6 h and 24 h.  

 

3.2.3.1  Collection of conditioned media and treatment before immunoassay 

After 6 h and 24 h incubation periods, 270 µl of the conditioned media/well were 

collected into 1.5 ml microcentrifuge tubes. Samples were neutralised by adding 25 µl 

0.295 M HCl (prepared from a 100 M stock in fume hood) and heat-treated at 80°C for 

10 min with caps open. After cooling, 50 µl N-SAB (Chapter 2, section 2.2.2.1) was 

added, re-capped and vortexed prior to storing at -20°C for subsequent immunoassay. 

The remaining medium was aspirated from the 24-well plates and the viability of cells 

was investigated by an MTT assay as described in section 3.2.4.  
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3.2.4  Cell viability (MTT) assay 

Endothelial cell viability was evaluated using the 3-[4, 5-dimethyliazol-2-yl]-2, 5-

diphenyltetrazolium bromide (MTT) colorimetric assay. MTT indicates mitochondrial 

respiration by quantifying cell-dependent mitochondrial dehydrogenase activity. This 

assay assesses whether any protease inhibitors have cytotoxic effects on endothelial 

cells. A stock solution of MTT (M2003, Sigma) was prepared at 2 mg/ml in DMEM 

containing 10 mM antibiotics (100 Units/ml penicillin and 100 µg/ml streptomycin) and 

25 mM HEPES.  

On the day of assay, MTT was diluted to 0.4 mg/ml in DMEM, and 300 l/well (24-

well plate) was added immediately after aspiration of conditioned media residues. MTT 

was incubated with cells for 1 h at 37°C. The medium was then aspirated and the cells 

were solubilised in 300 µl of dimethyl sulfoxide (DMSO). The absorbance was 

determined at 550 nm using a 96-well plate reader (Infinite, TECAN). 

 

3.2.5 Immunoassays of ET-1, big ET-1 and proendothelin-1 

peptides  

Immunoassays of ET-1 and proET-1 peptides are described in detail in Chapter 2 

sections 2.2.2.2 and 2.2.2.3, respectively. Primary amino acid sequences in which these 

specific sandwich immunoassays were developed are shown in Chapter 2, Table 2.2. 

Briefly, antibody recognition sites used for the detection of ppET-1 derived peptides 

were illustrated in Figure 3.1. 

 

3.2.6  Data handling and statistical evaluation 

The effect of protease inhibitors on ET-1 and proET-1 peptide fragments were expressed 

as fmol/ml released per 6 h and 24 h. Error bars in the graphs are shown for mean and 

standard error of mean (s.e.m). Statistical analyses were performed using one-way 

ANOVA with Fisher`s protected least significant difference (PLSD) as a post-hoc test. 

In the figures and tables P values less than 0.001 are indicated by ***, P values from 

0.001 to 0.01 are indicated by **, P values from 0.01 to 0.05 are indicated by *. P values 

greater than 0.05 are non-significant and indicated by ns. 
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3.3  RESULTS  

Human endothelial EA.hy 926 and epithelial A549 cell lines are well established 

systems for studying ET-1 biosynthesis. Phosphoramidon is a metalloprotease inhibitor 

that inhibits ECE and NEP-24.11. This produces a concentration dependent inhibition 

of the conversion of big ET-1 to ET-1. To investigate the stability of secreted proET-1 

peptides, EA.hy 926 and A549 cells were incubated with phosphoramidon alone and in 

combination with inhibitor cocktail, which is composed of endopeptidase inhibitors at 

10 µM leupeptin, 10 µM chymostatin, 1 µM pepstatin A, and 1 mM bacitracin.  

 

3.3.1  EA.hy 926 conditioned medium  

3.3.1.1 Effect of phosphoramidon on the biosynthesis of ET-1 and big ET-1  

EA.hy 926 cells were incubated for 6 h and 24 h with increasing concentrations of 

phosphoramidon from 1 – 1000 µM. Phosphoramidon inhibited endogenous ET-1 

production. This was biphasic with a dramatic increase in ET-1 release at low 

concentrations (1 – 10 µM) and decreased release at higher concentrations (>10 µM) 

(Figure 3.2).   

In comparison to basal ET-1 release, incubation with 10 µM phosphoramidon over 6 h 

and 24 h increased the amount of ET-1 present in the medium by 1.4 and 4-fold, 

respectively. Incubation with phosphoramidon (1 – 10 µM) therefore, prevented 

degradation of released ET-1 into the culture medium by NEP-24.11. Therefore, the 

effect of increasing phosphoramidon concentrations on ET-1 synthesis was compared to 

ET-1 levels at 10 µM phosphoramidon (to reflect basal release without degradation). As 

a result, at concentrations above 10 µM phosphoramidon, ET-1 synthesis was inhibited 

to a similar degree over 6 h and 24 h incubation. As such, decrease in ET-1 release at 

1000 µM was 78% at 6 h and 80% at 24 h.  

Inhibition of ET-1 resulted in the accumulation of big ET-1 at phosphoramidon 

concentrations >30 µM (Figure 3.2). In the concentration range of 1 – 30 µM, 

phosphoramidon did not inhibit the processing of big ET-1 to ET-1. Big ET-1 levels 

accumulated more significantly after 24 h incubation with 1000 µM phosphoramidon, 

showing a 16-fold increase over 6 h and 24-fold increase over 24 h incubation. 
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Figure 3.2: Effect of phosphoramidon on ET-1 (  ) and big ET-1 (  ) released from 

EA.hy 926 cells over (A) 6 h and (B) 24 h. Cells were grown to confluence on 24-well 

plates and incubated for 6 h and 24 h in the presence of increasing concentrations of 

phosphoramidon (0 – 1000 µM). Mean results ± s.e.m, from two experiments with 

incubations in triplicates. * = P <0.05, ** = P <0.01, and *** = P <0.001 comparison 

of means to control by ANOVA with Fisher`s PLSD. Basal release of ET-1 with no 

phosphoramidon present was 68.8 ± 2.1 fmol/ml per 6 h and 95.6 ± 15.8 fmol/ml per 24 

h. Big ET-1 basal release was 6.8 ± 1.0 fmol/ml per 6 h and 14.4 ± 1.3 fmol/ml per 24 

h. 
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3.3.1.2  Effect of inhibitor cocktail on ET-1 and big ET-1 biosynthesis  

EA.hy 926 cells were incubated with 10 µM phosphoramidon, inhibitor cocktail [10 µM 

leupeptin, 10 µM chymostatin, 1 µM pepstatin A, and 1 mM bacitracin] and a 

combination of both treatments over 6 h and 24 h. The aim was to investigate the effect 

of inhibitor cocktail on ET-1 production from endogenous precursors by EA.hy 926 

cells. 

In comparison to basal ET-1 release, all three conditions significantly elevated ET-1 

release from the conditioned medium of EA.hy 926 cells (Figure 3.3A). Incubation with 

10 µM phosphoramidon over 24 h showed a 6 – 7-fold increase in ET-1 release. 

Incubation of EA.hy 926 cells with 10 µM phosphoramidon in combination with 

inhibitor cocktail increased ET-1 release by approximately 4.6-fold, in which the effect 

of inhibitor cocktail alone resulted in a 3.7-fold increase. 

Basal release of big ET-1 over 6 h incubation (6.8 fmol/ml) was increased by 

approximately 2.1-fold over 24 h incubation (14.4 fmol/ml) (Figure 3.3B). On the other 

hand, basal release of ET-1 was only increased by approximately 1.4-fold over 24 h 

(Figure 3.3A). This suggested that big ET-1 accumulates over time while ET-1 is being 

degraded. 
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Figure 3.3: Effect of inhibitor cocktail on (A) ET-1 and (B) big ET-1 in the 

conditioned medium of EA.hy 926. Cells were grown to confluence on 24-well plates 

and incubated for 6 h and 24 h in the presence of 10 µM phosphoramidon, inhibitor 

cocktail and a combination of 10 µM phosphoramidon with inhibitor cocktail. Mean 

results ± s.e.m from two experiments with incubations in triplicates were compared to 

control by ANOVA with Fisher`s PLSD, * = P <0.05, ** = P <0.01, and *** = P 

<0.001. Basal release of ET-1 (n = 6) immunoreactivity measured in conditioned 

medium samples from EA.hy 926 was 68.8 fmol/ml per 6 h and 95.6 fmol/ml per 24 h.  

Basal release of big ET-1 was 6.8 fmol/ml per 6 h and 14.4 fmol/ml per 24 h. 
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3.3.2  A549 conditioned medium  

3.3.2.1 Effect of phosphoramidon and inhibitor cocktail on ET-1 and big ET-

1 biosynthesis 

Unlike the biphasic pattern of ET-1 release in EA.hy 926 cells, phosphoramidon 

produced a concentration-dependent inhibition of endogenous synthesis of ET-1 and an 

enhanced accumulation of big ET-1 in the conditioned medium of A549 cells (Figure 

3.4A). Incubation of A549 medium with 1000 µM phosphoramidon inhibited ET-1 

synthesis by 84% over 24 h (24 h EC50 for ET-1 = 50.9 ± 4.8 µM phosphoramidon). 

Inhibition of ET-1 synthesis was marked, even for the 6 h incubation, with 1000 µM of 

phosphoramidon treatment reducing ET-1 accumulation in the medium by 92% (data 

not shown). 

 

Compared to phosphoramidon alone the combination with inhibitor cocktail produced a 

more effective inhibition of ET-1 accumulation. The release of ET-1 was reduced by 

28% with 10 µM phosphoramidon over 24 h incubation. Phosphoramidon (10 µM) in 

presence of inhibitor cocktail inhibited the release of ET-1 by 57%, which shows a 2-

fold increase in the amount of ET-1 inhibition over 24 h. Although ET-1 released into 

the conditioned medium of A549 cells was inhibited more effectively with 

phosphoramidon in combination with inhibitor cocktail, big ET-1 accumulated to a 

lesser extent with this condition (Figure 3.4B). As such, the levels of big ET-1 

accumulated with 10 µM phosphoramidon in presence of inhibitor cocktail (41.1 

fmol/ml) were 43% less than that of 10 µM phosphoramidon alone (72.1 fmol/ml). In 

addition, big ET-1 released into the conditioned medium after 24 h incubation with 1000 

µM phosphoramidon was 1.7-fold less than the big ET-1 levels accumulated in EA.hy 

926 cells (199 fmol/ml for A549 and 343 fmol/ml for EA.hy 926 cells). 

 

Basal release of ET-1 and big ET-1 from the conditioned medium of A549 cells over 6 

h incubation was 102.3 and 8.3 fmol/ml (data not shown), while over 24 h incubation 

the levels were 557 fmol/ml and 20.1 fmol/ml, respectively. Basal ET-1 release from the 

conditioned medium of A549 cells was at a greater magnitude (5 – 6-fold) than that of 

EA.hy 926 cells (95.6 fmol/ml over 24 h incubation).  
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Figure 3.4: Stability of ET-1 (  ) and big ET-1(  ) released from A549 cells incubated 

with (A) phosphoramidon and (B) phosphoramidon in combination with inhibitor 

cocktail over 24 h. Cells were grown to confluence on 24-well plates and incubated for 

24 h in the presence of increasing concentrations of phosphoramidon (10 – 1000 µM) 

alone and in presence of inhibitor cocktail. Mean ± s.e.m, from two experiments 

performed in duplicates were expressed as fmol/ml. * = P <0.05, ** = P <0.01, and *** 

= P <0.001 comparison of means to basal release of ET-1 by ANOVA. Basal release of 

ET-1 and big ET-1 was 557 fmol/ml per 24 h and 20.1 fmol/ml per 24 h, respectively.  
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3.3.3 Stability of proendothelin-1 peptides (proET-1): NT-

proET-1, ELDP and CT-proET-1 released from EA.hy 926 

cells 

Firstly, EA.hy 926 cells were incubated with increasing concentrations of 

phosphoramidon   (1 – 1000 µM) over 6 h and 24 h. ProET-1 peptides were measured 

by immunoassays for NT-proET-1 (ppET-1[18 – 50]), ELDP (ppET-1[93 – 166]) and CT-

proET-1 (ppET-1[169 – 212]). Release of proET-1 peptides were unaffected by 

phosphoramidon, indicating that endogenously released proET-1 peptides are fairly 

stable in the conditioned medium of EA.hy 926 cells (Table 3.2).  

 

Table 3.2: Effect of phosphoramidon on NT-proET-1, ELDP and CT-proET-1 in the 

conditioned medium of EA.hy 926. Cells were grown to confluence on 24-well plates 

and incubated for 24 h in the presence of increasing concentrations of phosphoramidon 

(0 – 1000 µM). Mean results ± s.e.m (n = 3) were expressed as a percentage of the 

control values and each experiment was conditioned in triplicates. Basal release (n = 

5) of NT-proET-1, ELDP and CT-proET-1 was 294 fmol/ml, 1389 fmol/ml, and 334 

fmol/ml over 24 h incubation. 

Phosphoramidon 

(µM) 

EA.hy 926,  24 h conditioned medium (% of control) 

NT-proET-1 ELDP CT-proET-1 

0 100 ± 2.9 100 ± 8.7 100 ± 5.1 

1  92.0 ± 1.7 107.0 ± 6.6 102.9 ± 3.9 

3  95.8 ± 1.6 114.4 ± 6.7 107.1 ± 6.7 

10  91.9 ± 2.0 115.8 ± 8.9 104.9 ± 7.0 

30  95.2 ± 1.9 105.3 ± 6.7 100.1 ± 8.8 

100 103 ± 6.4 107.5 ± 8.3 109.9 ± 10.5 

300  96.0 ± 3.5 106.7 ± 8.0 111.5 ± 8.3 

1000  87.9 ± 1.7 103.1 ± 10.2 104.9 ± 8.6 
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Secondly, Table 3.3 summarises the effect of inhibitor cocktail with and without 10 µM 

phosphoramidon. Incubation with inhibitor cocktail did not show a significant effect 

over 6 h except slight inhibition of NT-proET-1 released into the conditioned medium 

of EA.hy 926 cells (data not shown). However, proET-1 peptides were inhibited to a 

greater extent over 24 h. This inhibition was greatest for NT-proET-1, followed by 

ELDP and CT-proET-1 at approximately 28% (P <0.001), 23% (P <0.001) and 9%, 

respectively. Similarly, 10 µM phosphoramidon in combination with inhibitor cocktail 

inhibited NT-proET-1 and ELDP release at a similar magnitude to that of inhibitor 

cocktail alone. However, CT-proET-1 levels were unaffected by 10 µM 

phosphoramidon with inhibitor cocktail and the levels were relatively close to control. 

Interestingly, proET-1 peptides accumulated slightly with 10 µM phosphoramidon, 

which increased NT-proET-1, ELDP and CT-proET-1 levels by 8% (P = 0.02), 5% and 

11%, respectively.  

Table 3.3: Effect of phosphoramidon and inhibitor cocktail on NT-proET-1, ELDP 

and CT-proET-1 in the conditioned medium of EA.hy 926. Cells were grown to 

confluence on 24-well plates and incubated for 24 h in the presence of treatment 

conditions (10 µM phosphoramidon, inhibitor cocktail, and a combination of 10 µM 

phosphoramidon and inhibitor cocktail). Mean results ± s.e.m from two experiments that 

were conditioned in triplicates was expressed as a percentage of the control values. * = 

P <0.05 comparison of means to control by ANOVA.  

 

Although some of these reductions reached significance, the synthesis or degradation of 

proET-1 peptides was largely unaffected with either of incubations with 

phosphoramidon, inhibitor cocktail with and without phosphoramidon suggesting that 

they are fairly stable in the conditioned medium released from EA.hy 926 cells.  

EA.hy 926, 24 h conditioned  

medium  (% of control) 
NT-proET-1 ELDP 

 

CT-proET-1 

 

Control, (DMEM+ only) 100 ± 1.0 100 ± 1.1 100 ± 1.1 

10 µM Phosphoramidon 107.5 ± 3.1* 104.5 ± 4.1 110.8 ± 1.6 

Inhibitor cocktail 72.3 ± 3.3* 76.7 ± 2.2* 90.9 ± 2.1 

10 µM Phosphoramidon 

and inhibitor cocktail 
72.3 ± 1.4* 81 ± 3.2* 99.7 ± 4.1 
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3.3.4 Stability of proET-1 peptides: NT-proET-1, ELDP, and 

CT-proET-1 released from A549 cells 

Once again, incubation with phosphoramidon had no effect on proET-1 peptide 

synthesis (Table 3.4). This in turn suggested that proET-1 peptides released in the 

conditioned media of both EA.hy 926 and A549 cells were fairly stable. Although 

increasing phosphoramidon concentrations (10 – 1000 µM) did not show a concentration 

dependent proET-1 inhibition, CT-proET-1 levels slightly accumulated at 10 µM 

phosphoramidon by 4% and 15% at 1000 µM over 24 h (Table 3.4).   

Table 3.4: Effect of phosphoramidon on NT-proET-1, ELDP and CT-proET-1 in the 

conditioned medium of A549 cells. Cells were grown to confluence on 24-well plates 

and incubated for 24 h in the presence of increasing concentrations of phosphoramidon. 

Mean results ± s.e.m from two experiments conditioned in duplicates were expressed as 

a percentage of the control values. Basal release (n = 4) of NT-proET-1, ELDP and CT-

proET-1 was 555 fmol/ml, 1212 fmol/ml, and 279 fmol/ml over 24 h incubation. 

Phosphoramidon (µM) 
A549, 24 h conditioned medium (% of control) 

NT-proET-1 ELDP CT-proET-1 

0 100 ± 1.2 100 ± 1.9 100 ± 3.5 

10  95.8 ± 1.6 98.5 ± 2.7 103.9 ± 3.2 

30  95.9 ± 0.7 97.9 ± 0.6 101.2 ± 3.0 

100  87.9 ± 2.4 93.2 ± 4.5 102.2 ± 2.5 

300  95.5 ± 4.2 103 ± 4.4 108.7 ± 4.5 

1000  95.8 ± 2.9 100.1 ± 3.6 115.1 ± 1.2 

 

On the other hand, incubation with inhibitor cocktail in the presence of increasing 

concentrations of phosphoramidon reduced the release of proET-1 peptide fragments. 

At 6 h incubation, while NT-proET-1 and ELDP were slightly inhibited, CT-proET-1 

levels accumulated by 50% with 10 µM phosphoramidon with inhibitor cocktail (data 
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not shown). When A549 cells were incubated with this treatment over 24 h, accumulated 

CT-proET-1 was inhibited by 14% (Table 3.5). Increasing phosphoramidon 

concentrations did not inhibit the release of CT-proET-1. In comparison, NT-proET-1 

and ELDP were inhibited more significantly by 62% and 41%, respectively.  

 

Table 3.5: Effect of phosphoramidon and inhibitor cocktail on NT-proET-1, ELDP 

and CT-proET-1 in the conditioned medium of A549 cells. Cells were grown to 

confluence on 24-well plates and incubated for 24 h in the presence of increasing 

concentration of phosphoramidon with inhibitor cocktail. Mean results ± s.e.m from two 

experiments conditioned in duplicates were expressed as a percentage of the control. * 

= P <0.05 comparison of means by ANOVA. 

Phosphoramidon             

and  inhibitor 

cocktail (µM) 

A549, 24 h conditioned medium (% of control) 

NT-proET-1 ELDP CT-proET-1 

0 
100 ± 1.3 100 ± 4.0 100 ± 1.8 

10  37.6 ± 3.8* 58.6 ± 0.4 86.1 ± 1.3 

30  41.7 ± 1.4* 62.0 ± 1.5 89.4 ± 4.7 

100  42.4 ± 3.4* 56.0 ± 0.1 94.7 ± 2.1 

300  43.2 ± 4.0* 59.0 ± 2.5 94.2 ± 2.5 

1000  43.9 ± 2.9* 62.8 ± 2.8 93.5 ± 3.5 

 

Although cytotoxic effects of phosphoramidon and inhibitor cocktail were not evaluated 

in this experiment, in other studies, incubation of A549 cells with inbibitor cocktail 

(without phosphoramidon) over 24 h resulted in 10% reduction in cell viability when 

compared to controls. The decreased proET-1 peptide levels observed with 

phosphoramidon with inhibitor cocktail may be explained by phosphoramidon 

increasing the cytotoxic effects of inhibitor cocktail. As a result, decrease in proET-1 

levels most likely resulted from cytotoxicity rather than inhibition of ECE activity or 

proET-1 processing.  
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 3.4  DISCUSSION 

The aim of this chapter was to characterise the biosynthesis of proET-1 derived peptides 

from EA.hy 926 and A549 cells. The processing of proET-1 occurs via constitutive 

secretory vesicles (Harrison et al., 1995) with release of ET-1 together with other 

fragments of proET-1 (Corder et al., 1995). Previously unpublished pilot studies by our 

laboratory had shown processing of proET-1 to three peptides: NT-proET-1, ELDP, and 

CT-proET-1 (Figure 3.1). However, their parallel secretion and stability had not been 

studied. The proteolytic processing of ET-1 and proET-1 peptide fragments was 

therefore studied by treating EA.hy 926 and A549 cells with phosphoramidon and 

inhibitor cocktail and quantifying their release in the conditioned media using specific 

immunoassays. Synthetic peptides used for NT-proET-1 (ppET-1[18 – 50]), ELDP (ppET-

1[93 – 166]) and CT-proET-1 (ppET-1[169 – 212]) peptides do not have any sequence 

homology with the corresponding sequences of proET-2 and proET-3. Therefore, the 

assays developed have the advantage of being specific for measuring increased proET-

1 synthesis.  

 

 

Endogenous ET-1 production appeared to be biphasic in EA.hy 926 cells. Lower 

concentrations of phosphoramidon increased ET-1 levels in the medium samples such 

that ET-1 release appeared highest at 10 µM showing a 3 – 4-fold increase over 24 h 

(Figure 3.3). EA.hy 926 cells express NEP-24.11, which at phosphoramidon 

concentrations <1 µM degrades secreted ET-1 (Abassi et al., 1993a). Phosphoramidon 

at 10 µM as well inhibiting ECE-1, it also inhibited NEP-24.11. It was shown to prevent 

degradation of ET-1 by NEP-24.11 at 1 µg/ml (Abassi et al., 1993a). The biphasic 

response of EA.hy 926 cells to phosphoramidon treatment was consistent with previous 

results (Corder et al., 1993b; Xu et al., 1994; Ahn et al., 1995). At higher concentrations 

of phosphoramidon there was a concentration-dependent inhibition of ET-1 release. 

Thus, at lower phosphoramidon concentrations ET-1 degradation is prevented then 

phosphoramidon starts to inhibit ET-1 synthesis at higher concentrations (>10 µM), 

when the stability of it was at its highest. Inhibition of ET-1 synthesis results in the 

accumulation of big ET-1 (Figure 3.2). In addition, phosphoramidon (0.01 – 2 mM) was 

shown to cause a biphasic alteration of ET-1 release in human aortic endothelial cells 

(Matsumura et al., 1995). Similarly, at lower concentrations increased ET-1 
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accumulation could be due to inhibition of ET-1 degradation by NEP-24.11. The 

inhibition of ET-1 synthesis at higher phosphoramidon concentrations was compared to 

10 µM phosphoramidon, at which the stability of ET-1 was at its highest. Therefore, 

when degradation of ET-1 was prevented in presence of 10 µM phosphoramidon, higher 

phosphoramidon concentrations (>10 µM) had a similar degree of inhibition of ET-1 

release over 6 h and 24 h. In addition, others also reported that higher phosphoramidon 

concentrations were required for intracellular inhibition of ECE (Corder, 2001; Woods 

et al., 1999). Thus, processing of big ET-1 is, at least in part, intracellular and occurs 

during vesicle transport from the trans-Golgi network to the cell surface by the 

constitutive secretory pathway (Harrison et al., 1995; Russel et al., 1998)). This was 

supported by findings showing localisation of ECE-1 in the membranes of intracellular 

organelles such as Golgi apparatus (Xu et al., 1994; Barnes et al., 1998; Russel et al., 

1998), where it could catalyse the endogenous synthesis of ET-1.  

 

In contrast to the biphasic behaviour of EA.hy 926 cells, phosphoramidon produced a 

concentration-dependent inhibition of ET-1 synthesis and accumulation of big ET-1 in 

the conditioned medium of A549 cells (Figure 3.4A).                  Consistent with 

phosphoramidon acting as an ECE inhibitor, inhibition of ET-1 synthesis in A549 cells 

has also been reported by Deprez-Roy et al., 2000. The absence of a biphasic response 

in this cell line is likely due to the absence of the confounding effects of NEP-24.11 

expression (Aubert et al., 1998). Phosphoramidon in combination with inhibitor cocktail 

was more effective in suppressing ET-1 levels over 24 h (Figure 3.4B). This suggested 

that inhibitor cocktail might increase the stability of phosphoramidon to have a greater 

effect in combination. This might be expected to result in a greater increase in big ET-1 

levels with phosphoramidon in combination with inhibitor cocktail. However, 

phosphoramidon alone produced a greater increase in big ET-1 in the conditioned 

medium of A549 cells (Figure 3.4A). Cell viability assay (MTT), however, showed 

cytotoxicity of inhibitor cocktail on A549 cells over 24 h incubation. Therefore, reduced 

release of ET-1 and proET-1 fragments is likely to result from cytotoxicity induced by 

inhibitor cocktail components rather than inhibition of ECE activity. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Deprez-Roy%20I%22%5BAuthor%5D
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Immunoassay results showed that unlike ET-1; NT-proET-1, ELDP and CT-proET-1 

released in the conditioned medium of EA.hy 926 cells were unaffected by 

phosphoramidon treatment (Table 3.2). This implies that at physiological concentrations 

none of these peptides are degraded by NEP-24.11. In addition, these data suggest that 

intracellular processing of proET-1 at double basic amino acids is not affected by 

inhibition of ECE by the metalloprotease inhibitor phosphoramidon. For the three 

proET-1 peptides investigated, only NT-proET-1 showed a slight reduction whereas 

ELDP and CT-proET-1 levels were increased slightly (neither were significant changes). 

Similarly in A549 cells, phosphoramidon had no significant effect on proET-1 peptide 

levels (Table 3.4). Thus, proET-1 peptides are fairly stable in the conditioned media 

samples. Hence, phosphoramidon selectively inhibits ECE without affecting proET-1 

processing at double basic residues.  

The inhibitor cocktail alone or in combination with phosphoramidon over 24 h 

suppressed proET-1 peptide levels slightly for EA.hy 926 cells when compared to 

treatment with phosphoramidon alone. However, there was a more marked reduction 

with A549 cells. In both cell lines a greater reduction with inhibitor cocktail was 

observed for NT-proET-1 and ELDP than CT-proET-1. These results indicate that for 

proET-1 peptides released into the conditioned media of EA.hy 926 and A549 cells CT-

proET-1 is the most stable, while NT-proET-1 is the least stable peptide. Therefore, 

these peptide fragments could be alternative and more stable markers of ET-1 synthesis. 

However, another point to note is that in the conditioned media samples ELDP had the 

highest concentration of any proET-1 peptide (EA.hy 926 cells 1389 fmol/ml after 24 h, 

without inhibitors present). ET-1 (for EA.hy 926 cells in the presence of 10 µM 

phosphoramidon), big ET-1 (EA.hy 926 cells in the presence of 1000 µM 

phosphoramidon), NT-proET-1 and CT-proET-1 were of the same order of magnitude 

(~340 fmol/ml after 24 h, without inhibitors present). Whereas, ELDP concentrations 

were approximately 4-fold higher. Peptide standard concentrations had been carefully 

matched by using HPLC quantification of synthetic peptides based on A280 absorbing 

residues (Trp and/or Tyr). Therefore other factors affecting stability or clearance (e.g. 

ETB-receptor clearance of ET-1) must come into play during these prolonged incubation 

periods.  

Thus it is important to define the optimal fragments of proET-1 for development of the 

most sensitive and specific diagnostic assay for inferring an elevated level of ET-1 
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synthesis, which could then be used to guide or optimise treatment. These proET-1 

peptide fragments have been identified only by antibody cross-reactivity. Therefore, a 

detailed characterisation with HPLC and identification using mass spectrometry was 

considered essential and these studies are described in Chapters 4 and 5, respectively. In 

addition, the stability of proET-1 peptides, both in vivo and ex vivo, and their diagnostic 

utility in patient samples were evaluated in Chapter 6.  

  



 

104 

 

 

 

 

 

 

CHAPTER 4 

Purification and characterisation of proendothelin-1 

fragments 
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4.1  INTRODUCTION 

Initial studies showed that three proET-1 fragments: NT-proET-1 (ppET-1[18 – 50]); 

Endothelin-Like Domain Peptide, ELDP (ppET-1[93 – 166]); and C-terminal fragment, 

CT-proET-1 (ppET-1[169 – 212]) were secreted from endothelial (EA.hy 926) and epithelial 

(A549) cells (Chapter 3). This chapter focuses on purification and characterisation of 

proET-1 peptides from conditioned media collected from EA.hy 926 and A549 cells. 

 

4.1.1  Types of separation methods  

Proteins can be fractionated using different types of chromatography techniques, which 

include gel filtration (size-exclusion chromatography), ion-exchange chromatography 

(IEC), hydrophobic interaction chromatography (HIC), and high performance liquid 

chromatography (HPLC). Separations are based on their physiochemical properties such 

as molecular size, net charge, and hydrophobicity, respectively (Burgess, 2008; Queiroz 

et al., 2001). Other protein fractionation methods such as ammonium sulphate 

[(NH4)2SO4] precipitation, isoelectric point focusing, dialysis and ultrafiltration can also 

be used for separation of proteins. Ammonium sulphate precipitation, IEC and HPLC 

were among the methods that were used for protein fractionation, purification and 

characterisation, respectively. These methods are briefly explained here. 

4.1.1.1  Ammonium sulphate precipitation 

The separation of proteins by ammonium sulphate precipitation is based on their 

solubility; proteins and other macromolecules become progressively less soluble and 

tend to aggregate and precipitate out of solution with increasing salt concentration. In 

other words proteins are “salted out”. Ammonium sulphate precipitation is often 

performed as a preliminary step in protein purification either to clean up samples by 

removal of large molecular weight (MWt) poorly soluble proteins, or to prepare an 

enriched protein precipitate for chromatography. Removal of ammonium sulphate may 

be necessary before proceeding to subsequent chromatography methods for purification. 

Dialysis can be used as a desalting or buffer exchange step, but this increases the sample 

volume due to an osmotic effect, and is only useful for peptides or proteins that exceed 

the MWt cut-off for the pore size of the dialysis membrane. 



Chapter 4 Purification and characterisation of proendothelin-1 fragments 

106 

 

4.1.1.2  Ion exchange chromatography (IEC) 

Separation of proteins by IEC is based on charge mainly through electrostatic 

interactions between charged amino acid side chains exposed to the surface of a protein 

that bind to oppositely charged ligands. Anion exchangers have basic functional groups, 

which can be either weak or strong.  Quaternary ammonium (Q) is an example of a 

strong anion exchanger with a functional group of –O-CH2N
+-(CH3)3. Negatively 

charged side chains (aspartic acid [pKa 3.86] and glutamic acid [pKa 4.25] both with 

carboxylic acid groups) of proteins bind to anion exchangers, while positively charged 

side chains (lysine [amino group, pKa 10.79], arginine [guanadino group, pKa 12.48] 

and histidine [imidazole group, pKa 6.04]) bind to cation exchangers that contain acidic 

functional groups. These functional groups can be either weak or strong. Carboxymethy 

(CM) is an example of a weak cation exchanger with a –O-CH2COO- functional group. 

A protein that has no net charge at a pH equivalent to its isoelectric point (pI) will not 

interact with a charged medium. However, at a pH above its pI, a protein will bind to an 

anion exchanger (positively charged ligand) and, at a pH below its pI, a protein will bind 

to a cation exchanger (negatively charged ligand).  Advantages of using IEC include:  

(1) Gradient elution with use of different salt and buffer compositions. 

(2) Application to a large volume of sample, which can be used as a concentration 

step, to recover proteins from a dilute solution. 

(3) High recoveries due to carrying out separations in smaller volumes. 

(4) High resolving power (Stanton, 2004).  

 

The disadvantages of IEC include: (1) application of sample to IEC matrix at a low ionic 

strength and controlled pH; (2) buffers used for elution may not be compatible with 

further chromatographic separations or assay systems [e.g. high salt concentrations (>1 

M)] or guanidine hydrochloride (G-HCl). Thus an additional buffer exchange method 

may be required (Stanton, 2004). 

 

4.1.1.3  High performance liquid chromatography (HPLC) 

HPLC is a well-established technique that is used for purification, isolation and analysis 

of biomolecules. Separations are based on hydrophobicity, size and protein 

conformation. A high degree of selectivity can be achieved by using various modes of 

separation including reverse-phase [hydrophobic], normal-phase [hydrophilic], ion 

exchange, and size exclusion. The surface chemistry of a column is an important 
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determinant of the sample retention. In particular, characterisation of proET-1 fragments 

was performed using a reverse-phase HPLC (RP-HPLC) system, where the surface 

chemistry was based on silanol groups on the silica surface and bonded with alkyl chains 

(C4 [butyl] or C18 [octadecylsilane]). In RP-HPLC, separation of intact proteins is 

usually performed with wide pore size and shorter hydrocarbon chains in order to 

minimise protein denaturation or irreversible binding of the protein to the column. 

Hydrophobic proteins with longer amino acid sequences are retained strongly by longer 

alkyl chains and may not elute efficiently, resulting in poor recoveries. Adsorbed peptide 

or protein is eluted by the addition of an organic solvent (such as acetonitrile (CH3CN) 

containing an ionic modifier like trifluoroacetic acid [TFA]) to the mobile phase where 

the gradient can be either isocratic or gradient elution. Adsorbed peptides are eluted in 

order of increasing molecular hydrophobicity. HPLC can be used for analysing protein 

identities such as identification of protein degradation products. For example, peptides 

that have an oxidised methionine residue can be separated from the native peptide. RP-

HPLC is a very powerful technique for the analysis of peptides and proteins because of 

a number of factors that include: 

(1) High resolving power with a wide selection of conditions and choice of columns 

enabling separation of closely related molecules as well as structurally distinct 

molecules based on differences in hydrophobicity or molecular conformation. 

(2) The experimental ease with which mobile phase can be manipulated for 

selectivity.  

(3) Stability of the sorbent materials under a wide range of mobile phase conditions. 

(4) Robust and efficient systems that generally provide high recoveries with good 

reproducibility of repeated separations carried out over a long time period 

(Aguilar, 2003; Aguilar & Hearn, 1996; Benedek, 2004).   

 

However, RP-HPLC can cause the irreversible denaturation of protein samples thereby 

reducing the potential recovery of material in a biologically active form (Aguilar, 2003).   
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4.1.2  Experimental and theoretical rationale 

The aim of this chapter was to purify proET-1 peptides (NT-proET-1, ELDP and CT-

proET-1) to obtain sufficient amount of each peptide for confirmation of their identities 

by mass spectrometry. Table 4.1 shows the amino acid composition, molecular weights 

and isoelectric points of proET-1 peptides. These parameters were considered in order 

to select methods and develop a strategy for purification. The workflow for proET-1 

characterisation is summarised in Figure 4.1 and the methodology is described here; 

(1) Ion exchange chromatography: Q-Sepharose anion exchanger was used to remove 

acidic peptides and proteins as well as phenol red present in the conditioned media 

(step 1). This was followed by using a carboxymethyl cation exchanger for the 

recovery of proET-1 fragments that had passed through the Q-Sepharose anion 

exchanger without absorption (step 2). Separation in these steps is based on 

differences in isoelectric points.   

(2) After elution from the cation exchanger, CM fractions with the highest ELDP and 

CT-proET-1 immunoreactivity (section 4.3.1) were subjected to solid-phase 

extraction (SPE) for buffer exchange and concentration of these peptides prior to 

characterisation by HPLC (step 3).  

(3) However, only low NT-proET-1 immunoreactivity was detected in the CM 

fractions, requiring additional steps for recovery of NT-proET-1. For EA.hy 926 

cells, NT-proET-1 was recovered from the unadsorbed Q-Sepharose sample and 

10 mM acetic acid washings by SPE (step 3). 

(4) For A549 cells, ammonium sulphate precipitation at 20% saturation was used to 

remove impurities that blocked the column systems, described above for EA.hy 

926 conditioned medium. SPE was used for buffer exchange and concentration for 

characterisation of proET-1 peptides from A549 cells by HPLC. 

(5) Characterisation of fractionated ppET-1 peptide products by HPLC required two 

steps: semi-preparative (step 4) and analytical HPLC separation (step 5). Presence 

of proET-1 fragments and identification of fractions with the highest levels of 

immunoreactivity were achieved with sandwich immunoassays for NT-proET-1 

(ppET-1[18 – 50]), ELDP (ppET-1[93 – 166]) and CT-proET-1 (ppET-1[169 – 212]). 
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Table 4.1: Amino acid composition, molecular weights and isoelectric points of proendothelin-1 peptide fragments. Amino acid numbering is 

based on the 212 amino acid sequence for ppET-1 (Bloch et al., 1989). Molecular weights and theoretical isoelectric points were calculated from 

the online server http://web.expasy.org/compute_pi/ and net charge at pH 7.0 was calculated from 

http://vitalonic.narod.ru/biochem/index_en.html. 

Proendothelin-1 

 

Amino acid composition of proET-1 sequences 

 

Molecular 

weight, MWt 

(avg): 

Isoelectric 

point, pI 

Net 

charge at 

pH 7.0 

Number of 

residues 

NT-proET-1 

ppET-1[18 – 50] 
APETAVLGAELSAVGENGGEKPTPSPPWRLRRS 3,430.8 6.3 0.0 33 

ELDP          

ppET-1[93 – 166] 

ALENLLPTKATDRENRCQCASQKDKKCWNFCQAGKEL

RAEDIMEKDWNNHKKGKDCSKLGKKCIYQQLVRGRKI 
8,642.1 9.4 8.1 74 

CT-proET-1 

ppET-1[169 – 212] 

SSEEHLRQTRSETMRNSVKSSFHDPKLKGKPSRERYVT

HNRAHW 
5,291.9 10.5 5.4 44 
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Anion exchange:        
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• Removal of phenol red and 

acidic proteins 

Cation exchange: 
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• Separation of basic peptides

SPE: C2 cartridges

• Desalting, buffer exchange and 
concentrating CM fractions containing 
highest ELDP and CT-proET-1 
immunoreactivity

• Recovery of the NT-proET-1 from 
unadsorbed Q-Sepharose sample

Semi-preparative HPLC

• Initial purification and
characterisation of proET-1
fragments

Characterisation of A549 

conditioned medium  

Step 1

Analytical  HPLC

• Further characterisation of 
proET-1 fragments

Step 2

Step 3

Step 4

Step 5

Purification of EA.hy 926 

conditioned medium  

SPE: C2 cartridges

• Desalting, buffer exchange and
concentrating

Given insufficient recovery of NT-

proET-1 from IEC and blockade of

the column systems; a different

characterisation approach was

adapted for the recovery of proET-1

peptides from the A549 conditioned

medium. For this purpose,

ammonium sulphate precipitation at

20% saturation was used to reduce

impurities from the A549 conditioned

medium prior to SPE and RP-HPLC

RP-HPLC

Mainly based on 
hydrophobicity

 

Figure 4.1: Approach to purification and characterisation of proET-1 peptides from 

the conditioned media from EA.hy 926 and A549 cells collected after 48 h incubation. 
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4.2  METHODS 

4.2.1 Collection of conditioned media for purification and 

characterisation of proET-1 peptides 

Cell culture growth conditions of EA.hy 926 and A549 cells are described in Chapter 3, 

section 3.2.1. Subcultures of these human cell lines were prepared in four T175 cm2 

flasks at a 1:3 seeding dilution with DMEM supplemented with 4500 mg D-glucose/L, 

25% 1 M HEPES and 1% penicillin/streptomycin (DMEM+) and 10% FCS (total 

volume 30 ml). This resulted in 90 – 100% confluent flasks after 4 – 5 days.  

To purify and characterise ppET-1 peptide fragments, conditioned media from EA.hy 

926 and A549 cells were collected from confluent cultures of these cell lines grown in 

four T175 cm2 flasks, which had been incubated for 48 h at 37°C in a humidified CO2 

incubator (8% CO2, 92% air). These flasks were washed with 30 ml of DMEM+ and 

incubated with media (25 ml media/flask), which consisted of DMEM supplemented 

with 4500 mg D-glucose/L without FCS, peptidase inhibitors or penicillin/streptomycin. 

After the incubation period, conditioned media was collected and centrifuged at 3000 g 

for 15 min at 4°C. The supernatant was then transferred into fresh tubes and stored at -

80°C.  

Conditioned medium (900 ml) collected from a total of 36 T175 cm2 flasks was used for 

purification of proET-1 peptides from EA.hy 926 cells. The characterisation 

methodology used for the conditioned medium collected from A549 cells differed from 

the EA.hy 926 cells (Figure 4.1) and it is described in section 4.2.5.  

 

4.2.2 Characterisation of proET-1 peptides from the EA.hy 926 

conditioned medium using ion exchange chromatography  

4.2.2.1  Q-Sepharose Fast Flow columns as a strong anion exchanger 

Q-Sepharose gel was gently swirled and the gel slurry (6 ml) was transferred into 10 ml 

columns fitted with PTFE filters on a vacuum manifold (Alltech, Fisher Scientific). A 

small vacuum was applied to allow the gel to settle.  The gel was rinsed with (10 ml) 10 

mM acetic acid (CH3COOH) before application of the sample. Conditioned medium 

(900 ml in DMEM) collected from EA.hy 926 cells after 48 h incubation was acidified 

with 1.25% CH3COOH and centrifuged at 3,000 rpm at 4°C for 15 min. Pellets were 
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reconstituted in SAB and retained for immunoassay to confirm that there was no loss of 

proET-1 peptides. Supernatants were loaded in equal volumes (30 ml) on to 10 pre-

equilibrated Q-Sepharose fast flow columns (6 ml swelled gel per column). The columns 

were then washed with 15 ml volumes of 10 mM CH3COOH. Material recovered in the 

washes was pooled with the unadsorbed sample and then loaded on to a CM column. Q-

Sepharose clean-up of EA.hy 926 cell medium followed by recovery of proET-1 

peptides by CM ion exchange was performed in 3 batches (300 ml media per batch). 

Acidic peptides adsorbed on to the Q-Sepharose column were eluted with 15 ml 1 M 

NaCl containing 0.1 M G-HCl and subjected to immunoassay to confirm absence of 

proET-1 peptides. 

 

4.2.2.2  Cation exchange using carboxymethyl column  

Each unadsorbed pooled sample and washings from the Q-Sepharose columns (~45 ml 

per column) were loaded onto CM Fractogel weak cation exchanger column (2.8 ml) 

that had been equilibrated with 40 ml of 10 mM CH3COOH. After loading samples, the 

columns were then rinsed with 10 ml of 10 mM CH3COOH. This was combined with 

the unadsorbed sample from CM column and retained to verify proET-1 peptides had 

been adsorbed on the CM column. The CM columns were then eluted with increasing 

concentrations of NaCl and G-HCl (3 ml per elution step):  

(1) 0.125 M NaCl,  

(2) 0.25 M NaCl,  

(3) 0.25 M NaCl + 0.1 M G-HCl,  

(4) 0.5 M NaCl + 0.1 M G-HCl,  

(5) 1 M NaCl + 0.1 M G-HCl 

(6 – 11) 1 M NaCl + 0.5 M G-HCl 

 

All fractions were assayed for NT-proET-1, ELDP and CT-proET-1 according to the 

immunoassay methodology described in Chapter 2, section 2.2.2.3  Tris-Base (0.55 M) 

was used to neutralise samples before assay (pH 7.0 – 7.5). 
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4.2.3  Concentration and desalting of proET-1 peptides 

4.2.3.1  Solid-phase extraction  

Sep-Pak C2 ethyl cartridges (500 mg, Waters) were used according to the manufacturer’s 

instructions with sequential washing of the C2 silica matrix with 10 ml of 100% 

methanol for full penetration of particles (called priming), which was followed by 

washing with 10 – 15 ml of 80% acetonitrile, and then 0.1% TFA, prior to the addition 

of the sample that had been acidified with 0.1% TFA. Table 4.2 shows the C2 extraction 

procedure applied for proET-1 peptides.   

Table 4.2: Solid-phase extraction procedure with C2 cartridges. 

Sample preparation Acidify with 0.1% TFA, optimal pH 2.0 

Priming and washing 

10 ml, 100% methanol 

10 – 15 ml, 80% acetonitrile 

10 – 15 ml, 0.1% TFA 

Sample addition 

Washing 5 ml, 0.1% TFA 

Elution 2 x 2 ml, 80% CH3CN/0.1% TFA 

 

4.2.4  Reverse Phase HPLC   

HPLC was performed with a MERCK Hitachi L-6200 Intelligent Pump with 2 ml 

injection loop. Elution of endothelin-1 and proendothelin-1 fragments and other peptides 

was monitored at 280 nm using a Shimadzu SPD-6A UV detector. Chromatographic 

data were collected and processed by PRIME software. Fractions were collected using 

a Pharmacia LKB Helifrac fraction collector. 

Before running the samples, the column was first flushed with 100% CH3CN containing 

0.1% TFA followed by equilibration with 0.1% TFA. Gradient elution was performed 

with monitoring of eluted peptides by measuring UV absorbance at 280 nm. All samples 

were filtered using 0.2 µm microcentrifuge filter tubes before injection. Once the column 

was equilibrated and a stable baseline was confirmed, the samples were injected 

manually on to the HPLC column.  
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4.2.4.1  Semi-preparative RP-HPLC  

This was performed using a Jupiter® column (Phenomenex, Part Number: 00G-4169-

N0) packed with butyl-bonded silica C4 with 300 Å pore size and 15 µm particle size (1 

x 25 cm). The column was equilibrated with 0.1% TFA and subjected to gradient elution 

at a flow rate of 2 ml/min: 0 – 15% solvent B (80% CH3CN with 0.1% TFA) over 2 min, 

followed by 15 – 60% B over 45 min and further increased to 100% B over 5 min and 

held at 100% B for 8 min. Following gradient elution the column was re-equilibrated at 

0% B before running further samples or standards. 

 

4.2.4.2  Analytical RP-HPLC  

This was performed using ACE-5 C4-300 (Advanced Chromatography Technologies), 

5 µm particle size with 300 Å pore size (4.6 x 250 mm). Samples were eluted at a flow 

rate of 1 ml/min using gradient of 0 – 10% solvent B (80% CH3CN with 0.1% TFA) 

over 2 min, followed by 10 – 30% B over 50 min and further increased to 100% B by 

70 min and held at 100% B for another 5 min. After gradient elution the column was re-

equilibrated at 0% B before running further samples or standards. 

Purified NT-proET-1, ELDP and CT-proET-1 immunoreactivity for both HPLC steps 

were assessed in aliquots of fractions after they were completely dried under a stream of 

N2 at 30°C and reconstituted with 300 µl of SAB. 

 

4.2.5  Characterisation of proET-1 peptides from the  

  A549 conditioned medium 

The approach described above for isolating proET-1 peptides from medium collected 

from EA.hy 926 cells did not work for conditioned medium from A549 cells because of 

a high level of shed membrane particles that readily blocked the chromatography 

columns. To overcome this conditioned media was treated to remove these membrane 

particles. Previous (NH4)2SO4 precipitation experiments showed that at 90% saturation 

proET-1 fragments were precipitated, while at 20% saturation immunoreactivities of 

NT-proET-1, ELDP and CT-proET-1 could not be detected in the reconstituted 

precipitates, showing these peptides remained in the supernatant. Thus, (NH4)2SO4 

precipitation at 20% saturation was used as an intermediate step to remove impurities 

from the A549 conditioned medium. 
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4.2.5.1  Ammonium sulphate precipitation of A549 conditioned medium 

Conditioned medium (20 ml) collected after 48 h incubation with A549 cells was 

acidified with 0.2 M CH3COOH to pH 4.0 before the addition of (NH4)2SO4 to 20% 

saturation [2.12 g (NH4)2SO4 for 20 ml acidified conditioned medium = 20% saturation]. 

Acidified conditioned medium was centrifuged at 20,000 rpm for 40 min at 4°C using a 

Beckman ultracentrifuge (rotor type 70ITI). After the centrifugation step, 0.1% TFA was 

added to the supernatant (pH 4.0) prior to loading on to a primed SPE C2 cartridge. C2 

extraction was carried out as described in Table 4.2 using a vacuum manifold. The 

peptides were eluted with 2 x 2 ml of 80% CH3CN containing 0.1% TFA. After applying 

a stream of N2 to concentrate the sample, fractions were subjected to NT-proET-1, ELDP 

and CT-proET-1 immunoassays. Concentrated eluates (1.5 ml) were filtered through 0.2 

µm pore size 1.5 ml microcentrifuge tubes and the resultant filtrate was injected onto 

analytical RP-HPLC (ACE-5 C4-300 column: 5 µm,  4.6 x 250 mm) using the same 

gradient as described in section 4.2.4.2.  

 

4.2.6  HPLC analysis of synthetic proET-1 peptide standards 

Synthetic standards of NT-proET-1 (70 nmol/ml), ELDP (85 nmol/ml) and CT-proET-

1 (59 nmol/ml) were diluted (20 µl of each proET-1 peptide) into 1.5 ml of 0.2% formic 

acid (at a final concentration of 1.4, 1.7 and 1.2 nmol, respectively) and subjected to 

analytical RP-HPLC (C4 300 Å, 5 µm, 4.6 x 250 mm). The elution position of synthetic 

standards was only assessed on analytical RP-HPLC monitoring absorbance at 280 nm 

and by immunoassay. To avoid cross-contamination of purified peptides this was done 

after samples from conditioned media had been run. 

For comparison, NT-proET-1, ELDP and CT-proET-1 standards in quantities similar to 

those being purified from conditioned media samples were diluted (20 µl) in DMEM 

(10 ml) at final concentrations of 140, 170 and 120 pmol/ml, respectively. Acidified with 

0.1% TFA and extracted on SPE C2 cartridges. After partially drying to remove CH3CN, 

filtered eluate was loaded on to analytical RP-HPLC (C4, 5 µm 4.6 x 250 mm) and 

elution positions of proET-1 fragments were verified by immunoassay.  
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4.3  RESULTS 

4.3.1 Initial purification and characterisation of proET-1 

peptide fragments by carboxymethyl ion exchange 

chromatography 

The initial purification step from the EA.hy 926 conditioned medium was carried out 

using a strong anion exchanger, Q-Sepharose fast flow column (section 4.2.2.1). This 

was used to remove low MWt contaminants (e.g. phenol red) and acidic proteins from 

the conditioned medium. Acidic proteins bound to the anion exchanger were eluted with 

3 ml of 1 M NaCl containing 0.1 M G-HCl.  

Unadsorbed basic proteins including the washes were then loaded on to a weak cation 

exchanger CM Fractogel column. The CM column was eluted with increasing 

concentrations of NaCl (ionic strength) and G-HCl (competing cation) concentration. 

Counter ions (Na+) in NaCl containing G-HCl displaces the adsorbed peptides from the 

binding sites in order of their net charge. ProET-1 peptides eluted from the CM IEC 

were measured by using immunoassays for NT-proET-1, ELDP and CT-proET-1. 

However, efficient recovery of NT-proET-1 immunoreactivity from EA.hy 926 medium 

was not achieved using CM IEC.  

NT-proET-1 immunoreactivity was mainly present in the unadsorbed pooled sample that 

had passed through Q-Sepharose column, and then through the CM Fractogel column, 

indicating inefficient binding of this peptide to the CM column. The mean levels of NT-

proET-1 from the three batches of EA.hy 926 conditioned medium processed in this way 

were 12.6 ± 0.1 fmol/ml. As a result, the unadsorbed pooled sample from Q-Sepharose 

and CM Fractogel columns was used for the isolation and purification of NT-proET-1 

from the EA.hy 926 conditioned medium (section 4.3.2.2). 

  



Chapter 4 Purification and characterisation of proendothelin-1 fragments 

117 

 

Both ELDP and CT-proET-1 were mainly eluted in CM fractions 3 – 5 and 6 – 8, which 

corresponded to an increase in both ionic strength (4 – 5) and competing cation 

concentration (5 – 6). Therefore, proET-1 peptides mainly eluted according to their 

isoelectric points (NT-proET-1 [pI 6.3], ELDP [pI 9.4] and CT-proET-1 [pI 10.5]) 

however, without resolution between ELDP and CT-proET-1 peptides. From EA.hy 926 

cells, ELDP levels measured from the pooled fractions 4 – 5 and 6 – 8 were 11.7 and 

13.8 pmol/ml, respectively. The recoveries of ELDP and CT-proET-1 from the CM 

fractions were 57% and 72%, respectively. 

 

 

Figure 4.2: Carboxymethyl IEC of EA.hy 926 conditioned medium showing elution 

of ELDP and CT-proET-1 immunoreactivity. Results from a representative batch of 

300 ml of conditioned medium loaded onto ten CM fractogel columns after Q-Sepharose 

pre-treatment. Each CM column was washed with 10 mM acetic acid (10 ml/column) to 

remove unbound material (Und), and then eluted with 3 ml of the following conditions. 

(1): 0.125 M NaCl, (2): 0.25 M NaCl,   (3): 0.25 M NaCl + 0.1 M G-HCl, (4): 0.5 M 

NaCl + 0.1 M G-HCl, (5):  1 M NaCl + 0.1 M G-HCl, (6 – 11): 1 M NaCl + 0.5 M G-

HCl. ELDP and CT-proET-1 were measured by immunoassays; the mean 

concentrations per fraction for each peptide are indicated.  
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4.3.2  Purification and characterisation of NT-proET-1, ELDP

  and CT-proET-1 using HPLC 

4.3.2.1  EA.hy 926 conditioned medium fractions 

Carboxymethyl IEC fractions containing the highest amounts of ELDP and CT-proET-

1 were pooled together (4 – 5 and 6 – 8). These pooled fractions were acidified with 

0.1% TFA (pH 2.0) and loaded onto primed C2 cartridges. Adsorbed peptides were 

eluted with 2 ml of 80% CH3CN containing 0.1% TFA. Eluates were then concentrated 

by a gentle stream of N2 gas to ~400 μl. In order to remove any particulate material 

before loading on to a semi-preparative RP-HPLC system (Jupiter C4 column, 15 µm, 

300 Å and 1 x 25 cm), the concentrated eluate was filtered through 0.2 µm 

microcentrifuge tubes. Using this semi-preparative HPLC system, the pooled 

concentrated and filtered eluates were run separately from each other (fractions 4 – 5 

and 6 – 8), with two runs per pooled fraction. The column was eluted with a gradient of 

CH3CN containing 0.1% TFA at a flow rate of 2 ml/min. Immunoassay of fractions for 

ELDP and CT-proET-1 showed adequate resolution of the two peptides (Table 4.3), 

allowing each peptide to be chromatographed separately in subsequent analytical HPLC 

steps. 

 

Table 4.3: Semi-preparative HPLC analysis of EA.hy 926 ELDP and CT-proET-1 

from CM IEC. Peak fractions eluted from CM IEC (4 – 5 and 6 – 8) were extracted 

using C2 columns. Eluted samples were concentrated, pooled as indicated and subjected 

to semi-preparative RP-HPLC column (Jupiter C4 300 Å, 15 µm, 1 x 25 cm). Collected 

fractions (2 ml/min) were immunoassayed for ELDP and CT-proET-1. 

Semi-preparative HPLC analysis 

HPLC 

runs 
CM fractions ELDP CT-proET-1 

1 
4 – 5 26 – 27 22 – 23 

6 – 8 25 – 28 22 – 23 

2 
4 – 5 25 – 27 20 – 21 

6 – 8 25 – 27 21 – 22 
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Fractions corresponding to peak ELDP and CT-proET-1 immunoreactivity (Table 4.3) 

were pooled and concentrated under N2 and filtered using 0.2 µm filters for further 

purification using the analytical HPLC procedure (C4 column: 5 µm, 4.6 x 250 mm). 

Collected fractions (1 ml/min) were assayed for ELDP and CT-proET-1. 

Analytical HPLC provided better resolution between ELDP and CT-proET-1 peptides. 

Peak fractions of CT-proET-1 were identified in fractions 27, 28 and 31, whereas ELDP 

was eluted in fractions 43 and 47 (Figure 4.3A – B).  

 

4.3.2.2 Recovery of NT-proET-1 from the EA.hy 926 conditioned medium  

NT-proET-1 peptide in conditioned medium from EA.hy 926 cells did not bind to the 

CM IEC system but was identified in the unadsorbed sample and 10 mM acetic acid 

wash. To recover NT-proET-1 for further characterisation and to concentrate this dilute 

sample [1350 ml sample (900 ml EA.hy 926 conditioned medium + 450 ml 10 mM 

acetic acid wash)], it was subjected to SPE with C2 cartridges. Eluates from the C2 

extraction were further concentrated by N2, filtered using 0.2 µm microcentrifuge tubes 

before loading on to the semi-preparative RP-HPLC system. The conditions of the semi-

preparative HPLC separation were as described for ELDP and CT-proET-1 peptides in 

section 4.3.2.1. Peak NT-proET-1 immunoreactivity from the semi-preparative HPLC 

separation was detected in fractions 27 – 29 (data not shown). These fractions were 

pooled and concentrated with a stream of N2, filtered and subjected to analytical HPLC. 

NT-proET-1 immunoreactivity from the analytical HPLC was eluted in fraction 41 

(Figure 4.3C). 

 

Synthetic proET-1 standards NT-proET-1, ELDP, and CT-proET-1 were subjected to 

analytical RP-HPLC (at 1.4, 1.7 and 1.2 nmol, respectively) and their elution positions 

were verified by monitoring A280 and by immunoassay. NT-proET-1, ELDP and CT-

proET-1 synthetic standards were eluted at fractions 46, 45 and 28, respectively. Elution 

positions are indicated by the marked arrows (Figure 4.3). 
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Comparison of HPLC profiles obtained from synthetic peptides with those of the native 

proET-1 peptides extracted and purified from EA.hy 926 conditioned medium showed 

that ELDP and CT-proET-1 synthetic peptides were eluted (fraction 28 for CT-proET-1 

and fraction 45 for ELDP) at very close proximities to the native proET-1 peptides 

(fractions 28, 29 and 31 for CT-proET-1 and fractions 43 and 47 for ELDP). However, 

the elution profile of ELDP and CT-proET-1 was heterogeneous, which suggest some 

degree of post-translational modification during purification. 

NT-proET-1 synthetic standard (fraction 46) did not co-elute at the same position as the 

native peptide (fraction 41) that was extracted from the EA.hy 926 conditioned medium. 

Earlier elution of the native NT-proET-1 peptide in comparison to the synthetic peptide 

suggested that it may be less hydrophobic.  
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Figure 4.3: Analytical HPLC characterisation of proET-1 peptides from EA.hy 926 

(A) CT-proET-1, (B) ELDP and (C) NT-proET-1.  Peak fractions of CT-proET-1, 

ELDP and NT-proET-1 from semi-preparative RP-HPLC column (C4 300 Å, 15 µm, 1 

x 25 cm) were pooled and subjected to separate analytical RP-HPLC analyses (C4 300 

Å, 5 µm, 4.6 x 250 mm). Arrows mark the elution positions of synthetic CT-proET-1, 

ELDP and NT-proET-1, which eluted in fractions 28, 45 and 46, respectively. 
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4.3.2.3 Characterisation of proET-1 peptides from the A549 conditioned 

medium  

Characterisation of proET-1 peptides from A549 conditioned medium was problematic. 

Impurities such as lipoproteins and other lipid material released into the conditioned 

medium blocked the Q-Sepharose and CM Fractogel IEC columns. This is likely due to 

cell membrane shedding of microvesicles by tumour cells in culture (Muralidharan-

Chari et al., 2010). Thus, to allow further characterisation of proET-1 peptides using 

HPLC, an alternative approach using (NH4)2SO4 precipitation was employed to remove 

contaminants released from A549 cells into the conditioned medium. 

Conditioned medium from A549 cells was subjected to (NH4)2SO4 precipitation at 20% 

saturation to remove particulate material (see section 4.2.5.1). The supernatant was 

extracted on SPE C2 cartridges, and adsorbed proET-1 peptides were eluted with 80% 

CH3CN containing 0.1% TFA. Immunoassays of NT-proET-1, ELDP and CT-proET-1 

showed efficient recoveries for all proET-1 fragments. The recovery of NT-proET-1 

from SPE was 84%, while ELDP and CT-proET-1 recoveries were ~100%. Eluates were 

concentrated, pooled together and filtered before subjecting to analytical RP-HPLC (C4 

column, 5 µm, 4.6 x 250 mm). Peak fractions of NT-proET-1, ELDP and CT-proET-1 

were eluted in 34 – 35, 37 – 40 and 21 – 24, respectively (Figure 4.4), corresponding to 

65%, 89%, and 47% recoveries in comparison to C2 extraction. NT-proET-1 and ELDP 

eluted as single peaks. The elution profile of CT-proET-1 however, showed some 

heterogeneity with a double peak. 

Synthetic peptide standards of NT-proET-1, ELDP and CT-proET-1 were diluted in 

DMEM and extracted in the same way as previously described for the A549 conditioned 

medium. Eluates were run on the analytical HPLC and their elution positions were 

verified by immunoassay. NT-proET-1 and ELDP eluted in the same fractions 43 – 44, 

while CT-proET-1 eluted in fractions 27 – 28. Hence, proET-1 peptides extracted from 

the conditioned medium of A549 cells did not closely correspond with the elution 

positions of the synthetic standards. However, the synthetic standards for ELDP and CT-

proET-1 both eluted six fractions later in gradient. NT-proET-1 (43 – 43) on the other 

hand, was eluted more distant from the native peptide (34 – 35). Elution positions of 

synthetic peptides were almost identical to the previous calibration of this column after 

analytical HPLC of peptides isolated from EA.hy 926 conditioned medium. One 

explanation for the earlier elution of peptides extracted from A549 conditioned medium 
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is that column had been overloaded with the extracted sample, which underwent limited 

pre-fractionation before analytical HPLC. The elution characteristics of the column may 

have been modified by contaminating materials from the conditioned medium so that 

the column efficiency was compromised. For NT-proET-1, differences between the 

native and synthetic standards likely contributed to the marked difference in elution 

times. 
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Figure 4.4: Analytical HPLC chromatogram showing characterisation of NT-proET-1, ELDP and CT-proET-1 from conditioned medium of 

A549 cells. A549 conditioned medium was acidified with 0.2 M CH3COOH to pH 4.0.  (NH4)2SO4 was added to 20% saturation and centrifuged 

at 20,000 rpm for 40 min at 4°C. Supernatant was extracted on a C2 cartridge, proET-1 peptides were eluted with 80% CH3CN containing 0.1% 

TFA (2 x 2 ml), and concentrated to ~400 µl before analytical RP-HPLC (C4 300 Å, 5 µm, 4.6 x 250 mm). ProET-1 fragments were detected using 

immunoassays for NT-proET-1, ELDP and CT-proET-1. Arrows marking fractions 27 – 28, indicate the elution positions of CT-proET-1 and 43 

– 44 indicate the elution positions of NT-proET-1 and ELDP synthetic peptides. 
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4.4  DISCUSSION 

A combination of chromatography-based methods was used for purification and 

characterisation of proET-1 fragments that are co-released with ET-1 from EA.hy 926 

and A549 cells. While IEC provided a suitable method of purification for proET-1 

peptides from EA.hy 926 conditioned medium, ammonium sulphate precipitation was 

necessary for characterisation of proET-1 peptides from A549 conditioned medium prior 

to RP-HPLC characterisation. Both conditioned media samples were then subjected to 

SPE. This was essential for buffer exchange and to concentrate NT-proET-1, ELDP, and 

CT-proET-1 peptides for further characterisation using RP-HPLC. 

