
Algebraic number-theoretic
properties of graph and
matroid polynomials

Adam Stuart Bohn
School of Mathematical Sciences

Queen Mary, University of London

Submitted in partial fulfillment
of the requirements
for the Degree of

Doctor of Philosophy

January 8, 2014



To Mum, who would have been proud

2



Abstract

This thesis is an investigation into the algebraic number-theoretical
properties of certain polynomial invariants of graphs and matroids.

The bulk of the work concerns chromatic polynomials of graphs,
and was motivated by two conjectures proposed during a 2008 New-
ton Institute workshop on combinatorics and statistical mechanics.
The first of these predicts that, given any algebraic integer, there is
some natural number such that the sum of the two is the zero of a
chromatic polynomial (chromatic root); the second that every pos-
itive integer multiple of a chromatic root is also a chromatic root.
We compute general formulae for the chromatic polynomials of two
large families of graphs, and use these to provide partial proofs of
each of these conjectures. We also investigate certain correspon-
dences between the abstract structure of graphs and the splitting
fields of their chromatic polynomials.

The final chapter concerns the much more general multivari-
ate Tutte polynomials—or Potts model partition functions—of ma-
troids. We give three separate proofs that the Galois group of every
such polynomial is a direct product of symmetric groups, and conjec-
ture that an analogous result holds for the classical bivariate Tutte
polynomial.
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Chapter 1

Introduction

1.1 Chromatic roots as algebraic integers

The work in the first few chapters of this thesis is largely inspired by the
question of which algebraic integers are zeros of chromatic polynomials of
graphs. More generally, we are interested in which algebraic extensions
of the rational numbers are splitting fields of chromatic polynomials, and
ways in which these fields correspond to the structure of the graphs they
are derived from.

We begin by providing a brief analysis of why we chose to study the
chromatic polynomial, and a survey of related work on its zeros.

1.1.1 The chromatic polynomial

Quite apart from its applicability to the wide range of practical problems
that can be couched in graph colouring terms, the chromatic polynomial is
a powerful tool for the study of graphs, encoding deep graph-theoretic prop-
erties with a degree of structure and order high enough to enable methodical
and rigorous mathematical investigation. Furthermore, its significance out-
side of combinatorics extends much further than practical map-colouring
and timetabling problems: its complex zeros are of some importance in
physics in relation to the Potts model (see, for example, [42]), and a proof
was recently given by Huh [20] of Welsh’s long-standing conjecture [49,
Exercise 5, p2661] that the absolute values of a chromatic polynomial’s
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coefficients form a log-concave sequence1, which exploits deep links with
branches of topology and algebraic geometry.

The non-integer zeros of chromatic polynomials have been the subject of
quite intensive study, and our understanding of their analytic distribution
is essentially complete. In the case of real chromatic roots this is largely due
to the combined efforts of Jackson [21] and Thomassen [47], who between
them classified every zero-free interval for the chromatic polynomial. As
for complex roots, it was conjectured as recently as 1980 by Farrell [17]
that there were no chromatic roots with negative real part. This was a
commonly held view: small graphs are misleading in this context, and the
difficulty of computing the chromatic polynomial meant that for a long
time it was not possible to directly compute larger examples. However,
a counterexample was found 8 years later by Read and Royle [37], and a
series of papers in the last decade of the 20th century made incremental
progress in revealing the ubiquity of complex chromatic roots, culminating
in Sokal’s proof [43] that they are, in fact, dense in the whole complex
plane. Adding to the impact of this revelation was the fact that the graphs
used in the proof comprise a relatively small and special family of graphs
(a significant generalisation of these is studied in §3.2.1).

1.1.2 Two conjectures on chromatic roots

Sokal’s result provides us with good reason to devote significant attention
to the study chromatic roots, however it does not actually provide us with
a single such number. Indeed, our knowledge of which algebraic integers
are chromatic roots is still paltry at best (as some marker of how ignorant
we are in this regard, it is not yet even known if i =

√
−1 is a chromatic

root). This issue is a large motivating factor of the work presented here,
although as we shall explain we approach it quite indirectly.

The work presented in Chapters 3–6 was directly motivated by two
conjectures, which were proposed at a 2008 Newton workshop on combi-
natorics and statistical mechanics, and were stated for the first time in [8].

