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Abstract

This thesis presents research into reducing microphone artefacts in live sound

with no prior knowledge of the sources or microphones. Microphone artefacts

are defined as additional sounds or distortions that occur on a microphone signal

that are often undesired.

We focus on the proximity effect, comb filtering and microphone bleed. In

each case we present a method that either automatically implements human

sound engineering techniques or we present a novel method that makes use of

audio signal processing techniques that goes beyond the skills of a sound engi-

neer. By doing this we can show that a higher quality mix of a live performance

can be achieved.

Firstly we investigate the proximity effect which occurs on directional micro-

phones. We present a method for detecting the proximity effect with no prior

knowledge of the source to microphone distance. This then leads to a method

for reducing the proximity effect which employs a dynamic filter informed by

audio analysis.

Comb filtering occurs when the output of microphones reproducing the same

source are mixed together. We present a novel analysis of how the accuracy of

a technique to automatically estimate the correct delay of the source between

each microphone is affected by source bandwidth and the windowing function

applied to the data.

We then present a method for reducing microphone bleed in the multiple

source, multiple microphone case, both in determined and overdetermined con-

figurations. The proposed method is extended from prior research in noise

cancellation, which has not previously been applied to musical sound sources.

We then present a method for simulating microphone bleed in synthesised drum

recordings, where bleed enhances the realism of the output.

Through subjective listening tests and objective measures each proposed

method is shown to succeed at reducing the microphone artefacts while preserv-

ing the original sound source.
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Vitaly puts on goggles, hooks

himself into a computer on the

sound truck, and begins tuning

the system. Theres a 3-D model

of the overpass already in

memory. He has to figure out how

to sync the delays on all the

different speaker clusters to

maximize the number of nasty,

clashing echoes.

Neal Stephenson

“Snow Crash”
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Chapter 1

Introduction

1.1 Objectives

The aim of this research is to use signal processing to reduce artefacts that occur

on microphone signals in a live sound context. We set out to answer the question

of whether it is possible to reduce microphone artefacts with no prior knowledge

of the sources or microphones, or the relative positions in an acoustic space. In

this thesis microphone artefacts are defined as additional sounds or distortions

that occur on the output of a microphone signal that alter the intended sound

in an undesirable way.

This will be achieved by replicating the processes a human sound engineer

undertakes to reduce these artefacts or by developing new signal processing

methods that would ordinarily not be achieved by a human. This will be

achieved by the following objectives:

• Comb filtering, proximity effect and microphone bleed that occur from

using single and multiple microphones with single and multiple sources

will be reduced using delay estimation, dynamic filtering and noise can-

cellation.

• Manual solutions that exist require a certain level of expertise in micro-

phone placement. Many artefacts that occur are due to lack of knowledge

in this area. Therefore any solution found will be able to be used by an am-

ateur and will not require prior knowledge of the source and microphone

configuration.

• As this research is aimed at live sound, any proposed method should be

able to run in real time.

• As the artefacts are due to physical properties in the space, research into

the reduction will take into account the physical properties of each arte-

fact.
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• Processing methods should preserve the target source with the least amount

of additional distortion.

As we are concerned with researching methods for artefact reduction which

make no assumptions about the source or microphone, we assume in this research

that the only sources we are concerned with are intended sources that would

be found in a live music performance. We therefore do not take into account

external noise sources in this research and we also assume a low reverberation

environment. It is known that noise and reverberation effect the performance of

audio signal processing techniques and in this research we will focus on how the

methods we research are affected by various sources. By not taking noise into

account we will get a clearer idea of the performance of each method. In order

to have a consistent reference across the research we also assume the complex

radiation patterns of instrument sources are localised.

1.2 Motivations

Microphone artefacts are intrinsic to microphone design and sound engineering

techniques exist to reduce them. These techniques are learnt from experience,

which many amateur sound engineers and musicians do not have. Many of

the artefacts can be attributed to the physical properties of the microphone

and the space. There is little that can be done by the user to change the

hardware of the microphone and often nothing can be done about the space

the microphone is placed in. Limited studies have been conducted into how to

reduce the appearance of artefacts using signal processing, which would require

extra software with little or no input from the user.

Many modern microphones have some form of signal processing built in,

commonly polar pattern switching and bass roll off. Recently, microphone man-

ufacturers have begun producing more digital microphones, which have a built

in analogue to digital converter tuned for the microphone. This shows that sig-

nal processing is already being used in microphone technology, but only where

its implementation can be predicted by testing of the microphone.

More advanced signal processing could be included to reduce known artefacts

that occur between the source and the microphone. This would mean a novice

would still be able to get a high quality signal from the microphone, regardless

of their expertise in microphone placement, and hear an expected output from

the microphone. This in turn increases the clarity and quality of the microphone

output, leading to an easier task for the sound engineer and ultimately a better

experience for all people experiencing a music performance.
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1.3 Research context

The research presented in this thesis fits within the umbrella of intelligent mixing

tools, first presented by Perez Gonzalez and Reiss [2008a,b,c, 2007, 2009, 2010]

and extended more recently by Giannoulis et al. [2013], Ward et al. [2012],

Mansbridge et al. [2012a,b] and Maddams et al. [2012]. The aim of the intelligent

mixing tools research is to provide tools to aid sound engineers, particularly

amateur sound engineers, in providing an adequate baseline multitrack mix to

enable them to spend more time on the creativity of mixing. This previous

work is mostly concerned with the technical and aesthetic areas of mixing, such

as level balancing, panning and automatic enhancement, rather than correcting

problems in the recording process.

The research presented in this thesis strives to tackle the technical prob-

lems that occur specifically when using microphones and often poor microphone

placement. The results can also be objectively measured.

Although this thesis is concerned with live sound, there are many other

applications for the research. It is possible that aspects of the research can

take an offline approach, which could be implemented in a recording studio

environment. For example, offline approaches offer the flexibility of analysing

a whole song and choosing the best course of action that would provide the

optimal result over all the time. It was chosen to investigate live sound, where

real time approaches could be established or at least implement block based

approaches, since this is an open area of research. Live sound situations are

often less controlled acoustics environments and it is likely the configuration

will change over time therefore approaches need to be able to adapt to this.

Studio production will generally be recorded in a controlled environment with

acoustic control to tailor the reverberation and reduce some of the artefacts

described here, such as bleed, in static conditions.

In live sound these artefacts are more often a problem due to the concert

environment, for example the inability to adequately separate instruments, and

possibly the lack of experience of the sound engineers involved. In smaller

venues, they may even be the musicians themselves. Because of this it is likely

there will be little knowledge of microphone placement techniques and artefacts

are more likely to occur.

There are other, non-musical applications for the research outlined here.

Theatre and broadcast environments suffer similar artefacts, along with any

multiple source, multiple microphone situation, such as video conferences, which

also suffer from noise and echoes [Habets and Benesty, 2013].

There is also scope for applying the research to audio forensics to improve

the quality and intelligibility from audio evidence, or to gain extra information
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such as location of sources and microphones with delay estimation research. It

is also possible to apply the techniques to medical audio, such as heart sound

recordings, for example removing crosstalk and aligning recordings [Hedayioglu

et al., 2011].

1.4 Thesis structure

The microphone artefacts which are investigated in the research presented in this

thesis are the proximity effect, comb filtering and microphone bleed. As there

is only a small overlap between the approaches used to reduce each artefact,

Chapters 3, 4 and 5 each contain a literature review and background of the

state of the art in each field. Chapter 2 can be considered the background

chapter for the overall thesis and contains information on how and why different

microphone artefacts occur and introduces each area we discuss in the remainder

of the thesis.

A chapter by chapter breakdown of the structure is as follows.

Chapter 1 - Introduction

In this chapter we outline the objectives and motivations of the research and

outline the thesis contributions.

Chapter 2 - Background

This chapter provides a background in audio and microphone technology. From

this microphone artefacts are categorised into environmental, positional and

internal. We then describe in detail the cause and effect of the microphone

artefacts that are investigated in this thesis.

Chapter 3 - Proximity effect detection and correction

In this chapter we propose a novel method for the detection and correction of

the proximity effect. The novel detection algorithm uses spectral flux to detect

low frequency changes in the signal that can be attributed to the proximity

effect. A dynamic filter is then implemented to correct for theses effects.

Chapter 4 - Comb filter reduction

In this chapter we investigate using the GCC-PHAT delay estimation technique

to reduce comb filtering in single source, multiple microphone configurations

with arbitrary musical sources. A novel analysis of the effect of signal bandwidth

and DFT window shape on the accuracy of the GCC-PHAT is provided.
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Chapter 5 - Determined microphone bleed reduction

In this chapter we present a novel method for reducing microphone bleed in the

determined multiple source, multiple microphone case. The method is based

on a crosstalk resistant noise canceller from telecommunications research that

has not previously been applied to musical instrument signals. It is extended

by applying a multiple source version of the GCC-PHAT delay estimation tech-

nique from the previous chapter to centre the adaptive filters. The proposed

method is shown to outperform the previous method in anechoic conditions in

terms of both bleed reduction and preservation of the target source. It is also

compared to a similar noise cancellation based technique, as well as the blind

source separation technique DUET.

Chapter 6 - Overdetermined microphone bleed reduction using selec-

tive FDCTRANC

This chapter extends the bleed reduction research in the previous chapter by

applying it to the overdetermined case, where there are more microphones than

sources. This is done first by performing CTRANC in the frequency domain to

improve results in reverberant conditions and reduce the computational cost.

In listening tests the frequency domain implementation is shown to outperform

a similar noise cancellation method. The proposed method is then extended

to the overdetermined case by introducing a selection stage to determine which

microphones are reproducing the same target source in order to suppress the

bleed reduction algorithm between them. The selection process is shown to

provide an improvement in a variety of configurations in terms of interference

reduction and preservation of the target source.

Chapter 7 - Microphone bleed simulation in multisampled drum work-

stations

In this chapter we outline a novel method for simulating bleed between micro-

phones specifically in drum kit recordings where each drum has been recorded

separately. This is included as an example of conditions where microphone

bleed can enhance an otherwise dry recording to improve the realism. In lis-

tening tests, participants are shown to be unable to distinguish the simulated

recordings from real recordings with statistical significance.

Chapter 8 - Conclusions and future perspectives

In this chapter we summarise the achievements of the thesis. We explore how

the research conducted has achieved the objectives and suggest potential further
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work.

1.5 Thesis contributions

The main contributions presented in this thesis are:

Chapter 3

• A method for detecting and correcting the proximity effect in directional

microphones without knowledge of the microphone or source to micro-

phone distance.

Chapter 4

• Novel analysis of the GCC-PHAT method of delay estimation with regards

to incoming signal bandwidth and DFT window shape.

• A recommendation of best practise when using the GCC-PHAT for arbi-

trary musical signals, which extends the knowledge of how window shape

affects the accuracy of the GCC-PHAT.

Chapter 5

• Adaptation of a method of noise cancellation from telecommunications,

not previously applied to musical instrument sources, applied to deter-

mined source, microphone configurations by combining CTRANC with

centred adaptive filters.

• A novel method for multiple source delay estimation.

Chapter 6

• Extension of determined Crosstalk Resistant Noise Cancellation (CTRANC)

to the frequency domain (FDCTRANC) and outlining problems with this

method.

• Introducing an iterative method of FDCTRANC.

• Extension of FDCTRANC to the over-determined case, using a selection

stage to indicate whether each other microphone is primarily reproducing

the same target source or an interfering source for the microphone under

test.

21



Chapter 7

• Novel method of microphone bleed simulation using available audio sam-

ples in a multiple microphone drum recording.
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Chapter 2

Background

In this chapter we present the background to the research presented in this

thesis. We explain the purpose and function of a microphone and how it is used

in music production and performance. We then discuss how different artefacts

on microphone signals are caused, why they are undesirable and why they may

need to be removed.

2.1 Microphone technology

Before sound reinforcement, live performance relied on the performer’s ability

and the acoustics of the performance space to carry the sound from the stage to

the audience. After the invention of microphones, amplifiers and loudspeakers,

a performer could be amplified to be heard more clearly and by more people in

larger, less acoustically adequate spaces.

The first stage of this process is the microphone. A microphone is a trans-

ducer that converts sound pressure waves to an electrical current through vi-

bration of a medium. The mechanism for this conversion varies but follows the

same basic principle.

The most straightforward of microphones is the dynamic microphone [Eargle,

2004]. Dynamic microphones consist of a diaphragm attached to a magnet.

When sound pressure waves travel from the sound source through air to the

diaphragm, this causes the diaphragm to vibrate. This in turn moves the magnet

within a coil, resulting in electromagnet induction and a varying current output.

This is then fed into a microphone pre-amplifier and consequently to an amplifier

to be played out of loudspeakers or sent into a sound card to be converted to a

digital signal. Dynamic microphones are often used in live sound situations as

they are inexpensive, robust and do not require additional power.

Other common microphone designs are condenser and ribbon microphones.

In condenser microphones, also called capacitor microphones, the diaphragm

acts as one plate of a capacitor. The vibration of the diaphragm changes the
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distance between the diaphragm and a plate, which changes the voltage across

the plates. Condenser microphones require additional phantom power to func-

tion but they are generally more sensitive than dynamic microphones.

Ribbon microphones consist of a thin metal plate which is suspended in a

magnetic field. When sound pressure waves move the plate, this movement

produces a current. More recently fibre optic and laser microphones have been

developed, although these have yet to be widely adopted in music production.

Increasingly, microphones are being sold which are referred to as “digital”

microphones. Although referred to as digital, these microphones still require a

transducer to convert the sound pressure waves into an electrical signal. Quite

often these microphones contain a dedicated Analogue-to-digital (A-D) con-

verter therefore the microphone will have a digital output rather than analogue

[Shapton, 2004]. This means that the A-D converter has been moved closer to

the transducer. The advantages of this are that it allows the converter to be

customised to the specific microphone and can also reduce noise as the distance

the electrical analogue signal has to travel is much shorter. Custom DSP can

also be used to optimise the bit depth of the conversion or to insert level control

to avoid digital clipping [Eargle, 2004]. There is more that can be exploited

from the digital microphone and additional processing that could be included

which is tailored towards the specific microphone.

Recently digital microphones have become popular with home recordists, for

example where looking for an easy way to record vocals for amateur podcasts.

Digital microphones aimed at the consumer market have a USB connection

which can be plugged straight into a computer to record, therefore removing

the need for a dedicated sound card.

As well as the design of the microphone, an important characteristic of a

microphone is the directionality. Generally microphones can be grouped into

omnidirectional, which picks up sound from all directions, or directional, which

rejects sound from certain angles around it. The area around a microphone

from where it picks up sound is denoted as the pick up area.

Directionality is achieved by altering the amount of access the sound pressure

wave has to the rear of the diaphragm. If the rear of the diaphragm is sealed,

the diaphragm only responds to sound pressure waves that arrive to the front.

This can be referred to as a pressure microphone as it response to absolute

sound pressure at the front of the diaphragm and exhibits an omnidirectional

directivity pattern. This means it picks up sound from all directions equally,

although this varies with frequency. Omnidirectional microphones are often

used for ambient recordings or to record multiple sources at once.

If both the front and rear of the diaphragm are open, the movement of the

diaphragm is dependent on the difference in pressure between the front and rear
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of the diaphragm and can be referred to as a pressure gradient microphone. A

sound pressure wave arriving to the side of the diaphragm will result in an equal

pressure at the front and the rear and thus there is zero gradient across it. This

means any sounds arriving to the side of the diaphragm will be rejected and will

not result in an output from the microphone. Pressure gradient microphones

are thus directional.

A pressure gradient microphone which is completely open at the rear rejects

sound from 90o and 270o angle and accepts sound at 0o and 180o equally, where

0o indicates directly in front of the diaphragm. This is known as a Figure-

8, or bidirectional, microphone. Different pick up patterns can be achieved

by limiting the access to the rear of the diaphragm through the use of ports.

Another common pick up pattern is cardioid, which rejects primarily from the

rear and picks up sound predominantly from the front and some to the sides.

The shape of the pick up pattern can be changed by changing the configuration

of ports at the rear, to achieve hyper cardioid patterns, for example, which have

a much narrower directionality.

Directional microphones can be used to improve the signal to noise ratio of

a single sound source in a noisy environment by positioning the rejection areas

of the microphone towards the noise source and the directional area towards

the target source. A consequence of directionality is that a flat response has to

be sacrificed due to the proximity effect, characterised by an undesired boost in

low frequency energy as a source moves closer to the microphone, beyond what

is expected.

Microphones can also be designed to enable switchable polar patterns, and

thus the same microphone can be used for either directional or omnidirectional

applications. This is common in dual diaphragm condenser microphones where

the diaphragms are mounted back to back. A voltage is passed through the rear

diaphragm to change its sensitivity, which in turn changes the response of the

rear diaphragm to sound pressure waves, and thus also changes the directionality

[Eargle, 2004].

2.2 Microphone artefacts

The most straightforward microphone configuration is a single source repro-

duced by a single microphone in free field or anechoic conditions, i.e. without

reverberant surfaces. In ideal conditions this is described as

x[n] = αs[n− τ] (2.1)
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where x is the microphone signal, s is the sound source, α is change in amplitude

due to air absorption as the source travels through air, τ is the delay due to

distance and n is the current timestep.

In reality x contains many other sounds and distortions and it is not only

a scaled, delayed version of the sound source. Anything other than this can be

referred to as a microphone artefact.

We have classified the artefacts that can occur into three categories, which

are explained here.

Internal

Internal artefacts refer to artefacts that occur due to the microphone itself. A

microphone is not a transparent device. Microphones are physical, analogue

devices and each has its impulse response and thus its own characteristics.

Each microphone has its own frequency response, often by design, which

is dependent on source to microphone distance and angle. Some microphones

are designed to have a very flat response which are often reference microphones

which are used for testing other devices so the microphone has to be as transpar-

ent as possible. On the other hand, microphones designed for a specific purpose

can have a distinctive frequency response that is far from flat. For example,

the Shure SM58 has a distinctive peak in the 4kHz range as this microphone is

aimed at the live, vocal market [Shure, 2013].

This means that the sound source may sound different when recorded using

a microphone than it does in real life. This can be a desired effect and the

reason a particular microphone is chosen, or it can be undesired if the choice

of microphones are limited or an accurate reproduction of a sound source is

required.

Environmental

The environment can cause artefacts which are external to the microphone.

This generally refers to reverberation characteristics of the acoustic space and

external noise.

Reverberation refers to the composition of reflections of the sound source

off nearby surfaces [Howard and Angus, 2000, chap. 6]. This means that if the

source and microphone are in a space with reflective surfaces, or any space that

is not freefield conditions, then delayed versions of the source will arrive at the

microphone after the direct sound and be summed together.

The opposite of a reverberant space is an anechoic space that suppresses

room reflections. Anechoic recordings or very dry recordings can sound lifeless

and lacking ambiance [Izhaki, 2007, chap. 23], and often on synthesised sounds
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reverberation is added to enhance the realism and space in the recording. This

is also applied to dry studio recordings. On the other hand if too much rever-

beration is present either artificially or naturally, the intelligibility of the sound

source is reduced and the timbre can be changed by the comb filtering that

occurs due to summation of delayed versions of the direct sound source.

Reverberation can be broken down into different parts. Early reflections

refer to the first reflections that arrive at the microphone after the direct sound

source and are considered to arrive at the microphone up to 80ms after the

direct sound [Peters et al., 2011]. Often these reflections have only reflected off

a few surfaces and allow us to perceive the size of a space. Early reflections

off highly reflective surfaces can be high in amplitude, sometimes nearly equal

amplitude to the direct sound, which can cause more extreme comb filtering.

Other environmental factors are external uncorrelated noise in an environ-

ment which is not the sound source, such as air conditioning units or in the live

sound situation, audience noise.

In a real reverberant environment (2.1) can be extended to

x[n] = h[n] ∗ s[n] + v[n] (2.2)

where h is the room impulse response between the source and microphone which

contains the room reverberation and v is external noise.

Positional

Positional factors refer to artefacts that result from the location and number of

microphones and sources. So far we have referred to artefacts assuming a single

source and microphone. In reality there may be more.

It is a common recording technique to record a single source with a number

of microphones. For example taking stereo recordings of pianos, or recording

an acoustic guitar with two microphones to record different aspects of the in-

strument. The problem with this is often the direct sound will arrive at each

microphone at different times. When the microphone signals are mixed together

this can cause comb filtering, which causes certain frequencies to be cut whilst

others are boosted, changing the frequency composition of the source.

The configuration can also be extended to multiple sources, which is common

in a live sound situation where all instruments are on the same stage or in a

more “live” band recording where each instrument is in the same acoustic space.

In this case, often a single microphone will be employed to reproduce a single

microphone, but it likely that each microphone will pick up other interfering

sources that are not the target microphone. These interfering sources can be

referred to as microphone bleed, spill or crosstalk [Izhaki, 2007, chap. 18].
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Extending this further, a multiple source, multiple microphone configuration

may also contain single sources reproduced by multiple microphones as well as

single sources reproduced by single microphones and ambient microphones to

reproduce multiple sources in the space.

2.2.1 Summary

We have explained a number of microphones artefact and causes. Often these

artefacts are a nuisance and it is desirable that they are either avoided or re-

moved.

In this thesis we investigate reducing three microphone artefacts: the proxim-

ity effect, comb filtering and microphone bleed. These artefacts are particularly

problematic in live sound where offline digital audio editing and processing tech-

niques may not be used. Here we outline the background and causes of each

artefact and why they are a problem in live sound. A signal model for each

artefact is also described.
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Figure 2.1: Typical configuration of sources and microphones in a live sound
production.
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2.2.2 General signal model

It is possible to describe all real microphone layouts with a general signal model.

Consider an acoustic space with L sources being reproduced by M microphones,

for example as depicted in Figure 2.1. The mth microphone signal, xm, can be

described as

xm[n] =

L∑

l=1

hlm[n] ∗ sl[n] (2.3)

where hlm is the room impulse response (RIR) between source sl and microphone

xm. Here m = 1, . . . ,M , where M is the number of microphones and l =

1, . . . , L where L is the number of sources. External noise is not included and

the impulse response of the microphone is not taken into account. In anechoic

conditions, hlm is assumed to be a Dirac delta delayed by τlm at amplitude αlm

so (2.3) can be simplified to

xm[n] =

L∑

l=1

αlmsl[n− τlm] (2.4)

where αlm is the amplitude change primarily due to air absorption between the

source and microphone and τlm is the delay of the sound pressure wave leaving

the source and arriving at the microphone at time n.

Different configurations can be described as determined, where L = M ,

underdetermined, where L > M , and overdetermined, where L < M .

2.2.3 Proximity effect

Even with the simplest microphone configuration described by (2.1) and shown

in Figure 2.2, the choice of microphone can cause additional artefacts. It may

be the case that this configuration is in a reverberant environment or an envi-

ronment with external noise. As mentioned previously, a method to reduce this

is to use a directional microphone and positioning the sound source in the pick

up area and the external noise sources in the rejecting area.

The drawback of this is that all directional microphones exhibit the proxim-

ity effect.

The proximity effect is characterised by an artificial boost in the low fre-

quency of the microphone output as the source to microphone distance de-

creases. The low frequency boost occurs due to the method used to enable

directionality in microphones.

It has already been explained that directional microphones are also known as

pressure gradient microphones. This is because the movement of the diaphragm

which causes an output current is due to the difference in pressure either side
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Figure 2.2: A common layout for reproducing a single source s with a single
microphone x.

of the diaphragm. The difference in sound pressure is caused by a difference in

amplitude of the pressure wave as it travels from one side of the diaphragm to

the other. A pressure wave arriving at 0o will travel the furthest to reach the

rear of the diaphragm, therefore will exhibit the largest drop in amplitude and

therefore the largest pressure gradient.

The output of a pressure gradient microphone can be considered a ratio

between the sound source, which is close to the microphone, and the noise,

which is at a further distance, which can be expressed as Signal-to-noise ratio

(SNR). A high SNR indicates that the source is close to the microphone and a

low SNR indicates it is further away.

A point source is modelled as a spherical wave and the amplitude drop in

relation to distance is governed by the inverse square law. At larger distances,

the spherical wave can be modelled as a plane wave [Howard and Angus, 2000].

Over the same distance from the same origin, a spherical wave will exhibit a

greater drop in amplitude compared to the plane wave.

If the sound source of a microphone is modelled as a spherical wave as it is

close to the microphone and the noise is modelled as a plane wave, the amplitude

drop of the sound source between the front and rear of the diaphragm will be

greater, resulting in a higher pressure gradient and thus a higher perceived

amplitude than the noise modelled as a plane wave.

This ratio can be expressed as

PR =

√
1 +

1

k2r2
(2.5)
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where k is the wave number, k = ω
c and r is the distance from source to

microphone [Etter, 2012]. This difference in SNR for different values of r is

shown in Figure 2.3.
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Figure 2.3: Pressure gradient ratio over frequency with changing source to mi-
crophone distance.

As frequency increases, the ratio reduces -6dB per octave, eventually reach-

ing 0 as the frequency becomes large. This perceptually results in a boost at

low frequencies, as the pressure gradient ratio is generally higher at lower fre-

quencies.

The corner frequency, when the SNR reaches 0, can be calculated from (2.5)

as

fc =
c

2πr
. (2.6)

Figure 2.4 shows how the corner frequency of the SNR roll off changes with

source to microphone distance. The proximity effect occurs because the corner

frequency increases as distance decreases.

In a live musical performance, musicians naturally move while performing.

This movement changes the source to microphone distance and can therefore

cause undesired tonal changes that cannot be corrected using equalisation.

The proximity effect is often considered with vocal performances where the

vocalist is holding the microphone in their hand. This means the source to

microphone distance changes rapidly and the tone of the microphone output

will change.

Although here we consider the proximity effect to be an unwanted artefact,
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Figure 2.4: Pressure gradient ratio corner frequency with changing source to
microphone distance.

there are certain times when it is used as a desired effect, particularly for vo-

calists. Trained vocalists will be aware of the proximity effect and the effect it

has on the tone of their voice. It can be used to enhance low frequency content

and produce a boomier, louder and more present sound [Savage, 2011].

