
Optimal charging and
state-of-charge estimation of

a Lithium-ion cell using a
simplified full homogenised

macro-scale model

Salman Qadir

Submitted in partial fulfilment of the requirements

of the Degree of Doctor of Philosophy

School of Engineering and Material Sciences

Queen Mary University of London

United Kingdom

June 2022



Statement of originality

I, Salman Qadir, confirm that the research included within this thesis is my own work

or that where it has been carried out in collaboration with, or supported by others, that

this is duly acknowledged below and my contribution indicated. Previously published

material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original, and

does not to the best of my knowledge break any UK law, infringe any third party’s

copyright or other Intellectual Property Right, or contain any confidential material.

I accept that the Queen Mary University of London has the right to use plagiarism

detection software to check the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree

by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author.

Signature: Salman Qadir

Date: 13-06-2021



List of publications

• Qadir, Salman, Guang Li, and Zheng Chen. "Simplification of full homogenized

macro-scale model for lithium-ion batteries." Journal of Energy Storage 46 (2022).

• Qadir, Salman, and Guang Li. "Health-Conscious Optimal Control of Li-ion Cell

using Simplified Full Homogenised Macro-scale Model." (under review).

• Qadir, Salman, and Guang Li. "Output Feedback Health-Conscious Control of Li-

ion Cell using Simplified Full Homogenised Macro-scale Model." (In preparation).



Abstract

Advanced battery management systems (BMS) need accurate and computationally

efficient Li-ion cell model for optimum operation as the performance of charging and

estimation algorithms of BMS are dependent upon the accuracy of the mathematical

model of a cell. This research work presents a novel, accurate and computationally

efficient electrochemical model and develops charging and estimation algorithm based

on the model. The simplified model is based on the novel full homogenised macro-

scale model (FHM). The simplified FHM model is compared with a simplified model

based on the pseudo-two-dimensional (P2D) model. The FHM model is based on the

homogenisation theory, while the volume averaging technique is the basis of the P2D

model. Diffusion partial differential equations (PDEs) are approximated by ordinary

differential equations with time-varying coefficients. The intercalation current and

conduction equation are also approximated to develop variants of the simplified model.

The diffusion and reaction rate parameters of the FHM model are more accurate at high

temperatures than the parameters based on the empirical Bruggeman method, as the

FHM model parameters are based on the numerical model of the electrode structure.

The simulations results verify that, compared with a similar simplified model based

on the P2D model, the proposed simplified FHM model is more accurate at 318K and

higher temperature. The output voltage predicted by the proposed simplified model and

the simplified P2D model has a root mean square (RMS) tracking error of 0.6% and 2%,

respectively, at 1C input current and 318K temperature. The computational time of the

proposed simplified model is reduced by 35% compared with that of the FHM model.

Subsequently we present optimal charging of Li-ion cell based on the simplified full

homogenised macro-scale (FHM) model. A solid electrolyte interface (SEI) layer model
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is included in the simplified FHM model to quantify health degradation. With these

models, a multi-objective optimal control problem subject to constraints from safety

concerns is formulated to achieve the health-conscious optimal charging. This constrained

optimal control problem is converted to a nonlinear programming problem (NLP). A

nonlinear model predictive control (NMPC) strategy is adopted by solving the NLP at

each sampling time using the pseudo-spectral optimisation method. The effect of the

input current upper bound on the cell film resistance Rfilm and state of health (SoH)

reveals that Rfilm and SoH are more sensitive to input current upper bound at lower

values of input current upper bound. Simulation results show that the simplified model

and pseudo-spectral method are crucial for reducing the computational load to achieve

feasible real-time implementation. The proposed algorithm is more efficient in reducing

the health degradation than the conventional constant current constant voltage (CCCV )

charging algorithm since it can explicitly handle the film resistance and capacity as

health parameters. Multiple cycle charging simulation reveals that the health-conscious

algorithm decrease health degradation and increase battery life.

Three observers are used and compared for output feedback charging of a Li-ion cell,

i.e. extended Kalman filter (EKF), sliding mode observer (SMO) and moving horizon

estimator (MHE). The observers are used in a closed-loop with an NMPC for optimal,

health-conscious charging of a Li-ion cell. Simulation results show that EKF and SMO

have a low computational burden, whereas MHE exhibits superior performance.
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Chapter 1

Introduction of thesis

1.1 Motivation of the research

Li-ion battery technology offers high energy density, long cycle life, and low self-discharge

rate compared to other battery technologies. Using the cell efficiently and maintaining

health is vital for its performance and reducing ageing speed. A battery management

system (BMS) manages the operation of cells to achieve these goals.

The fidelity of a battery model is essential for designing an efficient BMS. Equivalent

circuit models (ECMs) are the simplest and computationally efficient Li-ion cell models.

[12], [13]. However, ECMs are not a desirable choice as they do not provide insight into

the electrochemical properties of Li-ion cells. By contrast, electrochemical models provide

insight into the physical processes happening in the cell, such as diffusion, conduction,

intercalation current, and solid electrolyte interface (SEI) layer growth. However, the

complexities of electrochemical models can introduce a heavy computational load for

the BMS algorithms designed based on these models.

One way to reduce the computational load of the algorithms based on the electrochemical

models is to use a simplified model to approximate its dynamics while not sacrificing

too much fidelity. The computational complexity and the fidelity need to be traded

off correctly when an electrochemical model is simplified to be suitable for the BMS

algorithm design purpose.

Motivated by the fact that efficient BMS needs a model having high fidelity, low com-
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putational burden, and provides a better understanding of battery dynamics. We have

presented a simplified model based on Full Homogenised Macro-scale (FHM) model. The

model is more accurate than state-of-the-art simplified electrochemical models based

on the Doyle–Fuller–Newman (DFN) model. We have also presented health-conscious

charging and estimation based on this model.

1.2 Aim of the thesis

This thesis focuses on model simplification, health-conscious optimal charging, and

estimation of a Li-ion cell based on the full homogenised macro-scale (FHM) model.

The literature review reveals that the FHM model is more accurate than state-of-the-art

electrochemical models at high temperatures and a low state of charge (SoC). We have

shown that the performance of the health-conscious optimal charging and estimation

algorithms based on the simplified FHM model will be more reliable and accurate than

their state-of-the-art mathematical counterpart. Multiple variants of the simplified model

allow users to trade off computational load for accuracy. To reduce the computational

burden, we have used pseudo-spectral discretisation.

1.3 Literature review and contribution of the research

1.3.1 Contribution I: Mathematical modelling of a Li-ion cell

A Battery management system (BMS) plays a vital role in ensuring the battery’s safe

operation in various conditions to optimise the battery efficiency. BMS monitors essential

state variables of the cell, such as state of charge (SoC), state of health (SoH), and

temperature, among others, to avoid misuse of the battery [14] [5].

The mathematical model of a Li-ion cell is an essential part of BMS to estimate the state

variables. Over the past decades, numerous mathematical models have been developed

with a range of computational complexity and accuracy, such as equivalent circuit models,

data-driven models, and electrochemical models [8], [15], [16].
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Equivalent circuit models are simple and computationally efficient as compared to other

models. Equivalent circuit models are composed of electric circuit elements such as

voltage sources, resistors, and capacitors, as shown in figure 1.1. These fictitious elements

are added to obtain a current-voltage characteristic curve equivalent to a Li-ion cell’s

experimental current-voltage characteristic curve. The battery states such as SoC and

SoH calculated using the equivalent circuit models are less accurate than the compu-

tationally intensive electrochemical models [12], [13]. Consider figure 1.1, Open circuit

voltage OCV is obtained empirically. OCV is a function of the cell’s state of charge

SoC. A fully charged cell is discharged for a small-time duration. After discharging,

the cell is kept at rest for a specific time, and open circuit voltage is measured. The

process is repeated until the cell is completely discharged. The SoC and OCV data

points are used to make an empirical function of OCV in terms of SoC using nonlinear

regression. R0 models the internal resistance of the Li-ion cell. The RC circuit is

included to model the effect of diffusion of a Li-ion cell. As the diffusion of Li-ion cell is

a slow process, it is modelled by a first-order low pass filter using RC circuit. System

identification algorithms such as particle swarm optimisation are applied to experimental

data sets of a Li-ion cell to estimate other parameters of an equivalent circuit model.

Equivalent circuit models are also used to estimate a Li-ion cell’s state of health SoH.

By calculating the change in internal resistance R0 and the Li-ion cell’s capacity, the

cell’s SoH can be calculated. A cell’s health degrades if its internal resistance rises

and capacity declines. The equivalent circuit model shown in figure 1.1 is a simple

variant. Its accuracy can be enhanced by adding more RC pairs and other elements to

include the effects, such as hysteresis. The application of equivalent circuit models to

the battery management system is extensively studied. Meng et al., Zhang et al. and

Xiasong et al. have compared various variants of equivalent circuit models of Li-ion

cell [17], [18],[19]. The equivalent circuit model variants are thoroughly reviewed in

these articles. In addition to the benefits and drawbacks of various equivalent circuit

model variations, authors have also discussed parameter estimation techniques, model

validation, SoC and SoH estimation.

Recently attempts have been made to improve SoC estimation using either advanced
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Figure 1.1: Equivalent circuit model of a Li-ion cell [1].

equivalent circuit models or adaptive neuro-fuzzy inference systems (ANFIS) based

models. However, the proposed models need to be more accurate or health-conscious

enough as compared to electrochemical models [20], [21], [22], [23]. L. Ma et al. has

proposed joint SoC estimation based on a long short-term memory neural network. The

approach shows better results compared to other machine learning algorithms, but it

is not accurate enough compared to the proposed approach [24]. H Yang et al. and H

F Khan et al. have proposed SoC estimation based on variants of the Kalman filter.

However, the model used is a basic equivalent circuit model. The performance can be

improved further by using accurate models [25], [26].

Electrochemical models are derived from the first principles of the cell, such as the

Doyle Fuller Newman (DFN) model [27]. Electrochemical models precisely describe

the internal dynamics of the cell, such as diffusion, conduction, and intercalation. The

DFN model consists of five equations. Two equations describe the diffusion process

in electrode and electrolyte, whereas two equations describe the conduction process in

electrode and electrolyte. The exchange of Li-ion between the electrode and electrolyte

is described by the intercalation current equation, which combines the four equations.

These equations are derived from the fundamentals of a cell, which are based on the

atomic-scale physical processes occurring in cells. Electrochemical models are more

reliable than equivalent circuit models due to their high accuracy. Second, compared

to the internal resistance of an equivalent circuit model of a Li-ion cell, the parameters

of the electrochemical model—such as diffusion parameter, conduction parameter, and

film resistance are more indicative of the health of the Li-ion cell. However, using an
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electrochemical model such as the DFN model for real-time processing is not feasible due

to the high computational load. DFN model is mainly used as a reference to evaluate

the accuracy of other simplified models.

A reduced electrochemical model is imperative for real-time processing [28], [29]. Numer-

ous approaches have been used to simplify the DFN model. The single-particle model

is a popularly used simplified electrochemical model. The model is named the single

particle model because the electrode diffusion is described using a spherical particle

model. The intercalation current equation is considered to be constant. By making this

assumption, the other four equations of the DFN model are decoupled, and the algebraic

loop is removed, reducing the computational load of the model and greatly simplifying

the numerical integration. Some works proposed a constant Li-ion concentration in the

electrolyte to further simplify the model. Electrolyte equations are disregarded in this

approximation. The temperature dependence of the parameters has been taken into

account in some studies to improve the model accuracy. [30], [31], [32]. Another method

for developing a reduced model of a Li-ion cell is to approximate spatial double deriva-

tives in diffusion equations of electrode and electrolyte with time-varying polynomials,

as done by Subramanian [33], Han et al. [10] and Deng et al., [2]. A thermal model of a

Li-ion cell based on the first principle is also studied. The physics-based thermal models

have higher accuracy than those developed for equivalent circuit models. A range of

thermal models are available for full electrochemical models and reduced electrochemical

models to trade-off computational complexity and accuracy [34], [35], [36].

The models mentioned above are nonlinear. Linear electrochemical models are created

using Taylor series expansion as proposed by Smith et al. [37] and Le et al. [38]. The

linear equations are then converted to transfer functions using Laplace theory. The

proposed method, however, yields complicated transcendental transfer functions. Ngoc

et al. solved this problem by converting transcendental transfer functions into simpler ra-

tional polynomial transfer functions using pade approximation[39]. It has been observed

that pade approximation decreases algorithm execution time by around 50 times. The

earlier-mentioned efforts are based on classical system theory. Lee et al. has proposed a

discrete-time realisation algorithm (DRA) to develop a physics-based linear state space
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model for a Li-ion cell [40]. The author uses a sample-and-hold framework along with

an inverse discrete Fourier transform to generate a discrete impulse response in this

method. Ho Kalman filter is then used to transform discrete impulse response into a

state space matrix.

Diffusion and conduction parameters of the DFN model are key parameters that

influence the fidelity of the DFN model. The empirical Bruggeman method is used

to obtain the parameters for the DFN model. The method leads to inaccurate results

in certain conditions [7]. Recently a more accurate model called the full homogenised

macro-scale (FHM) model has been developed. The FHM model is developed using

homogeneity theory, whereas the DFN model uses volume averaging. FHM model incul-

cates the structural composition of the electrode and calculates the value of diffusion and

conduction parameters De, Ds, Ke and Ks by developing a numerical model of electrode

architecture. The model is more accurate for estimation in conditions such as low values

of SoC, a high value of temperature and a C-rate. However, the performance of both

models is similar at room temperature [6], [41]. The FHM model is computationally

intensive and suitable for offline estimation and analysis.

A one-dimensional FHM and DFN model is considered in this research work. A ’pseudo’

spherical dimension r is included in the DFN model to describe the diffusion of Li-ions

within electrode particles. The model is also known as the pseudo-two-dimensional

(P2D) Model [42].

The P2D model fails to accurately predict the cell’s output voltage at high tempera-

tures, i.e. above 318K and low value of charge [6]. The performance of P2D-based

simplified models deteriorates further at a high input current value due to approximation.

Novelty

We present a simplified model based on the FHM model, which is computationally less

intensive than the FHM model but more accurate than the simplified P2D model at

high temperatures. We expect the simplified FHM model to show performance similar
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to the FHM model up to a 4C input current, which enables us to develop an accurate

model fast enough to be implementable in real time.

The idea of the proposed model is similar to the simplified models developed by Subra-

manian et al. [33], Han et al. [10] and Deng et al. [2]. The articles, as mentioned earlier,

are based on the idea that ordinary differential equations with time-varying coefficients

can approximate the Li-ion concentration. Replacement of the spatial double derivative

with time-varying coefficients simplifies the models and facilitates fast implementation.