1Welsh’s well-known conjecture was actually formulated for the more general
characteristic polynomial of a matroid. Its proof settles an even older conjecture
of Read [34] that, in the special case of the chromatic polynomial, this sequence
is unimodal
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The “α+n conjecture” suggests that, given any algebraic integer α, we can
always find some n ∈ N such that α+ n is a chromatic root; while the “nα
conjecture” asserts that any positive integer multiple of a chromatic root
is also a chromatic root. Of these two, the first is perhaps of more signifi-
cance, as a proof would imply that every algebraic integer—and thus every
number field—is contained in the splitting field of a chromatic polynomial.

In order to address these conjectures, we first compute the chromatic
polynomials of some large families of graphs, resulting in general formulae
which may be of independent interest to researchers in this area. We use
one of these families—complements of bipartite graphs that we refer to as
bicliques—to prove the first two non-trivial cases of the α + n conjecture,
showing that it holds for both quadratic and cubic integers. We go on to
analyse members of this family whose chromatic polynomials have the same
splitting field, rediscovering an old result in the process, and showing some
interesting connections with other combinatorial objects such as matchings
and rook polynomials.

The second family of chromatic polynomials we investigate is, to our
knowledge asymptotically the largest for which we now have a closed gen-
eral formula. It contains as subfamilies both the generalised theta graphs
used by Sokal to prove his density result, and another family known as
“rings of cliques”, whose chromatic polynomials have also been the subject
of some interest ([36, 14]). We show that the chromatic polynomials of
these “clique-theta graphs” have zeros satisfying the hypotheses of the nα
conjecture, by proving that the set of chromatic roots of these graphs is
closed under multiplication by positive integers. Combined with Sokal’s
result, this implies that the set of chromatic roots for which this conjecture
holds forms a dense subset of the complex plane.

1.2 Galois groups of Tutte polynomials

In Chapter 7 of this thesis we study the Galois groups of multivariate Tutte
polynomials of connected matroids. Although this at first appears to be
quite a departure from the study of zeros of chromatic polynomials, there
are nevertheless many links between the two subjects: Tutte polynomials
of matroids are direct generalisations of chromatic polynomials of graphs,
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and we retain a similar focus on algebraic number-theoretical aspects of
these polynomials.

This work in fact began with consideration of which groups which ap-
pear as Galois groups of the chromatic polynomial. It has been observed
that, in the case of small graphs, a wide range of groups appear in this
context ([30, 8]). In an effort to learn more about the Galois theory of the
chromatic polynomial 2, we performed similar computations for the Tutte
polynomial. To our surprise, we found that the groups appearing for graphs
with biconnected components of order 10 or less are always direct prod-
ucts of symmetric groups of corresponding degrees. This genericity implies
something quite special about the Tutte polynomial, and we conjectured
that only direct products of symmetric groups can appear.

This conjecture is still open, however we were able to prove an anal-
ogous result for a further generalisation, which essentially encodes all the
information about a graph: this polynomial is known to combinatorialists
as the multivariate Tutte polynomial, and to physicists as the Potts model
partition function. We were able to extend our proof (that only direct prod-
ucts of symmetric groups appear as Galois groups) to all matroids, and also
to verify that our results hold regardless of the characteristic of the ground
field. This is certainly notable: it proves this polynomial is truly “generic”,
which is in some sense to be expected, but surprising nonetheless, given
the sheer number and variety of them (no two matroids have the same
multivariate Tutte polynomial).

2as the Tutte polynomial is a bivariate generalization of the chromatic polyno-
mial, its Galois groups contain those of the corresponding chromatic polynomials
as subgroups
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Chapter 2

Definitions and notation

There are a number of mathematical subfields which contribute material
to this thesis; we shall address each in turn.

2.1 Graph Theory

Graphs are the central object of study in this thesis. A graph G consists
of a vertex-set V (G) and an edge-set E(G), where elements of the latter
are simply subsets of V (G) of size 2. We will normally write G = (V,E),
and, when it is otherwise clear which graph we are referring to, we shall
denote sets of vertices and edges by V and E respectively. It is implicit in
our definition that graphs as we define them are simple, that is they do not
have loops (edges whose endpoints are identified) or multiple edges (edges
incident to the same pair of vertices); however it should be noted that
graphs having both loops and multiple edges will implicitly be included
in any discussion of the Tutte or multivariate Tutte polynomials. The
glossary of graph-theoretic terminology is enormous, and notation varies
considerably between sources. So here we give only the most fundamental
definitions; others will be defined as and when they are required. For a
general source, we refer the reader to [4].