2.2.4 Comb filtering

Quite often an instrument will produce a different sound depending on the

angle of the listener or microphone. For example, a microphone positioned next

to the sound hole of an acoustic guitar will produce a different sound to that

at a microphone positioned next to the fingerboard, as in Figure 2.5. Or an

engineer may want to reproduce the acoustic space around an instrument with

a microphone a further distance from the instrument, but a closer microphone

is also required to reproduce more delicate elements of the sound. In these

situations, multiple microphones positioned around a single source gives the

sound engineer flexibility to mix the microphone signals together in whichever

way they desire.

The problem with this is that often the microphones are not equidistant

from the sound source. This means that the sound arrives at each microphone

at a different time. When the microphones are mixed together, this causes comb

filtering.

Comb filtering occurs when any signal is summed with a delayed version of
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⌧2

⌧1

x2

x1

Figure 2.5: A common layout for reproducing a single source s with multiple
microphones x1 and x2.

itself. In many areas of acoustics, such as sound system design, comb filtering is

unwanted [McCarthy, 2006, chap. 2]. But comb filtering can also be a desired

effect in the form of flanging or phasing audio effects [Huber and Runstein, 2005,

chap. 6].

Comb filtering is so called due to the “comb” shaped frequency response it

produces, as seen in Figure 2.6. It is characterised by the peaks and troughs

associated with the filter which occur due to the cancellation and reinforcement

of frequencies along the audible spectrum.

When a signal is delayed in time, all frequencies are delayed by the same

amount. This results in a linear phase shift across the spectrum, causing some

frequencies to cancel and others to reinforce. The period of this reinforcement

and cancellation is directly related to the amount of delay that is occurring.

Amplitude differences between the microphone signals also changes the fre-

quency response of the resulting comb filter. Equal amplitude will result in

complete rejection at the troughs whereas if the delayed signal is of a lower

amplitude than the direct signal, the filter will be less severe. Previous research
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Figure 2.6: Transfer function of a comb filter with a relative delay of 8 samples
at 44.1kHz sampling rate.

suggests comb filtering can be heard when the delayed signal is as much as 18dB

lower in amplitude than the direct signal [Brunner et al., 2007].

In music production comb filtering can also occur when audio is duplicated,

processed and mixed with the original signal, such as recording a guitar both

direct and through an amplifier and microphone. Additionally it can occur when

stereo recordings are mixed to monaural audio.

Differences in source to microphone delays can also occur when multiple mi-

crophones are used to reproduce multiple sources, for example in an ensemble

performance where each instrument has a dedicated spot microphone. Micro-

phone bleed can occur between the microphones and can also cause comb filter-

ing if mixed. Similar problems can occur when a stereo microphone pair is used

to reproduce an ensemble of instruments and the instruments have their own

dedicated microphones. The sound from an instrument will arrive at the spot

microphone and the stereo pair with different delays. With a large ensemble,

many delays can occur.

Comb filtering due to multiple microphones reproducing the same source

is detrimental due to the changes in frequency content that occurs. This can

cause the source to sound characteristically “phasey” and often leads to a “thin”

sound.

Signal model

A single source, s being reproduced by two microphones x1 and x2, as in Fig-

ure 2.5, can be described as

x1[n] =α1s[n− τ1] (2.7)

x2[n] =α2s[n− τ2] (2.8)
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where n is the current time step, τ1 and τ2 are the delays associated with

the sound source travelling from the source position to the position of x1 and

x2 and α1 and α2 are associated amplitude changes. Uncorrelated noise and

reverberation are not considered. When the microphones are summed to become

y, in terms of s this is

y[n] = α1s[n− τ1] + α1s[n− τ2]. (2.9)

It can also be stated that

x2[n] = x1[n− τ ] (2.10)

assuming τ2 > τ1 where τ = τ2 − τ1.

In the general case this is

xl[n] = αls[n− τl] (2.11)

where

y[n] =

L∑

l=1

αls[n− τl]. (2.12)

2.2.5 Microphone bleed

We have discussed single source configurations that can cause the proximity

effect and comb filtering. This assumes that there is only one source in a space

and that other sources are noise.

In reality, especially in live sound, it is more likely there will be multiple

sound sources in a single acoustic space. In this case it is plausible that each

sound source has at least one dedicated microphone.

With multiple sources in an acoustic space it is probable that all sources

can be heard from all positions. This means that any microphones positioned

anywhere in the space will reproduce all sources. The position of each micro-

phone relative to the sources will determine the amplitude of each source in

the microphone output. If each source has at least one dedicated microphone,

we can assume that each microphone is positioned closest to one sound source

and other sources that are reproduced at lower amplitude can be referred to as

microphone bleed, as in Figure 2.1.

A microphone reproduces sound that enters the area surrounding it which

is described by its pick up pattern. When placing a microphone to reproduce a

target sound source, it is placed to ensure the source is within this area. Sound

from other sources may also enter this area and will also be reproduced, which

can be referred to as interference.

Microphone bleed is a problem because any effects or processing applied to
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a microphone signal with the intention of being applied to the target source

will also be applied to any interfering sources. This will cause errors in mixing

and result in a lower quality production. If the microphone signals with bleed

are mixed, this can also cause comb filtering as multiple delayed versions of

the same source are being summed. An interfering signal can also reduce the

intelligibility of the target source by frequency masking [Howard and Angus,

2000, chap. 5]. It is therefore advantageous to reduce the amplitude or amount

of this microphone bleed.

Signal model

⌧22

⌧21

⌧12

⌧11

s2

s1

x2

x1

target source
direct path

interfering source
direct path

Figure 2.7: A configuration of two sources being reproduced by two microphones
with the direct signal paths and equivalent delays shown.

Two microphones, x1 and x2, reproducing sources s1 and s2, as in Figure 2.7,

can be described by

x1[n] = α11s1[n− τ11] + α21s2[n− τ21] (2.13)

x2[n] = α12s1[n− τ12] + α22s2[n− τ22], (2.14)
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where τlm is the delay of source l to microphone m and αlm is the amplitude

change of source l to microphone m.

If the microphone signals defined in (2.13) and (2.14) are summed to the

output y this becomes

y[n] = x1[n] + x2[n] (2.15)

= α11s1[n− τ11] + α12s1[n− τ12]+

α21s2[n− τ21] + α22s2[n− τ22]
(2.16)

assuming

τ11 < τ21 (2.17)

τ22 < τ12. (2.18)

Equation (2.16) shows that two versions of each source with different delays will

be summed, thus causing comb filtering of both sources which is discussed in

Section 2.2.4. The relative difference of the delay of each source arriving at each

microphone is defined by

τ1 = τ21 − τ11 (2.19)

τ2 = τ12 − τ22 (2.20)

and the relative gain difference as

α1 = α21 − α11 (2.21)

α2 = α12 − α22. (2.22)

2.3 Strategy

This thesis will be concerned with the following artefacts: the proximity ef-

fect, comb filtering and microphone bleed. These artefacts are of particular

research interest because they are often encountered by sound engineers and are

all caused by microphone positioning.

The following chapters discuss the research that has been undertaken in each

area. In each case, a background of each particular subject area is provided,

along with commonly used methods for reducing the artefacts. We then out-

line the literature concerned with reducing each artefact from a digital signal

processing point of view and find ways of improving on existing research or

conceiving new methods. Each correction algorithm is outlined in detail and

then assessed on either simulated data or real recordings, depending on what
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is appropriate and suitable, and evaluated either through objective measures,

analysis or subjective listening tests. Research into a special case of microphone

bleed is also presented which discusses situations where bleed may be desired,

such as in simulated drum recordings. In this case we present a method for

simulating the microphone bleed. Finally, we propose possible extensions to

each method for future research.
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Chapter 3

Proximity effect detection and correction

The most basic microphone configuration will consist of a single microphone

reproducing a single sound source in an acoustic space. Assuming the positions

of the sound source and microphone remain static, artefacts may come from

sources external to the configuration, such as reverberation and external noise.

Artefacts can also come from the microphone itself in the form of the prox-

imity effect, which is characterised as a perceptual boost in low frequency am-

plitude as the source to microphone distance decreases. The main consequence

of the proximity effect is unstable frequency content since the low frequencies

are boosted as the source to microphone distance decreases and excessive gain

which can cause distortion and clipping on the microphone pre-amplifier.

In this chapter we present a method for detecting the proximity effect purely

from analysis of the audio signal. We then present a variable gain low shelving

filter to correct the low frequency boost.

3.1 State of the art

In Section 2.2.3 we outlined the causes of the proximity effect and how it affects

mixing. In this section we discuss current methods and research for detecting

and reducing the proximity effect.

In commercial products, the proximity effect is tackled in a number of ways.

A class of condenser microphones consist of two diaphragms to provide selectable

polar patterns. This can also be used to reduce the proximity effect by effectively

enabling a cardioid polar pattern for high frequencies and a non-directional

pattern for low frequencies, which will not exhibit the proximity effect [Shure,

2010]. Although this will reduce the amount of low frequency boost the presence

of a non-directional capsule even at low frequencies will increase the amount of

ambient noise in the microphone signal. The additional components required

will also increase the cost of the microphone.

Other microphones include a bass roll off in an attempt to reduce the effect
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but this can alter the sound in an undesirable way and remove low frequencies

that may not be boosted by the proximity effect. A sound engineer can also

apply equalisation (EQ) to the microphone signal to reduce the amplitude or

completely cut low frequencies. If the source remains static, this equalisation

will successfully reduce the effects of the proximity effect. But if the source

to microphone distance changes, the parameters set by the engineer would no

longer be valid. A multi band compressor can also be used with the lowest

band set to cover the frequency band that the proximity effect tends to occur

at, but this varies with each microphone. As with using a filter, sounds that

may naturally contain a lot of low frequency information will also be affected.

The published research into the proximity effect is limited. Work by Dooley

and Streicher [2003] provides an in depth examination of the technology and use

of the bi-directional microphone but there is little explanation of the proximity

effect. Torio and Segota [2000] and Torio [1998] model a directional microphone

as a combination of a low and high pass first order filters with an overall gain

control.

Nikolov and Milanova [2000, 2001] also present a model to describe the

proximity effect. Josephson [1999] describes the effect and compares theoretical

models to real data and Millot et al. [2007] present results of microphone tests

showing the proximity effect.

The proximity effect can be thought of as being three dimensional, in terms

of frequency, angle of incidence and distance [Torio, 1998]. Attempts to reduce

the proximity effect by sound engineers are limited as they are unable to take

into account the absolute distance of the source and microphone and the angle

of incidence. If absolute distance data could be found then this could be coupled

with microphone data and the proximity effect accurately corrected. A study

by Etter [2012] investigates Automatic Gain Control with proximity effect com-

pensation. This method utilises a distance sensor on the microphone. Although

this gives accurate distance data, the distance sensor adds additional hardware

and therefore cost and inconvenience. Ideally proximity effect correction can be

achieved with any microphone as an input.

Methods for calculating source to microphone distance and angle use micro-

phone arrays which require knowledge of the array and at least two microphones

[Benesty et al., 2008b]. Work by Georganti et al. [2011] outlines a method to

estimate the absolute distance between a single source and a single microphone

by using statistical parameters of speech which inform a pattern estimator algo-

rithm. The method is shown to perform for close distances but requires training

of the algorithm and is only for speech sources.

Related work on detecting similar artefacts in microphones signals by Elko

et al. [2007] attempts to detect and suppress pop noise caused by plosives in
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recorded speech and follows a similar framework of detection and correction

using knowledge of the physical properties of the artefact.

From this survey of related works it is apparent that the literature on de-

tecting and reducing the proximity effect is limited and there does not exist

an adequate solution. Practical solutions exist, but are more akin to remov-

ing the offending frequency range instead of attempting to correct the boost

in low frequency amplitude. Automatic solutions have been proposed but they

rely on accurate source to microphone distance data. We therefore propose a

novel method of detecting and correcting for the proximity effect using spectral

analysis and dynamic filtering.

3.2 Proximity effect in practice

Detection of the proximity effect first requires understanding and analysis of how

it affects microphones under real conditions. Although distance based frequency

responses are available for the majority of microphones from the manufacturer

the available data can be limited and the manufacturer selects which information

they disclose. We have included an analysis of a directional microphone here to

show real, unbiased data.

We used a Genelec 8040 loudspeaker to output a white noise signal which

was recorded using an omnidirectional reference microphone (DPA 4006) and

cardioid condenser microphone (AKG C451) in the Listening Room at Queen

Mary, University of London. Although not an anechoic room, carpet was placed

under the microphones and loudspeaker to reduce reflections off the floor and the

walls were treated with diffusive and absorbent material. Separate recordings

were made at distances between 0.01m and 0.3m, each 10 seconds in duration.

The microphones were recorded simultaneously and the amplitude of the micro-

phone signals at the furthest distance was the same. The same equipment was

used for all experiments described in this chapter.

The microphone recordings were low pass filtered with a 4th order Butter-

worth filter with a cut off frequency at 500Hz. Figure 3.1 shows the RMS am-

plitude for the filtered microphone recordings of each distance and microphone

type.

At 0.01m there is a 9.38dB difference in amplitude between the two micro-

phones. At 0.3m there is only a 0.95dB difference in amplitude. This higher

difference at short source to microphone distance is due to the proximity effect

in the cardioid microphone.

43



0 0.05 0.1 0.15 0.2 0.25 0.3
−50

−45

−40

−35

−30

−25

−20

Source to microphone distance (m)

R
M

S
 a

m
p
lit

u
d
e
 (

d
B

)

 

 
Cardioid

Omnidirectional

Figure 3.1: Gain low pass filtered white noise recorded with cardioid and om-
nidirectional microphones at distances between 0.01m and 0.3m.

3.3 Proximity effect detection

The proximity effect must first be detected in a microphone signal before correc-

tion can be applied. This is a question of whether the microphone is directional

or omnidirectional, but also whether the microphone or the source is moving

and if it is moving in a way which is causing the proximity effect to occur, i.e.

at a close distance.

The type of microphone could be specified by the user but this relies on user

knowledge of the different types of microphone, which some amateur engineers

may not have. Some microphones also feature variable polar patterns, therefore

knowing the model of the microphone is not an indication of which polar pattern

is currently in use. We therefore require an automatic method to detect whether

the proximity effect is occurring. The output of the detection should ideally be a

binary decision as the proximity effect is determined by whether the microphone

is directional or not. Once the proximity effect is detected, this will trigger

a correction algorithm which will evaluate how much the proximity effect is

affecting the incoming signal.

We want to be able to detect the proximity effect in a microphone without

using extra hardware such as distance sensors. We therefore have to achieve

detection through analysis of audio features of the microphone signal.

As there is little previous literature on detecting the proximity effect, we

have to use knowledge of the properties of the proximity effect to select the
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most appropriate features in the microphone signal to use as indicators. We

take a heuristic approach in how to analyse the selected features.

However, analysing the low frequency amplitude of a microphone signal can-

not be used to detect the proximity effect. This is because there are many occa-

sions where a change in low frequency content is not due to the proximity effect

and is due to other causes such as an instrument playing a lower note or the

musician playing louder. It is expected that the low frequency amplitude will

increase as the source to microphone distance decreases, regardless of the type

of microphone being used. The difference with a directional microphone is that

the low frequency amplitude will be artificially boosted. A detection algorithm

has to be able to take these scenarios into account to avoid false positive results.

In Section 2.2.3 we have shown in Figure 2.4 that the corner frequency of

the pressure gradient ratio roll off changes with changing source to microphone

distance. At a distance of 5cm the corner frequency is around 1100 Hz which

then decreases to around 500Hz at a distance of 10cm. The corner frequency

then decreases at a slower rate as distance increases. If we assume the source

is moving over time in front of the microphone this corner frequency will be

changing within a range, which for a vocalist holding a microwave is likely to

be up to 30cm. As we do not know the source to microphone distance, we

will generalise that the proximity effect is a boost below 500Hz that has to be

rectified.

In this approach no prior knowledge of the microphone or sound source is

assumed and only the signal from the microphone is available. The aim of this

approach is to detect when the proximity effect is occurring and therefore if the

microphone used is directional.

3.3.1 Spectral flux

As the proximity effect is a spectral effect, analysis of spectral features can

be used to inform the detection algorithm. A variety of spectral features exist,

which are outlined by Lartillot and Toiviainen [2007] and are based on statistical

measures of the frequency spectrum.

As we do not have a reference to compare the incoming signal with, if the

source is static it is difficult to distinguish whether the proximity effect is oc-

curring or if a boosted low frequency is due to other factors such as additional

EQ or the content of the signal. We therefore need to exploit information if the

source moves and analyse how the spectrum changes over time.

For this reason, spectral flux is a likely candidate as it is a measure of how

data is changing over time, in this case spectral content, and is commonly used

in onset detection [Bello et al., 2005]. It is calculated by taking the Euclidean
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distance of the magnitude of subsequent frames of data. This is described by

ζ[n] =

√√√√
N−1∑

k=0

[
|X[i, k]| − |X[i− 1, k]|

]2
(3.1)

where X is the microphone signal x in the frequency domain, k is the bin number

where k = 0, . . . , N − 1, N is the data frame size and i is the current frame.

This is suitable for proximity effect detection because it is assumed that

if the source moves and the proximity effect occurs, this will be shown in the

spectrum. It is expected that the spectral flux of low frequencies of a signal

experiencing the proximity effect would increase more as distance decreases

than higher frequencies. This can be used as an indicator of the proximity effect,

although we must take steps to ensure natural changes in frequency content of

the incoming signal are not mistaken for the proximity effect, which will be

detailed in the next section.

The limitations of using spectral flux are that it assumes the incoming signal

is at constant amplitude or increasing in amplitude as the distance decreases. If

the amplitude of the signal is decaying as distance decreases or the amplitude is

constant as the distance decreases at the same speed as the algorithm is running,

the spectral flux could remain constant. It is unlikely that either of these would

occur but we assume that if it does, another movement event will occur which

will trigger the detection algorithm.

3.3.2 Algorithm

The detection algorithm is performed on a frame by frame basis with frames

of length N samples. When a new frame is received it is transformed into the

frequency domain using the FFT. The frequency bins are then split into j bands

of equal width up to 2kHz. Only frequency bins below 2kHz are used as most

musical signals contain the majority of frequency energy below 2kHz [Katz,

2007]. We want to avoid analysing spectral content that is not from the target

source. The spectral flux for each band ζj is then calculated by

ζj [i] =

√√√√√
Qj−1∑

k=pj

[
|X[i, k]| − |X[i− 1, k]|

]2
(3.2)

where Qj is the maximum bin for the current band j and pj is the minimum

bin. The incoming signal is split into bands to smooth out any increases in

amplitude which may be specific to a narrow frequency band due to the recorded

instrument playing a lower note or external noise.
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In the ideal case of white noise recorded with an omnidirectional microphone

the spectral flux will be similar for all bands as all frequencies will exhibit an

equal increase in amplitude as the distance decreases. To show this, Figure 3.2

shows the spectral flux over time for an omnidirectional recording of a white

noise source. The frame size was N = 2048 at 44.1kHz sampling rate and

the frequency bins have been split into four bins, each 25 bins in width up

to k = 100, or to 2.15kHz. The distance between the source and microphone

was varied in an oscillating motion over time. As the input is white noise at a

constant amplitude output to a microphone at the same angle and position in

front of the speaker, any amplitude changes are due to changes in distance. A

positive gradient in spectral flux over time indicates the source to microphone

distance is decreasing. Equally a negative gradient indicates the distance is

increasing. This figure shows that with an omnidirectional microphone, the

spectral flux for each band is similar.

Figure 3.3 shows the same experiment with a cardioid microphone. It can

be seen that the lowest band exhibits higher spectral flux as the source to

microphone distance is at its shortest. The frequency bands above this behave

similarly to the omnidirectional microphone.

Therefore if a directional microphone is being used, lower bands will exhibit

greater spectral flux over time as the distance decreases due to the proximity

effect. This can therefore be used as a measure for detection.

The bands are then split into two sets of low and high frequency bands at

500Hz to encompass all bands which may be affected by the proximity effect. As

we mentioned previously, the proximity effect is not uniform for all directional

microphones. We then calculate the mean spectral flux for the low and high

frequency sets. This is done to smooth out erroneous increases in low frequency

amplitude due to other causes than the proximity effect. A large difference

between the means will indicate the presence of the proximity effect.

The difference is indicated by ∆p, where ∆p = ζL − ζH , ζL is the mean low

frequency spectral flux and ζH is the mean high frequency spectral flux. Once

∆p crosses a predefined threshold T , the proximity effect is detected. Thus

P =





1 if ∆p >= T ,

0 if ∆p < T .
(3.3)

where 1 indicates the detection of the proximity effect and P is the detection

function.
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Figure 3.2: Spectral flux of three bands of white noise recorded with an omni-
directional microphone with time varying distance.
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Figure 3.3: Spectral flux of three bands of white noise recorded with a cardioid
microphone with time varying distance.
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3.3.3 Evaluation

The detection algorithm was tested by recording white noise and a sample of

male singing vocal in the same conditions as in Section 3.2. The distance be-

tween the source and microphone was periodically changed over time. Each

microphone was recorded separately. In the evaluation we calculated the spec-

tral flux in bands 10 bins in width up to k = 100, resulting in 10 bands in

total.

The aim of the evaluation was to establish whether the algorithm is able

to detect the proximity effect in directional microphones when the source to

microphone distance of a moving source to a single microphone is short. Ideally

we would want to know the exact source to microphone distance. This can

be achieved using video analysis or hardware proximity sensors but size and

cost limits the flexibility this can have [Etter, 2012]. Instead, we controlled

all parameters to ensure that the only amplitude changes were due to source

to microphone distance changes. Under these conditions an overall increase in

amplitude is only attributed to a decrease in source to microphone distance.

Figures 3.4 - 3.7 show the output of the detection algorithm for a white noise

and male vocal input source. The detector outputs 1 when the proximity effect

is detected and 0 if it is not detected. The RMS level of the input signal is

shown in each case to give an indication of the source to microphone distance.

Any amplitude changes are attributed to the increase in amplitude as the source

to microphone distance decreases as the microphone was moved in an oscillating

motion in front of the loudspeaker. The maximum distance was approximately

0.5m and the minimum approximately 0.01m.

Figure 3.4 shows the output of the proximity effect detector using the omni-

directional microphone recording with a white noise source and Figure 3.5 shows

the same for the cardioid microphone. The proximity effect was not detected in

the omnidirectional recording, which is expected. The proximity effect on the

cardioid microphone recording was accurately detected each time the source to

microphone distance decreases.

Figures 3.6 and 3.7 show the proximity effect detection output for a male vo-

cal source with an omnidirectional and cardioid microphone respectively. The

algorithm successfully detected when the source to microphone distance de-

creased and caused the proximity effect in the cardioid microphone case. The

proximity effect was not detected in the omnidirectional microphone case.

Although the proximity effect detection output is shown here varying over

time, in reality it is a binary decision and if the proximity effect is detected at

all this means that the microphone is directional and is exhibiting the proximity

effect. We can then assume that if the proximity effect is detected at any point
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Figure 3.4: Proximity effect detection of a white noise signal recorded with an
omnidirectional microphone.
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Figure 3.5: Proximity effect detection of a white noise signal recorded with a
cardioid microphone.
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Figure 3.6: Proximity effect detection of a male vocal source recorded with an
omnidirectional microphone.
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Figure 3.7: Proximity effect detection of a male vocal source recorded with a
cardioid microphone.
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in the audio sample, a correction algorithm should be triggered.

3.4 Proximity effect correction

Once the proximity effect is detected, correction is then required. This section

outlines a method for correcting for the proximity effect through analysis of the

incoming microphone signal.

As mentioned previously it is possible to use a multiband compressor to

smooth out the proximity effect. The problem with this is that the parameters

of the compressor are static and are usually set by the sound engineer at a

fixed source to microphone distance during a sound check of a live performance.

Therefore if the amount of movement or position changes, or if a different in-

strument uses that microphone, then the parameters will no longer be relevant.

The parameters also need to be set by a trained sound engineer.

We therefore propose using a dynamic shelving filter with an adaptive gain

based on analysis of the incoming audio which will allow the level dependence

of the multiband compressor but the isolated low frequency equalisation of a

static filter.

In a live sound situation the sound engineer will apply gain and EQ for

the source signal at a fixed distance to get the desired sound. If we assume

that this is the mean distance between the source and microphone throughout

a performance, we can use this as a baseline to aim the correction towards.

The goal is therefore to match the ratio between the high frequencies and low

frequencies when the source to microphone distance decreases to that at the

mean distance. Doing this will keep the tone of the sound source stable.

The method is performed on a frame by frame basis. The incoming micro-

phone signal x is first transformed to the frequency domain using the FFT of

size N to become X. The frequency bins are then split into two frequency bands

at the cutoff point fc in Hz as a bin number kB , calculated by fC/(fSN) where

fS is the sampling frequency.

The mean amplitude of each frequency band is then calculated by

X̄L =
1

kB + 1

kB∑

k=0

|XL[k]| (3.4)

X̄H =
1

N − kB − 1

N−1∑

k=kB+1

|XH [k]|. (3.5)

therefore when x[n] is white noise, X̄L = X̄H .

The mean amplitude that we aim the correction towards is estimated by

taking an accumulative average of the low frequency bins of the incoming signal,
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XL, up to the current time. This becomes the threshold of the dynamic filter,

R.