For EA.hy 926 conditioned medium, Q-Sepharose “clean up” to remove acidic proteins 

or contaminants followed by CM cation exchange chromatography proved to be an 

efficient process for isolating the basic proET-1 fragments ELDP and CT-proET-1. In 

pilot experiments to test this two-step procedure with small volumes of medium (20 

ml/column), NT-proET-1 was also recovered in the CM fractions. Hence, for the large 

scale purification the aim was to isolate all three proET-1 fragments for HPLC 

characterisation. However, NT-proET-1 was present mainly in the unadsorbed pool 

from CM chromatography, which had been subjected to Q-Sepharose pre-treatment 

prior to loading on to CM Fractogel. Lack of binding and poor recovery of the NT-

proET-1 was likely due to the following reasons:  

i. NT-proET-1 has the lowest pI (6.3), so did not bind efficiently to the CM 

Fractogel. 

ii. The binding capacity of the column was exceeded in the large-scale purification, 

such that NT-proET-1 was readily displaced by other peptides or proteins with 

higher pIs.  

iii. Low levels of NT-proET-1 eluted in multiple CM fractions, but were not 

detected by the NT-proET-1 immunoassay because G-HCl interferes in this 

assay resulting in reduced sensitivity. Hence, unless there is adequate dilution of 

sample to compensate, low amounts of immunoreactivity in fractions are not 

detected.   



Chapter 4 Purification and characterisation of proendothelin-1 fragments 

126 

 

Native NT-proET-1 purified from EA.hy 926 (Figure 4.3) and A549 conditioned media 

samples (Figure 4.4) were eluted after CT-proET-1. This indicated that NT-proET-1 is 

more strongly retained on the C4 column, and thus has characteristics of a more 

hydrophobic (non-polar) peptide than the CT-proET-1 requiring a higher concentration 

of CH3CN for its desorption. The elution position of native NT-proET-1 peptide purified 

from EA.hy 926 conditioned medium was earlier (at fraction 41) than the synthetic 

peptide (at fraction 46). Thus, the native peptide is less hydrophobic than the synthetic 

peptide. RP-HPLC separation of peptides depends largely on their hydrophobicity. 

Although this can be influenced by size and conformation/folding and the proportion of 

hydrophilic amino acids, the overriding determinant is the most hydrophobic sequence 

providing greatest affinity for the non-polar hydrophobic particle surface of the column. 

Ion-pairing of basic residues with TFA also increase hydrophobicity and peptide 

retention on HPLC. It seems likely that the C-terminal sequence of NT-proET-1 

(WRLRRS) in the presence of TFA contributes greatly to the overall retention of NT-

proET-1, however why there is so much difference between the elution characteristics 

of the native and synthetic peptides is unclear. The NT-proET-1 immunoassay is very 

specific for this sequence, and therefore unlikely to detect this peptide if this sequence 

is not intact. 

It is often difficult to synthesise peptides with (poly)proline sequences (Wawra & 

Fischer, 2006). NT-proET-1 has five proline residues in its amino acid sequence (Table 

4.1). The N-terminal sequence of NT-proET-1 has one and the C-terminal sequence has 

four proline residues in a short six amino acid sequence, including two adjacent residues. 

Proline is the only natural cyclic amino acid that is unusual in forming cis peptide bonds 

at a frequency (~5%) much higher than any other naturally occurring amino acid 

(<0.1%) (Lummis et al., 2005). Therefore, multiple proline residues in the C-terminal 

sequence of NT-proET-1 may undergo cis/trans isomerisation during chemical 

synthesis, leading to different structural folding that results in different HPLC elution 

positions. The synthetic peptide was a single peak, and had been shown to have the 

correct mass by LC-MS (see Chapter 2, section 2.1.3.1). Because antibody recognition 

is directed to the N- and C-terminal sequences, internal structural modification may not 

be detected by immunoassay. Hence, further structural characterisation of the synthetic 

peptide would be necessary to confirm whether this underlies the differing elution 

pattern to native peptide. Mass spectrometry provides great resolution and determines 
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structural features such as amino acid sequence, mass, post-translational modifications 

and it is also useful for the assignment of disulphide bonds. Therefore, mass 

spectrometric identification of the purified proET-1 peptide fractions could confirm the 

peptide identities. This may also define the reasons for heterogeneity, which have 

resulted from differences in amino acid sequence due to degradation products generated 

during purification or on storage. 

 

 

Analytical HPLC of ELDP and CT-proET-1 peptides isolated from the conditioned 

medium of EA.hy 926 cells did not generate a single peak of immunoreactivity. 

However, the degree of heterogeneity was low with only two closely eluting peaks for 

ELDP and three for CT-proET-1 on an acetonitrile gradient with higher resolving 

potential (gradient increase 0.4% B per min). In both cases the purified native peptides 

eluted close to the corresponding synthetic peptides. Differences could result from 

modifications either during the 48 h incubation period where the conditioned medium 

was in contact with cells, or could have occurred during the various purification steps. 

Likely modifications could include oxidation of sulphur-containing methionine residues 

during the course of sample extraction and freeze/thaw process. This is a frequent 

observation for peptides in acidic solution. The side chain of normal methionine is long, 

flexible, and non-polar (Richardson & Richardson, 1989; Hoshi & Heinemann, 2001) 

but when it is oxidised to methionine sulphoxide by the addition of an extra oxygen 

atom, it becomes stiffer and more polar (hydrophilic) than that of the methionine side 

chain (Hoshi & Heinemann, 2001). Thus, the oxidised form is eluted before the native 

peptide. Other possible amino acid modifications during peptide purification under 

acidic conditions include: hydrolysis of amide side chains of asparagine and glutamine 

to aspartic acid and glutamic acid; hydroxylation of tyrosine, tryptophan or proline and 

oxidation of histidine and tryptophan. The reason for two main peaks for ELDP and CT-

proET-1 is likely methionine oxidation as both peptides have a single methionine 

residue. Additional heterogeneity is likely due to a combination of other modifications 

under the acidic conditions used for the isolation and purification procedure. 

 

 

Three-dimensional structure of the human ET-1 (PDB: P05305) determined by X-ray 

crystallography (to 2.18 Å resolution) demonstrated two disulphide bridges at ppET-1 

http://jp.physoc.org/content/531/1/1.full#ref-62
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positions 53 – 67 and 55 – 63 (Janes et al., 1994). Similarly, ELDP sequence consists of 

six cysteine residues, in which the spacing between the first four cysteine residues is the 

same as in ET-1 sequence. Therefore, it is likely that these residues might form 

disulphide bridges at amino acid positions 109 – 123, 111 – 119, with a further 

disulphide bridge at 148 – 155. Disulphide bonds can contribute to protein folding. 

Correct disulphide bond formation parallels correct folding and formation of secondary 

structure, which reinforces the stability of a protein (Creighton, 1993; Zhang et al., 

2011). Thereby, ELDP can be highly susceptible to protein folding and more compact 

structure of the folded ELDP can result in prolonged interactions with the hydrocarbon 

groups of the C4 column.  

 

In general, both HPLC chromatograms showed well resolved peaks of purified proET-

1 fragments detected using sensitive immunoassays. Further investigation is required to 

confirm the sequence identities of the native peptides using mass spectrometry. Mass 

spectrometric identification of the specific proET-1 fragments identified by the NT-

proET-1 (ppET-1[18 – 50]), ELDP (ppET-1[93 – 166]) and CT-proET-1 (ppET-1[169 – 212]) 

immunoassays was investigated in Chapter 5. 
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CHAPTER 5 

Verification of proendothelin-1 sequence identities 

using mass spectrometry 
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5.1  INTRODUCTION  

5.1.1  Identification of proteins using mass spectrometry  

Peptide mass fingerprinting (PMF) was introduced in 1981 by Henzel and colleagues 

(1993) and involves digestion of a protein with a specific protease (most often trypsin) 

to determine the masses of peptides resulting from the proteolytic cleavage (Henzel et 

al., 2003). Trypsin cleaves at the C-terminal side of lysine and arginine residues with 

the exception being when the next amino acid is proline (Link & LaBaer, 2011). 

However, identification of proteins from PMF alone can be inconclusive. 

Tandem mass spectrometry (MS/MS) combines peptide separation with fragmentation 

and provides enhanced specificity for identification of protein mixtures over PMF alone. 

The “bottom-up” approach involves proteolytic digestion and MS/MS analysis. 

Molecular weights of proteolytic peptides are submitted to database search engines such 

as MASCOT or SEQUEST (Eng et al., 1994), which results in a powerful and rapid 

approach for protein identification.  On the other hand, “top-down” approach provides 

characterisation of intact proteins with no enzymatic digestion. The intact mass and 

fragmentation data (precursor mass) are matched to search algorithms using absolute 

mass, sequence tag or a subset of larger sequence (biomarker) (Kellie et al., 2010). This 

approach provides the potential for full localisation and characterisation of post-

translational modifications (PTMs). 

 

5.1.2 Fragmentation of peptides with collision-induced 

dissociation (CID) 

There are several techniques that can generate peptide fragments: Electron Transfer 

Dissociation (ETD), Electron Capture Dissociation (ECD), and Collision-Induced 

Dissociation (CID). CID is the main method of fragmenting peptides in 

ion trap/quadrupole mass spectrometers. 

Peptide ions are protonated with electrospray ionisation (ESI). These protonated peptide 

ions are then fragmented with CID using an inert gas such as helium.  This cleavages 

the weakest amide bond first. Peptide fragmentation mainly occurs on the peptide 

backbone, often with the transfer of one or two hydrogen(s) to form a stable ion. Under 

CID peptide fragmentation, a nomenclature proposed by Roepstorff and Fohlman, 1984 
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was used to define N-terminal and C-terminal fragment ions as a, b, c and x, y, z, 

respectively (Figure 5.1) (Roepstorff, 1984). Low energy CID of peptides mainly 

produces b- and y- type fragment ions (Maleknia & Johnson, 2011). 
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Figure 5.1: Roepstorff nomenclature: x, y, and z represent C-terminal fragments and 

a, b, and c represent N-terminal fragments. Under low-energy CID, b-ion is generated 

when the charge (proton, H+) is retained on the N-terminal and y-ion is generated when 

the charge is retained on the C-terminal end (Modified from Maleknia & Johnson, 

2011). 

 

Fragmentation of precursor/parent ions generates product ions. The mass difference 

between each product ion corresponds to the mass of the amino acid residue. This 

defines the amino acid sequence of a peptide. Peptides are often digested to smaller 

fragments for effective fragmentation. Main fragmentation principles using CID are 

explained briefly.  

(1) Sequencing starts from the C-terminal fragment. In tryptic peptides due to basic 

C-terminal arginine or lysine residue, more intense y-ions are generated (Tabb et 

al., 2004, 2006). 

(2) N-terminal fragment ions (b-ions) are calculated by adding the mass of a proton 

(H, 1.008 Da) to the residue masses while the C-terminal fragment ions (y-ions) 

are calculated by adding the mass of water and a proton (19.018 Da) to the 

residue masses. 

http://dx.doi.org/10.1002/bms.1200111109
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(3) The last b-ion loses -17 Da (OH), while the last y-ion loses the mass of the last 

fragment ion and hydrogen (M+H). 

(4) Peptide ions containing aspartic acid, glutamic acid, serine and threonine can 

neutrally lose water (18 Da) while asparagine, arginine, glutamine and lysine 

side chains can lose ammonia (17 Da) (Wu et al., 2008; Medzihradszky, 2005). 

Other amino acids could also lose either water or ammonia.  

(5) Proline can produce dominant y-ions, resulting from cleavage on N-terminal side 

of proline and suppressed b-ions (Breci et al., 2003).  

 

Sequencing tryptic peptides using low energy CID has some limitations. Examples of 

these include: (1) modifications such as disulphide bonds are not typically fragmented 

by CID (Loo et al., 1990); (2) leucine and isoleucine have identical masses and cannot 

be differentiated (Papayannopoulos, 1995); (3) both b1- and y1- fragment ions are usually 

not observed in the spectra due to their low mass range, which is mainly a problem in 

ion traps but not in QTOF, Orbitrap or quadrupole mass spectrometers. (4) In addition, 

low MWt immonium ions that can confirm the identification/presence of amino acids 

such as oxidised methionine, histidine and proline at m/z 120, m/z 110 and m/z 70, 

respectively may not be observed in ion traps. (5) The C-terminal side of proline is often 

not cleaved and not observed (Maleknia & Johnson, 2011). This results from increased 

gas-phase basicity of the proline nitrogen and the ring structure of the proline side chain 

that inhibits the attack of the carbonyl on the N-terminal side of the proline (Maleknia 

& Johnson, 2011). 
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5.1.3 Identification of post-translational modifications using 

mass spectrometry 

Examples of frequently occurring PTMs in proteins are described here. Some of the 

modifications are introduced during sample preparation; as such oxidation of methionine 

residues is the most commonly observed example. 

 

5.1.3.1  Oxidation 

Methionine, tryptophan, histidine and cysteine residues are susceptible to oxidation. 

Oxygen and reactive oxygen species (ROS) such as superoxide (O2
-), hydrogen per 

oxide (H2O2), hydroxyl radical (●HO), and hypochlorite (ClO-) can oxidise methionine. 

This yields methionine sulphoxide (MetSO). Further oxidation can lead to methionine 

sulphone (MeS), but to a much lesser extent (Nielsen et al., 1985). Following CID 

fragmentation, MetSO can be detected with a mass increment of 15.995 Da and MeS 

with a mass increment of 31.99 Da. Oxidised methionine can also be detected by the 

presence of additional b- and y-ions that are 64 Da lower in mass than the MetSO ion. 

This corresponds to a neutral loss of methane-sulphenic acid (CH3SOH) from the side 

chain of MetSO (Rebrin et al., 2010). In CID, this characteristic loss of CH3SOH 

indicates the presence of MetSO (Guan et al., 2003). 

Histidine and tryptophan oxidation is usually mediated by metal-catalysed 

(Fe(II)/Cu(II)) or ROS (H2O2) (Ji et al., 2009). Tryptophan oxidation can result in mass 

increases of 3.995, 15.995 and 31.99 Da, corresponding to the formation of kynurenine, 

hydroxytryptophan, and N-formyl-kynurenine/dihydroxytryptophan (doubly oxidised 

trptophan), respectively (Perdivara et al., 2010; Swiderek et al., 1998). Histidine has an 

imidazole ring and oxidation can lead to degradation products of asparagine, aspartic 

acid and 2-oxo-histidine (Uchida & Kawakishi, 1994). Histidine oxidation is usually 

catalysed with Cu(II) yielding 2-oxo-histidine as the most predominant product (Uchida 

& Kawakishi, 1994; Li et al., 1995) and it is detected with a mass increment of 31.99. 

  

http://www.ncbi.nlm.nih.gov/pubmed?term=Uchida%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8300566
http://www.ncbi.nlm.nih.gov/pubmed?term=Uchida%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8300566
http://www.ncbi.nlm.nih.gov/pubmed?term=Uchida%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8300566
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5.1.3.2  Deamidation 

Deamidation of asparagine and glutamine residues can generate aspartic acid and 

glutamic acid.  This results in a mass increase of 0.984 Da. Under acidic conditions, 

deamidation of asparagine via direct hydrolysis generates a mixture of isoaspartate and 

aspartic acid in a 1:3 ratio (Capasso & Salvadori, 1999). Similarly, direct hydrolysis of 

the glutamine side chain amide can generate glutamic acid. Under basic or neutral 

conditions, deamidation arises through the formation of a succinimide ring (cyclic 

imide) intermediate, which then hydrolyses forming isoaspartate and aspartic acid. At 

basic or neutral pH, glycine increases the rate of deamidation by providing high local 

backbone flexibility and lack of steric hindrance imposed by its side chain (Bischoff & 

Kolbe, 1994). The rate of the reaction can be increased when alanine, serine and aspartic 

acid are at the C-terminal side of asparagine residue. 

 

5.1.3.3  Pyro-glutamate formation 

Under acidic conditions, N-terminal glutamine residue can cyclise to form 

pyroglutamate, which could make it more resistant to proteolytic hydrolysis and 

degradation (Chelius et al., 2006). 

 

5.1.3.4  Disulphide bond formation 

Disulphide bonds can be formed by the oxidation of highly reactive sulphydryl groups 

(–SH) of cysteine residues. They provide stability to the native correctly folded protein.  

 

In this project MS/MS analysis was applied to peak fractions from analytical RP-HPLC 

purification of proET-1 peptide fragments isolated from EA.hy 926 conditioned 

medium.  

 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2253450/#bischoff-and-kolbe-1994
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2253450/#bischoff-and-kolbe-1994
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5.1.4  Identification strategy for proET-1 peptide fragments 

The identification strategy for purified and characterised proET-1 peptide fragments is 

summarised in Figure 5.2. Briefly, identification of ELDP and CT-proET-1 was based 

on fragmentation of tryptic peptides with CID (bottom-up), while NT-proET-1 was 

analysed in its intact form without digestion (top-down). Samples purified using IEC 

and HPLC.  

HPLC fractions containing the highest immunoreactivity for NT-proET-1 were dried 

under vacuum with centrifugal force with SpeedVac and reconstituted in 0.1% TFA and 

analysed using LTQ Orbitrap XL connected online to a nanoflow UPLC with a C4 

column. HPLC fractions containing the highest immunoreactivity for ELDP and CT-

proET-1 were dried using SpeedVac, reconstituted in H2O, digested with trypsin, 

acidified and desalted using Graphitic Carbon C18 spintips. ELDP/CT-proET-1 were 

dried in the SpeedVac and reconstituted in 0.1% TFA and analysed using LTQ Orbitrap 

XL connected online to a nanoflow UPLC with a C18 column.  

Peptides were initially separated on a reverse-phase column and then directly 

electrosprayed into LTQ Orbitrap MS. Elution conditions for nanoflow HPLC involved 

a gradient of CH3CN with 0.1% formic acid (FA). Pilot experiments with synthetic 

peptides showed that ELDP and CT-proET-1 do not elute from either C4 or C18 

nanoflow columns with CH3CN/FA, hence the need for tryptic digestion for MS/MS 

characterisation. 

Raw data obtained from MS/MS was subjected to a database search using MASCOT 

and data analysis provides identification of peptide sequences.  
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Figure 5.2: Workflow of identification strategy for purified and characterised proET-

1 peptides from EA.hy 926 conditioned medium using LTQ Orbitrap mass 

spectrophotometer.   
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5.1.5  Hypothesis and aims 

Main aims of this chapter were to (1) investigate whether the secreted proET-1 peptide 

sequences corresponded with the inferred amino acid sequences derived from the EDN1 

gene sequence; (2) define the reasons for the heterogeneity of elution profiles observed 

on analytical HPLC (Chapter 4); and (3) confirm the presence of disulphide bonds in the 

endothelin-like domain (Cys109 – Cys123 and Cys111 – Cys119) in which the spacing 

between cysteine residues is exactly the same as in ET-1 (Cys53 – Cys67 and Cys55 – 

Cys63) (N.B. Cys numbering based on the full-length ppET-1 sequence). 
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5.2  METHODS 

Synthetic peptides were initially studied to optimise the conditions to ensure efficient 

fragmentation of proET-1 peptide fragments purified from EA.hy conditioned medium 

(serum-free). Identification of purified/native proET-1 peptide fragments was performed 

using LTQ Orbitrap XL MS (Thermo Fisher Scientific, Hemel Hempstead, UK) coupled 

online to a nanoflow ultrahigh pressure liquid chromatography (UPLC, nanoAcquity, 

Waters).  

 

5.2.1  Sample preparation for LTQ Orbitrap XL MS 

5.2.1.1  ProET-1 synthetic standards  

NT-proET-1, ELDP and CT-proET-1 were diluted in 0.1% TFA from stock solutions or 

from HPLC fractions obtained on analytical HPLC of synthetic peptides (NT-proET-1, 

fraction 41; ELDP, fraction 45; and CT-proET-1, fraction 28). A calibration curve 

(concentration range 0.98 – 125 fmol/µl) was prepared from stock solutions of synthetic 

proET-1 peptides. Stock concentrations of synthetic NT-proET-1, ELDP and CT-proET-

1 were 70, 85 and 59 nmol/ml, respectively. An equal volume of sample (20 µl) was 

then transferred into 0.2 ml natural slick-seal tubes (Bioquote) and 4 µl of each sample 

was injected for each analysis. 

 

 

5.2.1.2  HPLC fractions of purified native peptides 

HPLC fractions containing the highest proET-1 immunoreactivity were concentrated 

using centrifugal force (SpeedVac, CHRIST) and stored at -80°C until the day of 

analysis. Prior to analysis, NT-proET-1 fractions (native: 41 and synthetic: 46) were 

reconstituted in 0.1% TFA and diluted at 100 fmol/µl in 0.1% TFA. Of note, the final 

concentration of purified/native NT-proET-1 (fraction 41) after reconstitution with 50 

µl of 0.1% TFA was 89.4 fmol/µl.  

HPLC fractions containing the highest ELDP and CT-proET-1 immunoreactivity were 

digested using trypsin, without reduction or alkylation. 
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5.2.1.3  Trypsin digestion 

1. Lyophilized trypsin (20 µg) (Promega) was prepared at 0.5 µg/µl by 

reconstituting in 40 µl of trypsin resuspension buffer that is composed of 50 

mM acetic acid. Reconstituted enzyme was stored at -80°C. 

2. HPLC fractions of purified proET-1 peptides were reconstituted in H2O. 

Samples were then diluted in 20 mM ammonium bicarbonate buffer, pH 7.8. 

3. Modified sequence-grade trypsin (prepared at 0.5 µg/µl) was added at a final 

trypsin:protein ratio of 1:50 in lo-binding microcentrifuge tubes (Eppendorf, 

Cat# 022431081). The pH of the resulting mixture should be 7.5 – 8.5. 

4. Following a gentle vortex, incubated at 37°C overnight (18 h) on a shaker at 

900 rpm. 

5. Trypsin was inactivated by acidification with TFA to 0.1% of the final digest 

volume, followed by chilling the reaction on ice. 

 

5.2.1.4 Desalting and removal of contaminants from digestion mixtures 

(Reverse-Phase desalting using Graphitic Carbon C18 spintips) 

Trypsin digested samples were desalted and contaminants were removed by Graphitic 

Carbon C18 stationary phase spintips (Glygen Corp, USA). Graphitic Carbon can also 

recover hydrophilic portion of digested fragments. Prior to desalting, samples were 

acidified with 0.1% TFA and desalting was carried out according to the protocol as 

shown in Table 5.1. The flow was obtained by centrifugation for 2 min at 1600 g at the 

end of each step, discarding the flow-through until the elution step. 

Table 5.1: Desalting protocol with Graphitic Carbon C18 spintips. 

Priming 2 x 200 µl of 50% CH3CN/0.1% TFA           

Centrifugation 

2 x 200 µl 1% CH3CN/0.1% TFA  

Centrifugation 

Sample addition 

(200 µl) and 

washing 

200 µl 1% CH3CN/0.1% TFA  

Centrifugation 

100 µl 1% CH3CN/0.1% TFA  

Centrifugation 

Elution 4 x 50 µl 50% CH3CN/0.1% TFA  
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At the end of elution step, samples were centrifuged for 2 min at 13,000 rpm and 

transferred to a fresh lo-bind 2 ml microcentrifuge tube, dried under vacuum at room 

temperature using a rotational vacuum concentrator and stored at -80°C. Dried samples 

were reconstituted in 0.1% TFA prior to analysis with LTQ Orbitrap.  

 

5.2.2  LTQ Orbitrap MS/MS Analysis 

Flow from the nanoacquity UPLC system was directed to a LTQ Orbitrap XL MS 

equipped with a nano-ESI source (positive mode). NT-proET-1 separation was 

performed directly in nanoACQUITY UPLC BEH300 (Ethylene Bridged Hybrid) C4 

reverse-phase column with 1.7 µm particle size, 75 µm x 100 mm in dimensions and 

300 Å pore size (Waters, 186004639) without on-line trapping/desalting. Injection 

volume was set to 4 µl, which was followed by a gradient elution at 300 nl/min over 50 

min. Gradient elution was from 99% A (A = 0.1% FA in LC-MS grade H2O), 5% B (B 

= 0.1% FA in LC-MS grade CH3CN) to 50% CH3CN followed by a 25 min wash with 

H2O. 

Trypsin digested ELDP and CT-proET-1 fragments were loaded onto a trapping 

nanoAcquity UPLCTM column, Symmetry® C18, 5 µm, 180 µm x 20 mm (Waters). The 

nanoflow UPLC loading flow rate was set at 2 µl/min for 8 min, which operated with a 

back pressure of about 3,000 psi and sample elution at a flow rate of 300 nl/min. Peptide 

separation was performed on a nanoAcquity UPLC BEH130 column packed with C18 

resin, 1.7 µm, 100 µm inner diameter x 100 mm (Waters, Part No 186003546) using a 

linear gradient of 1 – 35% in 10 min, followed by an increase to 85% B in 10 min and 

held at 85% B for another 10 min. The gradient was followed by a gradual decrease to 

1% B in 10 min, which was followed by a 25 min H2O wash. 

Full scan survey spectra (m/z 375 – 1800) were acquired by the Orbitrap with a 

resolution of 30,000 at m/z 400. A data dependent analysis was employed in which the 

five most abundant multiply charged ions present in the survey spectrum were 

automatically mass-selected, fragmented by CID (normalised collision energy 35%) and 

analysed in the LTQ (m/z 50 – 2000). 
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5.2.3  Peptide Identification via MASCOT Database Search 

ProET-1 peptide fragments were identified by an automated database MASCOT 

Daemon (Matrix Science Ltd, London, UK). MASCOT Daemon 2.2 server was used to 

process mass spectrometry raw data. MASCOT Daemon automates the use of MASCOT 

Distiller (v2.3.2.), to smooth and centroid the MS/MS data, and MASCOT search engine 

(v2.2.02), to search for the target protein sequence against all known proteins present in 

mammalian genomes using UniProt database (http://www.uniprot.org). 

The search was performed by using the following parameters: no enzymatic digestion 

for NT-proET-1, and trypsin as the digestion enzyme for ELDP and CT-proET-1. Up to 

two missed cleavages were allowed in all searches. Variable modifications included in 

the search criteria were oxidation of methionine (15.995 Da), Gln->pyro-Glu (N-term 

Q) and deamidation of asparagine and glutamine residues to aspartic acid and glutamic 

acid (0.984 Da). Data sets were searched with a mass accuracy of ± 10 ppm (parts-per-

million), peptide charge +2 +3, –MS/MS tolerance of ± 600 mmu (milli-mass units). 

Ions with single and unrecognized charge states were excluded. 

MASCOT data output includes the identification of peptides (amino acid sequence), 

parent ion m/z, retention time and confidence scores based on the probability (Perkins 

et al., 1999). MASCOT calculates ions score using -10*Log(P), where P is the 

probability that the observed match is a random event.  

Precursor ion tolerance in LTQ Orbitrap was 5 – 20 ppm. Instrument type was ESI FT 

ICR CID (Fourier Transform Ion Cyclotron Resonance). Product ion tolerance in LTQ 

Orbitrap was set at 0.5 – 0.8 Da for ion trap mode and 0.01 – 0.02 Da for Orbitrap mode. 

Monoisotopic masses of the proET-1 peptides were calculated using ProteinProspector 

(http://prospector.ucsf.edu/). The following parameters were selected: MS product → 

maximum charge 8 → instrument ESI FT ICR CID. EDN1 gene (endothelin-1, P05305) 

was identified for the proET-1 peptides. Raw chromatograms were subsequently 

processed and analysed using Xcalibur. 

  

http://www.uniprot.org/
http://prospector.ucsf.edu/prospector/mshome.htm
http://www.uniprot.org/uniprot/P05305
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Ion fragments of each trypsin digested ELDP and CT-proET-1 peptides were obtained 

from ProteinProspector. Fragment ions were identified in the MS/MS spectra from Qual 

Browser and labelled manually for the b- and y-ions, confirming MS/MS fragmentation 

from MASCOT. 

In order to ensure correct identification, all samples were run twice on two separate days 

and only peptides that were present in all analyses are shown here.  
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5.3  RESULTS 

The workflow for proET-1 identification strategy is illustrated in Figure 5.2 for the 

proET-1 peptides purified and characterised from EA.hy 926 conditioned medium. In 

addition to the native purified peptides, synthetic standard peptides were added to 

medium samples and subjected to the same extraction and HPLC procedures (Chapter 

4). A calibration curve (concentration range 0.98 – 125 fmol/µl) prepared with each 

proET-1 synthetic standard was used to optimise a methodology to enable identification 

of each purified proET-1 peptide using LTQ Orbitrap MS. 

 

Following MASCOT database search of the MS/MS data, NT-proET-1 amino acid 

sequence was not identified from the native/purified sample (fraction 41) but was 

detected from the NT-proET-1 synthetic standard (fraction 46). Therefore, the identity 

of the native NT-proET-1 could not be confirmed with MS/MS. 

 

Precursor ion masses of trypsin digested ELDP and CT-proET-1 fragments were 

obtained from MASCOT. Initially these m/z values were identified in the extracted ion 

chromatogram (XIC) acquired on a LTQ Orbitrap with their corresponding charges 

(data not shown) and these were manually verified in MS/MS spectra.  

 

 

5.3.1 Peptide sequences of ELDP and CT-proET-1 identified 

using MASCOT 

Peptide identities of ELDP and CT-proET-1 were determined from partial sequences 

obtained from trypsin digestion. Detailed list of ELDP and CT-proET-1 peptide 

sequences are shown in Table 5.2 and Table 5.3, respectively.  
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5.3.1.1  MASCOT identification of purified native ELDP  

Tryptic peptides identified from HPLC fractions 43 and 47 purified (native peptide), and 

45 (synthetic standard) are shown in Table 5.2A – C. These data include residue numbers 

of the tryptic proET-1 fragments, parent ion m/z (monoisotopic), ion score, peptide 

charge and identification. 

The first peptide fragment identified in both fractions was ELRAEDIMEK, where M 

represents an oxidised methionine residue. Methionine oxidation results in a mass 

increment of 15.995 Da. Fraction 47 also contained non-oxidised form of this fragment. 

The N-terminal fragment of the ELDP (ppET-1[93 – 101]) corresponding to ALENLLPTK 

(m/z at 499.7992+) was not detected in either 43 or 47 fractions but was an abundant 

fragment from the synthetic peptide (ion score 63). 

The second peptide fragment identified with two missed-cleavages was 

ELRAEDIMEKDWNNHK. Fraction 43 contained a precursor ion at m/z 681.9993+ and 

511.7444+, corresponding to oxidised methionine and both oxidation of methionine and 

deamidation of asparagine, respectively. Deamidation of asparagine results in a 

monoisotopic mass increment of 0.984 Da. Fraction 47 contained precursor ions at m/z 

676.6573+ (no modification), m/z 681.9903+ (methionine oxidation), and m/z 687.3213+ 

(both methionine and tryptophan oxidation). 

The third peptide fragment identified was AEDIMEK, which had an oxidised 

methionine in fraction 43 and both oxidised and unoxidised forms in fraction 47.  

The fourth peptide fragment identified with a missed-cleavage was 

AEDIMEKDWNNHK. Two precursor ions were detected at m/z 823.3672+ and m/z 

549.2473+. In addition, fractions 47 also contained the native peptide with no PTMs as 

well as a fragment with both oxidation of methionine and histidine. This fragment was 

also detected with an additional missed-cleavage of lysine at the C-terminal. 

The fifth peptide fragment was a precursor ion at m/z 540.2872+ corresponding to 

CIYQQLVR. This fragment is the closest fragment to the C-terminal of the ELDP 

sequence and was identified in both fractions. 
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Table 5.2: MASCOT identification of tryptic peptides from purified native ELDP fractions (A) 43, (B) 47 and synthetic ELDP standard (C) 45. 

Data show start-end residue masses corresponding to the ppET-1 peptide sequence (ELDP; ppET-1 residues 93 – 166), monoisotopic and 

experimental average masses, charge, score and peptide identification. Underlined M and W indicate oxidation of the corresponding methionine 

and tryptophan, respectively. Underlined N indicates deamidation of asparagine. Bold m/z values correspond to peptide ions that were selected 

for MS/MS to provide data for primary structure determination. 

(A) Purified native ELDP, fraction 43: 

ppET-1 Residues 

Start-End 

Observed mass, m/z 

(Da) 

Experimental Mass 

(MWt expt) 
Charge Score Peptide 

128 – 137 625.308 1,248.602 2 44 ELRAEDIMEK 

128 – 143 
681.990 2,042.948 3 26 ELRAEDIMEKDWNNHK 

511.744 2,042.948 4 12 ELRAEDIMEKDWNNHK 

131 – 137 426.195 850.375 2 26 AEDIMEK  

131 – 143 
823.368 1,644.721 2 61 

AEDIMEKDWNNHK 
549.247 1,644.721 3 36 

131 – 144 

887.414 1,772.814 2 43 AEDIMEKDWNNHKK 

591.942 1,772.805 3 26 AEDIMEKDWNNHKK 

597.277 1,788.810 3 35 AEDIMEKDWNNHKK 

155 – 162 540.287 1,078.560 2 49 CIYQQLVR  
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(B) Purified native ELDP, fraction 47: 

ppET-1 Residues 

Start-End 

Observed mass, m/z 

(Da) 

Experimental Mass 

(MWt expt) 
Charge Score Peptide 

128 – 137 
617.310 1,232.605 2 34 ELRAEDIMEK 

625.308 1,248.602 2 50 ELRAEDIMEK 

128 – 143 

676.657 2,026.950 3 47 ELRAEDIMEKDWNNHK 

681.990 2,042.948 3 21 ELRAEDIMEKDWNNHK 

687.321 2,058.942 3 21 ELRAEDIMEKDWNNHK 

131 – 137 
418.197 834.380 2 47 AEDIMEK  

426.194 850.374 2 26 AEDIMEK 

131 – 143 

815.369 1,628.723 2 34 
AEDIMEKDWNNHK 

543.915 1,628.724 3 28 

549.247 1,644.719 3 39 
AEDIMEKDWNNHK 

823.367 1,644.719 2 35 

554.579 1,660.716 2 23 AEDIMEKDWNNHK 

131 – 144 

879.417 1,756.820 2 56 
AEDIMEKDWNNHKK 

586.61 1,756.808 3 50 

887.415 1,756.815 2 46 
AEDIMEKDWNNHKK 

591.943 1,772.808 3 28 

591.945 1,772.814 3 33 AEDIMEKDWNNHKK 

597.606 1,789.795 3 23 AEDIMEKDWNNHKK 

155 – 162 540.287 1,078.559 2 49 CIYQQLVR  
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(C) Synthetic ELDP, fraction 45: 

ppET-1 Residues 

Start-End 

Observed mass, m/z 

(Da) 

Experimental Mass 

(MWt expt) 
Charge Score Peptide 

93 – 101 
499.798 997.582 2 57 ALENLLPTK 

499.798 997.581 2 18 ALENLLPTK 

93 – 105 721.404 1,440.793 2 64 ALENLLPTKATDR 

93 – 108 
920.997 1,839.979 2 24 ALENLLPTKATDRENR 

614.334 1,839.981 3 

128 – 137 
617.311 1,232.607 2 37 ELRAEDIMEK 

625.308 1,248.601 2 35 ELRAEDIMEK 

128 – 143 

1,014.483 2,026.951 2 46 ELRAEDIMEKDWNNHK 

676.658 2,026.952 3 38 

1,022.482 2,042.949 2 60 ELRAEDIMEKDWNNHK 

511.744 2,042.947 4 25 ELRAEDIMEKDWNNHK 

681.990 2,042.947 3 22 ELRAEDIMEKDWNNHK 

687.321 2,058.942 3 24 ELRAEDIMEKDWNNHK 

1,030.478  2,058.941 2 38 ELRAEDIMEKDWNNHK 

131 – 137 426.195 850.375 2 26 AEDIMEK 

131 – 143 

815.370 1,628.724 2 42 AEDIMEKDWNNHK 

543.915 1,628.724 3 38 

823.367 1,644.720 2 62 AEDIMEKDWNNHK 

549.247 1,644.720 3 37 
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Table 5.2 continued; (C) Synthetic ELDP, fraction 45: 

ppET-1 Residues 

Start-End 

Observed mass, m/z 

(Da) 

Experimental Mass 

(MWt expt) 
Charge Score Peptide 

131 – 143 

554.580 1,660.717 2 33 AEDIMEKDWNNHK 

549.575  1,645.703 2 27 AEDIMEKDWNNHK 

831.364  1,660.714 2 74 AEDIMEKDWNNHK 

131 – 144 

879.417 1,756.820 2 68 AEDIMEKDWNNHKK 

586.614 1,756.820 3 80 

887.415 1,756.815 2 46 AEDIMEKDWNNHKK 

591.943 1,772.806 2 25 

887.415  1,772.815 2 41 AEDIMEKDWNNHKK 

591.945 1,772.814 3 33 AEDIMEKDWNNHKK 

591.945 1,772.813 3 25 AEDIMEKDWNNHKK 

895.412 1,788.810 2 50 AEDIMEKDWNNHKK 

597.278  1,788.811 3 40 

879.910 1,757.805 2 35 AEDIMEKDWNNHKK 

597.606 1,789.795 3 23 AEDIMEKDWNNHKK 

151 – 162 483.618 1,447.833 3 27 LGKKCIYQQLVR 

154 – 162 
575.820 1,149.625 2 25 KCIYQQLVR 

576.314 1,150.614 2 17 KCIYQQLVR 

155 – 162 540.286 1,078.557 2 44 CIYQQLVR  
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5.3.1.2  MASCOT identification of purified native CT-proET-1  

MASCOT identification of CT-proET-1 was only confirmed from HPLC fraction 28. 

Identified tryptic peptides are shown in Table 5.3. No peptide fragments corresponding 

to EDN1 were detected in fraction 29. A precursor ion at m/z 395.2032+, corresponding 

to YVTHNR (ppET-1[204 – 209]) was detected in fraction 31 (P = 0.006). However, 

following an error tolerant search (Creasy & Cottrell, 2002), SSFHDPKLKGKPSRER 

(m/z 625.6743+) containing 4 missed-cleavages was also identified in both fractions 29 

and 31 on re-analysis.  

The first tryptic fragment identified in fraction 28 was SSEEHLRQTRSETMR (m/z 

461.7354+). The ion score assigned by MASCOT was low and therefore the 

identification was not statistically significant. This peptide was also identified in the 

fraction 28 for the synthetic peptide with a low ion score that was insufficient for peptide 

identification (Table 5.3B). However, detection of a smaller fragment, SSEEHLRQTR 

(m/z 414.8783+) with a higher ion score supported the identification of this sequence in 

the synthetic peptide. This sequence corresponds to the proposed N-terminal sequence 

of CT-proET-1. 
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Table 5.3: MASCOT identification of CT-proET-1 tryptic peptides from (A) purified native peptide (fraction 28) and (B) synthetic peptide 

(fraction 28_std). Data shows start-end residue masses corresponding to the ppET-1 peptide sequence (CT-proET-1; ppET-1 residues 169 – 212), 

monoisotopic and experimental average mass, charge, score and peptide identification. Underlined M indicates oxidation of the corresponding 

methionine. Bold m/z values correspond to peptide ions that were selected for MS/MS to provide data for primary structure determination. 

(A) Purified native CT-proET-1, fraction 28 

ppET-1 Residues 

Start-End 

Observed mass, m/z 

(Da) 

Experimental Mass 

(MWt expt) 
Charge Score Peptide 

169 – 183 461.735 1,842.911 4 2 SSEEHLRQTRSETMR 

179 – 187 534.261 1,066.508 2 23 SETMRNSVK 

184 – 196 496.273 1,485.796 3 20 NSVKSSFHDPKLK 

188 – 196 529.786 1,057.557 2 30 SSFHDPKLK 

188 – 201 
528.627 1,582.86 3 60 SSFHDPKLKGKPSR 

396.722 788.393 2 20 SSFHDPKLKGKPSR 

204 – 209 395.204 788.393 2 12 YVTHNR 
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(B) Synthetic CT-proET-1, fraction 28_std  

ppET-1 Residues 

Start-End 

Observed mass, m/z 

(Da) 

Experimental Mass 

(MWt expt) 
Charge Score Peptide 

169 – 178 

 

414.878 1,241.611 3 14 SSEEHLRQTR 

414.878 1,241.611 3 16 SSEEHLRQTR 

169 – 183 616.627 1,846.860 3 7 SSEEHLRQTRSETMR 

176 – 183 496.235 990.455 2 42 QTRSETMR 

179 – 187 526.755 1,051.495 2 16 SETMRNSVK 

184 – 196 743.904 1,485.794 2 25 NSVKSSFHDPKLK 

188 – 194 409.196 816.378 2 23 SSFHDPK 

204 – 209 395.204 788.393 2 12 YVTHNR 
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5.3.2 Verification of ELDP and CT-proET-1 peptide identities 

from the MS/MS spectra 

Both C-terminal (y-ions) and N-terminal (b-ions) fragment ions were obtained from 

MASCOT and y-ions were manually labelled in the MS/MS spectra along with their 

corresponding amino acid residues. This provided amino acid composition, confirming 

the identification of the corresponding peptide sequences with their assigned PTM(s).  

 

5.3.2.1  Evaluation of the MS/MS spectra for purified native ELDP  

  (fraction 43): 

Figure 5.3 illustrates three low-energy CID MS/MS spectra for precursor ions at m/z (A) 

625.3082+, (B) 887.4142+, and (C) 540.2872+, corresponding to ELRAEDIMEK, 

AEDIMEKDWNNHKK and CIYQQLVR, respectively. 

The first tryptic peptide corresponded to ELRAEDIMEK (ppET-1 residues 128 – 137) 

consisted of an oxidised methionine. This was illustrated with a y3 ion at m/z 359.193 

(KEM) (Figure 5.3A). It was 63.998 Da lower than the unmodified methionine residue. 

This was corresponding to a neutral loss of methane-sulphenic acid (CH3SOH) from the 

side chain of methionine sulphoxide. In the spectrum, y2-H2O (m/z 258.144), b6-H2O 

(m/z 696.331), and b7-H2O (m/z 809.415) ions had a neutral loss of H2O (-18 Da) while 

y9-NH3 (m/z 1,039.542) had a neutral loss of NH3 (-17 Da).  To note, there were also a 

few unassigned peaks at m/z 529.024, 584.365, 593.522, and these are likely to belong 

to contaminating peptides. 

The MS/MS spectrum of AEDIMEKDWNNHKK (Figure 5.3B) had a dominance of y-

ions with almost full identification of the amino acid residues in the peptide sequence. 

This spectrum also contained unknown abundant peaks whose identity could not be 

confirmed by manual inspection of the MS/MS spectrum. 

Figure 5.3C shows the MS/MS spectrum of CIYQQLVR, which represents sequence 

closest to the C-terminal of ELDP peptide that could be identified after tryptic digestion. 
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ELDP (ppET-1[128 – 137]): ELRAEDIMEK

C-Term     K E M I D E A R L E      N-Term

ELDP (ppET-1[131 – 143]): AEDIMEKDWNNHKK

C-Term    K K H N N W D K E M I D E A N-Term

(A)

(B)

m/z= 887.4142+

m/z= 625.3082+
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Figure 5.3: MS/MS spectra of purified/native ELDP (fraction 43) precursor ions at 

m/z (A) 625.308
2+

, (B) 887.414
2+ 

and (C) 540.287
2+

. MS/MS spectra were manually 

annotated for C-terminal fragment ions (y-) and N-terminal fragment ions (b-) 

confirming the sequence identities of the precursor ions obtained from MASCOT. The 

mass differences between the y-ion series indicate amino acid residues of the 

corresponding fragment ions, which are shown above the spectrum. Annotations of –

NH
3
 or H

2
O at b- and y-ions represent a loss of ammonia or water at the corresponding 

fragment ions with a loss of 17 and 18 Da, respectively. 

 

  

ELDP (ppET-1[155 – 162]): CIYQQLVR

C-Term     R V L Q Q Y I C     N-Term
m/z= 540.2872+

(C)
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5.3.2.2 Evaluation of the MS/MS spectra for purified native CT-proET-1 

(fraction 28): 

Figure 5.4 illustrates four MS/MS spectra (A – D) showing precursor ions at m/z (A) 

461.7354+, (B) 534.2612+, (C) 528.6273+ and (D) 395.2042+. The MS/MS spectrum 

shown in Figure 5.4A corresponds to the N-terminal sequence of CT-proET-1, 

SSEEHLRQTRSETMR with 2 missed-cleavages. The spectrum contained highly 

abundant background ions, resulting in a low signal-to-noise ratio. Of note, the quality 

of the spectrum was poor and the ion score obtained from MASCOT was not significant. 

However, despite the poor quality spectrum, isomeric leucine was identified (m/z 

113.084) correctly. The identification of the peptide accounted mostly doubly charged 

y-ions. These were y12-MH2
2+ (EHLRQTRSETMR), y10-MH2

2+
, y9-MH2

2+
, and y8-

MH2
2+. From the N-terminal fragment ions, only b2 ion corresponding to serine (m/z 

175.071) was detected. However, this ion could also be y1 ion corresponding to arginine 

(m/z 175.119). 

This fragment was also found in CT-proET-1 synthetic standard with a precursor ion at 

m/z 616.6272+ containing a deamidated glutamine residue (see Table 5.3B). The signal 

intensity was low resulting in a low ion score. Moreover, there were two shorter peptides 

SSEEHLRQTR (m/z 414.8783+) with deamidation of glutamine and QTRSETMR (m/z 

496.2352+) with the N-terminal glutamine converted to pyro-glutamic acid. These 

fragments had better ion scores than the longer peptide. However, neither of these were 

detected in the sample of purified native peptide. 

Figure 5.4B shows the MS/MS spectrum of a precursor ion at m/z 534.2612+, 

corresponding to SETMRNSVK with an oxidised methionine residue. There was a 

neutral loss of 64 Da (HSOCH3) from MetS. Although the peak at m/z 502.406 was 

unassigned, it may represent the neutral loss of 64 Da (32 m/z difference x 2 charges). 

Figure 5.4C shows the MS/MS spectrum of a precursor ion at m/z 528.6273+, which 

corresponded to SSFHDPKLKGKPSR. 

 Figure 5.4D shows the MS/MS spectrum of a precursor ion at m/z 395.2042+. Although 

none of the b-ions were detected in this spectrum dominated C-terminal ions generated 

a high quality spectrum with full identification of the peptide sequence corresponding to 

YVTHNR. The most abundant peak generated for y4 ion at m/z 527.269 corresponded 

to RNHT.  
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CT-proET-1(ppET-1[169 – 183]):SSEEHLRQTRSETMR

C-Term     R M T E S R T Q R L H E E S S N-Term

(A)

(B)

CT-proET-1(ppET-1[179 – 187]): SETMRNSVK

C-Term     K V  S  N R  M T  E  S     N-Term

m/z= 461.7354+

m/z= 534.2612+  
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Figure 5.4: MS/MS spectra of purified/native CT-proET-1 (fraction 28) precursor ions 

at m/z (A) 461.735
4+

, (B) 534.261
2+

, (C) 528.627
3+

 and (D) 395.204
2+

. MS/MS spectra 

were manually annotated for C-terminal fragment ions (y-) and N-terminal fragment 

ions (b-) confirming the sequence identities of the precursor ions obtained from 

MASCOT. The mass differences between the y-ion series indicate amino acid residues 

of the corresponding fragment ions, which are shown above the spectrum. Annotations 

of –NH
3
 or H

2
O at b- and y-ions represent a loss of ammonia or water at the 

corresponding fragment ions with a loss of 17 and 18 Da, respectively.  

CT-proET-1 (ppET-1[204 – 209]): YVTHNR

C-Term     R  N  H  T  V  Y     N-Term

(D)

m/z= 395.2042+

CT-proET-1(ppET-1[188 – 201]): SSFHDPKLKGKPSR

C-Term     R  S P  K G  K L  K  P  D  H  F  S  S N-Term

(C)

m/z= 528.6273+
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5.4  DISCUSSION 

The aim of this chapter was to verify the identities of the purified native proET-1 

peptides that were initially characterised using a combination of IEC, HPLC and 

immunoassay (Chapter 4). Here, a mass spectrometric approach was pursued with an 

initial series of experiments using synthetic peptide standards for optimisation of the 

methodology. Native proET-1 peptides purified from EA.hy 926 conditioned medium 

were analysed according to the methodology as shown in Figure 5.2. 

 

The identity of the undigested native purified NT-proET-1 peptide (fraction 41) was not 

confirmed using mass spectrometry. Nevertheless, the same methodology identified this 

EDN1 derived peptide from fraction 46, which represented the synthetic standard in 

medium and in the calibration curve prepared with NT-proET-1 synthetic standard. All 

samples were run with the same analysis parameters, suggesting that the problem was 

related to the purified sample itself rather than being associated with the methodology. 

The main limitation for identification of NT-proET-1 was insufficient peptide, so that 

the levels were below the detection limit of the method. This is likely the result of: (1) 

low levels of NT-proET-1 in the EA.hy 926 conditioned medium; (2) poor recovery 

following IEC; (3) degradation during sample concentration. Both HPLC fractions were 

dried overnight under vacuum with centrifugal force with SpeedVac (at room 

temperature), and stored at -80°C until the day of proteomic analysis.  Degradation 

further reduces peptide levels and this is likely to contribute to poor recovery and 

identification of NT-proET-1 peptide. The fact that fraction 46 was dried in the same 

way, similar rate of peptide loss was expected from the native/purified sample. 

However, the final concentration of the native NT-proET-1 following reconstitution in 

0.1% TFA was 132-fold less than the synthetic standard; 89 and 11,774 fmol/µl, 

respectively. This may result in differences in the rate of recovery. Thus, the resulting 

peptide concentration may not be sufficient or may be lower than the detection limit 

(<62.5 fmol/µl). In contrast, fraction 46 could be degraded to a lesser extent, in which 

the final levels were still sufficient for its identification.  
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Analysis of full-length ELDP and CT-proET-1 with an analytical UPLC BEH130 C18 

column (1.7 µm, 100 µm x 100 mm) produced poor ionisation and fragmentation. Due 

to longer amino acid sequences and hydrophobicity, elution from the analytical column 

was not sufficient for analysis. In principle, this directly affects the number of peptides 

being subjected to ESI, which then directs ions into the LTQ before being sent to the 

Orbitrap for mass analysis (Schwartz et al., 2002).  

The first step for ELDP and CT-proET-1 identification involved trypsin digestion. This 

was followed by desalting prior to MS analysis. Buffers containing salts compromise 

ESI-MS performance leading to ion suppression. Following solvent exchange and 

concentration, samples were analysed using LTQ Orbitrap coupled online to a nanoflow 

UPLC equipped with a C18 column. Peptide sequences of ELDP and CT-proET-1 were 

manually verified from the MS/MS spectra (Figures 5.3 and 5.4). The relative abundance 

of fragment ions was normalised according to the most abundant fragment ion in the 

same MS/MS spectrum. Co-elution of contaminating or unknown fragment ions can 

result in ion suppression, and this reduces the intensity of fragment ions. This presents 

difficulties for detection of low abundance peptides particularly those closer to the 

signal-to-noise ratio. The presence of an intense contaminating fragment ion was an 

associated limitation for identification of less abundant proET-1 fragment ions (Figures 

5.3A and 5.4B).  

The N-terminal fragment of synthetic ELDP corresponded to ALENLLPTK (ppET-1[93 

– 101]). This fragment was only identified in the synthetic standard (fraction 45) (Table 

5.2C) but not in the native peptide samples (fractions 43 and 47). Comparison of the 

XICs between the synthetic and the native peptide samples failed to identify a precursor 

ion at m/z 499.7982+, which corresponded to ALENLLPTK (data not shown). Moreover, 

the intensity of the purified/native samples was very low for this precursor ion 

suggesting that the peptide is either not sufficiently abundant for detection or not present. 

However, because the purification procedure for ELDP (and CT-proET-1) focussed on 

recovery of peptides with high pI, it is likely that contaminating peptides would be rich 

in lysine and arginine. Hence, such contaminants would have competed as substrates for 

trypsin or potentially acted as trypsin inhibitors. This could affect digestion efficiency, 

resulting in longer peptides and these may not have been recovered from the trapping 

column.  
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ELDP contains an evolutionary conserved endothelin-like domain (ppET-1[109 – 123]). 

Importantly, the positioning of the first four cysteine residues was exactly the same as 

in ET-1 (see Tables 1.1 and 1.6). Based on this similarity, disulphide bonds have been 

proposed to be formed between ppET-1 residues 109 – 123 and 111 – 119 

[C109QC111ASQKDKKC119WNFC123QAGK] without supporting experimental 

evidence (Uniport). Correct disulphide linkages are likely important for correct folding 

and structural stability (Zhang et al., 2011). Therefore, a biological function associated 

with this peptide is likely to be preserved with correct folding. Thus, it was particularly 

important to show whether purified/native ELDP samples were forming these two intra-

linked disulphide bonds as expected. In addition, ELDP consists of two more cysteine 

residues in its C-terminal end that were also likely to form disulphide bridges between 

Cys148 – Cys155. In order to confirm the presence of disulphide bonds, ELDP analysis 

was carried out under non-denaturing conditions keeping cysteine residues intact. 

However, MASCOT database was unable to identify a tryptic peptide belonging to this 

region, either from the purified/native or the synthetic ELDP sample. In order to ensure 

that a peptide belonging to this region was absent from the MS/MS spectra, precursor 

ion masses (calculated from ProteinProspector) of both the full-length fragment 

containing non-cleaved DKK residues (CQCASQKDKKCWNFCQAGK) and the 

fragment with cleaved DKK residues (CQCASQK−−−CWNFCQAGK) were searched 

from the XICs. Searching further precursor ion masses with missed-cleavages (e.g. 

ENRCQCASQKDKKCWNFCQAGK, ENRCQCASQK−−−CWNFCQAGK, and 

ENRCQCASQK−−KCWNFCQAGK) and considering possible amino acid 

modifications such as deamidation of an asparagine (N) and glutamine (Q) residues, 

both individually and in combination failed to detect potential peptides. However, none 

of the calculated masses were detected for the purified native sample of ELDP or the 

synthetic peptide standard. In part, this might be explained by (i) inaccessibility of 

trypsin into the core of ELDP for cleavage; (ii) insufficient recovery of the resulting 

peptide from the separation column; or (iii) the presence of unexpected modifications. 

Moreover, it is well known that cysteine residues yield limited fragmentation and 

disulphide bonds are generally resistant to cleavage by low collision energies using CID 

fragmentation (Loo et al., 1990).  Furthermore, MASCOT and Sequest rely on 

fragmentation efficiency of peptides and this limits identification of peptides with 

disulphide bridges under non-denaturing conditions. Possibly, these factors are likely to 

contribute to the inability to identify this region of the ELDP peptide sequence. On the 
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other hand, synthetic ELDP was shown to naturally form three disulphide bonds on 

refolding at pH 8 (MWt 8,636.32 compared to 8,642.37 for unfolded peptide in which 

the mass difference of 6.05 Da represents loss of six hydrogens).  

In support of the identification of ELDP sequence, the processing is likely to occur at 

the Lys-Arg and Arg-Arg at ppET-1 positions 91/92 and 167/168, respectively. 

Although ELDP sequence has four other processing sites, these were unlikely to yield a 

cleaved peptide. Cleavage at these other dibasic processing sites (Lys-Lys and Arg-Lys) 

occurs less frequently. In addition, the specificity of the PCs to cleave at these dibasic 

processing sites can be influenced by the conformation and the characteristics of the 

amino acid residue adjacent to the dibasic processing site (e.g. cleavage is less likely to 

occur if the next residue is proline). Secondary and tertiary structures influence 

accessibility of the PCs for cleavave. For example, cleavage is less likely to occur if the 

dibasic processing site is within a disulphide bond, making the site inaccessible by the 

proteolytic enzyme. This is likely to be the case for ppET-1 residues 127/128 (Lys-Lys) 

and 153/154 (Lys-Lys).  

All peptide fragments with a methionine residue were oxidised to methionine sulphoxide 

(MetSO), resulting in a mass increment of 16 Da. Methionine oxidation can display a 

neutral loss of 64 Da, corresponding to methane-sulphenic acid (CH3SOH). The MS/MS 

spectrum of a precursor ion at m/z 625.3082+ (ELRAEDIMEK) (Figure 5.3A) and other 

ions at m/z 625.3082+, 681.9903+, 823.3682+, 549.2473+ and 887.4142+ (data not shown) 

all displayed this characteristic loss. Although oxidation of methionine is among the 

most common PTM, it could also be a potential by-product resulting from the 

purification/digestion and/or storage conditions. Oxidation to MetSO, 2-oxo-histidine, 

and hydroxytryptophan usually occur as a result of sample handling following protein 

separation (Perdivara et al., 2010). MASCOT results have shown more PTMs to be 

associated with fraction 43, in comparison to fraction 47. This was in agreement with 

previous HPLC elution profiles in which fraction 43 was eluted earlier that fraction 47 

(Chapter 4, Figure 4.3). Oxidation can alter folding and structural stability of a protein 

(Torchinsky, 1981). In addition, deamidation of asparagine or glutamine may change 

the conformation by transforming a neutral amide side chain to a negatively 

charged carboxylic acid (-NH2→-CO). Oxidised peptide becomes more polar 

(hydrophilic) than the unoxidised peptide and as a result elutes earlier. Similarly, 

deamidated peptide elutes earlier than the unmodified peptide.  
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CT-proET-1 peptide sequence was confirmed by detection of both the N-terminal and 

C-terminal fragment ions corresponding to SSEEHLRQTRSETMR (ppET-1[169 – 183]) 

and YVTHNR (ppET-1[204 – 209]), respectively (see Figure 5.4). The identification of 

native CT-proET-1 was only confirmed from fraction 28 without identification of an 

EDN1 peptide from fractions 29 and 31. On the day of analysis, final concentration of 

CT-proET-1 fractions 28, 29 and 31 (51.9, 60.3, and 43.3 fmol/µl, respectively) were 

~2-fold less than the optimal sample concentration (100 fmol/µl), and this as a result can 

limit the identification of less abundant fragments ions.  

The MS/MS spectrum for SSEEHLRQTRSETMR had poor resolution for both the 

synthetic and native CT-proET-1 samples (Figure 5.4A). This could result from: (1) 

inefficient ionisation of the adjacent serine and acidic glutamine residues. In particular, 

non-volatile materials (e.g. endogenous metabolites) and molecules with a higher mass 

(Annesley, 2003) contribute to ion suppression. More polar samples are also more 

sensitive to ion suppression (Bonfiglio et al., 1999). (2) Poor recovery following 

desalting. (3) Inefficient elution from the separation column. The theoretical pI of this 

peptide was calculated as 6.5. The analytical column is packed with silica particles, 

which are stable under acidic conditions. Yet, the acidic peptide may not be eluted 

effectively under acidic conditions. (4) Low ion scores from MASCOT could simply 

suggest low abundance. Moreover, considering low ion scores and poor quality spectra, 

the difference between the experimental (1,842.911) and the calculated mass 

(1,842.923) was -0.118 Da, and the determined sequence was within a -6.43 ppm 

precision.  

In summary, accessibility of peptides to trypsin for proteolytic cleavage, solubility and 

ionisation efficiency (nebulisation) of the tryptic digest combine to influence peptide 

fragmentation and detection using mass spectrometry. Differences in these factors may 

produce different signal intensities and affect the quality of an MS/MS spectrum. The 

results showed close agreement with experimental and calculated MWts showing correct 

identification of proET-1 peptide fragments. 

In conclusion, these data confirm that the peptides ELDP and CT-proET-1 identified by 

sandwich immunoassay and purified from conditioned medium of EA.hy 926 cells are 

authentic proET-1 fragments. For CT-proET-1 (ppET-1[169 – 212]) the MS data fully 

confirm for the first time the identity of this peptide. For the novel proET-1 derived 
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peptide ELDP (ppET-1[169 – 212]), the MS data in combination with immunoassay results, 

and elution profile on HPLC relative to synthetic peptide standard all provide evidence 

of the correct identification of this peptide. But key structural features such as the 

disulphide bonds of the endothelin-like domain sequence could not be confirmed. For 

NT-proET-1 isolation of further peptide is required to confirm the sequence of this 

peptide and to determine the reasons underlying the differences in HPLC elution 

characteristics of the purified native peptide and the synthetic standard. 



 

164 

 

 

 

 

CHAPTER 6 

Evaluation of ELDP and CT-proET-1 as biomarkers of 

cardiovascular and renal disease 
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6.1  INTRODUCTION  

6.1.1  Metabolism and clearance of ET-1 

ET-1 has a short circulating half-life (30 – 60 s) (Gasic et al., 1992; Corder & Vane, 

1994). Rapid clearance and low circulating levels of ET-1 results from a combination of 

factors: (i) most ET-1 is released abluminally (Wagner et al., 1992) and then acts in a 

paracrine or autocrine manner on endothelial and smooth muscle cells; (ii) binding to 

ETB receptors that are primarily located in the pulmonary vascular endothelium accounts 

for the majority (53%) of clearance (Wagner et al., 1992; Dupuis et al., 1996b), but also 

contributing to clearance from the kidney; and (iii) degradation by NEP-24.11 (Abassi 

et al., 1992; Vijayaraghavan et al., 1990; D'Orléans-Juste et al., 2003). Therefore, 

measuring plasma concentrations may not correctly reflect ET-1 biosynthesis as this 

mainly reflects the spillover of total synthesis (Dupuis et al., 1996). There is a well-

coordinated regulation between biosynthesis and clearance. 

 

6.1.2 Physiological role of ET-1 in cardiovascular and renal 

function 

Physiological actions of ET-1 are mediated by activation of ET receptors, ETA and ETB. 

ETA receptors predominate on the underlying VSMC throughout the cardiovascular 

system and mediate vasoconstriction. ETB receptors are less abundant (15%) also 

mediate vasoconstriction (Davenport & Maguire, 1994; Haynes et al., 1995). In contrast, 

in the renal system, ETB receptors predominate and mediate vasodilatation, natriuresis 

and diuresis (Davenport & Maguire, 2006).  

Endothelial cell-specific deletion of ETB results in impaired clearance of exogenous ET-

1 however, without increasing blood pressure (BP) (Bagnall et al., 2006).  In contrast, 

inner medullary collecting duct (IMCD) specific deletion of ETB results in salt-sensitive 

hypertension without altering the clearance of ET-1 (Bagnall et al., 2006; Ge et al., 

2006). Therefore, these results suggested that while endothelial ETB receptors mainly 

contribute to clearance, IMCD ETB receptors mediate natriuretic action of ET-1. Some 

studies that defined the role of ET-1 for the maintenance of vascular tone and BP are 

briefly explained in the next section. 
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6.1.2.1  Effects of ET-1 in the regulation of basal vascular tone  

In healthy man, brachial artery infusion of ET-1 produces concentration-dependent 

vasoconstrictor and pressor responses. After infusion, an initial transient vasodilatation 

[indicated by increased forearm blood flow (FBF)] was followed by a slowly developing 

but sustained vasoconstriction that lasted for 2 h (Clarke et al., 1989; Kiowski et al., 

1991). In general, while selective ETA (BQ-123) or ETA/B receptor (TAK-044) 

antagonism resulted in vasodilatation (minimal) and reduced BP (Haynes, 1995; Haynes 

et al., 1996; Schmetter et al., 1998; Hand et al., 1999; Verhaar et al., 1998), selective 

ETB receptor antagonism caused vasoconstriction (Spratt et al., 2001). This suggested 

that endogenous ET-1 contributes to basal vascular tone by mediating vasoconstriction 

through ETA receptor activation and that selective ETA receptor antagonists could have 

superior therapeutic benefits.  

 

6.1.2.2  Effects of ET-1 in renal physiology and haemodynamics 

ET-1 is synthesised by most renal cell types. In pig, the synthesis of ET-1 was shown to 

be higher in the IMCD than any other organ (Kitamura et al., 1989). Renal vasculature 

is also more sensitive to ET-1 than other vascular beds (Pernow et al., 1989).  