We have used a second-order polynomial to approximate the Li-ion concentration in

electrodes and electrolyte. High-order polynomials can be used for approximation for

increasing accuracy, as suggested by Subramanian [33]. However, Ricardo et al. has

suggested that high-order polynomials also create undesirable features such as higher

transient errors. [43].

1.3.2 Contribution II: Optimal charging of a Li-ion cell

A charging strategy is important to charge a Li-ion cell in minimum time without dam-

aging the battery and extending the life of a Li-ion cell. Numerous strategies for efficient

battery charging have been developed, including simple charging, optimised charging,

model-based charging, and AC charging. [44], [45], [46], [33]. Zhang investigated the

effect of various charging protocols on the cycle life of a Li-ion cell [47]. Constant current

constant voltage (CCCV ) is the most widely used optimal charging algorithm for Li-ion

cells. The battery is initially charged using a constant input current in this charging

method. In this charging mode, known as constant current (CC), the input current

is normally set to its maximum value. In CC charging mode, the Li-ion cell voltage

gradually increases until it reaches a maximum value. When the SoC reaches 100 %,

the cell enters constant voltage (CV) charging mode, in which the cell is charged at

a constant voltage and the input current steadily approaches zero. Another method

of charging is the multi-step constant current (MCC) method. This charging method

includes several modes. The cell is charged with a different constant input current value

during each mode. MCC charges faster and more efficiently and leads to less temperature
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rise as compared to CCCV charging [48], [49]. There are better algorithms than the

CCCV and MCC algorithms to optimise the health of Li-ion cells as they are not based

on the battery model. Researchers have proposed many model-free charging protocols,

such as pulse charging protocol, boost charging protocol, variable duty voltage pulse

charging, variable frequency pulse charging and variable current profile; each method

has its pros and cons. All model free charging algorithms have one drawback, i.e., they

are not health conscious [50], [51].

Model-based charging algorithms are better candidates for minimising health loss because

they are better aware of cell dynamics and charging regimes that harm the cell. The

simplest model of Li-ion cells is an equivalent circuit model. Researchers attempted

to develop a charging algorithm based on equivalent circuit models and an optimising

algorithm to minimise Li-ion cell health degradation. Many health-conscious optimal

controllers have been suggested using either equivalent circuit models or simplified

electrochemical models recently [52],[53]. For example, Xiaosong et al. has proposed an

optimal multistage charging algorithm using an equivalent circuit model to reduce cell

ageing. The algorithm performs better than the CCCV charging algorithm; however,

capacity fade is the only parameter used as a figure of merit for comparison [54]. Perez et

al. has proposed health-conscious optimal charging based on an equivalent circuit model.

The health of a Li-ion cell is monitored by developing a coupled electrothermal battery

ageing model [55]. However, equivalent circuit models are effective at simulating the

input-output behaviour of lithium-ion cells. Internal cell dynamics related to Li-ion cell

health are not adequately described by equivalent circuit models such as solid electrolyte

interphase (SEI) layer growth, Li-ion deposition, and mechanical degradation of a cell.

[51]. Many researchers present modelling of the health-related parameters of battery

[56], [57], [58], and [59]. Yang et al. and Khalik et al. have proposed a health-conscious

charging algorithm based on a single particle model [60], [54]. Pozzi et al. has proposed

an optimal charging algorithm based on a P2D model to increase the cycle life of a

Li-ion cell [61]. Hu et al. has proposed health conscious charging algorithm based on a

single particle model to minimise Li-ion plating [62]. The algorithms mentioned above

are health-conscious and based on an electrochemical model, making them a better
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candidate for charging than the CCCV charging and equivalent circuit model-based

health-conscious controllers. However, we expect that the performance will degrade at

high temperatures due to model inaccuracy, as reported by Arunachalam et al. [7], [6].

Novelty

The second novel contribution of this work includes health-conscious optimal control of a

Li-ion cell using a simplified FHM model. To make the optimal control health-conscious,

the SEI layer model mentioned in [56], [63], and [57] is included in the simplified FHM

model. The comparison between the optimal health-conscious charging algorithm and

the CCCV algorithm using the simplified FHM model shows that the health-conscious

charging algorithm outperforms the optimal CCCV charging algorithm by reducing

the degradation in film resistance Rfilm and SoH. The effect of the input current

upper bound on the control algorithm is also examined. The study reveals that the

health parameters, i.e., Rfilm and SoH, change significantly for low input current upper

bound values, i.e., 1C. The SoH value at the end of a single cycle converges to a

constant value for high values of the input current upper bound, and the upper bound

becomes ineffective. The performance of algorithms for multiple cycles reveals that the

health-conscious algorithm outperforms the CCCV algorithm by increasing the battery’s

useful life and reducing film resistance. For the numerical implementation of the optimal

charging algorithm, orthogonal collocation is used to decrease algorithm execution time.

1.3.3 Contribution III: Output feedback optimal charging of a Li-ion

cell

Estimation is imperative for designing model-based charging strategies of Li-ion cells as

control law requires complete knowledge of system states. Generally, only input current

and output voltage are available signals. States of a cell such as SoC, SoH, electrolyte

Li-ion concentration and electrode Li-ion concentration are unknown and need to be
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estimated.

Multiple approaches are available to estimate Li-ion cell states. A direct method such as

coulomb counting is inaccurate and prone to noise as an error with time. However, the

computational load is low. Machine learning methods are relatively less accurate and

have a high computation burden. However, machine learning methods work without a

mathematical model of the battery. Model-based estimation methods have relatively

high accuracy and high computational load. Equivalent circuit models have frequently

been used to estimate Li-ion cell dynamics. He et al. has presented a detailed review

of research contributions about SoC estimations based on equivalent circuit models

[64]. SoC estimation based on equivalent circuit models is more accurate than direct

methods. However, as discussed earlier equivalent circuit can not describe internal

dynamics. Among model-based estimation methods, electrochemical models have the

extra benefit of better describing the internal dynamics of the battery as they can

describe the physical processes of the battery. Electrochemical models are more accurate

as compared to equivalent circuit models. SoC and SoH estimation of a Li-ion cell

using electrochemical models are extensively studied.

A mathematical model cannot accurately predict system behaviour if observers or

estimators do not minimise the effect of noise and parameter uncertainties. Using

adaptive filters and observers increases the accuracy of estimators considerably. However,

the price paid is a high computational cost.

Several observers have been used to estimate Li-ion cell states based on electrochemical

models, for example, extended Kalman filter, unscented Kalman filter, particle filter, H

infinity estimator, back-stepping observer, and recursive least square estimator. The

performance comparison of these algorithms is available in literature [65], [16]. Moving

horizon estimation has the additional benefit of systematically handling constraints

while estimating system states at the cost of additional computation burden. Moving

horizon estimation has been extensively used to estimate Li-ion cell dynamics using

equivalent circuits and electrochemical models. [66], [67], [68], [69], [70], [71], [72], [73],

[74], [75], [76]. Previous research about MHE has yet to explore nonlinear MHE and

nonlinear MPC for output feedback charging of a Li-ion cell based on an electrochemical
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model. Output feedback means the controller and observer are used in a closed loop.

The controller generates the input current based on the estimate of the Li-ion cell’s

states provided by the observer online. Suthar et al. has used nonlinear MHE for state

estimation based on a reformulated model. Although nonlinear MPC is also presented,

nonlinear MPC and nonlinear MHE are not used in a closed loop for output feedback

charging [66].

Novelty

The algorithms used for Li-ion cell SoC estimation are based on state-of-the-art equiva-

lent circuit models and electrochemical models such as the single particle model (SPM)

and polynomial approximated P2D model. A simplified FHM model is not used to

estimate Li-ion cell dynamics till now. The third novel contribution of this work is

the estimation of Li-ion cell states using estimators such as EKF, SMO and MHE for

output feedback, health-conscious, pseudo-spectral, and charging of a Li-ion cell based

on a simplified FHM model. The performance of the three estimation algorithms is

compared in the open loop in the presence of zero-mean additive white Gaussian noise

and parameter perturbation in the system. Comparison of closed-loop estimation using

MPC yields results similar to the open-loop case. Another novelty of the work is the use

of nonlinear MHE and nonlinear MPC for output feedback charging which is not done

based on other models. The algorithm execution time per iteration for all algorithms is

less than the sampling time, making real-time implementation of the output feedback

charging algorithm feasible. Results show the superior performance of MHE as compared

to EKF and SMO. However, EKF and SMO are computationally efficient as compared

to MHE. The SEI layer model mentioned in [56], [63], and [57] is also included in

the simplified FHM model. The robustness of the estimation algorithm is assessed by

adding additive white Gaussian noise to the Li-ion cell’s output voltage and perturbing

parameters of the mathematical model.
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1.4 Organisation of the dissertation

The research work can be divided into modelling, charging and estimation. Each part is

discussed in a separate chapter. The details of the chapters are given as follows.

In Chapter 2, We discuss the mathematical modelling of a Li-ion cell. All mathemat-

ical models used in the research work are discussed. We explain the state-of-the-art

electrochemical model, such as a P2D model. Subsequently, we discuss an FHM model

and make a comparison with the P2D model. The simplified model based on the P2D

model is discussed next. Then simplified model based on the FHM model is proposed.

The performance of the proposed model is compared to the SPM using simulations.

Temporal discretisation, spatial discretisation and the pseudo-spectral method are also

discussed in chapter 2.

Health-conscious optimal charging of a Li-ion cell based on a simplified FHM model is

discussed in chapter 3. The solid electrolyte inter-phase (SEI) layer model for the sim-

plified FHM model is discussed. Next, the optimal control problem (OCP) is presented

based on the simplified FHM and coupled SEI layer models. The OCP is converted

to a nonlinear programming problem (NLP) using a pseudo-spectral method. The

NLP is solved using a nonlinear model predictive controller. The performance of the

health-conscious controller is compared with the industry standard CCCV charging

algorithm under various conditions.

Output feedback charging is discussed in chapter 4. Observers such as extended Kalman

filter (EKF), sliding mode observer (SMO) and moving horizon estimator (MHE) are

used to predict Li-ion cell states. A pseudo-spectral method is used to develop NLP for

the moving horizon estimation method. Simulation results using the three estimators are

compared and analysed under various conditions, such as the presence of additive white

Gaussian noise and parameter perturbation. In the end, we compare the simulation

results of the closed-loop control problem when MPC is included in the loop for output

feedback charging.

Conclusions and future work suggestions are discussed in Chapter 5.



Chapter 2

Mathematical modelling of a Li-ion

cell

2.1 Introduction of mathematical modelling

A mathematical system model describes a system’s working under various scenarios. For

safe, optimal and efficient use of a battery, we need the knowledge of system states and

constraints. We also need the knowledge of the conditions or scenarios that profoundly

affect system health and performance, such as very high or low temperature, heavy load

and high speed of an EV. A mathematical model is developed to achieve these objectives.

For example, a battery’s state of charge (SoC) provides information about the charge

stored in the battery as a percentage of total charge and can be considered the ’fuel

gauge’ of an EV. SoC of a cell and all other states, such as cell output voltage and cell

health, can be computed using the mathematical model of a cell.

An essential feature of a mathematical model is computational complexity. A highly

accurate model is only feasible for real-time implementation if the computing resources

are sufficient to simulate the model in real time. Finding the right balance between

accuracy and computational complexity is essential to developing an accurate model

which can be implemented in computing systems in real-time.

As discussed earlier, electrochemical models have a distinguishing feature of accurately

describing the internal dynamics of a Li-ion cell as they are derived from the first
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principles of a Li-ion cell. Other mathematical models can only describe the output and

input relationship and do not provide meaningful insight into the internal dynamics of a

Li-ion cell. Equivalent circuit models are the simplest and computationally most efficient

but not as accurate as electrochemical models. Data-driven models are computationally

intensive, but mathematical modelling of the cell is not required. A detailed comparison

of the modelling techniques is available in literature [77],[17],[78],[79].

Electrochemical models such as the Doyle Fuller Newman (DFN) and FHM are known

for high accuracy. These models describe the cell’s internal dynamics, such as diffusion,

conduction, and intercalation. Electrochemical models are more reliable than equivalent

circuit models due to their high accuracy. However, due to the high computational load,

A reduced electrochemical model is imperative for real-time processing. A schematic of

a Li-ion cell is shown in figure 2.1 for illustration purposes.

Numerous reduced models have been developed to trade off models’ computational load

and accuracy. The Full-order electrochemical models consist of five equations (two PDEs

and three algebraic equations). Each equation represents a physical phenomenon in

the battery during the charging or discharging operation. The two PDEs describe the

diffusion happening in electrodes and electrolyte, whereas the two algebraic equations

describe conduction in electrodes and electrolyte. The third algebraic equation, i.e. Butler

Volmer equation, combines the effect of four equations and describes the exchange of

Li-ions ( known as intercalation and de-intercalation ) between electrodes and electrolyte.

The model reduction attempts for the full-order model comprise simplifying these five

equations.

The most important simplification step is to simplify the Butler-Volmer equation to

decouple the other four equations of a Li-ion cell. The simplification is accomplished by

assuming the intercalation current as constant. This simplification leads to a simplified

model known as the single particle model [30], [80]. Other attempts include approximating

electrode diffusion equation PDE with time-varying ODE as done by Subramanian et al.

[81] or approximating electrolyte diffusion equation PDE with time-varying ODE as done

by Han et al. and Deng et al. [10], [2]. The simplification is achieved by approximating

spatial derivatives with time-varying polynomials. Orthogonal collocation on Chebyshev
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Figure 2.1: Li-ions cell schematic [2].

polynomials is used for the fast numerical implementation of the algorithms without

losing accuracy [82],[42].

Although some researchers have recommended high-order polynomials [33], we prefer

the second-order polynomial to approximate the Li-ion concentration in electrodes

and electrolyte. Recently it has been observed that the approximate electrode models

developed using higher-order polynomials introduce unwanted characteristics, such as

eigenvalues with positive real parts, and non-minimum phase zeros. In contrast, the

actual electrode model does not exhibit these characteristics. However, Second-order

polynomials provide smaller bandwidth and less precision in transients compared to

higher-order polynomial approximations [43]. Another feature of polynomials is time

variance. The coefficients of polynomials are calculated at every iteration.

This chapter will initially present a brief comparison of the FHM and DFN models. We

present multiple variants of reduced electrochemical models based on the FHM model.

The numerical implementation of the mathematical model is discussed in section 2.4.