The dynamic filter we employ is a low cut shelving filter with a cutoff point

fc equal to the crossover bandwidth point, in this case chosen as 500Hz. The

gain G of the shelving filter is calculated using the ratio of R to the mean

amplitude of the low frequency bins of the current frame of data, X̄L, described

by

G =




−20 log10

(
X̄L

R

)
if X̄L > R,

0 if X̄L <= R.
(3.6)

So if the mean low frequency amplitude is less than the threshold, the filter is

not applied. The filter equations are taken from [Zölzer, 2002, chap. 2] and the

difference equations are defined by

y1[n] = aB/Cx[n] + x[n− 1]− aB/Cy1[n− 1] (3.7)

y[n] =
H0

2
[x[n]± y1[n]] + x[n]. (3.8)

The gain G in dB is adjusted by

H0 = V0 − 1, with V0 = 10G/20 (3.9)

and the variable for cut frequency aB for boost and aC for cut are calculated

by

aB =
tan((πfc/fs)− 1)

tan((πfc/fs) + 1)
(3.10)

aC =
tan((πfc/fs)− V0)

tan((πfc/fs) + V0)
. (3.11)

So once the low frequency amplitude goes above the cumulative mean low

frequency amplitude, gain reduction takes places which is related to how far the

low frequency amplitude of the current frame is above the mean. The processing

can be applied separately to the analysis in a side chain approach.

3.4.1 Evaluation

There does not exist a precedent for evaluating a proximity effect correction al-

gorithm, nor is there a standard metric for measuring the “amount” of proximity

effect. In microphone specifications the proximity effect is shown described by

showing the frequency response of the microphones at different distances and

angles. This is also repeated in the literature [Olson, 1991].

We will therefore show in this evaluation that the proposed algorithm is
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performing what we set out to achieve through an analysis of the processed

audio.

As with the evaluation of the detection algorithm, ideally we want to eval-

uate the algorithm on audio that is recorded using a directional microphone

where we have absolute control over the distance but this comes with problems

with measurement, as mentioned previously. For the analysis of the correction

algorithm it is important to be able to determine the precise distance to show

how much the proximity effect is having an effect. We therefore simulated audio

recorded with a directional microphone using models described in [Torio, 1998]

to simulate the proximity effect using distance as the input variable. In this

implementation we modelled the filters using first order Butterworth filters. A

model of an omnidirectional microphone is not used because we assume the prox-

imity effect has already been correctly detected and therefore the microphone

is directional.

White noise

The correction algorithm was evaluated using white noise and a 20 second male

vocal sample as input sources, typical of the type of signal which will often

exhibit the proximity effect. A framesize of 2048 samples was used with a

sampling rate of 44.1kHz.

Different types of time varying movement were analysed to establish how the

algorithm handles different situations. These can be seen in Figure 3.8 showing

time against source to microphone distance.

Figures 3.9 to 3.14 show the results of the correction algorithm using a white

noise input source. The low frequency amplitude before and after correction

and the threshold R are shown as a function of time. Due to convergence of the

accumulative averaging, only the last 10 seconds of the audio sample is shown.

Figure 3.9 shows the low frequency amplitude before and after correction

for the first movement vector where ȲL is the mean low frequency amplitude

after correction. The source to microphone distance was kept static at 0.01m

what was the most extreme example. Ultimately no correction occurred as the

microphone was not moving therefore ȲL = X̄L and R remained at the same

level. In this case the sound engineer would have already corrected for the

proximity effect manually as the source is static.

Figure 3.10 shows the same movement as Figure 3.9 but at 0.5m. The results

are the same.

Figure 3.11 shows the source to microphone distance slowly decreasing in

a cosine movement. As the distance goes below 0.2m the correction began to

reduce the level of low frequencies to the mean level. This shows the method
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Figure 3.8: Movement vectors tested.
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Figure 3.9: Low frequency amplitude before and after proximity effect correction
for the movement described in Figure 3.8(1) with white noise source.
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Figure 3.10: Low frequency amplitude before and after proximity effect correc-
tion for the movement described in Figure 3.8(2) with white noise source.

was successfully reducing the proximity effect.

Figures 3.12 and 3.13 show sinusoidal movement at different frequencies.

Due to the sinusoidal movement the expected low frequency amplitude, the cu-

mulative average, was stable and the low frequency amplitude was successfully

reduced towards this. The amount of reduction could be increased by adjust-

ing the filter, but high levels of reduction will exhibit similar artefacts as over

compression.

Figure 3.14 shows a more complex movement with a sinusoidal movement

which gradually decreases the minimum and maximum distances. This is in-

cluded to show the case if the average movement may change slowly over time.

As the source to microphone distance is decreased, more reduction occurs.

We further analysed the data by calculating the Euclidean distance between

the uncorrected and corrected low frequency amplitude and the mean. Fig-

ure 3.15 shows the results for each movement vector. This shows that the

correction algorithm succeeded in the task of reducing the amplitude of the low

frequencies towards the accumulated mean level.
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Figure 3.11: Low frequency amplitude before and after proximity effect correc-
tion for the movement described in Figure 3.8(3) with white noise source.
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Figure 3.12: Low frequency amplitude before and after proximity effect correc-
tion for the movement described in Figure 3.8(4) with white noise source.
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Figure 3.13: Low frequency amplitude before and after proximity effect correc-
tion for the movement described in Figure 3.8(5) with white noise source.
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Figure 3.14: Low frequency amplitude before and after proximity effect correc-
tion for the movement described in Figure 3.8(6) with white noise source.
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Figure 3.15: Euclidean distance to mean of the uncorrected and corrected low
frequency amplitude for each movement vector from Figure 3.8 for a white noise
source.
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Figure 3.16: Low frequency amplitude before and after proximity effect correc-
tion for the movement described in Figure 3.8(3) with male vocal input.
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Figure 3.17: Low frequency amplitude before and after proximity effect correc-
tion for the movement described in Figure 3.8(6) with male vocal input.

Male vocal

We now analyse the same types of movement with a male vocal source. Here

we present the most interesting results. All results that are not included in the

next section can be found in Appendix A, Figures A.1 to A.4.

Figure 3.16 shows the analysis for the vocal input signal with the source to

microphone distance slowly increasing. As with the white noise, the reduction

increased dramatically as the source to microphone distance decreased towards

0.01m. The effect of a melodic source can also be seen, since there were localised

increases in low frequency amplitude due to lower notes being sung. On occasion,

these rises in low frequency energy were enough to trigger the correction.

Figure 3.17 shows the sinusoidal movement gradually moving towards the

source. Again, the amount of reduction increased as the source to microphone

distance decreased. The results were less dramatic than the white noise case

due to the changing melodic nature of the input signal.

Figure 3.18 shows the Euclidean distance between the uncorrected and cor-
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Figure 3.18: Euclidean distance to mean of the uncorrected and corrected low
frequency amplitude for each movement vector from Figure 3.8 for a male vocal
source.

rected low frequency amplitude and the mean for all movement vectors. As with

the noise input, the results showed that in all cases under test the algorithm

succeeded in correcting the low frequency amplitude towards to the mean.

We have shown that the proximity effect correction is successful at bringing

down the amplitude of the low frequencies as they increased due to the proximity

effect with a white noise and male vocal source. We have also shown that the

method adapted to different circumstances.

3.5 Discussion and conclusions

In this chapter we have presented methods for detection and correction of the

low frequency boost caused by the proximity effect in directional microphones

without knowledge of the microphone or source to microphone distance. This

has not been attempted in the literature.

We detect the proximity effect by employing spectral analysis to extract spec-

tral flux. Analysis of spectral flux then determines whether the proximity effect

is occurring, because spectral flux will be higher at lower frequencies as source

to microphone distance decreases in directional microphones. The method was

shown to accurately detect the proximity effect on recordings made with a di-

rectional microphone and unable to detect the proximity effect in recordings

made with an omnidirectional microphone.
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The proximity effect is then corrected by analysis of the microphone signal.

The correction method is a dynamic low shelving filter with gain dependent

on the analysis of the incoming audio. The filter intelligently reduces the low

frequency boost to a level at the mean distance between source and microphone

without prior knowledge of the microphone or initial source and microphone

positions.

The correction method was shown to successfully reduce the boost in low

frequency energy on a variety of movement vectors.

The work has potential to be used in live sound scenarios to retain spectral

consistency when a musician naturally moves in front of the microphone while

performing. It also has applications in teleconference situations to avoid erratic

increases in amplitude that can cause signal distortion due a speaker suddenly

moving close to the microphone. In this case previous research into speech to

microphone distance estimation could be utilised to improve results.

In this chapter we have discussed an artefact that can occur when a single

source is reproduced by a single microphone. In the next chapter we extend this

to the case where multiple microphones reproduce a single source and investigate

reducing the comb filtering that this can cause.
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Chapter 4

Comb filter reduction

In the previous chapter we discussed the proximity effect, which occurs when

using directional microphones and can be an unexpected problem in a configu-

ration of a single source being reproduced by a single microphone.

Continuing with a single source, it is possible to reproduce a single source

with multiple microphones. The problem with this is that often the microphones

are not equidistant from the sound source. If the microphones signals are mixed

then multiple, delayed versions of the same sound source are summed. This can

result in comb filtering which changes the timbre of the sound source and can

often lead to it sounding “thin”.

In this chapter we present research into reducing comb filtering by automat-

ically estimating the relative delay of a source to multiple microphones. We

discuss how the performance of the Generalized Cross Correlation with Phase

Transform (GCC-PHAT) method of time delay estimation is dependent on the

bandwidth of the input source and on the window function used.

4.1 State of the art

An introduction to the causes and effect of comb filtering in live sound has

already been provided in Section 2.2.4. In this section we discuss the state of

the art in comb filter reduction from the literature.

4.1.1 Reducing comb filtering

Since comb filtering is caused by a difference in time of a sound source arriving

at multiple microphones, the immediate goal to reduce the comb filtering is to

align the source in each microphone.

This can be achieved by physically positioning the microphones equidistant

from the source but this requires accurate measurement and it may not always

be the desired configuration.
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Figure 4.1: Simulated waveforms of two microphones picking up the same sound
source. In live sound the top waveform would be delayed to align with the
bottom. In post production the waveform regions can be shifted manually.

It is possible in live sound to apply delays to microphone signals that are

reproducing the same source [Rumsey and Mccormick, 2005, chap. 13]. The

correct delay to apply to each microphone can be calculated by measuring the

positions of the source and microphones. It is also possible to apply delay by

ear until the comb filtering has been audibly reduced, but this can become dif-

ficult when many microphones are used and is unlikely to be sample accurate.

As this is a real time situation, delay is usually applied so that all the audio

tracks are aligned with the microphone signal with the longest delay, but this

requires knowing which microphone this is. In studio recordings it is also possi-

ble to manually move audio regions in a Digital Audio Workstation (DAW) to

visually align audio tracks, as shown in Figure 4.1. Studies by Leonard [1993]

and Anazawa et al. [1987] have shown that improvements to audio quality are

achieved when delay compensation techniques are used.

The problem with manually estimating a compensating delay is that it is

unlikely to be accurate. One sample delay is enough to result in a first order

low pass filter. Assuming a sampling frequency of 44.1kHz and a speed of sound

of 344 m/s at room temperature this is equivalent to a difference in source

to microphone distance between two microphones of just 0.0078m. Therefore

sample-accurate manual delay correction is almost impossible.

Adjusting delays by ear means that the comb filtering may appear to be

reduced for the current piece of audio but if the audio changes, for example if
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an instrument plays a different range of notes, the comb filtering could reappear

in a different frequency range. Estimating delays by measuring distances has its

own problems as the speed of sound is not constant and can easily be changed

by temperature and humidity [Howard and Angus, 2000]. In both cases if the

source moves, the delays will change and comb filtering will once again occur.

A number of studies exist in the literature concerned with automatically

estimating the delay in microphone recordings of musical sources and applying

the delay to reduce comb filtering. Work by Perez Gonzalez and Reiss [2008c]

emulates the manual delay correction usually used to reduce comb filtering by

estimating the delay between microphones using methods from sound system

alignment [Meyer, 1992]. More recently commercial products have begun to

emerge that claim to achieve automatic alignment, presumably using similar

methods.

Other literature on reducing comb filtering in multiple microphone configu-

rations includes work by Faller and Erne [2005] who propose a method aimed

at live classical concerts where spot microphones are used to pick up individual

instruments and a stereo pair used to reproduce the overall sound of the or-

chestra. Delay occurs between the sound of the instrument arriving at the spot

microphone and at the stereo microphones and also there is a difference in the

timbre due to reverberation that occurs on the stereo microphones but not on

the spot microphones. When the spot microphones are mixed with the stereo

microphones, this may result in an unnatural sound which is generally undesired

in a classical recording. The impulse response between the spot microphone and

the left and right stereo microphones is estimated and the spot microphone fil-

tered with this impulse response. This method does not attempt to estimate

the delay directly, but instead relies on the impulse response to introduce the

delay. This method is also not used solely for comb filtering, but for the overall

sound of the instrument, including attenuation and reverberation.

A study by Gnann and Spiertz [2008] proposes a method for mixing signals

in the frequency domain to avoid comb filtering. This requires some estimation

of the phase spectrum of the output signal, which can prove problematic, and

it was not tested under noisy or reverberant conditions.

It is also possible to use decorrelation to reduce comb filtering of correlated

source [Kendall, 1995] but this involves direct processing of the microphone

signals that may produce artefacts.

4.1.2 Delay Estimation

We mentioned previously that it is possible to automatically estimate the delay

between microphones for use in comb filter reduction. This is commonly known
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as Time Delay Estimation (TDE) or Time Difference of Arrival (TDOA) and

performs with no prior knowledge of the source or microphone positions. Most

previous work utilises TDE for source localisation using multilateration, for use

in source separation and for microphone array beamforming [Benesty et al.,

2007]. In this section we present a literature survey of the common methods of

delay estimation.

Huang et al. [2006] outline the challenges in the identification of MIMO

(multiple input, multiple output) systems, which includes delay estimation. It

states the main challenges to TDE are blind channel estimation and reverbera-

tion. This needs to be taken into account when considering methods for delay

estimation. There is a wide body of literature on comparing delay estimation

methods in telecommunications and a comprehensive evaluation can be found

in [Chen et al., 2006].

The fundamental method of estimating the time lag between correlated sig-

nals is to perform the cross correlation between them. Recent studies still make

use of this, for example work by Tamin and Ghani [2003] proposes optimising

the cross correlation function to improve accuracy of TDE, suggesting that a

combination of a Hilbert Transform with a pruned cross correlation function

produces the greatest improvement.

The cross correlation was extended by Knapp and Carter [1976], where the

Generalized Cross Correlation (GCC) was introduced. GCC performs the cross

correlation in the frequency domain using the FFT. This is then transformed

back to the time domain and the delay is estimated by finding the position

of the maximum peak in the histogram. This is equivalent to estimating the

impulse response between the microphone signals. It is sample accurate and is

favoured since it is computationally cheap, straightforward to implement and

allows tracking of moving sources [Benesty et al., 2008b].

Weightings can also be applied to improve the performance of the GCC in

noisy and reverberant conditions. An example of this is the Phase Transform

(PHAT), which has mostly been applied to speech [Benesty et al., 2008a].

Other methods of delay estimation also attempt to estimate the impulse re-

sponse between the microphone signals by adaptive filtering, for example Least

Mean Square (LMS) [Reed et al., 1981] and the Adaptive Eigenvalue Decom-

position Algorithm (AEDA) proposed by Benesty [2000] and recently extended

by Salvati and Canazza [2013]. Adaptive filtering techniques tend to require a

period of convergence and the time based implementations can cause computa-

tional issues when used at high sampling rates, such as the full audio bandwidth

used in music recordings as opposed to speech transmission. LMS-based meth-

ods also require knowledge of which microphone signal incites the longest delay,

as adaptive filters are commonly used for echo cancellation or noise cancellation
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where the configuration is known. The GCC, on the other hand, is able to man-

age negative delays. Adaptive filter techniques will also take time to converge to

a new value in the delays changes. Therefore if the sources are moving quickly,

this will not be accurately tracked by the adaptive filter.

The Degenerate Unmixing Estimation Technique (DUET) method of source

separation of mixed signals [Yilmaz and Rickard, 2004] also calculates the delay

parameters by estimating the phase difference for each frequency bin and per-

forming a histogram on the result. An estimate of the amplitude of each bin is

also included to produce peaks in the histogram. The position of these peaks

determines the attenuation and delay of each source and the number of peaks

is equal to the number of sources. Unlike most source separation methods, this

does not use GCC for the delay estimation but it is able to estimate delays of

multiple sources.

Work by Meyer [1992] also suggests calculating the impulse response be-

tween the microphone signals and Perez Gonzalez and Reiss [2008c] extend this

by applying the Phase Transform to the impulse response and calculating the

position of the maximum peak to estimate the delay. This method is used in

the audio analysis and system alignment software SIM II [Meyer Sound, 1993]

and is aimed at a variety of input signals, including musical instruments. The

methods proposed by Meyer [1992] are equivalent to methods outlined by Knapp

and Carter [1976] but different naming conventions are used. For example an

undefined step in the calculation of the impulse response by Meyer [1992] is

named the Roth processor (ROTH) weighting by Knapp and Carter [1976].

The review paper on delay estimation by Chen et al. [2006] compares the

most popular methods of delay estimation which we have outlined: LMS, AEDA

and GCC-PHAT. It concludes that the method previously proposed by the same

author [Benesty, 2000], AEDA, is most robust to reverberation but at higher

computational cost than the more common methods, such as the GCC-PHAT.

Other studies support this, such as work by Brutti et al. [2008] which com-

pares the GCC-PHAT method to the AEDA specifically using the TDE to

estimate source locations. It concludes that the GCC-PHAT method is more

accurate under noisy conditions and that the AEDA is more computationally

complex.

From this literature survey it is clear that the GCC-PHAT is the most ap-

propriate delay estimation method for realtime comb filter reduction of musical

sources, which we will use for the remainder of the chapter.
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4.1.3 GCC-PHAT

In this section we provide a more in depth survey of the literature specifically

concerned with the GCC-PHAT.

An accurate and stable estimation of delay is imperative to reduce errors

in the subsequent usage of the estimation. This is important when used for

comb filter reduction as sudden changes in the estimated delay produce audible

artefacts.

It is well known that the GCC is susceptible to uncorrelated noise and rever-

beration which can reduce the accuracy of the estimation and how to improve

the robustness of the method is an open problem [Chen et al., 2006]. Chen et al.

[2005] present a method for improving the performance of the GCC technique

by weighting the calculation, which is found to perform well in noisy environ-

ments. Champagne et al. [1996] present an investigation into using a maximum

likelihood estimator with the GCC in reverberant environments.

There are a variety of weighting functions suggested in the literature, includ-

ing Smooth Coherence Transform (SCOT) and ROTH in the original study by

Knapp and Carter [1976]. The most commonly used is the Phase Transform,

which has been shown to improve performance in noisy and reverberant condi-

tions [Chen et al., 2011]. Perez-Lorenzo et al. [2012] evaluate the GCC method

in real environments as opposed to simulations and concludes the PHAT weight-

ing is most suited to these environments.

When the signal to noise ratio is reduced, the peak in the GCC function

becomes more difficult to find. Rubo et al. [2011] outline work on improving

the GCC-PHAT for noisy conditions by estimating the spectra of the noise

component in multiple source scenarios. Hassab and Boucher [1981] specifically

look at accuracy when the noise takes the form of a sinusoid and suggest a

frequency dependent weighting.

Reverberation can make it difficult to discern in the GCC-PHAT output

which peak corresponds to the direct sound and which peaks are early reflections

and reverberation as it is correlated noise. If the room is very reverberant these

early reflections can be of equal or higher amplitude to the direct sound.

Brandstein [1999] presents a method which exploits the harmonic nature of

the input signals to improve results in noisy and reverberant conditions. Rui

and Florenico [2004] outline a method which sets out to deal with noise and

reverberation in a two stage approach but in doing so adds to the complexity of

the problem. Wan and Wu [2013] propose using machine learning methods for

peak picking to get a more accurate estimation of delay. Choi and Eom [2013]

present a method to improve the accuracy of GCC by subsample processing.

The GCC-PHAT method is also used in source separation [Cho and Kuo,
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2009]. Source separation attempts to isolate sources from a mixture by esti-

mating the mixing parameters, usually delay and gain, of each source and using

these to create unmixing filters.

Improvements to the GCC-PHAT that have been proposed are reliant on

certain conditions or add additional complexity to the problem whereas the

widely used GCC-PHAT has been shown to be robust in a variety of conditions.

We will therefore continue to use the GCC-PHAT as it was proposed for the

remainder of this chapter.

4.1.4 Delay estimation of arbitrary musical signals

A large proportion of the literature on the GCC-PHAT is aimed at human

speech, often in source localisation under the name SRP-PHAT [DiBiase et al.,

2001]. Therefore the input source to many experiments is a sample of human

speech. More recently the GCC-PHAT has been applied to music signals. Music

signals differ from speech predominantly because the type of input signal is not

known beforehand and is more difficult to predict [Carey et al., 1999].

When extending any method developed for speech to be used with music

inputs, the input signal is unknown and could have different characteristics e.g.

spectral content, time envelope and overall energy. There is limited prior work

on using the GCC-PHAT on arbitrary musical signals and what effect this might

have on its performance. Work by Meyer [1992] details considerations that need

to be taken when using arbitrary signals instead of traditional noise sources

for transfer function calculations, such as averaging, accumulation, coherence

measurement and noise reduction. Although not directly concerned with the

GCC-PHAT, this work aims to estimate the impulse response between a close

and a distant microphone. Therefore many of the proposals remain the same.

A study by Azaria and Hertz [1984] also suggests a link between signal band-

width and delay estimation accuracy but focuses on narrow signal bandwidth

combined with broadband noise.

Another area which has had little exposure is the effect of window shape

on the GCC. The GCC requires that the Discrete Fourier Transform (DFT)

of each microphone signal is calculated. When a DFT is performed a discrete

frame of data is taken which can be weighted with a function such as the Kaiser

or Hamming window. As each window function has its own characteristics,

including the type of spectral leakage that occurs [Harris, 1978; Nuttall, 1981],

this may affect the delay estimation and the window function should not be an

arbitrary decision.

A theoretical study of the effect of the window function on delay estimation

by Balan et al. [2000] leads to the conclusion that the error is independent
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of the window shape, if the window is sufficiently wide, which is subsequently

disproved by the research presented in this chapter when applied to real data.

In reality, the frame size is restrained by computation and sufficiently large

frame are not necessarily practical. It also does not discuss the effect that

the input signal has on delay estimation. Other work investigates the effect

that window side lobes have on multifrequency signal measurement [Novotny

and Sedlacek, 2010] but does not detail how this affects the phase, which is

significant when discussing time delay.

A survey of the literature on implementations of the GCC-PHAT suggests

no justification for the window function chosen. Research into speech source lo-

calisation [Brandstein and Silverman, 1997b] uses phase differences to calculate

delay and mentions the use of a Hann window in preceding work [Brandstein

and Silverman, 1997a]. An overview of delay estimation methods by Chen et al.

[2006] uses the Kaiser window for the GCC-PHAT. Other works use the Hann

window [Perez Gonzalez and Reiss, 2008c; Tourney and Faller, 2006] or the Ham-

ming window [Bechler and Kroschel, 2003] without justification. Work into the

differences on perception of synthesised speech using either magnitude or phase

spectrum [Paliwal and Alsteris, 2005] compares two window functions, rectan-

gular and Hamming. The GCC-PHAT relies on accurate phase measurement,

but this work does not provide an explanation for how the Hamming window

changes the phase and therefore alters the result compared to the rectangular

window. Other examples using the GCC-PHAT in the literature do not describe

the window function used.

In the remainder of this chapter we provide a novel theoretical and experi-

mental analysis of the effect of window shape on delay estimation accuracy with

real, arbitrary musical signals.

4.2 Description of the GCC-PHAT

The signal model for a single source reproduced by multiple microphones in ane-

choic conditions is outlined in Section 2.2.4. It is repeated here for convenience

x1[n] =α1s[n− τ1] (4.1)

x2[n] =α2s[n− τ2] (4.2)

where x1 and x2 are microphones reproducing source s, τ1 and τ2, and α1 and

α2 are delays and amplitude changes associated with sound travelling from the

sound source to the microphones. This is assumed to be freefield conditions. It
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can also be rewritten in terms of x1 as

x2[n] = αx1[n− τ]. (4.3)

It is not straightforward to estimate τ1 and τ2 directly from (4.1) and (4.2)

without any prior knowledge of s. Delay estimation methods are often referred

to as Time Difference of Arrival as it is possible to estimate τ , the relative delay

of a source between microphones, where τ = τ2 − τ1.

The Generalized Cross Correlation, or GCC, is defined by

ΨG[k] = X∗1 [k] ·X2[k] (4.4)

in the frequency domain and

ψG[n] = F−1 {ΨG[k]} (4.5)

in the time domain where F−1 is the Inverse Fourier Transform, X1 and X2 are

x1 and x2 in the frequency domain, k = 0, . . . , N − 1 where k is the frequency

bin and |∗| denotes the complex conjugate. The delay, τ, is estimated by finding

the position of the maximum of the output function, where

τ = arg max
n

ψG[n]. (4.6)

The Phase Transform weighting uses only the phase of the GCC in the fre-

quency domain to become the GCC-PHAT. This is achieved by setting the mag-

nitude of the GCC to 1 across all frequencies, performed here by dividing (4.4)

by the magnitude so (4.5) becomes

ΨP [k] =
X∗1 [k] ·X2[k]

|X∗1 [k] ·X2[k]|
(4.7)

in the frequency domain and

ψP [n] = F−1 {ΨP [k]} (4.8)

in the time domain to become the GCC-PHAT. The delay is estimated by

τ = arg max
n

ψP [n]. (4.9)

An example of the output of a GCC-PHAT calculation can be seen in Fig-

ure 4.2 where the horizontal position of the peak determines the estimated delay.

Another way of expressing the GCC-PHAT is to say that it calculates the

difference in phase between each microphone signal in the frequency domain
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Figure 4.2: Output of the GCC-PHAT.

before being transformed back to the time domain to estimate the delay. This

is because the delay between two signals is predominantly contained within the

slope of the phase difference.