Exogenous ET-1 at low concentrations reduced renal plasma flow (RPF) and Na+ 

excretion without having an effect on BP. At higher concentrations, ET-1 reduced 

glomerular filtration rate (GFR) and increased renal vascular resistance (Weitzberg et 

al., 1991) (Table 6.1). Physiological actions of ET-1 (at low and high doses) differed 

depending on the experimental model, receptor localisation, and relative subtype 

abundance. Selective ETA antagonism (BQ-123) in chronic kidney disease (CKD)  

patients increased renal blood flow (RBF), reduced BP and effective filtration fraction 

(FF) suggesting ETA mediated preferential efferent arteriolar constriction without 

changing GFR (Goddard et al., 2004). Selective ETB receptor antagonism (BQ-788) 

caused renal vasoconstriction both in chronic renal failure and in healthy controls 

(Goddard et al., 2004). The physiological role of ET-1 and its receptors in renal system 

were defined by specific knockout (KO) studies and some of these results are 

summarised in Table 6.2.   
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Table 6.1: Haemodynamic effects of exogenous ET-1 in healthy man. BP = blood 

pressure, GFR = glomerular filtration rate, FBF = forearm blood flow, FF = filtration 

fraction, RBF = renal blood flow, RPF = renal plasma flow, HR = heart rate, CO = 

cardiac output, MAP = mean arterial blood pressure. 

Doses of 

exogenous ET-1 

administered in 

the forearm of 

healthy man 

Effects of ET-1 Reference(s) 

<1 pmol/kg/min 

● Decreased Na+ excretion by 36%, 

without having an effect on systemic 

or renal haemodynamics. 

Rabelink et al., 1994 

 

2.5 pmol/kg/min 

● Balanced GFR, thus relatively 

constant FF.  

● Increased RBF and induced 

natriuresis and diuresis by inhibiting 

apical Na+ and water reabsorption. 

Kaasjager et al., 1995 

 

1.5 and 3 

pmol/kg/min 

● Decreased HR and CO, increased 

systemic vascular resistance and 

impaired left and right ventricular 

diastolic filling.  

Kiely et al., 1997 

 

 

≤4 pmol/kg/min ● Reduced FBF and increased MAP. Haynes & Webb, 1998 

4 pmol/kg/min 

● Reduced RPF and GFR and 

increase renal vascular resistance. 

● Increased glomerular capillary 

pressure and MAP. 

● Reduced FF. 

● Reduced urinary Na+ and water 

excretion (urine volume). 

Weitzberg et al., 1991 

Vuurmans et al., 2004 

Sørensen et al., 1994  

Rabelink et al., 1994 
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Table 6.2: Physiological role of ET-1 in the regulation of blood pressure and renal function: A perspective from collecting duct (CD) 

specific knockouts (KO) of ET-1, ETA and ETB receptors. 

Model of study Effects of ET-1 and ETA/ETB receptors Reference(s) 

CD ET-1 KO 

mice 

● Salt-sensitive hypertension in which high salt diet further increased BP.  

● Amiloride, which is a direct inhibitor of epithelial Na+ channel (ENaC), partly restored 

BP. This indicated that Na+ epithelial channel is involved in regulation of Na+ excretion. 

● Impaired ability to excrete Na+ and acute water load. Increased arginine vasopressin 

(AVP)-induced cAMP accumulation. 

Ahn et al., 2004 

Kurihara et al., 1994 

Kisanuki et al., 2010 

Ge et al., 2005a 

CD ETA KO 

mice 

● Normal BP and urinary Na+ excretion even after a high salt diet. 

● Reduced water reabsorption associated with lower AVP-stimulated IMCD cAMP 

accumulation. Increased diuresis after water load. 

Ge et al., 2005b 

Tomita et al., 1993 

CD ETB KO rats ● Salt-sensitive hypertension that is partly restored with amiloride. ETB was suggested to 

regulate Na+ excretion at the epithelial Na+ channel in CD cells.  

● Increase in BP was smaller (50%) in comparison to CD ET-1 KO and combined ETA/B 

KO. 

Gariepy et al., 2000 

Webb et al., 1998 

Ge et al., 2006; 2008 

Schneider et al., 2008 
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6.1.3 ELDP and CT-proET-1 as biomarkers of vascular and 

renal disease  

6.1.3.1  Chronic heart failure 

Plasma levels of ET-1 are elevated in patients with heart failure (HF) (Stewart et al., 

1992; Rodeheffer  et al., 1992; McMurray et al., 1992) and in experimental models (e.g. 

dogs) (Motte et al., 2003) through increased ET-1 synthesis by cardiomyocytes, vascular 

endothelial cells and cardiac fibroblasts (Porter & Turner, 2009). Plasma levels of ET-1 

directly correlate with pulmonary artery pressure (Moraes et al., 2000). ET-1 expression 

is increased in lung tissue and in the circulation of patients with pulmonary artery 

hypertension (PAH) (Giaid et al., 1993; Bauer et al., 2002). In contrast, hypertensive 

patients had lower ET-1 levels with the exception of black Africans (Ergul et al., 1996). 

 

6.1.3.2  Chronic kidney disease 

Renal ET-1 production is upregulated in CKD (Orisio et al., 1993). Increased plasma 

(Goddard et al., 2007) and urinary (Dhaun et al., 2009) ET-1 levels correlate with 

declining renal function measured as estimated GFR (eGFR). Moreover, urinary ET-1 

excretion is independent of plasma ET-1 concentrations (Serneri et al., 1995). It is 

mainly derived from renal tubular secretion and reflects renal ET-1 production (Benigni 

et al., 1991). Thus, urinary ET-1 excretion was suggested as a potential biomarker for 

renal disease (Ohta et al., 1991).  

CKD is strongly associated with increased cardiovascular disease risk (Go et al., 2004). 

According to the National Kidney Foundation (USA), classification of CKD is based on 

albumin-creatinine ratio in spot urine and eGFR from serum creatinine measurements 

(National Kidney Foundation, 2002).  

Proteinuria is a risk factor associated with progression of renal disease (Lea et al., 2005) 

and reported as a marker of renal failure in CKD (Dhaun et al., 2011).  Increased ET-1 

production in CKD contributes to excessive protein filtration (increased protein 

excretion) through its haemodynamic effects leading to increased glomerular capillary 

pressure via ETA mediated renoconstriction of efferent arterioles (Barton, 2008) and 

glomerular permeability (Saleh et al., 2010).  

 

http://www.sciencedirect.com/science/article/pii/S0163725809000965#bib219
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6.1.4  Hypothesis and aims 

Despite strong evidence that ET-1 is involved in cardiovascular and renal disease 

pathology, plasma measurements of ET-1 have a number of limitations (described in 

section 6.1.1) and have yielded inconsistent findings (Schiffrin et al., 1997; Goddard & 

Webb, 2000). Early identification of these diseases still remains a challenge. Hence, 

stable fragments of proET-1 synthesis may have greater utility over current markers for 

earlier diagnosis, assessing disease progression and treatment outcomes, and may 

provide a non-invasive measure of cardiovascular function that directly reflects BP or 

cardiac changes. Therefore, the aim of this chapter was to (i) identify stable proET-1 

peptide fragment(s) as alternative markers of ET-1 synthesis and (ii) test their potential 

as markers of cardiovascular and renal diseases. Accordingly, to test this hypothesis, 

initially clearance rates in rats, and the stability of proET-1 peptides were evaluated. 

Their usefulness as biomarkers of cardiovascular and renal disease was then assessed 

using samples collected in four studies:  

Study 1: The effects of TNF-α infusion on proET-1 levels in healthy man. 

Study 2: ProET-1 levels in mild/pre-hypertension and in chronic HF. 

Study 3: ProET-1 levels in CKD. 

Study 4: The effects of sitaxentan on plasma concentrations of proET-1 

peptides. Assess correlation of proET-1 peptide levels with functional 

parameters that were previously reported in Dhaun et al., 2011, 2013. 
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6.2  METHODS 

6.2.1  Stability and metabolism of proET-1 peptides 

Clearance and metabolism of proET-1 peptides were evaluated using synthetic NT-

proET-1 (ppET-1[18 – 50]), ELDP (ppET-1[93 – 166]) and CT-proET-1 (ppET-1[169 – 212]). 

 

6.2.1.1  Clearance rates of proET-1 peptides in vivo in rat circulation  

Four male Wistar rats (Charles River UK Limited) with a mean ± s.e.m weight of 345 ± 

6 g were anaesthetised with sodium thiopentone intraperitoneally (i.p.) (120 mg/kg). 

Polyethylene catheters (PE-50) were inserted into the left carotid artery for blood 

collection. A 25G needle was attached to the PE-50 catheter containing saline. 

A mixed peptide solution containing 1 nmol/ml of each proET-1 peptide (NT-proET-1, 

ELDP and CT-proET-1) was prepared in 0.9% NaCl/0.1% BSA and filtered (0.2 µm) 

before use. An initial blood sample (1 ml) was collected at -5 min at rest, before injecting 

the proET-1 peptide solution. A bolus dose containing 1 nmol/kg of each proET-1 

peptide was administered intravenously (i.v.) into the femoral vein.  

After injection, arterial blood samples (500 µl) were collected through the carotid artery 

at 0.5, 1, 2, 5, 10, 20 and 40 min into chilled 1.5 ml microcentrifuge tubes containing 50 

Units/ml of heparin as an anticoagulant. Samples were kept on ice until the end of 40 

min. Plasma was then collected after centrifugation of samples at 12,000 rpm for 2 min 

at 4°C and transferred into fresh 1.5 ml microcentrifuge tubes avoiding red blood cell 

contamination. Small aliquots of samples were stored at -80ºC for subsequent analyses. 

NT-proET-1, ELDP and CT-proET-1 were assayed using magnetic bead-based 

multiplex assays using Luminex methodology (see Chapter 2, section 2.2.3).  
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6.2.1.2 Stability of proET-1 peptides in human whole blood and 

plasma  

Blood was withdrawn from a forearm vein of a healthy volunteer and collected into a 

syringe containing heparin (50 Units/ml). In order to carry out plasma incubations of 

synthetic peptides, one third of whole blood was immediately separated into chilled 2.0 

ml microcentrifuge tubes and centrifuged at 12,000 rpm for 2 min at 4°C to collect 

plasma. Heparin anticoagulated plasma was separated into fresh 2.0 ml microcentrifuge 

tubes and kept on ice.  

Peptide mix (1 nmol/ml) stock solution was diluted in freshly prepared saline (0.9% 

NaCl/0.1% BSA, 0.2 µm filtered before use). This interim dilution was added into the 

remaining whole blood and to the plasma giving a final concentration of 500 fmol/ml of 

each proET-1 peptide. The tubes were mixed gently by inverting several times. Aliquots 

of whole blood (750 µl) and plasma (250 µl) were separated into 1.5 ml microcentrifuge 

tubes and incubated at room temperature (22 – 24°C) and on ice (4°C) for 5, 10, 20, 40, 

and 60 min. At the end of each time point, whole blood was centrifuged and the separated 

plasma samples were stored on ice until the end of incubation.  Samples had no visible 

evidence of haemolysis. Samples from the plasma incubations were frozen immediately 

after each incubation time. All samples were stored at -80°C. Concentrations of proET-

1 peptides were determined using double-site sandwich based immunoassay (Chapter 2, 

section 2.2.2.4). 
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6.2.2  Biomarker investigation study details 

6.2.2.1  The effects of TNF-α infusion on ELDP and CT-proET-1 levels  

Collection of samples used for this investigation was described in Patel et al., 2002. ET-

1 release in response to TNF-α infusion was studied in 6 healthy subjects (mean age 56 

years; male:female 5:1). Briefly, FBF and plasma flow responses to acetylcholine (ACh) 

and sodium nitroprusside (SNP) were monitored before and during TNF-α infusion over 

6 h. TNF-α was administered to the brachial artery aiming to achieve a local 

concentration of 200 pg/ml (in venous blood, observed concentration was 40 pg/ml). 

Arterial and venous blood samples were collected at baseline and during TNF-α infusion 

for up to 300 min.  

 

6.2.2.2  Heart failure 

Blood samples from patients with chronic stable HF study were collected at the London 

Chest Hospital, Barts Health NHS Trust with the approval of the local research ethics 

committees and the written informed consent of each subject (East London and the City 

Research Ethics Committee – reference number 07/Q0604/24). The levels of proET-1 

peptides in patients with chronic HF (HF, n = 24) were compared with untreated subjects 

with pre-hypertension/mild hypertension (pre-H, n = 24) collected in the Centre for 

Clinical Pharmacology, William Harvey Research Institute, Charterhouse Square (East 

London and the City Research Ethics Committee – reference number 07/Q0605/44). 

Subject demographic data are shown in Table 6.3. After patients had been at rest for at 

least 15 min, blood samples were collected into pre-chilled EDTA tubes, placed on ice 

and centrifuged within 10 min using a cooled centrifuge (4000 rpm for 10 min at 4ºC). 

Supernatant plasma was stored at -80ºC until immunoassay. 
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Table 6.3: Demographic and clinical characteristics of patients in heart failure study. 

Values are given as mean ± s.e.m. NA indicates measurements for which data was not 

available. 

Heart Failure   Pre-hypertension 

n      24    24 

Age (years)     70 ± 2.0   55.4 ± 1.5 

Male gender     20 (80%)    24 (100%) 

Weight (kg)     85.7 ± 4.3   80.4 ± 3.0 

Body Mass Index (kg/m2)   29.6 ± 1.2   26.7 ± 0.5 

Systolic Blood Pressure (mmHg) 126.3 ± 3.6   144.8 ± 2.1 

Diastolic Blood Pressure (mmHg)  71.0 ± 2.0   87.1 ± 1.3 

Heart rate (bpm)   64.0 ± 1.4   69.3 ± 2.0 

NYHA chronic HF Class II/III  20 (80%)/ 4 (20%)  NA 

LVEF (%)    31.2 ± 2.0   NA 

NT-proBNP (pg/ml)   1970 ± 288   NA 
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6.2.2.3  Chronic Kidney Disease   

Plasma and urine samples were obtained through collaboration with Prof. David J. Webb 

at the University of Edinburgh. CKD patients classified as stage 1 to 5 based on the 

Kidney Disease Outcome Quality Initiative (K/DOQI) classification criteria (National 

Kidney Foundation, 2002) had renal disease without co-existing morbidities. Venous 

plasma and urine samples were collected after a 12 h fast and stored frozen at -80ºC until 

ELDP and CT-proET-1 analysis. Details of these patients and sample collection have 

been described previously (Lilitkarntakul et al., 2011). 

 

6.2.2.4  Proteinuric CKD receiving renoprotective treatment  

Plasma and urine samples were from a clinical trial conducted by Dhaun et al., 2011, 

2013. This  was a randomized, double-blind, three-way crossover study in 27 patients 

with proteinuric CKD, which investigated the effects of sitaxentan (Thelin, Encysive 

Pharmaceuticals), nifedipine and placebo on proteinuria, BP, arterial stiffness and urine 

ET-1/creatinine (renal ET-1 production). Cardiovascular indices were monitored at 

baseline, week 3, and week 6 of each treatment period and samples were collected for 

biochemical analyses. Oral administration of sitaxentan (100 mg/day) (Dhaun et al., 

2007a) and nifedipine (30 mg/day) were as once daily doses. Both were recommended 

therapeutic doses for human. 

 

  

http://www.cvs.ed.ac.uk/biblio/author/1961
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6.2.3 Evaluation of CT-proET-1 antibodies for biomarker 

investigations 

Sheep were immunised with N-terminal (ppET-1[169 – 179]) and C-terminal (ppET-1[204 – 

212]) CT-proET-1 peptides to produce highly specific and sensitive antibodies for capture 

and detection with low cross-reactivity. The aim of this approach was to reduce non-

specific binding, as this is crucial for accurate detection of lower peptide concentrations 

and for increasing assay sensitivity. The assay performance of the new antibodies was 

compared with the existing CT-proET-1 antibodies to determine the best antibody 

combination to use for the analysis of plasma samples in Chapter 6. 

 

Affinity purification of antisera (see section 2.2.4.6.3) obtained from sheep immunised 

with C-terminal CT-proET-1 (Lys203-CT-proET-1[204 – 212]) peptide produced the highest 

binding IgG in fractions I, H – J and E – F (from the 3rd bleed sample, obtained 2 weeks 

after the 4th immunisation with peptide antigen). These IgG fractions were biotinylated 

(section 2.2.4.1.3) and compared to the existing rabbit anti ppET-1[204 – 212] biotinylated 

IgG. For this comparison, black clear bottom Costar 96 well plates were coated with the 

CT-proET-1 capture antibody [sheep anti ppET-1[169 – 186] IgG] at 1 µg/ml, and incubated 

with SAB (0 fmol/ml) to determine background signal/non-specific binding or CT-

proET-1 standard at 5 and 50 fmol/ml. Detection of bound peptide was achieved with 

biotinylated rabbit anti ppET-1[204 – 212] IgG diluted at 1:100 or with biotinylated sheep 

anti ppET-1[204 – 212] IgG fractions I, H – J and E – F, each tested at three dilutions 

corresponding to ~30, 15 or 7.5 ng/well (Table 6.4). The assay methodology was carried 

out as described in section 2.2.2.3. 

 

 

  



 
Chapter 6   ELDP and CT-proET-1 as biomarkers of cardiovascular and renal disease   

177 

 

Table 6.4: Comparison of existing biotinylated antibody (rabbit anti ppET-1[204 – 212]) 

with affinity purified biotinylated sheep anti CT-proET-1 IgG fractions I, H – J and 

E – F. Sheep anti CT-proET-1(ppET-1[169 – 186]) IgG capture antibody (1 µg/ml) was 

incubated with assay buffer or CT-proET-1 standard at 5 and 50 fmol/ml followed by 

the biotinylated detection antibodies  I, H – J and E – F (~30, 15 and 7.5 ng/well). 

 

Detection with affinity purified biotinylated IgG [sheep anti ppET-1[204 – 212]] fractions I 

(at 1:4,000) and H – J (at 1:3,200) (i.e. both IgG diluted to ~7.5 ng/well) produced very 

similar results with lower non-specific binding and greater signal-to-noise ratio (S:N) 

when compared to biotinylated rabbit anti ppET-1[204 – 212] IgG (Table 6.4).  

 

 

 

0 5 50 

Mean Mean S:N Mean S:N 

Rabbit anti IgG at 

1:100 
3,185.7 8,941.5 2.8 60,107.9 18.9 

I at 1:1,000 2,722.9 19,649.5 7.2 135,146.6 49.6 

I at 1:2,000 429.7 16,779.7 39.1 128,154.9 298.2 

I at 1:4,000 120.7 14,624.2 121.2 119,148.0 987.1 

H – J at 1:800 1,983.3 18,843.8 9.5 129,847.8 65.5 

H – J at 1:1,600 400.7 15,701.9 39.2 122,594.6 306.0 

H – J at 1:3,200 99.2 13,497.9 136.1 112,750.0 1,136.6 

E – F at 1:1,400 436.8 8,709.8 20.0 75,940.0 173.9 

E – F at 1:2,800 73.4 4,136.6 56.4 44,352.3 604.3 

E – F at 1:5,600 30.6 1,264.4 41.3 22,333.3 729.8 
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Affinity purification of IgG from antisera collected from sheep immunised with N-

terminal CT-proET-1 (CT-proET-1[169 – 179]) resulted in elution of highest binding 

antibodies in fractions H – I and E – F. These fractions were used as capture antibodies 

at 2 µg/ml, with the same standard concentrations and biotinylated antibody dilutions 

being used as described above. The signal from the new coating antibodies was 

compared to the existing capture antibody (Table 6.5).  

 

Table 6.5: Comparison of biotinylated rabbit anti ppET-1[204 – 212] IgG with affinity 

purified sheep anti ppET-1[204 – 212] IgG fractions I, H – J and E – F with the capture 

antibody sheep anti ppET-1[169 – 179] IgG fractions E – F. 

 

Sheep anti ppET-1[169 – 179] (H – I) IgG used as the capture antibody did not produce any 

binding (data not shown), while sheep anti ppET-1[169 – 179] (E – F) IgG produced higher 

background signal than the existing capture antibody [sheep anti ppET-1[169 – 186] IgG] 

 

0 5 50 

Mean Mean S:N Mean S:N 

Rabbit anti IgG at 

1:100 102,256.0 105,825.6 1.0 145,945.6 1.4 

I at 1:1,000 132,328.4 150,649.0 1.1 208,684.3 1.6 

I at 1:2,000 88,191.8 104,299.6 1.2 181,241.3 2.1 

I at 1:4,000 57,866.1 73,651.6 1.3 157,748.3 2.7 

H – J at 1:800 149,430.8 160,939.2 1.1 213,543.7 1.4 

H – J at 1:1,600 89,202.9 105,512.3 1.2 178,999.4 2.0 

H – J at 1:3,200 53,283.4 71,084.1 1.3 153,866.5 2.9 

E – F at 1:1,400 92,123.2 99,935.3 1.1 154,673.4 1.7 

E – F at 1:2,800 64,129.0 73,251.4 1.1 128,163.6 2.0 

E – F at 1:5,600 46,022.2 52,662.8 1.1 91,335.0 2.0 
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(Table 6.5). As a result, the main improvement for the CT-proET-1 immunoassay was 

achieved with the new C-terminal CT-proET-1 anti-sheep biotinylated IgG I at 1:4,000 

dilution or H – J at 1:3,200 with the existing N-terminal CT-proET-1 sheep anti ppET-

1[169 – 186] IgG. Biotinylated anti ppET-1[204 – 212] sheep IgG fraction I was chosen as the 

detection antibody for further characterisation and application in biomarker studies 

because the total antibody purified in this fraction was ~5 times more than in the pooled 

side fractions H – J.  
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6.2.3.1 Analysis of matrix effects of plasma and serum on ELDP and CT-

proET-1 standard curves  

To determine matrix effect of human plasma in ELDP and CT-proET-1 assays the 

standard curves (concentration range 3.125 – 200 fmol/ml) were prepared in assay 

buffer, horse serum and heparin anticoagulated plasma using the assay methodology 

described in section 2.2.2.4. These studies were performed in high-binding white plates 

(Costar), which increase by more than 100-fold the chemiluminescence signal generated 

during assay end-point measurement. Here, after blocking as usual, standard curves were 

prepared by adding 25 µl nSAB to all wells, followed by 25 µl of each matrix (nSAB, 

horse serum, or plasma) and 50 µl of standards. 

Figure 6.1 shows close similarity between all three matrixes at the higher concentration 

range. However, both ELDP and CT-proET-1 standards prepared in heparin 

anticoagulated plasma had higher counts at the lower range of the standard curve (0 – 

12.5 fmol/ml) (Figure 6.1). This finding was also consistent for standard curves prepared 

in EDTA anticoagulated human plasma (data not shown). The signal observed with the 

low concentrations of proET-1 standards is likely primarily due to endogenous peptide 

present in the test plasma. This was a consistent observation across all plasma samples 

evaluated. Therefore, standard curves prepared in human plasma (either heparin or 

EDTA anticoagulated) were unsuitable for determining ELDP and CT-proET-1 

concentrations in patient samples. In comparison, the background signal from horse 

serum was very similar to that obtained when standards were diluted in assay buffer. 

This is expected as horse proET-1 has only low homology over the sequences used to 

generate specific antibodies for ELDP and CT-proET-1 (http://www.ensembl.org 

Equus_caballus EDN1 gene ENSECAG00000011618), so even if present would not 

cross react in these assays. Standard curves prepared in horse serum were more similar 

to standards diluted in nSAB showing it as a more suitable matrix for preparation of 

standard curves than human plasma. However, horse serum did not appear to provide 

any advantages over standard curves prepared in nSAB. Therefore, for biomarker assays 

ELDP and CT-proET-1 peptide concentrations were determined from standard curves 

diluted in nSAB.  

  

http://www.ensembl.org/
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Figure 6.1: Standard curves of (A) ELDP and (B) CT-proET-1 prepared in nSAB, 

horse serum and heparin anticoagulated plasma.  

 

Figure 6.2 demonstrates the reproducibility of ELDP and CT-proET-1 immunoassays 

with standard curves (concentration range 0.09 – 200 fmol/ml for ELDP and 0.27 – 200 

fmol/ml for CT-proET-1) prepared in nSAB for the analysis of plasma samples obtained 

from patients analysed in Chapter 6.  

 

 

 

Figure 6.2: Reproducibility of ELDP and CT-proET-1 standard curves produced 

during biomarker investigations. ELDP (n = 6) and CT-proET-1 (n = 7) standard 

curves generated during analysis of plasma samples.  
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6.2.4 Immunoassays for plasma and urinary ELDP and CT-

proET-1 measurements 

Specific double-recognition site sandwich ELISAs were optimised for plasma 

measurements of ELDP and CT-proET-1. All samples in the biomarker investigation 

were analysed using the immunoassay assay methodologies described in Chapter 2, 

section 2.2.2.4. The lower limit of detection for ELDP (n = 12) in plasma was 0.3 

fmol/ml and 0.09 fmol/ml in urine. The detection limit for CT-proET-1 (n = 18) in 

plasma was 0.6 fmol/ml and 0.34 fmol/ml in urine. These were calculated using the 

formula “mean of background + (3 x standard deviation of background)” and the values 

used were from the standard curves used for the analysis of samples described in this 

chapter. All assays were performed blinded to the sample code. 

 

6.2.5  Statistical analysis 

Plasma levels were expressed as mean ± s.e.m (fmol/ml). Changes in ELDP and CT-

proET-1 levels between baseline and different time points or groups were compared 

using one-way ANOVA with Bonferroni post-hoc test. Plasma levels of ELDP and CT-

proET-1 after TNF-α infusion and in pre-hypertension and chronic HF were compared 

using Student’s t-test (unpaired, two-tailed) and by two-way ANOVA with Bonferroni 

post-hoc test. Effects of treatments (sitaxentan, nifedipine, and placebo) on plasma 

levels of ELDP and CT-proET-1 were shown as percentage change (%) from baseline. 

The difference in plasma levels at week 3 and week 6 of each treatment was compared 

to baseline levels and significance was determined by ANOVA with repeated measures. 

Relationships between proET-1 peptides and other cardiovascular and renal parameters 

(e.g. eGFR or 24 h Na+ excretion) were investigated using linear regression analysis 

(GraphPad Prism 5). In the scatter plots P values and r2 (linearity of the data) are 

reported. 
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6.3  RESULTS 

6.3.1  Clearance and metabolism of proET-1 peptides 

6.3.1.1 Clearance rates of proET-1 peptides in rat circulation 

A mixed proET-1 peptide solution was administered as a bolus dose of 1 nmol/kg. 

Arterial plasma levels determined before injection (-5 min) and at 0.5, 1, 2, 5, 10, 20 and 

40 min following injection showed markedly different elimination rates for the proET-

1 peptides (P <0.001; one-way ANOVA) (Figure 6.3). At 30 sec after the injection, the 

levels of NT-proET-1, ELDP and CT-proET-1 were 287 ± 23, 3648 ± 234, and 11736 ± 

639 fmol/ml, respectively. Assuming 100 g body weight (BW) of a rat has a circulating 

blood volume of 7.2 ± 0.3 ml (Argent et al., 1994), then according to mean weight of 

Wistar rats (345 ± 6 g), the total circulating blood volume was 24.8 ± 1.8 ml. The 

maximum observed concentration of proET-1 peptides was likely to be 23 – 35 pmol/ml 

assuming a haematocrit of 40 – 60%. According to these assumptions with a haematocrit 

of 50%, the percentage of NT-proET-1, ELDP and CT-proET-1 remaining 0.5 min after 

the injection was ~1%, ~13%, and ~42% of the administered peptide, respectively.  

The time coarse of measurements showed NT-proET-1 had the most rapid clearance (<5 

min) in which only 1.8 ± 0.8% of initial values (at 0.5 min) remained 5 min after 

injection in the plasma (estimated half-life <1 min). ELDP and CT-proET-1 had slower 

clearance rates, in which 2.5 ± 0.2% and 13.3 ± 1.0% of initial values remained 20 min 

after injection, respectively. Clearance rates for ELDP and CT-proET-1 both showed 

two phases with estimated half-lifes of 0.52 and 0.74 min for phase 1, and 5.73 and 7.25 

min for phase 2 (Figure 6.3). 
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Figure 6.3: Clearance rates of NT-proET-1 (  ), ELDP (  ) and CT-proET-1 (  ) in vivo. 

A bolus dose of 1 nmol/kg of each proET-1 peptide was injected through the femoral 

vein of male Wistar rats (n = 4). Arterial plasma concentrations of NT-proET-1, ELDP 

and CT-proET-1 were determined using Luminex based assay methodology. Data were 

expressed as fmol/ml and values represent mean ± s.e.m from a single experiment.   
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6.3.1.2  Stability of proET-1 peptides in whole blood and plasma 

To evaluate the effect of blood samples not being centrifuged immediately after 

collection, or plasma not being frozen rapidly, the stability of proET-1 peptides were 

investigated with room temperature incubation (22°C) of blood samples. Addition of 

NT-proET-1, ELDP and CT-proET-1 peptides at 500 fmol/ml (from 1 nmol/ml of 

peptide stock) showed relative stability of ELDP and CT-proET-1 over 60 min 

incubation at 22°C. In whole blood, 92.7 ± 3.1% and 94.6 ± 3.6% of initial ELDP and 

CT-proET-1 concentrations remained after 60 min incubation, respectively (Figure 

6.4A). In plasma, 99.4 ± 0.7% and 104.3 ± 1.4% of initial ELDP and CT-proET-1 

concentrations remained after 60 min incubation with plasma, respectively (Figure 

6.4B).  

In contrast, degradation of NT-proET-1 occurred rapidly at 22°C. In whole blood, 24.2 

± 4.1% of initial NT-proET-1 concentration remained after 60 min incubation in whole 

blood and 25.4 ± 1.4% of initial NT-proET-1 concentration remained after 60 min 

incubation in plasma (Figure 6.4A and 6.4B). NT-proET-1 levels were significantly 

lower than ELDP and CT-proET-1 over 60 min incubation (P <0.001 at all time-points; 

two-way ANOVA). 

There were no significant differences between whole blood and plasma whether NT-

proET-1 was incubated on ice or at 22°C. In whole blood 56.1% of initial NT-proET-1 

concentration remained after 60 min incubation while in plasma 81.3% of initial NT-

proET-1 concentration remained after 60 min incubation on ice (data not shown).   
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Figure 6.4: Ex vivo stability of NT-proET-1 (  ), ELDP (  ) and CT-proET- 1 (  ) 

synthetic peptides (at 500 fmol/ml) following room temperature incubation in: (A) 

Whole blood and (B) Plasma. At the end of each time point, whole blood was 

centrifuged and plasma was kept on ice. NT-proET-1, ELDP, and CT-proET-1 were 

measured using double-recognition site sandwich immunoassay. Values are expressed 

as a percentage remaining relative to initial sample measured after 5 min incubation of 

proET-1 peptides (mean ± s.e.m)  (n = 2).  
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6.3.1.3  Stability of ELDP and CT-proET-1 synthetic standards in urine  

ELDP and CT-proET-1 synthetic standards were diluted at 200 fmol/ml and 1 in 3 serial 

dilutions were prepared (concentration range 0.27 – 200 fmol/ml) in urine that was 

centrifuged at 8,000 rpm for 5 min at 4°C. Aliquots of each sample containing equal 

volumes were separated into 1.5 ml microcentrifuge tubes and incubated on ice and at 

25°C for 1 h. For comparison, synthetic standards of ELDP and CT-proET-1 were 

diluted in nSAB and serial dilutions were prepared in the same concentration range and 

these were incubated at room temperature for 1 h. At the end of 1 h incubation, all 

samples were stored at -80°C. Concentrations of ELDP and CT-proET-1 were 

determined using the optimised urine immunoassay (section 2.2.2.4). There were no 

temperature dependent changes in the stability of either ELDP or CT-proET-1 (Figure 

6.5). 

 

 

Figure 6.5: The stability of (A) ELDP and (B) CT-proET-1 synthetic standards in 

urine.  Dilution curves prepared with each synthetic standard were incubated at 4°C 

and at 25°C for 1 h and the peptide levels were measured using double-recognition site 

sandwich immunoassay.     
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6.3.2 Plasma levels of ELDP and CT-proET-1 in response to 

TNF-α administration 

Arterial and venous plasma levels of ELDP and CT-proET-1 were measured at baseline 

and after i.v. TNF-α infusion over 250 min in healthy control subjects. Arterial levels of 

ELDP at baseline and post-TNF-α were 5.7 ± 0.4 fmol/ml and 7.5 ± 0.6 fmol/ml, 

respectively (unpaired, two-tailed t-test, P = 0.02). Venous levels of ELDP at baseline 

and post-TNF-α were 6.6 ± 0.4 fmol/ml and 8.0 ± 0.9 fmol/ml, respectively. The change 

between venous ELDP levels at baseline and post TNF-α was not significant (Figure 

6.6A). However, overall ELDP levels after TNF-α infusion for arterial and venous 

samples together were significantly greater than combined baseline arterial and venous 

values (2-way ANOVA, P = 0.009). There was no significant difference between arterial 

and venous levels at baseline or after TNF-α infusion.  

  

Arterial levels of CT-proET-1 at baseline and post-TNF-α were 6.5 ± 1.5 fmol/ml and 

9.6 ± 2.0 fmol/ml, respectively. Venous levels of CT-proET-1 at baseline and post-TNF-

α were 6.2 ± 1.6 fmol/ml and 7.4 ± 2.1 fmol/ml, respectively. In comparison to venous 

levels of CT-proET-1, arterial levels showed a greater increase after TNF-α infusion 

(Figure 6.6B). However, neither arterial nor venous levels were significantly changed 

after TNF-α infusion. 
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Figure 6.6: Arterial and venous plasma concentrations of (A) ELDP and (B) CT-

proET-1 after TNF-α infusion. Results shown are plasma levels of ELDP and CT-

proET-1 (fmol/ml) at baseline and post-TNF-α. The data were expressed as mean ± 

s.e.m. A comparison between arterial and venous levels at baseline and post-TNF-α was 

performed using a Student’s t-test (unpaired, two-tailed). * represents a significant 

increase in ELDP levels from arterial plasma following TNF-α infusion (P = 0.02). 
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6.3.3 Evaluation of ELDP and CT-proET-1 as biomarkers of 

cardiovascular disease 

6.3.3.1 Comparison of ELDP and CT-proET-1 levels in pre-hypertension/mild 

hypertension and chronic heart failure 

Baseline levels of ELDP and CT-proET-1 were measured in untreated subjects with pre-

H (n = 24) and in patients with chronic HF (n = 24). Plasma levels of ELDP were 

significantly different between pre-H and chronic HF (P <0.001; unpaired t-test) (Figure 

6.7A). Plasma levels (mean ± s.e.m) of ELDP were 6.5 ± 0.2 and 7.8 ± 0.3 fmol/ml for 

pre-H and chronic HF, respectively (95% CI of 6.1 – 6.8 and 7.3 – 8.3, respectively). 

 

Similarly, CT-proET-1 showed a significant difference between the two patient groups 

(P <0.001; unpaired t-test), with CT-proET-1 being significantly greater than ELDP in 

each group (P <0.05; one-way ANOVA) (Figure 6.7A). Plasma levels of CT-proET-1 

in pre-H and in chronic HF were 9.9 ± 0.5 and 16.3 ± 0.8 fmol/ml, respectively (95% CI 

of 8.9 – 11.0 and 14.7 – 18.0, respectively). 

 

There was a positive correlation between plasma levels of ELDP and CT-proET-1 (P 

<0.001, r2 = 0.44) in which patients with chronic HF had higher proET-1 peptide levels 

and patients with pre-H had lower proET-1 peptide levels (Figure 6.7B). 
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Figure 6.7: (A) Plasma ELDP and CT-proET-1 (fmol/ml) levels in pre-hypertension 

and chronic heart failure. (B) Scatter plot comparing plasma levels of ELDP with 

plasma levels of CT-proET-1. (A) Results are expressed as mean ± s.e.m. 

Concentrations of ELDP and CT-proET-1 in each group were compared by Student`s t-

test, *** = P <0.001. (B) Linear regression analysis comparing plasma ELDP with CT-

proET-1 showed a positive correlation.  
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6.3.4 Evaluation of ELDP and CT-proET-1 as biomarkers of 

chronic kidney disease 

6.3.4.1  Plasma measurements in CKD 

Plasma levels of ELDP (mean ± s.e.m) were 6.3 ± 0.4 for control subjects (n = 16) and 

6.2 ± 0.3 (n = 31), 7.0 ± 0.4 (n = 30), 7.7 ± 0.3 (n = 29), 9.8 ± 0.8 (n = 10) and 12.4 ± 

2.0 (n = 5) fmol/ml for CKD stages 1 to 5, respectively (P <0.05 for the overall trend; 

comparison of means by ANOVA). In comparison to healthy controls, similar levels of 

ELDP were observed in CKD stages 0 – 3, but there was a significant increase in CKD 

stages 4 – 5 (P <0.001 ANOVA) (Figure 6.8A). 

Plasma levels of CT-proET-1 were 8.9 ± 1.3 for control subjects (n = 14) and 9.4 ± 1.0 

(n = 29), 11.4 ± 1.2 (n = 30), 16.4 ± 1.3 (n = 28), 19.7 ± 2.1 (n = 11), and 29.6 ± 3.5 (n 

= 5) fmol/ml for CKD stages 1 to 5, respectively (P <0.001 for the linear trend; 

comparison of means by ANOVA). In comparison to healthy controls, CT-proET-1 

levels were significantly higher from CKD stages 3 – 5 (Figure 6.8B). 

Scatter plots of eGFR (ml/min/1.73m2) against plasma concentrations of ELDP and CT-

proET-1 (Figure 6.8C and 6.8D) had a negative linear correlation (P <0.001 and r2 = 

0.26 for ELDP and P <0.001 and r2 = 0.29 for CT-proET-1). Thus, with increasing 

eGFR, proET-1 peptide concentrations tended to be lower. There was a positive 

correlation between plasma levels of ELDP and CT-proET-1 (P <0.001, and r2 = 0.40) 

(data not shown).  
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Figure 6.8: Plasma levels of ELDP and CT-proET-1 in chronic kidney disease (A – 

B) and their correlation with eGFR (C – D). Bar graphs in the upper panel show mean 

± s.e.m for plasma concentrations (fmol/ml) of (A) ELDP and (B) CT-proET-1. ** = P 

<0.01, and *** = P <0.001 comparison of means to control (CKD stage 0) by ANOVA. 

Scatter plots in the lower panel show plasma levels of (C) ELDP (P <0.001, r2 = 0.26) 

and (D) CT-proET-1 (P <0.001, r2 = 0.29) against eGFR (ml/min/1.73m2). The 

relationship between proET-1 peptide levels and eGFR was assessed by linear 

regression analysis.  
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6.3.4.2  Urinary ELDP and CT-proET-1 in CKD 

Urinary ELDP levels did not increase with increasing CKD stages (Table 6.6). Mean 

ELDP levels were 1.1 ± 1.2 pmol/L, but there was a marked difference (>70-fold) 

between the minimum and maximum values of 0.09 and 6.7 pmol/L. There was no 

relationship between urinary ELDP and eGFR (data not shown). Urinary ELDP levels 

also did not correlate with plasma ELDP levels (data not shown).  

 

Table 6.6: ELDP concentrations in urine from patients with chronic kidney disease. 

Mean ELDP levels are expressed as pmol/L. SD = standard deviation and n = the 

number of samples analysed.  

CKD stage Mean ELDP 

(pmol/L) 

SD n 

0 0.7 0.8 23 

1 1.3 1.6 29 

2 1.0 1.3 22 

3 1.0 1.3 22 

4 1.7 1.1 16 

5 1.2 0.8 7 

 

CT-proET-1 had very low levels in CKD urine samples, which were mostly lower than 

the detection limit of the assay (0.34 fmol/ml).  
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6.3.4.3 Effects of sitaxentan on ELDP and CT-proET-1 in patients with 

CKD 

The effects of an ETA receptor antagonist sitaxentan (100 mg/day), a long-acting 

formulation of calcium-channel blocker nifedipine (30 mg/day), and placebo were 

compared at baseline and after 3 and 6 weeks of treatment.  

Baseline levels of ELDP and CT-proET-1 were similar in all treatment groups with mean 

plasma levels being 11.7 ± 0.6 and 20.0 ± 1.1 fmol/ml, respectively (data not shown). 

Placebo treatment did not cause any significant changes in plasma levels of ELDP or 

CT-proET-1 between baseline, week 3 and week 6 (mean decrease in ELDP: -4% and 

CT-proET-1: -0.2%). Sitaxentan treatment resulted in significant increases in ELDP at 

both 3 and 6 weeks when compared to baseline (Figure 6.9A). Mean increase of plasma 

ELDP following sitaxentan treatment was 16.2 ± 3.3% (95% CI, 6.6% – 21.0%) (P 

<0.001). Similarly, CT-proET-1 levels significantly increased after 3 and 6 weeks of 

sitaxentan treatment (Figure 6.9B). Mean increase of plasma CT-proET-1 was 13.6 ± 

2.3% (95% CI, 8.9% – 18.7%) (P <0.001 by repeated measures ANOVA; comparison 

to baseline for both peptides).  

After treatment with nifedipine, there were no significant differences in ELDP or CT-

proET-1 levels compared to baseline at week 3 and week 6 (mean increase ELDP: 5.4% 

and CT-proET-1: 3.4%) (Figure 6.9A and 6.9B). 
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Figure 6.9: Effects of placebo, sitaxentan, and nifedipine on plasma levels of (A) 

ELDP and (B) CT-proET-1. Values (mean ± s.e.m) represent percent change of plasma 

ELDP and CT-proET-1 from baseline. Mean baseline levels of ELDP and CT-proET-1 

were 11.7 ± 0.6 and 20.0 ± 1.1 fmol/ml, respectively. *** represents P <0.001 by 

ANOVA with repeated measures for the comparisons made between baseline and after 

3 and 6 weeks of each treatment. 
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There was no difference between urinary ELDP levels at baseline and after 6 weeks of 

receiving placebo, sitaxentan and nifedipine (Table 6.7). Again, CT-proET-1 levels were 

mostly undetectable in urine (data not shown). 

 

Table 6.7: Effects of placebo, sitaxentan, and nifedipine on urinary ELDP 

concentrations. ELDP levels were expressed as mean ± SD (pmol/L) and measured at 

baseline and after 6 weeks of each treatment.  

Treatment Baseline 

(pmol/L) 

Week 6 

Placebo 0.8 ± 0.7 0.9 ± 0.8 

Sitaxentan 0.9 ± 0.7 0.8 ± 0.6 

Nifedipine 0.8 ± 0.6 0.8 ± 1.1 

 

 

 

6.3.5 Correlation of ELDP and CT-proET-1 levels with changes 

in clinical parameters 

ELDP and CT-proET-1 levels from CKD and proteinuric CKD after sitaxentan 

treatment were compared with cardiovascular and renal parameters, which were 

previously measured in Dhaun et al., 2011, 2013. These parameters were: BP [systolic 

blood pressure (SBP), diastolic blood pressure (DBP), MAP and pulse pressure (PP)]; 

FMD to assess endothelial function; pulse wave velocity (PWV) and central 

augmentation index-C as a measure of arterial stiffness; urine Na+, albumin:creatinine 

ratio (ACR), blood creatinine, urine creatinine, urine ET-1, and fractional excretion of 

ET-1. Parameters that showed significant correlations with plasma levels of ELDP and 

CT-proET-1 are discussed here. 

  



 
Chapter 6   ELDP and CT-proET-1 as biomarkers of cardiovascular and renal disease   

198 

 

6.3.5.1  Patients with proteinuric CKD receiving renoprotective  

  treatment 

There was no correlation between plasma ELDP or CT-proET-1 levels with 24 h Na+ 

excretion at baseline or after 3 weeks of sitaxentan treatment. However, after 6 weeks, 

plasma levels of ELDP and CT-proET-1 correlated negatively with 24 h Na+ excretion 

(ELDP: P = 0.01, r2 = 0.21 and CT-proET-1: P = 0.01, r2 = 0.22) (Figure 6.10). 

 

 

Figure 6.10: Relationship between plasma levels of (A) ELDP and (B) CT-proET-1 

with 24 h Na+ excretion (mmol/24 h) after 6 weeks of sitaxentan treatment. ELDP and 

CT-proET-1 had negative linear correlation with 24 h Na+ excretion (as assessed by 

linear regression analysis). 24 h Na+ excretion was expressed as mmol/24 h. 

 

In the sitaxentan treatment group, changes in plasma ELDP and CT-proET-1 did not 

correlate with changes in urinary protein excretion (UPE), protein:creatinine ratio 

(PCR), 24 h Na+ excretion, MAP, SBP, DBP and PWV.  
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In the nifedipine treatment group, there was no correlation between plasma ELDP or 

CT-proET-1 levels and 24 h Na+ excretion. However, changes in plasma levels of ELDP 

and CT-proET-1 after 6 weeks of treatment correlated with changes in 24 h Na+ 

excretion (ELDP: P = 0.04, r2 = 0.17; CT-proET-1: P = 0.005, r2 = 0.28)  (Figure 6.11). 

 

 

Figure 6.11: Scatter plots showing changes (%) in plasma levels of (A) ELDP and (B) 

CT-proET-1 with changes (%) in 24 h Na+ excretion (mmol/24 h) following nifedipine 

treatment over 6 weeks.    
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6.4  DISCUSSION 

In this chapter the potential of proET-1 peptides as biomarkers was investigated in rat 

and human studies. Firstly, their clearance rates were investigated in anaesthetised rats. 

Then in human studies ELDP and CT-proET-1 were measured after TNF-α infusion in 

healthy volunteers, in patients with chronic HF, and in patients with CKD.  

Slower clearance from the circulation and greater stability in whole blood/plasma 

favoured ELDP and CT-proET-1 as potential biomarkers of ET-1 synthesis. In 

comparison, NT-proET-1 had rapid clearance and degradation, and therefore has limited 

potential as a biomarker. Clearance of peptides from the circulation can be mediated by 

receptor-binding, proteolytic degradation, diffusion into interstitial fluid, and renal 

clearance. The exact mechanism that underlies relative short half-life of NT-proET-1 is 

unclear. The peptides were administered i.v. and arterial blood samples were collected. 

The very rapid disappearance of NT-proET-1 (Figure 6.3) was indicative of pulmonary 

clearance. This is similar to that observed with ET-1 (Sirviö et al., 1990; de Nucci et al., 

1988; Dupuis et al., 1996b), which is mainly due to receptor binding (Fukuroda et al., 

1994a; Dupuis et al., 1996a; Burkhardt et al., 2000). In comparison, angiotensin I is 

largely metabolised to angiotensin II by angiotensin converting enzyme (ACE) 

(Soubrier et al., 1993) as it passes through the pulmonary vasculature. The concentration 

of NT-proET-1, ELDP and CT-proET-1 measured after 30 s of injection were 287 ± 23, 

3648 ± 234, and 11736 ± 639 fmol/ml, respectively. If interstitial fluid is also included 

in the volume of distribution of peptides [volume of distribution = volume of 

extracellular fluid (15 – 20% of total BW)], then peptide concentrations would be 

expected in the 5 – 6.6 pmol/ml. Hence, the levels of proET-1 peptides reflect both 

dilution in plasma and diffusion into interstitial fluid, as well as metabolism. Whether 

clearance of NT-proET-1 is due to receptor binding or proteolytic degradation needs 

further investigation. Nevertheless, temperature dependent decreases in NT-proET-1 

(section 6.3.1.2 , Figure 6.4) were indicative of increased sensitivity to 

degradation by proteolytic enzymes. 
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In the first human study, the effects of TNF-α on proET-1 release were investigated by 

measuring the plasma levels of more stable fragments, ELDP and CT-proET-1. TNF-α 

is a pro-inflammatory cytokine and stimulates both mRNA expression and ET-1 peptide 

synthesis in endothelial and vascular smooth muscle cells (Corder et al., 1995; Woods 

et al., 1999). TNF-α can induce vascular inflammation and the levels are increased in 

patients with endothelial dysfunction and ischaemic heart disease (Ridker et al., 2000). 

Administering TNF-α to healthy individuals’ increased ET-1 release, measured in both 

arterial and venous blood (Patel et al., 2002). In response to TNF-α, the increase in ET-

1 release was greater in venous plasma in comparison to arterial levels. As a follow up 

to these investigations, plasma levels of ELDP and CT-proET-1 were measured in the 

same set of plasma samples. When compared to baseline, there was a slight increase in 

ELDP and CT-proET-1 levels after TNF-α. This elevation however was only significant 

in arterial ELDP (Figure 6.6A). To note, venous levels of ELDP at baseline were slightly 

higher than arterial levels (6.6 ± 0.4 vs. 5.7 ± 0.4 fmol/ml). A regional difference in 

vascular sensitivity to ET-1 was previously reported (Lüscher et al., 1990; Kelly & 

Whitworth, 1999) and higher ET-1 levels in venous plasma (at baseline) was also 

reported by Patel et al., 2002. However, after TNF-α infusion, the increase in ELDP in 

venous blood was minor. Post-TNF-α CT-proET-1 levels showed a greater increase in 

arterial plasma (1.5-fold) when compared to venous plasma. The reason for the 

differences observed between arterial and venous plasma levels of ET-1 and proET-1 

peptides is unclear. However, as the samples had been stored at -80º C for more than 12 

years prior to assay for ELDP and CT-proET-1, the long-term stability of these peptides 

may be an important factor affecting the observed plasma levels.  

The limitations of this study included small sample size. Due to invasiveness of the 

brachial artery catheterisation, the study was limited to 6 volunteers. Bigger sample size 

and limited freeze/thaw process of stored plasma samples could have increased the 

confidence of results. Nevertheless, increases in proET-1 peptide levels support the 

relationship with inflammatory and vasoconstrictor processes induced by TNF-α 

(Klemm et al., 1995).  
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In a second study of human samples, diagnostic utility of ELDP and CT-proET-1 was 

evaluated in patients with pre-H and chronic HF. Plasma levels of CT-proET-1 were 

comparatively higher than ELDP levels and in patients with chronic HF there was a more 

pronounced elevation with CT-proET-1 (1.6-fold increase) in comparison to ELDP (1.2-

fold increase). Nevertheless, lower and upper 95% CI of means showed differentiation 

between pre-H and chronic HF with both proET-1 peptides (ELDP: 6.1 – 6.8 and 7.3 – 

8.3; CT-proET-1: 8.9 – 11.0 and 14.7 – 18.0, respectively). The results of this study 

suggested that CT-proET-1 may be a better biomarker to distinguish patients with HF. 

The higher CT-proET-1 levels relative to ELDP are consistent with the relative 

difference in clearance rates of these peptides. Importantly, pre-H patients were not 

receiving any treatment and represented a rare population in which plasma 

measurements would reflect changes in proET-1 without drug interactions. 

Currently, diagnosis of HF is difficult during emergency conditions where a rapid, non-

invasive, easily accessible biomarker is critical for identification. NT-proBNP is the 

most powerful predictor of HF (Cowie et al., 1997; Maisel et al., 2002) and the diagnosis 

of acute coronary syndromes are accompanied by cardiac troponins and creatinine 

kinase MB. The first CT-proET-1 immunoassay (B.R.A.H.M.S GmbH, 

Hennigsdorf/Berlin, Germany) was described by Papassotiriou et al., 2006 is a 

chemiluminescence sandwich assay and uses polyclonal antibodies for the detection of 

ppET-1 residues 168 – 212. A comparison between CT-proET-1 (ppET-1[168 – 212]) and 

NT-proBNP demonstrated that CT-proET-1 increases the prognostic value for assessing 

patients with chronic HF   (Dieplinger et al., 2009; Jankowska et al., 2011). In addition, 

a variety of HF studies investigated the prognostic potential of CT-proET-1 along with 

other biomarkers such as plasma mid-regional pro-adrenomedullin (MR-proADM) 

(Adlbrecht et al., 2009), and the GISSI-HF trial measuring mid-regional pro-atrial 

natriuretic peptide (MR-proANP), MR-proADM, C-terminal pro-vasopressin (CT-

proAVP or copeptin) (Masson et al., 2010) and showed promising results with CT-

proET-1. Clinical trials investigating the prognostic potential of CT-proET-1 along with 

other cardiovascular biomarkers were summarised in Chapter 1, Table 1.8. Of note, the 

CT-proET-1 (ppET-1[168 – 212]) assay described in these studies differed from the CT-

proET-1 (ppET-1[169 – 212]) assay used in this thesis, as the antigen included an arginine 

at ppET-1 residue 168 (ppET-1 167-RR SSEEHLRQTRS) that is likely to be removed 
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during the processing. However, an assay for ppET-1[168 – 212] may be able to detect 

unprocessed fragments of ppET-1 as well as the fully processed peptide ppET-1[169 – 212]. 

In a previous study of CKD patients with minimal comorbidity, plasma ET-1 levels were 

increased linearly with declining renal function (declining GFR), while fractional 

excretion of ET-1 was increased exponentially (Goddard et al., 2007; Dhaun et al., 

2009). Therefore, plasma levels of ELDP and CT-proET-1 were investigated in CKD. 

In comparison to healthy controls, ELDP levels were significantly increased from CKD 

stage 4, while CT-proET-1 levels were increased from CKD stage 3 (Figure 6.8A and 

6.8B). Both proET-1 peptides lacked the sensitivity to differentiate between earlier CKD 

stages, which are crucial for prognosis and for preventing disease progression. The 

inverse relationship between plasma levels of ET-1 and eGFR (Goddard et al., 2007) 

was confirmed for plasma levels of ELDP and CT-proET-1 (reduced eGFR with 

increasing proET-1 peptides) (Figure 6.8C and 6.8D). In CKD, this was consistent with 

decreased renal filtration and thus removal of peptides from the circulation resulting in 

higher plasma levels. Furthermore, in comparison to plasma levels of ET-1 (Dhaun et 

al., 2009) linear regression curves of ELDP and CT-proET-1 had higher r2 values (ET-

1: r2 = 0.22 vs. ELDP: r2 = 0.26 and CT-proET-1: r2 = 0.29) indicating slightly better 

curve fittings and a closer relationship to renal filtration rates. Alternatively, increasing 

r2 values may reflect the ability to detect increased synthesis of ppET-1 with increasing 

severity of CKD. This finding is also consistent with CT-proET-1 having the longest 

circulating half-life. 

Earlier studies have indicated that urinary and plasma ET-1 concentrations are 

independent of each other (Serneri et al., 1995; Goddard et al., 2007) and the 

concentration of urinary ET-1 was well correlated with ET-1 production (Benigni et al., 

1991). Urinary ET-1 levels are elevated in CKD (Dhaun et al., 2006). These suggested 

that urinary ET-1 (instead of plasma ET-1) could be a better biomarker of renal disease. 

Here, this hypothesis was evaluated for proET-1 peptides. However, urinary ELDP 

levels were low (mean 1.1 ± 1.2 pmol/L) and did not change with the severity of disease 

either in CKD or in proteinuric CKD patients receiving renoprotective treatments and 

placebo. In addition, urinary CT-proET-1 levels were mostly undetectable. This 

suggested that the peptides (particularly CT-proET-1) might be differently metabolised 

in the kidney and that antibodies may not be recognising excreted fragments of ELDP 

and CT-proET-1 in urine. To support this hypothesis and to rule out the possibility of 
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stability issues in urine, synthetic standards of ELDP and CT-proET-1 prepared at 0.27 

– 200 fmol/ml were incubated for 1 h at room temperature and on ice. There was no 

temperature dependent change in the stability of peptides between the two incubation 

temperatures (25°C and 4°C) and they were relatively comparable to the standard curve 

prepared in nSAB (Figure 6.5). This suggested that the most likely reason is renal tubule 

proteolytic degradation. Abassi et al., 1993b showed that NEP-24.11, located at the 

brush border of renal proximal tubule degraded filtered ET-1. Therefore, it is likely that 

CT-proET-1 is excreted as proteolytic fragments rather than the full length peptide. 

Excretion of smaller fragments is also documented for plasma proteins such as albumin 

and transferrin (Burne et al., 1999). It may also be possible that, due to their larger MWt, 

only small amounts of ELDP and CT-proET-1 were excreted in urine. Identification of 

stable CT-proET-1 fragments excreted in urine is needed in order to fully evaluate and 

interpret the utility of measuring urinary ppET-1 fragments in patients with CKD.  

 

In a second study of patients with CKD, the effects of nifedipine, sitaxentan and placebo 

on the plasma and urinary levels of ELDP and CT-proET-1 were evaluated. The main 

aim of these investigations was to establish whether plasma levels of proET-1 peptides 

were modified with sitaxentan or nifedipine treatments, and if any changes in proET-1 

peptide levels were related to cardiovascular parameters (e.g. proteinuria, BP, and 

arterial stiffness, which modify systemic and renal haemodynamics). The clinical trial 

initially described in Dhaun et al., 2013 compared these changes with plasma and urine 

ET-1 concentrations. In this study, sitaxentan did not affect plasma levels of ET-1 

whereas urine ET-1/creatinine, which reflects renal ET-1 production, was reduced. 

Interestingly, in contrast to these findings, plasma levels of ELDP and CT-proET-1 were 

significantly elevated at 3 and 6 weeks after receiving sitaxentan (Figure 6.9). In general, 

ET-1 levels are not affected with selective ETA antagonist treatments (such as SB 

247083) (Douglas et al., 1998). Whereas, blocking ETB receptors either through an ETB 

selective antagonist (Fukuroda et al., 1994a) or endothelial cell-specific ETB KO 

(Bagnall et al., 2006; Kelland et al., 2010) was associated with increased circulating ET-

1 levels probably as a result of reduced clearance. In contrast, Opgenorth et al., 2000 

observed increased plasma ET-1 levels with selective ETA and ETB receptor antagonism 

in healthy humans in which the increase with ETB receptor antagonism was greater than 

that of ETA. More importantly, combined ETA and ETB receptor blockade increased ET-
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1 levels more than ETB alone. Based on this finding, Opgenorth et al., 2000 suggested 

this was due to blocking a negative feedback effect mediated via ETA receptors. 

Therefore, the mechanism underlying increased plasma levels of ELDP and CT-proET-

1 could be due to ETA blockade of a negative feedback mechanism leading to increased 

synthesis. Decreased fractional filtration after sitaxentan could also alter renal clearance, 

which would lead to a change in half-life of proET-1 peptides.  

 

Correlations between plasma levels of ELDP and CT-proET-1 with 24 h Na+ excretion 

and proteinuria markers confirmed previous findings of Dhaun et al., 2011, 2013 that 

acute selective ETA receptor blockade modifies cardiovascular parameters (reduces 

proteinuria, BP and arterial stiffness) in proteinuric CKD and may confer protection 

against disease progression. There was no change between sitaxentan and nifedipine in 

reducing BP parameters. Yet, a reduction seen in proteinuria with sitaxentan was greater 

than that of nifedipine (Dhaun et al., 2013). Plasma levels of ELDP and CT-proET-1 

had a negative correlation with 24 h Na+ excretion after 6 weeks of sitaxentan treatment. 

Thus, increasing concentrations of ELDP and CT-proET-1 were associated with 

reductions in 24 h Na+ excretion. The role of ETA receptors in regulation of Na+ 

homeostasis is not well defined. Therefore, anti-natriuretic effect of sitaxentan is 

unclear. Most evidence from gene targeting studies suggested that ET-1 mediated 

natriuresis (increased Na+ excretion) is mainly regulated by the activation of ETB 

receptors (Ahn et al., 2004). Active reabsorption of Na+ and Cl- are mainly inhibited in 

the proximal tubule and thick ascending limb where ETB receptors have the highest 

density without ETA localisation (Kohan et al., 2011).  Thus, the contribution of ETA 

receptors to Na+ homeostasis is expected to be minor. Results from CD specific KO 

experiments indicated that (Table 6.2):  

(1) Specific CD ETA KO mice did not affect Na+ excretion or systemic BP (Ge et 

al., 2005). 

(2) Urine volume and Na+ excretion were similar between inducible nephron-

specific ETA KO mice (iETA) and control mice, on a normal or high Na+ intake 

(Stuart et al., 2012).  

(3) ETA blockers had no effect on ET-1 inhibition of ENaC activity in isolated rat 

cortical CD (Bugaj et al., 2012).  



 
Chapter 6   ELDP and CT-proET-1 as biomarkers of cardiovascular and renal disease   

206 

 

(4) In contrast, CD ETA/B KO mice were shown to be more hypertensive and retain 

more Na+ than mice with CD ETB KO alone (Ge et al., 2008).  

 

Taking all these evidences together, there is a possibility that ETA receptors might 

contribute to regulation of Na+ homeostasis. This is possibly as a secondary effect 

through alterations on the renal haemodynamics. Sitaxentan was shown to reduce RBF, 

GFR, effective FF in CKD patients (Dhaun et al., 2011) and in a previous study these 

alterations in haemodynamics were shown to reduce urinary Na+ and water excretion 

(Claria et al., 1991). In support of the role of ETA receptors on Na+ homeostasis, Stuart 

et al., 2013 has shown that ETA antagonist-induced fluid retention was mediated by CD 

ETA receptors.  In this study, ambrisentan and atrasentan (both at 100 mg/kg/day over 2 

weeks) were used as ETA receptor antagonists and their effect on fluid retention was 

investigated in control mice and in cell-specific ETA KO mouse lines [cardiomyocyte-

specific ETA KO, VSMC ETA KO (ETA KO of all SMCs), CD ETA KO, and nephron 

ETA KO]. 

In the nifedipine treatment group plasma levels of ELDP and CT-proET-1 did not 

correlate with any of the parameters tested. However, there was a relationship between 

changes in ELDP and CT-proET-1 levels and changes in 24 h Na+ excretion (Figure 

6.11).  

 

In summary, clearance and metabolism of proET-1 peptides demonstrated the 

superiority of CT-proET-1 as a biomarker of ET-1 synthesis. This was based on the 

longer half-life and greater differences observed in chronic HF and CKD stages, which 

is likely to be reflected by its longer stability in comparison to ELDP. However, the 

prognostic value of both peptides was limited for identification of CKD stages 1 – 2. 

Nevertheless, correlations with 24 h Na+ excretion and proteinuria markers indicated a 

relation with disease progression, suggesting measurements of ELDP and CT-proET-1 

may be useful for the assessment of kidney pathology and responses to treatment.  In 

addition, increased plasma levels of ELDP and CT-proET-1 after sitaxentan treatment 

(plasma ET-1 levels were unchanged) suggested that ETA antagonists might block a 

negative feedback effect of ET-1 on EDN1 gene expression (Stow et al., 2011). This 

requires further investigation, but observations of limited efficacy of ERAs in clinical 
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trials of HF suggest that ETA receptor blockade creates a vicious circle where the more 

effective the blockade the greater the upregulation of EDN1 gene expression. Measuring 

proET-1 peptides not only provide advantages over limitations associated with plasma 

measurements of ET-1, but also may be useful to assess responses associated with ETA 

receptor antagonism. Fluid retention (oedema) was an important side effect of ET 

receptor antagonism and increased morbidity in the clinical trials (Dhaun et al., 2007b; 

Ritz & Wenzel, 2010) (see Table 1.4, page 29). Although it requires further 

investigation, proET-1 peptides may serve useful in monitoring side effects associated 

with ETA receptor antagonism.  
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7  DISCUSSION AND GENERAL CONCLUSIONS  

7.1 Remaining questions from functional studies investigating 

the role of ET-1 and its receptors 

Over the past 25 years strong evidence has accumulated showing that ET-1, the most 

potent vasoconstrictor peptide known, plays a key role in the regulation of vascular tone 

and renal function. Genetic models of endothelial-specific deletion of EDN1 have 

demonstrated a physiological role of the ET system in regulation of BP (Kisanuki et al., 

2010). Similarly, cell specific deletions of EDN1, or ETA and ETB receptors have 

revealed important roles for ET-1 in the regulation of renal function and blood pressure 

(Kedzierski et al., 2003; Bagnall et al., 2006; Kelland et al., 2010). However, research 

to date has focused exclusively on the pathophysiological roles of the 21 amino acid 

peptide ET-1, rather than other peptide products of the 212 amino acid precursor – ppET-

1. Yet, the contribution EDN1 might play in human hypertension or regulation of BP is 

still not well understood.    

