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1. Introduction 62	

 63	

According to Zhao et al. (2020), climate change and environmental pollution have 64	

attracted increasing attention lately in the research agenda of various authors (see, 65	

among others, Martin et al., 2014, and Han et al., 2019). In this context, the carbon 66	

emission trading (CET) market constitutes a financial market, which aims at 67	

reducing carbon emissions and controlling climate change that has also been a 68	

hot research topic lately for both economics and operations academic literature 69	

(Oestreich and Tsiakas, 2015, Song et al., 2015, Boutabba and Lardic, 2017, Tang 70	

et al., 2017, Allevi et al., 2017, Fang and Ma, 2021, Du et al., 2020).   71	

Meanwhile, the financial community still struggles to understand and 72	

evaluate the magnitude of the damages caused by the recent CoVid-19 pandemic, 73	

at a time when several major assets have lost part of their initial value. However, 74	

since the beginning of the CoVid-19 pandemic spread, carbon emissions values 75	

have risen. This is quite impressive given the losses suffered by other assets in 76	

the first wave of the pandemic. In the light of this new era, scientists across various 77	

disciplines try to cope with the unexpected phenomena induced by the pandemic 78	

itself. As a result, researchers in the field try to analyse and assess the impact of 79	

the pandemic on hazardous emissions and especially on emissions that contribute 80	

essensially to the Green House Effect (GHE). Based on official statistics, in 2020 81	

the CO2 emissions experienced a reduction equal to 7% compared to 2019, the 82	

largest in the post industrial era (Friedlingstein et al., 2020). This reduction in CO2 83	

emissions is attributed to the reduction of the overall economic activity due to the 84	
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unprecedent lockdown measures implemented by the majority of economies 85	

across the globe, induced as a last resort measure for the containment of the 86	

Covid-19 virus, mainly for the protection of public health.  87	

Despite the fact that most economies faced a tremendous recessionary 88	

impact because of the pandemic, they withnessed an overwhelming reduction in 89	

their daily CO2 emissions that exceeded 17% compared to 2019, and peaked at 90	

almost 23% reduction, when the confinement measures were in their peak (Le 91	

Quere et al. 2020). In fact, the total dropdown in carbon emissions for the 2020 92	

was estimated to be approximately equal to 6.7% (Tolleson, 2021). In this context, 93	

a question of paramount importance is whether this reduction in CO2 emissions is 94	

expected to be sustained and which policy actions would be appropriate to 95	

eliminate a potential rebound effect of the carbon dioxide emissions in the post-96	

pandemic era.  97	

In order to sufficiently tackle this research question, we need to extract 98	

information regrading the expectations of the future levels of Carbon Dioxide 99	

emmisions. To do so, in this paper we will make use of the future returns of CO2 100	

emissions that are freely traded in the financial markets. In fact, in this work we will 101	

examine whether in the pandemic era the CO2  futures acted as a safe-haven 102	

alternative to either the stock market index or the 10-year US bonds yields, 103	

discriminating in the same time the preferences of investors across the two waves 104	

of the Covid-19 pandemic. Based on our findings, we will indirectly extract the 105	

information needed regrading the future level of CO2 emissions in the post- 106	

pandemic era.  107	
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The exctraction mechanism is as follows: If the CO2 futures are found to act 108	

as a safe-haven then investors expect that in the future their price will rise. This, in 109	

turn, implies that the demand for futures of CO2 emissions will rise. This rise in 110	

demand will be based on two demand components, the first component is the rise 111	

due to speculation whereas the second component is the rise due to the increased 112	

demand of non-efficient firms that need to obtain an increased share of “polluting” 113	

licences in order to maintain their level of CO2 emissions, without having to invest 114	

into more efficient environmental friendly technologies of production. Of course, 115	

from the supply side we have to acknowledge the fact that due to the lockdown 116	

measures, consumption of economies has hindered and as a result production has 117	

decreased. This, in turn, offered the insentive to efficient non-polluting firms to 118	

increase the supply for futures of CO2 emissions, whereas non-efficient firms 119	

increased their repective demand for these futures in order to delay their 120	

investments into environmentaly healthy technologies.   121	

According to Tan et al. (2020), owing to the weak interactions between the 122	

carbon market and other conventional markets, carbon assets provide 123	

diversification and hedge benefits, especially during periods of market turmoil 124	

(Koch, 2014). However, thus far, we observe a notable gap in the extant literature 125	

with a dearth of studies explicitly examining the role of carbon emissions, in the 126	

two recent CoVid-19 waves. In addition, we look at investor reactions to the varying 127	

intensity of the current pandemic. Our dataset allows us to differentiate between 128	

the pandemic effects of various sizes, in terms of volatility. The investigation covers 129	

a 12-month period, from 1 January 2020 to 1 January 2021, using daily data.  130	
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In this work, we use relevant Markov switching techniques in order to 131	

investigate the aforementioned questions in a high and low volatility state, 132	

respectively. More precisely, we allow the data to be characterized by two states, 133	

namely a high-mean state, which represents the market expectation of more 134	

volatile returns, and a low-mean state, which represents low volatility expectations 135	

(Burdekin and Tao, 2021). The aforementioned situation is modeled by estimating 136	

a two-state dynamic Markov-Switching Regression (MSR), with a state-dependent 137	

intercept term to capture the dynamics of the series, across unobserved regimes. 138	

In brief, our paper advances the literature in the following ways: (a) It is the 139	

first study that adapts the safe-heaven hypothesis to the specific research 140	

question, to the best of our knowledge; (b) it uses state-of-the-art Markov Switching 141	

(MS) techniques to empirically assess the aforementioned behaviour;  (c) it 142	

comparatively examines the recent pandemic’s two waves on carbon emissions 143	

as a safe haven, extracting substantial information for the expectations of 144	

investors; (d) it produces policy implications for practioners that could be directly 145	

used for the implementation of tailor-made actions that will ensure the permanent 146	

reduction of carbon emissions. 147	

The paper is structured as follows: section 2 offers a review of the recent 148	

literature on carbon emissions as a safe haven; section 3 sets out the 149	

methodological framework; section 4 contains the empirical analysis; section 5 150	

discusses the results; finally, section 6 concludes the paper. 151	

 152	

 153	
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2. Literature Review 154	

 155	

The literature review covers two distinct and relevant strands The first strand 156	

analyses the related empirical literature of carbon emission markets, whereas the 157	

second strand covers the empirical literature on safe haven assets.  158	

 159	

2.1 Carbon Emissions Markets 160	

Most theorists and empiricists explore the properties of emissions as a new 161	

commodity or financial asset (given the commodity financialization hypothesis) and 162	

delve into the relationship of this novel asset class with other more traditional 163	

investment areas (see, for example, Hammoudeh et al., 2014) either commodities 164	

(e.g., energy, metal) or pure financial instruments (e.g., stocks, bonds). A further 165	

strand of the literature investigates the macro-relevance of emissions by 166	

connecting their price pattern to economic fundamentals or overall market 167	

conditions (for instance, comparing crisis versus tranquil periods of financial 168	

markets). 169	

 170	

Among the early studies trying to investigate the stylized facts of emissions 171	

trading, Oberndorfer (2009) shows that European Union Allowances (EUAs) price 172	

changes and stock returns of several important European corporations are 173	

positively related. Chevallier (2009) demonstrates that carbon futures returns are 174	

mostly associated with power demand and allowances supply and only weakly 175	

related to macroeconomic fundamentals in contrast to the large bulk of 176	
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commodities. However, in a later study, Chevallier (2012) provide strong empirical 177	

evidence of time-varying pairwise correlations between carbon prices, oil, and gas.  178	

In a further attempt to connect emissions with conventional financial assets, 179	