The shift theorem states that when a signal is delayed, a linear phase com-

ponent is added. The slope of the linear phase is equal to the delay, otherwise

known as group delay. The Discrete Fourier Transform X2 of the microphone

signal x2 is defined as

X2[k] =

N−1∑

n=0

w[n]x2[n]e−jωkn (4.10)

where ωk = 2πk/N where N is the frame size and and w is a window function.

Assuming a rectangular window function where w[n] = 1, using (4.3) this can

be rewritten in terms of x1 as

X2[k] =

N−1∑

n=0

αx1[n− τ]e−jωkn (4.11)

= αΦ[k]X1[k]. (4.12)

where

Φ[k] = e−j(n−τ)ωk (4.13)

is the linear phase term applied to X1 to become X2. This is the desired output

of the GCC-PHAT to estimate the relative delay and is therefore equivalent to

Φ[k] = Arg(X2[k])−Arg(X1[k]) (4.14)
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so

Φ[k] = Arg(ΨP [k]) (4.15)

where Arg(·) denotes the phase component of a complex number.

It was found by the author of this thesis that this is also equivalent to es-

timating the impulse response and applying the PHAT, which is the technique

recommended by Perez Gonzalez and Reiss [2008c]. This is described in Ap-

pendix B.

Techniques exist to estimate the delay by calculating the gradient of the

linear phase term [Brandstein and Silverman, 1997b]. This approach is highly

susceptible to uncorrelated noise and requires smoothing of results. Other meth-

ods exist for using just the phase to estimate the delay [Björklund and Ljung,

2009; Assous et al., 2009] although these have been shown to exhibit poor per-

formance. Work by Assous and Linnett [2012] outlines a method for estimating

delay using a combination of frequency content and phase offset but is specific

to a certain type of signal.

Studies by Donohue et al. [2007] and Salvati et al. [2011] suggest that with a

harmonic input signal the Phase Transform is detrimental to the delay estima-

tion accuracy, and outline a method for varying the degree in which the Phase

Transform is applied, depending on how harmonic the signal is. We address this

claim and it is discussed with analysis in Section 4.4.

4.3 Effect of windowing and signal bandwidth on delay

estimation accuracy

The GCC-PHAT is still commonly used in the same form as when first intro-

duced by Knapp and Carter [1976]. It has consistently been shown to perform

adequately for speech signals in a variety of environments, and therefore no

significant adaptations of the algorithm have been widely accepted.

The main variables that can be changed in the algorithm are the GCC

weighting function, window shape, window size and hop size. As discussed in the

previous section the research outlined in this chapter uses the Phase Transform

weighting function. The window shape used with the DFTs in the GCC-PHAT

has not been discussed in the literature and is an important, often overlooked

stage of the calculation. This section proceeds to investigate the effect different

window shapes have on delay estimation and how this relates to musical signals.

The following analysis in this section was completed in collaboration with the

supervisor of this research, Joshua Reiss.

As mentioned previously, the GCC-PHAT estimates the linear phase shift

between X1 and X2 with the individual phase shift θk of each frequency bin k
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linearly related to the sample delay τ. Taking (4.7) and assuming X1 and X2

are full bandwidth signals with significant data for all k, the phase difference

using the GCC-PHAT then becomes

ΨP [k] = ejθk = e−jωτ . (4.16)

The inverse DFT yields the final result

ψP [n] =
1

N

N−1∑

k=0

e−jωτejnωk (4.17)

=
1

N

N−1∑

k=0

ej(nωk−τω) (4.18)

=





1 if n = τ

0 if n 6= τ
(4.19)

which is equal to (4.8) and the delay can be accurately estimated as τ. For

(4.16) to hold, θk has to be correct for all values of k.

A real signal, such as a musical instrument input source, will not fill the

audible bandwidth. Different instruments produce notes that occupy different

areas of the frequency spectrum. Percussive instruments may produce a more

noise-like sound that occupies a large part of the spectrum whereas a harmonic

instrument, such as a flute, will primarily produce harmonics of a fundamental

frequency. There will also be a limit to the range of notes an instrument can

produce and therefore the fundamental frequency.

In the extreme case of a narrow bandwidth signal, taking a single complex

sinusoid s = ejωn where ω = 2πk̂/N , k̂ is an integer 0 ≤ k̂ < N − 1 and

sθ = ej(ωn+θ) we know from the shift theorem that

Sθ[k] = ejθS[k] (4.20)

where S is s in the frequency domain. S will have a single non-zero value when

k = k̂. Hence when k 6= k̂

S∗1 [k] · S2[k]

|S∗1 [k] · S2[k]|
6= ejθ (4.21)

as this leads to division by 0 and therefore it is undefined.

The delay cannot be estimated from the value of θ as this is only correct

for when k = k̂ so gives no context as to the slope of the phase and thus the

corresponding delay in samples. The GCC-PHAT will therefore not be able to

estimate a delay as the phase is only correct when k = k̂. In reality due to
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the real environment and background noise, all k will be defined. But this will

manifest as noise in the GCC-PHAT, therefore the correct delay will still not

be estimated.

In (4.20), s is assumed to contain an integer number of periods within N .

Spectral leakage occurs when the input signal contains a non-integer number

of periods within the window and can be attributed to the Gibbs phenomenon

[Pan, 2001], [Gottlieb and Shu, 1997].

This is often the case with real signals. The result of this is that for a single

sinusoid the frequency domain signal is no longer a delta function but resembles

the frequency spectrum of the particular window function.

The spectral leakage also implies that all values of k will be defined, which

is not the case in (4.21). If s = ejωn where ω = 2πk̂/N and k̂ is not an integer

then all k will be defined and the GCC-PHAT can be calculated. Despite this,

the correct delay will still not be estimated as the phase from the nearest value

of k to k̂ will spread into neighbouring bins. If θk = θ for all k due to the

leakage, (4.16) does not hold. As θk is a single value, the slope is 0. Therefore

the delay is estimated as 0, which is incorrect.

The more values of θk that are the correct estimate of the real phase dif-

ference, the more likely the estimation of delay will be correct. The errors are

caused by spectral leakage and become more apparent when considering a real

signal as a sum of sinusoids at different amplitudes and frequencies. This is due

to the interference between side lobes of high amplitude sinusoids and low ampli-

tude sinusoids which is also known to affect multifrequency signal measurement

[Novotny and Sedlacek, 2010]. If a sinusoid is of lower amplitude than the side

lobe of a neighbouring, higher amplitude sinusoid in the frequency domain it

will be distorted or completely masked in both magnitude and phase.

Therefore if the bandwidth of the signal is increased, with more higher am-

plitude sinusoids, more values of θk will be correct. Equally, if the side lobes

are lower amplitude either due to the window shape producing lower maximum

amplitude side lobes or having a steeper side lobe roll off rate, then less lower

amplitude side lobes will be masked and accuracy will be improved.

From this we hypothesise that delay estimation accuracy is dependent on the

incoming signal bandwidth and the characteristics of the window shape chosen.

4.4 Experimental analysis

This section outlines an experiment analysis of how the bandwidth of the input

signal and the window used affect the accuracy of the subsequent delay estima-

tion when performing the GCC-PHAT on simulated and real musical signals.
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Figure 4.3: Accuracy of delay estimation as a percentage of correct frames with
an error of ±2 samples using a rectangular window with increasing bandwidth
using low pass, high pass and band pass filter centred at 11.25kHz.

4.4.1 Bandwidth limited white noise

The variation between musical signals in the frequency domain can be simplified

as stating that different instruments will produce sounds which occupy different

areas of the frequency spectrum with different bandwidths [Katz, 2007]. The

effect that this has on the GCC-PHAT can be observed under controlled condi-

tions, not taking into account amplitude or temporal changes, by using filtered

white noise as an input signal. This was used in the analysis as an input to sim-

ulate microphone signals by duplicating the filtered input signal and delaying

the duplicate by 10 samples at 44.1kHz sampling rate. The audio excerpts were

10 seconds in duration.

The white noise was filtered using low pass, high pass and band pass 4th

order Butterworth filters centred at 11.25kHz to investigate whether the centroid

of the spectrum altered the accuracy. For each execution of the simulation the

bandwidth of the three filters was changed. In the case of the low and high

pass filters the cut-off frequency was changed to achieve the desired bandwidth.

The bandwidth of each filter was then varied between 50Hz and Fs

2 where Fs

is the sampling frequency. The delay was estimated at each execution with

the GCC-PHAT using seven window shapes: Blackman, Blackman-Harris, Flat

Top, Gaussian, Hamming, Hann and rectangular, with a frame size of 2048

samples. The accuracy is determined as a percentage of frames over the 10
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Figure 4.4: Accuracy of delay estimation as a percentage of correct frames with
an error of ±2 samples using a selection of windows with increasing bandwidth
using a low pass filter.

second sample in which the delay was estimated correctly with an error of ±2

samples.

Figure 4.3 shows the results using the rectangular window. It can be seen

that for all filters at the same bandwidth the results were similar and the point

at which 100% accuracy is achieved was the same for all filters. This leads to

the conclusion that the centroid of the spectrum has only a minor effect on the

accuracy of delay estimation. Therefore the low pass filter results are used for

the analysis in the rest of this section.

Figure 4.4 shows the results for all windows tested for the low pass filter

with increasing bandwidth of input signal. This shows that the performance of

the delay estimation was different for each window and therefore the choice of

window should not be trivial. The rectangular window reached 100% accuracy at

a bandwidth of 5937Hz, whereas the Blackman window reached 100% accuracy

at a bandwidth of 128Hz. The accuracy increased as bandwidth increased for

all window shapes.

Table 4.1 shows the mean accuracy for each window shape over all input

source bandwidths ranked in descending order from most accurate to least ac-

curate. The side lobe height, side lobe roll-off and start and end values are also

shown. The window shapes with a 60dB/decade side lobe slope outperformed

the windows with 20dB/decade slope. The Blackman window also appeared

more accurate than the Hann window by 4% since it has a lower side lobe maxi-

mum height. The accuracy of the windows that do not taper to 0 then decreased
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Window
Mean

accuracy
(%)

Maximum
side lobe

height
(dB)

Side lobe
roll-off

(dB/decade)

Start/end
value

Blackman 90.74 -58.1 60 0

Hann 86.67 -31.5 60 0

Blackman-Harris 71.00 -71.5 20 6.0 x 10−5

Flat Top 61.34 -93.6 20 -4.2 x 10−4

Gaussian 43.00 -43.3 20 4.3 x 10−2

Hamming 40.82 -42.7 20 0.08

Rectangular 32.85 -13.3 20 1

Table 4.1: Mean accuracy over all filter bandwidths for low pass filtered noise
for each window shape showing window features.

according to the start value. This confirms the hypothesis that windows with

a steeper side lobe roll off slope or lower side lobe maximum height result in

higher accuracy.

To explain this further, Figure 4.5 shows the GCC-PHAT output using a

rectangular window and equivalent phase spectrum for white noise low pass

filtered with a cut off frequency of 1000Hz using a 4th order Butterworth filter

and unfiltered white noise delayed by 10 samples. Figure 4.5a shows the GCC-

PHAT output of the low pass filtered and unfiltered white noise. The unfiltered

GCC-PHAT shows a very clear peak at the delay value of 10 samples. The

filtered GCC-PHAT has a peak at the correct delay value but also a peak at 0,

which is the maximum and therefore the estimated delay.

One should not ignore the values at τ = 0 when performing the GCC-PHAT

as it is possible that no delay occurs and these needs to be estimated. This is

explained by examining the corresponding phase spectrum in Figure 4.5b. The

unfiltered example shows a distinct linear phase whereas the filtered example

shows the sloped linear phase for the pass band of the filter, up to 1000Hz,

but in the cut band of the filter the phase is constant, corresponding to the

significant 0 peak in the GCC-PHAT output. This is a result of the higher

amplitude spectral leakage of the rectangular window. With the Blackman or

Hann windows, this does not occur and hence the GCC-PHAT output is the

same for both filtered and unfiltered signals.

4.4.2 Real recordings

The window shapes being evaluated were tested on real recordings. The record-

ings were made using two omnidirectional AKG C414 microphones. They were

placed at arbitrary distances from a Genelec 8040 loudspeaker to incite a delay

between the microphone signals and were recorded in the listening room at the
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Figure 4.5: The GCC-PHAT output and corresponding unwrapped phase spec-
trum of unfiltered and low pass filtered white noise.

Centre for Digital Music in Queen Mary, University of London. The microphone

signals were analysed using the GCC-PHAT with various window shapes. 20

different musical audio samples were tested, with each audio sample 30 seconds

in duration. The audio samples were a selection of instrument recordings that

occupy different frequency ranges.

The bandwidth of each audio sample was measured by calculating spectral

spread, or standard deviation in the frequency domain, defined by

σ =

√√√√ 1

N

N−1∑

k=0

(|X[k]| − X̄)2 (4.22)

where

X̄ =
1

N

N−1∑

k=0

|X[k]|. (4.23)

and X is the input signal x in the frequency domain. The spectral spread was

estimated over the whole duration of the audio sample. Therefore N is the

duration of the audio clip measured in samples.

Figures 4.6 and 4.7 show the accuracy of delay estimation for each audio

sample plotted against the spectral spread. Figure 4.6 shows the results of
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Figure 4.6: Delay estimation accuracy for 20 audio excerpts using a rectangular
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Figure 4.8: Output of the GCC-PHAT using the rectangular window shown as
estimated delay for each frame of data. The dashed horizontal line indicates the
correct delay.

delay estimation using the rectangular window and Figure 4.7 the results using

the Hann window. The Hann window is used because in the literature survey

the Blackman was not found to have been used with the GCC-PHAT previously

and there was only a 4% difference in accuracy between the Hann and Blackman

windows in the previous section. In Figure 4.6 it is apparent that the accuracy

of the delay estimation increased as the spectral spread (and thus the bandwidth

of the signal) increased. As expected, this is not the case for the Hann window,

which gave better performance for all test audio sample, although 100% accuracy

was not achieved due to the recording environment.

This can be further explained by analysing the estimation data over time

for different inputs. Figures 4.8a and 4.8b shows the delay estimation using

a rectangular window for each frame of data of two example audio samples,

a bass guitar and an acoustic guitar. The estimation for the bass guitar was

inaccurate with the correct delay rarely being estimated and an estimate of 0

being more likely. In comparison, the acoustic guitar resulted in an estimated

delay of either 0 or the correct delay per frame.

Figure 4.9 shows the mean accuracy of all 20 test recordings for frame sizes

from 128 samples to 8192 samples for each window shape. There was a general
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Figure 4.9: Mean accuracy of delay estimation over all audio excerpts using a
selection of common frame sizes and windows.

trend of increasing accuracy as frame size increased. This is expected as it is

known that increasing the window size increases the accuracy of the GCC-PHAT

[Jillings et al., 2013]. But the differences in performance from each window

remained even at large frame sizes. Although a large frame size achieved the

greatest accuracy, larger frame sizes reduces the ability of the GCC-PHAT to

track changing delays at fine accuracy.

Table 4.2 shows the mean of all frame sizes for each window. The re-

sults followed a similar trend as that for the filtered white noise. The Hann

and Blackman windows provided the greatest accuracy with a side lobe roll of

60dB/decade followed by windows with low amplitude side lobes. The rectan-

gular window continued to perform the worst.

In this section we have shown that accuracy of delay estimation for comb

filter reduction is dependent on the incoming signal bandwidth and the DFT

window used.

4.5 Discussion and conclusions

In this chapter we have discussed using delay estimation to reduce comb filtering

in single source, multiple microphone configurations.

We have provided a novel analysis of the GCC-PHAT method of delay esti-

mation regarding the bandwidth of the incoming signal and the DFT window
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Window
Mean

accuracy
(%)

Maximum
side lobe

height
(dB)

Side lobe
roll-off

(dB/decade)

Start/end
value

Hann 90.52 -31.5 60 0

Blackman 86.24 -58.1 60 0

Blackman-Harris 84.58 -71.5 20 6.0 x 10−5

Gaussian 76.11 -43.3 20 -4.2 x 10−4

Flat Top 73.49 -93.6 20 4.3 x 10−2

Hamming 70.57 -42.7 20 0.08

Rectangular 40.14 -13.3 20 1

Table 4.2: Mean accuracy over all audio excerpts and frame sizes for each win-
dow shape showing window features.

shape used. This is important when applying the GCC-PHAT to musical in-

strument sound sources in live sound because the bandwidth of different sources

can vary.

The literature review into the GCC-PHAT for a variety of applications shows

no consideration for the window shape used. Therefore the results of this re-

search have implications for all uses of the GCC-PHAT for delay estimation.

We found that delay estimation of low bandwidth signals can be improved by

using an appropriate window function prior to the GCC-PHAT calculation. We

showed that windows which taper to 0 at the extremities are most appropriate,

for example the Hann or Blackman windows, as they produce lower side lobes

in the frequency domain which means less lower amplitude frequencies in the

incoming signal are masked and therefore contribute to an accurate estimation

of delay.

Within a ±2 sample error, a 58% mean increase in accuracy was achieved

when using a Blackman window over a rectangular window in simulated record-

ings. On real recordings an improvement in mean accuracy of 50% was achieved.

The improvement was shown over a range of window sizes, with the Hann win-

dow offering the best performance at a 128 sample window size, the smallest

size tested, with a mean accuracy of 37% compared to a mean accuracy of 17%

for the rectangular window.

The results also showed that the instrument recordings with low bandwidth,

measured by spectral spread, such as a Bass guitar achieved the greatest increase

in accuracy when using a Hann window over a rectangular window. Percussive

sounds which have a high bandwidth were less affected by the difference in

window shape.

In the next chapter we further extend the single source, multiple microphone

case to the multiple source multiple microphone case. This scenario can cause
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bleed between the microphones and we discuss a method for reducing this. We

also discuss multiple source delay estimation, which extends the GCC-PHAT to

the multiple source case.
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Chapter 5

Determined microphone bleed reduction

This chapter is the first of two chapters concerned with reducing microphone

bleed in multiple source, multiple microphone configurations. Microphone bleed

occurs when a microphone is picking up other sources in an acoustic space that

are not the target source. This is common in an ensemble performance where

each instrument has its own microphone but they are in close proximity to each

other.

We present the state of the art in approaches to microphone bleed reduc-

tion, and outline Crosstalk Resistant Adaptive Noise Cancellation (CTRANC),

on which the bleed reduction methods proposed in this thesis are based. The

two source, two microphone CTRANC is extended by combining it with centred

adaptive filters. Centring the filters is achieved using a multiple source exten-

sion of the Generalized Cross Correlation with Phase Transform (GCC-PHAT)

method of delay estimation, as presented in the previous chapter for use in comb

filter reduction.

The proposed centred CRANC method is compared to a method of source

separation and a method of noise cancellation, as well as the original CTRANC.

It is shown to perform well in anechoic conditions but begins to break down in

reverberant conditions.

5.1 State of the art

In Section 2.2.5 we described the cause and effect of microphone bleed in multiple

source, multiple microphone configurations. In this section we present the state

of the art in reducing microphone bleed.

5.1.1 Physical methods

Microphone bleed is caused by multiple microphones reproducing multiple sources

in the same acoustic space. Microphone bleed can be reduced by physically sep-
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arating the sources, either complete separation by placing the instruments in

separate spaces, or maximising the separation of sources in the same space. In

a studio situation, for example, instruments can be isolated either in separate

live rooms or by erecting baffles to provide some sound isolation. However, in a

live sound situation this is often not aesthetically appropriate.

Microphone bleed can also be reduced by using appropriate microphone

placement, for example by using directional microphones directed towards the

source of interest and placing interfering sources in the rejection areas of the

microphone pick up area. The problem with this is that complete rejection of

interfering sources is challenging and using directional microphones introduces

other issues, such as the proximity effect, which is addressed in Chapter 3.

Sound engineers may apply equalisation (EQ) to the microphone signals to

try and reduce the effect of an interfering source. However, if the interfering and

target source overlap in frequency then EQ will also affect the target source,

which is undesirable. It is possible to apply a noise gate to a particular mi-

crophone to only allow the target source to be heard when it is played [Izhaki,

2007, chap. 18]. This is particularly effective in drum recordings where the tar-

get drum is very high amplitude. It is an effective technique if the target source

is not played often, such as tom-toms in a drum kit, but the gate is not selective

so all sounds will be heard, including the bleed, once the gate is triggered.

5.1.2 Blind source separation

As the amount of manual correction that a sound engineer can achieve with

the tools they have available is limited, we have to turn to signal processing

techniques to reduce the microphone bleed effectively.

This can be approached from a Blind Source Separation (BSS) perspective.

BSS methods aim to separate multiple sources in underdetermined, overde-

termined or determined configurations with little to no information about the

sources or the mixing process. It is a wide and active area of research with

many approaches offered for different configurations. Makino et al. [2007] de-

scribe the early research into blind source separation methods, which initially

assumed instantaneous mixtures of sources, i.e. where the only mixing param-

eter is amplitude. The signal model we outlined in Section 2.2.5 includes delay

and gain, as is often seen in a real acoustic environment, therefore this can be

considered a convolutive mixture.

BSS of convolutive mixtures involves estimating the unmixing filters of a

particular mixing matrix [Araki et al., 2003; Pedersen et al., 2007; Mitianoudis

and Davis, 2003]. There are a wide variety of methods to achieve this in the time

and frequency domain. An overview of convolutive BSS techniques is provided

86



by Pedersen et al. [2007] and outlines assumptions and definitions relative to

convolutive BSS.

The straightforward method is to invert the FIR mixing filters with IIR

filters. This requires that the IIR filters are stable [Uhle and Reiss, 2010]. Once

applied to real scenarios any errors in the filter estimation cause audible artefacts

in the target signal. They are also inherently time invariant. Therefore, if the

position of sources or microphones is changed, this causes errors in the filters.

For convolutive mixtures the mixing and inverting filters can be long, causing

computation and stability issues.

A commonly used technique in the frequency domain is Independent Com-

ponent Analysis (ICA) [Comon, 1994; Cardoso, 1998], although this assumes

statistical independence between sources, which cannot always be guaranteed

in a real situation, for example if different instruments perform the same piece

of music. ICA of convolutive mixtures is performed in the frequency domain

by assuming each frequency bin is an instantaneous mixture and processed as

such. A full overview of ICA methods is provided by Hyvärinen et al. [2001].

The performance of ICA methods begins to break down on filters with a large

number of weights [Vincent, 2006; Vincent et al., 2007, 2010], such as with long

reverberation times. Other frequency domain methods also perform BSS on

each bin separately [Araki et al., 2003], which can cause frequency artefacts of

the separated signals.

Many BSS methods are developed for separation of speech signals [Makino

et al., 2007] and can fail when they are applied to a real world environment

[Westner, 1999]. It is noted by Benesty et al. [2008a], Parra and Spence [2000]

and Pedersen et al. [2007] that many BSS methods are shown to perform in

simulations but fail when applied to sources in real world conditions.

This work is aimed at live sound, therefore it is important that a method

is able to run in real time in real world conditions. A number of real-time

BSS methods exist [Barry et al., 2004; Rickard et al., 2001; Baeck and Zölzer,

2003; Aichner et al., 2006]. The method by Baeck and Zölzer [2003] is taken

from the Degenerate Unmixing Estimation Technique (DUET) method of source

separation, first presented by Jourjine et al. [2000] and extended by Yilmaz

and Rickard [2004]. Although stated to run in realtime, this method of source

separation is aimed at the unmixing of L sources from 2 mixtures, i.e. from

a stereo mix of panned sources. It is possible to use this method in the two

source, two microphone configuration, but it is limited to configurations with

a small distance between the microphones, which are dependent on sampling

frequency. For example at a 16kHz sampling frequency the maximum distance

allowed between the microphones for the method to run is when d ≤ 2.15cm

[Yilmaz and Rickard, 2004] where d is the distance between the microphones.
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The method by Barry et al. [2004] is also used for stereo mixtures, assuming

there is phase coherence between the mixtures and only intensity differences.

This cannot be assumed in the multiple microphone case.

A selection of BSS methods are also aimed at Music Information Retrieval

applications [Nesbit et al., 2007] where distortion of the target signal is ac-

ceptable in favour of complete separation. This is also echoed by Pedersen

et al. [2007] who state that the separated signals from BSS can be considered

interference-free and scaled or filtered versions of the original signals. In the live

sound context we are investigating, large distortions in the target signal are not

acceptable. Kokkinis et al. [2011] also suggest that BSS methods can rescale

or reorder the separated signals, which may cause problems in live sound with

gain structure and feedback.

5.1.3 Noise cancellation

Many of the problems that affect live sound are also present in telecommunica-

tions, for example noise and reverberation. Techniques exist in telecommunica-

tions for echo and noise cancellation, which share the same principles, and also

run in real-time [Benesty et al., 2008a]. The drawback is that most techniques

are optimised for speech signals with lower bandwidths, for example a sampling

rate between 4kHz and 8kHz is common [Mirchandani et al., 1992; Hetherington

et al., 2010] whereas in live sound we require a bandwidth to represent all the

audible frequencies from 20Hz to 20kHz. For this reason, when an algorithm

optimised for speech application is extended to incorporate wider bandwidth

signals, the computational cost inherently increases.

In telecommunications, it is common that an external noise source will inter-

fere with the direct source. For example, there may be an interfering noise, such

as air conditioning, in the same room as a person speaking into a telephone. If

an adequate estimation of the noise source is possible, this can be removed from

the direct signal. This is where noise and echo cancellation can be used.

Common techniques for noise cancellation make use of an adaptive filter to

estimate the impulse response of the noise signal to the target microphone, first

proposed by Widrow et al. [1975]. These methods rely on a clean reference of the

noise signal. In reality, this is not always achievable. In a live sound scenario,

a clean reference signal may not be available as microphone bleed is assumed

to be occurring on all microphone signals. The scenario we are concerned with

in this chapter assumes that any interfering source is also a target source for

a different microphone which also contains interference. It cannot be assumed

that a clean reference of each interfering source is available.

Common adaptive filters for audio applications are Least Mean Squares
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(LMS) or Recursive Least Squares (RLS) [Haykin, 2001]. The RLS filter is

considered to have the faster adaption rate but at a higher computational cost

than the LMS filter [Hadei and Iotfizad, 2010]. In this research the LMS filter

is used since the computational cost is already increased due to the wideband

music signals that are being processed.