2.1.1 Basic definitions

Let G = (V,E) be a graph. The order and size of G are, respectively, the
number of vertices |V | and the number of edges |E|. Unless specifically
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assigned a label, an edge of G will be represented by the juxtaposition of
the two vertices it connects. Two vertices are adjacent if they are joined by
an edge, so we have that u, v ∈ V are adjacent if and only if uv ∈ E. We
say that the edge uv is incident to the vertices u and v (and vice-versa).

The neighbours of v ∈ V comprise the set of vertices adjacent to v,
and the degree of v is the cardinality of this set. A clique of G is a subset
of V whose elements are pairwise adjacent, and a k-clique is a clique of
cardinality k. If G contains all

(
n
2

)
possible edges then G is the complete

graph Kn (we may also write that G is an n-clique.)
A subgraph of G is a graph G′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E.

In the case that V ′ = V we say that G′ is a spanning subgraph1 of G, or
else that G′ spans V . Given some W ⊆ V , the induced subgraph G[W ] of
G has vertex set W and edge-set {uv ∈ E : u, v ∈ W}. A subgraph of G
may also be induced by a subset of F ⊆ E, in which case its vertex set
consists of every vertex v ∈ V which is incident to at least one e ∈ F .

The complement Ḡ = (V, Ē) of G (where Ē = E(Kn) \ E) is the
graph obtained by replacing all edges with non-edges, and vice versa. For
example, the complement of Kn is the null graph Nn having n vertices and
no edges.

2.1.2 Connectivity

There are various notions of connectedness for graphs; we will not discuss
these here, aside from remarking that the definitions we give are by no
means universal (in particular, we are concerned with vertex-connectivity;
for brevity we will omit the qualifier). A path between two vertices v1, vk ∈
V is a sequence v1, v2, . . . , vk of distinct vertices such that vivi+1 ∈ E for all
1 ≤ i ≤ k − 1. The number of vertices in a path, including endpoints, will
be referred to as the length of the path (note that in some of the literature
this term is used in reference to edges, of which there are of course one less
than vertices).

In the case that v1 is adjacent to vk, such a sequence is known as a
1The notion of “spanning” has nothing to do with edges: some vertices (so-

called “singletons”) in a spanning subgraph may have no neighbours, and thus
no incident edges.
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k-cycle, or when length is unspecified, simply as a cycle. Any additional
edge vivj with j not equivalent to i ± 1 modulo k is known as chord, and
a cycle with no chords is a simple cycle. As with cliques, we use the terms
path and cycle to refer both to subgraphs of a larger one, and stand-alone
graphs; this is discussed below.

A graph is connected if there exists a path between any two of its ver-
tices (otherwise it is disconnected); and biconnected if any two vertices are
contained in some simple cycle (or equivalently, if it cannot be made dis-
connected by the removal of a single vertex). If we consider connectivity
and biconnectivity to be shorthand for, respectively, 1- and 2-connectivity,
then we can extend this definition arbitrarily: a graph is k-connected if it
cannot be made disconnected by the removal of k − 1 vertices (by conven-
tion, the complete graph Kn is considered to be (n−1)-connected). Clearly
then, a k-connected graph is also j-connected for all j < k. If G is at most
(k − 1)-connected, but has one or more vertex-induced subgraphs which
are k-connected, then we refer to these as the k-connected components of
G (note that for k > 1 these components are not necessarily disjoint). The
biconnected parts of a connected graph are known as blocks, and when not
otherwise qualified a component of G is a connected component (and G is
by implication disconnected).

2.1.3 Joins, separations and alterations

There are various ways in which to join, separate or otherwise alter graphs.
Deletion of an edge e of G simply results in the graph G− e = (V,E \{e});
if e /∈ E then the addition of e gives the graph G + e = (V,E ∪ {e}).
Deletion or removal of vertices is similarly self-explanatory, although note
that when we remove a vertex v from G we implicitly also delete all edges
incident to v.