Kumar et al. (2012) prove a weak relationship between carbon and stock prices of 180	

clean energy firms. Moreover, Reboredo (2013) examines the dependence 181	

structure between EUAs and crude oil markets, during the second commitment 182	

period of the European Union Emissions Trading Scheme (EU ETS) and finds that 183	

the EUA market is an attractive market for investors in terms of diversifying market 184	

risk and reducing the downside risk of crude oil markets. In this vein, Koch (2014) 185	

explores the linkages among carbon, energy, and financial markets and reveals a 186	

much closer carbon-energy price linkage in the second phase of the EU ETS. 187	

Similarly, Sousa et al. (2014) analyze the interrelation of carbon prices with energy 188	

prices and economic activity and find that these relations are becoming stronger, 189	

and then disappear over distinct time intervals and frequencies. Furthermore, 190	

Boersen and Scholtens (2014) show that energy assets are significant drivers of 191	

the carbon futures price. Turning to the second moment of emissions time series 192	

pattern, Marimoutou and Soury (2015) examine the volatility dependence structure 193	

between carbon dioxide emissions and energy prices. They prove that their 194	

dependence varies over time, remaining rather stable in tranquil periods but 195	

significantly rising during crises. 196	

Oestreich and Tsiakas (2015) further scrutinize the role of the European 197	

emissions trading system on German stock returns. They witness that firms, which 198	

received free carbon emission allowances, significantly outperformed firms that did 199	
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not. Zheng et al. (2015) uncover a significant cross-correlation between stock 200	

markets, energy, and financial futures. Hammoudeh et al. (2015), using a 201	

Nonlinear Autoregressive Distributed Lag (NARDL) model, analyze the effects of 202	

energy assets on emission allowance prices and estimate a long-run negative 203	

asymmetric impact. Tian et al. (2016) argue that the relationship between the EUA 204	

market and stock returns of electricity companies is largely driven by strong market 205	

shocks. Moreover, the stock volatility of electricity companies is significantly driven 206	

by EUA market fluctuations in the same direction, whereas stock returns of carbon-207	

intensive companies are negatively affected by the EUA returns. Wei and Lin 208	

(2016) investigate the link between carbon, oil, and stock index futures. Their 209	

results indicate that carbon futures returns respond to oil shocks, whereas the oil 210	

market has an impact on the volatility of the other two markets, but it is much less 211	

affected by them.  212	

More recently, Wen et al. (2017), discuss that despite the superiority of 213	

hedged portfolios in increasing the risk-adjusted returns of carbon assets, the 214	

dynamic diversified portfolios are much preferred for reducing variance and the 215	

downside risks of carbon assets. Cong and Lo (2017) show that the rate of return 216	

in the Chinese emissions market is negatively associated with expected risk. 217	

According to Jiang et al. (2018), coal, oil, and stocks have a negative impact on 218	

the carbon price, while in the special case of European markets there is strong 219	

causality running from European stocks to the EUA prices (Jiménez-Rodríguez, 220	

2019).  221	
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In brief, our literature review is consistent with the seminal work by Tan et 222	

al. (2020), who are the first to empirically formalize the “Carbon-Energy-Finance” 223	

system by connecting the carbon market with commodity, stock, and bond markets 224	

via (a) the correlated-information channel (i.e. “return spillover”), through which 225	

connections occur based on prices (Kodres and Pritsker, 2002); and (b) the risk 226	

premium channel (i.e. “volatility spillover”), through which a shock in one market 227	

may adversely affect any other market (Acharya and Pedersen, 2005).  228	

In conclusion, the carbon emission allowances are tightly linked to other 229	

energy and non-energy assets and have been fast becoming an investment area, 230	

with a relatively mature and continuously growing market that is attractive to 231	

investors in terms of diversifying and mitigating risk.  232	

 233	

2.2 Safe Haven Assets 234	

The safe-haven hypothesis is introduced in the relevant literature by Baur and 235	

Lucey (2010) in an attempt to investigate whether gold acts as safe haven in 236	

periods of crisis and increased volatility. They study constant and time-varying 237	

relations between U.S., U.K. and German stock and bond returns and gold returns 238	

and find that gold is a hedge against stocks on average and a safe haven in 239	

extreme stock market conditions. Joy (2011), using a model of dynamic conditional 240	

correlations covering 23-years of weekly data for 16 major dollar-paired exchange 241	

rates shows that, during the past 23-years, gold has behaved as a hedge against 242	

the US dollar and as a poor safe haven.  243	
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Hood and Malik (2013) evaluate the role of gold relative to volatility 244	

(Volatility Index (VIX)) as a hedge and safe haven. Using daily data from the US 245	

stock market, it is shown that gold serves as a hedge and a weak safe haven for 246	

US stock market. However, it seems that in periods of extremely low or high 247	

volatility, gold does not have a negative correlation with the US stock market.  248	

Bredin et al. (2015), utilising wavelet analysis, find that gold acts as a hedge 249	

for a variety of international equity and debt markets for horizons of up to one year 250	

and that gold acts as a safe haven for equity investors for long-run horizons of up 251	

to one year. However, during the economic contractions of the early 1980s, gold 252	

displayed a positive relationship with equities across a range of horizons. 253	

Beckmann et al. (2015), test the Baur and Lucey (2010) hypothesis, by 254	

augmenting their model to a smooth transition regression (STR) using an 255	

exponential transition function which splits the regression model into two extreme 256	

regimes, and including in their study a set of 18 individual markets as well as 5 257	

regional indices between 1970 - 2012 monthly. Their findings show that gold 258	

serves as both a hedge and a safe haven. 259	

Baur and McDermott (2016) show that gold is a particularly strong safe 260	

haven in the aftermath of September 11, 2001 and the Lehman bankruptcy in 261	

September 2008. Chkili (2016) examines the dynamic relationships between gold 262	

and stock markets, using data for the BRICS counties, and shows that, during the 263	

major financial crises, gold can act as a safe haven against extreme market 264	

movements. The same author, Chkili (2017), uses the Markov switching approach 265	
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to show that gold can act as a weak hedge and a strong safe haven against 266	

extreme Islamic stock market movements.  267	

Chen and Wang (2017), examine the dynamic relationships between gold 268	

and stock markets in China. Using daily gold and stock indexes data, showed that 269	

gold acted as a safe haven for only the latest two of the five bear markets analyzed, 270	

whereas for non-bear markets, gold does not offer good risk hedging. Wen and 271	

Cheng (2018) find that while both gold and the US dollar can serve as a safe haven 272	

for emerging stocks, the latter is better than gold in most cases and that its 273	

superiority in hedging infinitely extreme risks is weakened in the subsample of the 274	

global financial crisis. 275	

Chen and Wang (2019) aim to examine the hedge and safe haven 276	

properties of gold relative to Dow Jones stock industry indices. Their results show 277	

that the hedge and safe haven properties of gold have a changing nature. During 278	

1980–2017, gold is a safe haven for almost all sectors, while during the sub-279	

periods, the properties of Gold as a hedge and a safe haven vary.  280	

Ji et al. (2020) in their paper attempt to re-evaluate the safe-haven role of 281	

some traditional asset types, namely, gold, cryptocurrency, foreign exchange and 282	

commodities and their results show that gold commodity futures remain robust as 283	

safe-haven assets during this pandemic. 284	

Boubaker et al. (2020), using annual data spanning the period 1258–2018, 285	

test the safe haven characteristic of gold in the wake of global crises. It is argued 286	

that, under certain conditions, gold serves as a strong hedge against crises, 287	

especially during the bullish regime of the market, and in particular from the post-288	
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World War I period, while global crises can accurately predict real gold returns over 289	

a long-span (1302-2018) out-of-sample period. 290	

Dutta et al. (2020) investigate the time-varying correlations between gold 291	

and oil markets to examine whether gold is a safe haven asset for the international 292	

crude oil markets during the COVID-19 period. According to their results gold is a 293	

safe haven asset for global crude oil markets. Gharib et al. (2020) examine the 294	

causal relationship between crude oil and gold spot prices to assess how the 295	

economic impact of COVID-19 has affected them. They detect common periods of 296	

mild explosivity in WTI and gold markets and also find a bilateral contagion effect 297	

of bubbles in oil and gold markets during the recent COVID-19 outbreak. 298	

As recently as 2022, there has been a study by Madani and Ftiti (2022) 299	

which investigated whether gold could serve as a hedge against oil price 300	

fluctuations or currency movement regardless of calm or extreme market 301	

conditions. As part of the empirical analysis, thet extend the intraday multifractal 302	

correlation measure developed by Madani et al. (Bankers, Markets & Investors, 303	