The performance of adaptive filters can be improved by using an estimate

of delay to centre the updated coefficients and improve convergence and com-

putational cost [Margo et al., 1993; Lu et al., 2005; Gross et al., 1992].

Adaptive filters are sometimes favoured over BSS techniques due to the

reduced target signal distortion [Ramadan, 2008]. Adaptive filters also do not

require assumptions about the layout of the sources and microphones.

Work by Kokkinis and Mourjopoulos [2010] and Kokkinis et al. [2011] ad-

dresses the same problem and assumes close microphones. This is achieved by

finding the Wiener filter solution in multiple channel configurations (MCWF) by

Power Spectral Density estimation. This method has been shown to outperform

a common BSS technique in real world conditions.

CTRANC

Noise cancellation has been extended in the literature to tackle scenarios where

crosstalk occurs, known as CTRANC. First proposed by Zinser et al. [1985] and

extended by Mirchandani et al. [1992], this approaches a similar problem to

that of microphone bleed. CTRANC has been extended more recently, but only

applied in telecommunications and to speech signals in the determined case.

Lepaulox et al. [2009] propose a method to reduce the complexity of the al-

gorithm through changes to the filter update equations. Lepauloux et al. [2010]

also suggest frequency domain implementation, applied to beamformers. Moir

and Harris [2012] outline an extension to CTRANC for non-stationary sources

using multivariate LMS, but it is still applied to speech signals. Madhavan and

de Bruin [1990] outline another extension but is only tested on toy examples.

Ramadan [2008] proposes a method for the two source case where three mi-

crophones are used and exploits the extra microphone for increased crosstalk

reduction. Zeng and Abdulla [2006] combine CTRANC with improved spec-

tral subtraction. CTRANC has also been referred to in the literature as sym-

metric adaptive decorrelation [Van Gerven and Van Compernolle, 1995; Ger-

avanchizadeh and Rezaii, 2009]. All the publications mentioned only apply

CTRANC to speech signals.

CTRANC tackles the same problem as unmixing filters in BSS in the deter-

mined case, but uses adaptive filters instead. The advantage of using adaptive

filters is that stationarity is not assumed and they can adapt to changing condi-
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tions. They are also built for real time application and are well established and

will introduce fewer artefacts. By using a noise cancellation based approach,

we assume that each microphone contains a single target source and this target

source is a contaminated noise source of another microphone. CTRANC has not

previously been applied to the live sound configuration outlined in this thesis

and it is has not been applied to musical signals.

5.2 Description of Crosstalk Resistant Adaptive Noise Can-

cellation

This section presents a description of Adaptive Noise Cancellation (ANC) and

the extension of this to CTRANC.

An example of of an application noise cancellation in telecommunications

is a situation where the voice of a person speaking into a telephone may be

contaminated by external noise, such as air conditioning or other background

noise, that is in the same space. The most straightforward method of removing

this noise is to convolve a clean reference of the noise signal with the impulse

response between the noise microphone and the target microphone and subtract

it from the target microphone.

The source microphone, xs, can be described by

xs[n] = hx [n] ∗ s[n] + hv[n] ∗ v[n] (5.1)

where hx is the impulse response from the source to the microphone xs , hv is

the impulse response of the interfering source v to xs and ∗ denotes convolution.

Our clean reference is

xv[n] = hd ∗ v[n] (5.2)

where hd is the impulse between the interfering source and xv. To achieve noise

cancellation we have to perform

x̂s[n] = xs[n]− hx,v[n] ∗ xv[n]. (5.3)

This relies on v being the only source in xv, and an accurate estimate of hx,v.

Assuming (5.2), hx,v is often estimated using an adaptive filter since it is able

to adapt to changing conditions, such as movement of sources and microphones

or amplitude changes in either the source or the noise.

Adaptive filtering can be achieved with an LMS approach. We can rewrite

(5.3) as

x̂s[n] = xs[n]−wT [n]xv[n] (5.4)
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Figure 5.2: Block diagram of sources s1 and s2 processed by RIRs to become
microphones x1 and x2.

where w are the current estimate filter weights, w[n] = [w[0], . . . , w[N − 1]],

xv[n] = [xv[n], . . . , xv[n − N + 1]] and N is the filter length. This is shown in

Figure 5.1.

In the literature x̂s is the error signal which we want to minimise by way of

our cost function E{|x̂s[n]2|} by optimising w.

The filter weights are then updated by

w[n+ 1] = w[n] + µxv[n]x̂s[n] (5.5)

where µ is the adaptation step, which is generally a small value that affects

convergence speed and accuracy.

In the multiple source, multiple microphone scenario outlined in Section 2.2.5,

we cannot assume that a clean reference of the interfering noise sources is avail-

able, due to all sources being in the same acoustic space.

Figure 5.2 shows how (5.1) can be extended to the two source, two micro-

phone case. In Section 2.2.5 this was written in the anechoic case, repeated
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here

x1[n] = α11s1[n− τ11] + α21s2[n− τ21] (5.6)

x2[n] = α22s2[n− τ22] + α12s1[n− τ12] (5.7)

where x1 and x2 are microphone signals at timestep n, s1 and s2 are the sound

sources, τlm is the delay of source l to microphone m and αlm is the amplitude

due to distance of source l to microphone m.

It is apparent that both microphones are reproducing both sources. There-

fore the single microphone ANC cannot be applied here.

In CTRANC, adaptive filters are cascaded so the output of one becomes the

input of the other [Parsa et al., 1996], as shown in Figure 5.3. In this way, once

one signal has the interference cancelled out it can be used as the reference for

the interference cancellation of another source, and vice versa.

This relies on the assumption that the source with the highest amplitude in

each microphone signal is the target source, i.e. α11 > α21 and α12 > α22. If

this is the case, then each microphone can be considered an approximation of a

interfering source.

In the live sound case this usually equates to each microphone being posi-

tioned closest to a single sound source. Placing spot microphones is a technique

used in ensemble performances, where a single microphone is positioned to repro-

duce a single instrument source and therefore this is not a difficult assumption

to hold in real conditions. Thus, each microphone is an approximation of an

interfering noise source for a microphone other than itself.

CTRANC is described by the block diagram in Figure 5.3. The processed
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microphone signals are estimated by

x̂1 = x1[n]−wT
21[n]x2[n] (5.8)

x̂2 = x2[n]−wT
12[n]x̂1[n] (5.9)

and the filter weights updated by

w21[n+ 1] = w21[n] + µx2[n]x̂1[n] (5.10)

w12[n+ 1] = w12[n] + µx̂1[n]x̂2[n]. (5.11)

5.3 Centred adaptive filters

In the previous section, (5.4) and (5.5) outline the standard adaptive filter

architecture. In the purely anechoic case, the ideal output of the adaptive filter

in (5.5) will be an impulse response with a single value at a position representing

delay and an amplitude representing gain and all other values are assumed to

be 0.

In reality, with the addition of reverberation and noise it is unlikely that

the any of the values in the impulse response will be equal to 0, but there will

still be a peak at the delay position. If the delay value is known, it is then

possible to update only the values around the delay value. Updating fewer

coefficients means faster and more accurate convergence and less computational

cost. Errors in the adaptive filters will also be reduced, which will reduce the

artefacts in the processed signal. Only a rough estimation of delay is required

as a range of coefficients around the estimated delay value are updated. If the

delay estimation is inaccurate by less than the number of coefficients in the

range being updated, then the method will still converge to the solution [Margo

et al., 1993; Lu et al., 2005; Gross et al., 1992].

If we centre the adaptive filters in (5.4) and (5.5) then the following variables

are defined by

w[n] = [wτ−D[n], . . . , wτ+D[n]] (5.12)

x2[n] = [x2[n− τ −D], . . . , x2[n− τ +D] , (5.13)

where τ is the estimation of the delay and D is a user-defined error distance

around the delay to update the coefficients. A higher value of D will yield slower

convergence but will encompass additional echoes or reverberation.
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5.4 Centred CTRANC

We propose combining CTRANC with the centred adaptive filters which we will

refer to as ‘centred CTRANC’. In this way we can improve performance and

convergence of the CTRANC method.

As with the CTRANC method, the error signals are defined as

x̂1[n] = x1[n]−wT
21[n]x2[n] (5.14)

x̂2[n] = x2[n]−wT
12[n]x̂1[n], (5.15)

but now

w21[n] =
[
w21
τ2−D[n], . . . , w21

τ2+D[n]
]

(5.16)

w12[n] =
[
w12
τ1−D[n], . . . , w12

τ1+D[n]
]

(5.17)

and

x1[n] = [x1[n− τ1 −D], . . . , x1[n− τ1 +D] (5.18)

x2[n] = [x2[n− τ2 −D], . . . , x2[n− τ2 +D] (5.19)

and the filter coefficients are updated using

w21[n+ 1] = w21[n] + µx̂1x2[n] (5.20)

w12[n+ 1] = w12[n] + µx2x1[n], (5.21)

which requires estimation of both τ1 and τ2.

5.5 Multiple source delay estimation

To successfully implement the centred adaptive filters, an accurate estimation of

the delay is required. In the previous chapter we outlined a number of methods

for delay estimation and investigated the GCC-PHAT method, which is fully

described in Section 4.2.

For the centred CTRANC applied to (5.6) and (5.7) we need to estimate

both τ1 and τ2 where

τ1 = τ21 − τ11

τ2 = τ12 − τ22 (5.22)
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and it is assumed that

τ11 < τ21

τ22 < τ12. (5.23)

The GCC-PHAT is aimed at estimating the delay of a single source to mul-

tiple microphones since the delay is estimated by finding the maximum peak

in the time domain function. If the GCC-PHAT is applied to the microphones

described in (5.6) and (5.7) the relative delay would only be estimated for the

source with the highest amplitude in both microphones as this will have the

greatest correlation.

We can use the GCC-PHAT to estimate τ1 and τ2 separately by interchang-

ing x1 and x2 in the calculation, using the constraint that the estimated delay

must be less than N/2. The GCC-PHAT has been described previously in (4.7).

In the two source case the GCC-PHAT is rewritten for each delay as

ΨP12[n] = F−1

{
X∗1 [k] ·X2[k]

|X∗1 [k] ·X2[k]|

}

ΨP21[n] = F−1

{
X1[k] ·X∗2 [k]

|X1[k] ·X∗2 [k]|

}
(5.24)

where F−1 is the Inverse Fourier Transform, X1 and X2 are microphones x1

and x2 in the frequency domain, k is the frequency bin number and | ∗ | denotes

the complex conjugate. Delay estimation is then achieved by

τ1 = arg max
n

ΨP12[n] (5.25)

τ2 = arg max
n

ΨP21[n]. (5.26)

This will be accurate but is only correct for the two source, two microphone

case and is performing the same calculation twice.

Other methods for multiple delay estimation exist. The DUET method of

BSS is able to calculate multiple delays, but it relies on the input sources having

W-disjoint orthogonality, meaning they do not overlap in frequency at any given

time. It is also very sensitive to noise and reverberation, which affects the quality

of delay estimation. The DUET method also requires that the microphones be

close together and it is only useful for multiple sources and two microphones.

This is because the distance between the microphones is determined by the

highest frequency in the audio sample. If the highest frequency is assumed to

be 16kHz there can be a maximum distance of 2.15cm [Yilmaz and Rickard,

2004], which is a significant constraint, especially if estimating delays of spot

microphones, as instruments will be placed much further apart.
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There is also research in [Kwon et al., 2010] that suggests a method for

multiple source delay estimation with the GCC-PHAT, and looks at extracting

data from the GCC-PHAT to ascertain characteristics of the sources.

5.5.1 Multiple source GCC-PHAT

We propose a method where multiple delays can be estimated from a single

GCC-PHAT calculation making use of redundant information that is usually

ignored. The proposed multiple source GCC-PHAT is able to calculate relative

delays for cases where L >= M , where L is the number of sources and M is the

number of microphones, whereas the single source method is not. The proposed

multiple source method also does not require W-disjoint orthogonality; both

sources can be active. Therefore they can be highly correlated and the delays

can still be calculated.

If we take into account that when using the GCC-PHAT, only delays of±N/2
can be estimated and that the GCC-PHAT can estimate negative delays, we can

use the position of the L maximum peaks to estimate multiple delays. This can

be achieved by either knowing the number of sources or by peak picking. If it

is known that L = M then the number of sources will be known.

Figure 5.4 shows the output of a GCC-PHAT calculation in the two source,

two microphone case with the delays labelled. In this case the estimation of the

delays using multiple peaks is described as

τ1 = arg max
n

[ΨP [0], . . . ,ΨP [N/2]] (5.27)

τ2 =
N

2
− arg max

n
[ΨP [N/2 + 1], ...,ΨP [N − 1]] . (5.28)

We will use this for performing the delay estimation in the centred CTRANC

for the two source, two microphone case in the remainder of this chapter.

If the configuration is extended to the M microphone and L source case the

technique is the same as in (5.27) and (5.28) but for L peaks. If a peak occurs

in the first half of the function, the delay is calculated by (5.27). If it occurs in

the second half, it is calculated by (5.28). This is repeated up to the number of

sources.

The multiple source GCC-PHAT provides other information about the sources.

A peak that occurs at the 0 or N−1 position is caused by a source that is equidis-

tant from both microphones. Figure 5.5a shows the position of simulated sources

and microphones and Figure 5.5b shows the corresponding GCC-PHAT between

the microphones. A peak that occurs in the first half of the output function is

caused by a source positioned to the left of the centre line between the micro-
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Figure 5.4: Output of the GCC-PHAT where two sources are present with the
delays labelled.

phones and a peak that occurs in the second half of the output will be caused

by a source to the right.

The amplitude of the peak also determines the relative distance of each

source to the microphones. The peak with the highest amplitude will be caused

by a source placed closest to the microphones, and the smallest caused by a

source placed furthest away.

For example in Figure 5.5a, s1 is closest to x1, positioned to the left of

the centre (dashed) line. This is demonstrated in the GCC-PHAT function in

Figure 5.5b where s1 in positioned in the first half of the function with a large

amplitude.

After the multiple delays have been calculated, it is desirable to know which

delays correspond to which sources. For this, a simple estimation of the relative

placement of sources and/or distance from microphones is required to assign

each estimated delay to the correct source.
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(b) Corresponding GCC-PHAT output for 5.5a.

Figure 5.5: Sample layout of sources and microphones (5.5a) and the resulting
GCC-PHAT function (5.5b) showing how the amplitude and position of the
peaks is related to the position of the sources.

98



0 1 2
0

1

2

 

 

d

Source

Microphone

Figure 5.6: Simulation microphone and source layout where d = 0.5m.

5.6 Evaluation

We performed an evaluation of the proposed centred CTRANC method to de-

termine how it compared to similar methods in the two source, two micro-

phone case. The methods under test were CTRANC, centred CTRANC, DUET

method of source separation [Jourjine et al., 2000] and the Multichannel Wiener

Filter (MCWF) method [Kokkinis et al., 2011].

CTRANC and centred CTRANC methods were optimised to produce the

best results by selecting a suitable value for the adaption step, µ and the error

distance D. A framesize of 2048 samples was used for the CTRANC methods.

The DUET and MCWF methods were used with parameters suggested by the

creators of each method.

5.6.1 Simulation experimentation

The methods were first compared using microphone signals in simulated ane-

choic conditions. The source and microphones were positioned as in Figure 5.6.

The sources were placed between 10cm and 12cm from the microphones. Delay

and gain was applied according to the positions using the inverse square law

and the delay estimated from the speed of sound in air at 20oC.

The input sources were a clean guitar and male vocal, which is a common

two source, two microphone configuration. The distance d was increased from

10cm to 5m, producing different values for delay and gain. The relative position

of each source to each microphone remained the same.

99



1 2 3 4 5
0

10

20

30

40

50

60

Microphone Distance (m)

S
IR

 (
d
B

)

 

 

CTRANC

Centred CTRANC

DUET

MCWF

Figure 5.7: Signal-to-interference ratio of each method at each iteration of mi-
crophone distance for the simulated case.

5.6.2 Results

Each microphone was then processed using the BSS-EVAL Matlab toolbox [Vin-

cent et al., 2006; Févotte et al., 2005] which is used to objectively evaluate

BSS methods and is applicable in this case. The toolbox returns signal-to-

interference (SIR), signal-to-artefact (SAR) and signal-to-distortion (SDR) ra-

tios. SIR is used to evaluate how well the interfering source has been suppressed.

SAR shows the level of artefacts that have been introduced to the target signal.

SDR is used as a global measure which incorporates both [Vincent et al., 2006].

We show the results for microphone x1 where s1 is the target signal and s2 is

the interfering signal.

Figure 5.7 shows the SIR for each method at each microphone distance of d.

The centred CTRANC resulted in the greatest values of SIR for all values of d

over 0.1m, offering a maximum improvement over the CTRANC of 18.2dB. In

the d = 0.1m case DUET produced the greatest SIR at 25.6dB while the centred

CTRANC produced an SIR of 17.9dB. It was expected that the DUET method

may perform well for small values of d since it can perform source separation at

small distances.

The MCWF method assumes each microphone is an approximation of the

ideal impulse response of the direct sound path. If the interference is of a high

enough amplitude, this assumption will no longer hold. The CTRANC resulted

in greater SIR at low distances compared to the MCWF because of this. The

maximum difference in SIR between the CTRANC and MCWF was 11.4dB at
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0.5m but over d = 2m the results were very similar with a mean difference in

SIR of just 0.75dB.

Figure 5.8 shows the SAR for each method. Although DUET performed best

when tested for SIR at d = 0.1m, Figure 5.8 shows the centred CTRANC had a

higher value of SAR at the same distance with an SAR of 12.3dB compared to

7.3dB for DUET. For all distances above d = 0.5m the DUET performed con-

sistently worse out of all methods tested. This shows that the DUET method

introduced artefacts to the processed signal. The other methods were ranked

with centred CTRANC performing the highest followed by the MCWF method

and then the CTRANC. The maximum improvement in SAR by using the cen-

tred CTRANC compared to the CTRANC is 13.4dB.

Methods based on adaptive filters will generally not add a high level of

additional artefacts to the target source since they attempt to subtract the

interfering source in the time domain. In live sound, this is desired as it would

be preferable to remove some of the interference but leave the target signal

intact rather than completely remove the interference but heavily distort the

target signal.

The centred CTRANC introduced the least amount of artefacts because

the estimated filter will have only a few coefficients. This shows that for the

CTRANC method the artefacts come from errors in the filter.

Figure 5.9 shows the SDR for each method and reflects the results seen in

both Figure 5.7 and 5.8. The centred CTRANC resulted in the greatest SDR for

all distances. At the shortest distance, DUET outperformed all other methods

apart from centred CTRANC but then dropped in performance as distance

increased. The CTRANC also performed more highly than the MCWF method

at up to d = 1.0m but then the MCWF increased in performance above this.
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Figure 5.8: Signal-to-artefact ratio of each method at each iteration of micro-
phone distance for the simulated case.
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Figure 5.9: Signal-to-distortion ratio of each method at each iteration of micro-
phone distance for the simulated case.
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Figure 5.10: Layout of speakers and microphones in the test recordings.

5.6.3 Real recordings

The methods were also tested on real recordings to establish each method’s

effectiveness in a convolutive environment. Recordings were made using two

Genelec 8040 loudspeakers and two AKG C414 microphones in the Listening

Room at Queen Mary, University of London with an approximate RT30 of

0.2s, where RT30 is the time taken for the amplitude of the reverberation to

drop below 30dB. The loudspeakers were spaced from 10cm to 100cm at 10cm

intervals while the microphones were always placed 10cm from each speaker,

with an error of ± 1cm as in Figure 5.10. This distance was chosen to simulate

a close microphone configuration. It is not assumed the layout is symmetric.

5.6.4 Results

As with the simulation, the SIR, SAR and SDR for each method and value of

d was calculated.

Figure 5.11 shows the SIR for each method. In this case, CTRANC per-

formed greater than the centred CTRANC at all distances with a maximum

difference in SIR of 20.6dB. The DUET method also performed more highly

than the centred CTRANC at distances above 35cm. The MCWF performed

similarly to the CTRANC method, slightly outperforming it for distances be-

tween 40 and 50cm, with an overall mean difference in SIR between the MCWF

and CTRANC of 2.8dB and a maximum of 5.3dB.

The reason for this is that the centred CTRANC only updates a small range

of coefficients around the direct bleed source. This will cause some improvement

in SIR compared to the unprocessed microphone signal since some of the direct

bleed is reduced in amplitude, but it will not update coefficients related to the

reverberation of the microphone bleed. Therefore the reverberation from the
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Figure 5.11: Signal-to-interference ratio of each method at each iteration of
microphone distance for the real microphone recording.

microphone bleed is retained.

Using a higher value of D may improve this, but by increasing D the com-

putational cost increases and the advantages over CTRANC diminish. The

MCWF method performed only slightly lower than the traditional CTRANC

method. In contrast to the simulation experiments, the MCWF method per-

formed more consistently with real recordings. The DUET method proved to be

more successful at some lengths of d but was not consistent over all the distances

tested.

Figures 5.12 and 5.13 show the SAR and SDR for the real recording audio.

The results shown in each figure were very similar. As seen in the simulations,

the DUET method added additional artefacts and performed consistently the

lowest over all distances. The centred CTRANC performed greatest overall

when measuring SAR and SDR with a maximum difference to the CTRANC of

8.1dB for SAR and 6.6dB for SDR. This was consistent with the results seen

in the simulation tests. Although CTRANC was shown to perform well by the

SIR measure, but performed worse than the centred CTRANC in measures of

SAR and SDR.

The MCWF method performed worse than the centred CTRANC method

in terms of SAR and SDR with a mean difference in SAR of 3.8dB and mean

difference in SDR of 2.3dB but with slightly higher values of SAR and SDR

than the traditional CTRANC for all distances with a mean difference of 2.5dB

for both SAR and SDR.
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Figure 5.12: Signal-to-artefact ratio of each method at each iteration of micro-
phone distance for the real microphone recording.
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Figure 5.13: Signal-to-distortion ratio of each method at each iteration of mi-
crophone distance for the real microphone recording.
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5.7 Discussion and conclusions

In this chapter a method for microphone bleed reduction in the two source, two

microphone case has been proposed that combines centred adaptive filters with

the CTRANC method of noise cancellation. The CTRANC has not been applied

to music signals in the literature and it has not previously been combined with

centred adaptive filters.

The adaptive filters are centred using a novel adaptation of the GCC-PHAT

method of delay estimation, described in the previous chapter, taking into ac-

count multiple peaks in the output function.

The proposed method, centred CTRANC, outperformed other methods for

interference reduction in the simulated anechoic case and improved the SIR over

the CTRANC by 18.2dB with fewer additional artefacts than the other methods

tested. In simulated conditions the centred CTRANC offered an increase in SDR

of 7.7dB at the smallest distance tested up to 12.4dB at the largest distance

tested compared to the original CTRANC method. The centred CTRANC

also resulted in a maximum improvement in SIR of 24.8dB compared to the

Multichannel Wiener Filter method.

Centred CTRANC was shown to be outperformed with regards to SIR by

the original CTRANC system in real recordings by a mean SIR of 15dB over

all distances tested. But the centred CTRANC was shown to introduce fewer

artefacts with a mean improvement in SAR of 6.3dB compared to the origi-

nal CTRANC. The centred CTRANC is therefore suited to low reverberation

environments.

The efficacy of the centred CTRANC was not affected by the level of the

interference but by the environment which the sources and microphones are

placed, and the reverberation and noise present. Therefore it is currently best

suited to close microphone applications.

We have shown that the centred CTRANC struggles in reverberant con-

ditions as the centring restricts the amount of reverberation that can be esti-

mated in the impulse response as it is truncated. In the next chapter we apply

CTRANC in the frequency domain to improve results and efficiency. We also

extend CTRANC to the L source, M microphone case in both determined and

overdetermined configurations with a variety of sources.
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Chapter 6

Overdetermined microphone bleed reduction

using selective FDCTRANC

In the previous chapter we examined a two source, two microphone method of

microphone bleed reduction using CTRANC combined with centred adaptive

filters. The main problem with this method is the computational cost and the

performance in reverberant conditions. In this chapter we propose performing

CTRANC in the frequency domain, FDCTRANC, to improve computation and

performance. We show that performing CTRANC in the frequency domain

uncovers additional problems, which were not at first apparent. We propose

performing FDCTRANC iteratively to reduce the effect of these problems. The

proposed method is then compared to similar methods, including the centred

CTRANC presented in the previous chapter, in a subjective listening test. FD-

CTRANC was shown to perform well at target preservation while reducing

microphone bleed amplitude.

We also extend FDCTRANC to the overdetermined case, where there are

more microphones than sources. We still assume each microphone is positioned

to reproduce a single source and is therefore closest to one source. Applying FD-

CTRANC to the overdetermined case requires establishing whether any of the

microphones are reproducing the same target source and performing intelligent

bleed reduction dependent on this. This is achieved by comparing similarity

between microphone signals using correlation in the frequency domain. In the

overdetermined case the selective FDCTRANC was shown to outperform the

standard FDCTRANC in all overdetermined cases under test.

6.1 Determined CTRANC

In the previous chapter we outlined using CTRANC for microphone bleed re-

duction in the two source, two microphone case. This can be extended to the

multiple source, multiple microphone case with L sources and M microphones.
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In the determined case, where L = M , (5.8) and (5.9) are rewritten as

x̂m[n] = xm[n]−
L∑

l=1
l 6=m

wT
lm[n]xl[n] (6.1)

with the filters updated by

wlm[n+ 1] = wlm[n] + µx̂l[n]x̂m[n] (6.2)

where

xl = [xl[n], . . . , xl[n−N + 1]] (6.3)

where xl is the current interference microphone, l = 1, . . . , L, xm is the current

target microphone, m = 1, . . . ,M and wlm contains the N filter coefficients.