Discretisation in the time and the spatial domain is discussed in detail in section 2.4. A

comparison of the simplified FHM model with the reduced model based on the DFN

model is presented in section 2.5.
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Eq.
No FHM Model P2D Model Part

(2.1) ∂cs,j(z,t)

∂t
= Ds,j

∂2cs,j(z,t)

∂z2
− Jj(z,t)

F

∂cs,j(z,r,t)

∂t
= 1

r2
∂
∂r

(
Ds,jr

2 ∂cs,j(z,r,t)

∂r

) Electrode
Diffusion

(2.2)
ηe,j

∂ce,j(z,t)

∂t
=

Jj(z,t)

F
+De,j

∂2ce,j
∂z2

+
RTt2+
F 2 Ke,j

∂2ln ce,j
∂z2

+ t+
F
Ke,j

∂2ϕe,j

∂z2

ηe,j
∂ce,j(z,t)

∂t
= ∂

∂z

(
De,j

∂ce,j
∂z

)
+

(1−t+)Jj(z,t)

F

Electrolyte
Diffusion

(2.3) Ks,j
∂2ϕs,j(z,t)

∂z2
= Jj(z, t) Ks,j

∂2ϕs,j(z,t)

∂z2
= Jj(z, t)

Electrode
Potential

(2.4)
RTt+
F

Ke,j
∂2lnce,j

∂z2
+Ke,j

∂2ϕe,j(z,t)

∂z2

= −Jj(z, t)

2RT (1−t+)
F

Ke,j
∂2lnce,j

∂z2
+Ke,j

∂2ϕe,j(z,t)

∂z2

= −Jj(z, t)

Electrolyte
Potential

(2.5)

ηj = ϕs,j(z)− ϕe,j(z)− Uc,j(θ)
i0,j = ((ce,jcs,j)(1− cs,j

cj,m
))0.5

Jj(z, t) = i0,j2kjsinh
(

Fηj
2RT

) ηj = ϕs,j(z)− ϕe,j(z)− Uc,j(θ)
i0,j = ((ce,jcs,j)(cj,m − cs,j))

0.5

Jj(z, t) = i0,j2kj · sinh
(

Fηj
2RT

) Intercalation
Current

Table 2.1: Comparison of P2D and FHM mathematical models [7]

2.2 Full order electrochemical models of a Li-ion cell

2.2.1 Pseudo two dimensional (P2D) model

The cell’s electrodes are assumed to be made up of multiple spherical particles. The

diffusion equation describes the P2D electrode diffusion dynamics for a single particle

(2.1). The variable r defines the radial dimension of a single particle. Ds,j is the diffusion

constant that determines the rate of diffusion of Li-ions in an electrode. The diffusion

parameter is a temperature dependent parameter. The temperature dependence of

diffusion parameter is shown in the figures 2.4 and 2.6. The value of other parameters of

the model is given in tables 2.3 and 2.4. The exchange of Li-ions between electrodes

and electrolyte, known as intercalation current, occurs at the particle’s surface. The

boundary conditions at the centre and surface of spherical particles are mentioned as

follows.
∂cs,j
∂r

∣∣∣
r=0

= 0,
∂cs,j
∂r

∣∣∣
r=Rs

= − Jj
F · aj

=
−Jj ·Rs,j

Ds,j · F · 3ηj
(2.6)

The boundary condition at the centre of the particle implies that net Li-ion diffusion at

the centre is zero as the total no of Li-ion from left to right equals no of Li-ions moving

from right to left. This assumption holds for all directions as charged can not be stored

at a single point. The Li-ion diffusion at the surface is equivalent to the intercalation

current scaled by Faraday’s constant F and the electrode interfacial surface area as to
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account for the porosity of the electrode. Intercalation current is, by definition, equal to

the exchange of Li-ions between electrode and electrolyte. As the particle surface is the

only area where the exchange occurs, the intercalation current variable is only mentioned

in the particle surface boundary condition, unlike the other boundary condition and

the diffusion equation. Rs,j and cs,j are the radius of the spherical particle and solid

concentration, respectively. Initial concentration is given by the initial stoichiometry

variable θj,init, i.e. the normalised value of concentration. Subscript j = s, n, p is used

for the separator, anode and cathode, respectively.

The equation (2.2) describes the Li-ion diffusion inside the electrolyte. Initial, boundary

and continuity conditions are mentioned in the equations (2.10) and (2.13), respectively.

ce,j , T and z are the liquid phase (electrolyte) concentration, cell temperature and physi-

cal dimension variable, respectively. The electrode of a cell is immersed in an electrolyte,

due to which the movement of Li-ion in the liquid phase is affected. Electrolyte volume

fraction ηe,j is included to account for the tortuosity of electrolyte. t+ is the transference

number and is the ratio of cat ions or positive ions current to the total current when

there is no potential gradient in the electrolyte. The transference number is responsible

for reducing concentration polarisation in electrolyte. L, Ln, Ls and Lp are the length

of the cell, anode, separator and cathode, respectively. The rate of Li-ion diffusion in

the electrolyte is directly proportional to the electrolyte diffusion parameter De. The

initial value of the electrolyte concentration is constant and mentioned in table 2.4. The

electrolyte boundary condition implies no Li-ion flow between the electrolyte and the

current collector. The electrolyte medium exists in a continuum throughout the cell.

The continuity conditions of electrolyte indicate that the concentration and the Li-ion

flux are equal at both sides of the electrode-separator interface.

Equation (2.5) describes the intercalation current Jj , which by definition is equal to

the Li-ion exchange between electrodes and electrolyte. Intercalation depends on all

the state and algebraic variables of a Li-ion cell, i.e. Li-ion concentration in electrode

and electrolyte, potential in electrode and electrolyte and open circuit potential. The

magnitude of intercalation current is directly proportional to reaction rate parameter kj .

Reaction rate parameter is temperature dependent parameter as shown in the figures
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2.5 and 2.7. The open circuit potential of a cell is the potential of individual electrodes

when the cell is at rest for a certain time and not connected to a circuit. The open

circuit potential is given as follows.

Uc,p(θ) = −10.72θ4 + 23.88θ3 − 16.77θ2 + 2.595θ + 4.563 (2.7)

Uc,n(θ) = 0.1493 + 0.8493 exp(−61.79θ) + 0.3824 exp(−665.8θ)− 1 exp(39.42θ − 41.92)

−0.03131 arctan(25.59θ − 4.099)− 0.009434 arctan(32.49θ − 15.74)

(2.8)

ηj is the over-potential and denotes the potential difference between electrode and

electrolyte required for the Li-ion exchange between electrode and electrolyte. ϕs,j

and ϕe,j are the electrode potential and electrolyte potential respectively. Open circuit

potential expressions are empirical, i.e. derived from experiments. We have obtained the

expressions as mentioned above from Tanim’s work [34]. θj , cj,m, kj , T and R are the

normalised solid concentration, maximum solid concentration, reaction rate parameter,

temperature, and the universal gas constant, respectively.

The dynamics of the solid phase potential drop ϕs,j and liquid phase potential drop ϕe,j

is given by the equations (2.4) and (2.3) respectively. Ks,j and Ke,j are the conductivity

parameters for solid and liquid, respectively. Initial conditions and boundary conditions

of electrode and electrolyte are described by the equations (2.11) and (2.12), respectively.

The equation (2.14) describes the continuity conditions of the electrolyte potential. The

initial value of the electrolyte potential drop is assumed zero due to zero electric current

in an electrolyte. In contrast, the initial potential drop across the electrode is equal to

the open circuit potential as the electrodes store electric charge. The solid potential at

the anode collector is considered the reference potential, whereas Ohms’s law gives the

solid potential at the cathode. The value of the potential drop in the electrolyte at the

electrode-collector interface is zero, as the electric charge in the liquid phase, i.e. Li-ions,

does not move to the external circuit. The liquid phase potential exists in a continuum

throughout the cell, i.e. the liquid phase concentration and flux are equal at both sides

of the electrodes-separator inter-phase.
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Equation
Number Initial conditions Boundary conditions Part

(2.9) cs,n = θn,init · cs,n,m
cs,p = θp,init · cs,p,m

- Electrode Diffusion

(2.10) ce,n = ce,sep = ce,p = ce,a
∂ce,j
∂z

|z=0,L = 0 Electrolyte Diffusion

(2.11) ϕs,n = 0
ϕs,p = Up,init − Un,init

ϕs,n|z=0 = 0
∂ϕs,p

∂z
|z=L = − Iapp

Acell·Ks,p

Electrode Potential

(2.12) ϕe,n = ϕe,sep = ϕe,p = 0
∂ϕe,j

∂x

∣∣∣
z=0,L

= 0 Electrolyte Potential

(2.13) −

∂ce,j
∂z

|z=Ln−
=

∂ce,j
∂z

|z=Ln+

ce,j|x=Ln−
= ce,j|z=Ln+

∂ce,j
∂x

|z=Ln+Ls−
=

∂ce,j
∂z

|z=Ln+Ls+

ce,j|z=Ln+Ls−
= ce,j|z=Ln+Ls+

Electrolyte Diffusion
Continuity Equation

(2.14) −

∂ϕe,j

∂z
|z=Ln−

=
∂ϕe,j

∂x
|z=Ln+

ϕe,j|z=Ln−
= ϕe,j|z=Ln+

∂ϕe,j

∂x
|z=Ln+Ls−

=
∂ϕe,j

∂z
|z=Ln+Ls+

ϕe,j|z=Ln+Ls−
= ϕe,j|z=Ln+Ls+

Electrolyte Potential
Continuity Equation

Table 2.2: Initial and Boundary conditions common to P2D model and FHM model [7]

2.2.2 Full homogenised macro-scale (FHM) model

The FHM model consists of two partial differential equations (PDEs) and three algebraic

equations as mentioned in table 2.1, while initial and boundary conditions are mentioned

in table 2.2. The Li-ion diffusion in the solid phase (electrode) is governed by Fick’s law

as mentioned in equation (2.1). The boundary conditions are mentioned as follows.

∂cs,j
∂z

∣∣∣
z=0,L

= 0,
∂cs,j
∂z

∣∣∣
z=Ln,Ln+Ls

= − Jj · Lj

Ds,j · F · 3ηs,j
(2.15)

The temperature dependence of the diffusion parameter De and reaction rate parameter

kj for the FHM model is shown in the figures 2.4 and 2.5, respectively. The Li-ion

diffusion at the collector end of the electrode is zero, as Li-ions can not move to an external

circuit. The Li-ion diffusion at the separator end is equivalent to the scaled intercalation
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Figure 2.2: Li-ions cell three dimensional schematic [3].

current. The diffusion equation of the FHM model includes the intercalation current Jj

as mentioned in the equation 2.1. In contrast, the intercalation current only appears

in the boundary condition of the P2D model solid diffusion equation, as mentioned in

equation 2.6. The boundary condition at the electrode-separator interface is similar to

the corresponding P2D model boundary condition. As the electrode consists of ’fictitious’

multiple spherical particles as shown in figure 2.3 [4], variable Rs,j , i.e. radius of the

spherical particles is used in the boundary condition of the P2D electrode model. While

the FHM model uses the actual length of the electrode, variable Lj , i.e. length of the

electrode, is used in the boundary condition. A three-dimensional schematic of a Li-ion

cell obtained from Mehdi’s work confirms that the particles in the porous electrode of

the Li-ion cell are not spherical, as shown in figure 2.2 [3]. The remaining equations of

the FHM model are similar to the P2D model. The value of cell parameters is given in

table 2.3 and 2.4.
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Figure 2.3: Li-ions cell schematic [4].

Name Symbol Anode Cathode Unit
Thickness L 53.2 39.9 µm
Particle Radius Rs 1.2 1.2 µm
Volume Fraction η 0.626 0.574 -
Conductivity Ke 113 113 Amol−1

Max Concentration Cj,m 27088 48700 mol.m−3

Stoichiometry θ 0.7916 0.3494
Specific Inter-facial as 15× 105 15× 105

Surface Area

Table 2.3: Li-ion electrode parameter values [8], [9], [5]
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Name Symbol value
Capacity Q 1.9Ah
Gas Constant R 8.314J.K−1.mol−1

Reference temperature Tr 296K
Current collector resistance Rc 0.027Ω
Electrolyte concentration Ce,a 103mol.m−3

P2D Electrolyte conductivity Ke 0.048Ωm−1

P2D Electrolyte diffusivity De 0.99× 10−11m2.s−1

FHM Electrolyte conductivity Ke 0.06Ωm−1

FHM Electrolyte diffusivity De 1.18× 10−11m2.s−1

Table 2.4: Li-ion cell parameter values[8],[9],[5]

2.3 Simplification of full order electrochemical models

2.3.1 Simplified P2D electrode diffusion model

The simplified electrode diffusion model presented by Subramanian [33] is used in the

present work. The following equations describe the approximate solid concentration.

dc̄j(t)

dt
= −3

Jj
as · F ·Rs

(2.16)

Ds

Rs
[csc,j(t)− c̄j(t)] =

−Jj
5as · F

(2.17)

The variables c̄j(t) and csc,j are the average solid concentration and the surface concen-

tration, respectively. Since the open circuit potential and other variables are functions

of the surface concentration csc,j and state of charge (SoC) is a function of average

concentration c̄j(t), (2.16) and (2.17) are used for simulating the electrode diffusion

model.

2.3.2 Simplified FHM electrode diffusion model

We propose that the solid phase concentration along the whole length of an electrode

can be approximated by a second-order polynomial, as shown below.

cs,j(z, t) = a(t) + b(t)
( z2
L2
j

)
(2.18)
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The value of cs,j from the equation (2.18) is used in the equation (2.15) to obtain the

following equation.

2
Ds,jb(t)

Lj
=

−J(Lj) · Lj

3ηs,j · F
(2.19)

The coefficient b(t) can be calculated from the equation (2.19). Another equation is

required to find the value of a(t). The following procedure is adopted to solve this

problem. The average concentration c̄j(t) is related to the solid phase concentration.

c̄j(t) =
1

Lj

∫ Lj

x=0
cj(z, t)dz (2.20)

c̄j(t) = a(t) +
b(t)

3
(2.21)

Averaging both sides of the equation (2.1) gives us the following equation to calculate

the average concentration c̄j(t).

1

Lj

∫ Lj

z=0

[∂cs,j
∂t

−Ds,j
∂2cs,j
∂z2

+
J(z, t)

F

]
dz = 0 (2.22)

dc̄j(t)

dt
= − J(Lj)

3ηs,j · F
− Iapp

F · Lj
(2.23)

Iapp =
u

Ac
(2.24)

Ac is the surface area of the cell collector. u is the input current. Average concentration

c̄j(t) is calculated using the equation (2.23). The value of unknown time-varying coeffi-

cients is calculated using the equations (2.19) and (2.21). The solid phase concentration

is calculated using the equation (2.18). The step-wise algorithm is presented in table 2.5.
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Figure 2.4: Effect of temperature on FHM diffusion parameter is shown in the figure [5].