163:2-13, 2020) so as to take into account the dependence of calm and extreme 304	

price movements across different time frames. To examine the time-varying 305	

relationship between gold-oil and gold-currency under calm and turbulent market 306	

conditions, they use the rolling window method. The analysis of high frequency (5-307	

minute intervals) data over the period 2017-2019 reveals three interesting findings. 308	

Firstly, gold acts as a weak (strong) hedge against oil (currency) market 309	

movements. Second, gold has strong safe-haven capabilities against extreme 310	

currency fluctuations and against only short-term fluctuations in oil prices. Third, 311	
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hedging strategies confirm that gold is an effective hedge or safe haven for 312	

portfolio risk reduction. Finally, the paper discusses the implications for investors, 313	

financial institutions, and policy makers. 314	

Furthermore, several studies have examined the role of gold as a hedge or 315	

safe-haven asset and recently Huynh et al. (2020a) and Huynh et al. (2020b) 316	

examined the informational linkage between cryptocurrency markets and gold (and 317	

oil). To hedge against unexpected movements in the cryptocurrency (oil) market, 318	

investors should rebalance their portfolios by including gold (cryptocurrency). 319	

Furthermore, Thampanya et al. (2020) investigated the hedging effectiveness of 320	

gold and bitcoin for equities using the linear and non-linear Autoregressive 321	

Distributed Lag (ARDL) framework. According to their research, most of the effects 322	

of gold on the stock market can be characterized as asymmetric. 323	

In brief, the literature on safe haven assets is primarily focused on the role 324	

of gold, with very few exceptions. As a result, the present paper is the first to the 325	

best of our knowledge that utilizes the safe haven methodology for Carbon 326	

emmisions.  327	

 328	

 329	

3. Methodology 330	

 331	

In what follows, we will briefly set out the methodology to test the safe-haven 332	

hypothesis, regarding carbon emissions. 333	
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 334	

3.1 Hypothesis formulation 335	

 336	

Based on the seminal work of Baur and Lucey (2010), we begin by defining three 337	

different states of an asset in an investment portfolio (see, also, Mensi et al., 2016, 338	

Balcilar et al., 2016, and Selmi et al., 2018). 339	

 340	

 341	

Definition 1 (Hedge) 342	

An asset that is uncorrelated or negatively correlated with another asset is defined 343	

to exhibit a hedge behavior. 344	

 345	

§ Implications of Definition 1 346	

 347	

In an environmental sustainability perspective, if carbon emmisions exhibit a hedge 348	

behaviour, then investors expect that in the future the price of emissions will rise. 349	

This increase is attributed to the increase in demand for the asset due to 350	

speculation and due to the expected increase of carbon emissions. The expected 351	

increase in the carbon emmisions could be attributed to firms that either delayed 352	

their investments to eviromentally friendly technologies (due to their inaction during 353	

the pandemic) or to firms that intentionally try to exploit the low price of carbon 354	

emmisions now in order to use “polluting” licences in the future. Irrespectively of 355	

the case, the information drawn is that the expected price of carbon emmisions will 356	
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rise in the future, a fact that in turn implies that the expected total quantity of carbon 357	

emmisions will also increase in the future.  358	

 359	

Definition 2 (Diversifier) 360	

An asset that is positively but not perfectly correlated with another asset is defined 361	

to exhibit a diversifier behavior. 362	

 363	

§ Implications of Definition 2 364	

 365	

In an environmental sustainability perspective, if carbon emmisions exhibit a 366	

diversifier behaviour, then we cannot have a valid inference regrading the 367	

expectations of investors. Therefore, in this case, no indirect inference regrading 368	

the future price of carbon emmisions is drawn, which, in turns, implies that no 369	

inference regarding the expected total quantity of carbon emmisions is drawn.  370	

 371	

Definition 3 (Safe haven) 372	

 373	

An asset that is uncorrelated or negatively correlated with another asset in times 374	

of extreme financial turmoil is defined to exhibit a safe-haven behaviour. 375	

 376	

§ Implications of Definition 3 377	

 378	
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According to the extant financial empirical literature, a safe haven is considered as 379	

an asset that does not lose its initial value in times of crises or during bearish 380	

market conditions and helps investors in protecting their wealth in turbulent times. 381	

A strong safe-haven asset is negatively related to the reference asset or portfolio 382	

and therefore gains value as the reference asset loses value (Baur and 383	

McDermott, 2010). In an environmental sustainability perspective, if carbon 384	

emissions exhibit a safe heaven behavior, then investors expect that in the future 385	

the price of emmissions will rise in contrast to other assets or commodities. This 386	

expected increase in the future price of carbon emissions is translated as an 387	

expected future increase in the quantity of the carbon emissions.  388	

It is worth noticing that the implications derived by definition 1 and 3 are 389	

quite similar. The sole difference lies in the fact that the expectations derived by 390	

definition 3 are stronger than those of definition 1. Nonetheless, from an 391	

environmental sustainability percepective, we are only interested to extract 392	

information of the future beliefs (expectations) of investors that will lead us to infer 393	

expectations regarding the future total quantity of the carbon emissions. In this 394	

context, the implications regarding the future expectations of quantity of future 395	

emissions are practically the same across the two definitions.  396	

 397	

3.2 Model Building: Markov switching 398	

 399	

Following Baur and Lucey (2010), we define the equation that will be used in order 400	

to test the safe-haven property of our asset as: 401	
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 402	

𝑌! = 𝑎" + 𝛷(𝐿#)𝑌!$%! + 𝐴𝑋! + 𝛷(𝐿&)𝑋!$%" + 𝐵𝛸!.((*) + 𝜀! (1)  403	

 404	

where: 𝑌! is the asset under investigation that we wish to uncover its behaviour 405	

according to the definitions provided earlier, 𝛷(𝐿) is a vector of lag coefficients of 406	

the asset, 𝑋! is a vector of competing assets against which the behaviour of the 𝑌! 407	

asset is examined, A is a vector of the respective coefficients,	𝛷(𝐿&) is the vector 408	

of the lagged coefficient of the competing assets,  𝛸!.((*) is a vector that accounts 409	

for asymmetries of positive and negative extreme shocks in the competing assets 410	

of a% lower quantile q, thus it takes the value of zero if the returns of the competing 411	

asset(s) are larger than the a% quantile, and the value of one (1) elsewhere, B is 412	

the vector of the respective coefficients.  413	

 In order to account for the two different regimes (asymmetries) in the 414	

volatility of an asset, we make use Markov-Switching (MS) regimes. Therefore, by 415	

making the assumption that all the variables in our model are state-dependent, the 416	

equation (1) is transformed to a Markov Switching Regime equation as follows: 417	

𝑌! = 𝛼,# + 𝛷,#(𝐿#)𝑌!$%! + 𝐴,#𝑋! + 𝛷,#(𝐿&)𝑋!$%" + 𝐵,#𝛸!.((*) + 𝜀! (2) 418	

where 𝑠! is a random variable that result in changes happening in the sample to 419	

assume the value 𝑠! = 1 for 𝑡 = 𝑡" + 1, 𝑡" + 2,… The description of the probability 420	

law governing the observed data would require a probabilistic model explaining the 421	

change from 𝑠! = 1 to 𝑠! = 2.  The simplest specification is the realization of a two-422	

state Markov chain with:  423	

Pr(𝑠! = 𝑗|𝑠!$# = 𝑖, 𝑠!$& = 𝑘,… . , 𝑦!$#, 𝑦!$&, … ) = Pr(𝑠! = 𝑗|𝑠!$# = 𝑖) = 𝑝-. (3) 424	
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Therefore, for the two different regimes we have the following regression equation: 425	