Now suppose that e = uv for some u, v ∈ V . Then the contraction of e
is defined to be the identification of u and v and deletion of any resulting
loops or multiple edges (equivalently, the replacement of u and v by a single
new vertex w whose set of neighbours is the union of those of u and v).
We denote the graph produced by this operation as G/e. The concepts of
contraction and deletion are important in the study of graph polynomials,
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as we shall see.
If there are graphs G1 and G2 such that V (G1) ∪ V (G2) = V (G), and

the subgraph of G induced by V (G1)∩V (G2) is an r-clique for some r ∈ N,
then we say that G is a Kr-sum of G1 and G2. So, for example, a K2-
sum comprises two graphs which intersect in a single edge. When it is not
necessary to specify the size of the clique, we may simply write that such
a graph is clique-separable. Finally, if a graph G consists of two subgraphs
G1 and G2, with every possible edge between them, then we write that G
is the join of G1 and G2.

There are a bewildering number of named graphs; we shall only require
the very simplest of these. After the complete and null graphs, probably
the easiest to describe is an n-path Pn, which is simply a path of n vertices
(and thus n − 1 edges). Adding a single extra edge between the endpoint
vertices of Pn produces an n-cycle Cn, and a generalisation of a path is a
tree: a connected graph containing no cycles. Finally, a bipartite graph is
one whose vertex set can be partitioned into two subsets, each of which has
no internal edges.

2.1.4 Labellings and isomorphisms

The ease of representing graphs simply by connecting dots can make it quite
easy to lose sight of their abstract nature. It is natural for us to conflate
a graph with some representation, which is in fact just one of uncountably
many.

Indeed, it seems quite unfortunate that graphs have been left with the
name they have: to non-mathematicians a graph is invariably a graphi-
cal representation of the range of some function; while to mathematicians,
a graph is a purely abstract construction. Having said this, graphs have
the property of being both easily approachable and immediately applica-
ble, something that is perhaps testament to our intuitive understanding of
networks.

In order to demonstrate quite how intangible a graph is, it is useful to
consider for a moment what a vertex actually is. Given that the vertices
of a graph are considered to form a set, there must be some way to dis-
tinguish between them, yet the only distinguishing property they have is
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their interconnectivity, a property which can only be described in two ways:
either as a set of adjacent vertices, or as a set of of incident edges. Both of
these lead to recursive definitions, and anyway do not address the problem
of a graph having two distinct vertices with the same set of neighbours.
We also need a convenient way to refer to specific vertices, and the only
sensible way to deal with these problems is to label the vertices arbitrarily,
for example as v1 up to vn.

However, given our assertion that a vertex is defined entirely by its adja-
cency relations, we must be careful to keep in mind that these labels are just
reference points, and not intrinsic properties of vertices. Indeed, a labelled
graph is quite a different object from the (unlabelled) graphs we shall be
considering; especially as regards enumeration (as a simple example, there
are 3 possible ways in which to label the vertices of a path of length 3,
and thus 3 labelled versions of P3). It is, of course, highly impractical to
study unlabelled graphs without some way to refer to individual vertices.
In practice we get around this by assigning a different “placeholder” label
to each vertex, and representing the vertex set as the set of these labels;
thus if two vertices share the same set of neighbours then their labels are
interchangeable.

In order to make this system rigorous, we need the following definition:

Definition 2.1. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomor-
phic if there exists a bijective map f : V1 → V2 such that uv ∈ E1 if and
only if f(u)f(v) ∈ E2. If this is the case then f is a graph isomorphism,
and we write G1 ∼= G2. The set of all graphs isomorphic to G is known as
the isomorphism class of G.

Now we can review our previous statement, and give a more precise
definition of the graphs we shall be working with.

Definition 2.2. Let V = {1, 2, . . . , n} and E be some set of subsets of V
of size two. The unlabelled graph G = (V,E) is the isomorphism class of
all labelled graphs having vertex set V and edge-set E.