Step No Step

1
Available data: Initial discrete time k=0, Initial average Li-ion concentration

in electrode c̄j(k) based on initial SoC.

2 Calculate c̄j(k) using the equation (2.23)

3 Calculate b(t) using the equation (2.19).

4 Calculate a(t) using the equation (2.21).

5 Calculate solid phase concentration cs,j(t) using the equation (2.18)..

6 Update the value of time k and initial condition c̄j(k) for next iteration.

7 Repeat step 2 to step 6 for the next sampling instant.

Table 2.5: Algorithm for simplified FHM electrode diffusion model.

2.3.3 Simplified electrolyte diffusion model

The electrolyte diffusion equation (2.2) of the FHM model is simplified by using (2.4).

ηe,j
∂ce,j(z, t)

∂t
=

(1− t+)Jj(z, t)

F
+De,j

∂2ce,j
∂z2

(2.25)
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Figure 2.5: Effect of temperature on FHM reaction rate parameter is shown in the
figure[5].

Figure 2.6: Effect of temperature on P2D diffusion parameter is shown in the figure [5].
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Figure 2.7: Effect of temperature on P2D reaction rate parameter is shown in the figure
[5].

The intercalation current term (1−t+)Jj(z,t)
F is used for electrodes only as electrodes are

soaked in electrolyte and Li-ions are constantly moving from electrode to electrolyte

and in reverse direction. The intercalation current term is not used for electrolyte

equation in separator as Li-ions exists only in the liquid phase and intercalation process

can not happen in separator as shown in figure 2.1 and 2.3. FHM electrolyte diffusion

equation (2.25) is similar to the P2D electrolyte diffusion equation. The method in [10],

and [2] is used to simplify FHM liquid phase (electrolyte) diffusion equation. Li-ion

concentration in the three regions, i.e. anode, separator and cathode, is approximated

by a second-order polynomial as given below.

ce,n(z) = a1z
2 + a0, 0 ≤ z ≤ Ln (2.26)

ce,s(z) = a4z
2 + a3z + a2, 0 ≤ z ≤ Ls (2.27)

ce,p(z) = a6z
2 + a5, 0 ≤ z ≤ Lp (2.28)
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The first-order term in the equations (2.26) and (2.28) is zero due to the boundary

condition mentioned in the equation (2.12). The following four equations are derived by

putting the value of ce,j(z) in the continuity conditions given by the equation (2.13).

a1L
2
n + a0 = a2 (2.29)

a6L
2
p + a5 = a4L

2
s + a3Ls + a2 (2.30)

2a1LnDe,n = a3D
eff
e,s (2.31)

− 2a6LpDe,p = (2a4Ls + a3)De,s (2.32)

The total amount of Li-ions in the anode, separator and cathode Qe,j is calculated by

integrating the equations (2.26), (2.27) and (2.28) respectively.

Qe,n(t) = ηe,n

∫ Ln

0
ce,n(z)dz = ηe,n

(
a1L

3
n

3
+ a0Ln

)
(2.33)

Qe,s(t) = ηe,s

∫ Ls

0
ce,s(z)dz = ηe,s

(
a4L

3
s

3
+

a3L
2
s

2
+ a2Ls

)
(2.34)

Qe,p(t) = ηe,p

∫ Lp

0
ce,p(z)dz = ηe,p

(
a6L

3
p

3
+ a5Lp

)
(2.35)

We calculate derivatives of Qe,j subject to electrolyte boundary and continuity conditions

to obtain the following equations.

d

dt
Qe,n(t) =

Iapp(1− t+)

F
+De,n

∂ce,n
∂z

∣∣∣∣∣
z=Ln

z=0

d

dt
Qe,n(t) =

Iapp(1− t+)

F
+De,n2a1Ln

(2.36)

d

dt
Qe,p(t) =

Iapp(1− t+)

F
+De,p

∂ce,p
∂z

∣∣∣∣∣
z=Lp

z=0

d

dt
Qe,p(t) = −Iapp(1− t+)

F
+De,p2a6Lp

(2.37)
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d

dt
Qe,s(t) = De,s

∂ce,s
∂z

∣∣∣∣∣
z=Ls

z=0

d

dt
Qe,s(t) = De,s2a4Ls

(2.38)

The seven unknown coefficients are solved using the seven equations, i.e. (2.29), (2.30),

(2.31), (2.32), (2.36), (2.37) and (2.38). The equations (2.26),(2.27) and (2.28) are used

to simulate the electrolyte diffusion model. Step-wise algorithm is provided in table 2.6.

Step No Step

1
Available data:Initial discrete time k=0, Initial total concentration of Li-ions

in electrolyte Q̄e,j(0) based on initial concentration.

2
Calculate a0, a1...a6 using the equations (2.29), (2.30), (2.31),

(2.32), (2.36), (2.37) and (2.38)
.

3
Calculate total Li-ion concentration Qe,j(k) at next time instant

using the equations (2.26),(2.27) and (2.28).

4 Update the value of time k and initial condition Qe,j(k) for the next iteration.

5 Repeat step 2 to step 6 for the next sampling instant.

Table 2.6: Algorithm for the simplified electrolyte diffusion model [10], [2] .

2.3.4 Approximation of intercalation current

The intercalation current Jj is assumed constant. The following equations are derived

using the equation (2.4).

Jn =
Iapp

Ln · F

Jp =
−Iapp
Lp · F

(2.39)

This model is called the Further simplified FHM model.
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2.3.5 Simplification of algebraic equations

Approximation for the algebraic equation of Li-ion cell is based on the work of S. J.

Moura [80]. The intercalation current Jj is assumed constant. Exchange current density

i0(x, t) is approximated by the spatial average value īo(t) and approximate over-potential

η̄ is given by the following equation.

η̄(t) =
RT

αF
sinh−1

( Iapp
2αLī0,j

(t)
)

(2.40)

V = ϕs,p(L)− ϕs,n(0) (2.41)

ϕs,j(z, t) = η̄j + ϕe,j(x, t) + Uc,j(z, t) (2.42)

The procedure mentioned in ref. [80] is used to simplify the output voltage and potential

equation. The simplified output voltage equation is mentioned as follows.

V = η̄p(t)− η̄n(t) + Up(θ(L))− Un(θ(L))+

k1Iapp + k2(ln(ce(L))− ln(ce(0)))

(2.43)

k1 =
Ln + 2Ls + Lp

2Keff
(2.44)

k2 =
2RT (1− t+)Keff

F
(2.45)

This model is labelled as SFHM 2 model.

2.4 Numerical implementation using orthogonal collocation

2.4.1 Spatial discretisation

Spatial discretisation is done using orthogonal collocation developed by Adrien [42]. The

following equation describes the solution ue(γ, t) of a PDE.

uN (γ, t) =
N∑
j=0

ûj(t)ϕj(γ), γϵ[−1, 1] (2.46)



2.4. Numerical implementation using orthogonal collocation 43

ϕj(γ) =
(−1)j+1(1− γ2)T r

N (γ)

c̄wN2(γ − γi)
, γϵ[−1, 1] (2.47)

c̄j = 0 for j = 0, N and c̄w = 1 otherwise TN (γ) denotes the Chebyshev polynomial of

degree N . ûj(t) is equal to the value of solution ue(γi, t) at discretised nodes known as

collocation points. The following equation gives the collocation points.

γi = cos
(πi
N

)
, i = 0, 1..M. (2.48)

M is the maximum number of collocation points. The pth derivative of ue(γ, t) at

collocation points is calculated as follows.

upN (γi) =
M∑
j=0

dpi,juN (γi) (2.49)

dpi,j is calculated by finding the derivative of the function ϕj(γ). Chebyshev polynomials

are computed offline and stored to reduce the computational burden. The derivative

equation is written in matrix form as follows.

up = Dp
Nu (2.50)

Similarly, integration or quadrature of u(γ, t) is calculated as follows.

upN (γi) =
N∑
j=0

αi,juN (γi) (2.51)

αi,j is calculated by finding the integration or quadrature of the function ϕj(γ). MATLAB

®functions for the differentiation matrix and integration matrix provided by [82] are

used in this work.

2.4.2 Temporal discretisation

Average solid concentration in anode c̄n(t) and cathode c̄p(t) and total liquid concen-

tration in anode Qe,n, separator Qe,s and cathode Qe,p are states of the nonlinear state

space model (i.e. simplified FHM model) of Li-ion cell. Equations (2.23),(2.36), (2.37)
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and (2.38) are dynamic equations of the simplified model as the time derivative of states

is given by these equations. The equations can be grouped and represented as follows:

ẋ(t) = f(x(t), u(t)) (2.52)

The output equation is represented as follows.

y = g(x, u) (2.53)

f , x, u, y and g are state function, system states, input current, output variable, and

output function, respectively. Solid and liquid concentration variables are considered

the state variables of the cell. Current is considered as the input. Cell voltage and SoC

are considered output. The following equation calculates SoC of the cell using anode

solid Li-ion concentration.

SoC(t) =
θavg(t)− θ0%n
θ100% − θ0%

(2.54)

The following equation calculates the normalised average concentration of anode for the

P2D model and FHM model.

θavg(t) =
3

LjR3
s,j

∫ Lj

0

∫ Rs,j

0
r2

cs,j(z, r, t)

cj,m
drdz (2.55)

θavg(t) =
1

Lj

∫ Lj

0

cs,j(z, t)

cj,m
dz (2.56)

θ0%j and θ100%j denote 0% and 100% SoC respectively and mentioned in the table 2.3.

The equation is discretised using orthogonal collocation. The details of orthogonal

collocation are discussed in section 2.4. The n dimensional matrix equation corresponding

to n collocation points is expressed as follows.

XN×1 = X(t0)N×1 +
tf − t0

2
AN×NFN×1(X,U) (2.57)
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AN×N is the pseudos-spectral integration matrix. t0 and tf are the initial and final

times, respectively. The value of state matrix F is given as follows.

F =



−J(Ln)
3ηs·F − Iapp

F ·Ln

−J(Lp)
3ηs·F − Iapp

F ·Lp

Iapp(1−t+)
F +De,n2a1Ln

− Iapp(1−t+)
F +De,p2a6Lp

De,s2a4Ls


(2.58)

The output equation (2.43) is an algebraic equation. The following equation represents

the output equation in matrix form.

YN×1 = GN×1(X,U) (2.59)

The value of output matrix G for voltage output is given as follows.

G = η̄p(γi)− η̄n(γi) + Uc,p(θ(L))− Uc,n(θ(0))+

k1Iapp + k2(ln(ce(L))− ln(ce(0)))

(2.60)

γi is the collocation point or discretised time.

2.5 Results and discussion

Simulation results are produced using MATLAB. Crank-Nicolson is used for the dis-

cretisation of models to produce results shown in figures 2.8,2.10,2.9,2.11 and table

2.7. Whereas MATLAB function Ode15s and orthogonal collocation is used to produce

results shown in table 2.8 and figure 2.12. Parameters are primarily obtained from [41],

[7], [6]. The sampling time is 1 second, and the cell temperature is 318K. The percentage

root mean square (RMS) error between the voltage Vi and the reference voltage Vref,i is

calculated using the following equation to quantify the accuracy of a particular voltage

signal Vi.
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Figure 2.8: Output voltage of various Li-ion cell models for 1C input current at 318K
temperature.

Figure 2.9: SoC of various Li-ion cell models for 1C input current at 318K temperature.
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Figure 2.10: Li-ion concentration profile vs the length of anode for FHM model and
SFHM model for 1C current input at 4, 8, 12 and 16s.

Figure 2.11: Output voltage of various Li-ion cell models for 4C input current at 318K
temperature.
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Figure 2.12: Comparison of output voltage for FHM model, SFHM 2 model, and
experiment at 1C current input at 318K temperature. Experimental results are obtained
from [6]
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RMS Error =
100

mean(Vref )
×
√

1

N

∑N

i=0
(Vref,i − Vi)

2 (2.61)

The experimental voltage is taken as a reference for calculating RMS error. Experimental

results are obtained from Harikesh’s article[6]. Considering figure 2.8, we observe that

at 318K, the performance of the FHM model and the proposed simplified FHM model is

excellent, and the value of RMS error is 0.6% for 1C current. Compared to the FHM

model and the simplified FHM model, the P2D model and the simplified P2D model

show relatively inaccurate performance. The value of RMS error for the P2D and the

simplified P2D model is about 2% for 1C current. Consider figure 2.8, it can be observed

that the high value of RMS error for the P2D model and the simplified P2D model is

mainly due to performance deterioration at low values of SoC. We also observe that the

output voltage of the simplified FHM model and simplified P2D model accurately track

the output of the FHM model and the P2D model, respectively.

Consider figure 2.8; we observe that SoC estimation using the simplified P2D model is

not accurate while the simplified FHM model accurately estimates SoC.

Figure 2.10 shows the Li-ion concentration for the FHM model and simplified FHM

model in anode at various time instants. This plot is the same as the plot of the second-

order polynomial, i.e. parabola p(x) = ax2 + bx + c where x represents the physical

dimension of the electrode. Based on this fact, our assumption of approximating the

Li-ion concentration for the FHM electrode equation using a second-order polynomial

is proved correct. The same plot is observed for both electrodes at all points in time.

The same observations are recorded for electrolyte, which justifies the use of quadratic

polynomial for the approximation of liquid phase concentration.

The main reason for the superior performance of the FHM model and the simplified

FHM model is that the FHM model is derived based on the actual structure of the

electrode. In contrast, the P2D model is derived based on the assumption that fictitious

spherical particles constitute an electrode. For the FHM model, the value of temperature-

dependent parameters, such as the electrode diffusion parameter and the reaction rate

constant, is calculated based on the numerical modelling of the electrode structure. The

P2D model uses the empirical and relatively inaccurate Bruggeman method. We observe
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that the RMS error of the further simplified FHM model is equal to the RMS error

of the simplified FHM model for 1C current, as shown in table 2.7. However, when

the input current is increased to 4C, the error for a further simplified FHM model is

increased to 3%, and the error for a simplified FHM model is 2.1% considering FHM

voltage output as a reference signal. The result is shown in figure 2.11.

Consider table 2.7, the algorithm execution time for the FHM model is 34s, less than

the P2D model execution time, i.e. 62s as the FHM model has only one dimension, and

the P2D model has additional pseudo dimension for electrode particles. The proposed

simplified FHM reduced the algorithm execution time by 35% to 20s, slightly less than

the simplified P2D model’s algorithm execution time, i.e. 21s. Further simplifying

the FHM model slightly reduces the algorithm execution time to 19s. The proposed

simplified FHM model can accurately track the output voltage of the FHM model up to

4C current with 2.1% RMS error considering FHM voltage as a reference as shown in

figure 2.11 and table 2.9.