Cardiac overexpression of the human EDN1 gene in mice resulted in cardiac 

inflammation and hypertrophy (Yang et al., 2004). However, although it was anticipated 

that these changes were due to increased ET-1 synthesis, ERAs were unable to block the 

resulting lethal HF (Yang et al., 2004). Moreover, ERAs had either little or no benefit 

in human clinical trials of hypertension and left ventricular HF (Weber et al., 2009; 

Battistini et al., 2006; Mann et al., 2010; Galiè et al., 2011). Instead, treatment with 

ERAs was associated frequently with side effects including fluid retention. Following 

these investigations the unresolved question has been whether additional proET-1 

peptides, co-released with ET-1, contribute to the biological actions of EDN1 and lead 

to effects that are resistant to inhibition with ERAs.  

Plasma levels of ET-1 are an unreliable measure of vascular synthesis. Earlier diagnosis 

of patients at a higher risk of developing hypertension or HF is still clinically 

challenging. Indeed, there is an unmet need for a biomarker to enable earlier diagnosis 

of patients that are at a greater risk to develop cardiovascular or renal disease. Although 

ppET-1[168  –  212] (referred to as CT-proET-1) was proposed as an alternative biomarker 

of ET-1 synthesis on the basis of the assay described by Papassotiriou et al., 2006, 

detailed characterisation of ppET-1 processing was not carried out. The possibility of 

http://www.sciencedirect.com/science/article/pii/S0024320512004122#bb0955
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processing to alternative peptides, which may be better biomarkers of ET-1 synthesis, 

therefore cannot be excluded.  

 

7.2 Characterisation and identification of proET-1 peptide 

sequences   

The initial work of our laboratory identified ppET-1 derived peptides from the EA.hy 

926 and A549 conditioned media samples based on antibody recognition using specific 

immunoassays and HPLC. These human cell lines are fast-growing and well 

characterised in terms of the ET-1 system (Waxman et al., 1994; Corder et al., 1993a; 

Corder et al., 1995; Deprez-Roy et al., 2000). Therefore, conditioned media collected 

after 48 h incubation allowed large-scale purification of proET-1 derived peptides. As a 

result of further purification and characterisation using IEC and HPLC, the identified 

secreted proET-1 peptides has shown processing results in three main fragments: NT-

proET-1 (ppET-1[18 – 50]), ELDP (ppET-1[93 – 166]), and CT-proET-1 (ppET-1[169 – 212]). 

Detection of these proET-1 peptides was achieved with double-recognition sandwich 

immunoassays. 

 

7.2.1  NT-proET-1 

Identification of the native NT-proET-1 sequence using mass spectrometry was not 

completed. This was primarily due to isolation of insufficient peptide. Definitive 

identification of NT-proET-1 was important for two main reasons. Firstly, NT-proET-1 

synthetic peptide (fraction 46) eluted later than the purified native peptide (fraction 41) 

(Figure 4.3C). So mass spectrometry could have confirmed whether the sequence of 

synthetic peptide (ppET-1[18 – 50]) corresponded to that of the native peptide. Secondly, 

the amino acid sequence of this peptide is based on a prediction (Bloch et al., 1989); 

with the first amino acid in its sequence following that of the proposed signal peptide 

sequence (ppET-1 residues 1 – 17). Thus, identification of the N-terminal sequence of 

NT-proET-1 could confirm both the amino acid sequence of signal peptide and the 

processing site for NT-proET-1.   

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Deprez-Roy%20I%22%5BAuthor%5D
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Rapid clearance of synthetic NT-proET-1 from the circulation of rats (Figure 6.3), and 

the susceptibility of the synthetic peptide to proteolytic degradation (Figure 6.4) showed 

limited potential of this peptide as a biomarker. Attempts to measure native peptide in 

plasma samples were also unsuccessful, suggesting that native peptide was also rapidly 

degraded or cleared from the circulation. Although the amino acid sequence of NT-

proET-1 (ppET-1[18 – 50]) is highly conserved (e.g. 67% homology between human and 

sheep), there is not yet any evidence for a biological activity. 

 

7.2.2  ELDP and CT-proET-1 

Amino acid sequences of purified ELDP and CT-proET-1 peptides were determined 

from partial sequences on the basis of trypsin digestion. The N-terminal sequence of 

ELDP (ppET-1[93 – 101]) was not identified from the purified native samples (fractions 43 

and 47) (Table 5.2A and 5.2B). In contrast, under the same methodological conditions, 

the N-terminal sequence was identified from the purified synthetic sample (fraction 45) 

(Table 5.2C). Confirmation of disulphide bonds in the endothelin-like domain sequence 

(ppET-1[109 – 123]) from either native or synthetic ELDP samples was not achieved. 

Identification of these sequences could be limited by a number of factors including: (i) 

loss of lower abundance peptides during the extraction or C18 clean-up; (ii) poor 

chromatographic separation of the trypsin digested peptides; (iii) low amounts of 

purified native peptide sample; or (iv) non-specific proteolytic cleavage of proteins. 

Digestion with additional proteases with different cleavage capabilities could increase 

the amino acid sequence coverage and the confidence of results. Trypsin is the most 

commonly used digestion enzyme. However, in the case for ELDP, the use of this 

enzyme had two disadvantages. Firstly, abundance of lysine and arginine residues in a 

sequence produces high numbers of short peptides that are difficult to identify using 

mass spectrometry. The sequence of endothelin-like domain is rich in lysine and had 4 

potential cleavage sites. Peptide identification using database search engines is designed 

for linear peptides only. Therefore identification of additional peptides requires manual 

inspection of the raw data. Although all potential peptides were searched manually in 

the MS/MS spectra, greater number of potential peptides is likely to complicate 

identification. Secondly, the basic pH required for optimal trypsin digestion can cause 

disulphide bond rearrangement (Sanger, 1953; Ryle & Sanger, 1955). For both cases, 
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endopeptidase Glu-C could be advantageous for two reasons: (1) it cleaves peptide 

bonds C-terminal to glutamic acid residue (or at aspartic acid residue depending on the 

buffer) producing endothelin-like domain as a single fragment; and (2) has the option of 

carrying digestion under more acidic conditions (pH 4 or 8) (Lippincott & Apostol, 

1999). 

The sequence of endothelin-like domain is highly conserved (Table 1.6) and the spacing 

between first four cysteine residues is exactly the same as in ET-1 (see Table 1.1, page 

3). Although this was suggestive of a biological activity, previous attempts have failed 

to show this for ppET-1[110–130] (Cade et al., 1990). However, the C-terminal sequence 

of ELDP has two more cysteine residues (Cys148 and Cys155), which are also highly 

conserved. Therefore, the C-terminal sequence of ELDP could be necessary for receptor 

binding, and hence for biological activity.  

The proteolytic processing of peptides commonly occurs at double basic amino acid 

residues (most frequently at Lys-Arg and Arg-Arg). Identification of the C-terminal 

sequence of ELDP: CIYQQLVRGR (ppET-1[155 – 162]); and the N-terminal sequence of 

CT-proET-1: SSEEHLRQTRSETMR (ppET-1[169 – 183]), confirmed Arg-Arg at ppET-1 

residues 167 – 168 as the cleavage site for CT-proET-1 (155-

CIYQQLVRGRKIRRSSEEHLRQTRSETMR-183). The results shown in Figure 5.4 

also confirmed the sequence identity of CT-proET-1 (ppET-1[169 – 212]). The amino acid 

sequence of this peptide is highly divergent across species. As such, the human N-

terminal sequence of CT-proET-1 (SSEEHLRQTR) corresponding to ppET-1 residues 

169 – 178 is completely absent from other species. In addition to these observations, 

slow clearance of CT-proET-1 suggested that it is biologically inert. 

Although mass spectrometry of the purified proET-1 peptides yielded only limited data, 

the peptide sequences that were identified based on antibody recognition using double-

recognition site sandwich immunoassays, as well as HPLC elution characteristics of 

synthetic and native peptides strongly support the identities of ELDP and CT-proET-1 

as ppET-1[93 – 166] and ppET-1[169 – 212], respectively. However, the arrangement of 

disulphide bridges in ELDP were not confirmed by these studies.   
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7.3 ELDP and CT-proET-1 peptides as potential biomarkers 

of cardiovascular and renal disease 

The usefulness of ELDP and CT-proET-1 as biomarkers of cardiovascular and renal 

disease was assessed in plasma samples obtained from patients with pre-H, chronic HF 

and CKD. Consistent with previous studies showing upregulation of ET-1 in disease 

states, the levels of ELDP and CT-proET-1 were increased in chronic HF and CKD. 

Although plasma levels of CT-proET-1 were previously assessed in patients with HF 

(see Table 1.8), the results shown in Chapter 6 were the first to evaluate plasma levels 

of ELDP and CT-proET-1 in CKD. Comparison of plasma ELDP and CT-proET-1 

levels in patients with pre-H and chronic HF showed higher CT-proET-1 levels (65% 

vs. 21% increase from pre-H) (Figure 6.7). Similarly in CKD, the levels of CT-proET-1 

were higher than plasma levels of ELDP (Figure 6.8). This is likely a consequence of 

slower clearance of CT-proET-1 from the circulation. In addition, earlier increase in CT-

proET-1 levels (CKD stages 3 – 5) highlighted its superiority over ELDP (CKD stages 

4 – 5). However, the diagnostic ability of both peptides was limited for early CKD 

stages. 

On the other hand, creatinine-based measurements form the basis of renal function 

assessment and are commonly used in the clinic. Creatinine has a non-linear relationship 

with GFR and the levels start to increase as GFR ≤60/ml/min/1.73 m2 (National Kidney 

Foundation, 2002). Plasma levels of ELDP and CT-proET-1 had an inverse linear 

relationship with GFR (Figure 6.8C and 6.8D), which was consistent with the inverse 

linear relationship previously observed for plasma ET-1 (Goddard et al., 2007; Dhaun 

et al., 2009 and Lilitkarntakul et al., 2011) but more importantly, their levels increased 

earlier in the CKD classification. This is advantageous over the inaccuracy of creatinine 

measurements in the lower range and highlights the potential of proET-1 peptides as 

useful biomarkers of CKD. Furthermore, proET-1 assays have advantages over the 

limitations associated with ET-1 measurements. These are (1) immunoassays performed 

directly without the need of an extraction/purification step; (2) due to greater stability or 

lower degree of degradation their measurements are more accurate and reliable; and (3) 

avoid the cross-reactivity that is associated between ET isoforms. 

The negative linear relationship between plasma levels of proET-1 peptides and GFR 

(decrease in GFR while ELDP and CT-proET-1 increase) suggested reduced renal 
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filtration and therefore reduced renal clearance. In patients with chronic HF or CKD, 

there is already an existing upregulation of ET-1 synthesis due to the underlying 

pathology. Thus, increases in ELDP and CT-proET-1 could be due to increased EDN1 

expression and proET-1 synthesis. Increases in ELDP and CT-proET-1 levels as GFR 

declines provided further evidence that ET axis contributes to the progression of CKD.  

 

Pathological actions of ET-1 are mainly mediated by activation of ETA receptors. 

However, whether blocking ETA receptors is the best choice of treatment with ERAs 

still remains controversial. In patients with CKD, blocking ETA receptors has additional 

effects on renal haemodynamics and has been proposed to be superior to either dual or 

ETB receptor blockade (Goddard et al., 2004). Blocking ETA receptors in the treatment 

of CKD improved cardiovascular parameters (Dhaun et al., 2011) as such sitaxentan 

increased GFR, and reduced proteinuria and BP (Dhaun et al., 2013). However, plasma 

levels of ET-1 were unchanged after 6 weeks of treatment. As ET-1 measurements may 

not accurately reflect EDN1 peptide synthesis, plasma levels of ELDP and CT-proET-1 

were investigated in these plasma samples. The observed increases in ELDP and CT-

proET-1 levels provided a new insight into the effects of ETA receptor antagonism, 

which might be a consequence of increased synthesis. Plasma levels of ET-1 are mainly 

regulated by the ETB-mediated clearance. Blockade of ETB receptors increases plasma 

ET-1 levels mainly as a result of blocking pulmonary clearance (Fukuroda et al., 1994a; 

Dupuis et al., 1996a; Burkhardt et al., 2000), but this also in part reduces renal clearance 

of ET-1 (Gasic et al., 1992). As a result, ETB receptor blockade contributes to increased 

ET-1 levels (Goddard et al., 2007). In sitaxentan and nifedipine treatment groups, there 

was no correlation between changes in proET-1 levels and the reduction in GFR. Thus, 

from this data, increases in proET-1 peptides are less likely due to reduced renal 

clearance and the most likely explanation could therefore be increased EDN1 expression 

leading to proET-1 synthesis. Increases in ELDP and CT-proET-1 after ETA receptor 

blockade shows the first clinical evidence that increases previously observed in plasma 

ET-1 (Opgenorth et al., 2000; Verhaar et al., 2000) could be due to upregulation of its 

synthesis.  

After 6 weeks of sitaxentan treatment, increases in plasma levels of ELDP and CT-

proET-1 were correlated with reductions in 24 h urine Na+ excretion (Figure 6.10). 



Chapter 7 Discussion and general conclusions 

215 

 

Although an increase in ETB-mediated natriuresis (increased Na+ excretion) was 

expected after ETA antagonist treatment, the reverse occurred. This finding suggests a 

potential link with adverse side effects (such as increased Na+ and possibly water 

retention) associated with ETA receptor antagonists in previous clinical trials (see Table 

1.4, page 29) and might explain the inefficiency of ERAs in clinical trials of HF. These 

side effects resulted in premature termination of clinical trials due to increased morbidity 

and mortality, and hence there is a requirement for a sensitive biomarker that would 

enable identification of patients that are more likely to develop oedema, which again 

lacks a good biomarker. Thus, measuring stable peptide fragments of proET-1 synthesis 

could be useful in this setting to provide more reliable measurements of active or 

upregulated ET-1 synthesis. In conjunction, a biomarker that reflects associated side 

effects of ERAs would enable better control on development/progression of side effects 

by adjusting the dose of antagonists to achieve maximal efficacy with minimal side 

effects. 

 

If increases in ELDP and CT-proET-1 levels were due to upregulation of ET-1 synthesis, 

then sitaxentan treatment blockade of the physiological negative feedback mechanism 

regulating EDN1 expression is likely to contribute to disease progression through 

alternative pathways. Renin-angiotensin-aldosterone system (RAAS) plays an important 

role in regulation of vascular homeostasis, fluid electrolyte balance and vascular growth 

(Fyhrquist & Saijonmaa, 2008). ET-1 reduced renin secretion from cultured mouse renal 

juxtaglomerular cells (Ackermann et al., 1995; Ritthaler et al., 1995), as well as directly 

increasing aldosterone secretion through the adrenal cortex (Nussdorfer et al., 1997). As 

interactions between ET-1 and aldosterone (Rossi et al., 2001) and Ang II (Emori et al., 

1991; Park & Schiffrin, 2001) are evident, increased Na+ and fluid retention could be 

induced by increased aldosterone secretion. The mechanism of aldosterone stimulation 

is mainly regulated by Ang II and there is no clinical evidence to show a link between 

ET-1 and aldosterone release. However, increased proET-1 peptide levels and Na+ and 

fluid retention following sitaxentan treatment may suggest that the underlying 

mechanism for Na+ and fluid retention, in part, could be regulated (i) directly by ELDP; 

or (ii) ELDP-mediated release of aldosterone secretion. The reason of suggesting ELDP 

as a potential contributor to this mechanism lies beneath its biological action to 

http://www.sciencedirect.com/science/article/pii/S0024320514000113#bb0520
http://www.sciencedirect.com/science/article/pii/S0024320514000113#bb0115
http://www.sciencedirect.com/science/article/pii/S0024320514000113#bb0115
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potentiate vasoconstrictor activity of ET-1 (Yuzugulen et al., 2012). Therefore, it may 

also potentiate the action of another mediator that results in aldosterone secretion. (iii) 

ET-1 through ETB receptors. Although ETB-mediated natriuresis is largely evident, in 

rats, ET-1-induced aldosterone secretion was mediated by ETB receptors while ETA 

receptors had no direct effect (Belloni et al., 1996). 

 

7.4 Limitations and future experiments for biomarker 

investigations 

The sample size of TNF-α and chronic HF studies were limited to a small sample size 

in which samples were stored over a long time. Therefore, further validation of proET-

1 peptide levels in studies consisting of a larger sample size could provide further 

insights into their value as biomarkers. However, although CT-proET-1 had high 

stability in short-term incubations, the factors affecting its stability in long-term storage 

are not known. Sample collection may be improved by collecting blood samples into 

chilled microcentrifuge tubes containing protease inhibitors with analysis of peptide 

levels from freshly collected samples without the interference of peptide degradation or 

freeze/thaw process. Tests should be done to evaluate the impact of freeze/thaw cycles 

on CT-proET-1 stability, in case activation of clotting factors contributes to instability 

as this is a recognised consideration for repeated analysis of samples particularly after 

long-term storage. 

Biomarker investigations with ELDP and CT-proET-1 opened a new window in the ET 

field. The results of this study raised further questions, which require additional 

experiments: 

(1) Do selective ETA receptor antagonists block the physiological negative feedback of 

ET-1, resulting in increased EDN1 synthesis? One approach to test this hypothesis is 

measuring ppET-1 mRNA levels after sitaxentan treatment. Analysing ppET-1 mRNA 

levels from the plasma samples used in this study would be inaccurate due to 

degradation. However, investigating the mRNA levels in cultured cells and proET-1 

peptides in freshly collected culture medium (e.g. ECs or VSMC) after treatment with 

sitaxentan at a clinically relevant concentration could provide useful insights into this 

mechanism.  
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(2) Further work is needed to confirm that increases in plasma levels of ELDP and CT-

proET-1 in other studies of ETA receptor antagonism and to understand whether this is 

a class specific effect. As such, chronic administration of atrasentan (ABT-627, ETA 

selective antagonist) to healthy subjects increased ET-1 levels at a dose-dependent 

manner (Verhaar et al., 2000). Thus, analysing plasma levels of proET-1 peptides in 

similar studies could be advantageous.  

(3) Do ETA receptor antagonists (e.g. sitaxentan) reverse underlying cardiovascular risk 

factors in CKD, but at the same time contribute to the associated side effects (Na+ and 

water retention) observed in clinical trials? Therefore, the potential mechanism by which 

ELDP regulates aldosterone secretion needs to be investigated. One approach could be 

evaluation of arterial plasma levels of aldosterone in rats before and after i.v. infusion of 

synthetic ELDP (through femoral vein). Moreover, what would be more interesting is to 

measure ELDP, CT-proET-1 and aldosterone levels in patients with an existing oedema 

following treatment with ERAs. This could provide further clues on the underlying 

mechanism linking ETA receptor antagonist treatment and Na+ retention.   

(4) Although weight gain or free water clearance was not measured in CKD study, it 

would be very important to confirm this link between water retention and increases in 

proET-1 peptide levels in patients treated with ETA receptor antagonists.   

(5) CKD patients involved in the study had minimal co-morbidities and a further 

investigation which includes other cohorts of patients would be useful. In particular, 

patients that are less responsive to treatment or at a higher risk of developing adverse 

effects that are linked to ETA receptor antagonism can be determined.  

(6) Although the ET system is an important contributor to the underlying pathology of 

PAH, ERAs are less likely to be used as the only line of treatment. In persistent PAH, 

advanced therapy includes ERAs in combination with phosphodiesterase type 5 (PDE5) 

inhibitors and prostaglandin analogues. There is a need for less expensive and more 

effective therapies. It would be interesting to investigate whether proET-1 peptide levels 

are increased in patients with PAH, and whether proET-1 peptide levels increase in 

patients treated with bosentan (ETA/B selective) or ambrisentan (ETA selective). This 

could provide an opportunity to evaluate whether increases in proET-1 levels correlate 

with Na+ or water retention, and determine whether this can distinguish patients that are 

more likely to develop oedema as a result of ETA receptor blockade. 
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(7) Crosstalk between ET receptors: where blockade of a single receptor subtype may 

influence or account for the deleterious effects of the other receptor subtype has been 

reported in a number of studies (Mickley et al., 1997; Ozaki et al., 1997; Adner et al., 

2001; Davenport & Kuc, 2004). Thus, comparing the effects of selective ETA and ETB 

and dual ETA/B receptor antagonism on increases in plasma levels of ELDP and CT-

proET-1 would be useful. Macitentan (ETA/B receptor antagonist with high tissue 

affinity) increased plasma ET-1 levels at ten times lower doses that were required to 

increase ET-1 levels to a similar extent with bosentan (moderate volume of distribution) 

(Weber et al., 1996). This shows an important consideration for the tissue 

distribution/selectivity of ERAs being investigated. Macitentan (Opsumit®) received its 

first approval for the treatment of PAH in USA (Patel & McKeage, 2014; Dingemanse 

et al., 2014) and further investigations of the effects of this antagonist on proET-1 

peptide levels might be of value. 

 

7.5  Summary of conclusions and future work 

In summary, results presented in this thesis identified a novel ppET-1 derived peptide, 

which was referred to as ELDP and confirmed the processing of CT-proET-1. These 

proET-1 peptides are stable in the circulation and therefore their measurement is superior 

to ET-1. Increases in proET-1 peptide levels in plasma samples obtained from patients 

with chronic HF and CKD highlighted their potential as useful biomarkers. However, at 

this stage, they cannot be considered as diagnostic tools for routine use. Increases in 

proET-1 peptide levels after ETA receptor blockade provided the first clinical evidence 

for which increases previously observed in plasma ET-1 could be as a consequence of 

increased EDN1 synthesis. The correlation between increased proET-1 peptide levels 

and Na+ (and hence fluid) retention after ETA receptor blockade suggests a link with the 

adverse side effects associated with ERAs. 

Low levels of ELDP and CT-proET-1 detected in urine samples from CKD patients 

suggested that their metabolism in urine could lead to shorter peptide fragments, which 

the antibodies being used did not recognise. Hence, identification of excreted peptide 

fragments in urine would be particularly useful. These immunoassays can be more 
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favourable than plasma immunoassays as interference of plasma proteins can be 

excluded.  

 

Further investigations are required to understand the role of ELDP. In addition, 

identification of its receptor would enable investigations to determine whether a clinical 

benefit can be achieved by blocking its biological activity. For instance, GPCR-37 or 

ETB receptor-like protein-1 (Uniprot: O15354) (Marazziti et al., 1997) could be a 

potential receptor to investigate. It would be very interesting to obtain X-ray 

crystallography data for ELDP to determine potential surface residues that are important 

in receptor binding. This requires a highly purified and a larger amount of ELDP. 

However, such investigations might enable identification of structural similarities 

between ELDP and ET-1 and provide insights for the development of antagonists.  

 

 



 

220 

 

 

 

 

References  

    



 

221 

 

Abassi ZA, Golomb E, Bridenbaugh R, Keiser HR. (1993a) Metabolism of endothelin-

1 and big endothelin-1 by recombinant neutral endopeptidase EC.3.4.24.11. Br J 

Pharmacol. 109(4):1024-8. 

Abassi ZA, Klein H, Golomb E, Keiser HR. (1993b) Urinary endothelin: a possible 

biological marker of renal damage. Am J Hypertens. 6(12):1046-54. 

 

Abassi ZA, Tate JE, Golomb E, Keiser HR. (1992) Role of neutral endopeptidase in 

the metabolism of endothelin. Hypertension. 20(1):89-95. 

 

Ackermann M, Ritthaler T, Riegger G, Kurtz A, Krämer BK. (1995) Endothelin 

inhibits cAMP-induced renin release from isolated renal juxtaglomerular cells. J. 

Cardiovasc Pharmacol. 26 Suppl 3:S135-7. 

 

Adlbrecht C, Hülsmann M, Strunk G, Berger R, Mörtl D, Struck J, Morgenthaler 

NG, Bergmann A, Jakowitsch J,Maurer G, Lang IM, Pacher R. (2009) Prognostic value 

of plasma midregional pro-adrenomedullin and C-terminal-pro-endothelin-1 in 

chronic heart failure outpatients. Eur J Heart Fail. 11(4):361-6. 

Adner M, Shankley N, Edvinsson L. (2001) Evidence that ET-1, but not ET-3 and 

S6b, ETA receptor mediated contractions in isolated rat mesenteric arteries are 

modulated by co-activation of ETB receptors. Br J Pharmacol. 133: 927–935. 

Advenier C, Sarria B, Naline E, Puybasset L, Lagente V. (1990) Contractile activity of 

three endothelins (ET-1, ET-2 and ET-3) on the human isolated bronchus. Br J 

Pharmacol. 100(1):168-72. 

Aguilar MI. (2003) HPLC of Peptides and Proteins: Methods and Protocols. 

Methods in Molecular Biology. 251: 45-53. 

Aguilar MI. and Hearn MT. (1996) High resolution reversed phase high performance 

liquid chromatography of peptides and proteins. Meth. Enzymol.270: 3–26. 

Ahn D, Ge Y, Stricklett PK, Gill P, Taylor D, Hughes AK, Yanagisawa M, Miller L, 

Nelson RD, Kohan DE. (2004) Collecting duct-specific knockout of endothelin-1 

causes hypertension and sodium retention. J Clin Invest. 114(4):504-11. 

Amiri F, Virdis A, Neves MF, Iglarz M, Seidah NG, Touyz RM, Reudelhuber TL, 

Schiffrin EL. (2004) Endothelium-restricted overexpression of human endothelin-1 

causes vascular remodeling and endothelial dysfunction. Circulation. 110(15):2233-

40.   

Anand I, McMurray J, Cohn JN, Konstam MA, Notter T, Quitzau K, Ruschitzka F, 

Lüscher TF; EARTH investigators. (2004) Long-term effects of darusentan on left-

ventricular remodelling and clinical outcomes in the EndothelinA Receptor 

Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-

controlled trial. Lancet. 364(9431):347-54. 

Annesley TM. (2003) Ion suppression in mass spectrometry. Clin Chem. 49(7):1041-

4. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Abassi%20ZA%5BAuthor%5D&cauthor=true&cauthor_uid=8401914
http://www.ncbi.nlm.nih.gov/pubmed?term=Golomb%20E%5BAuthor%5D&cauthor=true&cauthor_uid=8401914
http://www.ncbi.nlm.nih.gov/pubmed?term=Bridenbaugh%20R%5BAuthor%5D&cauthor=true&cauthor_uid=8401914
http://www.ncbi.nlm.nih.gov/pubmed?term=Keiser%20HR%5BAuthor%5D&cauthor=true&cauthor_uid=8401914
http://www.ncbi.nlm.nih.gov/pubmed/8401914
http://www.ncbi.nlm.nih.gov/pubmed/8401914
http://www.ncbi.nlm.nih.gov/pubmed?term=Abassi%20ZA%5BAuthor%5D&cauthor=true&cauthor_uid=8136095
http://www.ncbi.nlm.nih.gov/pubmed?term=Klein%20H%5BAuthor%5D&cauthor=true&cauthor_uid=8136095
http://www.ncbi.nlm.nih.gov/pubmed?term=Golomb%20E%5BAuthor%5D&cauthor=true&cauthor_uid=8136095
http://www.ncbi.nlm.nih.gov/pubmed?term=Keiser%20HR%5BAuthor%5D&cauthor=true&cauthor_uid=8136095
http://www.ncbi.nlm.nih.gov/pubmed/8136095
http://www.ncbi.nlm.nih.gov/pubmed?term=Abassi%20ZA%5BAuthor%5D&cauthor=true&cauthor_uid=1618556
http://www.ncbi.nlm.nih.gov/pubmed?term=Tate%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=1618556
http://www.ncbi.nlm.nih.gov/pubmed?term=Golomb%20E%5BAuthor%5D&cauthor=true&cauthor_uid=1618556
http://www.ncbi.nlm.nih.gov/pubmed?term=Keiser%20HR%5BAuthor%5D&cauthor=true&cauthor_uid=1618556
http://www.ncbi.nlm.nih.gov/pubmed/1618556
http://www.ncbi.nlm.nih.gov/pubmed?term=Ackermann%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8587343
http://www.ncbi.nlm.nih.gov/pubmed?term=Ritthaler%20T%5BAuthor%5D&cauthor=true&cauthor_uid=8587343
http://www.ncbi.nlm.nih.gov/pubmed?term=Riegger%20G%5BAuthor%5D&cauthor=true&cauthor_uid=8587343
http://www.ncbi.nlm.nih.gov/pubmed?term=Kurtz%20A%5BAuthor%5D&cauthor=true&cauthor_uid=8587343
http://www.ncbi.nlm.nih.gov/pubmed?term=Kr%C3%A4mer%20BK%5BAuthor%5D&cauthor=true&cauthor_uid=8587343
http://www.ncbi.nlm.nih.gov/pubmed/8587343?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8587343?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed?term=Adlbrecht%20C%5BAuthor%5D&cauthor=true&cauthor_uid=19190023
http://www.ncbi.nlm.nih.gov/pubmed?term=H%C3%BClsmann%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19190023
http://www.ncbi.nlm.nih.gov/pubmed?term=Strunk%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19190023
http://www.ncbi.nlm.nih.gov/pubmed?term=Berger%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19190023
http://www.ncbi.nlm.nih.gov/pubmed?term=M%C3%B6rtl%20D%5BAuthor%5D&cauthor=true&cauthor_uid=19190023
http://www.ncbi.nlm.nih.gov/pubmed?term=Struck%20J%5BAuthor%5D&cauthor=true&cauthor_uid=19190023
http://www.ncbi.nlm.nih.gov/pubmed?term=Morgenthaler%20NG%5BAuthor%5D&cauthor=true&cauthor_uid=19190023
http://www.ncbi.nlm.nih.gov/pubmed?term=Morgenthaler%20NG%5BAuthor%5D&cauthor=true&cauthor_uid=19190023
http://www.ncbi.nlm.nih.gov/pubmed?term=Bergmann%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19190023
http://www.ncbi.nlm.nih.gov/pubmed?term=Jakowitsch%20J%5BAuthor%5D&cauthor=true&cauthor_uid=19190023
http://www.ncbi.nlm.nih.gov/pubmed?term=Maurer%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19190023
http://www.ncbi.nlm.nih.gov/pubmed?term=Lang%20IM%5BAuthor%5D&cauthor=true&cauthor_uid=19190023
http://www.ncbi.nlm.nih.gov/pubmed?term=Pacher%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19190023
http://www.ncbi.nlm.nih.gov/pubmed/19190023
http://www.ncbi.nlm.nih.gov/pubmed/1695532
http://www.ncbi.nlm.nih.gov/pubmed/1695532
http://www.ncbi.nlm.nih.gov/pubmed?term=Ahn%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15314687
http://www.ncbi.nlm.nih.gov/pubmed?term=Ge%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=15314687
http://www.ncbi.nlm.nih.gov/pubmed?term=Stricklett%20PK%5BAuthor%5D&cauthor=true&cauthor_uid=15314687
http://www.ncbi.nlm.nih.gov/pubmed?term=Gill%20P%5BAuthor%5D&cauthor=true&cauthor_uid=15314687
http://www.ncbi.nlm.nih.gov/pubmed?term=Taylor%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15314687
http://www.ncbi.nlm.nih.gov/pubmed?term=Hughes%20AK%5BAuthor%5D&cauthor=true&cauthor_uid=15314687
http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15314687
http://www.ncbi.nlm.nih.gov/pubmed?term=Miller%20L%5BAuthor%5D&cauthor=true&cauthor_uid=15314687
http://www.ncbi.nlm.nih.gov/pubmed?term=Nelson%20RD%5BAuthor%5D&cauthor=true&cauthor_uid=15314687
http://www.ncbi.nlm.nih.gov/pubmed?term=Kohan%20DE%5BAuthor%5D&cauthor=true&cauthor_uid=15314687
http://www.ncbi.nlm.nih.gov/pubmed/15314687
http://www.ncbi.nlm.nih.gov/pubmed?term=Amiri%20F%5BAuthor%5D&cauthor=true&cauthor_uid=15466627
http://www.ncbi.nlm.nih.gov/pubmed?term=Virdis%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15466627
http://www.ncbi.nlm.nih.gov/pubmed?term=Neves%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=15466627
http://www.ncbi.nlm.nih.gov/pubmed?term=Iglarz%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15466627
http://www.ncbi.nlm.nih.gov/pubmed?term=Seidah%20NG%5BAuthor%5D&cauthor=true&cauthor_uid=15466627
http://www.ncbi.nlm.nih.gov/pubmed?term=Touyz%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=15466627
http://www.ncbi.nlm.nih.gov/pubmed?term=Reudelhuber%20TL%5BAuthor%5D&cauthor=true&cauthor_uid=15466627
http://www.ncbi.nlm.nih.gov/pubmed?term=Schiffrin%20EL%5BAuthor%5D&cauthor=true&cauthor_uid=15466627
http://www.ncbi.nlm.nih.gov/pubmed/15466627
http://www.ncbi.nlm.nih.gov/pubmed?term=Anand%20I%5BAuthor%5D&cauthor=true&cauthor_uid=15276394
http://www.ncbi.nlm.nih.gov/pubmed?term=McMurray%20J%5BAuthor%5D&cauthor=true&cauthor_uid=15276394
http://www.ncbi.nlm.nih.gov/pubmed?term=Cohn%20JN%5BAuthor%5D&cauthor=true&cauthor_uid=15276394
http://www.ncbi.nlm.nih.gov/pubmed?term=Konstam%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=15276394
http://www.ncbi.nlm.nih.gov/pubmed?term=Notter%20T%5BAuthor%5D&cauthor=true&cauthor_uid=15276394
http://www.ncbi.nlm.nih.gov/pubmed?term=Quitzau%20K%5BAuthor%5D&cauthor=true&cauthor_uid=15276394
http://www.ncbi.nlm.nih.gov/pubmed?term=Ruschitzka%20F%5BAuthor%5D&cauthor=true&cauthor_uid=15276394
http://www.ncbi.nlm.nih.gov/pubmed?term=L%C3%BCscher%20TF%5BAuthor%5D&cauthor=true&cauthor_uid=15276394
http://www.ncbi.nlm.nih.gov/pubmed?term=EARTH%20investigators%5BCorporate%20Author%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Darusentan+anand+2004
http://www.ncbi.nlm.nih.gov/pubmed?term=Annesley%20TM%5BAuthor%5D&cauthor=true&cauthor_uid=12816898
http://www.ncbi.nlm.nih.gov/pubmed/?term=Clinical+Chemistry+49%2C+No.+7%2C+2003+ion+suppression+in+ms


 

222 

 

Argent NB, Liles J, Rodham D, Clayton CB, Wilkinson R, Baylis PH. (1994) 

A new method for measuring the blood volume of the rat using 113mIndium as a 

tracer. Lab Anim. 28(2):172-5. 

Arinami T, Ishikawa M, Inoue A, Yanagisawa M, Masaki T, Yoshida MC, Hamaguchi 

H. (1991) Chromosomal assignments of the human endothelin family genes: the 

endothelin-1 gene (EDN1) to 6p23-p24, the endothelin-2 gene (EDN2) to 1p34, and 

the endothelin-3 gene (EDN3) to 20q13.2-q13.3.  Am J Hum Genet. 48(5):990-6. 

Atkins GB. and Jain MK. (2007) Role of krüppel-like transcription factors in 

endothelial biology. Circ Res. 100:1686-1695. 

Aubert JD, Carnal B, Ricou J, Fioroni P, Juillerat-Jeanneret L, Pinet F. (1998) 

Characterization of the enzyme involved in the processing of big endothelin-1 in 

human lung epithelial cells. Pulm Pharmacol Ther.11(2-3):209-13. 

Bacon CR, Cary NR, Davenport AP. (1996) Endothelin peptide and receptors in 

human atherosclerotic coronary artery and aorta. Circ Res. 79(4):794-801. 

Bagnall AJ, Kelland NF, Gulliver-Sloan F, Davenport AP, Gray GA, Yanagisawa M, 

Webb DJ, and Kotelevtsev YV. (2006). Deletion of endothelial cell endothelin B 

receptors does not affect blood pressure or sensitivity to salt. Hypertension. 48, 286-

293. 

 

Bakris GL, Lindholm LH, Black HR, Krum H, Linas S, Linseman JV, Arterburn S, 

Sager P, Weber M. (2010) Divergent results using clinic and ambulatory blood 

pressures: report of a darusentan-resistant hypertension trial. Hypertension. 

56(5):824-30. 

Barker S, Khan NQ, Wood EG, Corder R. (2001) Effect of an antisense 

oligodeoxynucleotide to endothelin-converting enzyme-1c (ECE-1c) on ECE-1c 

mRNA, ECE-1 protein and endothelin-1 synthesis in bovine pulmonary artery 

smooth muscle cells. Mol Pharmacol. 59(2):163-9. 

Barnes K, Brown C, Turner AJ. (1998) Endothelin-converting enzyme: 

ultrastructural localization and its recycling from the cell surface. Hypertension. 

31(1):3-9. 

Barton M, Cosentino F, Brandes RP, Moreau P, Shaw S, Lüscher TF. (1997a) Anatomic 

heterogeneity of vascular aging: role of nitric oxide and endothelin. Hypertension. 

30(4):817-24. 

Barton M, Shaw S, d'Uscio LV, Moreau P, Lüscher TF. (1997b) Angiotensin II 

increases vascular and renal endothelin-1 and functional endothelin converting 

enzyme activity in vivo: role of ETA receptors for endothelin regulation. Biochem 

Biophys Res Commun. 238(3):861-5. 

Barton M. (2008) Reversal of proteinuric renal disease and the emerging role of 

endothelin. Nat Clin Pract Nephrol. 4(9):490-501.  

Battistini B, Chailler P, D'Orléans-Juste P, Brière N, Sirois P. (1993) Growth 

regulatory properties of endothelins. Peptides. 14(2):385-99. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Argent%20NB%5BAuthor%5D&cauthor=true&cauthor_uid=8035569
http://www.ncbi.nlm.nih.gov/pubmed?term=Liles%20J%5BAuthor%5D&cauthor=true&cauthor_uid=8035569
http://www.ncbi.nlm.nih.gov/pubmed?term=Rodham%20D%5BAuthor%5D&cauthor=true&cauthor_uid=8035569
http://www.ncbi.nlm.nih.gov/pubmed?term=Clayton%20CB%5BAuthor%5D&cauthor=true&cauthor_uid=8035569
http://www.ncbi.nlm.nih.gov/pubmed?term=Wilkinson%20R%5BAuthor%5D&cauthor=true&cauthor_uid=8035569
http://www.ncbi.nlm.nih.gov/pubmed?term=Baylis%20PH%5BAuthor%5D&cauthor=true&cauthor_uid=8035569
http://www.ncbi.nlm.nih.gov/pubmed/?term=A+new+method+for+measuring+the+blood+volume+argent+1994
http://www.ncbi.nlm.nih.gov/pubmed?term=Arinami%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2018043
http://www.ncbi.nlm.nih.gov/pubmed?term=Ishikawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2018043
http://www.ncbi.nlm.nih.gov/pubmed?term=Inoue%20A%5BAuthor%5D&cauthor=true&cauthor_uid=2018043
http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2018043
http://www.ncbi.nlm.nih.gov/pubmed?term=Masaki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2018043
http://www.ncbi.nlm.nih.gov/pubmed?term=Yoshida%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=2018043
http://www.ncbi.nlm.nih.gov/pubmed?term=Hamaguchi%20H%5BAuthor%5D&cauthor=true&cauthor_uid=2018043
http://www.ncbi.nlm.nih.gov/pubmed?term=Hamaguchi%20H%5BAuthor%5D&cauthor=true&cauthor_uid=2018043
http://www.ncbi.nlm.nih.gov/pubmed/?term=arinami+1991+endothelin
http://www.ncbi.nlm.nih.gov/pubmed?term=Atkins%20GB%5BAuthor%5D&cauthor=true&cauthor_uid=17585076
http://www.ncbi.nlm.nih.gov/pubmed?term=Jain%20MK%5BAuthor%5D&cauthor=true&cauthor_uid=17585076
http://www.ncbi.nlm.nih.gov/pubmed?term=Aubert%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=9918758
http://www.ncbi.nlm.nih.gov/pubmed?term=Carnal%20B%5BAuthor%5D&cauthor=true&cauthor_uid=9918758
http://www.ncbi.nlm.nih.gov/pubmed?term=Ricou%20J%5BAuthor%5D&cauthor=true&cauthor_uid=9918758
http://www.ncbi.nlm.nih.gov/pubmed?term=Fioroni%20P%5BAuthor%5D&cauthor=true&cauthor_uid=9918758
http://www.ncbi.nlm.nih.gov/pubmed?term=Juillerat-Jeanneret%20L%5BAuthor%5D&cauthor=true&cauthor_uid=9918758
http://www.ncbi.nlm.nih.gov/pubmed?term=Pinet%20F%5BAuthor%5D&cauthor=true&cauthor_uid=9918758
http://www.ncbi.nlm.nih.gov/pubmed/?term=aubert+1998+neutral+endopeptidase
http://www.ncbi.nlm.nih.gov/pubmed?term=Bakris%20GL%5BAuthor%5D&cauthor=true&cauthor_uid=20921430
http://www.ncbi.nlm.nih.gov/pubmed?term=Lindholm%20LH%5BAuthor%5D&cauthor=true&cauthor_uid=20921430
http://www.ncbi.nlm.nih.gov/pubmed?term=Black%20HR%5BAuthor%5D&cauthor=true&cauthor_uid=20921430
http://www.ncbi.nlm.nih.gov/pubmed?term=Krum%20H%5BAuthor%5D&cauthor=true&cauthor_uid=20921430
http://www.ncbi.nlm.nih.gov/pubmed?term=Linas%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20921430
http://www.ncbi.nlm.nih.gov/pubmed?term=Linseman%20JV%5BAuthor%5D&cauthor=true&cauthor_uid=20921430
http://www.ncbi.nlm.nih.gov/pubmed?term=Arterburn%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20921430
http://www.ncbi.nlm.nih.gov/pubmed?term=Sager%20P%5BAuthor%5D&cauthor=true&cauthor_uid=20921430
http://www.ncbi.nlm.nih.gov/pubmed?term=Weber%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20921430
http://www.ncbi.nlm.nih.gov/pubmed/?term=Divergent+results+using+clinic+and+ambulatory+blood+pressures%3A+report+of+a+darusentan-resistant+hypertension+trial
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Barker%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Khan%20NQ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wood%20EG%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Corder%20R%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Mol%20Pharmacol.');
http://www.ncbi.nlm.nih.gov/pubmed?term=Barton%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9336378
http://www.ncbi.nlm.nih.gov/pubmed?term=Cosentino%20F%5BAuthor%5D&cauthor=true&cauthor_uid=9336378
http://www.ncbi.nlm.nih.gov/pubmed?term=Brandes%20RP%5BAuthor%5D&cauthor=true&cauthor_uid=9336378
http://www.ncbi.nlm.nih.gov/pubmed?term=Moreau%20P%5BAuthor%5D&cauthor=true&cauthor_uid=9336378
http://www.ncbi.nlm.nih.gov/pubmed?term=Shaw%20S%5BAuthor%5D&cauthor=true&cauthor_uid=9336378
http://www.ncbi.nlm.nih.gov/pubmed?term=L%C3%BCscher%20TF%5BAuthor%5D&cauthor=true&cauthor_uid=9336378
http://www.ncbi.nlm.nih.gov/pubmed/?term=Anatomic+heterogeneity+of+v+ascular+aging%3A+role+of+nitric+oxide+and+endothelin
http://www.ncbi.nlm.nih.gov/pubmed?term=Barton%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9325182
http://www.ncbi.nlm.nih.gov/pubmed?term=Shaw%20S%5BAuthor%5D&cauthor=true&cauthor_uid=9325182
http://www.ncbi.nlm.nih.gov/pubmed?term=d%27Uscio%20LV%5BAuthor%5D&cauthor=true&cauthor_uid=9325182
http://www.ncbi.nlm.nih.gov/pubmed?term=Moreau%20P%5BAuthor%5D&cauthor=true&cauthor_uid=9325182
http://www.ncbi.nlm.nih.gov/pubmed?term=L%C3%BCscher%20TF%5BAuthor%5D&cauthor=true&cauthor_uid=9325182
http://www.ncbi.nlm.nih.gov/pubmed/?term=Angiotensin+II+increases+vascular+and+renal+endothelin-1+barton+1997
http://www.ncbi.nlm.nih.gov/pubmed/?term=Angiotensin+II+increases+vascular+and+renal+endothelin-1+barton+1997
http://www.ncbi.nlm.nih.gov/pubmed?term=Barton%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18648345
http://www.ncbi.nlm.nih.gov/pubmed/18648345


 

223 

 

Battistini B, Woods M, O'Donnell LJ, Warner TD, Corder R, Fournier A, Farthing MJ, 

Vane JR. (1995) Contractile activity of endothelin precursors in the isolated 

gallbladder of the guinea-pig: presence of an endothelin-converting enzyme. Br J 

Pharmacol. 114(7):1383-90. 

Battistini B, Berthiaume N, Kelland NF, Webb DJ, Kohan DE. (2006) 

Profile of past and current clinical trials involving endothelin receptor antagonists: 

the novel "-sentan" class of drug. Exp Biol Med (Maywood). 231(6):653-95. 

Bauer M, Wilkens H, Langer F, Schneider SO, Lausberg H, Schäfers HJ. (2002) 

Selective upregulation of endothelin B receptor gene expression in severe 

pulmonary hypertension. Circulation. 105: 1034–1036. 

Belloni AS, Rossi GP, Andreis PG, Neri G, Albertin G, Pessina AC, Nussdorfer GG. 

(1996) Endothelin adrenocortical secretagogue effect is mediated by the B receptor 

in rats. Hypertension. 27(5):1153-9. 

Benedek K. (2004) High-Performance Hydrophobic Interaction Chromatography. 

Methods Mol Biol. 251:45-54. 

Benigni A, Perico N, Gaspari F, Zoja C, Bellizzi L, Gabanelli M, Remuzzi G. (1991) 

Increased renal endothelin production in rats with reduced renal mass. Am J 

Physiol. 260(3 Pt 2):F331-9. 

Bergeron F, Leduc R, Day R. (2000) Subtilase-like pro-protein convertases: from 

molecular specificity to therapeutic applications. J Mol Endocrinol. 24(1):1-22. 

Bischoff R. and Kolbe HV. (1994) Deamidation of asparagine and glutamine 

residues in proteins and peptides: structural determinants and analytical 

methodology. J Chromatogr B Biomed Appl. 662(2):261-78. 

Blais V, Fugère M, Denault JB, Klarskov K, Day R, Leduc R. (2002) Processing of 

proendothelin-1 by members of the subtilisin-like pro-protein convertase family. 

FEBS Lett. 524(1-3):43-8. 

Blankenberg S, McQueen MJ, Smieja M, Pogue J, Balion C, Lonn E, Rupprecht HJ, 

Bickel C, Tiret L, Cambien F, Gerstein H, Münzel T, Yusuf S; HOPE Study 

Investigators. (2006) Comparative impact of multiple biomarkers and N-Terminal 

pro-brain natriuretic peptide in the context of conventional risk factors for the 

prediction of recurrent cardiovascular events in the Heart Outcomes Prevention 

Evaluation (HOPE) Study. Circulation. 114(3):201-8. 

Bloch KD, Friedrich SP, Lee ME, Eddy RL, Shows TB, Quertermous T. (1989)  

Structural organization and chromosomal assignment of the gene encoding 

endothelin. J Biol Chem. 264(18):10851-7. 

Böhm F, Johansson BL, Hedin U, Alving K, Pernow J. (2002) Enhanced 

vasoconstrictor effect of big endothelin-1 in patients with atherosclerosis: relation 

to conversion to endothelin-1. Atherosclerosis. 160(1):215-22. 

Bonfiglio R, King RC, Olah TV, Merkle K. (1999) The effects of sample preparation 

methods on the variability of the electrospray ionization response for model drug 

compounds. Rapid Commun Mass Spectrom.13:1175–85. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Battistini%20B%5BAuthor%5D&cauthor=true&cauthor_uid=7606342
http://www.ncbi.nlm.nih.gov/pubmed?term=Woods%20M%5BAuthor%5D&cauthor=true&cauthor_uid=7606342
http://www.ncbi.nlm.nih.gov/pubmed?term=O%27Donnell%20LJ%5BAuthor%5D&cauthor=true&cauthor_uid=7606342
http://www.ncbi.nlm.nih.gov/pubmed?term=Warner%20TD%5BAuthor%5D&cauthor=true&cauthor_uid=7606342
http://www.ncbi.nlm.nih.gov/pubmed?term=Corder%20R%5BAuthor%5D&cauthor=true&cauthor_uid=7606342
http://www.ncbi.nlm.nih.gov/pubmed?term=Fournier%20A%5BAuthor%5D&cauthor=true&cauthor_uid=7606342
http://www.ncbi.nlm.nih.gov/pubmed?term=Farthing%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=7606342
http://www.ncbi.nlm.nih.gov/pubmed?term=Vane%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=7606342
http://www.ncbi.nlm.nih.gov/pubmed/7606342
http://www.ncbi.nlm.nih.gov/pubmed/7606342
http://www.ncbi.nlm.nih.gov/pubmed?term=Battistini%20B%5BAuthor%5D&cauthor=true&cauthor_uid=16740981
http://www.ncbi.nlm.nih.gov/pubmed?term=Berthiaume%20N%5BAuthor%5D&cauthor=true&cauthor_uid=16740981
http://www.ncbi.nlm.nih.gov/pubmed?term=Kelland%20NF%5BAuthor%5D&cauthor=true&cauthor_uid=16740981
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=16740981
http://www.ncbi.nlm.nih.gov/pubmed?term=Kohan%20DE%5BAuthor%5D&cauthor=true&cauthor_uid=16740981
http://www.ncbi.nlm.nih.gov/pubmed/?term=Profile+of+past+and+current+clinical+trials+involving+endothelin+receptor+antagonists%3A+the+novel+%E2%80%9C-sentan%E2%80%9D+class+of+drug
http://www.ncbi.nlm.nih.gov/pubmed?term=Bauer%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11877350
http://www.ncbi.nlm.nih.gov/pubmed?term=Wilkens%20H%5BAuthor%5D&cauthor=true&cauthor_uid=11877350
http://www.ncbi.nlm.nih.gov/pubmed?term=Langer%20F%5BAuthor%5D&cauthor=true&cauthor_uid=11877350
http://www.ncbi.nlm.nih.gov/pubmed?term=Schneider%20SO%5BAuthor%5D&cauthor=true&cauthor_uid=11877350
http://www.ncbi.nlm.nih.gov/pubmed?term=Lausberg%20H%5BAuthor%5D&cauthor=true&cauthor_uid=11877350
http://www.ncbi.nlm.nih.gov/pubmed?term=Sch%C3%A4fers%20HJ%5BAuthor%5D&cauthor=true&cauthor_uid=11877350
http://www.ncbi.nlm.nih.gov/pubmed?term=Belloni%20AS%5BAuthor%5D&cauthor=true&cauthor_uid=8621210
http://www.ncbi.nlm.nih.gov/pubmed?term=Rossi%20GP%5BAuthor%5D&cauthor=true&cauthor_uid=8621210
http://www.ncbi.nlm.nih.gov/pubmed?term=Andreis%20PG%5BAuthor%5D&cauthor=true&cauthor_uid=8621210
http://www.ncbi.nlm.nih.gov/pubmed?term=Neri%20G%5BAuthor%5D&cauthor=true&cauthor_uid=8621210
http://www.ncbi.nlm.nih.gov/pubmed?term=Albertin%20G%5BAuthor%5D&cauthor=true&cauthor_uid=8621210
http://www.ncbi.nlm.nih.gov/pubmed?term=Pessina%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=8621210
http://www.ncbi.nlm.nih.gov/pubmed?term=Nussdorfer%20GG%5BAuthor%5D&cauthor=true&cauthor_uid=8621210
http://www.ncbi.nlm.nih.gov/pubmed/?term=Endothelin+Adrenocortical+Secretagogue+Effect+Is+Mediated+by+the+B+Receptor+in+Rats
http://www.springerprotocols.com/Abstract/doi/10.1385/1-59259-742-4:45
http://www.ncbi.nlm.nih.gov/pubmed/14704437
http://www.ncbi.nlm.nih.gov/pubmed/2000950
http://www.ncbi.nlm.nih.gov/pubmed?term=Bergeron%20F%5BAuthor%5D&cauthor=true&cauthor_uid=10656993
http://www.ncbi.nlm.nih.gov/pubmed?term=Leduc%20R%5BAuthor%5D&cauthor=true&cauthor_uid=10656993
http://www.ncbi.nlm.nih.gov/pubmed?term=Day%20R%5BAuthor%5D&cauthor=true&cauthor_uid=10656993
http://www.ncbi.nlm.nih.gov/pubmed/?term=Processing+bergeron+2000+mol+endocrinol
http://www.ncbi.nlm.nih.gov/pubmed?term=Bischoff%20R%5BAuthor%5D&cauthor=true&cauthor_uid=7719481
http://www.ncbi.nlm.nih.gov/pubmed?term=Kolbe%20HV%5BAuthor%5D&cauthor=true&cauthor_uid=7719481
http://www.ncbi.nlm.nih.gov/pubmed?term=Blais%20V%5BAuthor%5D&cauthor=true&cauthor_uid=12135739
http://www.ncbi.nlm.nih.gov/pubmed?term=Fug%C3%A8re%20M%5BAuthor%5D&cauthor=true&cauthor_uid=12135739
http://www.ncbi.nlm.nih.gov/pubmed?term=Denault%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=12135739
http://www.ncbi.nlm.nih.gov/pubmed?term=Klarskov%20K%5BAuthor%5D&cauthor=true&cauthor_uid=12135739
http://www.ncbi.nlm.nih.gov/pubmed?term=Day%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12135739
http://www.ncbi.nlm.nih.gov/pubmed?term=Leduc%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12135739
http://www.ncbi.nlm.nih.gov/pubmed/?term=Processing+of+proendothelin-1+by+members+of+the+subtilisin-like+pro-protein+convertase+family
http://www.ncbi.nlm.nih.gov/pubmed/16831981
http://www.ncbi.nlm.nih.gov/pubmed/16831981
http://www.ncbi.nlm.nih.gov/pubmed/16831981
http://www.ncbi.nlm.nih.gov/pubmed/16831981
http://www.ncbi.nlm.nih.gov/pubmed?term=B%C3%B6hm%20F%5BAuthor%5D&cauthor=true&cauthor_uid=11755940
http://www.ncbi.nlm.nih.gov/pubmed?term=Johansson%20BL%5BAuthor%5D&cauthor=true&cauthor_uid=11755940
http://www.ncbi.nlm.nih.gov/pubmed?term=Hedin%20U%5BAuthor%5D&cauthor=true&cauthor_uid=11755940
http://www.ncbi.nlm.nih.gov/pubmed?term=Alving%20K%5BAuthor%5D&cauthor=true&cauthor_uid=11755940
http://www.ncbi.nlm.nih.gov/pubmed?term=Pernow%20J%5BAuthor%5D&cauthor=true&cauthor_uid=11755940
http://www.ncbi.nlm.nih.gov/pubmed/11755940


 

224 

 

Bosselmann H, Egstrup M, Rossing K, Gustafsson I, Gustafsson F, Tonder N, Kistorp 

CN, Goetze JP, Schou M. (2013) Prognostic significance of cardiovascular 

biomarkers and renal dysfunction in outpatients with systolic heart failure: A long 

term follow-up study.  Int J Cardiol. pii: S0167-5273(13)01908-6. 

Boulanger C. and Lüscher TF. (1990) Release of endothelin from the porcine aorta. 

Inhibition by endothelium-derived nitric oxide. J Clin Invest. 85:587–590. 

Boulanger CM, Tanner FC, Bea ML, Hahn AWA, Wener A, Lüscher TF. (1992) 

Oxidized low density lipoproteins induce mRNA expression and release of 

endothelin from human and porcine endothelium. Circ Res. 70:1191–1197. 

Boyer B, Hart KW, Sperling MI, Lindsell CJ, Collins SP. (2012) Biomarker changes 

during acute heart failure treatment. Congest Heart Fail. 18(2):91-7. 

Braasch I, Volff JN, Schartl M. (2009) The endothelin system: evolution of 

vertebrate-specific ligand-receptor interactions by three rounds of genome 

duplication. Mol Biol Evol. 26(4):783-99. 

Breci LA, Tabb DL, Yates JR III, Wysocki VH. (2003) Cleavage N-terminal to 

proline: analysis of a database of peptide tandem mass spectra. Anal. Chem. 

75:1963–1971. 

 

Bugaj V, Mironova E, Kohan DE, Stockand JD. (2012) Collecting duct-specific 

endothelin B receptor knockout increases ENaC activity. Am J Physiol Cell Physiol. 

302(1):C188-94. 

 

Burgess RR. (2008) Protein Purification. In: Nothwang HG. and Pfeiffer SE eds., 

Proteomics of the Nervous System. Weinheim, Germany, WILEY-VCH, pp. 1-17.  

Burkhardt M, Barton M, Shaw SG. (2000) Receptor- and non-receptor-mediated 

clearance of big-endothelin and endothelin-1: differential effects of acute and 

chronic ETA receptor blockade. J Hypertens.18(3):273-9. 

Burne MJ, Osicka TM, Comper WD. (1999) Fractional clearance of high molecular 

weight proteins in conscious rats using a continuous infusion method. Kidney Int. 

55(1):261-70. 

Cade C, Lumma WC Jr, Mohan R, Rubanyi GM, Parker-Botelho LH. (1990) Lack of 

biological activity of preproendothelin [110-130] in several endothelin assays. Life 

Sci. 47(23):2097-103. 

Calderón E, Gómez-Sánchez CE, Cozza EN, Zhou M, Coffey RG, Lockey RF, Prockop 

LD, Szentivanyi A. (1994) Modulation of endothelin-1 production by a pulmonary 

epithelial cell line. I. Regulation by glucocorticoids. Biochem Pharmacol. 

48(11):2065-71. 

Capasso S. and Salvadori S. (1999) Effect of the three-dimensional structure on the 

deamidation reaction of ribonuclease A. J Pept Res. 54(5):377-82. 

Cardillo C, Campia U, Kilcoyne CM, Bryant MB, Panza JA. (2002) Improved 

endothelium-dependent vasodilation after blockade of endothelin receptors in 

patients with essential hypertension. Circulation. 105(4):452-6. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bosselmann%20H%5BAuthor%5D&cauthor=true&cauthor_uid=24182673
http://www.ncbi.nlm.nih.gov/pubmed?term=Egstrup%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24182673
http://www.ncbi.nlm.nih.gov/pubmed?term=Rossing%20K%5BAuthor%5D&cauthor=true&cauthor_uid=24182673
http://www.ncbi.nlm.nih.gov/pubmed?term=Gustafsson%20I%5BAuthor%5D&cauthor=true&cauthor_uid=24182673
http://www.ncbi.nlm.nih.gov/pubmed?term=Gustafsson%20F%5BAuthor%5D&cauthor=true&cauthor_uid=24182673
http://www.ncbi.nlm.nih.gov/pubmed?term=Tonder%20N%5BAuthor%5D&cauthor=true&cauthor_uid=24182673
http://www.ncbi.nlm.nih.gov/pubmed?term=Kistorp%20CN%5BAuthor%5D&cauthor=true&cauthor_uid=24182673
http://www.ncbi.nlm.nih.gov/pubmed?term=Kistorp%20CN%5BAuthor%5D&cauthor=true&cauthor_uid=24182673
http://www.ncbi.nlm.nih.gov/pubmed?term=Goetze%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=24182673
http://www.ncbi.nlm.nih.gov/pubmed?term=Schou%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24182673
http://www.ncbi.nlm.nih.gov/pubmed/24182673
http://www.ncbi.nlm.nih.gov/pubmed?term=Boyer%20B%5BAuthor%5D&cauthor=true&cauthor_uid=22432555
http://www.ncbi.nlm.nih.gov/pubmed?term=Hart%20KW%5BAuthor%5D&cauthor=true&cauthor_uid=22432555
http://www.ncbi.nlm.nih.gov/pubmed?term=Sperling%20MI%5BAuthor%5D&cauthor=true&cauthor_uid=22432555
http://www.ncbi.nlm.nih.gov/pubmed?term=Lindsell%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=22432555
http://www.ncbi.nlm.nih.gov/pubmed?term=Collins%20SP%5BAuthor%5D&cauthor=true&cauthor_uid=22432555
http://www.ncbi.nlm.nih.gov/pubmed/?term=Boyer+2012+acute+decompensated+heart+failure
http://www.ncbi.nlm.nih.gov/pubmed?term=Braasch%20I%5BAuthor%5D&cauthor=true&cauthor_uid=19174480
http://www.ncbi.nlm.nih.gov/pubmed?term=Volff%20JN%5BAuthor%5D&cauthor=true&cauthor_uid=19174480
http://www.ncbi.nlm.nih.gov/pubmed?term=Schartl%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19174480
http://www.ncbi.nlm.nih.gov/pubmed/?term=Braasch+the+endothelin+system+genome+duplication+2009
http://www.ncbi.nlm.nih.gov/pubmed?term=Bugaj%20V%5BAuthor%5D&cauthor=true&cauthor_uid=21918182
http://www.ncbi.nlm.nih.gov/pubmed?term=Mironova%20E%5BAuthor%5D&cauthor=true&cauthor_uid=21918182
http://www.ncbi.nlm.nih.gov/pubmed?term=Kohan%20DE%5BAuthor%5D&cauthor=true&cauthor_uid=21918182
http://www.ncbi.nlm.nih.gov/pubmed?term=Stockand%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=21918182
http://www.ncbi.nlm.nih.gov/pubmed/21918182
http://www.ncbi.nlm.nih.gov/pubmed?term=Burkhardt%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10726713
http://www.ncbi.nlm.nih.gov/pubmed?term=Barton%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10726713
http://www.ncbi.nlm.nih.gov/pubmed?term=Shaw%20SG%5BAuthor%5D&cauthor=true&cauthor_uid=10726713
http://www.ncbi.nlm.nih.gov/pubmed/10726713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed?term=Burne%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=9893135
http://www.ncbi.nlm.nih.gov/pubmed?term=Osicka%20TM%5BAuthor%5D&cauthor=true&cauthor_uid=9893135
http://www.ncbi.nlm.nih.gov/pubmed?term=Comper%20WD%5BAuthor%5D&cauthor=true&cauthor_uid=9893135
http://www.ncbi.nlm.nih.gov/pubmed/9893135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed?term=Cade%20C%5BAuthor%5D&cauthor=true&cauthor_uid=2266780
http://www.ncbi.nlm.nih.gov/pubmed?term=Lumma%20WC%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=2266780
http://www.ncbi.nlm.nih.gov/pubmed?term=Mohan%20R%5BAuthor%5D&cauthor=true&cauthor_uid=2266780
http://www.ncbi.nlm.nih.gov/pubmed?term=Rubanyi%20GM%5BAuthor%5D&cauthor=true&cauthor_uid=2266780
http://www.ncbi.nlm.nih.gov/pubmed?term=Parker-Botelho%20LH%5BAuthor%5D&cauthor=true&cauthor_uid=2266780
http://www.ncbi.nlm.nih.gov/pubmed/2266780
http://www.ncbi.nlm.nih.gov/pubmed/2266780
http://www.ncbi.nlm.nih.gov/pubmed?term=Calder%C3%B3n%20E%5BAuthor%5D&cauthor=true&cauthor_uid=7802696
http://www.ncbi.nlm.nih.gov/pubmed?term=G%C3%B3mez-S%C3%A1nchez%20CE%5BAuthor%5D&cauthor=true&cauthor_uid=7802696
http://www.ncbi.nlm.nih.gov/pubmed?term=Cozza%20EN%5BAuthor%5D&cauthor=true&cauthor_uid=7802696
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhou%20M%5BAuthor%5D&cauthor=true&cauthor_uid=7802696
http://www.ncbi.nlm.nih.gov/pubmed?term=Coffey%20RG%5BAuthor%5D&cauthor=true&cauthor_uid=7802696
http://www.ncbi.nlm.nih.gov/pubmed?term=Lockey%20RF%5BAuthor%5D&cauthor=true&cauthor_uid=7802696
http://www.ncbi.nlm.nih.gov/pubmed?term=Prockop%20LD%5BAuthor%5D&cauthor=true&cauthor_uid=7802696
http://www.ncbi.nlm.nih.gov/pubmed?term=Prockop%20LD%5BAuthor%5D&cauthor=true&cauthor_uid=7802696
http://www.ncbi.nlm.nih.gov/pubmed?term=Szentivanyi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=7802696
http://www.ncbi.nlm.nih.gov/pubmed/7802696
http://www.ncbi.nlm.nih.gov/pubmed?term=Capasso%20S%5BAuthor%5D&cauthor=true&cauthor_uid=10563503
http://www.ncbi.nlm.nih.gov/pubmed?term=Salvadori%20S%5BAuthor%5D&cauthor=true&cauthor_uid=10563503
http://www.ncbi.nlm.nih.gov/pubmed/?term=Capasso%2C+S.%2C+Salvadori%2C+S.%2C+J.+Peptide+Res.%2C+1999%2C+54%2C+377-382
http://www.ncbi.nlm.nih.gov/pubmed?term=Cardillo%20C%5BAuthor%5D&cauthor=true&cauthor_uid=11815427
http://www.ncbi.nlm.nih.gov/pubmed?term=Campia%20U%5BAuthor%5D&cauthor=true&cauthor_uid=11815427
http://www.ncbi.nlm.nih.gov/pubmed?term=Kilcoyne%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=11815427
http://www.ncbi.nlm.nih.gov/pubmed?term=Bryant%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=11815427
http://www.ncbi.nlm.nih.gov/pubmed?term=Panza%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=11815427
http://www.ncbi.nlm.nih.gov/pubmed/11815427


 

225 

 

Cattaruzza M, Dimigen C, Ehrenreich H, Hecker M. (2000) Stretch-induced 

endothelin B receptor-mediated apoptosis in vascular smooth muscle cells. FASEB 

J. 14(7):991-8. 

Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, 

Deanfield JE. (1994) Aging is associated with endothelial dysfunction in healthy men 

years before the age-related decline in women. J Am Coll Cardiol. 24:471–476. 