𝑌! = #
𝛼" +𝛷"(𝐿")𝑌!#$! + 𝐴"𝑋! +𝛷"(𝐿%)𝑋!#$" + 𝐵"𝛸!.'()) + 𝜀!,", 𝜀!,"~𝑁(0, 𝜎"

%)	𝑖𝑓		𝑠! = 1
𝛼% +𝛷%(𝐿")𝑌!#$! + 𝐴%𝑋! +𝛷%(𝐿%)𝑋!#$" + 𝐵%𝛸!.'()) + 𝜀!,%, , 𝜀!,%~𝑁(0, 𝜎%

%)	𝑖𝑓	𝑠! = 2
 (4) 426	

The parameters necessary to describe the probability law governing 𝑦! are 427	

the variances of the Gaussian innovation 𝜎#& and 𝜎&&, the vectors of autoregressive 428	

coefficients 𝛷#(𝐿#)  and 𝛷&(𝐿#) , the two intercepts 𝛼#  and 𝛼& , the coefficient 429	

vectors of the control variables 𝐴# and 𝐴&, the respective lagged coefficient vectors 430	

of the control variables 𝛷#(𝐿&) and 𝛷&(𝐿&) , the coefficient vectors of the quantile 431	

control variables 𝐵# and 𝐵& and the two state transition probabilities 𝑝## and 𝑝&&.  432	

Note that the probability of a change in regime depends on the past only 433	

through the value of the most recent regime (Hamilton, 2005). Suppose that 𝑌! is 434	

observed directly and the value of 𝑠! is based on what we see happening with 𝑦!. 435	

Then we have the probabilities: 436	

𝜉-! = Pr	(𝑠! = 𝑗|𝛺!; 𝜃) (5) 437	

For j=1,2 where these two probabilities sum to unity. 𝛺! =438	

{𝑦! , 𝑦!$#, … , 𝑦#, 𝑦"} and denotes the set of observations obtained as of date 𝑡, 𝜃 is 439	

a block vector of population parameters:  440	

i.e. 𝜃 = (𝛼#, 𝛼&, 𝛷#(𝐿#), 𝛷&(𝐿#), 𝐴#, 𝐴&, 𝛷#(𝐿&), 𝛷&(𝐿&), 𝐵#, 𝐵&, 𝑝##, 𝑝&&)′.  441	

The inference is performed iteratively for t=1,2,...,T, tilth step t accepting as 442	

input the values: 443	

𝜉-,!$# = Pr	(𝑠!$# = 𝑖|𝛺!$#; 𝜃) (6) 444	

For i=1,2. The key magnitudes needed in order to perform this iteration are the 445	

densities under the two regimes: 446	
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𝜂$% = Pr(𝑦%|𝑠% = 𝑗, 𝛺%&'; 𝜃) =
'

√)*+
exp2−

,-!&."!&/"!(1#)3!$%#&4"!5!&/"!(1&)5!$%&&6"!7!.((*)8
&

)+&
4	(7) 447	

For j=1,2. We then can calculate the conditional density of the t-th 448	

observation from the following equation: 449	

𝑓(𝑦!|𝛺!$#; 𝜃) = ∑ ∑ 𝜂.!𝑝-.𝜉-,!&
.0#

&
-0#  (8) 450	

Then, we derive: 451	

𝜉-,. =
∑ 29#3:94:,#<!
"
:=!
56𝑦!7𝛺!$#; 𝜃8

 (9) 452	

As a result of executing this iteration, we may succeed in evaluating the 453	

sample conditional log likelihood of the observed data: 454	

log 𝑓(𝑦#, 𝑦&, … , 𝑦9|𝑦"; 𝜃) = ∑ log 𝑓(𝑦!|𝛺!$#; 𝜃)9
!0#  (10) 455	

For the specified value of θ, an estimate of the value of θ can then be 456	

obtained by maximizing (10) by numerical optimization. For the value 𝜉-" to use to 457	

start these iterations. If the Markov chain is presumed to be ergodic, we can use 458	

the unconditional probabilities: 459	

𝜉-" = Pr(𝑠" = 𝑖) =
1 − 𝑝..

2 − 𝑝-- − 𝑝..
 460	

Let 𝛺! = {𝑦! , 𝑦!$#, … , 𝑦#} be the observations through date t, P be a (N x N) 461	

matrix whose row j, column I is the transition probability 𝑝.., 𝜂! a (N x 1) vector 462	

whose jth element 𝑓(𝑦!|𝛺!$#; 𝜃) = 1:(𝑃𝜉!$!|!$#O ⊙𝜂!) (11a) 463	

𝜉!|!Q = <4#<#|#<!⊙2#>

56𝑦!7𝛺!$#; 𝜃8
	(11b) 464	

Where 1 denotes an (N x 1) vector all of whose elements are unity and ⊙ 465	

denotes element by element multiplication.  466	
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A specification where the density depends on a finite number of previous 467	

regimes, 𝑓(𝑦!|𝑠! , 𝑠!$#, … , 𝑠!$?, 𝛺!$#; 𝜃) can be recast in above form, by a suitable 468	

definition of regime (Hamilton, 2005). In the empirical analysis, we apply the 469	

aforementioned methodology and derive the Maximum Likelihhod estimates 470	

empirically. 471	

 472	

3.3 Dating of Pandemic Waves 473	

 474	

§ Dating using BSADF 475	

The method is introduced in the literature by Phillips, Wu and Yu (2011) (PWY) 476	

and was extended by Phillips, Shi and Yu (2015) (PSY). However, since then, the 477	

method has been further developed by Michaelides, Tsionas and  Konstantakis 478	

(2016), Caspi (2017), Vasilopoulos, Pavlidis and Martinez-Garcia (2020) and  479	

Phillips και Shi (2020). The method builds on the modified unit root test of Dickey 480	

και Fuller (1979), and is based on the following equation: 481	

 482	

𝛥𝑦! = 𝑎@!,@" + 𝑏@!,@"𝑦!$# + ∑ 𝛿@!,@"
- 𝛥𝑦!$-A

-0# + 𝜀! (12) 483	

 484	

where  𝛥 is the first difference operator, 𝑦! is the time series variable that exhibits 485	

explosive behavior, 𝑡 is the time dimension, 𝛫 denotes the number of and 𝑟#,𝑟& 486	

denote the beginning and the end of the estimation period, repsecively. In this set 487	

up, in case there are 𝛵  time periods in the sample then 𝑟#  and 𝑟&   could be 488	

expressed as parts of 𝛵 such that: 489	



	 22	

 490	

𝑟& = 𝑟# + 𝑟B (13) 491	

where 𝑟B is the estimation window. Therefore, the sample size for the estimation 492	

of equation (12) is: 493	

 494	

𝛵B = X𝑇@?Z (14) 495	

where ⌊. ⌋ is the integer function. The hypothesis tested using the methodology 496	

described is:  497	

 498	

]
𝛨":	𝑏@!,@" = 0	(unit	root	existence)
𝛨#:	𝑏@!,@" > 0	(explosive	behavior)

o 499	

For simplicity let the t-statistic used for the null hypothesis (𝛨")  testing be the 500	

𝐴𝐷𝐹@!
@". In this context, based on Phillips, Wu and Yu (2011), two statistics need to 501	

be estimated. The first statistic is ADF right-tailed statistic which is based on the 502	

number of observations such that 𝑟# = 0 and 𝑟& = 1 which in turn yields that 𝑟B =503	