Traditionally the adaptive filter weights are updated every time step n. For

efficiency the scheme can be altered to only update the filter weights every

block k of N time steps, replacing the timestep n with a reference to block i to

become n = iN +ni where ni = 1, . . . , N . This is known as block LMS (BLMS)

[Haykin, 2001]. For CTRANC using BLMS the processed microphone signals

are updated by

x̂m[iN + ni] = xm[iN + ni]−
L∑

l=1
l 6=m

wT
lm[iN + ni]xl[iN + ni] (6.4)

which is equivalent to (6.1). The filter weights are updated by

wlm[k + 1] = wlm[k] + µ

L∑

l=1

x̂l[kN + ni]x̂m[kN + ni]. (6.5)

But x̂m is still updated as (6.1), which can cause computation issues.

It should also be noted that by scaling the CTRANC method to the deter-

mined case, the number of adaptive filters in the scheme is A = M(M−1). Thus

increasing the number of microphones significantly increases computational cost.

6.2 FDCTRANC

6.2.1 Derivation

The computational cost of CTRANC can be furthered improved by implement-

ing the adaptive filters in the frequency domain, which we will refer to as FD-

CTRANC [Haykin, 2001; Shynk, 1992]. The convolution of the filter with the
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incoming signal in (6.4) and the correlation of the filter and incoming signal in

(6.5) are computed using the Fast Fourier Transform and are only estimated

every N time steps.

Performing CTRANC in the frequency domain is briefly mentioned in [Lep-

aulox et al., 2009] but the chosen scheme is not stated. Here we present the

overlap-add scheme for adaptive filters as described by Shynk [1992], adapted

for CTRANC.

Each interfering microphone signal is defined as

X′l[k] = diag(F [xl[kN ], . . . , xl[kN +N − 1], 0, . . . , 0]T ) (6.6)

where F denotes the Discrete Fourier Transform. Due to the overlap add con-

straints, this is then processed as

Xl[k] = X′l[k] + JX′l[k − 1] (6.7)

where J = diag(1,−1, . . . ,−1).

The current filter weights are applied to each interfering source as

Φ[k] =

L∑

l=1
l 6=m

Xl[k]Wlm[k] (6.8)

and the processed target microphone signal from (6.4) are updated in FDC-

TRANC by

x̂m[k] = xm[k]− kF−1Φ[k] (6.9)

where F−1 denotes the Inverse Discrete Fourier Transform and the sectioning

constraints are k = [0N1N ]. The interfering microphone filters from (6.5) are

updated in the frequency domain by

Wlm[k + 1] = Wlm[k] + FgF−1µ[k]Xl[k]HX̂m[k] (6.10)

where

g =

[
1N 0N

0N 0N

]
(6.11)

and

X̂m[k] = FkT x̂m[k] (6.12)

and the frequency dependent step size µ is calculated by

µ[k] = µ · diag(P−1[k]) (6.13)
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where

P [k] = γP [k − 1] + (1− γ)|Xl[k]|2 (6.14)

and where γ is a forgetting factor. In all equations Xl = X̂l when it exists.

Apart from improving computational cost, frequency domain implementa-

tion of the adaptive filters also allows the addition of a frequency dependent step

size, calculated by (6.13). This allows the step size of each separate frequency

bin to adjust so that the filters will update at a much slower rate in periods of

silence, reducing the amount of errors. It also allows only significant spectral

information to be used in the update of the filter weights, resulting in more

accurate and faster convergence [Soo and Pang, 1990].

6.2.2 Issues

Implementing CTRANC with a block-based approach highlights problems which

have not previously been addressed in the literature. This is best explained by

using the two source and two microphone model in anechoic conditions, outlined

in Section 2.2.5 and repeated here

x1[n] = α11s1[n− τ11] + α21s2[n− τ21] (6.15)

x2[n] = α22s2[n− τ22] + α12s1[n− τ12] (6.16)

where x1 and x2 are microphone signals at timestep n, s1 and s2 are the sound

sources, τlm is the delay of source l to microphone m and αlm is the amplitude

change due to distance of source l to microphone m.

Applying the time domain CTRANC from (5.8), x̂1 is estimated by

x̂1[n] = x1[n]−wT
21[n]x2[n] (6.17)

where w21 is a delayed Dirac delta to align s2 in x1 and x2. Therefore x2 will

be delayed by τ21 − τ22 and the gain reduced by α22 − α21. In terms of s1 and

s2 this is

wT
21[n]x2[n]

=(α22 − (α22 − α21))s2[n− (τ22 + (τ21 − τ22))]

+ (α12 − (α22 − α21))s1[n− (τ21 + (τ21 − τ22))] (6.18)

=α21s2[n− τ21] + α′12s1[n− τ ′12] (6.19)
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where

α′12 = α12 − (α22 − α21) (6.20)

τ ′12 = τ12 + (τ21 − τ22) (6.21)

therefore (6.17) in terms of s1 and s2 is

x̂1[n] =α11s1[n− τ11] + α21s2[n− τ21]− α21s2[n− τ21]

− α′12s1[n− τ ′12] (6.22)

=α11s1[n− τ11]− α′12s1[n− τ ′12]. (6.23)

So the interfering source s2 has been cancelled out but x̂1 contains s1 summed

with a delayed version of itself, which will cause comb filtering.

Continuing with CTRANC, x̂2 from (5.9) is then estimated by

x̂2[n] = x2[n]−wT
12[n]x̂1[n] (6.24)

and w12 delays x̂1 by τ12− τ11 and reduces the amplitude by α11−α12 to align

s1, so in terms of s1 and s2 this eventually becomes

wT
12[n]x̂1[n] = α12s1[n− τ12]− α′′12s1[n− τ ′′12] (6.25)

where

α′′12 = α′12 − (α11 − α12) (6.26)

τ ′′12 = τ ′12 + (τ12 − τ11) (6.27)

therefore

x̂2[n] =α22s2[n− τ22] + α12s1[n− τ12]− α12s1[n− τ12]

+ α′′12s1[n− τ ′′12] (6.28)

=α22s2[n− τ22] + α′′12s1[n− τ ′′12]. (6.29)

This leaves x̂1 as a comb filtered version of s1 and x̂2 as a summation of s2

and s1 where s1 has reduced in amplitude.

So with this scheme, only x2 has had the amplitude of the microphone bleed

reduced while minimising the distortion to the target source, in this case s2. It

would be possible to run the scheme again from the beginning interchanging x1

and x2 to reduce the amplitude of the bleed in x1 but as mentioned previously

the number of adaptive filters is related to the number of microphones and this

would further increase computational cost.
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6.2.3 Iterative FDCTRANC

We propose performing subsequent iterations of the algorithm to use x̂2 as a

more accurate representation of the interfering source s2 in order to reduce the

amplitude of the bleed from x1. By doing this, the same scheme can be applied

to both microphones at the same time, instead of applying the same algorithm

to each separately. The ultimate goal is to reduce the comb filtering that occurs

on x̂1, thus improving the bleed reduction in both x1 and x2.

In the proposed scheme, the next stage of the algorithm after (6.24) is to

repeat (6.17) but where x2 is replaced by x̂2, as follows

x̂′1[n] = x1[n]−w′T21[n]x̂2[n] (6.30)

so

w′T21[n]x̂2[n] = α21s2[n− τ21] + α′′′12s1[n− τ ′′′12] (6.31)

where

α′′′12 = α′′12 − (α22 − α21) (6.32)

τ ′′′12 = τ ′′12 + (τ21 − τ22) (6.33)

therefore in terms of s1 this becomes

x̂′1[n] =α11s1[n− τ11] + α21s2[n− τ21]− α21s2[n− τ21]

− α′′′12s1[n− τ ′′′12] (6.34)

=α11s1[n− τ11]− α′′′12s1[n− τ ′′′12] (6.35)

where α′′′12 < α′′12 and τ ′′′12 > τ ′′12. Thus the comb filtering effects are reduced

as the gain of the delayed source is reduced. As this is now a more accurate

representation of s1, (6.24) can be recalculated as

x̂′2[n] = x2[n]−wT
12[n]x̂′1[n] (6.36)

and therefore the amplitude reduction of the bleed is greater in x̂′2 than in

x̂2. (6.17) and (6.24) can be repeated subsequent times to further improve the

reduction, although each iteration increases the number of adaptive filters.

It is important to note that each iteration of (6.17) and (6.24) requires dif-

ferent filter coefficients for the best performance since, for example, it is possible

that w21 6= w′21. This is because as the scheme progresses more reduction in

the bleed amplitude is achieved and the amplitude of the filter for each iteration

may be different.

Figure 6.1 shows a block diagram of the proposed method showing two iter-

112



-
-

- -
w0

21 w0
12 x̂0

2

x̂0
1

x1

x2

w12w21
x̂1

x̂2

XXXX

Figure 6.1: A block diagram of the proposed FDCTRANC method of interfer-
ence reduction. The repeated iteration step is highlighted.

ations. In this case w12 and w12 are adaptive filters in the first iteration while

w′12 and w′12 are adaptive filters in the second.

We have shown the proposed scheme in the two source, two microphone case

but this can also be scaled to when the number of sources is greater than two.

In the general case, (6.1) becomes

x̂m[n] = xm[n]−
L∑

l=1
l 6=m

wT
lmi[n]xl[n] (6.37)

and (6.2) becomes

wlmi[n+ 1] = wlmi[n] + µx̂l[n]x̂m[n] (6.38)

where i = 1, . . . , I and I is the number of iterations and xl = x̂l when it has

been calculated. Running the scheme in this way, assuming L = M , the number

of adaptive filters per iteration is A = M(M − 1)I. Therefore the results will

be improved but the number of adaptive filters increases.

6.2.4 Number of iterations

We analysed the proposed iterative FDCTRANC algorithm on simulated mi-

crophone signals to ascertain the optimal number of iterations for the scheme.

The experiment was performed in simulated anechoic conditions using an im-

age source toolbox by Lehmann and Johansson [2008] to generate room impulse

responses (RIRs). The room was 5m x 5m x 2.5m in size. The sources were

placed at approximately 0.5m intervals and a single microphone was positioned

between 0.15m and 0.25m in front of each source to simulate the layout of a

real configuration where equally spaced sources and microphones are unlikely.

The configuration was tested in the determined case from two to four sources.

The maximum source layout can be seen in Figure 6.2. The sources used were

a male vocal, an acoustic guitar, a piano and a fiddle, respectively.

The simulated audio was analysed using the BSS-EVAL toolbox, as men-
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Figure 6.2: Virtual source and microphone layout for analysis of the number of
iterations of the FDCTRANC method of bleed reduction.

tioned in the previous chapter. The results are shown in terms of the improve-

ment of Signal-to-Distortion Ratio (SDR) and Signal-to-Interference Ratio (SIR)

in decibels compared to the original microphone signal. Signal-to-Artefact Ratio

(SAR) is not included as the results for SDR and SAR in the previous chapter

were similar therefore we chose not to show both in this chapter.

Figure 6.3 shows the results as SDR and SIR improvement compared to the

SDR and SIR of the original audio samples in decibels against the number of

iterations. There was a clear increase in improvement as the number of itera-

tions increases, with the greatest improvement occurring for four sources. The

increase in SDR between one and two iterations can be attributed to the re-

duced comb filtering of x1 but the effect begins to diminish after four iterations,

which may be due to increased artefacts in the signal. The SIR improved with

a steady increase up to three iterations for two and three sources but further

increased for four sources.

6.3 Evaluation

The proposed method, iterative FDCTRANC, was evaluated against the basic

CTRANC, the centred CTRANC from Chapter 5 and the MCWF, which was

also used in the previous chapter. The CTRANC has already been compared to

the DUET method of Blind Source Separation in the previous chapter, therefore

we chose to focus on noise cancellation methods for this evaluation.
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Figure 6.3: Comparison between different number of iterations for different de-
termined microphone configurations showing mean SIR and SDR improvement
from the unprocessed microphone signal.

The algorithms were tested in both anechoic and simulated reverberant con-

ditions using RIRs generated using the Lehmann image source MATLAB tool-

box. The RT60 was 0.4s in the reverberant case, where RT60 is the time taken

for the amplitude of the reverberation to drop below 60dB [Howard and Angus,

2000]. It is defined by the absorption coefficients of the simulated space, gener-

ated by the toolbox. The layout was equal for both RIR cases using two sources

and two microphones. The room dimensions were 5m x 5m x 2.5m and the

sources were positioned at (2.9,1.0,1.3) and (3.4,1.0,1.3), 0.5m apart to simulate

a real configuration. The microphones were spaced the same width apart as the

sources but positioned at a distance of 0.12m to simulate a close microphone

configuration.

The audio was sampled at 44.1kHz. FDCTRANC used a window size of

2048 samples. The basic and centred CTRANC used a window size of 512

samples to reduce the computation time. The MCWF used a window size of

4096, recommended by Kokkinis et al. [2011]. The audio samples were scaled so

the RMS of each sample matched the RMS of the original microphone signal.

This was done to reduce the perceptual effects of amplitude changes between

comparative audio samples.

6.3.1 Subjective evaluation

A subjective listening test was performed to evaluate each method.
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Setup

A Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) listening test

was conducted, adhering to the ITU standard [International Telecommunication

Union, 2003]. This type of test was chosen because it is commonly used to

assess blind source separation algorithms [Emiya et al., 2011] and is suitable for

assessment of intermediate audio quality [Bech and Zacharov, 2006]. It is also

very time efficient and allows a large amount of data to be collected in a shorter

period of time than a pairwise comparison test, for example.

The participants were presented with the interface shown in Figure 6.4. In

each trial the reference was a simulated microphone signal consisting of a target

source combined with an interfering source in either anechoic or reverberant

conditions. The target audio sources were a rhythm acoustic guitar, fiddle, bass

guitar, slide guitar, male vocal and tin whistle. The interfering sources were a

male vocal, tin whistle, electric guitar, slide guitar, piano and organ for each

target source respectively. There were 12 trials for each repetition of the test.

Figure 6.4: User interface for the MUSHRA listening test.

The participants were presented with a bank of six audio samples to rate from

0 (bad) to 100 (excellent) using corresponding sliders. Four of the audio samples
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were the reference processed with each of the four bleed reduction methods under

test. The reference was also included as one of the audio samples along with

an anchor audio sample, which is deliberately processed in such a way that

it should be rated the lowest out of all the samples. The audio samples were

assigned randomly to the sliders by the software.

The test was conducted twice as the participants were asked to rate each

audio sample for two different quality criteria, similar to criteria used by Emiya

et al. [2011], compared to the reference.

The participants were firstly asked to rate the sounds in terms of the quality

of the suppression of the interference. After all trials were complete, the test

was repeated but they were asked to rate the samples in terms of the quality of

the preservation of the target source, referring to any additional artefacts they

may hear. The listening test was performed in this way to get a perceptual

overview of how each algorithm performed and whether bleed reduction can be

performed without additional artefacts.

For the different quality assessments two different anchors were used. For the

interference rating stage the original simulated microphone signal was used as

an anchor. For the artefact rating stage a version of the clean target signal, low

pass filtered at 3.5kHz, was used. This is the same as proposed in the original

MUSHRA standard [International Telecommunication Union, 2003]. The clean

target source was the hidden reference in both cases. Participants were asked

to rate at least one audio sample at 100 (excellent), as per the ITU standard.

Each stage of the test was approximately 25 minutes in duration with a 5 minute

break in between.

There were 15 participants between the ages of 20 and 41. 12 were male

and all had critical listening experience. Post screening of the results rejected a

participant for the artefact criteria because the anchor had been rated at 100%

in a number of trials. All participants’ results were used for the interference

criteria.

Results

As per the ITU standard, the results are reported as the mean rating of each

condition for each trial for both anechoic and reverberant condition. We also

show the mean rating of all responses in each trial for each audio sample. The

reference was rated as 100 in 96.26% of all trials in all cases and conditions with

a minimum rating of 82 in all others therefore the results for the reference are not

shown. We show the 95% confidence intervals based on Student’s t-distribution

[Sporer et al., 2009].

For each trial the data for each algorithm was compared using the Wilcoxon
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Figure 6.5: Results of the subjective listening test for the interference criteria
showing means of all participants for each trial for FDCTRANC, MCWF and
anchor with 95% confidence intervals.
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rank sum test, as recommended by Nagel et al. [2010], due to the non-parametric

nature of the data. In all cases the significance is accurately demonstrated by the

confidence intervals, where an overlap of confidence intervals over neighbouring

means does not reject the null hypothesis of equal distributions.

Figure 6.5 shows the results for the interference criteria for each trial in

both anechoic and reverberant conditions. Overall, it can be seen that the

results were trial, and therefore source, dependent.

In the anechoic case, centred CTRANC and CTRANC did not reject the

null hypothesis of equal distributions in any trials, therefore they can be consid-

ered as having similar performance. The anchor was consistently rated lowest

quality in all trials, which was expected. In trial 2 FDCTRANC did not reject

the null hypothesis of equal distribution to the anchor. The MCWF was rated

highest apart from in trial 3 where the difference between the centred CTRANC,

CTRANC and MCWF was not considered significantly different and in trial 6

where the means on the CTRANC and MCWF were also considered statisti-

cally similar. The results of FDCTRANC were inconclusive as the performance

ranged from being similar to the anchor in trial 2 to being rated just below the

MCWF in trial 3.

Across all trials in the anechoic case, the MCWF was rated highest with a

mean rating of 77%, followed by the basic and centred CTRANC methods with

mean ratings of 54% and 51% respectively, although the difference between the

CTRANC methods was not statistically significant. FDCTRANC performed

slightly worse than CTRANC based methods at 43%.

In the reverberant case, the centred CTRANC performed significantly worse

than the basic CTRANC in trial 1 and 6. This was expected from the results

in the previous chapter. The anchor was rated low in all cases. FDCTRANC

was rated higher than the basic CTRANC in more trials than in the anechoic

conditions.

Across all trials the MCWF method was also rated highest in the reverberant

case with a mean rating of 71%. FDCTRANC is then rated similarly to the

basic CTRANC with mean ratings of 35% and 33% respectively with the centred

CTRANC performing worse with a mean rating of 25%.

Figure 6.6 shows the same data for the artefact criteria. In both the anechoic

and reverberant cases FDCTRANC, centred CTRANC and basic CTRANC

did not reject the null hypothesis of equal distributions therefore they can be

considered to have performed similarly in terms of artefact reduction.

In trial 3 in both cases, the MCWF performed worse than the anchor by

52% in the anechoic case and 54% in the reverberant case. This was because the

MCWF is performed in the frequency domain and therefore changes in frequency

content are expected. In this particular trial the output of the MCWF audio
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was as if it had been processed with a low pass filter, similar to that of the

anchor. In all other trials MCWF performed the worst out of the four methods

under test.

In trial 2 and trial 6 in both cases the differences between all methods under

test were not statistically significant. The FDCTRANC had a mean rating

of 84% in the anechoic case and 89% in the reverberant case. The MCWF

had a mean rating of 60% in both the anechoic and reverberant cases. Overall

CTRANC based and FDCTRANC methods are rated highest with no significant

difference between them.

Tables 6.1 and 6.2 report the p-value of the Wilcoxon rank sum test between

the anechoic and reverberant criteria of each method under test for each trial

and overall for both the interference and artefact criteria. The mean of the

anechoic and reverberant condition is shown under each p-value. When p > 0.05

it is indicated in bold, which signifies the results reject the null hypothesis of

equal distributions and the difference in means can be considered statistically

significant.

Table 6.1 shows that on a trial-by-trial basis, the performance of the ba-

sic CTRANC and centred CTRANC were dependent on room conditions for

the interference criteria, with anechoic conditions achieving better performance.

FDCTRANC was less dependent on room conditions in this test, with the per-

formance of 4 of the 6 trials being independent of room conditions. The MCWF

was not affected by room conditions in all cases for the interference criteria. In

the overall comparison, the FDCTRANC and MCWF methods were considered

to be affected by reverberation.

Table 6.2 shows that all methods performed independent of room criteria

apart from one trial for the centred CTRANC. Each method exhibited examples

where the performance in reverberant conditions is better than that in anechoic

conditions. The difference in means of FDCTRANC in anechoic and reverberant

conditions are considered statistically significant with p = 0.048, although this

is very close to the test p-level of 0.05.

Overall, the MCWF achieved the greatest quality of interference reduction

but at a cost of increased artefacts in the target signal. This is an expected out-

come of Wiener filter implementations [Lim and Oppenheim, 1979]. Although

not shown in the results, MCWF also introduced time varying artefacts and in

trial 3 in both room conditions the MCWF was confused with the anchor. The

MCWF also altered the gain of the target signal, whereas FDCTRANC does

not. In this evaluation, all audio samples were normalised for amplitude with

the same RMS to test only interference and artefacts, although it can be argued

that altering the gain is introducing an artefact.

The proposed FDCTRANC method performed higher than the MCWF in
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Figure 6.6: Results of the subjective listening test for the artefact criteria show-
ing means of all participants for each trial for FDCTRANC, MCWF and anchor
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Trial
Algorithm 1 2 3 4 5 6 All
CTRANC

basic
0

(75,49)
0.025

(52,39)
0

(56,28)
0.008

(26,13)
0.001

(50,32)
0

(68,36)
0

(54,33)
CTRANC

centred
0

(71,35)
0.036

(51,38)
0

(50,20)
0.021

(24,13)
0

(56,24)
0

(56,22)
0

(51,25)
FDCTRANC 0.029

(64,49)
0.618
(27,25)

0.442
(35,31)

0.001
(64,38)

0.934
(37,36)

0.835
(31,32)

0.011
(43,35)

MCWF 0.22
(87,82)

0.057
(94,86)

0.819
(55,58)

0.081
(78,69)

0.589
(75,71)

0.078
(73,63)

0.028
(77,71)

Table 6.1: Interference - showing p-level for each trial and each algorithm be-
tween RIR conditions using Wilcoxon rank sum. Mean for anechoic and reverb
are shown below. Those that are not different with statistical significance are
highlighted in bold.

Trial
Algorithm 1 2 3 4 5 6 All
CTRANC

basic
0.798
(85,90)

0.743
(90,89)

0.37
(75,69)

0.065
(82,90)

0.109
(82,91)

0.926
(88,88)

0.153
(84,86)

CTRANC
centred

0.726
(89,87)

0.889
(89,90)

0.113
(75,64)

0.036
(83,92)

0.204
(87,93)

0.579
(86,89)

0.35
(85,86)

FDCTRANC 0.645
(84,90)

0.245
(81,89)

0.695
(79,72)

0.14
(84,92)

0.235
(86,92)

0.886
(88,92)

0.048
(84,89)

MCWF 0.8
(49,46)

0.963
(82,84)

0.782
(22,22)

0.214
(62,53)

0.259
(59,68)

0.446
(85,89)

0.952
(60,60)

Table 6.2: Artefacts - showing p-level for each trial and each algorithm between
RIR conditions using Wilcoxon rank sum. Mean for anechoic and reverb are
shown below.

122



artefact criteria along with the centred CTRANC and CTRANC and performed

similarly to the time domain CTRANC methods in the interference criteria,

compared to the MCWF method. We can see that FDCTRANC reduced the

level of the microphone bleed, since in 5 out of 6 trials it was rated higher than

the anchor. This does not give an indication as to how much reduction has

taken place as the scale is a percentage quality.

We can conclude that perceptually, each method is highly source dependent.

It is also apparent that different features of input sources affected each method

differently. More analysis is required to isolate which of these features affects

the FDCTRANC method, for example spectral bandwidth, percussiveness or

temporal changes.

6.3.2 Objective evaluation

The same audio samples used in the listening test outlined in the previous

section were analysed using the BSS-EVAL toolbox to gain an objective view

of the performance of each method. The unprocessed audio was also tested for

comparison.

Figures 6.7 and 6.8 show the results of the analysis for the anechoic and

reverberant audio samples respectively showing the SDR, SIR and SAR of each

method for each room condition. The SIR and SDR of the unprocessed signal

are also shown for comparison although the SAR is assumed to be ∞.

Figure 6.7 shows the centred CTRANC from the previous chapter resulted

in the greatest mean SIR at 55.31dB, compared to the MCWF at 38.56dB, in

anechoic conditions. This was expected as the centred CTRANC is particularly

suited to anechoic conditions. FDCTRANC still performed higher than the

MCWF with a mean SIR of 43.25dB. In terms of SAR and SDR there was little

difference between each algorithm, with the centred CTRANC still performing

the highest.

Figure 6.8 shows FDCTRANC produced the greatest SIR at 40.58dB in the

reverberant case followed by the MCWF and basic CTRANC which resulted in

mean SIRs of 32.69dB and 31.87dB respectively with little difference between

them. The centred CTRANC performed worse, which was expected due to

the reverberation and was the same result as the previous chapter. In the

reverberant case the MCWF performed highest given in terms of SAD and

SDR with FDCTRANC performing second.

6.3.3 Computational efficiency

Another factor to consider when evaluating a method is the computational cost.

We processed 10 seconds of the test audio 100 times with each method using
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Figure 6.7: Objective measures of listening test audio data in anechoic condi-
tions showing mean SDR, SAR and SIR for all trials for each algorithm under
test. Standard deviation is shown.
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Figure 6.8: Objective measures of listening test audio data in reverberant con-
ditions showing mean SDR, SAR and SIR for all trials for each algorithm under
test. Standard deviation is shown.
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Figure 6.9: Running time of each algorithm in seconds for 100 repetitions of
processing on 10 second audio samples at 44.1kHz sampling rate. The mean
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MATLAB on the 12 CPU core processing server at the Centre for Digital Music.

Figure 6.9 shows the time taken for each method to complete each repetition.

The mean running time is also shown.

Although these results are dependent to an extent on the implementation

and potential savings in time could be made, the amount of optimisation that

could be achieved is unlikely to offer a large decrease in time.

FDCTRANC completed the processing in the fastest time with a mean run-

ning time of 0.738 seconds. The centred CTRANC performed the slowest with a

mean running time of 18.349 seconds. This was predominantly due to the delay

estimation involved. This results may improve relative to the basic CTRANC

with a larger frame size.