Figure (2.12 ) compares the output voltage obtained from the experiment with the

output voltage predicted using various models, i.e. the FHM model, SFHM 2 model.

Experimental results are obtained from [6]. Initial and final SoC is set to 99.9% and

0.1% respectively. The sampling time is 1 second. The cell is discharged at 1C current

and 318K temperature. SFHM model is simulated using MATLAB Odes15s function

and orthogonal collocation. Other models are simulated using the Ode15s function.

Table (2.8 ) compares the root mean square error (RMS) and algorithm execution time

per iteration between the experimental output voltage and the predicted output voltage

for each model. The output voltage predicted by the SFHM 2 model using the Ode15s

function and orthogonal collocation has an approximation RMS error of 1.31% and

1.28%. The models predict the output voltage with an approximation error greater than

the SFHM model. The greater error is the price paid for further simplification.

Consider the algorithm execution time of various models at 1C discharging current

mentioned in table (2.8). The orthogonal collocation is about 18 times faster than

the ode15s function. Based on this discussion, we conclude that the simplified FHM

model variants combine the accurate estimation property of the FHM model and the
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low algorithm execution time property of the simplified P2D model, making it a good

candidate for developing BMS.

Model Algorithm execution time RMS Error

FHM model 34s 0.6%

P2D model 62s 2%

Simplified FHM model 20s 0.6%

Simplified P2D model 21s 2%

Further simplified FHM model 19s 0.6%

Table 2.7: Comparison of algorithm execution time and RMS error for various Li-ion
cell models for 1C current at 318K temperature.

Model Method RMS Error
Algorithm execution time

(seconds)

FHM Ode15s 0.5% 21s

SFHM 2 Ode15s 1.31% 1.5s

SFHM 2 Orthogonal collocation 1.28% 0.08s

Table 2.8: Comparison of root mean square error (RMS) and algorithm execution time
for the FHM model and SFHM 2 model using various discretisation techniques at 1C
current input at 318K temperature.

Model Method RMS Error Algorithm execution time(seconds)

SFHM Ode15s 2.1% 1.21s

SFHM 2 Ode15s 3% 1.2s

Table 2.9: Comparison of voltage root mean square error (RMS) and algorithm execution
time for the FHM model, SFHM Model and SFHM 2 model considering the FHM model
as a reference model. The input current is 4C, and the temperature is 318K.



Chapter 3

Optimal charging of a Li-ion cell

3.1 Introduction of optimal charging

A charging strategy is vital to charge a Li-ion cell quickly, efficiently and safely. Charging

algorithms are classified into two categories, i.e. model-free charging algorithms and

model-based charging algorithms. Both methods are discussed briefly.

Model-free charging methods do not consider a Li-ion cell’s internal dynamics. A cell’s

input current and output voltage are the only quantities of interest for developing these

charging methods. The most well-known model-free charging algorithm is the constant

current constant voltage (CCCV ) charging algorithm. CCCV is the industry standard

optimal charging algorithm for a Li-ion cell. In this charging technique, a cell is initially

charged at a constant current until the cell output voltage reaches a maximum threshold.

This charging phase is called the CC charging phase. Afterwards, the cell is charged at

the maximum voltage. The charging current gradually decreases and diminishes in CV

charging mode.

Other well-known model-free charging techniques are multi-step charging and pulse

charging. In the multi-step charging technique, the charging phase is divided into

multiple phases, with a distinct value of constant input current charges each. The pulse

charging algorithm feeds the battery by input current pulses of distinct amplitude, duty

cycle, and frequency. The details of model-free charging algorithms are available in

literature [83]. However, model-free algorithms are not the best to optimise a Li-ion
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cell’s health as their design is not based on the battery model. The model-free charging

algorithm is designed based on the physical quantities of cells that are either input or

output, i.e. input current or output voltage.

Model-based charging algorithms are better candidates to minimise health loss as the

charging algorithm is aware of cell dynamics, the conditions and the parameters or

quantities of cells that affect the health of a cell. The charging regimes that optimise

the health-defining parameters of a cell can be employed using this charging method;

thus, the damage to the cell’s health can be minimised.

Numerous model-based charging algorithms have been explored using either equivalent

circuit models or simplified electrochemical models recently; for example, Hu et al., Sun

et al. and Drees et al. have proposed charging algorithms using equivalent circuit models

[54], [84], [85]. Klein et al., Yang et al., Khalik et al., Liu et al. and Malik et al. have

proposed electrochemical model-based health-conscious charging algorithms to reduce

cell ageing. [62], [54], [52],[53], [86].

The novel contribution of this work includes pseudo-spectral optimal control of a Li-ion

cell using a simplified FHM model. The solid electrolyte interphase (SEI) layer model

mentioned in [56], [63], and [57] is incorporated in the simplified FHM model to make

the charging algorithm health-conscious. The capacity fade of a Li-ion cell is also studied.

The state of health (SoH) definition is not unique, as multiple factors degrade the

battery’s health. We have used a definition of SoH based on capacity degradation or

capacity fade.

The so-called direct approach solves the optimal control problem (OCP). The continuous-

time OCP is converted to a nonlinear programming problem (NLP) using orthogonal

collocation on Chebyshev polynomials. The NLP is solved using well-known NLP-solving

algorithms such as the active set method. We have used MATLAB command fmincon

to solve the NLP. The control problem is to charge a Li-ion cell with minimum health

degradation in minimum time subject to input, state and output constraints. Model

predictive control is implemented for optimal charging. Both control objectives, i.e.

minimum charging time and minimum health degradation, comprise the cost function of

MPC. The performance of the health-conscious control algorithm is compared with the
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industry-standard CCCV charging algorithm.

The comparison between the health-conscious charging algorithm and the CCCV al-

gorithm using the simplified FHM model shows that the health-conscious charging

algorithm outperforms the CCCV algorithm by reducing the degradation in film resis-

tance Rfilm and SoH. The performance of the algorithms is analysed and compared

under various conditions. For example, the performance is analysed by the varying

value of input current constraint and cost function weighting factor. The performance of

algorithms is also compared for multiple-cycle charging.

This chapter is organised as follows. Section 3.2 briefly describes the simplified FHM

model. Pseudo-spectral optimal control is discussed in section 3.3.1. Section 3.4 presents

results, analysis and discussion.

3.2 Mathematical modelling of a Li-ion cell

The details of mathematical modelling are given in the modelling chapter and literature

[87]. Here, we briefly discuss the solid electrolyte inter-phase model.

3.2.1 Solid Electrolyte Inter-phase (SEI) Layer Model

Side reaction in negative electrode increases resistivity Rfilm to Li-ion flow and is the

primary cause of cell ageing in graphite negative electrodes. The SEI layer model

proposed by Ramadass et al.[56] and Safari et al.[57] is used in this work with some

modifications. Values of parameters related to the SEI layer model are mentioned in

[56] and [57].

The SEI layer model is coupled to the cell model. We assume that besides anode

intercalation current Jn side reaction flux density Js also contributes toward molar flux

density Jtotal of Li-ions:

Jtotal = Jn + Js (3.1)
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The side reaction molar flux is described by a Tafel equation which by definition relates

the overpotential to the side reaction as mentioned below:

Js = −i0,se
RT
αF

ηs (3.2)

i0,s is the side reaction exchange current density and ηs is the side reaction over potential

expressed by the following equation:

ηs = ηn + Uc,n(θ)− Uref,s (3.3)

Uref,s is the side reaction open circuit potential. The following equation describes film

resistance formed on the negative electrode due to side reaction molar flux:

∂Rfilm

∂t
=

−i0,sMp

κpρpF
e

RT
αF

ηs (3.4)

Mp, κp and ρp are molecular weight, electrolyte conductivity, and density of products

formed due to side reactions, respectively. The following equation describes the capacity

loss of Li-ion cell:
∂Q

∂t
=

∫ Lneg

0
AcJsdx (3.5)

Q is the capacity of a Li-ion cell. State of health (SoH) is defined as normalised capacity

loss expressed in percentage as mentioned below:

SoH =
Q

Qnominal
× 100% (3.6)

3.3 Pseudo-spectral Optimal Control

3.3.1 Orthogonal Collocation

Spatial discretisation of the FHM model is achieved using orthogonal collocation devel-

oped by Adrien [42]. The exact solution ue(γ) of an ODE is approximated by variable
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uN (γ) using Chebyshev polynomials as shown next:

uN (γ) =

N∑
j=0

ûj(γi)ϕj(γ), γϵ[−1, 1] (3.7)

N is the highest order of the Chebyshev polynomial. Subscript j is an index variable

for Chebyshev polynomials. t is the time variable. For using orthogonal collocation, we

have to re-scale the independent variable, i.e. time signal t, from its full range to the

range of collocation variable γ, i.e. from −1 to 1.

ϕj(γ) =
(−1)j+1(1− γ2)TN (γ)

c̄jN2(γ − γi)
, γϵ[−1, 1] (3.8)

c̄j = 0 for j = 0, N and c̄j = 1 otherwise TN (γ) denotes the Chebyshev polynomial of

degree N . ûj(t) is equal to the value of exact solution ue(γi) at discretised time signal

known as collocation points. Although the exact solution is unknown, the solution’s

value at collocation points is known. The following equation gives the collocation points:

γi = cos
(πi
N

)
, i = 0, 1...N. (3.9)

Subscript i is the index variable for collocation points. The pth derivative of the exact

solution ue(γ) at collocation points is approximated by calculating the derivative of

Chebyshev polynomials. As Chebyshev polynomials are already known, the derivative

can be pre-calculated as follows.

upN (γi) =
N∑
j=0

dpi,juN (γi) (3.10)

dpi,j is calculated by finding the derivative of the function ϕj(γ). Since Chebyshev poly-

nomials are already known, they are computed offline to reduce the online computational

burden. The derivative equation is written in matrix form as follows:

up = Dp
Nu (3.11)
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Integration or quadrature of ue(γ) is also calculated using the same method. Trefethen

[88] and Reddy [89] have provided MATLAB algorithms and codes to generate the

differentiation and integration matrix using orthogonal collocation, and we have used it

in current work.

3.3.2 Nonlinear Programming Problem Formulation

Average solid concentration in anode c̄n(t) and cathode c̄p(t) and total liquid concen-

tration in anode Qe,n, separator Qe,s and cathode Qe,p are states of the nonlinear state

space model (i.e. simplified FHM model) of Li-ion cell. Equations (2.23), (2.36), (2.37)

and (2.38) are dynamic equations of the simplified model as the time derivative of states

is given by these equations. The equations can be grouped and represented as follows:

ẋ(t) = g(x(t), u(t)) (3.12)

Output equation (2.43) is an algebraic equation and is represented as follows.

y = h(x, u) (3.13)

g, x, u, y and h are state function, states, input, output variable, and output function,

respectively. Solid and liquid concentration variables are considered the state variables

of the cell. Current is considered as the cell input. Cell voltage and SoC are considered

output. SoC ( using Li-ion concentration in anode) is calculated by the following

equation:

SoC(t) =
θavg(t)− θ0%

θ100% − θ0%
(3.14)

The following equation calculates the normalised average concentration:

θavg(t) =
1

Ln

∫ Ln

0

cs,n(x, t)

cn,m
dx (3.15)

cs,n is the Li-ion concentration in anode. cn,m is the maximum Li-ion concentration in

anode. θ0% and θ100% denote 0% and 100% SoC respectively. We have used the anode

to define SoC of the cell as the anode concentration is gradually reduced by SEI layer
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formation.

The equation is discretised using orthogonal collocation. The details of orthogonal collo-

cation are discussed in section 3.3.1. The N dimensional matrix equation corresponding

to N collocation points is expressed as follows:

XN×1 = X(t0)N×1 +
tf − t0

2
AN×NGN×1(X,U) (3.16)

t0 is the initial time. tf is the final time. The above equation gives values of states at N

collocation points between t0 and tf . AN×N is the integration matrix. Value of state

matrix G is given as follows:

G =



−J(xN )
3ηs·F − Iapp

F ·Ln

−J(xN )
3ηs·F − Iapp

F ·Lp

Iapp(1−t+)
F +De,n2a1Ln

− Iapp(1−t+)
F +De,p2a6Lp

De,s2a4Ls


(3.17)

Equation (2.43) is an algebraic equation. The following equation represents it in

matrix form:

YN×1 = HN×1(X,U) (3.18)

The output matrix H for voltage output Y is as follows.

H = η̄p(γi)− η̄n(γi) + Uc,p(θ(γN ))− Uc,n(θ(γ0))+

k1Iapp + k2(ln(ce(γN ))− ln(ce(γ0))) (3.19)

γi is the collocation point or discretised time.

CCCV charging algorithm is the industry standard charging algorithm to charge

Li-ion cells. CCCV charging of a Li-ion cell using the SPM is extensively studied,

as mentioned in the introduction. Liu [52] and Malik [53] have compared the CCCV

charging algorithm with their proposed health-conscious charging algorithm. For the
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CCCV charging, the battery cell is first charged using a constant current up to a certain

voltage threshold, followed by constant voltage charging. The cost function of CCCV

charging algorithm is mentioned below:

min
u

Jc = min
u

∫ tf

t0

(SoCref − SoC)2dt (3.20)

SoCref is 100%. The terminal cost is assumed to be zero. The term in the cost function

is included to track reference SoC with minimum error. The discretised cost function is

given as follows:

min
u

Jc = min
u

tf − t0
2

[ PH∑
i=0

(SoCref − SoC(γi))
2αi

]
(3.21)

αi is the quadrature weight. PH is the prediction horizon.

The optimisation problem is to find the value of the input current u to minimise a cost

function Jc such that (3.16) and (3.18) and constraints mentioned in equation (3.22) are

satisfied:

0 ≤ U(γi) ≤ Cmax1.5V ≤ V (γi) ≤ Vmax

0.1% ≤ SoC(γi) ≤ 100%

(3.22)

The first constraint limits the battery operation to a suitable value of input current

upper and lower bounds. Other constraints are the physical limits of the battery. The

value of Vmax is 4.125V for the CCCV algorithm. The value of Cmax is between 1C

and 4C.

Equation (3.16) is a linear constraint of the NLP problem. Equation (3.18) is a nonlinear

constraint of the NLP problem. The cost function of NLP is given by (3.21). Inequality

constraints are mentioned in (3.22). The equations mentioned above constitute our NLP.