1, is denoted with  𝐴𝐷𝐹"#.The second statistic, which is called Supremum ADF 504	

(SADF), is based on the supremum of the t-statistic of a forward recusive 505	

estimation of equation (12) of the form: 506	

 507	

𝑆𝐴𝐷𝐹(𝑟") = 𝑠𝑢𝑝@"∈[@@,#]t𝐴𝐷𝐹"
@"u (15) 508	

 509	

Finally, in case of multiple bublles in the estimation sample, PSY introduced the 510	

Backward Supremum ADF statistic of the form: 511	
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 512	

𝐵𝑆𝐴𝐷𝐹@"(𝑟") = 𝑠𝑢𝑝@!∈[",@"$@@]t𝐴𝐷𝐹@!
@"u (16) 513	

 514	

For the dating purposes of the multiple Covid-19 waves we will base our analysis 515	

on BSADF. 516	

 517	

§ Dating Using Structural Break test 518	

In this work we make use of the Bai and Perron (1998) structural break test which 519	

was extended by Bai and Perron (2003) and Ditzen (2018). The test for 𝑇 periods 520	

and 𝑆 structural breaks is based on the following equation: 521	

𝑦! = 𝑏𝑥! + 𝛿.𝑤! + 𝜀! (17) 522	

Where 𝑡 = 𝑇.$#, … , 𝑇.  and 𝑗 = 1,… , 𝑠 + 1  with 𝑇" = 0  and 𝑇FG# = 𝑇 . Hence there 523	

are 𝑠 breaks, or 𝑠 + 1 regimes with regime 𝑗 covering the observations 𝑇.$#, … , 𝑇.. 524	

In this set up, the vector of regressors 𝑥! are unaffected by the structural breaks 525	

whereas the 𝑤! regressors are affected by the breaks.  526	

In order to test for a specific number of structural breaks in our sample we 527	

make use of the following hypothesis set: 528	

x 𝐻": 𝑠	𝑏𝑟𝑒𝑎𝑘𝑠
𝐻#: 𝑠 + 1	𝑏𝑟𝑒𝑎𝑘𝑠

{ 529	

If we assume that the set of structural break dates is  𝑇F = {𝑇|#, … , 𝑇|F} then the 530	

statistic used for testing the null hypothesis is: 531	

𝐹(𝑠 + 1 ∖ 𝑠) 	= 𝑠𝑢𝑝#H.HFG#𝑠𝑢𝑝I∈JA,BK 𝐹(𝜏\𝑇F� )	(18) 532	
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Where 𝑇F�  contains estimates of the s break stipulates under the null hypothesis, 𝜏 533	

is the additional (𝑠 + 1)-th break under the alternative, and  534	

𝛵L,MQ = {𝜏: 𝛵L$#Q + �𝛵L� − 𝛵L$#Q �𝜀 ≤ 𝜏 ≤ 𝛵L� − �𝛵L� − 𝛵L$#Q �𝜀, 𝛵"� = 0, 𝛵FG#O= 1} 535	

Is the set of permissible breaks in between the estimated (𝑗 − 1)-th and j-th breaks. 536	

The above menthioned statistic is applied sequentially.  537	

 538	

 539	

3.4 Spectral Causality 540	

Finally, for robustness, we make use of spectral causality testing to assess the 541	

causal relantionhsips among the variables that enter the model in different volatility 542	

regimes. Spectral causality detects non-causal relatiohsips among variables 543	

based on changes in the frequency domain. See Konstantakis, Melissaropoulos, 544	

Dalis & Michaelides (2021), Tastan (2015), Granger (1969), Geweke (1982), 545	

Hosoya (1991) and Breitung & Candelon (2006). The test can be used to 546	

determine whether a particular component of the “cause” variable at frequency ω 547	

is useful in predicting the component of the “effect” variable at the same frequency 548	

one period ahead. 549	

Let 𝑌! = (𝑥! , 𝑦!)′, a covariance-stationary vector time series represented by 550	

a finite-order vector autoregressive model – VAR(p). 551	

𝛩(𝐿)𝑌! = 𝜀! (19) 552	

Where 𝛩(𝐿) = 𝐼& − 𝛩#𝐿 − 𝛩&𝐿& −⋯− 𝛩3𝐿3a lag polynomial with backshift 553	

operator 𝑌-𝐿- = 𝑌-$#, 𝐼& is the identity matrix; 𝛩- , i=1,2,…,p is a coefficient matrix 554	

associated with lag i and 𝜀!= (𝜀#! , 𝜀&!)′ denotes a vector white-noise process with 555	
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𝐸(𝜀!) = 0  and positive-definite covariance matrix 𝛴 = 𝐸(𝜀!𝜀!′)	.	 By applying 556	

Cholesky factorization, 𝐺𝐺: = 𝛴$#, G being a lower-triangular matrix), we have a 557	

moving average representation of the system in equation (19): 558	

�
𝑥!
𝑦!� = 𝛷(𝐿)𝜀! = x𝛷##(𝐿) 𝛷#&(𝐿)

𝛷&#(𝐿) 𝛷&&(𝐿)
{ �
𝜀#!
𝜀&!� = 𝛹(𝐿)𝜂! = x𝛹##(𝐿) 𝛹#&(𝐿)

𝛹&#(𝐿) 𝛹&&(𝐿)
{ �
𝜂#!
𝜂&!� (20) 559	

Where 𝜂! = 𝐺𝜀!, 𝐸(𝜂!𝜂!′) = 𝐼, 𝛷(𝐿) = 𝛩(𝐿)$# and 𝛹(𝐿) = 𝛷(𝐿)𝐺$#. 560	

Applying Fourier transformation of the moving average polynomial terms, 561	

we rewrite the spectral density of 𝑥! as: 562	

𝑓O(𝜔) =
#
&P
{�𝛹##�𝑒$-Q��

& + �𝛹#&�𝑒$-Q��
&} (21) 563	

Geweke’s measure of linear feedback from 𝑦!  to 𝑥! at frequency 𝜔 564	

(Geweke, 1982), is defined by: 565	

𝑀R→O(𝜔) = log � &P5C(Q)

7T!!6U<:D87
"� = log	{1 + 7T!"6U<:D87

"

7T!!6U<:D87
" (22) 566	

If �𝛹#&�𝑒$-Q��
& = 0, then 𝑀R→O(𝜔) = 0. In this case 𝑦!  does not Granger 567	

cause 𝑥!	at frequency ω. The null hypothesis is the following: 568	

𝐻":𝑀R→O(𝜔) = 0	 569	

Breitung and Candelon (2006) showed that when �𝛹#&�𝑒$-Q��
& = 0, we also 570	

have 𝑀R→O(𝜔) = 0  and 𝑦!  does not Granger cause 𝑥!	 at frequency ω if the 571	

following condition is satisfied: 572	

�𝛩#&�𝑒$-Q�� = �∑ 𝜃#&,V𝑐𝑜𝑠(𝑘𝜔) − ∑ 𝜃#&,V𝑠𝑖𝑛(𝑘𝜔)𝑖
3
V0#

3
V0# � = 0 (23) 573	

 574	

𝜃#&,V is the (1,2)-element of 𝛩V. In this case, the necessary and sufficient conditions 575	

for �𝛩#&�𝑒$-Q�� are: ∑ 𝜃#&,V
3
V0# 𝑐𝑜𝑠(𝑘𝜔) = 0 & ∑ 𝜃#&,Vsin(𝑘𝜔)𝑖

3
V0# = 0 576	

Breitung and Candelon (2006) reformulated these restrictions by rewriting 577	

the equation for 𝑥! in the VAR(p) system: 578	

𝑥! = 𝑐# + 𝑎#𝑥!$# +⋯+ 𝑎3𝑥!$3 + 𝑏#𝑦!$# +⋯+ 𝑏3𝑦!$3 + 𝜀#! (24) 579	
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Where 𝑎. = 𝜃##,. and 𝑏. = 𝜃#&,.. The null hyposthesis is equivalent to: 580	