As FDCTRANC took less than 1 second to complete 10 seconds of processing

and it is a frame-based method, it is likely real-time implementation can be

achieved.

6.3.4 Discussion

Overall we can see that the results of the objective evaluation were different

to the subjective listening test results. This may be because the subjective

listening test results show how the algorithms are input dependent, which was

shown by the difference in results for each trial, whereas in the objective case the

results were similar for each different trial, as shown by the indicated standard

deviation.
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Regardless, the objective measures give an indication as to how well a

method may work with real data but they suggest there is still some research

to be done in developing a usable, perceptual objective measurement system.

There is literature in this area [Emiya et al., 2011] which we have not used due

to the computation time of the accompanying toolbox.

We can say that in the subjective and objective measurements all CTRANC

based methods performed similarly and reduced the level of the microphone

bleed while adding very little artefacts to the target source. Implementing

CTRANC in the frequency domain provided a much lower computational cost

with similar results.

These results also show that SDR and SAR are again very similar. Therefore

we will continue to only use SDR in the next section.

6.4 Overdetermined FDCTRANC

The iterated FDCTRANC we have proposed is only relevant in the determined

case. It is possible that the configuration of microphones and sources in a live

sound production can be overdetermined. This may happen if single sources

are being reproduced by multiple microphones in the same acoustic space, still

assuming that each microphone is closest to one source, the target source. This

is common if the sound engineer requires recordings of different aspects of the

same instrument to be mixed together. If the microphones are not equidistant

from the sound source comb filtering can occur. The comb filtering can be

reduced by delay estimation, as described in Chapter 4. But if there is bleed on

the microphone signals this will also result in comb filtering of the bleed.

Taking (6.15) and (6.15), if we assume that s1 is the target source in both mi-

crophones and we apply a compensating delay to align s1 in both microphones,

this then becomes

x1[n] = α11s1[n− τ12] + α21s2[n− τ21 + (τ12 − τ11)]

x2[n] = α12s1[n− τ12] + α22s2[n− τ22]. (6.39)

When x1 and x2 are summed, s2 will still be comb filtered. Therefore bleed

reduction has to be performed prior to comb filter reduction.

The problem with applying FDCTRANC in the determined case to this

scenario is that it will attempt to remove bleed from multiple microphones that

reproduce the same target source.

For example, extending the two source, two microphone case to three micro-
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Figure 6.10: Example layout of sources and microphones as defined in
(6.40),(6.41) and (6.42).

phones

x1 = α11s1[n− τ11] + α21s2[n− τ21] (6.40)

x2 = α12s1[n− τ12] + α22s2[n− τ22] (6.41)

x3 = α13s1[n− τ13] + α23s2[n− τ23] (6.42)

where s1 is closest to x1 and x2 and s2 is closest to x3 and assuming τ11 > τ12

and τ21 > τ23 and therefore α11 < α21 and α21 < α23, as in the example shown

in Figure 6.10.

If the iterated FDCTRANC algorithm is applied to this configuration, the

first step will be

x̂1[n] = x1[n]− (wT
21[n]x2[n] + wT

31[n]x3[n]) (6.43)

as the algorithm assumes x2 and x3 are representations of interfering sources in

x1. In terms of s1 and s2 this then becomes

x̂1[n] =α11s1[n− τ11] + α21s2[n− τ21]

− (α11s1[n− τ11] + α′22s2[n− τ ′22]

+ α′13s1[n− τ ′13] + α21s2[n− τ21]) (6.44)

=− α′13s1[n− τ ′13]− α′22s2[n− τ ′22] (6.45)
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where

α′22 = α22 − (α12 − α11) (6.46)

τ ′22 = τ22 + (τ11 − τ12) (6.47)

α′13 = α13 − (α23 − α21) (6.48)

τ ′13 = τ13 + (τ21 − τ23) (6.49)

where α′22 < α22 and α′13 < α13. As x1 and x2 have the same target source,

the algorithm attempts to remove the same interfering source from each micro-

phone. In this scenario, the result is that x̂1 contains both s1 and s2 reduced

in amplitude and bleed reduction has not been achieved.

x̂2 is then calculated by

x̂2[n] = x1[n]− (wT
12[n]x̂1[n] + wT

32[n]x3[n]) (6.50)

which will have a similar output to x̂2. x̂3 is then calculated by

x̂3[n] = x1[n]− (wT
13[n]x̂1[n] + wT

23[n]x̂2[n]). (6.51)

In this case the amplitude of the interfering source will be reduced and the

target source retained.

6.5 Selective FDCTRANC

We have shown that the iterated FDCTRANC will fail when applied to the

overdetermined case. In this section we propose a modification to FDCTRANC

to include a selection process to avoid performing bleed reduction between mi-

crophones which have the same target source.

So in (6.43), the outcome will be that x2 would not be considered a micro-

phone reproducing an interfering source of x1 and therefore would not have to

be removed from x2. So (6.43) would become

x̂1[n] = x1[n]−wT
31[n]x3[n]. (6.52)

The selection can be achieved by measuring the similarity between micro-

phone signals. As we know that we are attempting to decide if two microphones

are reproducing exactly the same source, traditional methods of similarly can

be used, such as cross correlation. Therefore the GCC-PHAT outlined in Chap-

ter 4 can also be used for this purpose by analysing the peak value of the output

function. The problem with this method is that it relies on an accurate estimate

of the delay for an accurate estimate of the degree of similarity.
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Another approach is to measure the Pearson’s correlation coefficient (PCC)

between the frequency spectrum of each microphone. This is appropriate be-

cause in anechoic conditions with a single source and two microphones, in the

frequency domain the difference between two microphones will be linear ampli-

tude. Microphones positioned closest to the same target source will have a high

correlation in the frequency domain as the same target source is the highest

amplitude in each microphone. This has advantages because it is delay inde-

pendent since delay only affects the phase. This also gives a single value to the

amount of correlation between microphones. The correlation between frequency

spectra is calculated by

ρ =

∑N−1
k=0 (|Xl[k]| −X l)(|Xm[k]| −Xm)√∑N−1
k=0 (|Xl[k]| −X l)2(|Xm[k]| −Xm)2

(6.53)

where Xl and Xm are xl and xm in the frequency domain and

X l =
1

N

N−1∑

k=0

|Xl[k]| (6.54)

Xm =
1

N

N−1∑

k=0

|Xm[k]| (6.55)

are the mean magnitudes of Xl and Xm.

A high value of ρ indicates the microphones are reproducing the same target

source but further analysis is required to establish a threshold at which to make

this decision.

6.5.1 Correlation Threshold

To establish a suitable threshold of correlation, we analysed the correlation

measure ρ with simulated microphones in anechoic conditions using two pink

noise sources. The same image source toolbox as mentioned in Section 6.2 was

used. The sources were placed 0.5m apart and two microphones, x1 and x2

were positioned 0.1m in front of each source. Another microphone, x2 was

moved in 0.025m increments between the two microphones from the position of

x1 across to the position of x3. Figure 6.11 shows an example of this layout.

The correlation using (6.53) was calculated for every frame of N samples of each

microphone signal.

Figure 6.12 shows the mean ρ over all frames between each microphone at

each position of x2. The correlation as a function of distance between x1 to

x2 and between x2 to x3 intersected at a point where x2 was equidistant from

x1 and x3. The mean correlation at this point was 0.83. We can consider this
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Figure 6.11: Layout of correlation test zoomed to show configuration.
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Figure 6.13: Plot showing ρ at the point of intersection when the source to
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the point where ρ between x1 and x2 and between x2 and x3 intersect, which

we will refer to as ρI . The minimum correlation between x1 and x2, which are

static, was 0.67. This suggests that a correlation coefficient above 0.83 would

indicate that two microphones were highly correlated and therefore reproducing

the same target source.

The same experiment was repeated under different conditions to establish

how ρI changes with changing configurations and also to ascertain an acceptable

threshold to indicate when two microphones are reproducing the same source.

In the first case the source to microphone distance was altered from 0.1m to

1.6m and the source to source distance retained at 0.5m. The source to source

distance was then altered from 0.1m to 1.6m and the source to microphone

distance retained at 0.1m.

Figure 6.13 shows ρI for different source to source and source to microphone

distances. For the source to source distance the correlation ranged from 0.92 at

a distance of 0.1m and 0.82 at a distance of 1.6m. This decrease in correlation

was due to the increased distance between microphones at ρI . For the source

to microphone distance the correlation ranged from 0.84 at a distance of 0.1m

to 0.91 at a distance of 1.6m.

We then used the same configuration as in Figure 6.12 but altered the RT60

of the simulated environment.

Figure 6.14 shows the results for the change in RT60. In this case ρI ranged

from 0.82 at 0s RT60 (anechoic) to 0.71 when the RT60 was 0.8s. This was due
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Figure 6.14: Plot showing ρ at the point of intersection when the RT60 of the
virtual environment is altered.

to increasing amplitude of early reflections as RT60 increases, which will reduce

correlation between a microphone close to a source and one further away due

to timbral changes the reverberation will have on the source.

From this it was decided that a correlation coefficient of 0.9 was sufficient

to indicate that two microphones are correlated and that they are reproducing

the same target source. This value was chosen because at ρI , shown in the

previous figures, x2 is equidistant from x1 and x3. If this configuration occurs,

the assumption that each microphone is closest to a single microphone does not

hold and x2 will no longer be a sufficient estimate of a single source. At this

point the bleed reduction will fail, and therefore there is no need to run the

selection process.

Figures 6.13 and 6.14 show that ρI changes with the configuration. Therefore

the chosen value allows for a margin of error if a particular microphone is in a

position equidistant to two sources.

Including this measure into the FDCTRANC framework, Figure 6.15 shows

the proposed method as a block diagram. ρ is measured between each micro-

phone prior to the subtraction of the filtered bleed signals in (6.43). If ρ < 0.9

then xl is considered to be estimating an interfering source of xm, else the two

microphones are considered correlated and FDCTRANC should not be per-

formed between them.

Adding the correlation measure will not increase computation significantly

since the spectrum of each microphone signal is estimated by performing an
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Figure 6.15: Block diagram of selective FDCTRANC.

FFT, which is already calculated for FDCTRANC. In some cases computation

will decrease if some microphones are found to be highly correlated therefore

bleed reduction will not be performed and less adaptive filters will be utilised.

The correlation measure can also be utilised in the determined case to establish

whether bleed reduction will be successful between two particular microphones

6.6 Evaluation

In this section we compare the proposed selective FDCTRANC against the basic

iterative FDCTRANC in a variety of configurations.

We ran an experiment in simulated conditions. The room was 5m x 5m

x 2.5m in size. The sources were placed at 0.5m intervals with a random er-

ror of ±0.05m to simulate real world situations. There were between two and

six sources. For each number of sources, between one and three microphones

were positioned in front of each source. The initial position for the first micro-

phone was directly in front of the each source with a distance randomly selected

between ±0.1m and 0.2m. Subsequent microphones were then placed ±0.1m

either side of the initial microphone. The maximum layout with six sources and

three microphones per source can be seen in Figure 6.16. The RT60 of each

configuration was changed from 0s (anechoic) to 0.8s in 0.2s increments.

The sources were a selection of recordings of solo musical instruments; an

acoustic guitar, a male vocal, a piano, a fiddle, an electric guitar and an organ.

All audio samples were taken from multitrack recordings available under Cre-

ative Commons. The samples used in the test were 20 second excerpts taken

from 60 second samples to allow for the adaptive filters to stabilise as the source
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Figure 6.16: Virtual layout of sources and microphones in the maximum con-
figuration for the results in Figures 6.17 and 6.18.

and microphone positions were static. The iterative FDCTRANC and selective

FDCTRANC were compared.

The resulting audio was analysed using the BSS-EVAL toolbox. Figures 6.17

and 6.18 show the mean improvement in SDR and SIR from the SDR and SIR

of the original microphone signals for each configuration and RT60.

Figure 6.17 shows that SDR improvement decreased as the number of mi-

crophones per source increased for all number of sources. This was expected,

as explained in the previous section. In all cases there was a decrease in SDR

when more than one microphone was used, due to attempted bleed reduction be-

tween microphones with the same target source. The SDR improvement for the

Selective FDCTRANC also decreased as the number of microphones increased

but in most cases there is improvement. There is also a trend of decreasing

improvement in both methods as the number of sources increased, tailing off as

the number of sources reaches six.

The results shown in Figure 6.18 were less consistent. The SIR improve-

ment shows a similar trend for all sources. In the standard FDCTRANC case

the SIR improvement decreased as the number of microphones increased. This

was due to the bleed being removed for the same target microphones. For the

selective FDCTRANC the SIR improvement remained consistent as the num-

ber of microphones increased, especially for four to six sources, which showed

similar results. There was also a decrease in performance as RT60 increased.

This was expected as the estimation of the target source at a close microphone
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will increasingly differ from the same source as an interfering source in a far

microphone as RT60 increases.

By including the selection process in FDCTRANC, up to 20dB more SDR

improvement is achieved compared to the standard FDCTRANC and as much

as 32dB more SIR improvement in the two source case with two microphones

per source in anechoic conditions.

As with the SDR improvement, the SIR improvement decreased as the num-

ber of sources increased due to the more complex interfering source mix, but

after four sources the results remain similar.

6.7 Discussion and conclusions

In this chapter we extended CTRANC method in the previous chapter to the

frequency domain to improve computation and performance. By doing this we

uncovered problems with comb filtering that can occur with a straightforward

implementation and proposed performing the method iteratively to reduce this

effect.

The proposed iterative FDCTRANC method has been shown to be more

computationally efficient, taking a mean time of 0.74s to process a 10 second

audio sample whereas the time domain CTRANC was shown to take 13.6s.

We conducted a listening test to compare the proposed method to the Mul-

tichannel Wiener Filter method and on the methods outlined in the previous

chapter. The proposed method was shown to perform similarly to the time

domain CTRANC in terms of introducing artefacts. In terms of interference

reduction the time domain CTRANC performed significantly better in 5 out of

6 trials in anechoic conditions but only one trial in reverberant conditions. This

was echoed in objective metrics taken from the audio.

We then extended FDCTRANC to the overdetermined case. We showed that

applying FDCTRANC to an overdetermined example will not result in bleed

reduction of microphones reproducing the same source. We proposed a selection

stage to counteract this by measuring the correlation in the frequency domain

between microphones as microphones reproducing the same sound source will

be highly correlated.

The selection process was shown to provide an improvement in the Signal-to-

Interference Ratio to the original microphone signal by up to 40dB, which was

as much as a 32dB increase compared to FDCTRANC. The proposed method

was shown to outperform FDCTRANC in all overdetermined cases under test.

This chapter has shown a method for overdetermined microphone bleed re-

duction. The next chapter takes the knowledge we have gained in microphone

bleed and uses it to investigate a different perspective, where microphone bleed

is added to a signal to improve results rather than taken away.
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Chapter 7

Microphone bleed simulation in multisampled

drum workstations

The previous two chapters discuss research into the causes of microphone bleed

and potential methods for removal. This chapter presents a preliminary inves-

tigation into a particular scenario where microphone bleed may be desired and

how to artificially simulate this from audio data. In doing this we present a

deeper understanding into microphone bleed and the positive aesthetic qualities

it can provide in some circumstances.

Microphone bleed is inherent to all microphones recording multiple sources

in the same acoustic space. A drum kit is an example of this as it can be thought

of as a group of separate instruments always positioned in close proximity. This

close proximity means microphone bleed is expected of a live drum kit recording.

Bleed is considered the sound from a drum that is not the target arriving in the

target microphone. In certain cases the absence of bleed reveals the artificial

nature of the source material, such as in artificial drum recordings generated

using multisampled drum workstations (MDWs). MDWs offer a user interface

that triggers precisely recorded drum samples with the intention of producing

realistic sounding drum loops. These drum samples are recorded in isolation

and the software allows the user a large amount of control to load any drum

piece into a certain location. Due to this, lack of ambience and microphone

bleed can reduce the credibility of a realistic sounding drum kit. In such cases

it is desirable to provide an approximation of the microphone bleed.

In this chapter we present a novel method of simulating tom-tom drum

microphone bleed and resonance in MDWs while contributing to deeper under-

standing of microphone bleed and its applications. We first describe MDWs

and explain why bleed is often required. We then present a method that only

makes use of the audio samples generally available and evaluate the method

using a listening test of expert participants. The results of the listening test

showed that listeners are not able to discern the real recording with statistical
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significance.

The research presented in this chapter was undertaken as part of a research

project in collaboration with FXpansion Audio, an industry partner.

7.1 Multisampled drum workstations

Recording a full drum kit comes with many challenges, from simply finding a

space big enough to adequately record a drum kit to dealing with issues that

occur with the large amount of separate instruments in close proximity. MDWs

allow amateur and professional engineers to recreate the sound of a full kit

recorded in a professional studio simply from a laptop, for example FXpansion’s

BFD2 [FXpansion, 2013].

The premise of an MDW is to go one step further than a sampler or syn-

thesiser. A drum kit is laid out in a studio with a standard microphone setup

and each drum, or kit piece, is recorded in isolation and struck at many dif-

ferent velocities and positions. An interface is then developed to access these

samples and allow the user to program their own drum beats and render all of

the individual recordings together to create a studio quality emulation of a real

drummer.

Ideally every microphone would be recorded for every drum hit to reproduce

the bleed between the microphones. Then if the user sequences a drum loop

and listens to one microphone in isolation, much like a real recording all of the

drums would still be heard due to the bleed.

The problem with recording every microphone for every drum is that this

ends up being a lot of data that needs to be recorded, distributed and stored.

For this reason it is often the case that only the bleed into the kick or snare

drum microphones is included with an MDW, as these are considered the most

important kit pieces.

Another problem is that many MDWs allow users to construct their own

complete drum kit, choosing from many different drum pieces. If the drum

pieces were not recorded as part of the same drum kit, the microphone bleed

will not be accurate.

It would be advantageous to be able to reproduce microphone bleed without

having to provide the actual audio data. It may be possible to synthesise this

missing data but this is at odds with the philosophy of creating an MDW from

recorded samples. Techniques also exist for modelling drum kits [Laird, 2001;

Bilbao, 2012] but are computationally complex and therefore simplified models

of real drums.

This chapter outlines a method to simulate the bleed of a kick or snare

drum into the tom-tom drum microphones using the bare minimum of data that
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Figure 7.1: Drum microphone bleed and resonance.

would be available in an MDW. We evaluate how effective these simulations are

compared to real data through listening tests.

7.2 Microphone bleed in drum kits

Generally while recording a drum kit the direct sound from each drum is

recorded by a dedicated microphone. Therefore each microphone will have a

single target drum. The bleed that occurs in a drum kit is more specialised

than that described in Section 2.2.5 as the close proximity of drum pieces in a

drum kit means the microphone bleed also contains the distinctive sympathetic

resonances of the drum pieces.

The bleed that occurs on a microphone positioned to record a tom-tom drum

is primarily from two sources; the direct sound of the interfering drum arriving

at the microphone and the tom-tom resonating due to this direct sound. As

we are particularly looking at the case where the snare or kick drum are the

interfering drums, for the case of the snare drum as the interfering source this

can be described as

xt[n] = hs[n] ∗ s[n] + ht[n] ∗ t̂[n] + w[n] (7.1)

where xt is the tom-tom microphone signal, s is the sound of the snare drum

being struck, t̂ is the tom-tom resonance excited by the snare drum, w is un-

correlated noise and hs and ht are room impulse responses between the snare

drum and the microphone and the tom-tom resonance at the microphone when

the snare drum is struck. This is demonstrated in Figure 7.1.

Drums can be generalised as a circular membrane stretched over an air space

[Fletcher and Rossing, 1998]. When the membrane, or drum skin, is struck

this causes the membrane to vibrate at different modes. This also causes the

air within the drum to resonate as well as the drum body itself, producing a
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characteristic sound. Drums can also resonate due to excitation from vibrations

in the air due to other drums in the kit being struck, known as sympathetic

resonance.

Tom-tom drums are tuned to resonate at different, complementary funda-

mental frequencies when struck. They are also notorious for resonating or “ring-

ing” when other drums are played and may be tuned up or down to change the

resonant frequency to avoid this. Although the ringing can be avoided it is

an integral part of a real drum kit. In addition to this there are many differ-

ent factors which will determine how the resonance of a tom-tom will sound in

the microphone, including microphone type, the positions of the microphones,

tom-toms, other drums, listening position, room characteristics and mechanical

connections to other instruments.

These factors can be used to inform a method for simulating the drum bleed.

For example if the exact position of drums and microphones was known then

it would be possible to estimate the amplitude and delay changes and also use

known equations for estimating the spectral change of a sound source over dis-

tance [Moorer, 1979]. Unfortunately it is unlikely that the details of all these

factors are noted during a recording session. MDWs also allow users to place

drums in almost any configuration and position, regardless of the original record-

ing position. Assumptions therefore need to be made and the same algorithm

needs to be able to simulate drums in a variety of configurations with a general

approach.

For our purposes we assume the direct recording of the kick, snare and tom-

tom microphones are available. In terms of an MDW, this is the bare minimum

required for a convincing, configurable drum kit. Real recordings of kick and

snare drum hits in tom-tom microphones were also available for analysis and

comparison to our proposed method and simulations.

7.3 Microphone bleed simulation

In this section we outline the proposed method for simulating kick and snare

drum bleed into tom-tom microphones. The bleed consists of the direct sound of

the kick or snare drum in the tom-tom microphones, and also the sympathetic

resonance that occurs on the tom-toms due to the direct sound.

7.3.1 Direct bleed

The direct kick or snare drum sound in the tom-tom microphone can be sim-

ulated from the direct recording of each drum. The direct recording has to be

processed to simulate the changes that occur to the direct sound as it travels

through air from the drum itself to the tom-tom microphone [Kuttruff, 2006].
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It is unlikely the bleed will be heard in isolation, and therefore an approximate

simulation will suffice.

The processing that the sound travelling through air undergoes can be gen-

eralised as a reduction in high frequency amplitude. Equations are well estab-

lished for modelling air absorption dependent on distance [Moorer, 1979] but it

is assumed the relative distances between drums are unknown. A high shelving

filter taken from [Zölzer, 2002, pg. 51] was used to simulate air absorption on

the direct recordings. The gain of the filter was then calculated from infor-

mal listening tests of previously recorded microphone bleed recordings, leading

to a filter specification of -8dB gain at a 5kHz cutoff. In addition to this the

source instrument was attenuated so that there would not be noticeable positive

reinforcement when the bleed signals were mixed together.

7.3.2 Extracting tom-tom resonance

The next stage is to simulate the sympathetic resonance of the tom-tom drum

to the external excitation of the kick or snare drum. The modes excited this

way are also excited when the drum is struck directly. Therefore the modes can

be extracted from the direct tom-tom recording.

The modes of an ideal circular membrane can be predicted [Fletcher and

Rossing, 1998], although real tom-toms appear to diverge from the ideal case.

It is known that the modes of a tom-tom will rise if struck with a large force as

the strike displaces the membrane and changes the tension. Figure 7.2a shows

a spectrogram of a tom-tom hit recorded at the tom-tom microphone, showing

the fundamental mode of 138Hz. At the beginning of the hit the mode is at

a higher frequency due to the force of the drum stick against the membrane.

Figure 7.2b shows a spectrogram of a snare hit in the tom-tom microphone.

The resonance of the fundamental mode of the tom-tom can clearly be seen at

the same frequency but it is delayed due to the delay of the sound of the snare

arriving at the tom-tom. The frequency of the mode is the same throughout

the spectrogram.

It is therefore not appropriate to use the unprocessed direct recording of the

tom-tom to reproduce the tom-tom resonance due to the initial rise in frequency.

We can extract the stable resonance by measuring the spectral flux of the

tom-tom signal [Lartillot and Toiviainen, 2007]. Spectral flux is a measure of the

change of spectral content over time and can be used for transient and steady

state detection [Zölzer, 2002, chap. 8], [Duxbury, 2001]. It is calculated by

taking the Euclidean distance of the magnitude of subsequent frames of data,

1http://www.sonicvisualiser.org/
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Figure 7.2: Spectrograms taken from Sonic Visualiser [Cannam et al., 2010]1.
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⇣

Figure 7.3: The first derivative of spectral flux ζ plotted against time. The
beginning of the resonance is indicated by a dashed vertical line.

described by

ζ[i] =

√√√√
N−1∑

k=0

[|X[i, k]| − |X[i− 1, k]|]2 (7.2)

where X is the microphone signal x in the frequency domain, k is the bin number

from 0, . . . , N − 1, N is the window size and i is the current frame. Once the

fundamental mode of the tom-tom stabilises to a single value the spectral flux

will also converge.

Figure 7.3 shows the first derivative of the spectral flux of a direct tom-

tom signal, ζ ′. The initial attack and decay can clearly be seen. The point

at which the resonance begins can be extracted by finding the point where the

first derivative of the spectral flux crosses a threshold after the minimum. From

visual inspection of ζ ′ for a variety of tom-tom recordings and informal listening

tests of the results a threshold of ζ ′ > −10 was chosen. The position for this

tom-tom is indicated by a dashed vertical line. The audio data after this point

in time is used as the sympathetic tom-tom resonance.

7.3.3 Snare drum

This section outlines processing performed specific to when simulating snare

drum bleed into the tom-tom microphone.
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Resonance filter

For an object to sympathetically resonate, the resonant frequencies have to be

excited. In relation to this research, this means that for a tom-tom to sympathet-

ically resonate, the resonant frequencies must be produced by the snare drum

[Rossing, 1992]. After listening to and analysing real tom-tom bleed recordings

it became apparent that for low tom-toms, the fundamental frequencies are not

excited by the snare drum hit but are excited when the tom-tom is hit directly.

Therefore using the resonance of the tom-tom from a direct hit, as described in

the previous section, will not be accurate for the simulation since it will contain

frequencies which ordinarily would not be excited.