The NLP is solved using MATLAB fmincon algorithm. To charge the Li-ion cell with

less health degradation, the following cost function is adopted by the optimal controller:

min
u

Jc = min
u

∫ tf

t0

(
Q1(SoCref (t)− SoC(t))2 −Q2(Js(t))

)
dt (3.23)
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We label the health-conscious controller as controller 1. Q1 and Q2 are weights to

balance the charging speed and the degradation speed. The discretised cost function is

given as follows:

min
u

Jc = min
u

tf − t0
2

[ i=PH∑
i=0

Q1(SoCref (γi)− SoC(γi))
2αi−

Q2(Js(γi))αi

] (3.24)

The second term in the cost function reduces health degradation. We have included

Js in the cost function as both health parameters, i.e. Rfilm and SoH are directly

proportional to side reaction intercalation current Js. SoCref is considered reference and

provided in figure 3.2. We have preferred a ramp signal for SoCref (t) over a constant

SoCref as the input current designed by the optimisation algorithm is smoother. The

slope of the ramp signal is equal to the maximum current. The specific value of slope

implies that this is also a minimum time charging problem similar to the CCCV charging

case where we select SoCref (t) as maximum SoC for minimum time charging.

Model Predictive Control

As the system model is nonlinear due to the nonlinear output voltage equation, we have

used nonlinear model predictive control NMPC for optimal charging. At a particular

time instant k, an NLP is formulated over PH sampling instants up to time k + PH − 1,

and PH samples of the input variable are calculated to minimise the NLP problem. In

general, the number of the input samples (control horizon) is m, less than or equal to

PH . After a delay m samples, input is assumed constant up to prediction horizon PH .

In the present work, m and PH are assumed to be equal. The following equation gives

the optimal input vector:

u(k) = [u(k|k), u(k + 1|k), ...u(k + PH − 1|k)]T (3.25)

where u(k + PH − 1|k) is the input at time k + PH − 1 predicted at time k using the

system model.
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Step No Step

1 Available data: system model, initial conditions x(0), prediction horizon PH ,
control horizon m = p, parameters Q and R, constraint limits Vmin, Vmax etc

2 Solve the non-linear programming problem formulation 3.3.2
to obtain p samples of optimal input {u(1),u(2)...u(p).}

3 Use u∗ = u(1) to implement the controller.
4 Obtain the measured value of output y.
5 Estimate states x(we assume state feedback).
6 Update the initial conditions for the next iteration.
7 Repeat step 2 to step 6 for the next sampling instant.

Table 3.1: Non-linear model predictive control algorithm [11].

Only the first sample of optimal input vector u(k|k) is implemented. The prediction

process is repeated for each sampling instant online. The details of the algorithm are

provided in table 3.1.

3.4 Results and Discussion

Control horizon m and prediction horizon PH are set 3. A large value of m and PH

ensures better performance at the price of computational cost. Minimum values of the

control and prediction horizon are selected for fast implementation of the algorithm.

In our case, the optimisation algorithm showed a high value of errors for the control

horizon and a prediction of less than three. The number of collocation points for the

pseudo-spectral method is three, as the NLP can be solved in one iteration. I is the

identity matrix. The sampling time is one seconds. NMPC is simulated using MATLAB

fmincon algorithm.

Figure 3.1 shows the input current corresponding to the constraints Cmax = 2C on the

input current. The input current for the CCCV algorithm is maximum during the CC

mode till 1600 seconds approximately for 2C input current upper bound. The input

current decreases due to the maximum voltage constraint after the CC charging mode

ends. We observe that the CV mode in the CCCV charging algorithm over-penalises

the input current. CV mode extends charging time for CCCV charging algorithm. The

controller 1 algorithm balances battery health and charging time efficiently. The CCCV

algorithm is not health-conscious and needs more charging time.



3.4. Results and Discussion 62

0 500 1000 1500 2000 2500 3000

Time[s]

0

0.5

1

1.5

2

2.5

3

3.5

4

In
p
u
t 
c
u
rr

e
n
t[
A

]

Controller 1, 2C Constraint

CCCV, 2C Constraint

Figure 3.1: Comparison of the controller 1 and CCCV charging algorithm for 2C input
current upper bound. A comparison of the input current is shown.
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Figure 3.2: Comparison of the controller 1 and CCCV charging strategies for 2C input
current upper bound. Comparison of the SoC and Film resistance Rfilm is shown.
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Figure 3.3: Comparison of the controller 1 and CCCV charging strategies for 2C input
current upper bound. A comparison of the output voltage and SoH is shown.

The algorithm execution time per iteration for the CCCV charging algorithm and the

controller 1 algorithm is 3ms and 19ms, respectively. The CCCV charging algorithm

is faster than controller 1. However, the controller 1 algorithm is still computationally

efficient, so real-time implementation of the algorithm is feasible. It is noteworthy

that the simplified FHM model is more computationally efficient than state-of-the-art

electrochemical models such as the simplified P2D model. So, a health-conscious charging

algorithm based on the simplified FHM model will still be faster than the charging

algorithm based on SPM. The algorithm execution time per iteration for the CCCV

charging algorithm based on the simplified FHM model and simplified P2D model is

3ms and 4ms, respectively, as shown in table 3.2. The details of the simplified P2D

model are given in [87].

Figure 3.2 shows Rfilm and SoC corresponding to constraints Cmax = 2C on the input

current. The controller 1 charging increases Rfilm to 0.010494Ω while the CCCV

charging algorithm increases Rfilm to 0.01062Ω i.e. 1.2% more than the controller 1

charging algorithm. The SoC plot for the CCCV charging has a high slope initially due

to the CC charging mode and a low slope curve due to the CV charging mode. The
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SoC plot for the controller 1 algorithm is relatively uniform.

Figure 3.3 shows the output voltage and SoH corresponding to constraints Cmax = 2C.

The controller 1 charging decreases SoH to 99.96% starting from 100% while the CCCV

charging algorithm decreases SoH to 99.95%. The controller 1 charging algorithm

performed better according to all performance indicators of battery health while keeping

the charging time slightly less. The difference between Rfilm and SoH becomes more

significant for multiple cycles.

The effect of the input current upper bound Cmax on the film resistance Rfilm and SoH

for both algorithms is also studied. Cmax is varied from 1C to 4C, Whereas the value of

1C input current is 1.962A . Figure 3.4a shows the effect of the input current upper

bound on Rfilm at the end of a single cycle. Rfilm is large for small values of current

upper bound Cmax, but it gradually decreases and stabilises at a higher input current

value. The SoH is defined based on capacity degradation. The SoH is minimum for 1C

input current upper bound, and it gradually increases after 1C and stabilises at a higher

value of input current upper bound as shown in Figure 3.4b. This pattern is opposite to

the pattern observed in Rfilm plot. Many researchers have made similar observations

[90].

Figure 3.5a, and figure 3.5b show the SoH and Rfilm plot for multiple cycles charging.

Please note that the stoichiometric values, i.e. solid concentration corresponding to 0%

and 100%, are updated at each cycle as mentioned in [60]. The input current constraint

is 2C. Although the difference in the SoH for the CCCV charging and the controller

1 charging is small for a single cycle, the difference becomes substantial for multiple

charging cycles. 80% SoH is generally considered the end of life for a Li-ion battery.

We observe that the battery reaches 80% SoH after 392 cycles for CCCV charging.

At 392 cycles battery, SoH reaches 84.17% for the controller 1 charging. SoH reaches

80% after 484 cycles for the controller 1 charging. The battery life is extended by 92

cycles when charged with controller 1 charging. Significant performance improvement is

possible due to controller 1 optimal charging. Similar behaviour is observed for Rfilm.

After 392 cycles Rfilm value is 0.2032Ω and 0.2536Ω for the controller 1 algorithm and

the CCCV algorithm respectively. The CCCV charging increases Rfilm by 24%. The
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Figure 3.4: Analysis of the cell SoH. Figure (a) shows the film resistance Rfilm for the
SFHM model using the controller 1 charging algorithm for various input current upper
bound values at the end of a single cycle of charging. Figure (b) shows cell SoH for the
SFHM model using the controller 1 charging algorithm for various input current upper
bound values at the end of a single cycle of charging.

controller 1 charging algorithm reduces film resistance and health degradation more

effectively than the CCCV charging algorithm.

The effect of varying cost function weights Q1 and Q2 on controller performance is

studied to tune the controller for optimal performance. Input current is constrained to

2C. Q2 is kept constant at 1×103 and Q1 is varied. The input generated by the controller

for various values of Q1 is shown in figure 3.6. The SoC and SoH corresponding to

the input in figure 3.6 are shown in figure 3.7. The value of Q1 is varied from 2× 101

to 4× 103. The optimiser fails for Q1 less than 2× 101 and produces constant current

input for values greater than 4× 103. We observe that as we increase the cost function

weight Q1, the SoH performance improves. However, the SoC tracking is not good.

Li-ion cell SoC equals SoCref for a maximum value of Q1. It should be noted Q1 and

Q2 are changed near full charging to tune the performance; however, these new values

are unchanged for all simulations.
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Figure 3.5: Analysis of the film resistance and the cell SoH for multiple cycle charging.
Figure 3.5a shows the cell SoH for the SFHM model using the CCCV charging algorithm
and controller 1 charging algorithm. Figure 3.5b shows the film resistance (b) for the
SFHM model using the CCCV charging algorithm and controller 1 charging algorithm.
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Figure 3.6: Current input for various values of weight Q1 of cost function for 2C input
current upper bound for controller 1.
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Figure 3.7: SoH and SoC for various values of weight Q1 of cost function for 2C input
current constraint for controller 1.

Algorithm Algorithm execution time
per iteration

CCCV charging using SFHM model 3ms

CCCV charging using SP2D model 4ms

Controller 1 charging using SFHM model 19ms

Table 3.2: Comparison of algorithm execution time for the Controller 1 charging algorithm
based on the simplified FHM model and simplified P2D model for 2C input current
upper bound.



Chapter 4

Output feedback optimal charging of

a Li-ion cell

4.1 Introduction of SoC estimation

This chapter discusses output feedback charging of a Li-ion cell using several estimation

algorithms. An estimator or observer improves the estimation accuracy if system signals

are corrupted due to sensor noise or the system’s parameters have slightly changed due

to ageing or other reasons. The charging algorithm depends on the estimated states for

closed-loop or output feedback charging. The performance of the charging algorithm

based on output feedback will deteriorate further if an estimator is not used to minimise

the effect of sensor noise and parameter uncertainties.

Numerous algorithms have been used to estimate SoC based on electrochemical and

equivalent circuit models. A critical review of the models can be found in [65] and [16].

Extended Kalman filter (EKF), H infinity filter, recursive least square, sliding mode

observer (SMO), least mean square, moving horizon estimator (MHE), and machine

learning algorithms are a few examples of estimation methods that have been used

to estimate Li-ion cell states. A comparative analysis of the algorithms can be found

in the references mentioned above. As compared to conventional observers, moving

horizon estimation has the additional benefit of systematically handling constraints while

estimating system states at the cost of additional computation burden. MHE has been
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used to estimate Li-ion cell dynamics using equivalent circuit models and electrochemical

models [66], [67], [68], [69], [70], [71], [72], [73], [74], [75], [76].

Suthar et al. have implemented nonlinear MHE in an open loop for SoC estimation

based on reformulated model. Although the feasibility of closed-loop charging using

nonlinear MHE and nonlinear MPC is mentioned; however the simulation results of

closed-loop charging are not provided [66]. Shen et al. have implemented nonlinear

MHE in an open loop for SoC estimation based on an equivalent circuit model [74].

Zou et al. has implemented close loop control using MPC and MHE based on a linear

model [91]. Zou et al. have also implemented nonlinear closed-loop control of a Li-ion

cell using MPC, but the observer used is not MHE [92]. Rin et al. have used nonlinear

MHE in an open loop for SoC estimation [71]. Shen et al. have implemented nonlinear

joint MHE in an open loop for simultaneous parameter and SoC estimation. [67],[75].

Hu et al. have implemented a variant of MHE based on recursive least squares (RLS)

called MH-RLS in an open loop for SoC estimation. [73]. Multi-time scale MHE is also

presented to estimate SoH in addition to SoC estimation. Chen et al. have compared

MHE and autoregressive long short-term memory (ARLSTM) and proved that a neural

networks-based estimator is a good method to estimate SoC [76] when a system model

is not available. Morabito et al. have presented a variant of MHE known as real-time

iteration-based MHE (RTI-MHE) for real-time SoC estimation, which makes it useful

for practical BMS applications [68]. Liu et al. have presented a computationally efficient

MH approach for total least squares (TLS) SoC estimation [70], which is more accurate

than the unscented Kalman filter. The algorithm is more efficient than a simple MHE

algorithm due to the use of a differential flatness algorithm.

None of the earlier references has implemented optimal charging in a closed loop using a

nonlinear MPC and nonlinear MHE based on an electrochemical model.

4.1.1 Novelty

The literature review suggests that a simplified FHM model is not used to estimate

Li-ion cell’s SoC/SoH till now. The simplified FHM model is computationally efficient

and more accurate than SPM [87]. Estimators’ computational efficiency and accuracy
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based on a simplified FHM model will also be higher than estimation based on an SPM.

The novel contribution of this work is the SoC or SoH estimation of a Li-ion cell based

on a simplified FHM model.

As the simplified FHM model is recently developed, No literature about its observability

is available. Another novelty of this article is the observability analysis of the simplified

FHM model. A thorough study of observability and comparison of the simplified FHM

model with SPM reveals that, similar to the SPM model, the simplified FHM model is

weakly observable. Weak observability implies a deterioration in estimation accuracy.

The output voltage depends on the difference between the open-circuit potentials of the

anode and cathode. As the output voltage does not depend on the Li-ion concentration in

the individual electrodes, the estimation of Li-ion concentration in individual electrodes

based on only voltage measurement is inaccurate. Studies show that the observability

matrix of the SPM is full rank, i.e. the model is observable. However, the condition

number of the observability matrix is high. A high condition number implies weak

observability, i.e. the estimation accuracy is not good [93]. An equal percentage of

SoC is assumed in the anode and cathode, and the SoC of only one electrode is esti-

mated to resolve this problem,[94], [95], [96]. Our work is also based on the same principle.

Although there have been many closed-loop charging attempts, the attempts are

either based on a linear MPC and MHE or a nonlinear MPC based on estimation

algorithms other than MHE. MHE can handle constraints systematically, unlike other

estimators, and its problem formulation is similar to MPC. Another novelty of the

paper is using a nonlinear MPC and a nonlinear MHE for closed-loop charging. The

performance of the MHE algorithm is compared with SMO and EKF in open and

closed loops in the presence of zero-mean additive white Gaussian noise and parameter

perturbation in the system.

The SEI layer model mentioned in [56], [63], and [57] is included in the simplified

FHM model for health-conscious charging. Orthogonal collocation is used to convert

the optimal control problem (OCP) or optimal estimation problem to a nonlinear pro-
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gramming problem (NLP) to increase the computational efficiency of the algorithm.