𝐻": 𝑅(𝜔)𝑏 = 0  581	

Where 𝑏 = (𝑏#, … , 𝑏3)′ and 𝑅(𝜔)is a 2xp restriction matrix: 582	

𝑅(𝜔) = �cos
(𝜔) 𝑐𝑜𝑠(2𝜔)

𝑠𝑖𝑛(𝜔) sin(2𝜔)
							… 𝑐𝑜𝑠(2𝜔)
							… sin(2𝜔)� 583	

Due to the fact that there are linear restrictions, the usual Wald statistic can 584	

be used. Let 𝛾 = [𝑐#, 𝑎#, … , 𝑎3, 𝑏#,… , 𝑏3]′ be a 𝑞 = (2𝑝 + 1)𝑥1	vector of parameters, 585	

and let V be a qXq covariance matrix from the unrestricted regression (24). The 586	

Wald statistic is the following: 587	

𝑊 = (𝑄𝛾):(𝑄𝑉𝑄:)$#(𝑄𝛾)~	𝑋&& (25) 588	

Where Q is a 2xq restriction matrix: 𝑄 =  0&W(3G#) 	 ⋮ 		𝑅(𝜔)¢ 589	

 590	

4. Empirical Analysis 591	

 592	

4.1 Data and variables 593	

Our daily dataset covers the period from 1 January 2020 until 1 January 2021, fully 594	

capturing the recent CoVid-19 pandemic. The prices of the S&P 500 stock index, 595	

the 10-year US benchmark government bond index, and the carbon dioxide 596	

emissions allowances (EUAs) are retrieved from Refinitiv Eikon Datastream. All 597	

price data have been transformed into daily returns, using the formula (see e.g. 598	

Michaelides, Tsionas and  Konstantakis, 2016): 599	

𝑅𝑒𝑡𝑢𝑟𝑛𝑠3# = ln x
𝑃!
𝑃!$#

{ , 𝑡 = 1,…𝑇		(𝟐𝟔) 600	

The data on the CoVid-19 new cases are also in daily frequency and come from 601	

the Johns Hopkins University database, which is freely accessible to the public. 602	

 603	
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Table 1 below provides a compact description of the data. 604	

Table 1: Definition of Variables 605	

Variable Description 

Returns_SP500 The returns of S&P500 as calculated by the 

S&P500 price index, using the formula in 

equation twenty six (26) 

Returns_Emissions The returns of the the carbon dioxide 

emissions allowances (EUAs) as calculated by 

the formula in equation twenty six (26) 

Returns_US_Bonds The daily price of the 10-year bond yields for 

the US economy 

Returns SP500 (top 10%) The Returns_S&P500 variable where its 

observations lie at the top 10% quantile. 

Returns US Bonds (top 10%) The Returns_US_Bonds variable where its 

observations lie at the top 10% quantile. 

 606	

 607	

4.2 Date Stamping of the two Covid-19 waves 608	

 609	

Throughout the entire ongoing period of the pandemic, the preferences of investors 610	

and firms have changed based on each wave of the pandemic, since different 611	

economic and lockdown measures have been implemented in each wave. 612	

Therefore, in order to capture these shifts, and extract vital information rgerading 613	

the expected future quantity of carbon emmisions, we need to extend our analysis 614	

by capturing the two waves in the Covid-19 era that span our dataset. In order to 615	
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accurately time stamp the two waves, we make use of the popular state-of-the-art 616	

sup-ADF test by Phillips and Shi (2020) and Phillips et al. (2011, 2015).  617	

 Figure 1 presents our findings. Note that since we are interested in dating 618	

the two wave periods of CoVid-19 and not the explosive behaviour of CoVid-19, 619	

based on the sup-ADF test, we will also include in each wave the beginning and 620	

the end of the explosive nature of the CoVid-19 pandemic. This dating choice will 621	

allow us to model and capture all the points that lie below the sup-ADF threshold, 622	

using the low volatility state of our Markov-Switching (MS) approach. Based on 623	

Figure 1, the first wave begins on the 24th of January 2020 and ends on the 15th 624	

of May 2020, whereas the second wave begins on the 31st of July 2020 and ends 625	

on the 17th of November 2020. 626	

 627	

Figure 1: Date Stamping of the two CoVid-19 Waves 628	

 629	
Note: The figure presents the results of the Bootstrapped Supremum ADF test for the new cases of Covid-19. The cut-off 630	
days marked, designate the two waves of the Covid-19 pandemic. 631	

 632	
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The red markers in Figure 1 indicate the cut-off dates for the two Covid-19 633	

waves. 634	

 635	

For robusteness, we make use of the Bai-Perron structural Break Test for 636	

known dates of the breaks in order to validate our findings. Table 2, presents the 637	

results of the test. Based the structural break test results, the dating of the two 638	

waves of the Covid-19 pandemic are econometrically robust. 639	

 640	

Table 2: Bai-Perron Structural break Test for known dates 641	

Test Statistic Bai-Perron Critical values 

 

        178.90 

1% critical 

value 

5% critical 

value 

10% critical 

value 

SupW (tau)           6.19           4.99            4.41 

Estimated Breaking Points: 24/1/2020; 15/05/2020; 31/07/2020; 17/11/2020 

Trimming: 0.10 

 642	

 643	

Having determined the two waves of the pandemic, we present the 644	

variables’ descriptive statistics for each wave in Table 3. We observe remarkable 645	

differences between the two waves, with lower return volatilities across all three 646	

asset classes during the second wave. In fact, it is worth noticing that during the 647	

first wave, the average returns of futures of the carbon emissions are the highest 648	

among the alternative investments in the US stock market and/or the 10 year US 649	

bonds. This, in turn, gives us a first sign of an increase in the expected quantity of 650	

total emissions during the first wave of the pandemic. The statistical significance 651	
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of these differences will be econometrically assessed by the Markov-Switching 652	

(MS) model employed. 653	

Table 3: Descriptive Statistics for the two CoVid-19 waves 654	

1st CoVid-19 wave  
Variables Mean Std. Dev. Min Max Skew. Kurt. 

Returns_Emissions -.003 .041 -.018 .129 -.736 8.027 

Returns_SP500 -.002 .035 -.128 .090 -.385 5.397 

Returns_US_Bonds .001 .008 -.024 .021 -.596 5.812 

 
2nd CoVid-19 wave 

Variables Mean Std. Dev. Min Max Skew. Kurt. 

Returns_Emissions .001 .029 -.066 .075 -.735 8.028 

Returns_SP500 .001 .012 -.036 .022 .385 5.396 

Returns_US_Bonds -.001 .003 -.013 .011 -.596 5.816 

‘ 655	
Note: Emissions’, ‘SP500’ and ‘US_Bonds’ denote the three assets under investigation, that is the carbon dioxide emissions 656	
allowances (EUAs), the S&P 500 stock index and the 10-year US benchmark government bond index, respectively. 657	
 658	

Next, we proceed with the estimation of the MS model for the two waves of 659	

the pandemic. The results of our analysis, reported in Table 3, show that in the 660	

high volatility state in the first wave, which captures the increased market turmoil, 661	

carbon emissions do not exhibit a safe haven behavior. Nonetheless, carbon 662	

emissions seem to act a hedge against the stock market returns and against the 663	

US bonds, since the respective coefficients are negeative and statistically 664	

significant in the low volatility state.This, in turn, implies that investors expect that 665	

the quantity of carbon emissions will increase, i.e. a rebound effect in carbon 666	

emiissions is expected by the market actors.  667	
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 668	