To mitigate this the extracted resonance is processed with a high pass filter

with a cut off point taken from the peak frequency of the direct recording of a

snare hit. It is assumed the snare drum will not produce significant amplitude

frequencies below the peak frequency. In this implementation a 4th order But-

terworth filter was used. The result of this is a more convincing low frequency

tom-tom simulation where the fundamental frequencies are attenuated but the

higher modes and any rattle of the tom-tom is retained.

Gain

Analysis of the real data shows that the peak amplitude of the direct snare hit

has a linear relationship to the peak amplitude of the tom-tom bleed resonance.

As mentioned previously, the position of the drums is unknown and therefore

the gain cannot be directly estimated.

Through trial and error it was found that scaling the extracted resonance by

a factor that is proportional to the difference in peak frequency of the snare drum

and peak frequency of the extracted resonance produced audibly satisfactory

results. This means that a large difference in peak frequency will result in a

large gain factor and more attenuation as less modes are being excited, also

reducing the low frequency mode level.

The steps of the method are outlined in Figure 7.4.

7.3.4 Kick drum

The kick drum produces much lower frequencies than the snare drum and will

resonate lower frequencies of the tom-tom. Therefore filtering of the extracted

resonance is not required. The extracted resonance is scaled by a single value

for all tom-toms in comparison to the peak amplitude of the direct kick drum.
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Figure 7.4: Block diagram of the method to simulate snare drum bleed in a
tom-tom microphone.

7.4 Evaluation

The effectiveness of the simulations was established through a subjective lis-

tening test. We had available full recordings including bleed of four drum kits.

The bleed was also simulated for these kits, using only the direct recordings of

the snare, kick and tom-toms. The simulations were then compared to the real

recordings. Both kick and snare bleed was simulated for every tom-tom in each

kit. The kits each had six, three, three and four toms respectively. For this test

a single hit velocity of the kick and snare drums was used, resulting in 32 audio

samples available to analyse and simulate. The velocity of the hit used was in

the mid range of the available velocities to test the algorithm on an average

sample.

7.4.1 Subjective analysis

Description

A listening test was designed to ascertain whether a participant was able to

distinguish the real recording from the simulation. The null hypothesis was

that participants are unable to discern between real and simulated recordings.

A pairwise comparison listening test [Bech and Zacharov, 2006] was designed

and implemented online. The test was conducted online to reach a wider au-

dience and to attract more participants. The url was only distributed to those

considered experts in the field of audio who had experience of critical listening,

which resulted in 35 participants. The users were asked to indicate their ex-

perience in audio (audio engineer, software developer, student etc) and to rate

their specific experience at listening to drum recordings on a scale of 1 to 10.

As a control test, the participant was firstly presented with two sounds; one

direct snare signal and a snare signal mixed with the real tom-tom microphone

with snare bleed and were asked to indicate which sound contained bleed. If the

participant was unable to hear the bleed they were not included in the analysis.
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The majority of participants were able to detect the bleed. The participant was

then presented with a training page where they could listen to all the sounds

which would be used in the listening test to familiarise themselves with the

sounds.

The participants were presented with an interface with two buttons labelled

‘Sound A’ and ‘Sound B’ which when clicked would play the corresponding

sound. In the majority of trials the real recording and simulation of the same

recording would be randomly assigned as either A or B. 10 additional pairs were

included where A and B were the same sound files, randomly chosen from the

dataset, as a control to ensure the participant could establish when the sounds

were the same or different. The order of pairs was randomised and therefore

the test was double-blind.

After listening to both sounds, the user was given four options to choose

from:

1. Sound A is a real recording.

2. Sound B is a real recording.

3. The sounds are different but either sound could be the real recording.

4. The sounds are the same.

Option 3 was included after pilot tests suggested it was common for a par-

ticipant to identify the sounds were different but that both sounded like a real

recording. Option 4 was included to establish if any simulations were good

enough to be considered the same sound. The user was also given the opportu-

nity to add any other comments about each pair.

Results

The results were analysed assuming a Binomial distribution as an adaptation

of traditional ABX listening tests [Boley, 2009]. 25 of the participants correctly

identified 7 out of the 10 identical pairs and were used for the following analysis.

Processing of the responses resulted in four possible outcomes for each pair

trial:

• Correct identification of the real recording.

• Incorrect identification of the simulation as the real recording.

• Incorrect identification that the sounds are the same.

• Identifying the sounds are different but no preference which is the real

recording.
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Figure 7.5: Histogram of the number of correct responses per subject.

To reject the hypothesis that participants are unable to distinguish between

real and simulation recordings the users would have to correctly identify the

real recordings with a high confidence.

For the 32 different pairs, the number of correct responses for each user is

shown as a histogram in Figure 7.5. The mean number of correct response was

11.1, a probability of 0.35 of total responses, with a sample standard deviation

4.7.

Taking the probability of correctly identifying the real recording as 0.25

by chance, 9 subjects, or 37.5%, correctly identified the real recording with a

confidence interval of p <= 0.05. As the users have been filtered by those that

could identify the equal pairs, it can be assumed that the participant was highly

unlikely to incorrectly identify the sounds are the same. If the probability of

a user selecting the correct answer is now 0.33, 5 subjects, or 21%, correctly

identified the real recording with a confidence interval of p <= 0.05.

The results therefore fail to reject the hypothesis that users are unable to

identify the real recording from the simulation as only 5 participants out of 32

are able to correctly identify the real recordings with a statistical significance

higher than 95%. This leads to the conclusion that the simulation is convincing

in the majority of cases.

Figure 7.6 shows the number of correct responses against the signal-to-

distortion (SDR) ratio between the real and simulated signal. The SDR was

calculated using a modified version of performance measurements used in blind

source separation [Vincent et al., 2006] and gives an indication of the percep-

tual difference between two signals. Table 7.1 shows the Pearson’s Correlation

Coefficient (PCC) and p-value for each pair. This shows there was a negative

correlation between SDR and the number of correct responses and a positive

correlation between the number of responses that the sounds are the same and
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Figure 7.6: SDR plotted against the number of times that the real recording in
each pair was correctly identified.

Response PCC p-value
Correct -0.387 0.029
Incorrect -0.046 0.804
Same 0.380 0.032
No preference 0.054 0.771

Table 7.1: Pearson’s Correlation Coefficient of each response against SDR for
each pair of sounds.

SDR. This was as expected, since it suggests that with pairs that are very differ-

ent i.e. the simulation sounds different to the real recording, the real recording

was more likely to be correctly identified. Equally, if the SDR is high and the

pair sounds similar, they were likely to incorrectly respond that the sounds were

the same. There is little correlation to the other responses. Although this sug-

gests the participants were able to hear the difference, it is a fairly weak negative

or positive correlation at around ± 0.4.

The results were also analysed using only participants that rated their expe-

rience as 6 out of 10 or higher. There was no significant difference between the

results, which suggested the results were representative of audio experts with

experience in drums and audio experts without.

7.5 Discussion and conclusions

In this chapter we have presented a method for simulating snare and kick drum

bleed into tom-tom microphones from existing data. The bleed instrument part

of the bleed signal is simulated by attenuating and filtering the direct bleed

150



instrument recording to simulate air absorption. The sympathetic resonance of

the tom-tom by the bleed instrument is simulated by extracting the resonance

from the direct tom-tom recording and applying a filter dependent on the peak

frequency of the bleeding drum.

The simulation was subjectively tested using a pairwise comparison listening

test and analysed using variations on analysis for ABX listening tests. Subjects

were presented with pairs of sound, one of which was the real recording and one

which was the simulation. The subjects were asked to indicate which sound was

real or if the sounds were the same. The results were not statistically significant

to reject the hypothesis that subjects were unable to distinguish the difference

between the real and simulation. This suggests listeners were unable to identify

the real recording in the majority of cases.

The simulation can be extended by simulating some of the finer details, such

as rattle between tom-toms and the effects of groups of instruments on the

resonance. A machine learning approach could be taken by processing recorded

data to extract features that may be different between the direct recorded data

and the bleed data.

The listening test can be extended by presenting subjects with the real and

simulated recordings in a drum loop instead of single hits and simulating many

different velocity layers.

This chapter has shown that it is possible to simulate microphone bleed in

MDW drum loops purely from analysis of the audio and using audio sample

which would be available to use. Although it is shown to be possible, this

chapter does not investigate whether bleed in these cases is actually required,

although it is assumed it will be optional as to whether the bleed is included

and to what extent.
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Chapter 8

Conclusions and future perspectives

In this chapter we summarise the outcomes of the thesis and suggest possible

future directions for the research.

In this thesis we have set out to answer the question of whether microphone

artefacts in live sound can be reduced by using digital signal processing tech-

niques with no prior knowledge of microphone placement. This was achieved

by either automatically emulating processes a human sound engineer would go

through or by applying novel methods that could not be achieved by a human.

This has been realised for the proximity effect, comb filtering and microphone

bleed.

8.1 Proximity effect

In Chapter 3 we presented a novel method for detecting and correcting the

proximity effect with no prior knowledge of the signal or source to microphone

distance. This was achieved through analysis of the microphone signal for audio

features that indicate the proximity effect and through dynamic filtering to

reduce the effect.

Techniques to reduce the proximity effect rely on the skills and knowledge

of the sound engineer using static equalisation or on specialist microphone con-

struction. Section 3.1 outlined the literature on automatically reducing the

proximity effect, which relies on knowledge of the source to microphone dis-

tance. The method we have shown in this thesis assumes the source to micro-

phone distance is unknown and will change over time.

We have shown that the algorithm we researched was able to detect the

proximity effect in test material recorded with a directional microphone with

both a white noise and male vocal source. We were then able to correct the

proximity effect using the same sources and a variety of types of movement.
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8.1.1 Future perspectives

In this research we assumed that the proximity effect affected all frequencies be-

low 500Hz equally. A new direction of research would be to investigate how the

proximity effect changes with source to microphone distance and how to adapt

the method we have proposed to reduce the proximity effect with adaptable

filters.

The main assumption we make is that the sound engineer has already applied

corrective equalisation to the source at a static distance, which is assumed to

be the mean source to microphone distance when the source is moving. This is

a possible future area of research to investigate other assumptions that can be

made about how a source moves in front of a microphone and to find new ways

of deciding on a baseline to aim correction towards.

We also assumed the proximity effect was only occurring due to the source

to microphone distance decreasing. Another potential area of research is to

investigate how the proposed method can be applied to the proximity effect due

to changing angle of incidence.

The proposed method also assumes that the signal content does not change

by a large amount in the low frequencies. The method could be extended with

more research to take this into account.

8.2 Comb filter reduction

In Chapter 4 we have discussed using the GCC-PHAT method of delay esti-

mation to inform compensating delays to reduce the effect of comb filtering in

single source, multiple microphone configurations.

Using the GCC-PHAT on musical input signals had not been fully inves-

tigated in the prior literature. A survey of the literature in Section 4.1 also

suggests there was little justification for the window shape used in the calcula-

tion.

We have provided an analysis of how the accuracy of the GCC-PHAT is

correlated to the bandwidth of the incoming signal. We have shown that using

a Blackman window increases the mean accuracy of the GCC-PHAT over a

sample set of 20 different musical instrument recordings by 50% compared to the

rectangular window. We have concluded that windows that taper to zero at the

extremities, for example the Hann or Blackman window, are most appropriate

for arbitrary musical sources.
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8.2.1 Future perspectives

There are a number of areas concerned with the GCC-PHAT and comb filtering

which can be further researched.

In the simulations used in Chapter 4 the sources are assumed to be point

sources. In the real recordings analysed, loudspeakers were used to output

different musical instrument sources as the goal was to investigate the effect of

different signal bandwidths. Therefore this did not investigate the effect of the

different sound radiation patterns of different instruments. For example, in close

proximity to a large instrument such as a piano, the source radiates from across

the full width of the instrument where the hammers hit the strings. Therefore

there is no specific area of sound transmission.

In some instruments the area of sound transmission can also change depend-

ing on how it is played. The result of this is that there may in fact be different

delays for different parts of the instrument played at different times. Early

research by the author has tested the GCC-PHAT algorithm on a recording

of a clarinet with successful results. This research can be extended to other

instruments.

We also assume in this research that all of the microphones reproducing the

same source are the same type and model with the same directivity pattern.

As we described in Chapter 2, different microphones can have different charac-

teristics and this is a future area of research. A microphone behaves as a filter

on the source signal which will exhibit group delay which will cause different

times of arrival for different frequencies. Being able to counteract this and still

estimate the delay is a potential area of future research.

We also assume only linear changes to the source between the two micro-

phones. Further research is required into the effect of non linear filtering on

one of the microphone signals, for example through the use of audio effects.

For example a use of delay estimation was suggested as being between a guitar

recording directly through a DI box and through a microphone reproducing a

guitar amplifier. Amplified guitars can have an effect applied, or even just the

effect of the amplifier itself on the signal. The effect this has on the GCC-

PHAT is an area of further research. Distortion in this case can be a particular

problem, along with any effects which may change the phase of the signal.

We also assume that the delays we are concerned with estimating are of an

integer number of samples. We have not discussed the use of sub sample delays,

which is another future research topic.
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8.3 Microphone bleed reduction

In Chapters 5 and 6 we presented research into reducing microphone bleed in

multiple source, multiple microphone configurations.

We presented an extension of CTRANC, a technique for noise cancellation

with crosstalk from telecommunications that had not previously been applied in

a live sound context. We proposed combining CTRANC with delay estimation

to improve the accuracy of the method. In anechoic conditions the inclusion of

the centred adaptive filters proved to improve the Signal-to-interference ratio by

as much as 18.2dB whilst also adding less artefacts than the original CTRANC

method. In reverberant conditions the centred adaptive filters improved the

Signal-to-artefact ratio by a maximum of 8.1dB but at the detriment of inter-

ference reduction. The centred CTRANC proved to be computationally complex

and to only improve interference reduction in low reverberation configurations.

In Chapter 6 we implemented CTRANC in the frequency domain to become

FDCTRANC. From this we found that there were issues with comb filtering

in the method which had not been discussed in the literature. We proposed

iterating over the method to reduce the comb filtering effects. Analysis of test

audio samples in simulated reverberant conditions showed that the proposed

method produced a maximum Signal-to-interference ratio of 40.6dB compared

CTRANC at 31.9dB. We have also shown that FDCTRANC is significantly

faster than CTRANC, taking less than 1 second to process 10 seconds of audio

compared to a mean time of 13.6 seconds for CTRANC, while still producing

similar perceptual results, shown through a listening test.

We then expanded FDCTRANC to the overdetermined case by introducing

a selection stage to determine whether multiple microphones were reproduc-

ing the same source. The selection process was shown to improve the results

of the FDCTRANC, resulting in as much as 32dB Signal-to-interference ratio

improvement over the FDCTRANC with selection stage in simulated overdeter-

mined configurations and outperforming the FDCTRANC with selection in all

overdetermined configurations tested.

8.3.1 Future perspectives

There is potential for in depth future research into the FDCTRANC method.

This research was concerned with applying the method to the live sound con-

figuration, to which it had not previously been applied. An interesting future

research area is to investigate the frequency dependent step size in more depth

to discern how it affects the accuracy and convergence of the method and how

it can be exploited for a variety of input signals.

In the selective FDCTRANC method, the selection is achieved through fre-
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quency domain correlation. It is shown that this is suitable for the simulated

configurations tested in this research. It would be interesting in the future to

test this on real recordings with higher levels of noise and reverberation, as the

selection may not perform as well as expected and other methods of selection

could be employed, such as using self similarity matrices from MIR.

Like many audio processing methods, the methods we have presented for

bleed reduction become less effective when more reverberation is introduced.

The adaptive filter based methods we have presented are able to perform some

reduction in reverberant conditions and on informal listening tests are able to

reduce the level of the direct sound and some early reflections but often leave

the late reverberation. One of the reasons we want to remove the bleed is that

it can cause comb filtering. This then leads to a potential research project to

investigate the effect reverberation has on the perception of the target signal

and whether complete removal of all of the reverberation by other methods

has detrimental effects. Although difficult to answer, another question posed is

that of preference, that is whether some late reverberation left in the signal is

adequate or complete removal with artefacts on the target source is preferred.

8.4 Microphone bleed simulation

In Chapter 7 we presented research into simulating microphone bleed in multi-

sampled drum workstations. This research was conducted by the author while

based at an industry partner, therefore the outcome is specific to their product.

Despite this the algorithm developed for this research holds and listening

tests show that expert listeners were not able to discern the simulated bleed

from the real recording with statistical significance. This has also not been

achieved in other products.

8.4.1 Future perspectives

This research opens up more questions regarding the perception of microphone

bleed. We included the microphone bleed to enhance the realism of a simulated

drum kit recording. It might be the case that this can also be applied to other

simulations and synthesised sounds. It also asks whether microphone bleed in a

real recording is desired or not. There is no definitive answer to this. If the bleed

is causing a problem such as comb filtering or problems with mixing, it would

be desirable to have it removed. But it is also possible that the “problems” are

in some cases what makes a recording realistic.

The bleed simulation work could also be extended by including more acoustic

theory into the method, or using the simulated positions of the virtual drums to
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make some inferences about the audio processing that needs to be done, rather

than from analysis of the audio with no other information.

8.5 Overall future perspectives

The research in this thesis is concerned with reducing the proximity effect, comb

filtering and microphone bleed in live sound. They are related in terms of being

caused by microphone position errors and some of the approaches to reduce

them share common ground, such as using delay estimation to reduce comb

filtering and also to centre the adaptive filters in Chapter 5.

With regards to the research as a whole the first area to pursue is looking at

other artefacts that were described in Chapter 2. Dereverberation is a current

area of research with some interesting results. Like the bleed reduction/source

separation field, there is a compromise between accurate dereverberation and

retaining the target source. An interesting area may be to look at trying to

reduce the level of distinct, high amplitude echoes that can cause comb filtering

of the target signal.

Another area of research is to investigate how the proposed methods work

together when applied to a complex configuration of microphones and sources.

For example investigating how delay estimation between microphones is affected

by microphone bleed from other sources and how this is improved by delay

estimation. It is possible that if there are any changes to the phase of each signal

through the bleed reduction, the delay estimation may not be as accurate.

With regards to extending the research presented in the thesis, the overall

future direction is to include more testing of each method in more reverberant

and noisy environments. A factor of live sound performance is that there will

inevitably be an audience in the same space. For the purposes of this thesis

we assumed the only sources were those expected in a musical performance and

research is required to thoroughly test each method.

As mentioned in Chapter 2, microphone technology appears to be going in

the digital direction and manufacturers are increasingly able to include digital

signal processing (DSP) within the microphone itself which is tuned to that

specific microphone. It is the author’s opinion that as DSP becomes more

efficient and chips become smaller and more affordable, the manufacturers of

said equipment will exploit the capabilities more. This leaves an area open for

research possibilities.

From this thesis we have learned that audio signal processing can be used

for reducing microphone artefacts in live sound with no prior knowledge of

the sources or microphones. The reduction in artefacts makes a considerable

difference to the microphone signals and has implications for future audio signal

processing in the live sound domain.
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Appendix A

Analysis of vocal recording in proximity effect

correction
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Figure A.1: Low frequency amplitude before and after proximity effect correc-
tion for the movement described in Figure 3.8(1) with male vocal input.
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Figure A.2: Low frequency amplitude before and after proximity effect correc-
tion for the movement described in Figure 3.8(2) with male vocal input.
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Figure A.3: Low frequency amplitude before and after proximity effect correc-
tion for the movement described in Figure 3.8(4) with male vocal input.
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Figure A.4: Low frequency amplitude before and after proximity effect correc-
tion for the movement described in Figure 3.8(5) with male vocal input.
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Appendix B

Comparing the GCC-PHAT to the Impulse

Response with Phase Transform method

A common method of delay estimation between microphones reproducing the

same sources is the Generalized Cross Correlation with Phase Transform (GCC-

PHAT) [Knapp and Carter, 1976]. Perez Gonzalez and Reiss [2008c] also sug-

gests delays between microphones can be estimated using a method to estimate

the impulse response by Meyer [1992] and applying the Phase Transform to

that, referred to here as the IR-PHAT.

Here we show that the GCC-PHAT is equivalent to the IR-PHAT. In Section

4.2 we showed that the GCC is calculated by

ΨG[k] = X∗1 [k] ·X2[k] (B.1)

where X1 and X2 are the microphone signals x1 and x2 in the frequency

domain and k is the frequency bin where k = 0, . . . , N−1 where N is the length

of the signal.

The Phase Transform is achieved by making |ΨG[k]| = 1 for all k.

From Meyer [1992] the impulse response is calculated by

ΨI [k] =
X2[k]

X1[k]
(B.2)

and the same Phase Transform can be applied. As we have normalised the

magnitude, we can show that Arg(ΨI [k]) = Arg(ΨG[k]).

From (B.1), the complex conjugate multiply means that

Arg(ΨG[k]) = Arg(X2[k])−Arg(X1[k]). (B.3)

From (B.2), through complex division

Arg(ΨI [k]) = Arg(X2[k])−Arg(X1[k]) (B.4)

therefore
Arg(ΨI [k]) = Arg(ΨG[k]). (B.5)

160



Bibliography

Aichner, R., Buchner, H., Yan, F., and Kellermann, W. A real-time blind

source separation scheme and its application to reverberant and noisy acoustic

environments. Signal Processing, 86(6):1260–1277, 2006. Applied Speech and

Audio Processing.

Anazawa, T., Takahashi, Y., and Clegg, A. H. Digital time-coherent recording

technique. In Proceedings of the 83rd Audio Engineering Society Convention,

1987.

Araki, S., Mukai, R., Makino, S., Nishikawa, T., and Saruwatari, H. The funda-

mental limitation of frequency domain blind source separation for convolutive

mixtures of speech. IEEE Transactions on Speech and Audio Processing, 11

(2):109–116, Mar 2003.

Assous, S. and Linnett, L. High resolution time delay estimation using sliding

discrete fourier transform. Digital Signal Processing, 22(5):820–827, 2012.

Assous, S., Hopper, C., Lovell, M., Gunn, D., Jackson, P., and Rees, J. Short

pulse multi-frequency phase-based time delay estimation. Journal of the

Acoustical Society of America, 127(1):309–315, 2009.

Azaria, M. and Hertz, D. Time delay estimation by generalized cross correlation

methods. IEEE Transactions on Acoustics, Speech and Signal Processing, 32

(2):280–285, Apr 1984.

Baeck, M. and Zölzer, U. Real-time implementation of a source separation al-

gorithm. In Proceedings of the 6th International Conference on Digital Audio

Effects (DAFx-03), 2003.

Balan, R., Rosca, J., Rickard, S., and O’Ruanaidh, J. The influence of window-

ing on time delay estimates. In Proceedings of the International Conference

on Information Sciences and Systems, 2000.

Barry, D., Coyle, E., and Lawlor, B. Real-time sound source separation: Az-

imuth discrimination and resynthesis. In Proceedings of the 117th Audio En-

gineering Society Convention, Oct 2004.

161



Bech, S. and Zacharov, N. Perceptual Audio Evaluation - Theory, Method and

Application. Wiley, 2006. ISBN 0470869232.

Bechler, D. and Kroschel, K. Considering the second peak in the gcc function

for multi-source tdoa estimation with a microphone array. In Proceedings of

the International Workshop on Acoustic Echo and Noise Control, 2003.

Bello, J., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., and Sandler, M.

A tutorial on onset detection in music signals. IEEE Transactions on Speech

and Audio Processing, 13(5):1035–1047, Sep 2005.

Benesty, J., Sondhi, M., and Huang, Y. Springer Handbook of Speech Processing.

Springer, 2008a.

Benesty, J. Adaptive eigenvalue decomposition algorithm for passive acoustic

source localization. Journal of the Acoustical Society of America, 107(1):

384–391, 2000.

Benesty, J., Chen, J., Huang, Y., and Dmochowski, J. On microphone-array

beamforming from a mimo acoustic signal processing perspective. IEEE

Transactions on Audio, Speech and Language Processing, 15(3):1053–1065,

2007.

Benesty, J., Chen, J., and Huang, Y. Microphone Array Signal Processing.

Springer, Germany, 2008b.

Bilbao, S. Time domain simulation and sound synthesis for the snare drum.

The Journal of the Acoustical Society of America, 131(1):914–925, 2012.

Björklund, S. and Ljung, L. An improved phase method for time-delay estima-

tion. Automatica, 45(10):2467–2470, 2009.

Boley, Jon; Lester, M. Statistical analysis of abx results using signal detection

theory. In Proceedings of the 127th Audio Engineering Society Convention,

Oct 2009.

Brandstein, M. S. Time-delay estimation of reverberated speech exploiting har-

monic structure. The Journal of the Acoustical Society of America, 105(5):

2914–2919, 1999.

Brandstein, M. S. and Silverman, H. F. A robust method for speech signal

time-delay estimation in reverberant rooms. In Proceedings of the IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP

’97), 1997a.

162



Brandstein, M. S. and Silverman, H. F. A practical methodology for speech

source localization with microphone arrays. Computer, Speech and Language,

11(2):91–126, 1997b.

Brunner, S., Maempel, H.-J., and Weinzierl, S. On the audibility of comb-filter

distortions. In Proceedings of the 122nd Audio Engineering Society Conven-

tion, 2007.

Brutti, A., Omologo, M., and Svaizer, P. Comparison between different sound

source localization techniques based on a real data collection. In Proceedings

of the Joint Workshop on Hands-free Speech Communication and Microphone

Arrays, 2008.

Cannam, C., Landone, C., and Sandler, M. Sonic visualiser: An open source

application for viewing, analysing, and annotating music audio files. In Pro-

ceedings of the ACM Multimedia 2010 International Conference 1467–1468,

Oct 2010.

Cardoso, J.-F. Blind signal separation: statistical principles. Proceedings of the

IEEE, 86(10):2009–2025, 1998.

Carey, M., Parris, E., and Lloyd-Thomas, H. A comparison of features for

speech, music discrimination. In Proceedings of the IEEE International Con-

ference on Acoustics, Speech and Signal Processing, volume 1 149–152, Mar

1999.
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