Li-ion liquid concentration estimation is implemented in an open loop to enhance the

computational efficiency of estimation. The stability of open loop estimation is discussed

in the literature [97].

This chapter is organised as follows. Extended Kalman filter (EKF), sliding mode

observer (SMO) and moving horizon estimator (MHE) is discussed in section 4.1.2, 4.1.3

and 4.2, respectively. Section 4.3 presents results, analysis and discussion.

4.1.2 Extended Kalman filter

Extended Kalman filter (EKF) and its application to SoC estimation are studied and

analysed in great depth. EKF has been used to estimate SoC using both equivalent

circuit models, such as the work of Plet et al. [12],[13], and electrochemical models,

such as the work of Tanim et al. and Tran et al. [26], [98]. Here is a brief review of the

algorithm to facilitate the reader.

The mathematical model of a Li-ion cell is nonlinear due to non-linearity in the output

voltage equation. The state space model of a nonlinear system is given as follows.

xk+1 = f(xk, uk) + wk (4.1)

yk = g(xk) + vk (4.2)

x represents system states. Li-ion concentration in the electrode is the only state of

the system as liquid concentration is estimated in an open loop. u is a system input

variable, i.e. input current of a Li-ion cell. f is the state function of a Li-ion cell, i.e.

solid diffusion equation. g is an output function of Li-ion cell, i.e. the voltage equation

2.43 and SoC equation 3.14. Other variables of a Li-ion cell, such as over potential,

exchange current density, solid and liquid potential, are considered part of the output

equation. Intercalation current is considered part of the input equation as it is directly

proportional to the input current. wk and vk are process noise and measurement noise

variables. The state-space model of time-invariant linear or linearised systems is as
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follows.

xk+1 = Asxk +Bsuk + wk (4.3)

yk = Csxk + vk (4.4)

The state matrix As, input matrix Bs and output matrix Cs are obtained by linearisation

of state function f and output function g as mentioned in the following equations.

As =
∂f(xk, uk)

∂xk

Bs =
∂f(xk, uk)

∂uk

Cs =
∂g(xk, uk)

∂xk

The matrices are calculated offline and stored. In this case, the state equation is already

linear. So we don’t have to perform linearisation for state equation and matrices A and

B are readily available. Firstly, the system states and error covariance of states are

predicted using the system model and error statistics, as mentioned next:

x̂k+1|k = f(xk|k, uk) + wk

Pk+1|k = AsPk|kA
T
s +Qk+1

This is called the prediction step or time update. The error covariance provides infor-

mation about the uncertainty of system state estimation. Next, the state and error

covariance predictions are updated based on the sensor measurement of the output

signal, i.e. the output voltage equation of a Li-ion cell. The step is called the correction

step or measurement update.

ỹk+1 = yk+1 − g(x̂k+1|k)

Kk+1 = Pk+1|kC
’
s(CsPk+1|kC

’
s +Rk+1)

−1

xk+1|k+1 = x̂k+1|k +Kk+1ỹk+1
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Pk+1|k+1 = Pk+1|k −Kk+1C
’
sPk+1|k

x̂k|k and x̂k+1|k are the a priori and a posteriori state estimates respectively. Pk|k and

Pk+1|k are the a priori and a posteriori covariance matrix respectively. Q and R are

the covariances of process noise and measurement noise, respectively the value of these

covariances are given in the results section. The symbol ′ is used for transpose. ỹ is

the output estimation error. The output estimation error is dependent on the accuracy

of the model. If the time update is accurate, the measurement update will make less

change in estimated values.

K is the Kalman gain designed to minimise the mean square error. The initial value of

error covariance is assumed to be zero. While the initial state of the system is given by

the initial concentration of Li-ion in the electrode. The initial concentration of Li-ion in

the electrolyte is equal to the average concentration, as it is reasonable to assume that

the cell is at rest for a considerably long time.

As discussed earlier, Li-ion concentration in electrolytes is estimated in an open loop.

The remaining simulation details are discussed in the Results section 4.3. Please note

that the Li-ion concentration in the electrolyte is estimated in an open loop. In contrast,

the estimation of solid concentration is done for only one electrode, and the solid

concentration in the other electrode is assumed to be equivalent to the first electrode.

4.3. Table 4.1 shows the detailed procedure of the EKF algorithm along with an MPC

controller in a closed loop.

4.1.3 Sliding mode observer

An EKF is based on a linearised model; hence, it is not a true nonlinear estimator. A

sliding mode observer (SMO) is a nonlinear estimator that incorporates the system’s

nonlinear model to estimate system states. Some researchers have observed that EKF

is relatively less sensitive to noise in output measurement. In comparison, SMO shows

superior performance in the presence of input disturbance or parameter perturbation

[99]. SMO has been used to estimate Li-ion cell SoC using the equivalent circuit and

electrochemical models [96], [100].

Here only a brief review of the observer is presented. The following equations describe a
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Step No Step

1

Available data: linearised system model i.e. matrices A, B and C,
prediction horizon for controller MPC p1,
Initial state of the system i.e. solid concentration x∗,
control horizon m = p2, process noise and measurement noise variance Q and R,
constraints of the system

2 Use x∗ = x(k) as initial condition.

3 Using the initial condition, solve the non-linear programming problem
formulation 3.3.2 to obtain p samples of optimal input {u(1), u(2)...u(p2).}

4 Use u∗ = u(1) to implement the controller.
5 Obtain the measured value of output y.

6
Based on prediction step or time update equation of EKF,
to estimate Li-ion output voltage using table 2.5,
table 2.6 and equation 2.43.

7 Calculate estimation error using measured output voltage and predicted output voltage.

8 Based on estimation error, Use correction step or measurement update equation of EKF
to obtain the correct value of estimate Li-ion output voltage.

9 The estimated states are the current states of system x∗.
10 Repeat step 2 to step 9 for the next sampling instant.

Table 4.1: Non-linear MPC charging algorithm based on EKF [11].

Li-ion cell model.

ẋ(t) = Ax+Bu+ w

y = g(x, u) + v

The first equation is the state equation of a Li-ion cell, i.e. diffusion equation of electrode

as mentioned in table 2.5, which is linear. Li-ion concentration in the anode is the only

state of the system. The second equation is the output equation, i.e. voltage equation

2.43, which is nonlinear. Other algebraic equations of a Li-ion cell, such as over potential

equation 2.40 and exchange current density equation, are considered part of the output

equation. w is process noise and v is measurement noise. An SMO is designed by

considering the estimation error as the sliding surface.

˙̂x(t) = Ax̂+Bu+Msign(x̃) (4.5)

ŷ = g(x̂, u) (4.6)

x̃ = x− x̂
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˙̂x(t) is the estimate of Li-ion cell state, i.e. Li-ion concentration in the electrode as liquid

concentration is estimated in an open loop. x̃ is estimation error.

The Lyapunov analysis is used to calculate the value of observer gain M . As mentioned

below, the square of estimation error is considered the Lyapunov function.

V = 0.5x̃2

V̇ = x̃ ˙̃x

V̇ = x̃(ẋ− ˙̂x)

V̇ = x̃[Ax+Bu− (Ax̂+Bu+Msign(x̃))]

V̇ = x̃[Ax−Ax̂+Bu−Bu−Msign(x̃))]

V̇ = x̃[Ax̃−Msign(x̃))]

According to Lyapunov theory, a derivative of the Lyapunov function must be negative

for a stable system. To obtain V̇ < 0, A suitable value of parameter M is required.

x̃[Ax̃−Msign(x̃))] < 0

M >
x̃Ax̃

|x̃|

M > A|x̃|

To find a suitable value of M , let us assume, in a worst-case scenario, i.e. the maximum

error is equal to the maximum value of Li-ion concentration in the electrode when

the estimated value is zero. The maximum and minimum Li-ion concentration in an

electrode is known. A suitable value of the coefficient M can satisfy the equation.

Please note that the assumptions made previously are still valid, i.e. open loop estimation

of Li-ion concentration in electrolyte and estimation of solid concentration for only one

electrode. As M is the only parameter of the sliding mode observer, the design of a

basic sliding mode observer is simpler than other observers.
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Step No Step

1

Available data: linearised system model, i.e. matrices A, B and C,
prediction horizon for controller MPC p1,
Initial state of the system, i.e. solid concentration x∗,
control horizon m = p2, process noise and measurement noise variance Q and R,
constraints of the system

2 Use x∗ = x(k) as initial condition.

3 Using the initial condition, solve the non-linear programming problem
formulation 3.3.2 to obtain p samples of optimal input {u(1), u(2)...u(p2).}

4 Use u∗ = u(1) to implement the controller.
5 Obtain the measured value of output y.

6 Based on SMO state equation 4.5 and output equation 4.6,
estimate Li-ion output voltage.

7 The estimated states are the current states of the system x∗.
8 Repeat step 2 to step 7 for the next sampling instant.

Table 4.2: Non-linear MPC charging algorithm based on SMO [11].

The details of noise and perturbation analysis are discussed in the results section 4.3.

Table 4.1 shows the detailed procedure of the SMO algorithm along with an MPC

controller in a closed loop.

4.2 Moving horizon estimation

Estimation algorithms such as EKF and SMO can not handle constraints, whereas

moving horizon estimation (MHE) is suitable to handle constraints. The formulation of

MHE using probability theory is briefly discussed in this work. The detailed proof is

mentioned in [101]).

Let us assume xk represents the states of the system and yk represents the system’s

output. Let us assume that at a particular time instant T1 − 1, the system’s output is

available for k = 0...T1 − 1. We want to know the value of system states during this

period. Let us assume system states and output are corrupted by process noise wk and

sensor noise vk, respectively. The problem statement is expressed using maximum a

posteriori Bayesian estimate as mentioned below.

{x̂0|T1−1, x̂1|T1−1, x̂2|T1−1..., x̂T1|T1−1} =

arg max
x0,x1,x2...xT1−1

p(x0, x1, x2...xT1 |y0, y1..yT1−1)
(4.7)
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The following equation represents state space formulation-based systems.

xk+1 = f(xk, uk) + wk (4.8)

yk = g(xk, uk) + vk (4.9)

The following equation gives the estimation problem mentioned in the equation 4.7 for

state space systems. [102].

max
x0,x1,x2...xT1

−1
p(x0, x1, x2...xT1 |y0, y1..yT1−1) = min

x0,{w}T1−1
k=0

ϕT1(x0, {wk}) (4.10)

ϕT1(x0, {wk}T1−1
k=0 ) =

T1−1∑
k=0

||vk||R−1
1,k + ||wk||R−1

2,k + ||x0 − x̂0||R−1
3,k (4.11)

x̂0 is a priori estimate of initial conditions. The first and second terms in the equation

minimise the effect of measurement noise and process noise, respectively, whereas the

last term minimises the error of the initial state estimate. Given past T1 samples of

output, our goal is to find the value of system states for past m time instants, which

maximises the conditional probability. The equation implies that maximising the con-

ditional a priori probability for state space systems is equivalent to minimising the

effect measurement noise, process noise and estimation error of initial conditions. Online

implementation of the full information problem becomes infeasible as the data size

increases. Let us assume that the estimator can process only p1 samples (prediction

horizon) per iteration.

ϕT1(x0, {wk}T1−1
k=0 ) =

T1−1∑
k=T1−p1

||vk||R−1
1,k + ||wk||R−1

2,k + ||x0 − x̂0||R−1
3,k + ZT1−p1 (4.12)

ZT1−p1 =

T1−p1−1∑
k=0

||vk||R−1
1,k + ||wk||R−1

2,k + ||x0 − x̂0||R−1
3,k (4.13)

The arrival cost ZT1−p1 approximates the effect of the samples outside the prediction

horizon. The most straightforward approach is to assume zero arrival cost. We have

only considered minimising vk, and a simple optimisation problem for SoC estimation
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of a Li-ion cell is used.

max
x0,x1,x2...xT1

−1
p(x0, x1, x2...xT1 |y0, y1..yT1−1) =

min
x0,{w}T1−1

k=0

T1−1∑
k=T1−N1

||yk − h(xk, uk)||R−1
1,k

(4.14)

The pseudo-spectral formulation of the nonlinear programming problem is mentioned as

follows.

max
x0,x1,x2...xT1−1

p(x0, x1, x2...xT1 |y0, y1..yT1−1) =

min
x0,{w}T1−1

k=0

tf − t0
2

T1−1∑
k=T1−p1

||Y (γk)−H(X(γk), U(γk))αk||R−1
1,k

(4.15)

γi is the collocation point or discretised time.

4.2.1 Non-linear programming problem formulation

Average solid concentration in electrodes c̄n(t) and c̄p(t) and total liquid concentration in

electrolyte Qe,n, Qe,s Qe,p are states of the non-linear state space model (i.e. simplified

FHM model) of Li-ion cell. Equations (2.23), (2.36), (2.37) and (2.38) are dynamic

equations of the simplified model as the time derivative of states is given by these

equations. The equations can be grouped and represented as follows:

ẋ(t) = f(x(t), u(t)) (4.16)

Output equation (2.43) is an algebraic equation and is represented as follows.

y = g(x, u) (4.17)

f , x, u, y and g are state functions, system state, input, output variables, and output

functions, respectively. Solid and liquid concentration variables are considered the state

variables of a cell.

The equation is discretised using orthogonal collocation. The details of orthogonal collo-

cation are discussed in section 2.4. The N dimensional matrix equation corresponding
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to N collocation points is expressed as follows:

XN×1 = X(t0)N×1 +
tf − t0

2
AN×NFN×1(X,U) (4.18)

AN×N is the integration matrix. Value of state matrix G is given as follows:

F =



−J(xN )
3ηs·F − Iapp

F ·Ln

−J(xN )
3ηs·F − Iapp

F ·Lp

Iapp(1−t+)
F +De,n2a1Ln

− Iapp(1−t+)
F +De,p2a6Lp

De,s2a4Ls


(4.19)

The output equation (2.43) is an algebraic equation. The following equation represents

the output equation in matrix form:

YN×1 = GN×1(X,U) (4.20)

The output matrix G for voltage output Y is as follows.

G = η̄p(γi)− η̄n(γi) + Uc,p(θ(γN ))− Uc,n(θ(γ0))+

k1Iapp + k2(ln(Ce,p(γN ))− ln(Ce,n(γ0))) (4.21)

γi is the collocation point or discretised time.