Chelius D, Jing K, Lueras A, Rehder DS, Dillon TM, Vizel A, Rajan RS, Li T, Treuheit 

MJ, Bondarenko PV. (2006) Formation of pyroglutamic acid from Nterminal 

glutamic acid in immunoglobulin gamma antibodies. Anal. Chem. 78:2370–2376. 

Chen SJ, Chen YF, Meng QC, Durand J, Dicarlo VS, Oparil S. (1995) Endothelin-

receptor antagonist bosentan prevents and reverses hypoxic pulmonary 

hypertension in rats. J Appl Physiol. 79:2122–2131.  

Claria J, Jimenez W, La Villa G, Asbert M, Castro A, Llibre JL, Arroyo V, Rivera F. 

(1991) Effects of endothelin on renal haemodynamics and segmental sodium 

handling in conscious rats. Acta Physiol Scand. 141(3):305-8. 

 

Clarke JG, Benjamin N, Larkin SW, Webb DJ, Davies GJ, Maseri A. (1989) Endothelin 

is a potent long-lasting vasoconstrictor in men. Am J Physiol. 257(6 Pt 2):H2033-5. 

 

Clozel M, Gray GA, Breu V, Loffler BM, Osterwalder R.(1992) The endothelin ET 

(B) receptor mediates both vasodilation and vasoconstriction in vivo. Biochem. 

Biophys. Res. Commun. 186:867–873. 

Cohn JN, Quyyumi AA, Hollenberg NK, Jamerson KA. (2004) Surrogate markers for 

cardiovascular disease: functional markers. Circulation. 109(25 Suppl 1):IV31-46. 

Coletta A, Thackray S, Nikitin N, Cleland JG. (2002) Clinical trials update: highlights 

of the scientific sessions of The American College of Cardiology 2002: LIFE, 

DANAMI 2, MADIT-2, MIRACLE-ICD, OVERTURE, OCTAVE, ENABLE 1 & 

2, CHRISTMAS, AFFIRM, RACE, WIZARD, AZACS, REMATCH, BNP trial 

and HARDBALL. Eur J Heart Fail. 4(3):381-8. 

Coletta AP. and Cleland JG. (2001) Clinical trials update: highlights of the scientific 

sessions of the XXIII Congress of the European Society of Cardiology--WARIS II, 

ESCAMI, PAFAC, RITZ-1 and TIME. Eur J Heart Fail. 3(6):747-50. 

Corder R, Carrier M, Khan N, Klemm P, Vane JR. (1995a) Cytokine regulation of 

endothelin-1 release from bovine aortic endothelial cells. J Cardiovasc Pharmacol. 

26 Suppl 3:S56-8. 

Corder R, Harrison VJ, Khan N, Anggård EE, Vane JR. (1993a) Effects of 

phosphoramidon in endothelial cell cultures on the endogenous synthesis of 

endothelin-1 and on conversion of exogenous big endothelin-1 to endothelin-1. J 

Cardiovasc Pharmacol. 22 Suppl 8:S73-6. 

Corder R, Khan N, Anggård EE, Vane JR. (1993b) Calcium ionophores inhibit the 

release of endothelin-1 from endothelial cells. J Cardiovasc Pharmacol. 22 Suppl 

8:S42-5. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Celermajer%20DS%5BAuthor%5D&cauthor=true&cauthor_uid=8034885
http://www.ncbi.nlm.nih.gov/pubmed?term=Sorensen%20KE%5BAuthor%5D&cauthor=true&cauthor_uid=8034885
http://www.ncbi.nlm.nih.gov/pubmed?term=Spiegelhalter%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=8034885
http://www.ncbi.nlm.nih.gov/pubmed?term=Georgakopoulos%20D%5BAuthor%5D&cauthor=true&cauthor_uid=8034885
http://www.ncbi.nlm.nih.gov/pubmed?term=Robinson%20J%5BAuthor%5D&cauthor=true&cauthor_uid=8034885
http://www.ncbi.nlm.nih.gov/pubmed?term=Deanfield%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=8034885
http://www.ncbi.nlm.nih.gov/pubmed?term=Chelius%20D%5BAuthor%5D&cauthor=true&cauthor_uid=16579622
http://www.ncbi.nlm.nih.gov/pubmed?term=Jing%20K%5BAuthor%5D&cauthor=true&cauthor_uid=16579622
http://www.ncbi.nlm.nih.gov/pubmed?term=Lueras%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16579622
http://www.ncbi.nlm.nih.gov/pubmed?term=Rehder%20DS%5BAuthor%5D&cauthor=true&cauthor_uid=16579622
http://www.ncbi.nlm.nih.gov/pubmed?term=Dillon%20TM%5BAuthor%5D&cauthor=true&cauthor_uid=16579622
http://www.ncbi.nlm.nih.gov/pubmed?term=Vizel%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16579622
http://www.ncbi.nlm.nih.gov/pubmed?term=Rajan%20RS%5BAuthor%5D&cauthor=true&cauthor_uid=16579622
http://www.ncbi.nlm.nih.gov/pubmed?term=Li%20T%5BAuthor%5D&cauthor=true&cauthor_uid=16579622
http://www.ncbi.nlm.nih.gov/pubmed?term=Treuheit%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=16579622
http://www.ncbi.nlm.nih.gov/pubmed?term=Treuheit%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=16579622
http://www.ncbi.nlm.nih.gov/pubmed?term=Bondarenko%20PV%5BAuthor%5D&cauthor=true&cauthor_uid=16579622
http://www.ncbi.nlm.nih.gov/pubmed/1858503
http://www.ncbi.nlm.nih.gov/pubmed/1858503
http://www.ncbi.nlm.nih.gov/pubmed?term=Clarke%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=2690644
http://www.ncbi.nlm.nih.gov/pubmed?term=Benjamin%20N%5BAuthor%5D&cauthor=true&cauthor_uid=2690644
http://www.ncbi.nlm.nih.gov/pubmed?term=Larkin%20SW%5BAuthor%5D&cauthor=true&cauthor_uid=2690644
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=2690644
http://www.ncbi.nlm.nih.gov/pubmed?term=Davies%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=2690644
http://www.ncbi.nlm.nih.gov/pubmed?term=Maseri%20A%5BAuthor%5D&cauthor=true&cauthor_uid=2690644
http://www.ncbi.nlm.nih.gov/pubmed/?term=Endothelin+is+a+potent+long-lasting+vasoconstrictor+in+men.
http://www.ncbi.nlm.nih.gov/pubmed?term=Cohn%20JN%5BAuthor%5D&cauthor=true&cauthor_uid=15226249
http://www.ncbi.nlm.nih.gov/pubmed?term=Quyyumi%20AA%5BAuthor%5D&cauthor=true&cauthor_uid=15226249
http://www.ncbi.nlm.nih.gov/pubmed?term=Hollenberg%20NK%5BAuthor%5D&cauthor=true&cauthor_uid=15226249
http://www.ncbi.nlm.nih.gov/pubmed?term=Jamerson%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=15226249
http://www.ncbi.nlm.nih.gov/pubmed/15226249
http://www.ncbi.nlm.nih.gov/pubmed?term=Coletta%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12034166
http://www.ncbi.nlm.nih.gov/pubmed?term=Thackray%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12034166
http://www.ncbi.nlm.nih.gov/pubmed?term=Nikitin%20N%5BAuthor%5D&cauthor=true&cauthor_uid=12034166
http://www.ncbi.nlm.nih.gov/pubmed?term=Cleland%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=12034166
http://www.ncbi.nlm.nih.gov/pubmed/12034166
http://www.ncbi.nlm.nih.gov/pubmed?term=Coletta%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=11738228
http://www.ncbi.nlm.nih.gov/pubmed?term=Cleland%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=11738228
http://www.ncbi.nlm.nih.gov/pubmed/?term=Clinical+trials+update%3A+highlights+of+the+scientific+sessions+of+the+XXIII+Congress+of+the+European+Society+of+Cardiology.+WARIS+II%2C+ESCAMI%2C+PAFAC%2C+RITZ-1+and+TIME
http://www.ncbi.nlm.nih.gov/pubmed/7510004
http://www.ncbi.nlm.nih.gov/pubmed/7510004
http://www.ncbi.nlm.nih.gov/pubmed/7510004
http://www.ncbi.nlm.nih.gov/pubmed/7509995
http://www.ncbi.nlm.nih.gov/pubmed/7509995


 

226 

 

Corder R. and Vane JR. (1995) Radioimmunoassay evidence that the pressor effect 

of big endothelin-1 is due to local conversion to endothelin-1. Biochem Pharmacol. 

49(3):375-80. 

Corder R, Khan N, Harrison VJ. (1995b) A simple method for isolating human 

endothelin converting enzyme free from contamination by neutral endopeptidase 

24.11. Biochem Biophys Res Commun. 207(1):355-62. 

Corder R. (1996) The conformation of human big endothelin-1 favours 

endopeptidase hydrolysis of the TRP21-VAL22 bond. Biochem Pharmacol. 

51(3):259-66. 

Corder R. (2001) Identity of endothelin-converting enzyme and other targets for the 

therapeutic regulation of endothelin biosynthesis. In: Warner TD. ed., Handbook of 

Experimental Pharmacology: Endothelin and Its Inhibitors. Germany, Springer-Verlag, 

152: 35–67. 

Corder R. (2002) Evaluation of Endothelin-Converting Enzyme Inhibitors Using 

Cultured Cells. In: Maguire JJ. and Davenport AP. eds., Peptide Research Protocols 

Methods in Molecular Biology. Totowa, NJ, Humana Press Inc., pp. 147-162. 

Corder R. and Barker S. (1999) The expression of endothelin-1 and endothelin 

converting enzyme-1 (ECE-1) are independently regulated in bovine aortic 

endothelial cells. J. Cardiovasc. Pharmacol. 33, 671–677.  

Cowie MR, Struthers AD, Wood DA, Coats AJ, Thompson SG, Poole-Wilson PA, 

Sutton GC. (1997) Value of natriuretic peptides in assessment of patients with 

possible new heart failure in primary care. Lancet. 350(9088):1349-53. 

Creasy DM, and Cottrell JS. (2002) Error tolerant searching of uninterpreted 

tandem mass spectrometry data. Proteomics. 2:1426–1434.  

Creighton T. (1993) Proteins: Structures and Molecular Properties. 2nd ed. New 

York, Freeman. 

 

Dashwood MR, Barker SG, Muddle JR, Yacoub MH, Martin JF. (1993) [125I]-

endothelin-1 binding to vasa vasorum and regions of neovascularization in human 

and porcine blood vessels: a possible role for endothelin in intimal hyperplasia and 

atherosclerosis. J Cardiovasc Pharmacol. 22:S343–S347. 

Dashwood MR, Mehta D, Izzat MB, Timm M, Bryan AJ, Angelini GD, and Jeremy JY. 

(1998) Distribution of endothelin-1 (ET) receptors (ETA and ETB) and 

immunoreactive ET-1 in porcine saphenous vein carotid artery interposition 

grafts. Atherosclerosis. 137: 233-242. 

 

Dashwood MR, Noertersheuser P, Kirchengast M, and Munter K. (1999) Altered 

endothelin-1 binding following balloon angioplasty of pig coronary arteries: effect 

of the ETA receptor antagonist, LU 135252. Cardiovascular research. 43: 445-456. 

 

Davenport AP. and Kuc RE. (2004) Down-regulation of ETA receptors in ETB 

receptor-deficient mice. J Cardiovasc Pharmacol. 44 Suppl 1:S276-8. 

 

http://www.ncbi.nlm.nih.gov/pubmed/7857324
http://www.ncbi.nlm.nih.gov/pubmed/7857324
http://www.ncbi.nlm.nih.gov/pubmed?term=Corder%20R%5BAuthor%5D&cauthor=true&cauthor_uid=7857289
http://www.ncbi.nlm.nih.gov/pubmed?term=Khan%20N%5BAuthor%5D&cauthor=true&cauthor_uid=7857289
http://www.ncbi.nlm.nih.gov/pubmed?term=Harrison%20VJ%5BAuthor%5D&cauthor=true&cauthor_uid=7857289
http://www.ncbi.nlm.nih.gov/pubmed?term=for%20isolating%20human%20endothelin%20converting%20enzyme%20free%20from%20corder
http://www.ncbi.nlm.nih.gov/pubmed/8573192
http://www.ncbi.nlm.nih.gov/pubmed/8573192
http://www.springerlink.com/content/1064-3745/
http://www.ncbi.nlm.nih.gov/pubmed?term=Cowie%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=9365448
http://www.ncbi.nlm.nih.gov/pubmed?term=Struthers%20AD%5BAuthor%5D&cauthor=true&cauthor_uid=9365448
http://www.ncbi.nlm.nih.gov/pubmed?term=Wood%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=9365448
http://www.ncbi.nlm.nih.gov/pubmed?term=Coats%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=9365448
http://www.ncbi.nlm.nih.gov/pubmed?term=Thompson%20SG%5BAuthor%5D&cauthor=true&cauthor_uid=9365448
http://www.ncbi.nlm.nih.gov/pubmed?term=Poole-Wilson%20PA%5BAuthor%5D&cauthor=true&cauthor_uid=9365448
http://www.ncbi.nlm.nih.gov/pubmed?term=Sutton%20GC%5BAuthor%5D&cauthor=true&cauthor_uid=9365448
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cowie+MR%2C+Struthers+AD%2C+Wood+DA%2C+Coats+AJ%2C+Thompson+SG%2C+Poole-Wilson+PA%2C+Sutton+GC.+Value+of+natriuretic+peptides+in+assessment+of+patients+with+possible+new+heart+failure+in+primary+care.
http://www.ncbi.nlm.nih.gov/pubmed?term=Creasy%20DM%5BAuthor%5D&cauthor=true&cauthor_uid=12422359
http://www.ncbi.nlm.nih.gov/pubmed?term=Cottrell%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=12422359
http://www.ncbi.nlm.nih.gov/pubmed?term=Davenport%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=15838300
http://www.ncbi.nlm.nih.gov/pubmed?term=Kuc%20RE%5BAuthor%5D&cauthor=true&cauthor_uid=15838300
http://www.ncbi.nlm.nih.gov/pubmed/?term=Down-regulation+of+ETA+Receptors+in+ETB+Receptor-deficient+Mice.


 

227 

 

Davenport AP. and Kuc RE. (2002) Analysis of Endothelins by Enzyme-Linked 

Immunosorbent Assay and Radioimmunoassay. In: Maguire JJ & Davenport AP eds., 

Methods in Molecular Biology, Peptide Research Protocols: Endothelin. Totowa, NJ. 

Humana Press Inc., pp. 21-36. 

 

Davenport AP, O'Reilly G, Kuc RE. (1995) Endothelin ETA and ETB mRNA and 

receptors expressed by smooth muscle in the human vasculature: majority of the 

ETA sub-type. Br J Pharmacol. 114(6):1110-6. 

Davenport AP. (2002) International Union of Pharmacology. XXIX. Update on 

endothelin receptor nomenclature. Pharmacol Rev. 54: 219-226. 

 

Davenport AP. and Maguire JJ. (1994) Is endothelin-induced vasoconstriction 

mediated only by ETA receptors in humans? Trends Pharmacol Sci. 15(1):9-11.  

 

Davenport AP. and Maguire JJ. (2006) Endothelin. In: Moncada S. and Higgs A. eds.,  

The Vascular Endothelium I, Handb Exp Pharmacol. Germany, Springer (176 Pt 1):295-

329.  

 

Davie N, Haleen SJ, Upton PD, Polak JM, Yacoub MH, Morrell NW, Wharton J. (2002) 

ET(A) and ET(B) receptors modulate the proliferation of human pulmonary artery 

smooth muscle cells. Am J Respir Crit Care Med. 165(3):398-405. 

de Nucci G, Thomas R, D'Orleans-Juste P, Antunes E, Walder C, Warner TD, Vane JR. 

(1988) Pressor effects of circulating endothelin are limited by its removal in the 

pulmonary circulation and by the release of prostacyclin and endothelium-derived 

relaxing factor. Proc Natl Acad Sci U S A. 85(24):9797-800. 

Deanfield JE, Halcox JP, Rabelink TJ. (2007) Endothelial function and dysfunction: 

testing and clinical relevance. Circulation. 115(10):1285-95. 

deFilippi CR, de Lemos JA, Christenson RH, Gottdiener JS, Kop WJ, Zhan M, Seliger 

SL. (2010) Association of serial measures of cardiac troponin T using a sensitive 

assay with incident heart failure and cardiovascular mortality in older adults. 

JAMA. 304(22):2494-502.  

Denault JB, Claing A, D'Orléans-Juste P, Sawamura T, Kido T, Masaki T, Leduc R. 

(1995) Processing of proendothelin-1 by human furin convertase. FEBS Lett. 

362(3):276-80. 

Deng LY, Day R, Schiffrin EL. (1996) Localization of sites of enhanced expression 

of endothelin-1 in the kidney of DOCA-salt hypertensive rats. J Am Soc Nephrol. 

7:1158–1164. 

Deprez-Roy I, Coge F, Bertry L, Galizzi JP, Feletou M, Vanhoutte PM, Canet E. (2000) 

Endothelin-1 pathway in human alveolar epithelial cell line A549 and human 

umbilical vein endothelial cells. Acta Pharmacol Sin. 21(6):499-506. 

Dhaun N, Goddard J, Webb DJ. (2006) The endothelin system and its antagonism in 

chronic kidney disease. J Am Soc Nephrol 17:943-55. 

 

http://www.springerlink.com/content/1064-3745/
http://www.ncbi.nlm.nih.gov/pubmed?term=Davenport%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=7620699
http://www.ncbi.nlm.nih.gov/pubmed?term=O%27Reilly%20G%5BAuthor%5D&cauthor=true&cauthor_uid=7620699
http://www.ncbi.nlm.nih.gov/pubmed?term=Kuc%20RE%5BAuthor%5D&cauthor=true&cauthor_uid=7620699
http://www.ncbi.nlm.nih.gov/pubmed/7620699
http://www.ncbi.nlm.nih.gov/pubmed/8140658
http://www.ncbi.nlm.nih.gov/pubmed/8140658
http://www.ncbi.nlm.nih.gov/pubmed/16999223
http://www.ncbi.nlm.nih.gov/pubmed?term=Davie%20N%5BAuthor%5D&cauthor=true&cauthor_uid=11818328
http://www.ncbi.nlm.nih.gov/pubmed?term=Haleen%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=11818328
http://www.ncbi.nlm.nih.gov/pubmed?term=Upton%20PD%5BAuthor%5D&cauthor=true&cauthor_uid=11818328
http://www.ncbi.nlm.nih.gov/pubmed?term=Polak%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=11818328
http://www.ncbi.nlm.nih.gov/pubmed?term=Yacoub%20MH%5BAuthor%5D&cauthor=true&cauthor_uid=11818328
http://www.ncbi.nlm.nih.gov/pubmed?term=Morrell%20NW%5BAuthor%5D&cauthor=true&cauthor_uid=11818328
http://www.ncbi.nlm.nih.gov/pubmed?term=Wharton%20J%5BAuthor%5D&cauthor=true&cauthor_uid=11818328
http://www.ncbi.nlm.nih.gov/pubmed/?term=NEIL+DAVIE%2C+STEPHEN%E2%80%82J.+HALEEN%2C+PAUL%E2%80%82D.+UPTON%2C+JULIA%E2%80%82M.+POLAK%2C+MAGDI%E2%80%82H.+YACOUB%2C+NICHOLAS%E2%80%82W.+MORRELL%2C+and+JOHN+WHARTON+%22ETA+and+ETB+Receptors+Modulate+t
http://www.ncbi.nlm.nih.gov/pubmed?term=Deanfield%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=17353456
http://www.ncbi.nlm.nih.gov/pubmed?term=Halcox%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=17353456
http://www.ncbi.nlm.nih.gov/pubmed?term=Rabelink%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=17353456
http://www.ncbi.nlm.nih.gov/pubmed/17353456
http://www.ncbi.nlm.nih.gov/pubmed?term=deFilippi%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=21078811
http://www.ncbi.nlm.nih.gov/pubmed?term=de%20Lemos%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=21078811
http://www.ncbi.nlm.nih.gov/pubmed?term=Christenson%20RH%5BAuthor%5D&cauthor=true&cauthor_uid=21078811
http://www.ncbi.nlm.nih.gov/pubmed?term=Gottdiener%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=21078811
http://www.ncbi.nlm.nih.gov/pubmed?term=Kop%20WJ%5BAuthor%5D&cauthor=true&cauthor_uid=21078811
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhan%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21078811
http://www.ncbi.nlm.nih.gov/pubmed?term=Seliger%20SL%5BAuthor%5D&cauthor=true&cauthor_uid=21078811
http://www.ncbi.nlm.nih.gov/pubmed?term=Seliger%20SL%5BAuthor%5D&cauthor=true&cauthor_uid=21078811
http://www.ncbi.nlm.nih.gov/pubmed?term=Denault%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=7729512
http://www.ncbi.nlm.nih.gov/pubmed?term=Claing%20A%5BAuthor%5D&cauthor=true&cauthor_uid=7729512
http://www.ncbi.nlm.nih.gov/pubmed?term=D%27Orl%C3%A9ans-Juste%20P%5BAuthor%5D&cauthor=true&cauthor_uid=7729512
http://www.ncbi.nlm.nih.gov/pubmed?term=Sawamura%20T%5BAuthor%5D&cauthor=true&cauthor_uid=7729512
http://www.ncbi.nlm.nih.gov/pubmed?term=Kido%20T%5BAuthor%5D&cauthor=true&cauthor_uid=7729512
http://www.ncbi.nlm.nih.gov/pubmed?term=Masaki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=7729512
http://www.ncbi.nlm.nih.gov/pubmed?term=Leduc%20R%5BAuthor%5D&cauthor=true&cauthor_uid=7729512
http://www.ncbi.nlm.nih.gov/pubmed/7729512
http://www.ncbi.nlm.nih.gov/pubmed?term=Deprez-Roy%20I%5BAuthor%5D&cauthor=true&cauthor_uid=11360683
http://www.ncbi.nlm.nih.gov/pubmed?term=Coge%20F%5BAuthor%5D&cauthor=true&cauthor_uid=11360683
http://www.ncbi.nlm.nih.gov/pubmed?term=Bertry%20L%5BAuthor%5D&cauthor=true&cauthor_uid=11360683
http://www.ncbi.nlm.nih.gov/pubmed?term=Galizzi%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=11360683
http://www.ncbi.nlm.nih.gov/pubmed?term=Feletou%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11360683
http://www.ncbi.nlm.nih.gov/pubmed?term=Vanhoutte%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=11360683
http://www.ncbi.nlm.nih.gov/pubmed?term=Canet%20E%5BAuthor%5D&cauthor=true&cauthor_uid=11360683
http://www.ncbi.nlm.nih.gov/pubmed/11360683


 

228 

 

Dhaun N, Lilitkarntakul P, Macintyre IM, Muilwijk E, Johnston NR, Kluth DC, Webb 

DJ, Goddard J. (2009) Urinary endothelin-1 in chronic kidney disease and as a 

marker of disease activity in lupus nephritis. Am J Physiol Renal Physiol. 

296(6):F1477-83.  

 

Dhaun N, Melville V, Kramer W, Stavros F, Coyne T, Swan S, Goddard J, Webb DJ. 

(2007a) The pharmacokinetic profile of sitaxsentan, a selective endothelin receptor 

antagonist, in varying degrees of renal impairment. Br J Clin Pharmacol. 64(6):733-

7. 

Dhaun N, Pollock DM, Goddard J, Webb DJ. (2007b) Selective and mixed endothelin 

receptor antagonism in cardiovascular disease. Trends Pharmacol Sci. 28:573-579. 

Dhaun N, Melville V, Blackwell S, Talwar DK, Johnston NR, Goddard J, Webb DJ. 

(2013) Endothelin-A receptor antagonism modifies cardiovascular risk factors in 

CKD. J Am Soc Nephrol. 24(1):31-6.    

 

Dhaun N, MacIntyre IM, Kerr D, Melville V, Johnston NR, Haughie S, Goddard J, 

Webb DJ. (2011) Selective endothelin-A receptor antagonism reduces proteinuria, 

blood pressure, and arterial stiffness in chronic proteinuric kidney disease. 
Hypertension. 57(4):772-9. 

 

Dieplinger B, Gegenhuber A, Struck J, Poelz W, Langsteger W, Haltmayer M, Mueller 

T. (2009) Chromogranin A and C-terminal endothelin-1 precursor fragment add 

independent prognostic information to amino-terminal proBNP in patients with 

acute destabilized heart failure. Clin Chim Acta. 400(1-2):91-6.  

Dingemanse J, Sidharta PN, Maddrey WC, Rubin LJ, Mickail H. (2014) Efficacy, safety 

and clinical pharmacology of macitentan in comparison to other endothelin 

receptor antagonists in the treatment of pulmonary arterial hypertension. Expert 

Opin Drug Saf. 13(3):391-405. 

D'Orléans-Juste P, Plante M, Honoré JC, Carrier E, Labonté J. (2003) Synthesis and 

degradation of endothelin-1. Can J Physiol Pharmacol. 81(6):503-10.  

Douglas SA, Nambi P, Gellai M, Luengo JI, Xiang JN, Brooks DP, Ruffolo RR Jr, Elliott 

JD, Ohlstein EH. (1998) Pharmacologic characterization of 

the novel, orally available endothelin-A--selective antagonist SB 247083. J 

Cardiovasc Pharmacol. 31 Suppl 1:S273-6. 

Douthwaite JA, Lees DM, Corder R. (2003) A role for increased mRNA stability in 

the induction of endothelin-1 synthesis by lipopolysaccharide. Biochem Pharmacol. 

66(4):589-94. 

Drion I, Kleefstra N, Landman GW, Alkhalaf A, Struck J, Groenier KH, Bakker SJ, Bilo 

HJ. (2012) Plasma COOH-terminal proendothelin-1: a marker of fatal 

cardiovascular events, all-cause mortality, and new-onset albuminuria in type 2 

diabetes? (ZODIAC-29). Diabetes Care. 35(11):2354-8. 

Dupuis J, Goresky CA, Fournier A. (1996a) Pulmonary clearance of circulating 

endothelin-1 in dogs in vivo: exclusive role of ETB receptors. J. Appl. Physiol. 81(4): 

1510-1515. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Dhaun%20N%5BAuthor%5D&cauthor=true&cauthor_uid=19279127
http://www.ncbi.nlm.nih.gov/pubmed?term=Lilitkarntakul%20P%5BAuthor%5D&cauthor=true&cauthor_uid=19279127
http://www.ncbi.nlm.nih.gov/pubmed?term=Macintyre%20IM%5BAuthor%5D&cauthor=true&cauthor_uid=19279127
http://www.ncbi.nlm.nih.gov/pubmed?term=Muilwijk%20E%5BAuthor%5D&cauthor=true&cauthor_uid=19279127
http://www.ncbi.nlm.nih.gov/pubmed?term=Johnston%20NR%5BAuthor%5D&cauthor=true&cauthor_uid=19279127
http://www.ncbi.nlm.nih.gov/pubmed?term=Kluth%20DC%5BAuthor%5D&cauthor=true&cauthor_uid=19279127
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=19279127
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=19279127
http://www.ncbi.nlm.nih.gov/pubmed?term=Goddard%20J%5BAuthor%5D&cauthor=true&cauthor_uid=19279127
http://www.ncbi.nlm.nih.gov/pubmed/19279127
http://www.ncbi.nlm.nih.gov/pubmed?term=Dhaun%20N%5BAuthor%5D&cauthor=true&cauthor_uid=23243212
http://www.ncbi.nlm.nih.gov/pubmed?term=Melville%20V%5BAuthor%5D&cauthor=true&cauthor_uid=23243212
http://www.ncbi.nlm.nih.gov/pubmed?term=Blackwell%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23243212
http://www.ncbi.nlm.nih.gov/pubmed?term=Talwar%20DK%5BAuthor%5D&cauthor=true&cauthor_uid=23243212
http://www.ncbi.nlm.nih.gov/pubmed?term=Johnston%20NR%5BAuthor%5D&cauthor=true&cauthor_uid=23243212
http://www.ncbi.nlm.nih.gov/pubmed?term=Goddard%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23243212
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=23243212
http://www.ncbi.nlm.nih.gov/pubmed/23243212
http://www.ncbi.nlm.nih.gov/pubmed/21357275
http://www.ncbi.nlm.nih.gov/pubmed/21357275
http://www.ncbi.nlm.nih.gov/pubmed?term=Dieplinger%20B%5BAuthor%5D&cauthor=true&cauthor_uid=19000665
http://www.ncbi.nlm.nih.gov/pubmed?term=Gegenhuber%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19000665
http://www.ncbi.nlm.nih.gov/pubmed?term=Struck%20J%5BAuthor%5D&cauthor=true&cauthor_uid=19000665
http://www.ncbi.nlm.nih.gov/pubmed?term=Poelz%20W%5BAuthor%5D&cauthor=true&cauthor_uid=19000665
http://www.ncbi.nlm.nih.gov/pubmed?term=Langsteger%20W%5BAuthor%5D&cauthor=true&cauthor_uid=19000665
http://www.ncbi.nlm.nih.gov/pubmed?term=Haltmayer%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19000665
http://www.ncbi.nlm.nih.gov/pubmed?term=Mueller%20T%5BAuthor%5D&cauthor=true&cauthor_uid=19000665
http://www.ncbi.nlm.nih.gov/pubmed?term=Mueller%20T%5BAuthor%5D&cauthor=true&cauthor_uid=19000665
http://www.ncbi.nlm.nih.gov/pubmed/19000665
http://www.ncbi.nlm.nih.gov/pubmed?term=Dingemanse%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24261583
http://www.ncbi.nlm.nih.gov/pubmed?term=Sidharta%20PN%5BAuthor%5D&cauthor=true&cauthor_uid=24261583
http://www.ncbi.nlm.nih.gov/pubmed?term=Maddrey%20WC%5BAuthor%5D&cauthor=true&cauthor_uid=24261583
http://www.ncbi.nlm.nih.gov/pubmed?term=Rubin%20LJ%5BAuthor%5D&cauthor=true&cauthor_uid=24261583
http://www.ncbi.nlm.nih.gov/pubmed?term=Mickail%20H%5BAuthor%5D&cauthor=true&cauthor_uid=24261583
http://www.ncbi.nlm.nih.gov/pubmed/24261583
http://www.ncbi.nlm.nih.gov/pubmed/24261583
http://www.ncbi.nlm.nih.gov/pubmed/12839262
http://www.ncbi.nlm.nih.gov/pubmed/12839262
http://www.ncbi.nlm.nih.gov/pubmed?term=Douglas%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=9595458
http://www.ncbi.nlm.nih.gov/pubmed?term=Nambi%20P%5BAuthor%5D&cauthor=true&cauthor_uid=9595458
http://www.ncbi.nlm.nih.gov/pubmed?term=Gellai%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9595458
http://www.ncbi.nlm.nih.gov/pubmed?term=Luengo%20JI%5BAuthor%5D&cauthor=true&cauthor_uid=9595458
http://www.ncbi.nlm.nih.gov/pubmed?term=Xiang%20JN%5BAuthor%5D&cauthor=true&cauthor_uid=9595458
http://www.ncbi.nlm.nih.gov/pubmed?term=Brooks%20DP%5BAuthor%5D&cauthor=true&cauthor_uid=9595458
http://www.ncbi.nlm.nih.gov/pubmed?term=Ruffolo%20RR%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=9595458
http://www.ncbi.nlm.nih.gov/pubmed?term=Elliott%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=9595458
http://www.ncbi.nlm.nih.gov/pubmed?term=Elliott%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=9595458
http://www.ncbi.nlm.nih.gov/pubmed?term=Ohlstein%20EH%5BAuthor%5D&cauthor=true&cauthor_uid=9595458
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pharmacologic+characterization+of+the+novel%2C+orally+available+douglas
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pharmacologic+characterization+of+the+novel%2C+orally+available+douglas
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Douthwaite%20JA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lees%20DM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Corder%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/12906923
http://www.ncbi.nlm.nih.gov/pubmed?term=Drion%20I%5BAuthor%5D&cauthor=true&cauthor_uid=22837372
http://www.ncbi.nlm.nih.gov/pubmed?term=Kleefstra%20N%5BAuthor%5D&cauthor=true&cauthor_uid=22837372
http://www.ncbi.nlm.nih.gov/pubmed?term=Landman%20GW%5BAuthor%5D&cauthor=true&cauthor_uid=22837372
http://www.ncbi.nlm.nih.gov/pubmed?term=Alkhalaf%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22837372
http://www.ncbi.nlm.nih.gov/pubmed?term=Struck%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22837372
http://www.ncbi.nlm.nih.gov/pubmed?term=Groenier%20KH%5BAuthor%5D&cauthor=true&cauthor_uid=22837372
http://www.ncbi.nlm.nih.gov/pubmed?term=Bakker%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=22837372
http://www.ncbi.nlm.nih.gov/pubmed?term=Bilo%20HJ%5BAuthor%5D&cauthor=true&cauthor_uid=22837372
http://www.ncbi.nlm.nih.gov/pubmed?term=Bilo%20HJ%5BAuthor%5D&cauthor=true&cauthor_uid=22837372
http://www.ncbi.nlm.nih.gov/pubmed/?term=Drion++2012+endothelin


 

229 

 

Dupuis J, Stewart DJ, Cernacek P, Gosselin G. (1996b) Human pulmonary circulation 

is an important site for both clearance and production of endothelin-1. Circulation. 

94(7):1578-84. 

Edgell CJ, McDonald CC, Graham JB. (1983) Permanent cell line expressing human 

factor VIII-related antigen established by hybridization. Proc Natl Acad Sci U S A. 

80(12):3734-7. 

Eguchi S, Hirata Y, Ihara M, Yano M, Marumo F. (1992) A novel ETA antagonist 

(BQ-123) inhibits endothelin-1-induced phosphoinositide breakdown and DNA 

synthesis in rat vascular smooth muscle cells. FEBS Lett. 302(3):243-6. 

Ehrenreich H, Anderson RW, Fox CH, Rieckmann P, Hoffman GS, Travis WD, Coligan 

JE, Kehrl JH, Fauci AS. (1990) Endothelins, peptides with potent vasoactive 

properties, are produced by human macrophages. J Exp Med. 172(6):1741-8. 

Elkayam U, Khan S, Mehboob A, Ahsan N. (2002) Impaired endothelium-mediated 

vasodilation in heart failure: clinical evidence and the potential for therapy. J Card 

Fail. 8(1):15-20. 

Emori T, Hirata Y, Ohta K, Kanno K, Eguchi S, Imai T, Shichiri M, Marumo F. (1991) 

Cellular mechanism of endothelin-1 release by angiotensin and vasopressin. 

Hypertension. 18(2):165-70. 

Emori T, Hirata Y, Ohta K, Shichiri M, Shimokado K. and Marumo F. (1989) 

Concomitant secretion of big endothelin and its C-terminal fragment from human 

and bovine endothelial cells. Biochem. Biophys. Res. Commun. 162(1):217-23. 

Emoto N, Yanagisawa M. (1995) Endothelin-converting enzyme-2 is a membrane-

bound, phosphoramidon-sensitive metalloprotease with acidic pH optimum. J Biol 

Chem. 270(25):15262-8. 

Eng JK, McCormack AL and Yates JR, (1994) An approach to correlate tandem mass 

spectral data of peptides with amino acid sequences in a protein database. J. Am. 

Soc. Mass Spectrom. 5:(11) 976-89. 

Ergul S, Parish DC, Puett D, Ergul A. (1996) Racial differences in plasma endothelin-

1 concentrations in individuals with essential hypertension. Hypertension. 

28(4):652-5.  

 

Fang ZY, Marwick TH. (2002) Vascular dysfunction and heart failure: 

epiphenomenon or etiologic agent? Am Heart J. 143(3):383-90. 

Feinberg MW, Lin Z, Fisch S, Jain MK. (2004) An emerging role for Krüppel-like 

factors in vascular biology. Trends Cardiovasc Med. 14(6):241-6. 

Fernandez-Patron C, Radomski MW, Davidge ST. (1999) Vascular matrix 

metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ 

Res. 85(10):906-11. 

Foley RN, Murray AM, Li S, Herzog CA, McBean AM, Eggers PW, Collins AJ. (2005) 

Chronic kidney disease and the risk for cardiovascular disease, renal replacement, 

http://www.ncbi.nlm.nih.gov/pubmed/6407019
http://www.ncbi.nlm.nih.gov/pubmed/6407019
http://www.ncbi.nlm.nih.gov/pubmed?term=Elkayam%20U%5BAuthor%5D&cauthor=true&cauthor_uid=11862578
http://www.ncbi.nlm.nih.gov/pubmed?term=Khan%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11862578
http://www.ncbi.nlm.nih.gov/pubmed?term=Mehboob%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11862578
http://www.ncbi.nlm.nih.gov/pubmed?term=Ahsan%20N%5BAuthor%5D&cauthor=true&cauthor_uid=11862578
http://www.ncbi.nlm.nih.gov/pubmed/?term=Impaired+endothelium-mediated+vasodilation+in+heart+failure%3A+clinical+evidence+and+the+potential+for+therapy
http://www.ncbi.nlm.nih.gov/pubmed/?term=Impaired+endothelium-mediated+vasodilation+in+heart+failure%3A+clinical+evidence+and+the+potential+for+therapy
http://www.ncbi.nlm.nih.gov/pubmed?term=Emori%20T%5BAuthor%5D&cauthor=true&cauthor_uid=1909304
http://www.ncbi.nlm.nih.gov/pubmed?term=Hirata%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=1909304
http://www.ncbi.nlm.nih.gov/pubmed?term=Ohta%20K%5BAuthor%5D&cauthor=true&cauthor_uid=1909304
http://www.ncbi.nlm.nih.gov/pubmed?term=Kanno%20K%5BAuthor%5D&cauthor=true&cauthor_uid=1909304
http://www.ncbi.nlm.nih.gov/pubmed?term=Eguchi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1909304
http://www.ncbi.nlm.nih.gov/pubmed?term=Imai%20T%5BAuthor%5D&cauthor=true&cauthor_uid=1909304
http://www.ncbi.nlm.nih.gov/pubmed?term=Shichiri%20M%5BAuthor%5D&cauthor=true&cauthor_uid=1909304
http://www.ncbi.nlm.nih.gov/pubmed?term=Marumo%20F%5BAuthor%5D&cauthor=true&cauthor_uid=1909304
http://www.ncbi.nlm.nih.gov/pubmed?term=Emoto%20N%5BAuthor%5D&cauthor=true&cauthor_uid=7797512
http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=7797512
http://www.ncbi.nlm.nih.gov/pubmed/?term=membrane-bound%2C+phosphoramidon-sensitive+emato+yanagisawa
http://www.ncbi.nlm.nih.gov/pubmed/?term=membrane-bound%2C+phosphoramidon-sensitive+emato+yanagisawa
http://www.ncbi.nlm.nih.gov/pubmed?term=Ergul%20S%5BAuthor%5D&cauthor=true&cauthor_uid=8843893
http://www.ncbi.nlm.nih.gov/pubmed?term=Parish%20DC%5BAuthor%5D&cauthor=true&cauthor_uid=8843893
http://www.ncbi.nlm.nih.gov/pubmed?term=Puett%20D%5BAuthor%5D&cauthor=true&cauthor_uid=8843893
http://www.ncbi.nlm.nih.gov/pubmed?term=Ergul%20A%5BAuthor%5D&cauthor=true&cauthor_uid=8843893
http://www.ncbi.nlm.nih.gov/pubmed/?term=Racial+differences+in+plasma+endothelin-1+concentrations+in+individuals+with+essential
http://www.ncbi.nlm.nih.gov/pubmed?term=Fang%20ZY%5BAuthor%5D&cauthor=true&cauthor_uid=11868041
http://www.ncbi.nlm.nih.gov/pubmed?term=Marwick%20TH%5BAuthor%5D&cauthor=true&cauthor_uid=11868041
http://www.ncbi.nlm.nih.gov/pubmed/11868041
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Feinberg%20MW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lin%20Z%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fisch%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jain%20MK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=Fernandez-Patron%20C%5BAuthor%5D&cauthor=true&cauthor_uid=10559137
http://www.ncbi.nlm.nih.gov/pubmed?term=Radomski%20MW%5BAuthor%5D&cauthor=true&cauthor_uid=10559137
http://www.ncbi.nlm.nih.gov/pubmed?term=Davidge%20ST%5BAuthor%5D&cauthor=true&cauthor_uid=10559137
http://www.ncbi.nlm.nih.gov/pubmed/10559137
http://www.ncbi.nlm.nih.gov/pubmed/10559137
http://www.ncbi.nlm.nih.gov/pubmed?term=Foley%20RN%5BAuthor%5D&cauthor=true&cauthor_uid=15590763
http://www.ncbi.nlm.nih.gov/pubmed?term=Murray%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=15590763
http://www.ncbi.nlm.nih.gov/pubmed?term=Li%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15590763
http://www.ncbi.nlm.nih.gov/pubmed?term=Herzog%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=15590763
http://www.ncbi.nlm.nih.gov/pubmed?term=McBean%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=15590763
http://www.ncbi.nlm.nih.gov/pubmed?term=Eggers%20PW%5BAuthor%5D&cauthor=true&cauthor_uid=15590763
http://www.ncbi.nlm.nih.gov/pubmed?term=Collins%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=15590763


 

230 

 

and death in the United States Medicare population, 1998 to 1999. J Am Soc 

Nephrol. 16(2):489-95.   

Fukuroda T, Fujikawa T, Ozaki S, Ishikawa K, Yano M, Nishikibe M. (1994a) 

Clearance of circulating endothelin-1 by ETB receptors in rats. BiochemBiophys 

Res Commun. 199(3):1461-5. 

 

Fukuroda T, Kobayashi M, Ozaki S, Yano M, Miyauchi T, Onizuka M, Sugishita Y, 

Goto K, Nishikibe M. (1994b) Endothelin receptor subtypes in human versus rabbit 

pulmonary arteries. J Appl Physiol. 76:1976–1982. 

Fukuroda T, Noguchi K, Tsuchida S, Nishikibe M, Ikemoto F, Okada K, Yano M. (1990) 

Inhibition of biological actions of big endothelin-1 by phosphoramidon. Biochem 

Biophys Res Commun. 172(2):390-5. 

Fuller RS BA. and Thorner J. (1989) Intracellular targeting and structural 

conservation of a prohormone-processing endoprotease. Science. 246(4929):482-6. 

Fyhrquist F. and Saijonmaa O. (2008) Renin-angiotensin system revisited. J Intern 

Med. 264:224–236. 

 

Galiè N, Hoeper MM, Simon J, Gibbs R, Simonneau G; Task Force for the Diagnosis 

and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) 

and the European Respiratory Society (ERS) (2011) 

Liver toxicity of sitaxentan in pulmonary arterial hypertension. Eur Heart 

J. 32(4):386-7. 

Gariepy CE, Ohuchi T, Williams SC, Richardson JA, Yanagisawa M. (2000) Salt-

sensitive hypertension in endothelin-B receptor-deficient rats. J Clin Invest. 

105(7):925-33.  

Gasic S, Wagner OF, Vierhapper H, Nowotny P, Waldhäusl W. (1992) Regional 

hemodynamic effects and clearance of endothelin-1 in humans: renal and 

peripheral tissues may contribute to the overall disposal of the peptide. J Cardiovasc 

Pharmacol. 19(2):176-80. 

Ge Y, Ahn D, Stricklett PK, Hughes AK, Yanagisawa M, Verbalis JG, Kohan DE. 

(2005a) Collecting duct-specific knockout of endothelin-1 alters vasopressin 

regulation of urine osmolality. Am J Physiol Renal Physiol. 288(5):F912-20. 

 

Ge Y, Bagnall A, Stricklett PK, Webb D, Kotelevtsev Y, Kohan DE. (2008) Combined 

knockout of collecting duct endothelin A and B receptors causes hypertension and 

sodium retention. Am J Physiol Renal Physiol. 295(6):F1635-40.   

Ge Y, Stricklett PK, Hughes AK, Yanagisawa M, Kohan DE. (2005b) Collecting duct-

specific knockout of the endothelin A receptor alters renal vasopressin 

responsiveness, but not sodium excretion or blood pressure. Am J Physiol Renal 

Physiol. 289(4):F692-8. 

 

Ge Y, Bagnall A, Stricklett PK, Strait K, Webb DJ, Kotelevtsev Y, Kohan DE (2006) 

Collecting duct-specific knockout of the endothelin B receptor causes hypertension 

and sodium retention. Am J Physiol Renal Physiol. 291(6):F1274-80. 

http://www.ncbi.nlm.nih.gov/pubmed/15590763
http://www.ncbi.nlm.nih.gov/pubmed/15590763
http://www.ncbi.nlm.nih.gov/pubmed?term=Fukuroda%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2241940
http://www.ncbi.nlm.nih.gov/pubmed?term=Noguchi%20K%5BAuthor%5D&cauthor=true&cauthor_uid=2241940
http://www.ncbi.nlm.nih.gov/pubmed?term=Tsuchida%20S%5BAuthor%5D&cauthor=true&cauthor_uid=2241940
http://www.ncbi.nlm.nih.gov/pubmed?term=Nishikibe%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2241940
http://www.ncbi.nlm.nih.gov/pubmed?term=Ikemoto%20F%5BAuthor%5D&cauthor=true&cauthor_uid=2241940
http://www.ncbi.nlm.nih.gov/pubmed?term=Okada%20K%5BAuthor%5D&cauthor=true&cauthor_uid=2241940
http://www.ncbi.nlm.nih.gov/pubmed?term=Yano%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2241940
http://www.ncbi.nlm.nih.gov/pubmed/2241940
http://www.ncbi.nlm.nih.gov/pubmed/2241940
http://www.ncbi.nlm.nih.gov/pubmed?term=Gali%C3%A8%20N%5BAuthor%5D&cauthor=true&cauthor_uid=21416695
http://www.ncbi.nlm.nih.gov/pubmed?term=Hoeper%20MM%5BAuthor%5D&cauthor=true&cauthor_uid=21416695
http://www.ncbi.nlm.nih.gov/pubmed?term=Simon%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21416695
http://www.ncbi.nlm.nih.gov/pubmed?term=Gibbs%20R%5BAuthor%5D&cauthor=true&cauthor_uid=21416695
http://www.ncbi.nlm.nih.gov/pubmed?term=Simonneau%20G%5BAuthor%5D&cauthor=true&cauthor_uid=21416695
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Task%20Force%20for%20the%20Diagnosis%20and%20Treatment%20of%20Pulmonary%20Hypertension%20of%20the%20European%20Society%20of%20Cardiology%20(ESC)%20and%20the%20European%20Respiratory%20Society%20(ERS)%22%5BCorporate%20Author%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Task%20Force%20for%20the%20Diagnosis%20and%20Treatment%20of%20Pulmonary%20Hypertension%20of%20the%20European%20Society%20of%20Cardiology%20(ESC)%20and%20the%20European%20Respiratory%20Society%20(ERS)%22%5BCorporate%20Author%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Task%20Force%20for%20the%20Diagnosis%20and%20Treatment%20of%20Pulmonary%20Hypertension%20of%20the%20European%20Society%20of%20Cardiology%20(ESC)%20and%20the%20European%20Respiratory%20Society%20(ERS)%22%5BCorporate%20Author%5D
http://www.ncbi.nlm.nih.gov/pubmed/21416695
http://www.ncbi.nlm.nih.gov/pubmed/21416695
http://www.ncbi.nlm.nih.gov/pubmed/10749572
http://www.ncbi.nlm.nih.gov/pubmed/10749572
http://www.ncbi.nlm.nih.gov/pubmed/1376785
http://www.ncbi.nlm.nih.gov/pubmed/1376785
http://www.ncbi.nlm.nih.gov/pubmed/1376785
http://www.ncbi.nlm.nih.gov/pubmed/15632412
http://www.ncbi.nlm.nih.gov/pubmed/15632412
http://www.ncbi.nlm.nih.gov/pubmed?term=Ge%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=18784261
http://www.ncbi.nlm.nih.gov/pubmed?term=Bagnall%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18784261
http://www.ncbi.nlm.nih.gov/pubmed?term=Stricklett%20PK%5BAuthor%5D&cauthor=true&cauthor_uid=18784261
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20D%5BAuthor%5D&cauthor=true&cauthor_uid=18784261
http://www.ncbi.nlm.nih.gov/pubmed?term=Kotelevtsev%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=18784261
http://www.ncbi.nlm.nih.gov/pubmed?term=Kohan%20DE%5BAuthor%5D&cauthor=true&cauthor_uid=18784261
http://www.ncbi.nlm.nih.gov/pubmed/?term=18784261
http://www.ncbi.nlm.nih.gov/pubmed/15928212
http://www.ncbi.nlm.nih.gov/pubmed/15928212
http://www.ncbi.nlm.nih.gov/pubmed/15928212
http://www.ncbi.nlm.nih.gov/pubmed?term=Ge%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=16868309
http://www.ncbi.nlm.nih.gov/pubmed?term=Bagnall%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16868309
http://www.ncbi.nlm.nih.gov/pubmed?term=Stricklett%20PK%5BAuthor%5D&cauthor=true&cauthor_uid=16868309
http://www.ncbi.nlm.nih.gov/pubmed?term=Strait%20K%5BAuthor%5D&cauthor=true&cauthor_uid=16868309
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=16868309
http://www.ncbi.nlm.nih.gov/pubmed?term=Kotelevtsev%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=16868309
http://www.ncbi.nlm.nih.gov/pubmed?term=Kohan%20DE%5BAuthor%5D&cauthor=true&cauthor_uid=16868309
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ge+Y%2C+2006+collecting+duct-specific


 

231 

 

Ghafourifar P, Asbury ML, Joshi SS, Kincaid ED. (2005) Determination of 

mitochondrial nitric oxide synthase activity. Methods Enzymol. 396:424–444.  

Giaid A. and Saleh D. (1995) Reduced expression of endothelial nitric oxide synthase 

in the lungs of patients with pulmonary hypertension. N Engl J Med. 333(4):214-21. 

Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, Kimura S, 

Masaki T, Duguid WP, Stewart DJ. (1993) Expression of endothelin-1 in the lungs of 

patients with pulmonary hypertension. N Engl J Med. 328: 1732–1739. 

 

Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. (2004) Chronic kidney 

disease and the risks of death, cardiovascular events, and hospitalization. N Engl J 

Med. 351(13):1296-305. 

Goddard J, Johnston NR, Cumming AD, Webb DJ. (2007) Fractional urinary 

excretion of endothelin-1 is reduced by acute ETB receptor blockade. Am J Physiol. 

293:1433-8. 

Goddard J, Johnston NR, Hand MF, Cumming AD, Rabelink TJ, Rankin AJ, Webb DJ: 

(2004) Endothelin-A receptor antagonism reduces blood pressure and increases 

renal blood flow in hypertensive patients with chronic renal failure: A comparison 

of selective and combined endothelin receptor blockade. Circulation. 109:1186–

1193. 

 

Goddard J. and Webb DJ. (2000) Plasma endothelin concentrations in hypertension.  

J Cardiovasc Pharmacol. 35(4 Suppl 2):S25-31. 

 

Goettsch W, Lattmann T, Amann K, Szibor M, Morawietz H, Münter K, Müller SP, 

Shaw S, Barton M. (2001) Increased expression of endothelin-1 and inducible nitric 

oxide synthase isoform II in aging arteries in vivo: implications for atherosclerosis. 

Biochem Biophys Res Commun. 280(3):908-13. 

Goto K, Hama H, Kasuya Y. (1996) Molecular pharmacology and pathophysiological 

significance of endothelin. Jpn J Pharmacol. 72(4):261-90. 

Granchi S, Brocchi S, Bonaccorsi L, Baldi E, Vinci MC, Forti G, Serio M, Maggi M. 

(2001) Endothelin-1 production by prostate cancer cell lines is up-regulated by 

factors involved in cancer progression and down-regulated by androgens. Prostate. 

49(4):267-77. 

Gui G, Xu D, Emoto N, Yanagisawa M. (1993) Intracellular localization of 

membrane-bound endothelin-converting enzyme from rat lung. J Cardiovasc 

Pharmacol. 22 Suppl 8:S53-6. 

Habib A, Al-Omari MA, Khaleghi M, Morgenthaler NG, Struck J, Bergmann A, Mosley 

TH, Turner ST, Kullo IJ. (2010) Plasma C-terminal pro-endothelin-1 is associated 

with target-organ damage in African Americans with hypertension. Am J 

Hypertens. 23(11):1204-8.  

Hahn AW, Resink TJ, Scott-Burden T, Powell J, Dohi Y, Bühler FR. (1990) 

Stimulation of endothelin mRNA and secretion in rat vascular smooth muscle cells: 

a novel autocrine function. Cell Regul. 1(9):649-59. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Giaid%20A%5BAuthor%5D&cauthor=true&cauthor_uid=7540722
http://www.ncbi.nlm.nih.gov/pubmed?term=Saleh%20D%5BAuthor%5D&cauthor=true&cauthor_uid=7540722
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gaid+Saleh+1995+pulmonary+hypertension+lungs+reduced+expression+of+nitric+oxide
http://www.ncbi.nlm.nih.gov/pubmed?term=Giaid%20A%5BAuthor%5D&cauthor=true&cauthor_uid=8497283
http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8497283
http://www.ncbi.nlm.nih.gov/pubmed?term=Langleben%20D%5BAuthor%5D&cauthor=true&cauthor_uid=8497283
http://www.ncbi.nlm.nih.gov/pubmed?term=Michel%20RP%5BAuthor%5D&cauthor=true&cauthor_uid=8497283
http://www.ncbi.nlm.nih.gov/pubmed?term=Levy%20R%5BAuthor%5D&cauthor=true&cauthor_uid=8497283
http://www.ncbi.nlm.nih.gov/pubmed?term=Shennib%20H%5BAuthor%5D&cauthor=true&cauthor_uid=8497283
http://www.ncbi.nlm.nih.gov/pubmed?term=Kimura%20S%5BAuthor%5D&cauthor=true&cauthor_uid=8497283
http://www.ncbi.nlm.nih.gov/pubmed?term=Masaki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=8497283
http://www.ncbi.nlm.nih.gov/pubmed?term=Duguid%20WP%5BAuthor%5D&cauthor=true&cauthor_uid=8497283
http://www.ncbi.nlm.nih.gov/pubmed?term=Stewart%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=8497283
http://www.ncbi.nlm.nih.gov/pubmed?term=Go%20AS%5BAuthor%5D&cauthor=true&cauthor_uid=15385656
http://www.ncbi.nlm.nih.gov/pubmed?term=Chertow%20GM%5BAuthor%5D&cauthor=true&cauthor_uid=15385656
http://www.ncbi.nlm.nih.gov/pubmed?term=Fan%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15385656
http://www.ncbi.nlm.nih.gov/pubmed?term=McCulloch%20CE%5BAuthor%5D&cauthor=true&cauthor_uid=15385656
http://www.ncbi.nlm.nih.gov/pubmed?term=Hsu%20CY%5BAuthor%5D&cauthor=true&cauthor_uid=15385656
http://www.ncbi.nlm.nih.gov/pubmed/15385656
http://www.ncbi.nlm.nih.gov/pubmed/15385656
http://www.ncbi.nlm.nih.gov/pubmed?term=Goettsch%20W%5BAuthor%5D&cauthor=true&cauthor_uid=11162610
http://www.ncbi.nlm.nih.gov/pubmed?term=Lattmann%20T%5BAuthor%5D&cauthor=true&cauthor_uid=11162610
http://www.ncbi.nlm.nih.gov/pubmed?term=Amann%20K%5BAuthor%5D&cauthor=true&cauthor_uid=11162610
http://www.ncbi.nlm.nih.gov/pubmed?term=Szibor%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11162610
http://www.ncbi.nlm.nih.gov/pubmed?term=Morawietz%20H%5BAuthor%5D&cauthor=true&cauthor_uid=11162610
http://www.ncbi.nlm.nih.gov/pubmed?term=M%C3%BCnter%20K%5BAuthor%5D&cauthor=true&cauthor_uid=11162610
http://www.ncbi.nlm.nih.gov/pubmed?term=M%C3%BCller%20SP%5BAuthor%5D&cauthor=true&cauthor_uid=11162610
http://www.ncbi.nlm.nih.gov/pubmed?term=Shaw%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11162610
http://www.ncbi.nlm.nih.gov/pubmed?term=Barton%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11162610
http://www.ncbi.nlm.nih.gov/pubmed/?term=Goettsch++aging+arteries+in+vivo%3A+implications+for+atherosclerosis.+Biochem
http://www.ncbi.nlm.nih.gov/pubmed/9015736
http://www.ncbi.nlm.nih.gov/pubmed/9015736
http://www.ncbi.nlm.nih.gov/pubmed?term=Granchi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11746273
http://www.ncbi.nlm.nih.gov/pubmed?term=Brocchi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11746273
http://www.ncbi.nlm.nih.gov/pubmed?term=Bonaccorsi%20L%5BAuthor%5D&cauthor=true&cauthor_uid=11746273
http://www.ncbi.nlm.nih.gov/pubmed?term=Baldi%20E%5BAuthor%5D&cauthor=true&cauthor_uid=11746273
http://www.ncbi.nlm.nih.gov/pubmed?term=Vinci%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=11746273
http://www.ncbi.nlm.nih.gov/pubmed?term=Forti%20G%5BAuthor%5D&cauthor=true&cauthor_uid=11746273
http://www.ncbi.nlm.nih.gov/pubmed?term=Serio%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11746273
http://www.ncbi.nlm.nih.gov/pubmed?term=Maggi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11746273
http://www.ncbi.nlm.nih.gov/pubmed/11746273
http://www.ncbi.nlm.nih.gov/pubmed?term=Gui%20G%5BAuthor%5D&cauthor=true&cauthor_uid=7509998
http://www.ncbi.nlm.nih.gov/pubmed?term=Xu%20D%5BAuthor%5D&cauthor=true&cauthor_uid=7509998
http://www.ncbi.nlm.nih.gov/pubmed?term=Emoto%20N%5BAuthor%5D&cauthor=true&cauthor_uid=7509998
http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=7509998
http://www.ncbi.nlm.nih.gov/pubmed/?term=gui+1993+intracellular+localization+of
http://www.ncbi.nlm.nih.gov/pubmed/?term=gui+1993+intracellular+localization+of
http://www.ncbi.nlm.nih.gov/pubmed?term=Habib%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20634796
http://www.ncbi.nlm.nih.gov/pubmed?term=Al-Omari%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=20634796
http://www.ncbi.nlm.nih.gov/pubmed?term=Khaleghi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20634796
http://www.ncbi.nlm.nih.gov/pubmed?term=Morgenthaler%20NG%5BAuthor%5D&cauthor=true&cauthor_uid=20634796
http://www.ncbi.nlm.nih.gov/pubmed?term=Struck%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20634796
http://www.ncbi.nlm.nih.gov/pubmed?term=Bergmann%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20634796
http://www.ncbi.nlm.nih.gov/pubmed?term=Mosley%20TH%5BAuthor%5D&cauthor=true&cauthor_uid=20634796
http://www.ncbi.nlm.nih.gov/pubmed?term=Mosley%20TH%5BAuthor%5D&cauthor=true&cauthor_uid=20634796
http://www.ncbi.nlm.nih.gov/pubmed?term=Turner%20ST%5BAuthor%5D&cauthor=true&cauthor_uid=20634796
http://www.ncbi.nlm.nih.gov/pubmed?term=Kullo%20IJ%5BAuthor%5D&cauthor=true&cauthor_uid=20634796
http://www.ncbi.nlm.nih.gov/pubmed/?term=Habib+2010+endothelin
http://www.ncbi.nlm.nih.gov/pubmed/?term=Habib+2010+endothelin
http://www.ncbi.nlm.nih.gov/pubmed?term=Hahn%20AW%5BAuthor%5D&cauthor=true&cauthor_uid=2078571
http://www.ncbi.nlm.nih.gov/pubmed?term=Resink%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=2078571
http://www.ncbi.nlm.nih.gov/pubmed?term=Scott-Burden%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2078571
http://www.ncbi.nlm.nih.gov/pubmed?term=Powell%20J%5BAuthor%5D&cauthor=true&cauthor_uid=2078571
http://www.ncbi.nlm.nih.gov/pubmed?term=Dohi%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=2078571
http://www.ncbi.nlm.nih.gov/pubmed?term=B%C3%BChler%20FR%5BAuthor%5D&cauthor=true&cauthor_uid=2078571
http://www.ncbi.nlm.nih.gov/pubmed/2078571?dopt=Abstract


 

232 

 

Halcox JP, Nour KR, Zalos G, Quyyumi AA. (2001) Coronary vasodilation and 

improvement in endothelial dysfunction with endothelin ET(A) receptor blockade. 

Circ Res. 89:969–976. 

Hand MF, Haynes WG, Webb DJ. (1999) Reduced endogenous endothelin-1-

mediated vascular tone in chronic renal failure. Kidney Int. 55(2):613-20. 

Harrison VJ, Barnes K, Turner AJ, Wood E, Corder R, Vane JR. (1995) Identification 

of endothelin-1 and big endothelin-1 in secretory vesicles isolated from bovine 

aortic endothelial cells. Proc Natl Acad Sci USA. 92:6344. 