Turning to the second wave of the pandemic, the results show that carbon 669	

emissions seem to act as a safe haven against stocks in the high volatility state, 670	

since the respective coefficient is negative and statistically significant. For the low 671	

volatility state, the picture remains the same as in the first wave, since carbon 672	

emissions act as a hedge against both US stocks and US bonds. Note, that the 673	

positive and statistically significant coefficient of the US bonds is very close to zero, 674	

and thus, a hedge behavior is in force. Therefore, in a sustainability perspective, 675	

during the second wave, investors still expect that the quantity of carbon emissions 676	

will rise in the future.  677	

The difference between the two waves could be attributed to various facts. 678	

In the first wave, the lockdown measures implemented, the travel restrictions, as 679	

well the characterization of CoVid-19 as a global pandemic by the World Health 680	

Organization (WHO), spread fear among investors since the unfolding of the 681	

pandemic was unprecedented. In addition, in the first wave, the overall financial 682	

risk for all financial institutions and economies was very high since the rescue 683	

packages of ECB and Federal Reserve bank were finalized at the end of April. On 684	

the other hand, in the second wave, the policy responses were almost the same 685	

and even in some cases milder than those of the first wave, whereas the overall 686	

financial risk was relatively low compared to the first wave given that the rescue 687	

packages were already in place.  688	

 689	

 690	
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Table 4: Markov-Switching (MS) estimation results across the two CoVid-19 waves  691	

  Returns on Emissions 

 1st Wave 2nd Wave 

Independent 
Variables 

Low Volatility 
state 

High Volatility 
state 

Low Volatility 
state 

High Volatility 
state 

Returns SP500 0.628*** 0.946*** 1.777*** 1.338*** 

 (15.28) (7.25) (5.56) (4.22) 

Returns US Bonds 3.375*** -0.210 -2.774*** 1.989 

 (27.79) (-0.41) (-6.37) (0.85) 

Returns SP500  
(top 10%) -0.0545*** -0.000973 -0.0251*** -0.0330** 

 (-11.06) (-0.07) (-4.50) (-2.39) 

Returns US Bonds 
(top 10%) -0.0433*** 0.00662 0.0129* -0.0192 

 (-9.26) (0.65) (1.72) (-1.03) 

Returns SP500 (-1) 1.793*** -0.0823 -0.360** 1.167** 

 (10.21) (-0.61) (-2.54) (3.02) 

Returns US Bonds 
(-1) -0.108*** -0.745 0.199 2.066* 

 (-3.86) (-1.37) (0.30) (2.16) 

Constant -0.0147*** 0.00781* -0.0214*** 0.0200*** 

 (-9.58) (2.18) (-7.80) (4.26) 

Ln volatility (σ) -5.568*** -3.776*** -3.993*** -4.602*** 

 (-14.47) (-31.17) (-43.95) (-42.09) 
t-statistics in parentheses, * p < 0.10, ** p < 0.01, *** p < 0.001.  692	
Note: Top 10% implies the observations that belong to the lower 10% quantile; (-1) indicates the first lag of each variable.  693	
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 694	

In order to empirically verify the behaviour of carbon emission returns during 695	

the two waves, we need to estimate the correlation between emission, bond, and 696	

stock index returns. In this context, Table 5 reports the correlation coefficients as 697	

well as their statistical significance. The behavior of carbon emissions as a hedge 698	

commodity in the first wave, and as a safe haven via a vis the US stock returns in 699	

the second wave is verified, according to the three asset behaviour types 700	

described earlier.  701	

 702	

Table 5: Correlation coefficients 703	

 1st CoVid-19 Wave  2nd CoVid-19 Wave 

 Returns 
Emissions 

Returns 
SP500 

Returns US 
Bonds 

Returns 
Emissions 

Returns_
SP500 

Returns 
US 

Bonds 
Returns 

Emissions 1.000   1.000   

Returns 
SP500 0.177 1.000  0.216 1.000  

Returns US 
Bonds -0.129 -0.149 1.000 -0.179 0.014 1.000 

 704	
Note: The table presents the pairwise correlation coefficients between the variables between the two Covid-19 waves. 705	

 706	

Next, we estimate the expected duration of the two volatility regime states. 707	

Our findings in Table 6 demonstrate quite striking differences across the two waves 708	

of the pandemic. In the first wave, the high volatility state has an expected duration 709	

of approximately one and a half days, whereas in the second wave the expected 710	

duration is somewhat smaller. Moreover, the low volatility state in the first wave is 711	

approximately four and a half days, i.e. almost three days more than the high 712	
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volatility state. On the contrary, in the second wave, the low volatility state is 713	

approximately one and a half days, i.e. slightly higher than the high volatility state. 714	

These differences in the expected duration between the two waves highlight the 715	

financial market adaptability to the CoVid-19 pandemic. In other words, the 716	

financial markets learn how to operate under the stress induced by the pandemic.  717	

 718	

Table 6. Duration of the High and Low Volatility states between the two CoVid-19 719	
waves 720	

State 1st Wave of CoVid-19 2nd Wave of CoVid-19 

High Volatility  1.413*** 1.261*** 

Low Volatility  4.307*** 1.505*** 
p < 0.10, ** p < 0.01, *** p < 0.001.  721	
Note: The table presents the expected duration of each volatility state in the two Covid-19 waves.  722	
 723	

 724	

Finally, Table 7 presents the transition probabilities between the high and 725	

low volatility states across the two waves of the pandemic. A striking finding is that 726	

in the first wave the expected probability for moving to a low volatility state is over 727	

70% irrespectively of the prior volatility state. However, in the second wave, the 728	

expected probability for moving to the high volatility state is over 65%, when our 729	

prior volatility state is the low one. In other words, in the second wave, we witness 730	

a high expected probability for moving to a high volatility state when the low 731	

volatility state is realized, i.e. sudden jumps to the high volatility state.  732	

 733	

 734	
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Table 7: Transition probabilities between high and low volatility states in the two 735	
CoVid-19 waves  736	

 
1st CoVid-19 Wave  2nd CoVid-19 Wave 

State High Volatility  Low Volatility  High Volatility  Low Volatility  

High Volatility  0.292*** 0.708*** 0.209*** 0.791*** 

Low Volatility  0.232*** 0.768*** 0.665*** 0.335*** 
p < 0.10, ** p < 0.01, *** p < 0.001.  737	
Note: The Table presents the expected probabilities for the transition between high and low volatility states for the two 738	
waves of CoVid-19 pandemic. 739	
 740	
 741	

It may well be that these sudden jumps in volatility can be explained by the 742	

fact that investors in the second wave were more prepared for increased turmoil 743	

and sudden jumps in volatility as compared to investors in the first wave. In other 744	

words, compared to the first wave, where investors were entirely unprepared 745	

because they had no prior knowledge about these things, the second wave of 746	

investors were quite well prepared from the beginning. 747	

 748	

 749	

4.2 Robustness 750	

In order to provide a cross validation for our findings regrading the Markov-751	

switching estimation results, we employ spectral causality testing between the 752	

returns on emmisions and the returns of S&P 500 and 10 year US bonds, 753	

respectively.  754	

 755	

 756	

 757	
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Table 8: Spectral Non-causality tests of S&P500 and 10-year US bond returns on 758	
Emmission returs 759	

1st Covid-19 Wave 

  

2nd Covid-19 Wave  

 
 

 760	

Based on the results presented in Table 6, we reject the null-hypothesis of non-761	

causality for the returns of S&P 500 and 10-year US bonds on the returns of 762	

emmissions, a fact that is consistent with our primary finding that carbon emissions 763	

acted as a safe-haven for investors in the first wave of the ongoing pandemic. 764	

  765	

 766	

 767	
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Turning to the second wave of the pandemic, based on Table 8, we can 768	

infer that a causal relationship between S&P 500 returns and returns on emissions 769	

is in place, whereas there is no-evidence of causality between emissions and  10-770	

year US bonds. 771	

 In fact, Table 9, presents the spectral frequency of the spectral non-772	

causality tests performed, as well as the duration of causality in days. 773	

 774	

Table 9: Spectral range and Duration of causality 775	

1st Wave Covid-19 
Causal Variables range in rads (ω) range in time (days) 
Returns_SP500 1.85 3.14 2 3.4 
Returns_US_Bonds 0-1.18 1.75-3.14 3.59-3.14 5.32-80 