The optimisation problem is to find the value of initial states for past p1 samples to

minimise a cost function J such that system equations (4.18) and (4.20) and constraints

mentioned in the equation 4.23 are satisfied for provided samples of input u and output

y:

The cost function is mentioned below:

min
x0

J = min
x0,{w}T1−1

k=0

tf − t0
2

T1−1∑
k=T1−p1

||Y (γk)−H(X(γi), U(γi))αk||R−1
1,k (4.22)
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Step No Step

1
Available data: system model, prediction horizon for controller p2,
prediction horizon for observer p1, Past p1 samples of output,
control horizon m = p2, parameters Q and R, constraints of the system

2 Solve the non-linear programming problem formulation 4.15
to obtain p samples of system states {x(k − p1), x(k − p1 + 1)...x(k).}

3 Use x∗ = x(k) as initial condition.

4 Using the initial condition, solve the non-linear programming problem
formulation 3.3.2 to obtain p samples of optimal input {u(1), u(2)...u(p2).}

5 Use u∗ = u(1) to implement the controller.
6 Obtain the measured value of the output y.
7 Repeat step 2 to step 6 for the next sampling instant.

Table 4.3: Non-linear MPC charging algorithm based on MHE [11].

The system operation is constrained by the limits mentioned in the following equations:

0 ≤ U(γi) ≤ Cmax

1.5V ≤ V (γi) ≤ Vmax

0.1% ≤ SoC(γi) ≤ 100%

(4.23)

The first constraint limits the battery operation to a suitable input current value. Other

constraints are the physical limits of the battery. The value of Vmax is 4.125V for the

CCCV algorithm. The value of Cmax is between 1C and 4C.

System equation (4.18) is a linear constraint of the NLP problem. Output equation

(4.20) is a non-linear constraint of the NLP problem. The equation (4.22) gives the

cost function of NLP. Inequality constraints are mentioned in the equation (4.23). The

equations mentioned above constitute our NLP. The NLP is solved using MATLAB

fmincon algorithm to obtain the following result.

x_e = [x(k − p1), x(k − p1 + 1), ...x(k − 1), x(k)]T (4.24)

x(k + p1 − 1|k) is the initial state at time instant k + p1 − 1 predicted at time k using

the system model.

The last initial state vector x(k) sample is used as an initial state value. The prediction

process is repeated for each sampling instant online. The details of the algorithm are

provided in Table 4.3.
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Figure 4.1: The output voltage of a Li-ion cell estimated by EKF for 1C input current.
1mV variance noise is added to the experimental voltage. [6].
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Figure 4.2: The output voltage of a Li-ion cell estimated by SMO for 1C input current.
1mV variance noise is added to the experimental voltage. [6].
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Figure 4.3: The output voltage of a Li-ion cell estimated by MHE for 1C input current.
1mV variance noise is added to the experimental voltage. [6].
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Figure 4.4: The output voltage of a Li-ion cell estimated by EKF for 1C input current.
1mV variance noise is added to the plant output voltage.
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Figure 4.5: The output voltage of a Li-ion cell estimated by SMO for 1C input current.
1mV variance noise is added to the plant output voltage.
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Figure 4.6: The output voltage of a Li-ion cell estimated by MHE for 1C input current.
1mV variance noise is added to the plant output voltage.
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Figure 4.7: The output voltage of a Li-ion cell estimated by EKF for 1C input current
in the presence of 1mv variance voltage and diffusion equation parameters perturbed by
1%.
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Figure 4.8: The output voltage of a Li-ion cell estimated by SMO for 1C input current
in the presence of 1mV variance voltage and diffusion equation parameters perturbed by
1%.
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Figure 4.9: The output voltage of a Li-ion cell estimated by MHE for 1C input current
in the presence of 1mV variance voltage and diffusion equation parameters perturbed by
1%.
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Figure 4.10: The output voltage of a Li-ion cell estimated by MHE for optimal input
current designed using model predictive control 0.2mV variance noise is added to the
plant output voltage.
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Figure 4.11: The output voltage estimation error of a Li-ion cell estimated by EKF
and SMO for optimal input current designed using the model predictive control. 0.2mV
variance noise is added to the plant output voltage.

Algorithm Algorithm execution time
per iteration Open loop RMSE

EKF 0.0003s 0.83%

SMO 0.0003s 0.59%

MHE 0.007s 0.06%

Table 4.4: Comparison of Algorithm execution time and RMS error for various estimation
algorithms in open loop configuration for 1C current at 318K temperature. Experimental
voltage is considered a reference.

Algorithm RMSE for
1mv Noise Error variance RMSE for 1mv Noise

and 1 % perturbation Error variance

EKF 0.03% 20µV 0.2% 40µV

SMO 0.04% 1µV 0.05% 16µV

MHE 0.04% 12µV 0.05% 12µV

Table 4.5: Comparison of RMS error for various estimation algorithms in open loop
configuration for 1C current at 318K temperature. Only solid diffusion equation is
perturbed by 1%. The simulated plant output voltage is considered a reference.
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Algorithm Root mean square
error RMSE Error variance

EKF 0.35% 50µV

SMO 0.15% 17µV

MHE 0.09% 12µV

Table 4.6: Comparison of RMS error for various estimation algorithms in open loop
configuration for 1C current at 318K temperature. All parameters of the Li-ion cell
model are perturbed by 1%. The simulated plant output voltage is considered a reference.

Algorithm Algorithm execution time
per iteration Closed loop RMSE Error variance

EKF 0.007s 3% 50µV

SMO 0.009s 3.6% 10µV

MHE 0.019s 0.36% 126µV

Table 4.7: Comparison of algorithm execution time and RMS error for various estimation
algorithms in closed loop configuration for 3C charging current at 318K temperature.
The simulated plant output voltage is considered a reference.

Algorithm Algorithm execution time
per iteration

SMO estimation based on SFHM model 0.32ms

SMO estimation based on SP2D model 0.54ms

Table 4.8: Comparison of algorithm execution time for sliding mode observer (SMO)
based on simplified FHM model and simplified P2D model for 3C input current.
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4.3 Results and discussion

The sample time for simulation is one second, the same as the sample time of the experi-

ment. The experimental results are obtained from Harikesh’s article [6]. The prediction

and control horizon is three. The estimator’s performance improves if the prediction

and control horizon increase; however, the computational cost increases proportionally.

So the minimum value of prediction and control horizon is sued, which gives satisfactory

performance. The performance of EKF, SMO and MHE is compared with the exper-

imental voltage obtained from [6]. An input current of 1C is applied, the variance of

measurement noise and process noise is 1mV, and the mean is zero. The results are

shown in figure 4.1, 4.2 and 4.3, respectively. The root mean square error (RMSE)

of voltage output for EKF, SMO and MHE are 0.8%, 0.59% and 0.06%, respectively.

Considering RMS error as a figure of merit, MHE shows superior performance, followed

by SMO. However, SMO has minimum error variance. Algorithm execution time per

iteration for whole code, i.e. estimator and plant for EKF, SMO and MHE, are 0.3ms,

0.2ms and 7ms, respectively. Algorithm execution time is calculated using Matlab tic,

and toc commands for all simulations. The algorithm execution time for the estimation

part of the code is 0.27ms, 0.17ms and 0.67ms for EKF, SMO and MHE, respectively.

The difference between algorithm execution time for complete code and the estimation

part of code is the same for all algorithms, i.e. 0.03ms, which implies only the estimation

part of the code is different, and the comparison is genuine. Real-time implementation of

the algorithms mentioned above is feasible as computation time is less than sample time.

Fmincon is not a real-time estimator, i.e. the algorithm is not optimised for minimum

execution time on computing hardware. It is used to illustrate the concept only. If the

algorithm execution time for Fmincon for a single iteration is less than the sampling

time, it is reasonable to assume that real-time NLP solvers will be faster than Fmincon.

RMS error is calculated as follows.

RMS Error =
100

mean(Vref )
×
√

1

N

∑N

i=0
(Vref,i − Vi)

2 (4.25)
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The effect of the perturbation on the estimator’s performance is also studied. Simulated

plant voltage is considered a reference. A sensor measures the output voltage of Li-ion.

Noise is added to plant output voltage to model sensor noise, as mentioned in the

following.

Vmeasured = Vactual + vn (4.26)

vn is additive white Gaussian noise. Vactual is the actual voltage as given by output

voltage equation 2.43. The mean noise value is zero volts, and the variance of the noise is

one mV. In the rest of the article, the subscript measured is dropped as it is well-known

that the output voltage is measured using the sensor. Noise is added to Li-ion cell states

to model process noise, as mentioned in the following.

xactual = xmodel + wn (4.27)

wn is additive white Gaussian noise. xmodel is the Li-ion concentration predicted by the

diffusion equation 2.18. The mean noise value is zero 1molm−3, and the variance of the

noise is 1molm−3. Zero mean and unity variance noise can be generated using MATLAB

randn command. A noise signal of desired mean and variance can be generated from the

zero mean and unity variance signal. Let’s assume wzn is zero mean and unity variance

signal. A noise signal wn with required mean Mn and variance vr can be generated by

using the following equation.

wn = wzn(
√
vr) +Mn (4.28)

The results are shown in figures 4.4, 4.5 and 4.6, respectively. RMS error of voltage

output for EKF, SMO and MHE are 0.03%, 0.04% and 0.04%, respectively. RMS error

for the three estimators is similar. However, the error variance is minimum for SMO.

Next, the diffusion equation is perturbed by 1%. Perturbation is achieved by changing

the reciprocal of the length of the electrode and solid volume fraction by 1%. The results

are shown in figure 4.7, 4.8 and 4.9, respectively. RMS error of voltage output for EKF,

SMO and MHE are 0.2%, 0.05% and 0.05%, respectively. As EKF is based on the
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concept of linearisation, perturbation deteriorates its performance to a greater extent as

compared to others. The error variance is minimum for MHE as compared to SMO and

EKF. It is observed that the performance of SMO degrades as perturbation increases

to 3%. For example, the RMS error for 2% perturbation for SMO is 0.9%, whereas

MHE performance remains unchanged. The performance of all estimators degrades when

the perturbation is introduced in all parameters of the Li-ion cell. For example, the

RMS error for MHE, SMO and EKF are 0.09%, 0.15% and 0.35% respectively for 1%

perturbation in all parameters. Error variance is increased for SMO and EKF, whereas

it remains unchanged for MHE.

The computation time per iteration for the SMO estimation based on the simplified

FHM model and P2D model is 0.32ms and 0.54ms, respectively, as shown in Table 4.8

reaffirming the computational efficiency of the simplified FHM model. The details of

the simplified P2D model are given in [87].

Closed-loop control using MPC and the estimation algorithms are simulated. The output

voltage and estimation error plots for MHE are shown in figure 4.10. Figure 4.11 shows

estimation error for EKF and SMO. The estimation algorithms show performance similar

to open-loop simulation results. Algorithm execution time and RMS error increase as

the MPC charging algorithm is included in the loop. The Algorithm execution time

per iteration for EKF, SMO and MHE are 7ms, 12.5ms and 30ms, respectively. The

RMS errors of estimated output voltage for EKF, SMO and MHE are 3%, 3.6% and

0.36%, respectively. RMS error is the minimum for MHE. However, the error vari-

ance is quite high. Simulated plant voltage is considered a reference for calculating

RMS error. The data suggests that real-time output feedback control is feasible using

EKF, SMO and MHE in a loop. The sensor noise variance for closed-loop simulation

is 0.2mV , and the input current constraint is 3C. The data is summarised in the table 4.7.



Chapter 5

Conclusion and future

recommendations

5.1 Conclusion

A simplified FHM model is proposed and compared with a simplified P2D model in this

study. The simplified FHM model is developed by approximating the diffusion equations.

The basic idea of approximation is that polynomial functions can accurately estimate the

Li-ion concentration. Approximation of intercalation current and conduction equations

leads to the development of variants of the simplified FHM model to trade-off accuracy

with computational cost. Simulation results verify its superior performance compared to

the simplified P2D model. The computational time of the proposed model is 35% less

than the FHM model and close to the simplified P2D model. The simplified FHM model

has a tracking RMS error of 0.6%, while the simplified P2D model has a 2% tracking

error. The model works accurately up to a current of 4C with a maximum 2.1% error.

Health-conscious control of a Li-ion cell using the novel simplified FHM model is also

discussed. Pseudo-spectral transcription or discretization using Chebyshev polynomials is

utilised for converting the optimal control problem (OCP) into a nonlinear programming

problem (NLP). The NLP is solved using nonlinear model predictive control (NMPC).

MATLAB ® facility fmincon is used to implement the NMPC.

The performance of the charging algorithm is compared with the industry-standard
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CCCV charging algorithm. We have observed that the health-conscious algorithm

significantly reduces health degradation compared to the CCCV algorithm. The film

resistance Rfilm and state of health (SoH) show less degradation when charged by

the health-conscious controller as compared to the CCCV charging algorithm. SoH is

defined based on the capacity degradation of a Li-ion cell.

The performance of both algorithms is analysed for a range of input current upper bound

values. The algorithms show inferior performance at low values of input current upper

bound, and the performance improves and stabilises at higher values.

Multiple cycle charging shows that the battery reaches the end of life (80% SoH) after

484 cycles for health-conscious and 392 cycles for CCCV charging. Charging a Li-ion

cell with the health-conscious algorithm increases battery life by 92 cycles and reduces

film resistance.

Output feedback control of a simplified FHM model of a Li-ion cell is implemented using

an MPC and three estimation algorithms, i.e. EKF, SMO and MHE. The performance

of output feedback control closely matches state feedback control which means that the

observers accurately estimates the plant dynamics. Open-loop estimation comparison of

the estimators reveals that MHE performs better than EKF and SMO when the output

voltage signal is corrupted by additive white Gaussian noise. Another point we observed

is that MHE maintains its performance when parameters are perturbed, whereas the

performance of SMO and EKF degrades due to parameter perturbation. However, the

simulation time per iteration is high for the MHE. Still, the computation time for the

MHE is suitable for real-time implementation.
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5.2 Future recommendations

Many variants of simplified models are presented in this work to trade-off accuracy and

computational burden; however, we can develop more variants. For example, developing a

linear model is a good step towards further simplification and reducing the computational

load. We can apply either the transfer function or the state space approach.

The model discussed in the paper is isothermal. Temperature dynamics has a significant

impact on mathematical model’s performance. Incorporating the thermal dynamics of a

cell will improve the accuracy of the simplified FHM model.

Li-ion cell charging is accomplished using only one control algorithm, i.e. an MPC.

Comparison with algorithms such as reinforced learning control and classical control

algorithms will provide further insight and enable us to compare the strengths and

weaknesses of controllers.

Three estimation algorithms are studied to estimate SoC for improved performance in

the presence of noise and parameter uncertainties. We recommend using other estimation

algorithms to compare and analyse their strengths and weaknesses.

We have discussed modelling, charging and estimation for a single cell. This work can

be extended to develop a model, charging and estimation algorithm for battery pack in

the future.
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