Hasdai D, Holmes DR Jr, Garratt KN, Edwards WD, Lerman A. (1997) Mechanical 

pressure and stretch release endothelin-1 from human atherosclerotic coronary 

arteries in vivo. Circulation. 95(2):357-62. 

Hasegawa H, Hiki K, Sawamura T, Aoyama T, Okamoto Y, Miwa S, Shimohama S, 

Kimura J, Masaki T. (1998) Purification of a novel endothelin-converting enzyme 

specific for big endothelin-3. FEBS Lett. 428(3):304-8. 

Haynes WG, Ferro CJ, O'Kane KP, Somerville D, Lomax CC, Webb DJ. (1996) 

Systemic endothelin receptor blockade decreases peripheral vascular resistance 

and blood pressure in humans. Circulation. 93(10):1860-70. 

 

Haynes WG. and Webb DJ. (1994) Contribution of endogenous generation of 

endothelin-1 to basal vascular tone. Lancet. 344(8926):852-4. 

Haynes WG. and Webb DJ. (1998) Endothelin as a regulator of cardiovascular 

function in health and disease. J Hypertens. 16(8):1081-98. 

Haynes WG. (1995) Endothelins as regulators of vascular tone in man. Clin Sci 

(Lond). 88(5):509-17. 

Haynes WG, Strachan FE, Gray GA, Webb DJ. (1995) Forearm vasoconstriction to 

endothelin-1 is mediated by ETA and ETB receptors in vivo in humans. J 

Cardiovasc Pharmacol. 26 Suppl 3:S40-3. 

Hemsén A, Ahlborg G, Ottosson-Seeberger A, Lundberg JM. (1995) Metabolism of Big 

endothelin-1 (1-38) and (22-38) in the human circulation in relation to production 

ofendothelin-1 (1-21). Regul Pept. 55(3):287-97. 

Henrich S, Cameron A, Bourenkov GP, Kiefersauer R, Huber R, Lindberg I, Bode W, 

Than ME (2003) The crystal structure of the proprotein processing proteinase furin 

explains its stringent specificity. Nat Struct Biol. 10(7):520-6. 

Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C. (1993) 

Identifying proteins from two-dimensional gels by molecular mass searching of 

peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. U. S. A. 90, 

5011– 5015. 

 

Henzel WJ, Watanabe C, Stults JT. (2003) Protein identification: the origins of 

peptide mass fingerprinting. J Am Soc Mass Spectrom. 14(9):931-42. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hand%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=9987085
http://www.ncbi.nlm.nih.gov/pubmed?term=Haynes%20WG%5BAuthor%5D&cauthor=true&cauthor_uid=9987085
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=9987085
http://www.ncbi.nlm.nih.gov/pubmed/9987085
http://www.ncbi.nlm.nih.gov/pubmed?term=Harrison%20VJ%5BAuthor%5D&cauthor=true&cauthor_uid=7603993
http://www.ncbi.nlm.nih.gov/pubmed?term=Barnes%20K%5BAuthor%5D&cauthor=true&cauthor_uid=7603993
http://www.ncbi.nlm.nih.gov/pubmed?term=Turner%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=7603993
http://www.ncbi.nlm.nih.gov/pubmed?term=Wood%20E%5BAuthor%5D&cauthor=true&cauthor_uid=7603993
http://www.ncbi.nlm.nih.gov/pubmed?term=Corder%20R%5BAuthor%5D&cauthor=true&cauthor_uid=7603993
http://www.ncbi.nlm.nih.gov/pubmed?term=Vane%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=7603993
http://www.ncbi.nlm.nih.gov/pubmed?term=Hasdai%20D%5BAuthor%5D&cauthor=true&cauthor_uid=9008449
http://www.ncbi.nlm.nih.gov/pubmed?term=Holmes%20DR%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=9008449
http://www.ncbi.nlm.nih.gov/pubmed?term=Garratt%20KN%5BAuthor%5D&cauthor=true&cauthor_uid=9008449
http://www.ncbi.nlm.nih.gov/pubmed?term=Edwards%20WD%5BAuthor%5D&cauthor=true&cauthor_uid=9008449
http://www.ncbi.nlm.nih.gov/pubmed?term=Lerman%20A%5BAuthor%5D&cauthor=true&cauthor_uid=9008449
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mechanical+Pressure+and+Stretch+Release+Endothelin-1+From+Human+Atherosclerotic+Coronary+Arteries+In+Vivo
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hasegawa%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hiki%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sawamura%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Aoyama%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Okamoto%20Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Miwa%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shimohama%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kimura%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Masaki%20T%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'FEBS%20Lett.');
http://www.ncbi.nlm.nih.gov/pubmed/8635265
http://www.ncbi.nlm.nih.gov/pubmed/8635265
http://www.ncbi.nlm.nih.gov/pubmed?term=Haynes%20WG%5BAuthor%5D&cauthor=true&cauthor_uid=9794709
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=9794709
http://www.ncbi.nlm.nih.gov/pubmed/7916401
http://www.ncbi.nlm.nih.gov/pubmed/7916401
http://www.ncbi.nlm.nih.gov/pubmed?term=Haynes%20WG%5BAuthor%5D&cauthor=true&cauthor_uid=9794709
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=9794709
http://www.ncbi.nlm.nih.gov/pubmed/9794709
http://www.ncbi.nlm.nih.gov/pubmed?term=Haynes%20WG%5BAuthor%5D&cauthor=true&cauthor_uid=7614809
http://www.ncbi.nlm.nih.gov/pubmed/7614809
http://www.ncbi.nlm.nih.gov/pubmed/7614809
http://www.ncbi.nlm.nih.gov/pubmed?term=Hems%C3%A9n%20A%5BAuthor%5D&cauthor=true&cauthor_uid=7761628
http://www.ncbi.nlm.nih.gov/pubmed?term=Ahlborg%20G%5BAuthor%5D&cauthor=true&cauthor_uid=7761628
http://www.ncbi.nlm.nih.gov/pubmed?term=Ottosson-Seeberger%20A%5BAuthor%5D&cauthor=true&cauthor_uid=7761628
http://www.ncbi.nlm.nih.gov/pubmed?term=Lundberg%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=7761628
http://www.ncbi.nlm.nih.gov/pubmed/7761628
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Henrich%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cameron%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bourenkov%20GP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kiefersauer%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Huber%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lindberg%20I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bode%20W%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Than%20ME%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Nat%20Struct%20Biol.');
http://www.ncbi.nlm.nih.gov/pubmed?term=Henzel%20WJ%5BAuthor%5D&cauthor=true&cauthor_uid=8506346
http://www.ncbi.nlm.nih.gov/pubmed?term=Billeci%20TM%5BAuthor%5D&cauthor=true&cauthor_uid=8506346
http://www.ncbi.nlm.nih.gov/pubmed?term=Stults%20JT%5BAuthor%5D&cauthor=true&cauthor_uid=8506346
http://www.ncbi.nlm.nih.gov/pubmed?term=Wong%20SC%5BAuthor%5D&cauthor=true&cauthor_uid=8506346
http://www.ncbi.nlm.nih.gov/pubmed?term=Grimley%20C%5BAuthor%5D&cauthor=true&cauthor_uid=8506346
http://www.ncbi.nlm.nih.gov/pubmed?term=Watanabe%20C%5BAuthor%5D&cauthor=true&cauthor_uid=8506346
http://www.ncbi.nlm.nih.gov/pubmed?term=Henzel%20WJ%5BAuthor%5D&cauthor=true&cauthor_uid=12954162
http://www.ncbi.nlm.nih.gov/pubmed?term=Watanabe%20C%5BAuthor%5D&cauthor=true&cauthor_uid=12954162
http://www.ncbi.nlm.nih.gov/pubmed?term=Stults%20JT%5BAuthor%5D&cauthor=true&cauthor_uid=12954162
http://www.ncbi.nlm.nih.gov/pubmed/?term=Henzel%2C+W.+J.%2C+Watanabe%2C+C.%2C+Stults%2C+J.+T.%2C+J.+Am.+Soc.+Mass+Spectrom.+2003%2C14%2C+931-942.


 

233 

 

Hewitt SM, Dear J, Star RA. (2004) Discovery of protein biomarkers for renal 

diseases. J Am Soc Nephrol. 15:1677-1689. 

Hirata Y, Yoshimi H, Takata S, Watanabe TX, Kumagai S, Nakajima K, Sakakibara S. 

(1988) Cellular mechanism of action by a novel vasoconstrictor endothelin in 

cultured rat vascular smooth muscle cells. Biochem Biophys Res Commun. 

154(3):868-75. 

Hishikawa K, Nakaki T, Marumo T, Suzuki H, Kato R, Saruta T. (1995) Pressure 

enhances endothelin-1 release from cultured human endothelial cells. Hypertension. 

25(3):449-52. 

Hoang MV, Turner AJ. (1997) Novel activity of endothelin-converting enzyme: 

hydrolysis of bradykinin. Biochem J. 327(Pt 1):23-6. 

Hoshi T. and Heinemann S. (2001) Regulation of cell function by methionine 

oxidation and reduction. J Physiol. 531(Pt 1):1-11. 

Howard PG, Plumpton C, Davenport AP. (1992) Anatomical localization and 

pharmacological activity of mature endothelins and their precursors in human 

vascular tissue. J Hypertens. 10(11):1379-86. 

Hyndman KA, Evans DH. (2007) Endothelin and endothelin converting enzyme-1 in 

the fish gill: evolutionary and physiological perspectives. J Exp Biol. 210(Pt 

24):4286-97. 

Hyndman KA, Miyamoto MM, Evans DH. (2009) Phylogeny, taxonomy, and 

evolution of the endothelin receptor gene family. Mol Phylogenet Evol. 52(3):677-87.  

Ihling C, Göbel HR, Lippoldt A, Wessels S, Paul M, Schaefer HE, Zeiher AM. (1996) 

Endothelin-1-like immunoreactivity in human atherosclerotic coronary tissue: a 

detailed analysis of the cellular distribution of endothelin-1. J Pathol. 179(3):303-8. 

Ihling C, Szombathy T, Bohrmann B, Brockhaus M, Schaefer HE, Loeffler BM. (2001) 

Coexpression of endothelin-converting enzyme-1 and endothelin-1 in different 

stages of human atherosclerosis. Circulation. 104(8):864-9. 

Ikegawa R, Matsumura Y, Tsukahara Y, Takaoka M, Morimoto S. (1990) 

Phosphoramidon, a metalloproteinase inhibitor, suppresses the secretion of 

endothelin-1 from cultured endothelial cells by inhibiting a big endothelin-1 

converting enzyme. Biochem Biophys Res Commun. 171(2):669-75. 

Ikegawa R, Matsumura Y, Tsukahara Y, Takaoka M, Morimoto S. (1991) 

Phosphoramidon inhibits the generation of endothelin-1 from exogenously applied 

big endothelin-1 in cultured vascular endothelial cells and smooth muscle cells. 

FEBS Lett. 293(1-2):45-8. 

Imai T, Hirata Y, Emori T, Yanagisawa M, Masaki T, Marumo F. (1992) Induction of 

endothelin-1 gene by angiotensin and vasopressin in endothelial cells. Hypertension. 

19(6 Pt 2):753-7. 

Inoue A, Yanagisawa M, Takuwa Y, Mitsui Y, Kobayashi M, Masaki T. (1989)  The 

human preproendothelin-1 gene. Complete nucleotide sequence and regulation of 

expression. J Biol Chem. 264(25):14954-9. 

http://www.ncbi.nlm.nih.gov/pubmed/3044368
http://www.ncbi.nlm.nih.gov/pubmed/3044368
http://www.ncbi.nlm.nih.gov/pubmed?term=Hishikawa%20K%5BAuthor%5D&cauthor=true&cauthor_uid=7875771
http://www.ncbi.nlm.nih.gov/pubmed?term=Nakaki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=7875771
http://www.ncbi.nlm.nih.gov/pubmed?term=Marumo%20T%5BAuthor%5D&cauthor=true&cauthor_uid=7875771
http://www.ncbi.nlm.nih.gov/pubmed?term=Suzuki%20H%5BAuthor%5D&cauthor=true&cauthor_uid=7875771
http://www.ncbi.nlm.nih.gov/pubmed?term=Kato%20R%5BAuthor%5D&cauthor=true&cauthor_uid=7875771
http://www.ncbi.nlm.nih.gov/pubmed?term=Saruta%20T%5BAuthor%5D&cauthor=true&cauthor_uid=7875771
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hishikawa+1995+endothelin
http://www.ncbi.nlm.nih.gov/pubmed/9355729
http://www.ncbi.nlm.nih.gov/pubmed/9355729
http://www.ncbi.nlm.nih.gov/pubmed?term=Howard%20PG%5BAuthor%5D&cauthor=true&cauthor_uid=1336523
http://www.ncbi.nlm.nih.gov/pubmed?term=Plumpton%20C%5BAuthor%5D&cauthor=true&cauthor_uid=1336523
http://www.ncbi.nlm.nih.gov/pubmed?term=Davenport%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=1336523
http://www.ncbi.nlm.nih.gov/pubmed/?term=localization+and+pharmacological+activity+of+mature+endothelins
http://www.ncbi.nlm.nih.gov/pubmed?term=Hyndman%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=18055618
http://www.ncbi.nlm.nih.gov/pubmed?term=Evans%20DH%5BAuthor%5D&cauthor=true&cauthor_uid=18055618
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hyndman+evans+endothelin+converting+enzyme+2007
http://www.ncbi.nlm.nih.gov/pubmed?term=Hyndman%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=19410007
http://www.ncbi.nlm.nih.gov/pubmed?term=Miyamoto%20MM%5BAuthor%5D&cauthor=true&cauthor_uid=19410007
http://www.ncbi.nlm.nih.gov/pubmed?term=Evans%20DH%5BAuthor%5D&cauthor=true&cauthor_uid=19410007
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hyndman+endothelin+receptor+gene+family+2009
http://www.ncbi.nlm.nih.gov/pubmed?term=Ihling%20C%5BAuthor%5D&cauthor=true&cauthor_uid=8774487
http://www.ncbi.nlm.nih.gov/pubmed?term=G%C3%B6bel%20HR%5BAuthor%5D&cauthor=true&cauthor_uid=8774487
http://www.ncbi.nlm.nih.gov/pubmed?term=Lippoldt%20A%5BAuthor%5D&cauthor=true&cauthor_uid=8774487
http://www.ncbi.nlm.nih.gov/pubmed?term=Wessels%20S%5BAuthor%5D&cauthor=true&cauthor_uid=8774487
http://www.ncbi.nlm.nih.gov/pubmed?term=Paul%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8774487
http://www.ncbi.nlm.nih.gov/pubmed?term=Schaefer%20HE%5BAuthor%5D&cauthor=true&cauthor_uid=8774487
http://www.ncbi.nlm.nih.gov/pubmed?term=Zeiher%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=8774487
http://www.ncbi.nlm.nih.gov/pubmed/8774487
http://www.ncbi.nlm.nih.gov/pubmed?term=Ihling%20C%5BAuthor%5D&cauthor=true&cauthor_uid=11514370
http://www.ncbi.nlm.nih.gov/pubmed?term=Szombathy%20T%5BAuthor%5D&cauthor=true&cauthor_uid=11514370
http://www.ncbi.nlm.nih.gov/pubmed?term=Bohrmann%20B%5BAuthor%5D&cauthor=true&cauthor_uid=11514370
http://www.ncbi.nlm.nih.gov/pubmed?term=Brockhaus%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11514370
http://www.ncbi.nlm.nih.gov/pubmed?term=Schaefer%20HE%5BAuthor%5D&cauthor=true&cauthor_uid=11514370
http://www.ncbi.nlm.nih.gov/pubmed?term=Loeffler%20BM%5BAuthor%5D&cauthor=true&cauthor_uid=11514370
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ikegawa%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Matsumura%20Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tsukahara%20Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Takaoka%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Morimoto%20S%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Biochem%20Biophys%20Res%20Commun.');
http://www.ncbi.nlm.nih.gov/pubmed?term=Ikegawa%20R%5BAuthor%5D&cauthor=true&cauthor_uid=1959670
http://www.ncbi.nlm.nih.gov/pubmed?term=Matsumura%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=1959670
http://www.ncbi.nlm.nih.gov/pubmed?term=Tsukahara%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=1959670
http://www.ncbi.nlm.nih.gov/pubmed?term=Takaoka%20M%5BAuthor%5D&cauthor=true&cauthor_uid=1959670
http://www.ncbi.nlm.nih.gov/pubmed?term=Morimoto%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1959670
http://www.ncbi.nlm.nih.gov/pubmed/?term=Phosphoramidon+inhibits+the+generation+of+endothein+1+from+exogenousl
http://www.ncbi.nlm.nih.gov/pubmed?term=Imai%20T%5BAuthor%5D&cauthor=true&cauthor_uid=1592477
http://www.ncbi.nlm.nih.gov/pubmed?term=Hirata%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=1592477
http://www.ncbi.nlm.nih.gov/pubmed?term=Emori%20T%5BAuthor%5D&cauthor=true&cauthor_uid=1592477
http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=1592477
http://www.ncbi.nlm.nih.gov/pubmed?term=Masaki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=1592477
http://www.ncbi.nlm.nih.gov/pubmed?term=Marumo%20F%5BAuthor%5D&cauthor=true&cauthor_uid=1592477
http://www.ncbi.nlm.nih.gov/pubmed/1592477
http://www.ncbi.nlm.nih.gov/pubmed/2670930
http://www.ncbi.nlm.nih.gov/pubmed/2670930
http://www.ncbi.nlm.nih.gov/pubmed/2670930


 

234 

 

Iqbal N, Wentworth B, Choudhary R, Landa Ade L, Kipper B, Fard A, Maisel AS. 

(2012) Cardiac biomarkers: new tools for heart failure management. Cardiovasc 

Diagn Ther. 2(2):147-64.  

Isaka D, Emoto N, Raharjo SB, Yokoyama M, Matsuo M. (2003) The effects of 

phosphoramidon on the expression of human endothelin-converting enzyme-1 

(ECE-1) isoforms. J Cardiovasc Pharmacol. 42(1):136-41. 

Ito H, Hirata Y, Adachi S, Tanaka M, Tsujino M, Koike A, Nogami A, Murumo F, Hiroe 

M. (1993) Endothelin-1 is an autocrine/paracrine factor in the mechanism of 

angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest. 

92(1):398-403. 

Ito H, Hirata Y, Hiroe M, Tsujino M, Adachi S, Takamoto T, Nitta M, Taniguchi K, 

Marumo F. (1991) Endothelin-1 induces hypertrophy with enhanced expression of 

muscle-specific genes in cultured neonatal rat cardiomyocytes. Circ Res. 69(1):209-

15. 

James ND, Caty A, Payne H, Borre M, Zonnenberg BA, Beuzeboc P, McIntosh S, 

Morris T, Phung D, Dawson NA. (2010) Final safety and efficacy analysis of the 

specific endothelin A receptor antagonist zibotentan (ZD4054) in patients with 

metastatic castration-resistant prostate cancer and bone metastases who were pain-

free or mildly symptomatic for pain: a double-blind, placebo-controlled, 

randomized Phase II trial. BJU Int. 106(7):966-73. 

Janes RW, Peapus DH, Wallace BA. (1994) The crystal structure of human 

endothelin. Nat Struct Biol. 1(5):311-9. 

Jankowska EA, Filippatos GS, von Haehling S, Papassotiriou J, Morgenthaler NG, 

Cicoira M, Schefold JC, Rozentryt P, Ponikowska B, Doehner W, Banasiak W, 

Hartmann O, Struck J, Bergmann A, Anker SD, Ponikowski P. (2011) Identification of 

chronic heart failure patients with a high 12-month mortality risk using 

biomarkers including plasma C-terminal pro-endothelin-1. PLoS One. 6(1):e14506.   

Jersmann HP, Hii CS, Ferrante JV, Ferrante A. (2001) Bacterial lipopolysaccharide 

and tumor necrosis factor alpha synergistically increase expression of human 

endothelial adhesion molecules through activation of NK-kappaB and p38 mitogen 

activated protein kinase signalling pathway. Infect. Immun. 69(3):1273-9. 

Ji JA, Zhang B, Cheng W, Wang YJ. (2009) Methionine, tryptophan, and 

histidine oxidation in a model protein, PTH: mechanisms and stabilization. J Pharm 

Sci.  98(12):4485-500 

Johnson GD, Stevenson T, Ahn K. (1999) Hydrolysis of peptide hormones by 

endothelin-converting enzyme-1. A comparison with neprilysin. J Biol Chem. 

274(7):4053-8. 

Jones GT, van Rij AM, Solomon C, Thomson IA, Packer SG. (1996) Endothelin-1 is 

increased overlying atherosclerotic plaques in human arteries. Atherosclerosis. 

124(1):25-35. 

http://www.ncbi.nlm.nih.gov/pubmed/24282708
http://www.ncbi.nlm.nih.gov/pubmed?term=Ito%20H%5BAuthor%5D&cauthor=true&cauthor_uid=8326007
http://www.ncbi.nlm.nih.gov/pubmed?term=Hirata%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=8326007
http://www.ncbi.nlm.nih.gov/pubmed?term=Adachi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=8326007
http://www.ncbi.nlm.nih.gov/pubmed?term=Tanaka%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8326007
http://www.ncbi.nlm.nih.gov/pubmed?term=Tsujino%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8326007
http://www.ncbi.nlm.nih.gov/pubmed?term=Koike%20A%5BAuthor%5D&cauthor=true&cauthor_uid=8326007
http://www.ncbi.nlm.nih.gov/pubmed?term=Nogami%20A%5BAuthor%5D&cauthor=true&cauthor_uid=8326007
http://www.ncbi.nlm.nih.gov/pubmed?term=Murumo%20F%5BAuthor%5D&cauthor=true&cauthor_uid=8326007
http://www.ncbi.nlm.nih.gov/pubmed?term=Hiroe%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8326007
http://www.ncbi.nlm.nih.gov/pubmed?term=Hiroe%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8326007
http://www.ncbi.nlm.nih.gov/pubmed/8326007
http://www.ncbi.nlm.nih.gov/pubmed?term=Ito%20H%5BAuthor%5D&cauthor=true&cauthor_uid=2054934
http://www.ncbi.nlm.nih.gov/pubmed?term=Hirata%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=2054934
http://www.ncbi.nlm.nih.gov/pubmed?term=Hiroe%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2054934
http://www.ncbi.nlm.nih.gov/pubmed?term=Tsujino%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2054934
http://www.ncbi.nlm.nih.gov/pubmed?term=Adachi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=2054934
http://www.ncbi.nlm.nih.gov/pubmed?term=Takamoto%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2054934
http://www.ncbi.nlm.nih.gov/pubmed?term=Nitta%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2054934
http://www.ncbi.nlm.nih.gov/pubmed?term=Taniguchi%20K%5BAuthor%5D&cauthor=true&cauthor_uid=2054934
http://www.ncbi.nlm.nih.gov/pubmed?term=Marumo%20F%5BAuthor%5D&cauthor=true&cauthor_uid=2054934
http://www.ncbi.nlm.nih.gov/pubmed/2054934
http://www.ncbi.nlm.nih.gov/pubmed?term=James%20ND%5BAuthor%5D&cauthor=true&cauthor_uid=20840318
http://www.ncbi.nlm.nih.gov/pubmed?term=Caty%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20840318
http://www.ncbi.nlm.nih.gov/pubmed?term=Payne%20H%5BAuthor%5D&cauthor=true&cauthor_uid=20840318
http://www.ncbi.nlm.nih.gov/pubmed?term=Borre%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20840318
http://www.ncbi.nlm.nih.gov/pubmed?term=Zonnenberg%20BA%5BAuthor%5D&cauthor=true&cauthor_uid=20840318
http://www.ncbi.nlm.nih.gov/pubmed?term=Beuzeboc%20P%5BAuthor%5D&cauthor=true&cauthor_uid=20840318
http://www.ncbi.nlm.nih.gov/pubmed?term=McIntosh%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20840318
http://www.ncbi.nlm.nih.gov/pubmed?term=Morris%20T%5BAuthor%5D&cauthor=true&cauthor_uid=20840318
http://www.ncbi.nlm.nih.gov/pubmed?term=Phung%20D%5BAuthor%5D&cauthor=true&cauthor_uid=20840318
http://www.ncbi.nlm.nih.gov/pubmed?term=Dawson%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=20840318
http://www.ncbi.nlm.nih.gov/pubmed/20840318
http://www.ncbi.nlm.nih.gov/pubmed?term=Janes%20RW%5BAuthor%5D&cauthor=true&cauthor_uid=7664037
http://www.ncbi.nlm.nih.gov/pubmed?term=Peapus%20DH%5BAuthor%5D&cauthor=true&cauthor_uid=7664037
http://www.ncbi.nlm.nih.gov/pubmed?term=Wallace%20BA%5BAuthor%5D&cauthor=true&cauthor_uid=7664037
http://www.ncbi.nlm.nih.gov/pubmed/7664037
http://www.ncbi.nlm.nih.gov/pubmed?term=Jankowska%20EA%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Filippatos%20GS%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=von%20Haehling%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Papassotiriou%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Morgenthaler%20NG%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Cicoira%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Schefold%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Rozentryt%20P%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Ponikowska%20B%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Doehner%20W%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Banasiak%20W%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Hartmann%20O%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Struck%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Bergmann%20A%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Anker%20SD%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=Ponikowski%20P%5BAuthor%5D&cauthor=true&cauthor_uid=21264211
http://www.ncbi.nlm.nih.gov/pubmed/21264211
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jersmann%20HP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hii%20CS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ferrante%20JV%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ferrante%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=Ji%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=19455640
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhang%20B%5BAuthor%5D&cauthor=true&cauthor_uid=19455640
http://www.ncbi.nlm.nih.gov/pubmed?term=Cheng%20W%5BAuthor%5D&cauthor=true&cauthor_uid=19455640
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20YJ%5BAuthor%5D&cauthor=true&cauthor_uid=19455640
http://www.ncbi.nlm.nih.gov/pubmed/19455640
http://www.ncbi.nlm.nih.gov/pubmed/19455640
http://www.ncbi.nlm.nih.gov/pubmed/9933597
http://www.ncbi.nlm.nih.gov/pubmed/9933597
http://www.ncbi.nlm.nih.gov/pubmed?term=Jones%20GT%5BAuthor%5D&cauthor=true&cauthor_uid=8800491
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20Rij%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=8800491
http://www.ncbi.nlm.nih.gov/pubmed?term=Solomon%20C%5BAuthor%5D&cauthor=true&cauthor_uid=8800491
http://www.ncbi.nlm.nih.gov/pubmed?term=Thomson%20IA%5BAuthor%5D&cauthor=true&cauthor_uid=8800491
http://www.ncbi.nlm.nih.gov/pubmed?term=Packer%20SG%5BAuthor%5D&cauthor=true&cauthor_uid=8800491
http://www.ncbi.nlm.nih.gov/pubmed/?term=Endothelin-1+is+increased+overlying+atherosclerotic+plaques+in+human+arteries.+Atherosclerosis


 

235 

 

Jones RC, Francis GS, Lauer MS. (2004) Predictors of mortality in patients with 

heart failure and preserved systolic function in the Digitalis Investigation Group 

trial. J Am Coll Cardiol. 44(5):1025-9. 

Kaasjager KA, van Rijn HJ, Koomans HA, Rabelink TJ. (1995) Interactions of 

nifedipine with the renovascular effects of endothelin in humans. J Pharmacol Exp 

Ther. 275(1):306-11. 

Kahler J, Ewert A, Weckmüller J, Stobbe S, Mittmann C, Köster R, Paul M, Meinertz 

T, Münzel T. (2001) Oxidative stress increases endothelin-1 synthesis in human 

coronary artery smooth muscle cells. J Cardiovasc Pharmacol. 38:49–57. 

Kang BY, Kleinhenz JM, Murphy TC, Hart CM. (2011) The PPARγ ligand 

rosiglitazone attenuates hypoxia-induced endothelin signaling in vitro and in vivo. 

Am J Physiol Lung Cell Mol Physiol. 301(6):L881-91.   

Kelland NF, Kuc RE, McLean DL, Azfer A, Bagnall AJ, Gray GA, Gulliver-Sloan FH, 

Maguire JJ, Davenport AP, Kotelevtsev YV, Webb DJ. (2010) Endothelial cell-specific 

ETB receptor knockout: autoradiographic and histological characterisation and 

crucial role in the clearance of endothelin-1. Can J Physiol Pharmacol. 88(6):644-51.   

Kellie JF, Tran JC, Lee JE, Ahlf DR, Thomas HM, Ntai I, Catherman AD, Durbin KR, 

Zamdborg L, Vellaichamy A, Thomas PM, Kelleher NL. (2010) The emerging process 

of Top Down mass spectrometry for protein analysis: biomarkers, protein-

therapeutics, and achieving high throughput. Mol Biosyst. 6(9):1532-9. 

Kelly JJ. and Whitworth JA. (1999) Endothelin-1 as a mediator in cardiovascular 

disease. Clin Exp Pharmacol Physiol. 26(2):158-61. 

 

Khan MA, Dashwood MR, Mumtaz FH, Thompson CS,  Mikhailidis DP, Morgan RJ 

(1999) Upregulation of Endothelin A Receptor Sites in the Rabbit Diabetic Kidney: 

Potential Relevance to the Early Pathogenesis of Diabetic Nephropathy. Nephron. 

83:261–267. 

Kido T, Sawamura T, Hoshikawa H, D'Orléans-Juste P, Denault JB, Leduc R, Kimura 

J, Masaki T. (1997)  Processing of proendothelin-1 at the C-terminus of big 

endothelin-1 is essential for proteolysis by endothelin-converting enzyme-1 in vivo. 

Eur J Biochem. 244(2):520-6. 

Kiely DG, Cargill RI, Struthers AD, Lipworth BJ. (1997) Cardiopulmonary effects of 

endothelin-1 in man. Cardiovasc Res. 33(2):378-86. 

Kinlay S, Behrendt D, Wainstein M, Beltrame J, Fang JC, Creager MA, Selwyn AP, 

Ganz P. (2001) Role of endothelin-1 in the active constriction of human 

atherosclerotic coronary arteries. Circulation. 104(10):1114-8. 

Kiowski W, Lüscher TF, Linder L, Bühler FR. (1991) Endothelin-1-induced 

vasoconstriction in humans. Reversal by calcium channel blockade but not by 

nitrovasodilators or endothelium-derived relaxing factor. Circulation.  83(2):469-

75. 

Kisanuki YY, Emoto N, Ohuchi T, Widyantoro B, Yagi K, Nakayama K, Kedzierski 

RM, Hammer RE, Yanagisawa H, Williams SC, Richardson JA, Suzuki T, Yanagisawa 

http://www.ncbi.nlm.nih.gov/pubmed?term=Jones%20RC%5BAuthor%5D&cauthor=true&cauthor_uid=15337214
http://www.ncbi.nlm.nih.gov/pubmed?term=Francis%20GS%5BAuthor%5D&cauthor=true&cauthor_uid=15337214
http://www.ncbi.nlm.nih.gov/pubmed?term=Lauer%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=15337214
http://www.ncbi.nlm.nih.gov/pubmed/?term=Predictors+of+mortality+in+patients+with+heart+failure+and+preserved+systolic+function+in+the+Digitalis+Investigation+Group+trial
http://www.ncbi.nlm.nih.gov/pubmed?term=Kaasjager%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=7562563
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20Rijn%20HJ%5BAuthor%5D&cauthor=true&cauthor_uid=7562563
http://www.ncbi.nlm.nih.gov/pubmed?term=Koomans%20HA%5BAuthor%5D&cauthor=true&cauthor_uid=7562563
http://www.ncbi.nlm.nih.gov/pubmed?term=Rabelink%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=7562563
http://www.ncbi.nlm.nih.gov/pubmed/7562563
http://www.ncbi.nlm.nih.gov/pubmed/7562563
http://www.ncbi.nlm.nih.gov/pubmed?term=K%C3%A4hler%20J%5BAuthor%5D&cauthor=true&cauthor_uid=11444502
http://www.ncbi.nlm.nih.gov/pubmed?term=Ewert%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11444502
http://www.ncbi.nlm.nih.gov/pubmed?term=Weckm%C3%BCller%20J%5BAuthor%5D&cauthor=true&cauthor_uid=11444502
http://www.ncbi.nlm.nih.gov/pubmed?term=Stobbe%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11444502
http://www.ncbi.nlm.nih.gov/pubmed?term=Mittmann%20C%5BAuthor%5D&cauthor=true&cauthor_uid=11444502
http://www.ncbi.nlm.nih.gov/pubmed?term=K%C3%B6ster%20R%5BAuthor%5D&cauthor=true&cauthor_uid=11444502
http://www.ncbi.nlm.nih.gov/pubmed?term=Paul%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11444502
http://www.ncbi.nlm.nih.gov/pubmed?term=Meinertz%20T%5BAuthor%5D&cauthor=true&cauthor_uid=11444502
http://www.ncbi.nlm.nih.gov/pubmed?term=Meinertz%20T%5BAuthor%5D&cauthor=true&cauthor_uid=11444502
http://www.ncbi.nlm.nih.gov/pubmed?term=M%C3%BCnzel%20T%5BAuthor%5D&cauthor=true&cauthor_uid=11444502
http://www.ncbi.nlm.nih.gov/pubmed?term=Kang%20BY%5BAuthor%5D&cauthor=true&cauthor_uid=21926265
http://www.ncbi.nlm.nih.gov/pubmed?term=Kleinhenz%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=21926265
http://www.ncbi.nlm.nih.gov/pubmed?term=Murphy%20TC%5BAuthor%5D&cauthor=true&cauthor_uid=21926265
http://www.ncbi.nlm.nih.gov/pubmed?term=Hart%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=21926265
http://www.ncbi.nlm.nih.gov/pubmed/21926265
http://www.ncbi.nlm.nih.gov/pubmed?term=Kelland%20NF%5BAuthor%5D&cauthor=true&cauthor_uid=20628430
http://www.ncbi.nlm.nih.gov/pubmed?term=Kuc%20RE%5BAuthor%5D&cauthor=true&cauthor_uid=20628430
http://www.ncbi.nlm.nih.gov/pubmed?term=McLean%20DL%5BAuthor%5D&cauthor=true&cauthor_uid=20628430
http://www.ncbi.nlm.nih.gov/pubmed?term=Azfer%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20628430
http://www.ncbi.nlm.nih.gov/pubmed?term=Bagnall%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=20628430
http://www.ncbi.nlm.nih.gov/pubmed?term=Gray%20GA%5BAuthor%5D&cauthor=true&cauthor_uid=20628430
http://www.ncbi.nlm.nih.gov/pubmed?term=Gulliver-Sloan%20FH%5BAuthor%5D&cauthor=true&cauthor_uid=20628430
http://www.ncbi.nlm.nih.gov/pubmed?term=Maguire%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=20628430
http://www.ncbi.nlm.nih.gov/pubmed?term=Davenport%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=20628430
http://www.ncbi.nlm.nih.gov/pubmed?term=Kotelevtsev%20YV%5BAuthor%5D&cauthor=true&cauthor_uid=20628430
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=20628430
http://www.ncbi.nlm.nih.gov/pubmed/?term=ell-specific+ETB+receptor+knockout%3A+autoradiographic+and+histological+characterisation+and+crucial+role+in+the+clearance+of+endothelin-1
http://www.ncbi.nlm.nih.gov/pubmed/20711533
http://www.ncbi.nlm.nih.gov/pubmed/20711533
http://www.ncbi.nlm.nih.gov/pubmed/20711533
http://www.ncbi.nlm.nih.gov/pubmed/10065339
http://www.ncbi.nlm.nih.gov/pubmed/10065339
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kido%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sawamura%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hoshikawa%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22D%27Orl%C3%A9ans-Juste%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Denault%20JB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Leduc%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kimura%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kimura%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Masaki%20T%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Eur%20J%20Biochem.');
http://www.ncbi.nlm.nih.gov/pubmed/9074702
http://www.ncbi.nlm.nih.gov/pubmed/9074702
http://www.ncbi.nlm.nih.gov/pubmed?term=Kinlay%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11535565
http://www.ncbi.nlm.nih.gov/pubmed?term=Behrendt%20D%5BAuthor%5D&cauthor=true&cauthor_uid=11535565
http://www.ncbi.nlm.nih.gov/pubmed?term=Wainstein%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11535565
http://www.ncbi.nlm.nih.gov/pubmed?term=Beltrame%20J%5BAuthor%5D&cauthor=true&cauthor_uid=11535565
http://www.ncbi.nlm.nih.gov/pubmed?term=Fang%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=11535565
http://www.ncbi.nlm.nih.gov/pubmed?term=Creager%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=11535565
http://www.ncbi.nlm.nih.gov/pubmed?term=Selwyn%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=11535565
http://www.ncbi.nlm.nih.gov/pubmed?term=Ganz%20P%5BAuthor%5D&cauthor=true&cauthor_uid=11535565
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kinlay+2001+atherosclerotic+human+coronary+arteries
http://www.ncbi.nlm.nih.gov/pubmed?term=Kiowski%20W%5BAuthor%5D&cauthor=true&cauthor_uid=1846783
http://www.ncbi.nlm.nih.gov/pubmed?term=L%C3%BCscher%20TF%5BAuthor%5D&cauthor=true&cauthor_uid=1846783
http://www.ncbi.nlm.nih.gov/pubmed?term=Linder%20L%5BAuthor%5D&cauthor=true&cauthor_uid=1846783
http://www.ncbi.nlm.nih.gov/pubmed?term=B%C3%BChler%20FR%5BAuthor%5D&cauthor=true&cauthor_uid=1846783
http://www.ncbi.nlm.nih.gov/pubmed/1846783
http://www.ncbi.nlm.nih.gov/pubmed?term=Kisanuki%20YY%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed?term=Emoto%20N%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed?term=Ohuchi%20T%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed?term=Widyantoro%20B%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed?term=Yagi%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed?term=Nakayama%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed?term=Kedzierski%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed?term=Kedzierski%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed?term=Hammer%20RE%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20H%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed?term=Williams%20SC%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed?term=Richardson%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed?term=Suzuki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20516397


 

236 

 

M. (2010) Low blood pressure in endothelial cell-specific endothelin 1 knockout 

mice. Hypertension. 56(1):121-8.   

 

Kitamura K, Tanaka T, Kato J, Eto T, Tanaka K. (1989) Regional distribution of 

immunoreactive endothelin in porcine tissue: abundance in innermedulla of 

kidney. Biochem Biophys Res Commun. 161(1):348-52.  

 

Kitazumi K, Tasaka K. (1993) The role of c-Jun protein in thrombin-stimulated 

expression of preproendothelin-1 mRNA in porcine aortic endothelial cells. 

Biochem Pharmacol. 46(3):455-64. 

Klemm P, Warner TD, Hohlfeld T, Corder R, Vane JR. (1995) Endothelin 1 mediates 

ex vivo coronary vasoconstriction caused by exogenous and endogenous cytokines. 

Proc Natl Acad Sci U S A. 92(7):2691-5. 

Kloog Y, Ambar I, Sokolovsky M, Kochva E, Wollberg Z, Bdolah A. (1988) 

Sarafotoxin, a novel vasoconstrictor peptide: phosphoinositide hydrolysis in rat 

heart and brain. Science. 242(4876):268-70. 

Kohan DE, Rossi NF, Inscho EW, Pollock DM. (2011) Regulation of blood 

pressure and salt homeostasis by endothelin. Physiol Rev. 91(1):1-77. 

 

Kohno M, Yokokawa K, Horie T, Yasunari K, Murahawa K, Ikeda M, Takeda T. (1992) 

Release mechanism of endothelin-1 and big endothelin-1 after stimulation with 

thrombin in cultured porcine endothelial cells. J Vasc Res. 29:56-63. 

Komuro I, Kurihara H, Sugiyama T, Yoshizumi M, Takaku F, Yazaki Y. (1988) 

Endothelin stimulates c-fos and c-myc expression and proliferation of vascular 

smooth muscle cells. FEBS Lett. 238(2):249-52. 

Kourembanas S, Marsden PA, McQuillan LP, Faller DV. (1991) Hypoxia induces 

endothelin gene expression and secretion in cultured human endothelium. J Clin 

Invest. 88(3):1054-7. 

Kuc RE, Karet FE, Davenport AP. (1995) Characterization of peptide and 

nonpeptide antagonists in human kidney. J Cardiovasc Pharmacol. 26 Suppl 3:S373-

5. 

Küng CF. and Lüscher TF. (1995) Different mechanisms of endothelial dysfunction 

with aging and hypertension in rat aorta. Hypertension. 25:194-200.  

Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai R, Oda H, Kuwaki 

T, Cao WH, Kamada N, et al. (1994) Elevated blood pressure and craniofacial 

abnormalities in mice deficient in endothelin-1. Nature. 368(6473):703-10. 

Lambers C, Roth M, Zhong J, Campregher C, Binder P, Burian B, Petkov V, Block L.H 

(2013) The Interaction of Endothelin-1 and TGF-β1 Mediates Vascular Cell 

Remodeling. PLoS One. 8(8): e73399. 

Landan G, Bdolah A, Wollberg Z, Kochva E, Graur D. (1991) Evolution of the 

sarafotoxin/endothelin superfamily of proteins. Toxicon. 29(2):237-44. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20516397
http://www.ncbi.nlm.nih.gov/pubmed/20516397
http://www.ncbi.nlm.nih.gov/pubmed/2658999
http://www.ncbi.nlm.nih.gov/pubmed/2658999
http://www.ncbi.nlm.nih.gov/pubmed/2658999
http://www.ncbi.nlm.nih.gov/pubmed?term=Kitazumi%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8347169
http://www.ncbi.nlm.nih.gov/pubmed?term=Tasaka%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8347169
http://www.ncbi.nlm.nih.gov/pubmed/8347169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Klemm%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Warner%20TD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hohlfeld%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Corder%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Vane%20JR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/7708707
http://www.ncbi.nlm.nih.gov/pubmed?term=Kloog%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=2845579
http://www.ncbi.nlm.nih.gov/pubmed?term=Ambar%20I%5BAuthor%5D&cauthor=true&cauthor_uid=2845579
http://www.ncbi.nlm.nih.gov/pubmed?term=Sokolovsky%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2845579
http://www.ncbi.nlm.nih.gov/pubmed?term=Kochva%20E%5BAuthor%5D&cauthor=true&cauthor_uid=2845579
http://www.ncbi.nlm.nih.gov/pubmed?term=Wollberg%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=2845579
http://www.ncbi.nlm.nih.gov/pubmed?term=Bdolah%20A%5BAuthor%5D&cauthor=true&cauthor_uid=2845579
http://www.ncbi.nlm.nih.gov/pubmed/2845579
http://www.ncbi.nlm.nih.gov/pubmed/21248162
http://www.ncbi.nlm.nih.gov/pubmed/21248162
http://www.ncbi.nlm.nih.gov/pubmed?term=Kourembanas%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1885767
http://www.ncbi.nlm.nih.gov/pubmed?term=Marsden%20PA%5BAuthor%5D&cauthor=true&cauthor_uid=1885767
http://www.ncbi.nlm.nih.gov/pubmed?term=McQuillan%20LP%5BAuthor%5D&cauthor=true&cauthor_uid=1885767
http://www.ncbi.nlm.nih.gov/pubmed?term=Faller%20DV%5BAuthor%5D&cauthor=true&cauthor_uid=1885767
http://www.ncbi.nlm.nih.gov/pubmed/?term=1991+hypoxia+Kourembanas
http://www.ncbi.nlm.nih.gov/pubmed/?term=1991+hypoxia+Kourembanas
http://www.ncbi.nlm.nih.gov/pubmed?term=Kuc%20RE%5BAuthor%5D&cauthor=true&cauthor_uid=8587419
http://www.ncbi.nlm.nih.gov/pubmed?term=Karet%20FE%5BAuthor%5D&cauthor=true&cauthor_uid=8587419
http://www.ncbi.nlm.nih.gov/pubmed?term=Davenport%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=8587419
http://www.ncbi.nlm.nih.gov/pubmed/?term=kuc+1995+characterisation+of+peptide+and+non+peptide+antagonist
http://www.ncbi.nlm.nih.gov/pubmed?term=Kurihara%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=8152482
http://www.ncbi.nlm.nih.gov/pubmed?term=Kurihara%20H%5BAuthor%5D&cauthor=true&cauthor_uid=8152482
http://www.ncbi.nlm.nih.gov/pubmed?term=Suzuki%20H%5BAuthor%5D&cauthor=true&cauthor_uid=8152482
http://www.ncbi.nlm.nih.gov/pubmed?term=Kodama%20T%5BAuthor%5D&cauthor=true&cauthor_uid=8152482
http://www.ncbi.nlm.nih.gov/pubmed?term=Maemura%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8152482
http://www.ncbi.nlm.nih.gov/pubmed?term=Nagai%20R%5BAuthor%5D&cauthor=true&cauthor_uid=8152482
http://www.ncbi.nlm.nih.gov/pubmed?term=Oda%20H%5BAuthor%5D&cauthor=true&cauthor_uid=8152482
http://www.ncbi.nlm.nih.gov/pubmed?term=Kuwaki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=8152482
http://www.ncbi.nlm.nih.gov/pubmed?term=Kuwaki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=8152482
http://www.ncbi.nlm.nih.gov/pubmed?term=Cao%20WH%5BAuthor%5D&cauthor=true&cauthor_uid=8152482
http://www.ncbi.nlm.nih.gov/pubmed?term=Kamada%20N%5BAuthor%5D&cauthor=true&cauthor_uid=8152482
http://www.ncbi.nlm.nih.gov/pubmed/?term=Elevated+blood+pressure+and+craniofacial+abnormalities+in+mice+defi+cient+in+endothelin-1
http://www.ncbi.nlm.nih.gov/pubmed/2048141
http://www.ncbi.nlm.nih.gov/pubmed/2048141


 

237 

 

Larivière R, Day R, Schiffrin EL. (1993) Increased expression of endothelin-1 gene 

in blood vessels of deoxycorticosterone acetate-salt hypertensive rats. Hypertension. 

21:916–920. 

Latini R, Masson S, Pirelli S, Barlera S, Pulitano G, Carbonieri E, Gulizia M, Vago T, 

Favero C, Zdunek D, Struck J, Staszewsky L, Maggioni AP, Franzosi MG, Disertori M; 

GISSI-AF Investigators. (2011) Circulating cardiovascular biomarkers in recurrent 

atrial fibrillation: data from the GISSI-atrial fibrillation trial. J Intern Med. 

269(2):160-71. 

Lea J, Greene T, Hebert L, Lipkowitz M, Massry S, Middleton J, Rostand SG, Miller 

E, Smith W, Bakris GL. (2005) The relationship between magnitude 

of proteinuria reduction and risk of end-stage renal disease:results of the African 

American study of kidney disease and hypertension. Arch Intern 

Med.  25;165(8):947-53. 

Lee S, Zambas ED, Marsh WL, Redman CM. (1991) Molecular cloning and primary 

structure of Kell blood group protein. Proc. Natl. Acad. Sci. USA.  88: 6353-6357. 

Lepailleur-Enouf D, Valdenaire O, Philippe M, Jandrot-Perrus M, Michel JB. (2000) 

Thrombin induces endothelin expression in arterial smooth muscle cells. Am J 

Physiol Heart Circ Physiol. 278(5):H1606-12. 

Lerman A, Edwards BS, Hallett JW, Heublein DM, Sandberg SM, Burnett JC Jr. (1991) 

Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N 

Engl J Med. 325:997-1001. 

Lerman A. and Zeiher AM. (2005) Endothelial function: cardiac events. Circulation. 

111: 363–368. 

Li JS, Larivière R, Schiffrin EL. (1994) Effect of a nonselective endothelin antagonist 

on vascular remodeling in deoxycorticosterone acetate-salt hypertensive rats. 

Evidence for a role of endothelin in vascular hypertrophy. Hypertension. 24(2):183-

8. 

Li S, Schöneich C, Borchardt RT. (1995) Chemical instability of protein 

pharmaceuticals: Mechanisms of oxidation and strategies for stabilization. 

Biotechnol Bioeng. 48(5):490-500. 

Li Z, Froehlich J, Galis ZS, Lakatta EG. (1999) Increased expression of matrix 

metalloproteinase-2 in the thickened intima of aged rats. Hypertension. 33:116–123. 

Lilitkarntakul P, Dhaun N, Melville V, Blackwell S, Talwar DK, Liebman B, Asai 

T, Pollock J, Goddard J, Webb DJ. (2011) Blood pressure and not uraemia is the 

major determinant of arterial stiffness and endothelial dysfunction in patients with 

chronic kidney disease and minimal co-morbidity. Atherosclerosis. 216(1):217-25.  

Link AJ. and LaBaer J. (2011) Solution protein digest. Cold Spring Harb Protoc. 

2011(2):pdb.prot5569. 

Lippincott J. and Apostol I. (1999) Carbamylation of cysteine: a potential artifact in 

peptide mapping of hemoglobins in the presence of urea. Anal Biochem. 267(1):57-

64. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Latini%20R%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Masson%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Pirelli%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Barlera%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Pulitano%20G%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Carbonieri%20E%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Gulizia%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Vago%20T%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Favero%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Zdunek%20D%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Struck%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Staszewsky%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Maggioni%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Franzosi%20MG%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Disertori%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=GISSI-AF%20Investigators%5BCorporate%20Author%5D
http://www.ncbi.nlm.nih.gov/pubmed/20964739
http://www.ncbi.nlm.nih.gov/pubmed?term=Lea%20J%5BAuthor%5D&cauthor=true&cauthor_uid=15851648
http://www.ncbi.nlm.nih.gov/pubmed?term=Greene%20T%5BAuthor%5D&cauthor=true&cauthor_uid=15851648
http://www.ncbi.nlm.nih.gov/pubmed?term=Hebert%20L%5BAuthor%5D&cauthor=true&cauthor_uid=15851648
http://www.ncbi.nlm.nih.gov/pubmed?term=Lipkowitz%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15851648
http://www.ncbi.nlm.nih.gov/pubmed?term=Massry%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15851648
http://www.ncbi.nlm.nih.gov/pubmed?term=Middleton%20J%5BAuthor%5D&cauthor=true&cauthor_uid=15851648
http://www.ncbi.nlm.nih.gov/pubmed?term=Rostand%20SG%5BAuthor%5D&cauthor=true&cauthor_uid=15851648
http://www.ncbi.nlm.nih.gov/pubmed?term=Miller%20E%5BAuthor%5D&cauthor=true&cauthor_uid=15851648
http://www.ncbi.nlm.nih.gov/pubmed?term=Miller%20E%5BAuthor%5D&cauthor=true&cauthor_uid=15851648
http://www.ncbi.nlm.nih.gov/pubmed?term=Smith%20W%5BAuthor%5D&cauthor=true&cauthor_uid=15851648
http://www.ncbi.nlm.nih.gov/pubmed?term=Bakris%20GL%5BAuthor%5D&cauthor=true&cauthor_uid=15851648
http://www.ncbi.nlm.nih.gov/pubmed/15851648
http://www.ncbi.nlm.nih.gov/pubmed/15851648
http://www.ncbi.nlm.nih.gov/pubmed?term=Lepailleur-Enouf%20D%5BAuthor%5D&cauthor=true&cauthor_uid=10775140
http://www.ncbi.nlm.nih.gov/pubmed?term=Valdenaire%20O%5BAuthor%5D&cauthor=true&cauthor_uid=10775140
http://www.ncbi.nlm.nih.gov/pubmed?term=Philippe%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10775140
http://www.ncbi.nlm.nih.gov/pubmed?term=Jandrot-Perrus%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10775140
http://www.ncbi.nlm.nih.gov/pubmed?term=Michel%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=10775140
http://www.ncbi.nlm.nih.gov/pubmed/10775140
http://www.ncbi.nlm.nih.gov/pubmed/10775140
http://www.ncbi.nlm.nih.gov/pubmed?term=Li%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=8039842
http://www.ncbi.nlm.nih.gov/pubmed?term=Larivi%C3%A8re%20R%5BAuthor%5D&cauthor=true&cauthor_uid=8039842
http://www.ncbi.nlm.nih.gov/pubmed?term=Schiffrin%20EL%5BAuthor%5D&cauthor=true&cauthor_uid=8039842
http://www.ncbi.nlm.nih.gov/pubmed/?term=Effect+of+a+nonselective+endothelin+antagonist+on+vascular+remodeling+in+deoxycorticosterone+acetate-salt+hypertensive+rats.+Evidence+for+a+role+of+endothelin+in+vascular+hypertrophy.
http://www.ncbi.nlm.nih.gov/pubmed?term=Lilitkarntakul%20P%5BAuthor%5D&cauthor=true&cauthor_uid=21376323
http://www.ncbi.nlm.nih.gov/pubmed?term=Dhaun%20N%5BAuthor%5D&cauthor=true&cauthor_uid=21376323
http://www.ncbi.nlm.nih.gov/pubmed?term=Melville%20V%5BAuthor%5D&cauthor=true&cauthor_uid=21376323
http://www.ncbi.nlm.nih.gov/pubmed?term=Blackwell%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21376323
http://www.ncbi.nlm.nih.gov/pubmed?term=Talwar%20DK%5BAuthor%5D&cauthor=true&cauthor_uid=21376323
http://www.ncbi.nlm.nih.gov/pubmed?term=Liebman%20B%5BAuthor%5D&cauthor=true&cauthor_uid=21376323
http://www.ncbi.nlm.nih.gov/pubmed?term=Asai%20T%5BAuthor%5D&cauthor=true&cauthor_uid=21376323
http://www.ncbi.nlm.nih.gov/pubmed?term=Asai%20T%5BAuthor%5D&cauthor=true&cauthor_uid=21376323
http://www.ncbi.nlm.nih.gov/pubmed?term=Pollock%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21376323
http://www.ncbi.nlm.nih.gov/pubmed?term=Goddard%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21376323
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=21376323
http://www.ncbi.nlm.nih.gov/pubmed/21376323
http://www.ncbi.nlm.nih.gov/pubmed?term=Lippincott%20J%5BAuthor%5D&cauthor=true&cauthor_uid=9918655
http://www.ncbi.nlm.nih.gov/pubmed?term=Apostol%20I%5BAuthor%5D&cauthor=true&cauthor_uid=9918655
http://www.ncbi.nlm.nih.gov/pubmed/9918655


 

238 

 

Loo JA, Edmonds CG, Udseth HR, Smith RD. (1990) Effect of reducing disulfide-

containing proteins on electrospray ionization mass spectra. Anal Chem. 62(7):693-

8. 

Louis A, Cleland JG, Crabbe S, Ford S, Thackray S, Houghton T, Clark A. (2001) 

Clinical Trials Update: CAPRICORN, COPERNICUS, MIRACLE, STAF, RITZ-

2, RECOVER and RENAISSANCE and cachexia and cholesterol in heart failure. 

Highlights of the Scientific Sessions of the American College of Cardiology, 2001. 

Eur J Heart Fail. 3(3):381-7. 

Love MP, Ferro CJ, Haynes WG, Plumpton C, Davenport AP, Webb DJ, McMurray JJ. 

(2000) Endothelin receptor antagonism in patients with chronic heart failure. 

Cardiovasc Res. 47(1):166-72. 

Lowenstein CJ, Morrell CN, Yamakuchi M. (2005) Regulation of Weibel-Palade body 

exocytosis. Trends Cardiovasc Med. 15(8):302-8. 

Lummis SC, Beene DL, Lee LW, Lester HA, Broadhurst RW, Dougherty DA. (2005) 

Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion 

channel. Nature. 438(7065):248-52. 

Lüscher TF, Enseleit F, Pacher R, Mitrovic V, Schulze MR, Willenbrock R, Dietz R, 

Rousson V, Hürlimann D, Philipp S, Notter T, Noll G, Ruschitzka F; Heart Failure 

ET(A) Receptor Blockade Trial. (2002) Hemodynamic and neurohumoral effects of 

selective endothelin A (ET(A)) receptor blockade in chronic heart failure: the 

Heart Failure ET(A) Receptor Blockade Trial (HEAT). Circulation. 106(21):2666-

72. 

Lüscher TF, Yang Z, Tschudi M, von Segesser L, Stulz P, Boulanger C, Siebenmann R, 

Turina M, Bühler FR. (1990) Interaction between endothelin-1 and endothelium-

derived relaxing factor in human arteries and veins. Circ Res. 66(4):1088-94. 

Macarthur H, Warner TD, Wood EG, Corder R, Vane JR. (1994) Endothelin-1 release 

from endothelial cells in culture is elevated both acutely and chronically by short 

periods of mechanical stretch. Biochem Biophys Res Commun. 200(1):395-400. 

Maguire JJ. and Davenport AP. (1995) ETA receptor-mediated constrictor responses 

to endothelin peptides in human blood vessels in vitro. Br J Pharmacol. 15(1):191-

7. 

Maguire JJ. And Davenport AP. (1998) Increased response to big endothelin-1 in 

atherosclerotic human coronary artery: functional evidence for up-regulation of 

endothelin-converting enzyme activity in disease. Br J Pharmacol. 125:238–240. 

Maguire JJ. and Davenport AP. (2004) Alternative pathway to endothelin-converting 

enzyme for the synthesis of endothelin in human blood vessels. J Cardiovasc 

Pharmacol. 44 Suppl 1:S27-9. 

Maier C, Clodi M, Neuhold S, Resl M, Elhenicky M, Prager R, Moertl D, Strunk G, 

Luger A, Struck J, Pacher R, Hülsmann M. (2009) Endothelial markers may link 

kidney function to cardiovascular events in type 2 diabetes. Diabetes Care. 

32(10):1890-5.  

http://www.ncbi.nlm.nih.gov/pubmed?term=Loo%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=2327585
http://www.ncbi.nlm.nih.gov/pubmed?term=Edmonds%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=2327585
http://www.ncbi.nlm.nih.gov/pubmed?term=Udseth%20HR%5BAuthor%5D&cauthor=true&cauthor_uid=2327585
http://www.ncbi.nlm.nih.gov/pubmed?term=Smith%20RD%5BAuthor%5D&cauthor=true&cauthor_uid=2327585
http://www.ncbi.nlm.nih.gov/pubmed/?term=Loo+JA%2C+Edmonds+CG%2C+Udseth+HR%2C+Smith+RD.+Anal+Chem+1990%3B62%3A693%E2%80%938.
http://www.ncbi.nlm.nih.gov/pubmed?term=Louis%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11378012
http://www.ncbi.nlm.nih.gov/pubmed?term=Cleland%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=11378012
http://www.ncbi.nlm.nih.gov/pubmed?term=Crabbe%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11378012
http://www.ncbi.nlm.nih.gov/pubmed?term=Ford%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11378012
http://www.ncbi.nlm.nih.gov/pubmed?term=Thackray%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11378012
http://www.ncbi.nlm.nih.gov/pubmed?term=Houghton%20T%5BAuthor%5D&cauthor=true&cauthor_uid=11378012
http://www.ncbi.nlm.nih.gov/pubmed?term=Clark%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11378012
http://www.ncbi.nlm.nih.gov/pubmed/?term=Clinical+trials+update%3A+CAPRICORN%2C+COPERNICUS%2C+MIRACLE%2C+STAF%2C+RITZ-2%2C+RECOVER+and+RENAISSANCE+and+cachexia+and+cholesterol+in+heart+failure.+Highlights+of+the+scientific+sessions
http://www.ncbi.nlm.nih.gov/pubmed?term=Love%20MP%5BAuthor%5D&cauthor=true&cauthor_uid=10869543
http://www.ncbi.nlm.nih.gov/pubmed?term=Ferro%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=10869543
http://www.ncbi.nlm.nih.gov/pubmed?term=Haynes%20WG%5BAuthor%5D&cauthor=true&cauthor_uid=10869543
http://www.ncbi.nlm.nih.gov/pubmed?term=Plumpton%20C%5BAuthor%5D&cauthor=true&cauthor_uid=10869543
http://www.ncbi.nlm.nih.gov/pubmed?term=Davenport%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=10869543
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=10869543
http://www.ncbi.nlm.nih.gov/pubmed?term=McMurray%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=10869543
http://www.ncbi.nlm.nih.gov/pubmed/10869543
http://www.ncbi.nlm.nih.gov/pubmed?term=Lowenstein%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=16297768
http://www.ncbi.nlm.nih.gov/pubmed?term=Morrell%20CN%5BAuthor%5D&cauthor=true&cauthor_uid=16297768
http://www.ncbi.nlm.nih.gov/pubmed?term=Yamakuchi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16297768
http://www.ncbi.nlm.nih.gov/pubmed/16297768
http://www.ncbi.nlm.nih.gov/pubmed?term=Lummis%20SC%5BAuthor%5D&cauthor=true&cauthor_uid=16281040
http://www.ncbi.nlm.nih.gov/pubmed?term=Beene%20DL%5BAuthor%5D&cauthor=true&cauthor_uid=16281040
http://www.ncbi.nlm.nih.gov/pubmed?term=Lee%20LW%5BAuthor%5D&cauthor=true&cauthor_uid=16281040
http://www.ncbi.nlm.nih.gov/pubmed?term=Lester%20HA%5BAuthor%5D&cauthor=true&cauthor_uid=16281040
http://www.ncbi.nlm.nih.gov/pubmed?term=Broadhurst%20RW%5BAuthor%5D&cauthor=true&cauthor_uid=16281040
http://www.ncbi.nlm.nih.gov/pubmed?term=Dougherty%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=16281040
http://www.ncbi.nlm.nih.gov/pubmed?term=Cis%E2%80%93trans%20isomerization%20at%20a%20proline%20opens%20the%20pore%20of%20a%20neurotransmitter-gated%20ion%20channel
http://www.ncbi.nlm.nih.gov/pubmed?term=L%C3%BCscher%20TF%5BAuthor%5D&cauthor=true&cauthor_uid=12438291
http://www.ncbi.nlm.nih.gov/pubmed?term=Enseleit%20F%5BAuthor%5D&cauthor=true&cauthor_uid=12438291
http://www.ncbi.nlm.nih.gov/pubmed?term=Pacher%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12438291
http://www.ncbi.nlm.nih.gov/pubmed?term=Mitrovic%20V%5BAuthor%5D&cauthor=true&cauthor_uid=12438291
http://www.ncbi.nlm.nih.gov/pubmed?term=Schulze%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=12438291
http://www.ncbi.nlm.nih.gov/pubmed?term=Willenbrock%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12438291
http://www.ncbi.nlm.nih.gov/pubmed?term=Dietz%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12438291
http://www.ncbi.nlm.nih.gov/pubmed?term=Rousson%20V%5BAuthor%5D&cauthor=true&cauthor_uid=12438291
http://www.ncbi.nlm.nih.gov/pubmed?term=H%C3%BCrlimann%20D%5BAuthor%5D&cauthor=true&cauthor_uid=12438291
http://www.ncbi.nlm.nih.gov/pubmed?term=Philipp%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12438291
http://www.ncbi.nlm.nih.gov/pubmed?term=Notter%20T%5BAuthor%5D&cauthor=true&cauthor_uid=12438291
http://www.ncbi.nlm.nih.gov/pubmed?term=Noll%20G%5BAuthor%5D&cauthor=true&cauthor_uid=12438291
http://www.ncbi.nlm.nih.gov/pubmed?term=Ruschitzka%20F%5BAuthor%5D&cauthor=true&cauthor_uid=12438291
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Heart%20Failure%20ET%28A%29%20Receptor%20Blockade%20Trial%22%5BCorporate%20Author%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Heart%20Failure%20ET%28A%29%20Receptor%20Blockade%20Trial%22%5BCorporate%20Author%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=L%C3%BCscher%20TF%5BAuthor%5D&cauthor=true&cauthor_uid=2180587
http://www.ncbi.nlm.nih.gov/pubmed?term=Yang%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=2180587
http://www.ncbi.nlm.nih.gov/pubmed?term=Tschudi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2180587
http://www.ncbi.nlm.nih.gov/pubmed?term=von%20Segesser%20L%5BAuthor%5D&cauthor=true&cauthor_uid=2180587
http://www.ncbi.nlm.nih.gov/pubmed?term=Stulz%20P%5BAuthor%5D&cauthor=true&cauthor_uid=2180587
http://www.ncbi.nlm.nih.gov/pubmed?term=Boulanger%20C%5BAuthor%5D&cauthor=true&cauthor_uid=2180587
http://www.ncbi.nlm.nih.gov/pubmed?term=Siebenmann%20R%5BAuthor%5D&cauthor=true&cauthor_uid=2180587
http://www.ncbi.nlm.nih.gov/pubmed?term=Turina%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2180587
http://www.ncbi.nlm.nih.gov/pubmed?term=B%C3%BChler%20FR%5BAuthor%5D&cauthor=true&cauthor_uid=2180587
http://www.ncbi.nlm.nih.gov/pubmed/2180587
http://www.ncbi.nlm.nih.gov/pubmed?term=Macarthur%20H%5BAuthor%5D&cauthor=true&cauthor_uid=8166711
http://www.ncbi.nlm.nih.gov/pubmed?term=Warner%20TD%5BAuthor%5D&cauthor=true&cauthor_uid=8166711
http://www.ncbi.nlm.nih.gov/pubmed?term=Wood%20EG%5BAuthor%5D&cauthor=true&cauthor_uid=8166711
http://www.ncbi.nlm.nih.gov/pubmed?term=Corder%20R%5BAuthor%5D&cauthor=true&cauthor_uid=8166711
http://www.ncbi.nlm.nih.gov/pubmed?term=Vane%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=8166711
http://www.ncbi.nlm.nih.gov/pubmed/?term=Macarthur+1994+endothelin
http://www.ncbi.nlm.nih.gov/pubmed?term=Maguire%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=7647976
http://www.ncbi.nlm.nih.gov/pubmed?term=Davenport%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=7647976
http://www.ncbi.nlm.nih.gov/pubmed/?term=ETA+receptors+mediate+the+constrictor+responses+to+endothelin+peptides+in+human+blood+vessels+in+vitro+maguire
http://www.ncbi.nlm.nih.gov/pubmed?term=Maguire%20J%5BAuthor%5D&cauthor=true&cauthor_uid=15838298
http://www.ncbi.nlm.nih.gov/pubmed?term=Davenport%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=15838298
http://www.ncbi.nlm.nih.gov/pubmed/15838298
http://www.ncbi.nlm.nih.gov/pubmed/15838298
http://www.ncbi.nlm.nih.gov/pubmed?term=Maier%20C%5BAuthor%5D&cauthor=true&cauthor_uid=19564455
http://www.ncbi.nlm.nih.gov/pubmed?term=Clodi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19564455
http://www.ncbi.nlm.nih.gov/pubmed?term=Neuhold%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19564455
http://www.ncbi.nlm.nih.gov/pubmed?term=Resl%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19564455
http://www.ncbi.nlm.nih.gov/pubmed?term=Elhenicky%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19564455
http://www.ncbi.nlm.nih.gov/pubmed?term=Prager%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19564455
http://www.ncbi.nlm.nih.gov/pubmed?term=Moertl%20D%5BAuthor%5D&cauthor=true&cauthor_uid=19564455
http://www.ncbi.nlm.nih.gov/pubmed?term=Strunk%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19564455
http://www.ncbi.nlm.nih.gov/pubmed?term=Luger%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19564455
http://www.ncbi.nlm.nih.gov/pubmed?term=Struck%20J%5BAuthor%5D&cauthor=true&cauthor_uid=19564455
http://www.ncbi.nlm.nih.gov/pubmed?term=Pacher%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19564455
http://www.ncbi.nlm.nih.gov/pubmed?term=H%C3%BClsmann%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19564455
http://www.ncbi.nlm.nih.gov/pubmed/?term=Maier++2009+endothelin


 

239 

 

Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, Omland T, 

Storrow AB, Abraham WT, Wu AH, Clopton P, Steg PG, Westheim A, Knudsen CW, 

Perez A, Kazanegra R, Herrmann HC, McCullough PA; Breathing Not Properly 

Multinational Study Investigators. (2002) Rapid measurement of B-type natriuretic 

peptide in the emergency diagnosis of heart failure. N Engl J Med. 347(3):161-7. 