2n Wave Covid-19  
Returns_S5P00 0-0.58 2.13-3.14 2.95-3.14 10.83-77 
 776	

 Based on Table 9, we observe that in the first wave the returns of S&P500 777	

“cause” the evolution of the returns of emissions for 1.4 days. This causal 778	

relationship is also in force during the second wave of the pandemic, with the 779	

spectacular difference that its duration now lasts for more that 60 days. A fact that 780	

highlights that in the second wave of the pandemic, S&P500 dictates the evolution 781	

of the emissions for almost the entire second wave of the pandemic. However, for 782	

the returns of the 10 year US bonds we have almost the opposite picture, i.e. very 783	

long-lasting causal inference on the evolution of emission returns for the first wave 784	

and non-statistically significant inference for the second wave.  785	

 786	
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5. Discussion and Policy Implications 787	
	788	
 789	

Based on our findings, carbon emissions exhibit a hedge behaviour in both waves 790	

of the pandemic. This, in turn, implies that investors, comprised by firms and 791	

mutual funds, anticipate that the future returns of carbon emissions are expected 792	

to rise in the future. This rise in the total expected quantity of carbon emissions 793	

would be attributed to a wealth of factors.  794	

 To begin with, the lockdown measures implemented by the majority of policy 795	

actors across the world had a profound effect on various economic sectors, such 796	

as transportation, production and distribution. In the beginning of the pandemic, 797	

the aviation industry was heavly hit due to these measures, since the number of 798	

flights has been reduced globally by more than 40% because of the pandemic 799	

(OECD, 2020). This in turn, impacted the overall freight transportation by almost 800	

20%, compared to 2019. As a result, the carbon emissions induced by freight 801	

transportation in general, declined in the pandemic era by by more than 20% 802	

(Rongrong and Shuyu 2021). Turning to the production of industries, in a 803	

worldwide context, the overall reduction due to the pandemic and the confinement 804	

measures implemented was estimated to be roughly 35%. This, in turn, yielded a 805	

reduction of 19% in carbon emissions compared to 2019 (Le Quere et al. 2020).  806	

 Based on the aforementioned factors, it is quite natural to expect that in the 807	

post-pandemic era, the confinement measures will be alleviated, and this will lead 808	

transportation, production and distribution, at least back to their initial levels of 809	

economic activity. Therefore, from this point of view, it is natural to expect a 810	
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rebound effect in the total quantity of carbon emissions. However, there are also a 811	

series of measures implemented by policy actors that could lead carbon emissions 812	

to levels that will be even higher in the post-pandemic era compared to 2019.  813	

 During the pandemic era, the US Enviromental Protection Agency (EPA) 814	

decrased substantially the standards of the average fuel efficiency in the car fleet 815	

of each automobile company from 5% to 1.5%. In addition, the EPA, in an attempt 816	

to boost production, it announced a relaxation of the environmental regulations 817	

and fines during the pandemic to industries that were affected by the pandemic. 818	

More precisely, the EPA removed the fines imposed to companies that failed to 819	

report, or meet the requirements for emitting pollutants. In fact, if a US industry 820	

was directly affected by the pandemic, then it could skip daily pollution inspections, 821	

tests and training (Wang and Li, 2021). Clearly, the policy actions undertaken from 822	

the US environmental policy makers, as a response to the pandemic give the 823	

incentive to industries to increase their overall in pollutants and substantially delay 824	

the decarbonization of the US economy. Nonetheless, unfortunately, US was not 825	

the only economy that took hazardous policy actions in terms of carbon emmisions, 826	

since the UK, as well as the EU announced various relaxations on the energy 827	

efficiency standards as well as on regulations regarding the operation of fossil 828	

based industries (Rongrong and Shuyu 2021). 829	

All the aforementioned evidence provide a clear indication of a strong 830	

rebound effect of carbon emissions in the post pandemic era. Therefore, the 831	

prevailing question, in a policy perspective, is how this rebound effect could be 832	

minimized or even avoided. Clearly, the answer to this important question is based 833	
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on a variety of strict policy actions that need to be implemented. More precisely, 834	

as a first step, it is important, that policy actors across the globe should 835	

acknowledge the fact that the pandemic offered us with aν opportunity to 836	

exogenously (unplanned) reduce the overall amount of carbon emissions to a level 837	

copmarable to 2006 (Le Quere et al. 2020). Based on the related literature, carbon 838	

efficiency and resource efficiency are interchangeably linked (Trinks et al. 2020). 839	

As a result, policy makers should focus on tailor-made policy actions that would 840	

offer firms the incentive to become more resource-efficient, a fact that could be 841	

achieved with an increased level of circularization of industries. This circularization, 842	

in turn, will make firms more efficient in terms of resourses and thus more efficient 843	

in terms of their carbon emissions. 844	

 Additionally, it is important that policy makers acknowledge the important 845	

role of households in the reduction of carbon emissions (Li et al. 2019). The 846	

confinement measures of the pandemic and the adverse economic consequences 847	

led the majority of households to a more frugal lifestyle, characterized by 848	

decreased expenses in consumption and of course transportation. As a result, 849	

tailored made policy actions that would offer the incentive to households to 850	

maintain their level of consumption as well as incetives for using green 851	

transportation, such as bicycles and electric vehicles would have a direct beneficial 852	

impact on the level of carbon emissions.  853	

Another step towards a rebound effect for the carbon emissions in the post 854	

pandemic era would be the supervised regulation of Emissions Trading System 855	

globally. Thus far, the EU regulatory framework on (ETS) despite its drawbacks, is 856	
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quite efficient in terms of promoting low-carbon technological change in various 857	

industries (Teixido et al. 2019). In this context, policy makers should consider using 858	

the best practices from the EU ETS regulatory framework to heavily regulate ETS 859	

on a global scale.  860	

 861	

6. Conclusions  862	

 863	

In the course of the epidemic, the global quantity of carbon emissions has 864	

decreased by 6.4%, reaching levels that are directly comparable to the levels 865	

reached in 2006 at the beginning of the epidemic. Nevertheless, the most 866	

important question in the face of this decline is whether this reduction could be 867	

maintained in post-pandemic times. Using the safe-haven methodology used in 868	

finance and adapting it to the context of environmental sustainability, we were able 869	

to extract information regarding investors’ beliefs regarding the amount of carbon 870	

emissions that will occur in the future in order to assess our research question.  871	

Based on our analysis and the robustness checks that were performed on 872	

the future returns of carbon, it appears that emissions acted as a hedge with 873	

respect to both the performance of the US stock market and the performance of 874	

its bonds during both waves of the pandemic. In general, we believe that in a global 875	

context it is very likely that there will be a strong rebound effect for carbon 876	

emissions that occur as a result of what we have seen in our analysis. It is for this 877	

reason that this paper discusses the reasons behind this rebound effect in terms 878	
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of policy interventions implemented and also suggests specific policy 879	

recommendations that could help minimize this effect in the future.  880	

Of course, the decarbonization of economies in a global scale can only be 881	

achieved through collaboration and not by free-riding. Therefore, all the 882	

aforementioned policy actions suggested require a close collaboration of policy 883	

actors with the respective general goverments in each economy as well as with 884	

the representatives of carbon inefficient industries.  885	

 In a similar context, a great idea for future and more extended research 886	

would be to incoropoarate cryptocurrency assets in the model as well as to test 887	

whether a cryptocurrency asset, such as the bitcoin (BTC), could act as a safe-888	

haven in the post pandemic era. This is an interesting subject that would be of 889	

special interest for future research and further study. 890	
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