Malek AM, Greene AL, Izumo S. (1993) Regulation of endothelin 1 gene by fluid 

shear stress is transcriptionally mediated and independent of protein kinase C and 

cAMP. Proc Natl Acad Sci U S A. 90(13):5999-6003. 

Malek AM, Zhang J, Jiang J, Alper SL, Izumo S. (1999) Endothelin-1 gene 

suppression by shear stress: pharmacological evaluation of the role of tyrosine 

kinase, intracellular calcium, cytoskeleton, and mechanosensitive channels. J Mol 

Cell Cardiol. 31(2):387-99. 

Maleknia SD. and Johnson R. (2011) Mass Spectrometry of Amino Acids and 

Proteins. In: Hughes AB. ed., Amino Acids, Peptides and Proteins in Organic 

Chemistry: Analysis and Function of Amino Acids and Peptides. Weinheim, Germany, 

Wiley-VCH Verlag GmbH & Co, pp. 1-50. 

Malfroy B, Kuang WJ, Seedburg PH, Mason AJ, and Schofield PR. (1988) Molecular 

cloning and amino acid sequence of human enkephalinase (neutral endopeptidase). 

FEBS Lett. 229: 206-210. 

Mann JF, Green D, Jamerson K, Ruilope LM, Kuranoff SJ, Littke T, Viberti G; 

ASCEND Study Group. (2010) Avosentan for overt diabetic nephropathy. J Am Soc 

Nephrol. 21(3):527-35. 

Marazziti D, Golini E, Gallo A, Lombardi MS, Matteoni R, Tocchini-Valentini GP. 

(1997) Cloning of GPR37, a gene located on chromosome 7 encoding a putative G-

protein-coupled peptide receptor, from a human frontal brain EST library. 
Genomics. 45(1):68-77. 

 

Markewitz BA, Farrukh IS, Chen Y, Li Y, Michael JR. (2001) Regulation of 

endothelin-1 synthesis in human pulmonary arterial smooth muscle cells. Effects 

of transforming growth factor-beta and hypoxia. Cardiovasc Res. 49(1):200-6. 

Marsen TA, Simonson MS, Dunn MJ. (1995) Thrombin induces the 

preproendothelin-1 gene in endothelial cells by a protein tyrosine kinase-linked 

mechanism. Circ Res. 76(6):987-95. 

Martin-Nizard F, Houssaini HS, Lestavel-Delattre S, Duriez P, Fruchart JC. (1991) 

Modified low density lipoproteins activate human macrophages to secrete 

immunoreactive endothelin. FEBS Lett. 293(1-2):127-30. 

Masson S, Latini R, Anand IS, Vago T, Angelici L, Barlera S, Missov ED, Clerico A, 

Tognoni G, Cohn JN; Val-HeFT Investigators. (2006) Direct comparison of B-type 

natriuretic peptide (BNP) and amino-terminal proBNP in a large population of 

patients with chronic and symptomatic heart failure: the Valsartan Heart Failure 

(Val-HeFT) data. Clin Chem. 52(8):1528-38. 

Masson S, Latini R, Carbonieri E, Moretti L, Rossi MG, Ciricugno S, Milani V, 

Marchioli R, Struck J, Bergmann A, Maggioni AP, Tognoni G, Tavazzi L; GISSI-HF 

http://www.ncbi.nlm.nih.gov/pubmed?term=Maisel%20AS%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Krishnaswamy%20P%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Nowak%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=McCord%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Hollander%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Duc%20P%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Omland%20T%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Storrow%20AB%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Abraham%20WT%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Wu%20AH%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Clopton%20P%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Steg%20PG%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Westheim%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Knudsen%20CW%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Perez%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Kazanegra%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Herrmann%20HC%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=McCullough%20PA%5BAuthor%5D&cauthor=true&cauthor_uid=12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=Breathing%20Not%20Properly%20Multinational%20Study%20Investigators%5BCorporate%20Author%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=Breathing%20Not%20Properly%20Multinational%20Study%20Investigators%5BCorporate%20Author%5D
http://www.ncbi.nlm.nih.gov/pubmed/12124404
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Malek%20AM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Greene%20AL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Izumo%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=Regulation%20of%20endothelin%201%20gene%20by%20fluid%20shear%20stress%20is%20transcriptionally%20mediated%20and%20independent%20of%20protein%20kinase%20C%20and%20cAMP
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Malek%20AM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zhang%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jiang%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Alper%20SL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Izumo%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/10093051
http://www.ncbi.nlm.nih.gov/pubmed/10093051
http://www.ncbi.nlm.nih.gov/pubmed?term=Marazziti%20D%5BAuthor%5D&cauthor=true&cauthor_uid=9339362
http://www.ncbi.nlm.nih.gov/pubmed?term=Golini%20E%5BAuthor%5D&cauthor=true&cauthor_uid=9339362
http://www.ncbi.nlm.nih.gov/pubmed?term=Gallo%20A%5BAuthor%5D&cauthor=true&cauthor_uid=9339362
http://www.ncbi.nlm.nih.gov/pubmed?term=Lombardi%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=9339362
http://www.ncbi.nlm.nih.gov/pubmed?term=Matteoni%20R%5BAuthor%5D&cauthor=true&cauthor_uid=9339362
http://www.ncbi.nlm.nih.gov/pubmed?term=Tocchini-Valentini%20GP%5BAuthor%5D&cauthor=true&cauthor_uid=9339362
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cloning+of+GPR37%2C+a+gene+located+on+chromosome+7+encoding+a+putative+G+protein+coupled+peptide+receptor%2C+from+a+human+frontal+brain+EST+library
http://www.ncbi.nlm.nih.gov/pubmed?term=Markewitz%20BA%5BAuthor%5D&cauthor=true&cauthor_uid=11121812
http://www.ncbi.nlm.nih.gov/pubmed?term=Farrukh%20IS%5BAuthor%5D&cauthor=true&cauthor_uid=11121812
http://www.ncbi.nlm.nih.gov/pubmed?term=Chen%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=11121812
http://www.ncbi.nlm.nih.gov/pubmed?term=Li%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=11121812
http://www.ncbi.nlm.nih.gov/pubmed?term=Michael%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=11121812
http://www.ncbi.nlm.nih.gov/pubmed/11121812
http://www.ncbi.nlm.nih.gov/pubmed?term=Martin-Nizard%20F%5BAuthor%5D&cauthor=true&cauthor_uid=1959644
http://www.ncbi.nlm.nih.gov/pubmed?term=Houssaini%20HS%5BAuthor%5D&cauthor=true&cauthor_uid=1959644
http://www.ncbi.nlm.nih.gov/pubmed?term=Lestavel-Delattre%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1959644
http://www.ncbi.nlm.nih.gov/pubmed?term=Duriez%20P%5BAuthor%5D&cauthor=true&cauthor_uid=1959644
http://www.ncbi.nlm.nih.gov/pubmed?term=Fruchart%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=1959644
http://www.ncbi.nlm.nih.gov/pubmed/?term=1991+Martin-Nizard
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Masson%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Latini%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Anand%20IS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Vago%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Angelici%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Barlera%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Missov%20ED%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Clerico%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tognoni%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cohn%20JN%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Val-HeFT%20Investigators%22%5BCorporate%20Author%5D
http://www.ncbi.nlm.nih.gov/pubmed/16777915
http://www.ncbi.nlm.nih.gov/pubmed?term=Masson%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=Latini%20R%5BAuthor%5D&cauthor=true&cauthor_uid=20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=Carbonieri%20E%5BAuthor%5D&cauthor=true&cauthor_uid=20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=Moretti%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=Rossi%20MG%5BAuthor%5D&cauthor=true&cauthor_uid=20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=Ciricugno%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=Milani%20V%5BAuthor%5D&cauthor=true&cauthor_uid=20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=Marchioli%20R%5BAuthor%5D&cauthor=true&cauthor_uid=20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=Struck%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=Bergmann%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=Maggioni%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=Tognoni%20G%5BAuthor%5D&cauthor=true&cauthor_uid=20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=Tavazzi%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=GISSI-HF%20Investigators%5BCorporate%20Author%5D


 

240 

 

Investigators. (2010) The predictive value of stable precursor fragments of 

vasoactive peptides in patients with chronic heart failure: data from the GISSI-

heart failure (GISSI-HF) trial. Eur J Heart Fail. 12(4):338-47. 

Matsumoto T, Yoshiyama S, Kobayashi T, Kamata K. (2004) Mechanisms underlying 

enhanced contractile response to endothelin-1 in diabetic rat basilar artery. 

Peptides. 25(11):1985-94. 

McCulloch KM, Docherty C, MacLean MR. (1998) Endothelin receptors mediating 

contraction of rat and human pulmonary resistance arteries: effect of chronic 

hypoxia in the rat. Br J Pharmacol. 123(8):1621-30. 

McMahon EG, Palomo MA, Moore WM, McDonald JF, Stern MK. (1991) 

Phosphoramidon blocks the pressor activity of porcine big endothelin-1-(1-39) in 

vivo and conversion of big endothelin-1-(1-39) to endothelin-1-(1-21) in vitro. Proc 

Natl Acad Sci U S A. 88(3):703-7. 

McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M et al; ESC Committee 

for Practice Guidelines. (2012) ESC guidelines for the diagnosis and treatment of 

acute and chronic heart failure 2012: The Task Force for the Diagnosis and 

Treatment of Acute and Chronic Heart Failure 2012 of the European Society of 

Cardiology. Developed in collaboration with the Heart Failure Association (HFA) 

of the ESC. Eur J Heart Fail. 14(8):803-69.   

McMurray JJ, Ray SG, Abdullah I, Dargie HJ, Morton JJ. (1992) Plasma endothelin in 

chronic heart failure. Circulation.  85(4):1374-9. 

Medzihradszky KF. (2005) Peptide sequence analysis. Methods Enzymol. 402:209-44. 

Mickley EJ, Gray GA, Webb DJ. (1997) Activation of endothelin ETA receptors 

masks the constrictor role of endothelin ETB receptors in rat isolated small 

mesenteric arteries. Br J Pharmacol. 120(7):1376-82. 

Minamino T, Kurihara H, Takahashi M, Shimada K, Maemura K, Oda H, Ishikawa T, 

Uchiyama T, Tanzawa K, Yazaki Y. (1997) Endothelin-converting enzyme 

expression in the rat vascular injury model and human coronary atherosclerosis. 

Circulation. 95(1):221-30. 

Mockridge JW, Kuc RE, Huskisson NS, Barker PJ, Davenport AP. (1998) 

Characterization of site-directed antisera against endothelin-converting enzymes. 

J Cardiovasc Pharmacol. Suppl 1:S35-7. 

Moncada S, Vane JR. (1979) Pharmacology and endogenous roles of prostaglandin 

endoperoxides, thromboxane A2 and prostacyclin. Pharmacol Rev. 30: 293–331. 

Moraes DL, Colucci WS, Givertz MM. (2000) Secondary pulmonary hypertension in 

chronic heart failure: the role of the endothelium in pathophysiology and 

management. Circulation. 102:1718-1723. 

Morawietz H, Talanow R, Szibor M, Rueckschloss U, Schubert A, Bartling B, Darmer 

D, Holtz J. (2000) Regulation of the endothelin system by shear stress in human 

endothelial cells. J Physiol. 525 Pt 3:761-70. 

http://www.ncbi.nlm.nih.gov/pubmed?term=GISSI-HF%20Investigators%5BCorporate%20Author%5D
http://www.ncbi.nlm.nih.gov/pubmed/20097683
http://www.ncbi.nlm.nih.gov/pubmed?term=Matsumoto%20T%5BAuthor%5D&cauthor=true&cauthor_uid=15501531
http://www.ncbi.nlm.nih.gov/pubmed?term=Yoshiyama%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15501531
http://www.ncbi.nlm.nih.gov/pubmed?term=Kobayashi%20T%5BAuthor%5D&cauthor=true&cauthor_uid=15501531
http://www.ncbi.nlm.nih.gov/pubmed?term=Kamata%20K%5BAuthor%5D&cauthor=true&cauthor_uid=15501531
http://www.ncbi.nlm.nih.gov/pubmed/?term=Matsumoto+2004+mechanism+underlying+enhanced+contractile+response+to+endothelin-1
http://www.ncbi.nlm.nih.gov/pubmed?term=McCulloch%20KM%5BAuthor%5D&cauthor=true&cauthor_uid=9605569
http://www.ncbi.nlm.nih.gov/pubmed?term=Docherty%20C%5BAuthor%5D&cauthor=true&cauthor_uid=9605569
http://www.ncbi.nlm.nih.gov/pubmed?term=MacLean%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=9605569
http://www.ncbi.nlm.nih.gov/pubmed/?term=McCulloch+1998+human+pulmonary+resistance+arteries
http://www.ncbi.nlm.nih.gov/pubmed/1992461
http://www.ncbi.nlm.nih.gov/pubmed/1992461
http://www.ncbi.nlm.nih.gov/pubmed/22828712
http://www.ncbi.nlm.nih.gov/pubmed/22828712
http://www.ncbi.nlm.nih.gov/pubmed/22828712
http://www.ncbi.nlm.nih.gov/pubmed/22828712
http://www.ncbi.nlm.nih.gov/pubmed/22828712
http://www.ncbi.nlm.nih.gov/pubmed?term=Medzihradszky%20KF%5BAuthor%5D&cauthor=true&cauthor_uid=16401511
http://www.ncbi.nlm.nih.gov/pubmed/16401511
http://www.ncbi.nlm.nih.gov/pubmed?term=Mickley%20EJ%5BAuthor%5D&cauthor=true&cauthor_uid=9105715
http://www.ncbi.nlm.nih.gov/pubmed?term=Gray%20GA%5BAuthor%5D&cauthor=true&cauthor_uid=9105715
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=9105715
http://www.ncbi.nlm.nih.gov/pubmed/?term=Activation+of+endothelin+ETA+receptors+masks+the+constrictor+role+of+endothelin+ETB+receptors+in+rat+isolated+small+mesenteric+arteries
http://www.ncbi.nlm.nih.gov/pubmed?term=Minamino%20T%5BAuthor%5D&cauthor=true&cauthor_uid=8994440
http://www.ncbi.nlm.nih.gov/pubmed?term=Kurihara%20H%5BAuthor%5D&cauthor=true&cauthor_uid=8994440
http://www.ncbi.nlm.nih.gov/pubmed?term=Takahashi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8994440
http://www.ncbi.nlm.nih.gov/pubmed?term=Shimada%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8994440
http://www.ncbi.nlm.nih.gov/pubmed?term=Maemura%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8994440
http://www.ncbi.nlm.nih.gov/pubmed?term=Oda%20H%5BAuthor%5D&cauthor=true&cauthor_uid=8994440
http://www.ncbi.nlm.nih.gov/pubmed?term=Ishikawa%20T%5BAuthor%5D&cauthor=true&cauthor_uid=8994440
http://www.ncbi.nlm.nih.gov/pubmed?term=Uchiyama%20T%5BAuthor%5D&cauthor=true&cauthor_uid=8994440
http://www.ncbi.nlm.nih.gov/pubmed?term=Tanzawa%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8994440
http://www.ncbi.nlm.nih.gov/pubmed?term=Yazaki%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=8994440
http://www.ncbi.nlm.nih.gov/pubmed/?term=Endothelin-converting+enzyme+expression+in+the+rat+vascular+injury+model+and+human+coronary+atherosclerosis
http://www.ncbi.nlm.nih.gov/pubmed?term=Mockridge%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=9595393
http://www.ncbi.nlm.nih.gov/pubmed?term=Kuc%20RE%5BAuthor%5D&cauthor=true&cauthor_uid=9595393
http://www.ncbi.nlm.nih.gov/pubmed?term=Huskisson%20NS%5BAuthor%5D&cauthor=true&cauthor_uid=9595393
http://www.ncbi.nlm.nih.gov/pubmed?term=Barker%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=9595393
http://www.ncbi.nlm.nih.gov/pubmed?term=Davenport%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=9595393
http://www.ncbi.nlm.nih.gov/pubmed/?term=characterisation+of+site-directed+antisera+against+endothelin+converting+enzymes
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Morawietz%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Talanow%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Szibor%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rueckschloss%20U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schubert%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bartling%20B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Darmer%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Darmer%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Holtz%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/10856127


 

241 

 

Morey AK, Razandi M, Pedram A, Hu RM, Prins BA, Levin ER. (1998) Oestrogen and 

progesterone inhibit the stimulated production of endothelin-1. Biochem J. 330 (Pt 

3):1097-105. 

Morin C, Asselin C, Boudreau F, Provencher PH. (1998) Transcriptional regulation 

of pre-pro-endothelin-1 gene by glucocorticoids in vascular smooth muscle cells. 

Biochem Biophys Res Commun. 244(2):583-7. 

Motte S, van Beneden R, Mottet J, Rondelet B, Mathieu M, Havaux X, Lause P, Clercx 

C, Ketelslegers JM, Naeije R, McEntee K. (2003) Early activation of cardiac and 

renal endothelin systems in experimental heart failure. Am J Physiol Heart Circ 

Physiol. 285(6):H2482-91. 

Murakoshi N, Miyauchi T, Kakinuma Y, Ohuchi T, Goto K, Yanagisawa M, Yamaguchi 

I. (2002) Vascular endothelin-B receptor system in vivo plays a favorable inhibitory 

role in vascular remodeling after injury revealed by endothelin-B receptor-

knockout mice. Circulation. 106(15):1991-8. 

Muralidharan-Chari V, Clancy JW, Sedgwick A, D'Souza-Schorey C. (2010) 

Microvesicles: mediators of extracellular communication during cancer 

progression. J Cell Sci. 123(Pt 10):1603-11.   

Murphy LJ, Corder R, Mallet AI, Turner AJ. (1994) Generation by the 

phosphoramidon-sensitive peptidases, endopeptidase-24.11 and thermolysin, of 

endothelin-1 and c-terminal fragment from big endothelin-1. Br J Pharmacol. 

113(1):137-42. 

Nakano J, Takizawa H, Ohtoshi T, Shoji S, Yamaguchi M, Ishii A, Yanagisawa M, Ito 

K. (1994) Endotoxin and pro-inflammatory cytokines stimulate endothelin-1 

expression and release by airway epithelial cells. Clin Exp Allergy. 24(4):330-6. 

Nakano A, Kishi F, Minami K, Wakabayashi H, Nakaya Y, Kido H. (1997) Selective 

conversion of big endothelins to tracheal smooth muscle-constricting 31-amino 

acid-length endothelins by chymase from human mast cells. J Immunol. 

159(4):1987-92. 

National Kidney Foundation. (2002) K/DOQI clinical practice guidelines for chronic 

kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 

39(Suppl): S1–266.  

Nelson JB, Chan-Tack K, Hedican SP, Magnuson SR, Opgenoth TJ, Bova GS, Simons 

J. W. (1996) Endothelin–1 and decreased endothelin B receptor expression in 

advanced prostate cancer. Cancer Res. 56:663–668. 

Neuhofer W. and Pittrow D. (2009) Endothelin receptor selectivity in chronic kidney 

disease: rationale and review of recent evidence. Eur J Clin Invest. 39 Suppl 2:50–

67. 

 

Nielsen HK, Löliger J, Hurrell RF. (1985) Reactions of proteins with oxidizing lipids. 

1. Analytical measurements of lipid oxidation and of amino acid losses in a whey 

protein-methyl linolenate model system. Br. J. Nutr. 53, 61-73. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Morey%20AK%5BAuthor%5D&cauthor=true&cauthor_uid=9494073
http://www.ncbi.nlm.nih.gov/pubmed?term=Razandi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9494073
http://www.ncbi.nlm.nih.gov/pubmed?term=Pedram%20A%5BAuthor%5D&cauthor=true&cauthor_uid=9494073
http://www.ncbi.nlm.nih.gov/pubmed?term=Hu%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=9494073
http://www.ncbi.nlm.nih.gov/pubmed?term=Prins%20BA%5BAuthor%5D&cauthor=true&cauthor_uid=9494073
http://www.ncbi.nlm.nih.gov/pubmed?term=Levin%20ER%5BAuthor%5D&cauthor=true&cauthor_uid=9494073
http://www.ncbi.nlm.nih.gov/pubmed/9494073
http://www.ncbi.nlm.nih.gov/pubmed?term=Morin%20C%5BAuthor%5D&cauthor=true&cauthor_uid=9514952
http://www.ncbi.nlm.nih.gov/pubmed?term=Asselin%20C%5BAuthor%5D&cauthor=true&cauthor_uid=9514952
http://www.ncbi.nlm.nih.gov/pubmed?term=Boudreau%20F%5BAuthor%5D&cauthor=true&cauthor_uid=9514952
http://www.ncbi.nlm.nih.gov/pubmed?term=Provencher%20PH%5BAuthor%5D&cauthor=true&cauthor_uid=9514952
http://www.ncbi.nlm.nih.gov/pubmed/9514952
http://www.ncbi.nlm.nih.gov/pubmed?term=Motte%20S%5BAuthor%5D&cauthor=true&cauthor_uid=14613913
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20Beneden%20R%5BAuthor%5D&cauthor=true&cauthor_uid=14613913
http://www.ncbi.nlm.nih.gov/pubmed?term=Mottet%20J%5BAuthor%5D&cauthor=true&cauthor_uid=14613913
http://www.ncbi.nlm.nih.gov/pubmed?term=Rondelet%20B%5BAuthor%5D&cauthor=true&cauthor_uid=14613913
http://www.ncbi.nlm.nih.gov/pubmed?term=Mathieu%20M%5BAuthor%5D&cauthor=true&cauthor_uid=14613913
http://www.ncbi.nlm.nih.gov/pubmed?term=Havaux%20X%5BAuthor%5D&cauthor=true&cauthor_uid=14613913
http://www.ncbi.nlm.nih.gov/pubmed?term=Lause%20P%5BAuthor%5D&cauthor=true&cauthor_uid=14613913
http://www.ncbi.nlm.nih.gov/pubmed?term=Clercx%20C%5BAuthor%5D&cauthor=true&cauthor_uid=14613913
http://www.ncbi.nlm.nih.gov/pubmed?term=Clercx%20C%5BAuthor%5D&cauthor=true&cauthor_uid=14613913
http://www.ncbi.nlm.nih.gov/pubmed?term=Ketelslegers%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=14613913
http://www.ncbi.nlm.nih.gov/pubmed?term=Naeije%20R%5BAuthor%5D&cauthor=true&cauthor_uid=14613913
http://www.ncbi.nlm.nih.gov/pubmed?term=McEntee%20K%5BAuthor%5D&cauthor=true&cauthor_uid=14613913
http://www.ncbi.nlm.nih.gov/pubmed/14613913
http://www.ncbi.nlm.nih.gov/pubmed/14613913
http://www.ncbi.nlm.nih.gov/pubmed?term=Murakoshi%20N%5BAuthor%5D&cauthor=true&cauthor_uid=12370225
http://www.ncbi.nlm.nih.gov/pubmed?term=Miyauchi%20T%5BAuthor%5D&cauthor=true&cauthor_uid=12370225
http://www.ncbi.nlm.nih.gov/pubmed?term=Kakinuma%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=12370225
http://www.ncbi.nlm.nih.gov/pubmed?term=Ohuchi%20T%5BAuthor%5D&cauthor=true&cauthor_uid=12370225
http://www.ncbi.nlm.nih.gov/pubmed?term=Goto%20K%5BAuthor%5D&cauthor=true&cauthor_uid=12370225
http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=12370225
http://www.ncbi.nlm.nih.gov/pubmed?term=Yamaguchi%20I%5BAuthor%5D&cauthor=true&cauthor_uid=12370225
http://www.ncbi.nlm.nih.gov/pubmed?term=Yamaguchi%20I%5BAuthor%5D&cauthor=true&cauthor_uid=12370225
http://www.ncbi.nlm.nih.gov/pubmed/?term=Murakoshi+N%2C+++++Miyauchi+T%2C+++++Kakinuma+Y%2C+++++Ohuchi+T%2C+++++Goto+K%2C+++++Yanagisawa+M%2C+++++et+al++.+Vascular+endothelin-B+receptor+system+in+vivo+plays+a+favorable+inhibitory+role+in+vascular+remodeling+after+injury+revealed+by+endothelin-B+receptor-knockout+mice.+Circulation+200
http://www.ncbi.nlm.nih.gov/pubmed?term=Muralidharan-Chari%20V%5BAuthor%5D&cauthor=true&cauthor_uid=20445011
http://www.ncbi.nlm.nih.gov/pubmed?term=Clancy%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=20445011
http://www.ncbi.nlm.nih.gov/pubmed?term=Sedgwick%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20445011
http://www.ncbi.nlm.nih.gov/pubmed?term=D%27Souza-Schorey%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20445011
http://www.ncbi.nlm.nih.gov/pubmed/7529108
http://www.ncbi.nlm.nih.gov/pubmed/7529108
http://www.ncbi.nlm.nih.gov/pubmed/7529108
http://www.ncbi.nlm.nih.gov/pubmed?term=Nakano%20J%5BAuthor%5D&cauthor=true&cauthor_uid=8039018
http://www.ncbi.nlm.nih.gov/pubmed?term=Takizawa%20H%5BAuthor%5D&cauthor=true&cauthor_uid=8039018
http://www.ncbi.nlm.nih.gov/pubmed?term=Ohtoshi%20T%5BAuthor%5D&cauthor=true&cauthor_uid=8039018
http://www.ncbi.nlm.nih.gov/pubmed?term=Shoji%20S%5BAuthor%5D&cauthor=true&cauthor_uid=8039018
http://www.ncbi.nlm.nih.gov/pubmed?term=Yamaguchi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8039018
http://www.ncbi.nlm.nih.gov/pubmed?term=Ishii%20A%5BAuthor%5D&cauthor=true&cauthor_uid=8039018
http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8039018
http://www.ncbi.nlm.nih.gov/pubmed?term=Ito%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8039018
http://www.ncbi.nlm.nih.gov/pubmed?term=Ito%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8039018
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nakano+A%5BAuthor%5D+1994+Human+bronchial+epithelial+cells
http://www.ncbi.nlm.nih.gov/pubmed/9257865
http://www.ncbi.nlm.nih.gov/pubmed/9257865
http://www.ncbi.nlm.nih.gov/pubmed/9257865
http://www.ncbi.nlm.nih.gov/pubmed?term=Nielsen%20HK%5BAuthor%5D&cauthor=true&cauthor_uid=3933547
http://www.ncbi.nlm.nih.gov/pubmed?term=L%C3%B6liger%20J%5BAuthor%5D&cauthor=true&cauthor_uid=3933547
http://www.ncbi.nlm.nih.gov/pubmed?term=Hurrell%20RF%5BAuthor%5D&cauthor=true&cauthor_uid=3933547


 

242 

 

Nunez DJ, Brown MJ, Davenport AP, Neylon CB, Schofield JP, Wyse RK. (1990) 

Endothelin-1 mRNA is widely expressed in porcine and human tissues. J Clin Invest. 

85(5):1537-41. 

Nussdorfer GG, Rossi GP, Belloni AS. (1997) The role of endothelins in the paracrine 

control of the secretion and growth of the adrenal cortex. Int Rev Cytol. 171:267-

308. 

 

Ohta K, Hirata Y, Shichiri M, Kanno K, Emori T, Tomita K, Marumo F. (1991) Urinary 

excretion of endothelin-1 in normal subjects and patients with renal disease. Kidney 

Int. 39(2):307-11. 

Oliver FJ, de la Rubia G, Feener EP, Lee ME, Loeken MR, Shiba T, Quertermous T, 

King GL. (1991) Stimulation of endothelin-1 gene expression by insulin in 

endothelial cells. J Biol Chem. 266(34):23251-6. 

Opgenorth TJ, Wessale JL, Dixon DB, Adler AL, Calzadilla SV, Padley RJ, Wu-Wong 

JR. (2000) Effects of endothelin receptor antagonists on the plasma immunoreactive 

endothelin-1 level. J Cardiovasc Pharmacol. 36(5 Suppl 1):S292-6. 

Orisio S, Benigni A, Bruzzi I, Corna D, Perico N, Zoja C, Benatti L, Remuzzi G. 

(1993) Renal endothelin gene expression is increased in remnant kidney and 

correlates with disease progression. Kidney Int. 43(2):354-8. 

 

Ozaki S, Ohwaki K, Ihara M, Ishikawa K, Yano M. (1997) Coexpression studies with 

endothelin receptor subtypes indicate the existence of intracellular cross-talk 

between ET(A) and ET(B) receptors. J Biochem. 121(3):440-7. 

 

Pacher R, Stanek B, Hülsmann M, Koller-Strametz J, Berger R, Schuller M, Hartter E, 

Ogris E, Frey B, Heinz G, Maurer G. (1996) Prognostic impact of big endothelin-1 

plasma concentrations compared with invasive hemodynamic evaluation in severe 

heart failure. J Am Coll Cardiol. 27: 633–641. 

Packer M, McMurray J, Massie BM, Caspi A, Charlon V, Cohen-Solal A, Kiowski 

W, Kostuk W, Krum H, Levine B, Rizzon P, Soler J, Swedberg K, Anderson S,Demets 

DL. (2005) Clinical effects of endothelin receptor antagonism with bosentan in 

patients with severe chronic heart failure: results of a pilot study. J Card Fail. 

11(1):12-20. 

Palmer MJ. (2009) Endothelin receptor antagonists: status and learning 20 years 

on. Prog Med Chem. 47:203-37.  

Panettieri RA Jr, Goldie RG, Rigby PJ, Eszterhas AJ, Hay DW (1996) Endothelin-1-

induced potentiation of human airway smooth muscle proliferation: an ETA 

receptor-mediated phenomenon. Br J Pharmacol. 118: 191-197.  

Papassotiriou J, Morgenthaler NG, Struck J, Alonso C, Bergmann A (2006) 

Immunoluminometric assay for measurement of the C-terminal endothelin-1 

precursor fragment in human plasma. Clin Chem 52: 1144–1151. 

Park JB. and Schiffrin EL. (2001) ET(A) receptor antagonist prevents blood pressure 

elevation and vascular remodeling in aldosterone-infused rats. Hypertension. 

37(6):1444-9. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Nunez%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=1692036
http://www.ncbi.nlm.nih.gov/pubmed?term=Brown%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=1692036
http://www.ncbi.nlm.nih.gov/pubmed?term=Davenport%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=1692036
http://www.ncbi.nlm.nih.gov/pubmed?term=Neylon%20CB%5BAuthor%5D&cauthor=true&cauthor_uid=1692036
http://www.ncbi.nlm.nih.gov/pubmed?term=Schofield%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=1692036
http://www.ncbi.nlm.nih.gov/pubmed?term=Wyse%20RK%5BAuthor%5D&cauthor=true&cauthor_uid=1692036
http://www.ncbi.nlm.nih.gov/pubmed/1692036
http://www.ncbi.nlm.nih.gov/pubmed?term=Nussdorfer%20GG%5BAuthor%5D&cauthor=true&cauthor_uid=9066130
http://www.ncbi.nlm.nih.gov/pubmed?term=Rossi%20GP%5BAuthor%5D&cauthor=true&cauthor_uid=9066130
http://www.ncbi.nlm.nih.gov/pubmed?term=Belloni%20AS%5BAuthor%5D&cauthor=true&cauthor_uid=9066130
http://www.ncbi.nlm.nih.gov/pubmed/9066130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed?term=Ohta%20K%5BAuthor%5D&cauthor=true&cauthor_uid=2002644
http://www.ncbi.nlm.nih.gov/pubmed?term=Hirata%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=2002644
http://www.ncbi.nlm.nih.gov/pubmed?term=Shichiri%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2002644
http://www.ncbi.nlm.nih.gov/pubmed?term=Kanno%20K%5BAuthor%5D&cauthor=true&cauthor_uid=2002644
http://www.ncbi.nlm.nih.gov/pubmed?term=Emori%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2002644
http://www.ncbi.nlm.nih.gov/pubmed?term=Tomita%20K%5BAuthor%5D&cauthor=true&cauthor_uid=2002644
http://www.ncbi.nlm.nih.gov/pubmed?term=Marumo%20F%5BAuthor%5D&cauthor=true&cauthor_uid=2002644
http://www.ncbi.nlm.nih.gov/pubmed/2002644
http://www.ncbi.nlm.nih.gov/pubmed/2002644
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Oliver%20FJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22de%20la%20Rubia%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Feener%20EP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lee%20ME%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Loeken%20MR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shiba%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Quertermous%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22King%20GL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/1744120
http://www.ncbi.nlm.nih.gov/pubmed?term=Opgenorth%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=11078402
http://www.ncbi.nlm.nih.gov/pubmed?term=Wessale%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=11078402
http://www.ncbi.nlm.nih.gov/pubmed?term=Dixon%20DB%5BAuthor%5D&cauthor=true&cauthor_uid=11078402
http://www.ncbi.nlm.nih.gov/pubmed?term=Adler%20AL%5BAuthor%5D&cauthor=true&cauthor_uid=11078402
http://www.ncbi.nlm.nih.gov/pubmed?term=Calzadilla%20SV%5BAuthor%5D&cauthor=true&cauthor_uid=11078402
http://www.ncbi.nlm.nih.gov/pubmed?term=Padley%20RJ%5BAuthor%5D&cauthor=true&cauthor_uid=11078402
http://www.ncbi.nlm.nih.gov/pubmed?term=Wu-Wong%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=11078402
http://www.ncbi.nlm.nih.gov/pubmed?term=Wu-Wong%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=11078402
http://www.ncbi.nlm.nih.gov/pubmed/11078402
http://www.ncbi.nlm.nih.gov/pubmed/8441230
http://www.ncbi.nlm.nih.gov/pubmed/8441230
http://www.ncbi.nlm.nih.gov/pubmed?term=Ozaki%20S%5BAuthor%5D&cauthor=true&cauthor_uid=9133612
http://www.ncbi.nlm.nih.gov/pubmed?term=Ohwaki%20K%5BAuthor%5D&cauthor=true&cauthor_uid=9133612
http://www.ncbi.nlm.nih.gov/pubmed?term=Ihara%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9133612
http://www.ncbi.nlm.nih.gov/pubmed?term=Ishikawa%20K%5BAuthor%5D&cauthor=true&cauthor_uid=9133612
http://www.ncbi.nlm.nih.gov/pubmed?term=Yano%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9133612
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ozaki+S%2C+Ohwaki+K%2C+Ihara+M%2C+et+al.+Coexpression+studies+with+endothelin+receptor+subtypes+indicate+the+existence+of+intracellular+cross-talk+between+ETA+and+ETB+receptors.
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pacher%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Stanek%20B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22H%C3%BClsmann%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Koller-Strametz%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Berger%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schuller%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hartter%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ogris%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Frey%20B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Heinz%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Maurer%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=Packer%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=McMurray%20J%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Massie%20BM%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Caspi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Charlon%20V%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Cohen-Solal%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Kiowski%20W%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Kiowski%20W%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Kostuk%20W%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Krum%20H%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Levine%20B%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Rizzon%20P%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Soler%20J%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Swedberg%20K%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Anderson%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Demets%20DL%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed?term=Demets%20DL%5BAuthor%5D&cauthor=true&cauthor_uid=15704058
http://www.ncbi.nlm.nih.gov/pubmed/15704058
http://www.ncbi.nlm.nih.gov/pubmed/19328292
http://www.ncbi.nlm.nih.gov/pubmed/19328292
http://www.ncbi.nlm.nih.gov/pubmed?term=Park%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=11408393
http://www.ncbi.nlm.nih.gov/pubmed?term=Schiffrin%20EL%5BAuthor%5D&cauthor=true&cauthor_uid=11408393
http://www.ncbi.nlm.nih.gov/pubmed/?term=ET%28A%29+receptor+antagonist+prevents+blood+pressure+elevation+and+vascular+remodeling+in+aldosterone-infused+rats


 

243 

 

 

Patel T, McKeage K. (2014) Macitentan: First Global Approval. Drugs. 74(1):127-

33. 

Patel JN, Jager A, Schalkwijk C, Corder R, Douthwaite JA, Yudkin JS, Coppack 

SW, Stehouwer CD. (2002) Effects of tumour necrosis factor-alpha in the human 

forearm: blood flow and endothelin-1 release. Clin Sci (Lond). 103(4):409-15.  

 

Perdivara I, Deterding LJ, Przybylski M, Tomer KB. (2010) Mass spectrometric 

identification of oxidative modifications of tryptophan residues in proteins: 

chemical artifact or post-translational modification? J Am Soc Mass Spectrom. 

21(7):1114-7. 

Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. (1999) Probability-based protein 

identification by searching sequence databases using mass spectrometry data. 

Electrophoresis. 20(18):3551-67. 

Pernow J, Franco-Cereceda A, Matran R, Lundberg JM: (1989) Effect of endothelin-1 

on regional vascular resistance in the pig. J Cardiovasc Pharmacol. 13[Suppl 16]: 

S205–S206. 

Plumpton C, Kalinka S, Martin RC, Horton JK, Davenport AP. (1994) Effects of 

phosphoramidon and pepstatin A on the secretion of endothelin-1 and big 

endothelin-1 by human umbilical vein endothelial cells: measurement by two-site 

enzyme-linked immunosorbent assays. Clin Sci (Lond). 87(2):245-51.   

Plumpton C, Haynes WG, Webb DJ, Davenport AP. (1995) Measurement of C-

terminal fragment of big endothelin-1: a novel method for assessing the generation 

of endothelin-1 in humans. J Cardiovasc Pharmacol.  26 Suppl 3:S34-6. 

Pönicke K, Vogelsang M, Heinroth M, Becker K, Zolk O, Böhm M, Zerkowski HR, 

Brodde OE. (1998) Endothelin receptors in the failing and nonfailing human heart. 

Circulation. 97(8):744-51. 

Porter KE. and Turner NA. (2009) Cardiac fibroblasts: at the heart of myocardial 

remodeling. Pharmacol Ther. 123(2):255-78.     

Potenza MA, Marasciulo FL, Chieppa DM, Brigiani GS, Formoso G, Quon MJ, 

Montagnani M. (2005) Insulin resistance in spontaneously hypertensive rats is 

associated with endothelial dysfunction characterized by imbalance between NO 

and ET-1 production. Am J Physiol Heart Circ Physiol. 289(2):H813-22.  

Pousset F, Isnard R, Lechat P, Kalotka H, Carayon A, Maistre G, Escolano S, Thomas 

D, Komajda M. (1997) Prognostic value of plasma endothelin-1 in patients with 

chronic heart failure. Eur Heart J. 18(2):254-8. 

Prasad SK, Dargie HJ, Smith GC, Barlow MM, Grothues F, Groenning BA, Cleland JG, 

Pennell DJ. (2006) Comparison of the dual receptor endothelin antagonist 

enrasentan with enalapril in asymptomatic left ventricular systolic dysfunction: a 

cardiovascular magnetic resonance study. Heart. 92(6):798-803.  

http://www.ncbi.nlm.nih.gov/pubmed?term=Patel%20T%5BAuthor%5D&cauthor=true&cauthor_uid=24297706
http://www.ncbi.nlm.nih.gov/pubmed?term=McKeage%20K%5BAuthor%5D&cauthor=true&cauthor_uid=24297706
http://www.ncbi.nlm.nih.gov/pubmed/?term=Macitentan%3A+First+Global+Approval
http://www.ncbi.nlm.nih.gov/pubmed?term=Patel%20JN%5BAuthor%5D&cauthor=true&cauthor_uid=12241541
http://www.ncbi.nlm.nih.gov/pubmed?term=Jager%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12241541
http://www.ncbi.nlm.nih.gov/pubmed?term=Schalkwijk%20C%5BAuthor%5D&cauthor=true&cauthor_uid=12241541
http://www.ncbi.nlm.nih.gov/pubmed?term=Corder%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12241541
http://www.ncbi.nlm.nih.gov/pubmed?term=Douthwaite%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=12241541
http://www.ncbi.nlm.nih.gov/pubmed?term=Yudkin%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=12241541
http://www.ncbi.nlm.nih.gov/pubmed?term=Coppack%20SW%5BAuthor%5D&cauthor=true&cauthor_uid=12241541
http://www.ncbi.nlm.nih.gov/pubmed?term=Coppack%20SW%5BAuthor%5D&cauthor=true&cauthor_uid=12241541
http://www.ncbi.nlm.nih.gov/pubmed?term=Stehouwer%20CD%5BAuthor%5D&cauthor=true&cauthor_uid=12241541
http://www.ncbi.nlm.nih.gov/pubmed/?term=patel+corder+endothelin
http://www.ncbi.nlm.nih.gov/pubmed?term=Perdivara%20I%5BAuthor%5D&cauthor=true&cauthor_uid=20219394
http://www.ncbi.nlm.nih.gov/pubmed?term=Deterding%20LJ%5BAuthor%5D&cauthor=true&cauthor_uid=20219394
http://www.ncbi.nlm.nih.gov/pubmed?term=Przybylski%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20219394
http://www.ncbi.nlm.nih.gov/pubmed?term=Tomer%20KB%5BAuthor%5D&cauthor=true&cauthor_uid=20219394
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mass+spectrometric+identi%EF%AC%81cation+of+oxidative+modi%EF%AC%81cations+of+tryptophan+residues+in+proteins%3A+chemical+artifact+or+posttranslational+modi%EF%AC%81cation%3F
http://www.ncbi.nlm.nih.gov/pubmed?term=Perkins%20DN%5BAuthor%5D&cauthor=true&cauthor_uid=10612281
http://www.ncbi.nlm.nih.gov/pubmed?term=Pappin%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=10612281
http://www.ncbi.nlm.nih.gov/pubmed?term=Creasy%20DM%5BAuthor%5D&cauthor=true&cauthor_uid=10612281
http://www.ncbi.nlm.nih.gov/pubmed?term=Cottrell%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=10612281
http://www.ncbi.nlm.nih.gov/pubmed?term=Probability-based%20protein%20identification%20by%20searching%20sequence%201999
http://www.ncbi.nlm.nih.gov/pubmed/7924171
http://www.ncbi.nlm.nih.gov/pubmed/7924171
http://www.ncbi.nlm.nih.gov/pubmed/7924171
http://www.ncbi.nlm.nih.gov/pubmed/7924171
http://www.ncbi.nlm.nih.gov/pubmed?term=Plumpton%20C%5BAuthor%5D&cauthor=true&cauthor_uid=8587408
http://www.ncbi.nlm.nih.gov/pubmed?term=Haynes%20WG%5BAuthor%5D&cauthor=true&cauthor_uid=8587408
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=8587408
http://www.ncbi.nlm.nih.gov/pubmed?term=Davenport%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=8587408
http://www.ncbi.nlm.nih.gov/pubmed/8587408
http://www.ncbi.nlm.nih.gov/pubmed?term=P%C3%B6nicke%20K%5BAuthor%5D&cauthor=true&cauthor_uid=9498537
http://www.ncbi.nlm.nih.gov/pubmed?term=Vogelsang%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9498537
http://www.ncbi.nlm.nih.gov/pubmed?term=Heinroth%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9498537
http://www.ncbi.nlm.nih.gov/pubmed?term=Becker%20K%5BAuthor%5D&cauthor=true&cauthor_uid=9498537
http://www.ncbi.nlm.nih.gov/pubmed?term=Zolk%20O%5BAuthor%5D&cauthor=true&cauthor_uid=9498537
http://www.ncbi.nlm.nih.gov/pubmed?term=B%C3%B6hm%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9498537
http://www.ncbi.nlm.nih.gov/pubmed?term=Zerkowski%20HR%5BAuthor%5D&cauthor=true&cauthor_uid=9498537
http://www.ncbi.nlm.nih.gov/pubmed?term=Brodde%20OE%5BAuthor%5D&cauthor=true&cauthor_uid=9498537
http://www.ncbi.nlm.nih.gov/pubmed/?term=Endothelin+receptors+in+the+failing+and+nonfailing+human+heart+1998
http://www.ncbi.nlm.nih.gov/pubmed?term=Porter%20KE%5BAuthor%5D&cauthor=true&cauthor_uid=19460403
http://www.ncbi.nlm.nih.gov/pubmed?term=Turner%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=19460403
http://www.ncbi.nlm.nih.gov/pubmed/19460403
http://www.ncbi.nlm.nih.gov/pubmed?term=Potenza%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=15792994
http://www.ncbi.nlm.nih.gov/pubmed?term=Marasciulo%20FL%5BAuthor%5D&cauthor=true&cauthor_uid=15792994
http://www.ncbi.nlm.nih.gov/pubmed?term=Chieppa%20DM%5BAuthor%5D&cauthor=true&cauthor_uid=15792994
http://www.ncbi.nlm.nih.gov/pubmed?term=Brigiani%20GS%5BAuthor%5D&cauthor=true&cauthor_uid=15792994
http://www.ncbi.nlm.nih.gov/pubmed?term=Formoso%20G%5BAuthor%5D&cauthor=true&cauthor_uid=15792994
http://www.ncbi.nlm.nih.gov/pubmed?term=Quon%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=15792994
http://www.ncbi.nlm.nih.gov/pubmed?term=Montagnani%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15792994
http://www.ncbi.nlm.nih.gov/pubmed/?term=Potenza+2005+insulin
http://www.ncbi.nlm.nih.gov/pubmed?term=Pousset%20F%5BAuthor%5D&cauthor=true&cauthor_uid=9043842
http://www.ncbi.nlm.nih.gov/pubmed?term=Isnard%20R%5BAuthor%5D&cauthor=true&cauthor_uid=9043842
http://www.ncbi.nlm.nih.gov/pubmed?term=Lechat%20P%5BAuthor%5D&cauthor=true&cauthor_uid=9043842
http://www.ncbi.nlm.nih.gov/pubmed?term=Kalotka%20H%5BAuthor%5D&cauthor=true&cauthor_uid=9043842
http://www.ncbi.nlm.nih.gov/pubmed?term=Carayon%20A%5BAuthor%5D&cauthor=true&cauthor_uid=9043842
http://www.ncbi.nlm.nih.gov/pubmed?term=Maistre%20G%5BAuthor%5D&cauthor=true&cauthor_uid=9043842
http://www.ncbi.nlm.nih.gov/pubmed?term=Escolano%20S%5BAuthor%5D&cauthor=true&cauthor_uid=9043842
http://www.ncbi.nlm.nih.gov/pubmed?term=Thomas%20D%5BAuthor%5D&cauthor=true&cauthor_uid=9043842
http://www.ncbi.nlm.nih.gov/pubmed?term=Thomas%20D%5BAuthor%5D&cauthor=true&cauthor_uid=9043842
http://www.ncbi.nlm.nih.gov/pubmed?term=Komajda%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9043842
http://www.ncbi.nlm.nih.gov/pubmed/?term=Prognostic+value+of+plasma+endothelin-1+in+patients+with+chronic+heart+failure.+Eur+Heart+J+1997%3B18%3A254-8


 

244 

 

Prins BA, Hu RM, Nazario B, Pedram A, Frank HJ, Weber MA, Levin ER. (1994) 

Prostaglandin E2 and prostacyclin inhibit the production and secretion of 

endothelin from cultured endothelial cells. J Biol Chem.  269(16):11938-44. 

Queiroz JA, Tomaz CT, Cabral JM. (2001) Hydrophobic interaction chromatography 

of proteins. J Biotechnol. 87(2):143 – 59. 

Rabelink TJ, Kaasjager KA, Boer P, Stroes EG, Braam B, Koomans HA. (1994) Effects 

of endothelin-1 on renal function in humans: implications for physiology and 

pathophysiology. Kidney Int. 46(2):376-81. 

Reriani M, Raichlin E, Prasad A, Mathew V, Pumper GM, Nelson RE, Lennon R, Rihal 

C, Lerman LO, Lerman A. (2010a) Long-term administration of endothelin receptor 

antagonist improves coronary endothelial function in patients with early 

atherosclerosis. Circulation. 122(10):958-66.  

Reriani MK, Lerman LO, Lerman A. (2010b) Endothelial function as a functional 

expression of cardiovascular risk factors. Biomark Med. 4(3):351-60. 

Resink TJ, Hahn AW, Scott-Burden T, Powell J, Weber E, Bühler FR. (1990) Inducible 

endothelin mRNA expression and peptide secretion in cultured human vascular 

smooth muscle cells. Biochem Biophys Res Commun. 168(3):1303-10. 

Richardson JS. and Richardson DC. (1989) Principles and patterns of protein 

conformation. In: Fasman GD ed., Prediction of Protein Structure and the Principles of 

Protein Conformation. New York, Plenum Press, pp. 1–98. 

 

Ridker PM, Brown NJ, Vaughan DE, Harrison DG, Mehta JL. (2004) Established and 

emerging plasma biomarkers in the prediction of first atherothrombotic events. 

Circulation. 109(25 Suppl 1):IV6-19. 

Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S, Braunwald E. (2000) Elevation of 

tumor necrosis factor-alpha and increased risk of recurrent coronary events after 

myocardial infarction. Circulation.101(18):2149-53. 

Ritthaler T, Scholz H, Ackermann M, Riegger G, Kurtz A, Kramer BK. (1995) Effects 

of endothelins on renin secretion from isolated mouse renal juxtaglomerular cells. 

Am J Physiol Renal Fluid Electrolyte Physiol. 268: F39–F45. 

Ritz E. and Wenzel R. (2010) Endothelin receptor antagonists in proteinuric renal 

disease: Every rose has its thorn. J Am Soc Nephrol. 21:392-394. 

Rockwell NC, Thorner JW (2004) The kindest cuts of all: crystal structures of Kex2 

and furin reveal secrets of precursor processing. Trends Biochem Sci. 29(2):80-7. 

Rodeheffer RJ, Lerman A, Heublein DM, Burnett JC Jr. (1992) Increased plasma 

concentrations of endothelin in congestive heart failure in humans. Mayo Clin 

Proc.  67(8):719-24. 

 

Rossi GP, Albertin G, Franchin E, Sacchetto A, Cesari M, Palù G, Pessina AC. (1995) 

Expression of the endothelin-converting enzyme gene in human tissues. Biochem 

Biophys Res Commun. 211(1):249-53. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Prins%20BA%5BAuthor%5D&cauthor=true&cauthor_uid=8163494
http://www.ncbi.nlm.nih.gov/pubmed?term=Hu%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=8163494
http://www.ncbi.nlm.nih.gov/pubmed?term=Nazario%20B%5BAuthor%5D&cauthor=true&cauthor_uid=8163494
http://www.ncbi.nlm.nih.gov/pubmed?term=Pedram%20A%5BAuthor%5D&cauthor=true&cauthor_uid=8163494
http://www.ncbi.nlm.nih.gov/pubmed?term=Frank%20HJ%5BAuthor%5D&cauthor=true&cauthor_uid=8163494
http://www.ncbi.nlm.nih.gov/pubmed?term=Weber%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=8163494
http://www.ncbi.nlm.nih.gov/pubmed?term=Levin%20ER%5BAuthor%5D&cauthor=true&cauthor_uid=8163494
http://www.ncbi.nlm.nih.gov/pubmed/8163494
http://www.ncbi.nlm.nih.gov/pubmed/7967349
http://www.ncbi.nlm.nih.gov/pubmed/7967349
http://www.ncbi.nlm.nih.gov/pubmed/7967349
http://www.ncbi.nlm.nih.gov/pubmed?term=Reriani%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20733096
http://www.ncbi.nlm.nih.gov/pubmed?term=Raichlin%20E%5BAuthor%5D&cauthor=true&cauthor_uid=20733096
http://www.ncbi.nlm.nih.gov/pubmed?term=Prasad%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20733096
http://www.ncbi.nlm.nih.gov/pubmed?term=Mathew%20V%5BAuthor%5D&cauthor=true&cauthor_uid=20733096
http://www.ncbi.nlm.nih.gov/pubmed?term=Pumper%20GM%5BAuthor%5D&cauthor=true&cauthor_uid=20733096
http://www.ncbi.nlm.nih.gov/pubmed?term=Nelson%20RE%5BAuthor%5D&cauthor=true&cauthor_uid=20733096
http://www.ncbi.nlm.nih.gov/pubmed?term=Lennon%20R%5BAuthor%5D&cauthor=true&cauthor_uid=20733096
http://www.ncbi.nlm.nih.gov/pubmed?term=Rihal%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20733096
http://www.ncbi.nlm.nih.gov/pubmed?term=Rihal%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20733096
http://www.ncbi.nlm.nih.gov/pubmed?term=Lerman%20LO%5BAuthor%5D&cauthor=true&cauthor_uid=20733096
http://www.ncbi.nlm.nih.gov/pubmed?term=Lerman%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20733096
http://www.ncbi.nlm.nih.gov/pubmed/20733096
http://www.ncbi.nlm.nih.gov/pubmed/20550469
http://www.ncbi.nlm.nih.gov/pubmed/20550469
http://www.ncbi.nlm.nih.gov/pubmed?term=Ridker%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=15226246
http://www.ncbi.nlm.nih.gov/pubmed?term=Brown%20NJ%5BAuthor%5D&cauthor=true&cauthor_uid=15226246
http://www.ncbi.nlm.nih.gov/pubmed?term=Vaughan%20DE%5BAuthor%5D&cauthor=true&cauthor_uid=15226246
http://www.ncbi.nlm.nih.gov/pubmed?term=Harrison%20DG%5BAuthor%5D&cauthor=true&cauthor_uid=15226246
http://www.ncbi.nlm.nih.gov/pubmed?term=Mehta%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=15226246
http://www.ncbi.nlm.nih.gov/pubmed/?term=Established+and+emerging+plasma+biomarkers+in+the+prediction+of+first+atherothrombotic+events.
http://www.ncbi.nlm.nih.gov/pubmed?term=Ridker%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=10801754
http://www.ncbi.nlm.nih.gov/pubmed?term=Rifai%20N%5BAuthor%5D&cauthor=true&cauthor_uid=10801754
http://www.ncbi.nlm.nih.gov/pubmed?term=Pfeffer%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10801754
http://www.ncbi.nlm.nih.gov/pubmed?term=Sacks%20F%5BAuthor%5D&cauthor=true&cauthor_uid=10801754
http://www.ncbi.nlm.nih.gov/pubmed?term=Lepage%20S%5BAuthor%5D&cauthor=true&cauthor_uid=10801754
http://www.ncbi.nlm.nih.gov/pubmed?term=Braunwald%20E%5BAuthor%5D&cauthor=true&cauthor_uid=10801754
http://www.ncbi.nlm.nih.gov/pubmed/?term=tumor+necrosis+factor-alpha+and+increased+risk+of+recurrent+coronar+2000
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rockwell%20NC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Thorner%20JW%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Trends%20Biochem%20Sci.');
http://www.ncbi.nlm.nih.gov/pubmed/1434909
http://www.ncbi.nlm.nih.gov/pubmed/1434909
http://www.ncbi.nlm.nih.gov/pubmed?term=Rossi%20GP%5BAuthor%5D&cauthor=true&cauthor_uid=7779092
http://www.ncbi.nlm.nih.gov/pubmed?term=Albertin%20G%5BAuthor%5D&cauthor=true&cauthor_uid=7779092
http://www.ncbi.nlm.nih.gov/pubmed?term=Franchin%20E%5BAuthor%5D&cauthor=true&cauthor_uid=7779092
http://www.ncbi.nlm.nih.gov/pubmed?term=Sacchetto%20A%5BAuthor%5D&cauthor=true&cauthor_uid=7779092
http://www.ncbi.nlm.nih.gov/pubmed?term=Cesari%20M%5BAuthor%5D&cauthor=true&cauthor_uid=7779092
http://www.ncbi.nlm.nih.gov/pubmed?term=Pal%C3%B9%20G%5BAuthor%5D&cauthor=true&cauthor_uid=7779092
http://www.ncbi.nlm.nih.gov/pubmed?term=Pessina%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=7779092
http://www.ncbi.nlm.nih.gov/pubmed/?term=rossi+endothelin+converting+enzyme+1995
http://www.ncbi.nlm.nih.gov/pubmed/?term=rossi+endothelin+converting+enzyme+1995


 

245 

 

Rossi GP, Cavallin M, Nussdorfer GG, Pessina AC. (2001) The endothelin-

aldosterone axis and cardiovascular diseases. J Cardiovasc Pharmacol. 38 Suppl 

2:S49-52. 

 

Rubanyi GM. and Polokoff MA. (1994) Endothelins: molecular biology, 

biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev. 

46:325-415. 

Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, Pulido T, Frost A, Roux 

S, Leconte I, Landzberg M, Simonneau G. (2002) Bosentan therapy for pulmonary 

arterial hypertension. N Engl J Med. 346(12):896-903. 

Rubinstein I, Gurbanov K, Hoffman A, Better OS, Winaver J. (1995) Differential effect 

of endothelin-1 on renal regional blood flow: role of nitric oxide. J Cardiovasc 

Pharmacol. 26 Suppl 3:S208-10. 

Ruef J, Moser M, Kubler W, Bode C. (2001) Induction of endothelin-1 expression by 

oxidative stress in vascular smooth muscle cells. Cardiovasc Pathol. 10:311–315. 

Ruetten H. and Thiemermann C. (1997) Endothelin-1 stimulates the biosynthesis of 

tumour necrosis factor in macrophages: ET-receptors, signal transduction and 

inhibition by dexamethasone. J Physiol Pharmacol. 48(4):675-88. 

Ruschitzka F, Shaw S, Gygi D, Noll G, Barton M, Lüscher TF. (1999) Endothelial 

dysfunction in acute renal failure: role of circulating and tissue endothelin-1. J Am 

Soc Nephrol. 10(5):953-62. 

Russell FD. and Davenport AP. (1996) Characterization of the binding of endothelin 

ETB selective ligands in human and rat heart. Br J Pharmacol. 119(4): 631–636. 

Russell FD. and Davenport AP. (1999) Secretory pathways in endothelin synthesis. 

Br J Pharmacol. 126(2):391-8. 

Russell FD, Skepper JN, Davenport AP. (1998) Human endothelial cell storage 

granules: a novel intracellular site for isoforms of the endothelin-converting 

enzyme. Circ Res. 83(3):314-21. 

Ryle AP. and Sanger F. (1955) Disulphide interchange reactions. Biochem. J. 

60(4):535-540. 

 

Sabatine MS, Morrow DA, de Lemos JA, Omland T, Sloan S, Jarolim P, Solomon SD, 

Pfeffer MA, Braunwald E. (2012) Evaluation of multiple biomarkers of 

cardiovascular stress for risk prediction and guiding medical therapy in patients 

with stable coronary disease. Circulation. 125(2):233-40.  

Saijonmaa O, Nyman T, Hohenthal U, Fyhrquist F. (1991) Endothelin-1 is expressed 

and released by a human endothelial hybrid cell line (EA.hy 926). Biochem Biophys 

Res Commun. 181(2):529-36. 

Sakai S, Miyauchi T, Kobayashi M, Yamaguchi I, Goto K, Sugishita Y. (1996) 

Inhibition of myocardial endothelin pathway improves long-term survival in heart 

failure. Nature. 384(6607):353-5. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Rossi%20GP%5BAuthor%5D&cauthor=true&cauthor_uid=11811378
http://www.ncbi.nlm.nih.gov/pubmed?term=Cavallin%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11811378
http://www.ncbi.nlm.nih.gov/pubmed?term=Nussdorfer%20GG%5BAuthor%5D&cauthor=true&cauthor_uid=11811378
http://www.ncbi.nlm.nih.gov/pubmed?term=Pessina%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=11811378
http://www.ncbi.nlm.nih.gov/pubmed/?term=The+endothelin%E2%80%93aldosterone+axis+and+cardiovascular+diseases
http://www.ncbi.nlm.nih.gov/pubmed/11907289
http://www.ncbi.nlm.nih.gov/pubmed/11907289
http://www.ncbi.nlm.nih.gov/pubmed?term=Rubinstein%20I%5BAuthor%5D&cauthor=true&cauthor_uid=8587364
http://www.ncbi.nlm.nih.gov/pubmed?term=Gurbanov%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8587364
http://www.ncbi.nlm.nih.gov/pubmed?term=Hoffman%20A%5BAuthor%5D&cauthor=true&cauthor_uid=8587364
http://www.ncbi.nlm.nih.gov/pubmed?term=Better%20OS%5BAuthor%5D&cauthor=true&cauthor_uid=8587364
http://www.ncbi.nlm.nih.gov/pubmed?term=Winaver%20J%5BAuthor%5D&cauthor=true&cauthor_uid=8587364
http://www.ncbi.nlm.nih.gov/pubmed/?term=Differential+Effect+of+Endothelin-1+on+Renal+Regional+Blood+Flow%3A+Role+of+Nitric+Oxide
http://www.ncbi.nlm.nih.gov/pubmed/?term=Differential+Effect+of+Endothelin-1+on+Renal+Regional+Blood+Flow%3A+Role+of+Nitric+Oxide
http://www.ncbi.nlm.nih.gov/pubmed?term=Ruetten%20H%5BAuthor%5D&cauthor=true&cauthor_uid=9444616
http://www.ncbi.nlm.nih.gov/pubmed?term=Thiemermann%20C%5BAuthor%5D&cauthor=true&cauthor_uid=9444616
http://www.ncbi.nlm.nih.gov/pubmed/?term=.+Endothelin-1+stimulates+the+biosynthesis+of+tumour+necrosis+factor+in+macrophages%3A+ET-receptors%2C+signal+transduction+and+inhibition+by+dexamethasone
http://www.ncbi.nlm.nih.gov/pubmed?term=Ruschitzka%20F%5BAuthor%5D&cauthor=true&cauthor_uid=10232680
http://www.ncbi.nlm.nih.gov/pubmed?term=Shaw%20S%5BAuthor%5D&cauthor=true&cauthor_uid=10232680
http://www.ncbi.nlm.nih.gov/pubmed?term=Gygi%20D%5BAuthor%5D&cauthor=true&cauthor_uid=10232680
http://www.ncbi.nlm.nih.gov/pubmed?term=Noll%20G%5BAuthor%5D&cauthor=true&cauthor_uid=10232680
http://www.ncbi.nlm.nih.gov/pubmed?term=Barton%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10232680
http://www.ncbi.nlm.nih.gov/pubmed?term=L%C3%BCscher%20TF%5BAuthor%5D&cauthor=true&cauthor_uid=10232680
http://www.ncbi.nlm.nih.gov/pubmed/?term=renal+failure+1999+Ruschitzka
http://www.ncbi.nlm.nih.gov/pubmed/?term=renal+failure+1999+Ruschitzka
http://www.ncbi.nlm.nih.gov/pubmed/10077230
http://www.ncbi.nlm.nih.gov/pubmed?term=Russell%20FD%5BAuthor%5D&cauthor=true&cauthor_uid=9710124
http://www.ncbi.nlm.nih.gov/pubmed?term=Skepper%20JN%5BAuthor%5D&cauthor=true&cauthor_uid=9710124
http://www.ncbi.nlm.nih.gov/pubmed?term=Davenport%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=9710124
http://www.ncbi.nlm.nih.gov/pubmed/?term=endothelial+cell+storage+granules.+A+novel+intracellular+site+for
http://www.ncbi.nlm.nih.gov/pubmed?term=Sabatine%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=22179538
http://www.ncbi.nlm.nih.gov/pubmed?term=Morrow%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=22179538
http://www.ncbi.nlm.nih.gov/pubmed?term=de%20Lemos%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=22179538
http://www.ncbi.nlm.nih.gov/pubmed?term=Omland%20T%5BAuthor%5D&cauthor=true&cauthor_uid=22179538
http://www.ncbi.nlm.nih.gov/pubmed?term=Sloan%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22179538
http://www.ncbi.nlm.nih.gov/pubmed?term=Jarolim%20P%5BAuthor%5D&cauthor=true&cauthor_uid=22179538
http://www.ncbi.nlm.nih.gov/pubmed?term=Solomon%20SD%5BAuthor%5D&cauthor=true&cauthor_uid=22179538
http://www.ncbi.nlm.nih.gov/pubmed?term=Pfeffer%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=22179538
http://www.ncbi.nlm.nih.gov/pubmed?term=Braunwald%20E%5BAuthor%5D&cauthor=true&cauthor_uid=22179538
http://www.ncbi.nlm.nih.gov/pubmed/22179538
http://www.ncbi.nlm.nih.gov/pubmed/1755833
http://www.ncbi.nlm.nih.gov/pubmed/1755833
http://www.ncbi.nlm.nih.gov/pubmed?term=Sakai%20S%5BAuthor%5D&cauthor=true&cauthor_uid=8934519
http://www.ncbi.nlm.nih.gov/pubmed?term=Miyauchi%20T%5BAuthor%5D&cauthor=true&cauthor_uid=8934519
http://www.ncbi.nlm.nih.gov/pubmed?term=Kobayashi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8934519
http://www.ncbi.nlm.nih.gov/pubmed?term=Yamaguchi%20I%5BAuthor%5D&cauthor=true&cauthor_uid=8934519
http://www.ncbi.nlm.nih.gov/pubmed?term=Goto%20K%5BAuthor%5D&cauthor=true&cauthor_uid=8934519
http://www.ncbi.nlm.nih.gov/pubmed?term=Sugishita%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=8934519
http://www.ncbi.nlm.nih.gov/pubmed/?term=inhibition+of+myocardiak+endothelin+pathway+heart+failure+goto


 

246 

 

Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T. (1990) 

Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin 

receptor. Nature. 348(6303):732-5. 

Saleh MA, Boesen EI, Pollock JS, Savin VJ, Pollock DM. (2010) Endothelin-1 

increases glomerular permeability and inflammation independent of blood 

pressure in the rat. Hypertension. 56(5):942-9. 

Sanger F. (1953) A disulphide interchange reaction. Nature. 171(4362):1025-6. 

 

Sansom CE, Hoang VM, Turner AJ. (1995) Molecular modeling of the active site of 

endothelin-converting enzyme. J Cardiovasc Pharmacol. 26 Suppl 3:S75-7. 

Sansom CE, Hoang MV, Turner AJ. (1998) Molecular modelling and site-directed 

mutagenesis of the active site of endothelin-converting enzyme. Protein Eng. 

11(12):1235-41. 

Sawamura T, Kasuya Y, Matsushita Y, Suzuki N, Shinmi O, Kishi N, Sugita Y, 

Yanagisawa M, Goto K, Masaki T, et al. (1991) Phosphoramidon inhibits the 

intracellular conversion of big endothelin-1 to endothelin-1 in cultured endothelial 

cells. Biochem Biophys Res Commun. 174(2):779-84.   

Schiffrin EL, Deng LY, Sventek P, Day R. (1997) Enhanced expression of endothelin-

1 gene in resistance arteris in severe human essential hypertension. J Hypertens. 

15:57-63. 

 

Schmetter L, Dallinger S, Bobr B, Selenko N, Eichler H-G, Woltz M. (1998) Systemic 

and renal effects of an ETA receptor subtype-specific antagonist in healthy 

subjects. Br J Pharmacol 124: 930–934. 

Schneider MP, Ge Y, Pollock DM, Pollock JS, Kohan DE. (2008) Collecting duct-

derived endothelin regulates arterial pressure and Na excretion via nitric oxide. 
Hypertension. 51(6):1605-10. 

 

Schweizer A, Valdenaire O, Nelbock P, Deuschle U, Edwards JBDM, Stumpf JG, 

Loffler BM. (1997) Human endothelin-converting enzyme (ECE-1): three isoforms 

with distinct subcellular localisations. Biochem. J. 328:871–877. 

Seissler J, Feghelm N, Then C, Meisinger C, Herder C, Koenig W, Peters A, Roden M, 

Lechner A, Kowall B, Rathmann W. (2012) Vasoregulatory peptides pro-endothelin-

1 and pro-adrenomedullin are associated with metabolic syndrome in the 

population-based KORA F4 study. Eur J Endocrinol. 167(6):847-53 

Selvais PL, Robert A, Ahn S, van Linden F, Ketelslegers JM, Pouleur H, Rousseau MF. 

(2000) Direct comparison between endothelin-1, N-terminal proatrial natriuretic 

factor, and brain natriuretic peptide as prognostic markers of survival in 

congestive heart failure. J Card Fail. 6(3):201-7. 

Serneri GG, Modesti PA, Cecioni I, Biagini D, Migliorini A, Costoli A, Colella A, 

Naldoni A, Paoletti P. (1995) Plasma endothelin and renal endothelin are two 

distinct systems involved in volume homeostasis. Am J Physiol. 268(5 Pt 2):H1829-

37. 

http://www.ncbi.nlm.nih.gov/pubmed/2175397
http://www.ncbi.nlm.nih.gov/pubmed/2175397
http://www.ncbi.nlm.nih.gov/pubmed/20823379
http://www.ncbi.nlm.nih.gov/pubmed/20823379
http://www.ncbi.nlm.nih.gov/pubmed/20823379
http://www.ncbi.nlm.nih.gov/pubmed?term=Sansom%20CE%5BAuthor%5D&cauthor=true&cauthor_uid=8587473
http://www.ncbi.nlm.nih.gov/pubmed?term=Hoang%20VM%5BAuthor%5D&cauthor=true&cauthor_uid=8587473
http://www.ncbi.nlm.nih.gov/pubmed?term=Turner%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=8587473
http://www.ncbi.nlm.nih.gov/pubmed?term=Sansom%20CE%5BAuthor%5D&cauthor=true&cauthor_uid=9930673
http://www.ncbi.nlm.nih.gov/pubmed?term=Hoang%20MV%5BAuthor%5D&cauthor=true&cauthor_uid=9930673
http://www.ncbi.nlm.nih.gov/pubmed?term=Turner%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=9930673
http://www.ncbi.nlm.nih.gov/pubmed/?term=sansom+1998+ece
http://www.ncbi.nlm.nih.gov/pubmed/?term=sansom+1998+ece
http://www.ncbi.nlm.nih.gov/pubmed?term=Sawamura%20T%5BAuthor%5D&cauthor=true&cauthor_uid=1993071
http://www.ncbi.nlm.nih.gov/pubmed?term=Kasuya%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=1993071
http://www.ncbi.nlm.nih.gov/pubmed?term=Matsushita%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=1993071
http://www.ncbi.nlm.nih.gov/pubmed?term=Suzuki%20N%5BAuthor%5D&cauthor=true&cauthor_uid=1993071
http://www.ncbi.nlm.nih.gov/pubmed?term=Shinmi%20O%5BAuthor%5D&cauthor=true&cauthor_uid=1993071
http://www.ncbi.nlm.nih.gov/pubmed?term=Kishi%20N%5BAuthor%5D&cauthor=true&cauthor_uid=1993071
http://www.ncbi.nlm.nih.gov/pubmed?term=Sugita%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=1993071
http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=1993071
http://www.ncbi.nlm.nih.gov/pubmed?term=Goto%20K%5BAuthor%5D&cauthor=true&cauthor_uid=1993071
http://www.ncbi.nlm.nih.gov/pubmed?term=Masaki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=1993071
http://www.ncbi.nlm.nih.gov/pubmed?term=Phosphoramidon%20inhibits%20the%20intracellular%20conversion%20of%20big%20endothelin-1%20to%20endothelin-1%20in%20cultured%20endothelial%20cells
http://www.ncbi.nlm.nih.gov/pubmed/18391099
http://www.ncbi.nlm.nih.gov/pubmed/18391099
http://www.ncbi.nlm.nih.gov/pubmed/23002189
http://www.ncbi.nlm.nih.gov/pubmed/23002189
http://www.ncbi.nlm.nih.gov/pubmed/23002189
http://www.ncbi.nlm.nih.gov/pubmed?term=Robert%20A%5BAuthor%5D&cauthor=true&cauthor_uid=10997745
http://www.ncbi.nlm.nih.gov/pubmed?term=Ahn%20S%5BAuthor%5D&cauthor=true&cauthor_uid=10997745
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20Linden%20F%5BAuthor%5D&cauthor=true&cauthor_uid=10997745
http://www.ncbi.nlm.nih.gov/pubmed?term=Ketelslegers%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=10997745
http://www.ncbi.nlm.nih.gov/pubmed?term=Pouleur%20H%5BAuthor%5D&cauthor=true&cauthor_uid=10997745
http://www.ncbi.nlm.nih.gov/pubmed?term=Rousseau%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=10997745
http://www.ncbi.nlm.nih.gov/pubmed/?term=Direct+comparison+between+endothelin-1%2C+N-terminal+proatrial+natriuretic+factor%2C+and+brain+natriuretic+peptide+as+prognostic+markers+of
http://www.ncbi.nlm.nih.gov/pubmed?term=Serneri%20GG%5BAuthor%5D&cauthor=true&cauthor_uid=7771534
http://www.ncbi.nlm.nih.gov/pubmed?term=Modesti%20PA%5BAuthor%5D&cauthor=true&cauthor_uid=7771534
http://www.ncbi.nlm.nih.gov/pubmed?term=Cecioni%20I%5BAuthor%5D&cauthor=true&cauthor_uid=7771534
http://www.ncbi.nlm.nih.gov/pubmed?term=Biagini%20D%5BAuthor%5D&cauthor=true&cauthor_uid=7771534
http://www.ncbi.nlm.nih.gov/pubmed?term=Migliorini%20A%5BAuthor%5D&cauthor=true&cauthor_uid=7771534
http://www.ncbi.nlm.nih.gov/pubmed?term=Costoli%20A%5BAuthor%5D&cauthor=true&cauthor_uid=7771534
http://www.ncbi.nlm.nih.gov/pubmed?term=Colella%20A%5BAuthor%5D&cauthor=true&cauthor_uid=7771534
http://www.ncbi.nlm.nih.gov/pubmed?term=Naldoni%20A%5BAuthor%5D&cauthor=true&cauthor_uid=7771534
http://www.ncbi.nlm.nih.gov/pubmed?term=Paoletti%20P%5BAuthor%5D&cauthor=true&cauthor_uid=7771534
http://www.ncbi.nlm.nih.gov/pubmed/7771534


 

247 

 

Sharefkin JB, Diamond SL, Eskin SG, McIntire LV, Dieffenbach CW. (1991) Fluid 

flow decreases preproendothelin mRNA levels and suppresses endothelin-1 peptide 

release in cultured human endothelial cells. J Vasc Surg. 14(1):1-9. 

Shichiri M, Hirata Y, Nakajima T, Ando K, Imai T, Yanagisawa M, Masaki T, Marumo 

F. (1991) Endothelin-1 is an autocrine/paracrine growth factor for human cancer 

cell lines. J Clin Invest. 87(5):1867-71. 

Sirviö ML, Metsärinne K, Saijonmaa O, Fyhrquist F. (1990) Tissue distribution and 

half-life of 125I-endothelin in the rat: importance of pulmonary clearance. 

BiochemBiophys. Res Commun. 167(3):1191-5. 

Sokolovsky M. (1994) Endothelins and sarafotoxins: receptor heterogeneity. Int J 

Biochem. 26(3):335-40.  

Sørensen SS, Madsen JK, Pedersen EB. (1994) Systemic and renal effect of 

intravenous infusion of endothelin-1 in healthy human volunteers. Am J Physiol. 

266(3 Pt 2):F411-8. 

Soubrier F, Hubert C, Testut P, Nadaud S, Alhenc-Gelas F, Corvol P. (1993) Molecular 

biology of the angiotensin I converting enzyme: I. Biochemistry and structure of 

the gene. J. Hypertens. 11(5):471-6. 

Spratt JCS, Goddard J, Patel N, Strachan FE, Rankin AJ, Webb DJ. (2001) Systemic 

ETA receptor antagonism with BQ-123 blocks ET-1 induced forearm 

vasoconstriction and decreases peripheral vascular resistance in healthy men. Br J 

Pharmacol 134: 648–654. 

 

Stanton P. (2004) Ion-exchange chromatography. Methods Mol Biol. 251:23-44. 

Stewart DJ, Cernacek P, Costello KB, Rouleau JL. (1992) Elevated endothelin-1 in 

heart failure and loss of normal response to postural change. 

Circulation.  85(2):510-7. 

 

Stow LR, Jacobs ME, Wingo CS, Cain BD. (2011) Endothelin-1 gene regulation. 

FASEB J. 25:16-28. 

 

Struck J, Morgenthaler NG, Bergmann A. (2005) Proteolytic processing pattern of the 

endothelin-1 precursor in vivo. Peptides. 26: 2482–2486. 

Stuart D, Chapman M, Rees S, Woodward S, Kohan DE. (2013) Myocardial, smooth 

muscle, nephron, and collecting duct gene targeting reveals the organ sites of 

endothelin A receptor antagonist fluid retention. J Pharmacol Exp Ther. 346(2):182-

9. 

 

Stuart D, Rees S, Woodward SK, Koesters R, Strait KA, Kohan DE. (2012) Disruption 

of the endothelin A receptor in the nephron causes mild fluid volume expansion. 

BMC Nephrol. 13:166.  

Sütsch G, Kiowski W, Yan XW, Hunziker P, Christen S, Strobel W, Kim JH, 

Rickenbacher P, Bertel O. (1998) Short-term oral endothelin-receptor antagonist 

therapy in conventionally treated patients with symptomatic severe chronic heart 

failure.  Circulation. 98(21):2262-8. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sharefkin%20JB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Diamond%20SL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Eskin%20SG%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22McIntire%20LV%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Dieffenbach%20CW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=human%20umbilical%20vein%20endothelium%20%28Sharefkin%20et%20al.%2C%201991
http://www.ncbi.nlm.nih.gov/pubmed?term=Shichiri%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2022753
http://www.ncbi.nlm.nih.gov/pubmed?term=Hirata%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=2022753
http://www.ncbi.nlm.nih.gov/pubmed?term=Nakajima%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2022753
http://www.ncbi.nlm.nih.gov/pubmed?term=Ando%20K%5BAuthor%5D&cauthor=true&cauthor_uid=2022753
http://www.ncbi.nlm.nih.gov/pubmed?term=Imai%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2022753
http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2022753
http://www.ncbi.nlm.nih.gov/pubmed?term=Masaki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2022753
http://www.ncbi.nlm.nih.gov/pubmed?term=Marumo%20F%5BAuthor%5D&cauthor=true&cauthor_uid=2022753
http://www.ncbi.nlm.nih.gov/pubmed?term=Marumo%20F%5BAuthor%5D&cauthor=true&cauthor_uid=2022753
http://www.ncbi.nlm.nih.gov/pubmed/2022753
http://www.ncbi.nlm.nih.gov/pubmed?term=Sirvi%C3%B6%20ML%5BAuthor%5D&cauthor=true&cauthor_uid=2182027
http://www.ncbi.nlm.nih.gov/pubmed?term=Mets%C3%A4rinne%20K%5BAuthor%5D&cauthor=true&cauthor_uid=2182027
http://www.ncbi.nlm.nih.gov/pubmed?term=Saijonmaa%20O%5BAuthor%5D&cauthor=true&cauthor_uid=2182027
http://www.ncbi.nlm.nih.gov/pubmed?term=Fyhrquist%20F%5BAuthor%5D&cauthor=true&cauthor_uid=2182027
http://www.ncbi.nlm.nih.gov/pubmed?term=tissue%20distribution%20and%20half%20life%20of%20endothelin-1%20%20importance%20of%20pulmonary%20circulation
http://www.ncbi.nlm.nih.gov/pubmed/8187930
http://www.ncbi.nlm.nih.gov/pubmed?term=S%C3%B8rensen%20SS%5BAuthor%5D&cauthor=true&cauthor_uid=8160789
http://www.ncbi.nlm.nih.gov/pubmed?term=Madsen%20JK%5BAuthor%5D&cauthor=true&cauthor_uid=8160789
http://www.ncbi.nlm.nih.gov/pubmed?term=Pedersen%20EB%5BAuthor%5D&cauthor=true&cauthor_uid=8160789
http://www.ncbi.nlm.nih.gov/pubmed/8160789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed?term=Soubrier%20F%5BAuthor%5D&cauthor=true&cauthor_uid=8390518
http://www.ncbi.nlm.nih.gov/pubmed?term=Hubert%20C%5BAuthor%5D&cauthor=true&cauthor_uid=8390518
http://www.ncbi.nlm.nih.gov/pubmed?term=Testut%20P%5BAuthor%5D&cauthor=true&cauthor_uid=8390518
http://www.ncbi.nlm.nih.gov/pubmed?term=Nadaud%20S%5BAuthor%5D&cauthor=true&cauthor_uid=8390518
http://www.ncbi.nlm.nih.gov/pubmed?term=Alhenc-Gelas%20F%5BAuthor%5D&cauthor=true&cauthor_uid=8390518
http://www.ncbi.nlm.nih.gov/pubmed?term=Corvol%20P%5BAuthor%5D&cauthor=true&cauthor_uid=8390518
http://www.ncbi.nlm.nih.gov/pubmed/20978980
http://www.ncbi.nlm.nih.gov/pubmed/1346510
http://www.ncbi.nlm.nih.gov/pubmed/1346510
http://www.ncbi.nlm.nih.gov/pubmed?term=Stuart%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23709116
http://www.ncbi.nlm.nih.gov/pubmed?term=Chapman%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23709116
http://www.ncbi.nlm.nih.gov/pubmed?term=Rees%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23709116
http://www.ncbi.nlm.nih.gov/pubmed?term=Woodward%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23709116
http://www.ncbi.nlm.nih.gov/pubmed?term=Kohan%20DE%5BAuthor%5D&cauthor=true&cauthor_uid=23709116
http://www.ncbi.nlm.nih.gov/pubmed/?term=the+organ+sites+of+endothelin+A+receptor+antagonist+fluid+retention
http://www.ncbi.nlm.nih.gov/pubmed?term=Stuart%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23217151
http://www.ncbi.nlm.nih.gov/pubmed?term=Rees%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23217151
http://www.ncbi.nlm.nih.gov/pubmed?term=Woodward%20SK%5BAuthor%5D&cauthor=true&cauthor_uid=23217151
http://www.ncbi.nlm.nih.gov/pubmed?term=Koesters%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23217151
http://www.ncbi.nlm.nih.gov/pubmed?term=Strait%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=23217151
http://www.ncbi.nlm.nih.gov/pubmed?term=Kohan%20DE%5BAuthor%5D&cauthor=true&cauthor_uid=23217151
http://www.ncbi.nlm.nih.gov/pubmed/?term=stuart+2012+endothelin
http://www.ncbi.nlm.nih.gov/pubmed?term=S%C3%BCtsch%20G%5BAuthor%5D&cauthor=true&cauthor_uid=9826312
http://www.ncbi.nlm.nih.gov/pubmed?term=Kiowski%20W%5BAuthor%5D&cauthor=true&cauthor_uid=9826312
http://www.ncbi.nlm.nih.gov/pubmed?term=Yan%20XW%5BAuthor%5D&cauthor=true&cauthor_uid=9826312
http://www.ncbi.nlm.nih.gov/pubmed?term=Hunziker%20P%5BAuthor%5D&cauthor=true&cauthor_uid=9826312
http://www.ncbi.nlm.nih.gov/pubmed?term=Christen%20S%5BAuthor%5D&cauthor=true&cauthor_uid=9826312
http://www.ncbi.nlm.nih.gov/pubmed?term=Strobel%20W%5BAuthor%5D&cauthor=true&cauthor_uid=9826312
http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=9826312
http://www.ncbi.nlm.nih.gov/pubmed?term=Rickenbacher%20P%5BAuthor%5D&cauthor=true&cauthor_uid=9826312
http://www.ncbi.nlm.nih.gov/pubmed?term=Bertel%20O%5BAuthor%5D&cauthor=true&cauthor_uid=9826312
http://www.ncbi.nlm.nih.gov/pubmed/?term=Short-Term+Oral+Endothelin-Receptor+Antagonist+Therapy+in+Conventionally+Treated+Patients+With+Symptomatic+Severe+Chronic+Heart+Failure


 

248 

 

Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A. (2000) 

Long-term follow-up of patients with mild coronary artery disease and endothelial 

dysfunction. Circulation. 101(9):948-54. 

Swiderek KM, Davis MT, Lee TD. (1998) The identification of peptide modifications 

derived from gel-separated proteins using electrospray triple quadrupole and ion 

trap analyses. Electrophoresis. 19(6):989-97. 

Tabb DL, Friedman DB, Ham AJ. (2006) Verification of automated peptide 

identifications from proteomic tandem mass spectra. Nat Protoc. 1(5):2213-22. 

Tabb DL, Huang Y, Wysocki VH, Yates JR III. (2004) Influence of basic residue 

content on fragment ion peak intensities in low-energy collision-induced 

dissociation spectra of peptides. Anal. Chem. 76:1243-1248.  

Takahashi M, Fukuda K, Shimada K, Barnes K, Turner AJ, Ikeda M, Koike H, 

Yamamoto Y, Tanzawa K. (1995) Localization of rat endothelin-converting enzyme 

to vascular endothelial cells and some secretory cells. Biochem J. 311 ( Pt 2):657-65. 

Takasaki C, Itoh Y, Onda H, Fujino M. (1992) Cloning and sequence analysis of a 

snake, Atractaspis engaddensis gene encoding sarafotoxin S6c. Biochem Biophys 

Res Commun. 189(3):1527-33. 

Tasaka K, Kitazumi K. (1994) The control of endothelin-1 secretion. Gen Pharmacol. 

25(6):1059-69. 

Tchekneva E, Lawrence ML, Meyrick B. (2000) Cell-specific differences in ET-1 

system in adjacent layers of main pulmonary artery. A new source of ET-1. Am J 

Physiol Lung Cell Mol Physiol. 278(4):L813-21. 

Teerlink JR, McMurray JJ, Bourge RC, Cleland JG, Cotter G, Jondeau G, Krum H, 

Metra M, O'Connor CM, Parker JD, Torre-Amione G, Van Veldhuisen DJ, Frey A, 

Rainisio M, Kobrin I; VERITAS Investigators. (2005) Tezosentan in patients with 

acute heart failure: design of the Value of Endothelin Receptor Inhibition with 

Tezosentan in Acute heart failure Study (VERITAS). Am Heart J. 150(1):46-53. 

Tirapelli CR, Casolari DA, Yogi A, Montezano AC, Tostes RC, Legros E, D'Orléans-

Juste P, de Oliveira AM. (2005) Functional characterization and expression of 

endothelin receptors in rat carotid artery: involvement of nitric oxide, a vasodilator 

prostanoid and the opening of K+ channels in ETB-induced relaxation. Br J 

Pharmacol. 146(6):903-12. 

Tomita K, Nonoguchi H, Terada Y, Marumo F. (1993) Effects of ET-1 on water and 

chloride transport in cortical collecting ducts of the rat. Am J Physiol. 264(4 Pt 

2):F690-6. 

Torchinsky YM. (1981) Properties of SH groups, in Sulfur in Proteins. In: Metzler 

DE. ed., Peroxiredoxin Systems: Structures and Functions. Oxford, England, Pergamon, 

pp. 52-53. 

Touyz RM. and Schiffrin EL. (2004) Reactive oxygen species in vascular biology: 

implications in hypertension. Histochem Cell Biol. 122:339–352. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Suwaidi%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=10704159
http://www.ncbi.nlm.nih.gov/pubmed?term=Hamasaki%20S%5BAuthor%5D&cauthor=true&cauthor_uid=10704159
http://www.ncbi.nlm.nih.gov/pubmed?term=Higano%20ST%5BAuthor%5D&cauthor=true&cauthor_uid=10704159
http://www.ncbi.nlm.nih.gov/pubmed?term=Nishimura%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=10704159
http://www.ncbi.nlm.nih.gov/pubmed?term=Holmes%20DR%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=10704159
http://www.ncbi.nlm.nih.gov/pubmed?term=Lerman%20A%5BAuthor%5D&cauthor=true&cauthor_uid=10704159
http://www.ncbi.nlm.nih.gov/pubmed/10704159/
http://www.ncbi.nlm.nih.gov/pubmed?term=Swiderek%20KM%5BAuthor%5D&cauthor=true&cauthor_uid=9638945
http://www.ncbi.nlm.nih.gov/pubmed?term=Davis%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=9638945
http://www.ncbi.nlm.nih.gov/pubmed?term=Lee%20TD%5BAuthor%5D&cauthor=true&cauthor_uid=9638945
http://www.ncbi.nlm.nih.gov/pubmed/?term=The+identi%EF%AC%81cation+of+peptide+modi%EF%AC%81cations+derived+from+gel-separated+proteins+using+electrospray+triple+quadrupole+and+ion+trap+analyses.
http://www.ncbi.nlm.nih.gov/pubmed/17406459
http://www.ncbi.nlm.nih.gov/pubmed/17406459
http://www.ncbi.nlm.nih.gov/pubmed?term=Takahashi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=7487910
http://www.ncbi.nlm.nih.gov/pubmed?term=Fukuda%20K%5BAuthor%5D&cauthor=true&cauthor_uid=7487910
http://www.ncbi.nlm.nih.gov/pubmed?term=Shimada%20K%5BAuthor%5D&cauthor=true&cauthor_uid=7487910
http://www.ncbi.nlm.nih.gov/pubmed?term=Barnes%20K%5BAuthor%5D&cauthor=true&cauthor_uid=7487910
http://www.ncbi.nlm.nih.gov/pubmed?term=Turner%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=7487910
http://www.ncbi.nlm.nih.gov/pubmed?term=Ikeda%20M%5BAuthor%5D&cauthor=true&cauthor_uid=7487910
http://www.ncbi.nlm.nih.gov/pubmed?term=Koike%20H%5BAuthor%5D&cauthor=true&cauthor_uid=7487910
http://www.ncbi.nlm.nih.gov/pubmed?term=Yamamoto%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=7487910
http://www.ncbi.nlm.nih.gov/pubmed?term=Tanzawa%20K%5BAuthor%5D&cauthor=true&cauthor_uid=7487910
http://www.ncbi.nlm.nih.gov/pubmed/7487910
http://www.ncbi.nlm.nih.gov/pubmed/1339278
http://www.ncbi.nlm.nih.gov/pubmed/1339278
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tasaka%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kitazumi%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/7875527
http://www.ncbi.nlm.nih.gov/pubmed?term=Tchekneva%20E%5BAuthor%5D&cauthor=true&cauthor_uid=10749759
http://www.ncbi.nlm.nih.gov/pubmed?term=Lawrence%20ML%5BAuthor%5D&cauthor=true&cauthor_uid=10749759
http://www.ncbi.nlm.nih.gov/pubmed?term=Meyrick%20B%5BAuthor%5D&cauthor=true&cauthor_uid=10749759
http://www.ncbi.nlm.nih.gov/pubmed/10749759
http://www.ncbi.nlm.nih.gov/pubmed/10749759
http://www.ncbi.nlm.nih.gov/pubmed?term=Teerlink%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=McMurray%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=Bourge%20RC%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=Cleland%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=Cotter%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=Jondeau%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=Krum%20H%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=Metra%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=O%27Connor%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=Parker%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=Torre-Amione%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=Van%20Veldhuisen%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=Frey%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=Rainisio%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=Kobrin%20I%5BAuthor%5D&cauthor=true&cauthor_uid=16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=VERITAS%20Investigators%5BCorporate%20Author%5D
http://www.ncbi.nlm.nih.gov/pubmed/16084150
http://www.ncbi.nlm.nih.gov/pubmed?term=Tirapelli%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=16151434
http://www.ncbi.nlm.nih.gov/pubmed?term=Casolari%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=16151434
http://www.ncbi.nlm.nih.gov/pubmed?term=Yogi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16151434
http://www.ncbi.nlm.nih.gov/pubmed?term=Montezano%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=16151434
http://www.ncbi.nlm.nih.gov/pubmed?term=Tostes%20RC%5BAuthor%5D&cauthor=true&cauthor_uid=16151434
http://www.ncbi.nlm.nih.gov/pubmed?term=Legros%20E%5BAuthor%5D&cauthor=true&cauthor_uid=16151434
http://www.ncbi.nlm.nih.gov/pubmed?term=D%27Orl%C3%A9ans-Juste%20P%5BAuthor%5D&cauthor=true&cauthor_uid=16151434
http://www.ncbi.nlm.nih.gov/pubmed?term=D%27Orl%C3%A9ans-Juste%20P%5BAuthor%5D&cauthor=true&cauthor_uid=16151434
http://www.ncbi.nlm.nih.gov/pubmed?term=de%20Oliveira%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=16151434
http://www.ncbi.nlm.nih.gov/pubmed/16151434
http://www.ncbi.nlm.nih.gov/pubmed/16151434
http://www.ncbi.nlm.nih.gov/pubmed?term=Tomita%20K%5BAuthor%5D&cauthor=true&cauthor_uid=7682789
http://www.ncbi.nlm.nih.gov/pubmed?term=Nonoguchi%20H%5BAuthor%5D&cauthor=true&cauthor_uid=7682789
http://www.ncbi.nlm.nih.gov/pubmed?term=Terada%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=7682789
http://www.ncbi.nlm.nih.gov/pubmed?term=Marumo%20F%5BAuthor%5D&cauthor=true&cauthor_uid=7682789
http://www.ncbi.nlm.nih.gov/pubmed/7682789?dopt=Abstract
http://books.google.co.uk/books?id=gHwEOH7vDmUC&pg=PA80&lpg=PA80&dq=Torchinsky+YM.+%281981%29+Properties+of+SH+groups,+in+Sulfur+in+Proteins.&source=bl&ots=Ev3GCkGv6C&sig=iV818RftaG_gPu3N7Fa1GOYEpzM&hl=en&sa=X&ei=Qq0YU9ahN4ig7Ablq4DwCA&ved=0CCoQ6AEwAA


 

249 

 

Turner A. and Tanzawa K. (1997) Mammalian membrane metallopetidases: NEP, 

ECE, Kell and PEX. FASEB J. 11:355–364. 

 

Turner AJ. and Murphy LJ. (1996) Molecular pharmacology of endothelin converting 

enzymes. Biochem Pharmacol. 51(2):91-102. 

Uchida K. and Kawakishi S. (1994) Identification of oxidized histidine generated at 

the active site of Cu, Zn-superoxide dismutase exposed to H2O2. Selective 

generation of 2-oxo-histidine at the histidine 118. J Biol Chem. 269(4):2405-10. 

Valdenaire O, Rohrbacher E, Mattei MG. (1995) Organization of the gene encoding 

the human endothelin-converting enzyme (ECE-1). J Biol Chem. 270:29794–8. 

Valdenaire O, Lepailleur-Enouf D, Egidy G, Thouard A, Barret A, Vranckx R, Tougard 

C, Michel JB. (1999) A fourth isoform of endothelin-converting enzyme (ECE-1) is 

generated from an additional promoter molecular cloning and characterization. 

Eur J Biochem. 264(2):341-9. 

Vallance P, Leone A, Calver A, Collier J, Moncada S. (1992) Accumulation of an 

endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 

339:572–575. 

Vanhoutte PM, Shimokawa H, Tang EHC, Feletou M (2009) Endothelial dysfunction 

and vascular disease. Acta Physiologica. 196(2):193–222. 

Vanhoutte PM. (2004) Endothelium-dependent hyperpolarizations: the history. 

Pharmacol Res. 49(6):503-8. 

Vasan RS. (2006) Biomarkers of cardiovascular disease: molecular basis and 

practical considerations. Circulation. 113(19):2335-62. 

Vásquez-Vivar J, Whitsett J, Martásek P, Hogg N, Kalyanaraman B. (2001) Reaction 

of tetrahydrobiopterin with superoxide: EPR-kinetic analysis and characterization 

of the pteridine radical. Free Radic Biol Med. 31:975–985. 

Vásquez-Vivar J, Kalyanaraman B, Martásek P. (2003) The role of 

tetrahydrobiopterin in superoxide generation from eNOS: enzymology and 

physiological implications. Free Radic Res. 37(2):121-7. 

Vatter H. and Seifert V. (2006) Ambrisentan, a non-peptide endothelin receptor 

antagonist. Cardiovasc Drug Rev. 24(1):63-76.  

Verhaar MC, Grahn AY, van Weerdt AWN, Honing MLH, Morrison PJ, Yang YP, 

Padley RJ, Rabelink TJ. (2000) Pharmacokinetics and pharmacodynamic effects of 

abt-627, an oral eta selective endothelin antagonist, in humans. Br J Clin Pharmacol. 

49:562-573. 

 

Verhaar MC, Strachan FE, Newby DE, Cruden NL, Koomans HA, Rabelink TJ, Webb 

DJ. (1998) Endothelin-A receptor antagonist-mediated vasodilatation is attenuated 

by inhibition of nitric oxide synthesis and by endothelin-B receptor blockade. 
Circulation. 97: 752–756. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Turner%20AJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Murphy%20LJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=Turner%20%26%20Murphy%2C%201996%20ece%20et-1%20big%20et-1
http://www.ncbi.nlm.nih.gov/pubmed?term=Valdenaire%20O%5BAuthor%5D&cauthor=true&cauthor_uid=10491078
http://www.ncbi.nlm.nih.gov/pubmed?term=Lepailleur-Enouf%20D%5BAuthor%5D&cauthor=true&cauthor_uid=10491078
http://www.ncbi.nlm.nih.gov/pubmed?term=Egidy%20G%5BAuthor%5D&cauthor=true&cauthor_uid=10491078
http://www.ncbi.nlm.nih.gov/pubmed?term=Thouard%20A%5BAuthor%5D&cauthor=true&cauthor_uid=10491078
http://www.ncbi.nlm.nih.gov/pubmed?term=Barret%20A%5BAuthor%5D&cauthor=true&cauthor_uid=10491078
http://www.ncbi.nlm.nih.gov/pubmed?term=Vranckx%20R%5BAuthor%5D&cauthor=true&cauthor_uid=10491078
http://www.ncbi.nlm.nih.gov/pubmed?term=Tougard%20C%5BAuthor%5D&cauthor=true&cauthor_uid=10491078
http://www.ncbi.nlm.nih.gov/pubmed?term=Tougard%20C%5BAuthor%5D&cauthor=true&cauthor_uid=10491078
http://www.ncbi.nlm.nih.gov/pubmed?term=Michel%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=10491078
http://www.ncbi.nlm.nih.gov/pubmed/?term=Valdenaire+1999+fourth+isoform+endothelin+converting+enzyme
http://www.ncbi.nlm.nih.gov/pubmed?term=Vanhoutte%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=15026027
http://www.ncbi.nlm.nih.gov/pubmed/15026027
http://www.ncbi.nlm.nih.gov/pubmed?term=Vasan%20RS%5BAuthor%5D&cauthor=true&cauthor_uid=16702488
http://www.ncbi.nlm.nih.gov/pubmed/16702488
http://www.ncbi.nlm.nih.gov/pubmed?term=V%C3%A1squez-Vivar%20J%5BAuthor%5D&cauthor=true&cauthor_uid=11595382
http://www.ncbi.nlm.nih.gov/pubmed?term=Whitsett%20J%5BAuthor%5D&cauthor=true&cauthor_uid=11595382
http://www.ncbi.nlm.nih.gov/pubmed?term=Mart%C3%A1sek%20P%5BAuthor%5D&cauthor=true&cauthor_uid=11595382
http://www.ncbi.nlm.nih.gov/pubmed?term=Hogg%20N%5BAuthor%5D&cauthor=true&cauthor_uid=11595382
http://www.ncbi.nlm.nih.gov/pubmed?term=Kalyanaraman%20B%5BAuthor%5D&cauthor=true&cauthor_uid=11595382
http://www.ncbi.nlm.nih.gov/pubmed?term=V%C3%A1squez-Vivar%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12653200
http://www.ncbi.nlm.nih.gov/pubmed?term=Kalyanaraman%20B%5BAuthor%5D&cauthor=true&cauthor_uid=12653200
http://www.ncbi.nlm.nih.gov/pubmed?term=Mart%C3%A1sek%20P%5BAuthor%5D&cauthor=true&cauthor_uid=12653200
http://www.ncbi.nlm.nih.gov/pubmed/12653200
http://www.ncbi.nlm.nih.gov/pubmed/16939634
http://www.ncbi.nlm.nih.gov/pubmed/16939634


 

250 

 

Verma S, Lovren F, Dumont AS, Mather KJ, Maitland A, Kieser TM, Kidd W, McNeill 

JH, Stewart DJ, Triggle CR, Anderson TJ. (2001) Endothelin receptor blockade 

improves endothelial function in human internal mammary arteries. Cardiovasc 

Res. 49(1):146-51. 

Vessières E, Guihot AL, Toutain B, Maquigneau M, Fassot C, Loufrani L, Henrion D. 

(2013) COX-2-derived prostanoids and oxidative stress additionally reduce 

endothelium-mediated relaxation in old type 2 diabetic rats. PLoS One. 8(7):e68217. 

Vijayaraghavan J, Scicli AG, Carretero OA, Slaughter C, Moomaw C, Hersh LB. (1990) 

The hydrolysis of endothelins by neutral endopeptidase 24.11 (enkephalinase). J 

Biol Chem. 265(24):14150-5. 

Virmani R, Avolio AP, Mergner WJ, et al. (1991) Effect of aging on aortic 

morphology in populations with high and low prevalence of hypertension and 

atherosclerosis: comparison between occidental and Chinese communities. Am J 

Pathol. 139:1119–1129. 

Vittori E, Marini M, Fasoli A, De Franchis R, Mattoli S. (1992) Increased expression 

of endothelin in bronchial epithelial cells of asthmatic patients and effect of 

corticosteroids. Am Rev Respir Dis. 146(5 Pt 1):1320-5. 

Wagner OF, Vierhapper H, Gasic S, Nowotny P, Waldhäusl W. (1992) Regional effects 

and clearance of endothelin-1 across pulmonary and splanchnic circulation. Eur J 

Clin Invest. 22(4):277-82. 

 

Warner TD. and Klemm P. (1996) What turns on the endothelins? Inflamm Res. 

45(2):51-3. 

 

Wawra S. and Fischer G. (2006) Amide cis-trans Isomerisation in Peptides and 

Proteins. In: Dugave EC. ed., Cis-Trans Isomerization in Biochemistry, Weinheim, 

Germany, Wiley-VCH. page 241. 

 

Waxman L, Doshi KP, Gaul SL, Wang S, Bednar RA, Stern AM. (1994) Identification 

and characterization of endothelin converting activity from EAHY 926 cells: 

evidence for the physiologically relevant human enzyme. Arch Biochem Biophys. 

308(1):240-53. 

 

Webb DJ, Monge JC, Rabelink TJ, Yanagisawa M. (1998) Endothelin: new discoveries 

and rapid progress in the clinic. Trend Pharmacol Sci. 19:5-8. 

 

Weber C, Schmitt R, Birnboeck H, Hopfgartner G, van Marle SP, Peeters PA, Jonkman 

JH, Jones CR. (1996) Pharmacokinetics and pharmacodynamics of the endothelin-

receptor antagonist bosentan in healthy human subjects. Clin Pharmacol Ther. 

60(2):124-37. 

 

Weber MA, Black H, Bakris G, Krum H, Linas S, Weiss R, Linseman JV, Wiens BL, 

Warren MS, Lindholm LH. (2009) A selective endothelin-receptor antagonist to 

reduce blood pressure in patients with treatment-resistant hypertension: a 

randomised, double-blind, placebo-controlled trial. Lancet. 374(9699):1423-31.  

http://www.ncbi.nlm.nih.gov/pubmed/11121806
http://www.ncbi.nlm.nih.gov/pubmed/11121806
http://www.ncbi.nlm.nih.gov/pubmed?term=Vessi%C3%A8res%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23874545
http://www.ncbi.nlm.nih.gov/pubmed?term=Guihot%20AL%5BAuthor%5D&cauthor=true&cauthor_uid=23874545
http://www.ncbi.nlm.nih.gov/pubmed?term=Toutain%20B%5BAuthor%5D&cauthor=true&cauthor_uid=23874545
http://www.ncbi.nlm.nih.gov/pubmed?term=Maquigneau%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23874545
http://www.ncbi.nlm.nih.gov/pubmed?term=Fassot%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23874545
http://www.ncbi.nlm.nih.gov/pubmed?term=Loufrani%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23874545
http://www.ncbi.nlm.nih.gov/pubmed?term=Henrion%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23874545
http://www.ncbi.nlm.nih.gov/pubmed/23874545
http://www.ncbi.nlm.nih.gov/pubmed?term=Vijayaraghavan%20J%5BAuthor%5D&cauthor=true&cauthor_uid=2201681
http://www.ncbi.nlm.nih.gov/pubmed?term=Scicli%20AG%5BAuthor%5D&cauthor=true&cauthor_uid=2201681
http://www.ncbi.nlm.nih.gov/pubmed?term=Carretero%20OA%5BAuthor%5D&cauthor=true&cauthor_uid=2201681
http://www.ncbi.nlm.nih.gov/pubmed?term=Slaughter%20C%5BAuthor%5D&cauthor=true&cauthor_uid=2201681
http://www.ncbi.nlm.nih.gov/pubmed?term=Moomaw%20C%5BAuthor%5D&cauthor=true&cauthor_uid=2201681
http://www.ncbi.nlm.nih.gov/pubmed?term=Hersh%20LB%5BAuthor%5D&cauthor=true&cauthor_uid=2201681
http://www.ncbi.nlm.nih.gov/pubmed/?term=The+hydrolysis+of+endothebins+by+neutral+endopeptidase+24.11+%28enkephalinsse%29.+J.+Biol.+Chem.+265%3A+14150-14155%2C+1990.
http://www.ncbi.nlm.nih.gov/pubmed/?term=The+hydrolysis+of+endothebins+by+neutral+endopeptidase+24.11+%28enkephalinsse%29.+J.+Biol.+Chem.+265%3A+14150-14155%2C+1990.
http://www.ncbi.nlm.nih.gov/pubmed?term=Vittori%20E%5BAuthor%5D&cauthor=true&cauthor_uid=1443891
http://www.ncbi.nlm.nih.gov/pubmed?term=Marini%20M%5BAuthor%5D&cauthor=true&cauthor_uid=1443891
http://www.ncbi.nlm.nih.gov/pubmed?term=Fasoli%20A%5BAuthor%5D&cauthor=true&cauthor_uid=1443891
http://www.ncbi.nlm.nih.gov/pubmed?term=De%20Franchis%20R%5BAuthor%5D&cauthor=true&cauthor_uid=1443891
http://www.ncbi.nlm.nih.gov/pubmed?term=Mattoli%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1443891
http://www.ncbi.nlm.nih.gov/pubmed/1443891
http://www.ncbi.nlm.nih.gov/pubmed/1499643
http://www.ncbi.nlm.nih.gov/pubmed/1499643
http://www.ncbi.nlm.nih.gov/pubmed?term=Warner%20TD%5BAuthor%5D&cauthor=true&cauthor_uid=8907584
http://www.ncbi.nlm.nih.gov/pubmed?term=Klemm%20P%5BAuthor%5D&cauthor=true&cauthor_uid=8907584
http://www.ncbi.nlm.nih.gov/pubmed/8907584
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Waxman%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Doshi%20KP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gaul%20SL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wang%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bednar%20RA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Stern%20AM%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Arch%20Biochem%20Biophys.');
http://www.ncbi.nlm.nih.gov/pubmed?term=Weber%20C%5BAuthor%5D&cauthor=true&cauthor_uid=8823230
http://www.ncbi.nlm.nih.gov/pubmed?term=Schmitt%20R%5BAuthor%5D&cauthor=true&cauthor_uid=8823230
http://www.ncbi.nlm.nih.gov/pubmed?term=Birnboeck%20H%5BAuthor%5D&cauthor=true&cauthor_uid=8823230
http://www.ncbi.nlm.nih.gov/pubmed?term=Hopfgartner%20G%5BAuthor%5D&cauthor=true&cauthor_uid=8823230
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20Marle%20SP%5BAuthor%5D&cauthor=true&cauthor_uid=8823230
http://www.ncbi.nlm.nih.gov/pubmed?term=Peeters%20PA%5BAuthor%5D&cauthor=true&cauthor_uid=8823230
http://www.ncbi.nlm.nih.gov/pubmed?term=Jonkman%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=8823230
http://www.ncbi.nlm.nih.gov/pubmed?term=Jonkman%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=8823230
http://www.ncbi.nlm.nih.gov/pubmed?term=Jones%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=8823230
http://www.ncbi.nlm.nih.gov/pubmed/8823230
http://www.ncbi.nlm.nih.gov/pubmed?term=Weber%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=19748665
http://www.ncbi.nlm.nih.gov/pubmed?term=Black%20H%5BAuthor%5D&cauthor=true&cauthor_uid=19748665
http://www.ncbi.nlm.nih.gov/pubmed?term=Bakris%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19748665
http://www.ncbi.nlm.nih.gov/pubmed?term=Krum%20H%5BAuthor%5D&cauthor=true&cauthor_uid=19748665
http://www.ncbi.nlm.nih.gov/pubmed?term=Linas%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19748665
http://www.ncbi.nlm.nih.gov/pubmed?term=Weiss%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19748665
http://www.ncbi.nlm.nih.gov/pubmed?term=Linseman%20JV%5BAuthor%5D&cauthor=true&cauthor_uid=19748665
http://www.ncbi.nlm.nih.gov/pubmed?term=Wiens%20BL%5BAuthor%5D&cauthor=true&cauthor_uid=19748665
http://www.ncbi.nlm.nih.gov/pubmed?term=Warren%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=19748665
http://www.ncbi.nlm.nih.gov/pubmed?term=Lindholm%20LH%5BAuthor%5D&cauthor=true&cauthor_uid=19748665
http://www.ncbi.nlm.nih.gov/pubmed/?term=A+selective+endothelin-receptor+antagonist+to+reduce+blood+pressure+in+patients+with+treatment-resistant+hypertension%3A+a+randomised%2C+double-blind%2C+placebo-controlled+trial


 

251 

 

Weitzberg E, Ahlborg G, Lundberg JM. (1991) Long-lasting vasoconstriction and 

efficient regional extraction of endothelin-1 in human splanchnic and renal tissues. 

Biochem Biophys Res Commun. 180(3):1298-303. 

Westby CM, Weil BR, Greiner JJ, Stauffer BL, DeSouza CA. (2011) Endothelin-1 

vasoconstriction and the age-related decline in endothelium-dependent 

vasodilatation in men. Clin Sci (Lond). 120(11):485-91. 

Whyteside AR. and Turner AJ. (2013) Endothelin-Converting Enzyme-1. In: 

Rawlings ND. and Salvesen G. eds., Handbook of Proteolytic Enzymes. London, 

Elsevier, pp. 624-631.  

Wilkinson IB. and Webb DJ. (2001) Venous occlusion plethysmography in 

cardiovascular research: methodology and clinical applications. Br J Clin 

Pharmacol. 52(6):631-46. 

Winkles JA, Alberts GF, Brogi E, Libby P. (1993) Endothelin-1 and endothelin 

receptor mRNA expression in normal and atherosclerotic human arteries. Biochem 

Biophys Res Commun. 191(3):1081-8. 

Woessner JF Jr. (1998) The matrix metalloproteinase family. In: Parks WC. and 

Mecham RP. eds., Matrix Metalloproteinases. San Diego, California, Academic Press. 

151:1-23. 

Woods M, Mitchell JA, Wood EG, Barker S, Walcot NR, Rees GM, Warner TD. (1999) 

Endothelin-1 is induced by cytokines in human vascular smooth muscle cells: 

evidence for intracellular endothelin-converting enzyme. Mol Pharmacol. 

55(5):902-9. 

Wort SJ, Mitchell JA, Woods M, Evans TW, Warner TD. (2000) The prostacyclin-

mimetic cicaprost inhibits endogenous endothelin-1 release from human 

pulmonary artery smooth muscle cells. J Cardiovasc Pharmacol. 36(5 Suppl 1):S410-

3. 

Wort SJ, Woods M, Warner TD, Evans TW, Mitchell JA. (2001) Endogenously 

released endothelin-1 from human pulmonary artery smooth muscle promotes 

cellular proliferation: relevance to pathogenesis of pulmonary hypertension and 

vascular remodeling. Am J Respir Cell Mol Biol. 25(1):104-10. 

Wu FX, Gagné P, Droit A, Poirier GG. (2008) Quality assessment of peptide tandem 

mass spectra. BMC Bioinformatics. 9 Suppl 6:S13. 

Xu D, Emoto N, Giaid A, Slaughter C, Kaw S, deWit D, Yanagisawa M (1994) ECE-

1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of 

big endothelin-1. Cell. 78: 473-485. 

Yanagisawa H, Hammer RE, Richardson JA, Emoto N, Williams SC, Takeda S, 

Clouthier DE, Yanagisawa M. (2000) Disruption of ECE-1 and ECE-2 reveals a role 

for endothelin-converting enzyme-2 in murine cardiac development. J Clin Invest. 

105(10):1373-82. 

Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, 

de Wit D, Emoto N, Hammer RE. (1998) Dual genetic pathways of endothelin-

http://www.ncbi.nlm.nih.gov/pubmed?term=Weitzberg%20E%5BAuthor%5D&cauthor=true&cauthor_uid=1953780
http://www.ncbi.nlm.nih.gov/pubmed?term=Ahlborg%20G%5BAuthor%5D&cauthor=true&cauthor_uid=1953780
http://www.ncbi.nlm.nih.gov/pubmed?term=Lundberg%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=1953780
http://www.ncbi.nlm.nih.gov/pubmed/1953780
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Westby%20CM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Weil%20BR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Greiner%20JJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Stauffer%20BL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22DeSouza%20CA%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Clin%20Sci%20(Lond).');
http://www.ncbi.nlm.nih.gov/pubmed?term=Wilkinson%20IB%5BAuthor%5D&cauthor=true&cauthor_uid=11736874
http://www.ncbi.nlm.nih.gov/pubmed?term=Webb%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=11736874
http://www.ncbi.nlm.nih.gov/pubmed/?term=Venous+occlusion+plethysmography+in+cardiovascular+research%3A+methodology+and+clinical+applications
http://www.ncbi.nlm.nih.gov/pubmed/?term=Venous+occlusion+plethysmography+in+cardiovascular+research%3A+methodology+and+clinical+applications
http://www.ncbi.nlm.nih.gov/pubmed?term=Winkles%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=8466485
http://www.ncbi.nlm.nih.gov/pubmed?term=Alberts%20GF%5BAuthor%5D&cauthor=true&cauthor_uid=8466485
http://www.ncbi.nlm.nih.gov/pubmed?term=Brogi%20E%5BAuthor%5D&cauthor=true&cauthor_uid=8466485
http://www.ncbi.nlm.nih.gov/pubmed?term=Libby%20P%5BAuthor%5D&cauthor=true&cauthor_uid=8466485
http://www.ncbi.nlm.nih.gov/pubmed/?term=Endothelin-1+and+endothelin+receptor+mRNA+expression+in+normal+and+atherosclerotic+human+arteries
http://www.ncbi.nlm.nih.gov/pubmed/?term=Endothelin-1+and+endothelin+receptor+mRNA+expression+in+normal+and+atherosclerotic+human+arteries
http://www.ncbi.nlm.nih.gov/pubmed?term=Wort%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=11078436
http://www.ncbi.nlm.nih.gov/pubmed?term=Mitchell%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=11078436
http://www.ncbi.nlm.nih.gov/pubmed?term=Woods%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11078436
http://www.ncbi.nlm.nih.gov/pubmed?term=Evans%20TW%5BAuthor%5D&cauthor=true&cauthor_uid=11078436
http://www.ncbi.nlm.nih.gov/pubmed?term=Warner%20TD%5BAuthor%5D&cauthor=true&cauthor_uid=11078436
http://www.ncbi.nlm.nih.gov/pubmed/11078436
http://www.ncbi.nlm.nih.gov/pubmed?term=Wort%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=11472982
http://www.ncbi.nlm.nih.gov/pubmed?term=Woods%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11472982
http://www.ncbi.nlm.nih.gov/pubmed?term=Warner%20TD%5BAuthor%5D&cauthor=true&cauthor_uid=11472982
http://www.ncbi.nlm.nih.gov/pubmed?term=Evans%20TW%5BAuthor%5D&cauthor=true&cauthor_uid=11472982
http://www.ncbi.nlm.nih.gov/pubmed?term=Mitchell%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=11472982
http://www.ncbi.nlm.nih.gov/pubmed/?term=Endogenously+Released+Endothelin-1+from+Human+Pulmonary+Artery+Smooth+Muscle+Promotes+Cellular
http://www.ncbi.nlm.nih.gov/pubmed/18541048
http://www.ncbi.nlm.nih.gov/pubmed/18541048
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Yanagisawa%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hammer%20RE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Richardson%20JA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Emoto%20N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Williams%20SC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Takeda%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Clouthier%20DE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Yanagisawa%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/10811845
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Yanagisawa%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Yanagisawa%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kapur%20RP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Richardson%20JA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Williams%20SC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Clouthier%20DE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22de%20Wit%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Emoto%20N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hammer%20RE%22%5BAuthor%5D


 

252 

 

mediated intercellular signaling revealed by targeted disruption of endothelin 

converting enzyme-1 gene. Development. 125(5):825-36. 

Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayishi Y, Mitsui Y, Yazaki Y, 

Goto K, Masaki T (1988) A novel potent, vasoconstrictor peptide produced by 

vascular endothelial cells. Nature. 332:411–4. 

Yang LL, Gros R, Kabir MG, Sadi A, Gotlieb AI, Husain M, Stewart DJ. (2004) 

Conditional cardiac overexpression of endothelin-1 induces inflammation and 

dilated cardiomyopathy in mice. Circulation. 109: 255-261. 

Yang Q, Laporte J, Battistini B, Sirois P. (1997) Effects of dexamethasone on the basal 

and cytokine-stimulated release of endothelin-1 from guinea-pig cultured tracheal 

epithelial cells. Can J Physiol Pharmacol. 75(6):576-81. 

Yang Z, Krasnici N, Lüscher TF. (1999) Endothelin-1 potentiates human smooth 

muscle cell growth to PDGF: effects of ETA and ETB receptor blockade. 

Circulation. 100(1):5-8. 

Yang ZH, Richard V, von Segesser L, Bauer E, Stulz P, Turina M, Lüscher TF. (1990) 

Threshold concentrations of endothelin-1 potentiate contractions to 

norepinephrine and serotonin in human arteries. A new mechanism of vasospasm? 

Circulation. 82(1):188-95. 

Yoshizumi M, Kurihara H, Sugiyama T, Takaku F, Yanagisawa M, Masaki T, Yazaki 

Y. (1989) Hemodynamic shear stress stimulates endothelin production by cultured 

endothelial cells. Biochem Biophys Res Commun. 161:859-64. 

Yu JC. and Davenport AP. (1995) Secretion of endothelin-1 and endothelin-3 by 

human cultured vascular smooth muscle cells. Br J Pharmacol. 114(2):551-7. 

Zeballos GA, An SJ, Wu JM. (1991) Endothelin-1 secretion by human fibroblasts in 

culture: effects of cell density and IFN-beta. Biochem Int. 25(5):845-52. 

Zeiher AM, Goebel H, Schachinger V, Ihling C. (1995) Tissue endothelin-1 

immunoreactivity in the active coronary atherosclerotic plaque: a clue to the 

mechanism of increased vasoreactivity of the culprit lesion in unstable 

angina. Circulation. 91:941-947. 

Zhang L, Chou CP, Moo-Young M. (2011)  Disulfide bond formation and its impact 

on the biological activity and stability of recombinant therapeutic proteins 

produced by Escherichia coli expression system. Biotechnol Adv. 29(6):923-9. 

Zolk O, Quattek J, Sitzler G, Schrader T, Nickenig G, Schnabel P, Shimada K, 

Takahashi M, Böhm M. (1999) Expression of endothelin-1, endothelin-converting 

enzyme, and endothelin receptors in chronic heart failure. Circulation. 99(16):2118-

23. 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=yanagisawa%20%201998%20dual%20genetic%20pathways%20of%20endothelin
http://www.ncbi.nlm.nih.gov/pubmed?term=Yang%20LL%5BAuthor%5D&cauthor=true&cauthor_uid=14718401
http://www.ncbi.nlm.nih.gov/pubmed?term=Gros%20R%5BAuthor%5D&cauthor=true&cauthor_uid=14718401
http://www.ncbi.nlm.nih.gov/pubmed?term=Kabir%20MG%5BAuthor%5D&cauthor=true&cauthor_uid=14718401
http://www.ncbi.nlm.nih.gov/pubmed?term=Sadi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=14718401
http://www.ncbi.nlm.nih.gov/pubmed?term=Gotlieb%20AI%5BAuthor%5D&cauthor=true&cauthor_uid=14718401
http://www.ncbi.nlm.nih.gov/pubmed?term=Husain%20M%5BAuthor%5D&cauthor=true&cauthor_uid=14718401
http://www.ncbi.nlm.nih.gov/pubmed?term=Stewart%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=14718401
http://www.ncbi.nlm.nih.gov/pubmed?term=Yang%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=9276131
http://www.ncbi.nlm.nih.gov/pubmed?term=Laporte%20J%5BAuthor%5D&cauthor=true&cauthor_uid=9276131
http://www.ncbi.nlm.nih.gov/pubmed?term=Battistini%20B%5BAuthor%5D&cauthor=true&cauthor_uid=9276131
http://www.ncbi.nlm.nih.gov/pubmed?term=Sirois%20P%5BAuthor%5D&cauthor=true&cauthor_uid=9276131
http://www.ncbi.nlm.nih.gov/pubmed/9276131
http://www.ncbi.nlm.nih.gov/pubmed?term=Yoshizumi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2660793
http://www.ncbi.nlm.nih.gov/pubmed?term=Kurihara%20H%5BAuthor%5D&cauthor=true&cauthor_uid=2660793
http://www.ncbi.nlm.nih.gov/pubmed?term=Sugiyama%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2660793
http://www.ncbi.nlm.nih.gov/pubmed?term=Takaku%20F%5BAuthor%5D&cauthor=true&cauthor_uid=2660793
http://www.ncbi.nlm.nih.gov/pubmed?term=Yanagisawa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=2660793
http://www.ncbi.nlm.nih.gov/pubmed?term=Masaki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2660793
http://www.ncbi.nlm.nih.gov/pubmed?term=Yazaki%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=2660793
http://www.ncbi.nlm.nih.gov/pubmed?term=Yazaki%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=2660793
http://www.ncbi.nlm.nih.gov/pubmed?term=Yu%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=7881755
http://www.ncbi.nlm.nih.gov/pubmed?term=Davenport%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=7881755
http://www.ncbi.nlm.nih.gov/pubmed/7881755?access_num=7881755&link_type=MED&dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed?term=Zeballos%20GA%5BAuthor%5D&cauthor=true&cauthor_uid=1804103
http://www.ncbi.nlm.nih.gov/pubmed?term=An%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=1804103
http://www.ncbi.nlm.nih.gov/pubmed?term=Wu%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=1804103
http://www.ncbi.nlm.nih.gov/pubmed/1804103
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhang%20L%5BAuthor%5D&cauthor=true&cauthor_uid=21824512
http://www.ncbi.nlm.nih.gov/pubmed?term=Chou%20CP%5BAuthor%5D&cauthor=true&cauthor_uid=21824512
http://www.ncbi.nlm.nih.gov/pubmed?term=Moo-Young%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21824512
http://www.ncbi.nlm.nih.gov/pubmed?term=Disulfide%20bond%20formation%20and%20its%20impact%20on%20the%20biological%20activity%20and%20stability%20of%20recombinant%20therapeutic%20proteins%20produced%20by%20Escherichia%20coli%20expression%20system


 

253 

 

Web links for database programs: 

Delta Mass − http://www.abrf.org/index.cfm/dm.home 

Expasy – http://www.expasy.org/proteomics 

FindMod – http://www.expasy.ch/tools/findmod/findmod_masses.html 

MASCOT − http://www.matrixscience.com 

ProteinProspector − http://prospector.ucsf.edu/prospector/mshome.htm 

Uniprot − http://www.uniprot.org/ 
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