This implies that if a property of a labelled graph is invariant under
isomorphism, then it can be considered to be a property of the underlying
unlabelled graph.
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All graphs discussed in this thesis will be unlabelled; any labels subse-
quently given to vertices or edges are thus simply placeholders. This include
the indeterminates assigned to each edge by the multivariate Tutte poly-
nomial, which is the subject of 7: as these are by definition transcendental
over the ground field, they are essentially interchangeable, in that any per-
mutation of them will not affect any of the properties of the corresponding
multivariate Tutte polynomial.

2.2 Matroid Theory

2.2.1 Introduction

Matroids are abstractions of the notions of rank and dependence which ap-
pear in association with many different combinatorial and algebraic struc-
tures. In particular, they are usually associated with vector spaces and
matrices—for which rank/dimension and linear dependence need no introduction—
and graph theory, where similar notions are often implicit, if not stated
outright. As such, their terminology is mainly taken from these two sub-
jects, and is in many cases self-explanatory for a graph theorist. However,
matroids are much less intuitive than graphs, and certainly they are less
amenable to representation (indeed some are not representable at all—
currently some of the most important work currently being done in the
field is towards characterisations of those that are, see for example [52] and
[53]).

Graph theoretic results can often be generalised to matroids with very
little effort, and this is essentially what we do in Chapter 7. No other part
of this thesis explicitly uses matroid theory, and thus we shall not dwell
long on the associated terminology. In particular the only special subfamily
we will address are the graphic matroids of graphs.

For background and a thorough treatment of matroid theory we refer
the reader to Oxley’s book [32], while Chapter 6 of [50] provides a useful
reference on the matroid theoretic Tutte polynomial which is the object of
our focus.
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2.2.2 Basic definitions

Definition 2.3. A matroid is an ordered pair M = (E,I), where E is
some finite set, and I is a collection of subsets of E2 satisfying the following
conditions:

1. ∅ ∈ I

2. If I ∈ I, then so too is every subset of I

3. If I1, I2 ∈ I, and |I1| > |I2|, then there is some e ∈ I1 \ I2 such that
I2 ∪ e ∈ I

We refer to E as the ground set, and write thatM is a finite matroid on
the set E. The elements of I are the independent sets ofM , and any subset
of E not contained in I is said to be dependent. These conditions can be
seen to capture in set-theoretic language the essence of a mathematical
dependence relations. Unless otherwise mentioned, for the remainder of
this section M will be assumed to be some finite matroid with ground-set
E.

As mentioned above, the terminology of matroid theory largely comes
from linear algebra and graph theory, thus it will help to see an example
from each subject before continuing.

Example 2.4. Let E be a subset of any vector space V , and let the inde-
pendent subsets of E be those which are linearly independent in V . The
first two axioms of Definition 2.3 are obvious, and the third follows from
the Steinitz Exchange Lemma; the resulting matroid M(E) is known as a
vector matroid. Note that a vector matroid can be defined on any set of
vectors of given dimension over some specified field. Thus by dispensing
with all structure but that endowed by linear dependence, we arrive at a
significant generalisation of vector spaces.

The most important family for our purposes, however, comes from graph
theory:

2Note that we are concerned here only with subsets of E, rather than individ-
ual elements. However, for ease of expression and notation it is common practice
to equate any subset of size one with its content, for example by writing e ∈ E
as opposed to {e} ⊆ E, and by referring to subsets of cardinality 1 as elements
of E.
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Example 2.5. The cycle matroid M(G) of a graph G = (V,E) takes as
its ground-set the edge-set E. In this case a subset of E is defined to
be independent if it contains no cycles. The family of graphic matroids
comprises every matroid which is the cycle matroid of some graph.

The remaining terminology becomes more easily comprehensible in light
of these examples. Let M = (E,I) be a matroid. The rank r(M) of M
is defined to be the cardinality of the largest independent set of M , and
similarly the rank function of M is the map rM : 2E → N whose value
on each F ⊆ E, is the cardinality of the largest independent set of F .
With this notation we have that rM(E) = r(M). Continuing to follow the
terminology of vector spaces, we write that a set B is a basis of M if it is
a minimal spanning set (that is, if |B| = rM(B) = r(M)).

2.2.3 Graph-theoretic analogues

For the next few definitions it is convenient to keep the example of a graph
in mind. Firstly, a circuit is a minimally dependent set, that is any set
C ⊆ E satisfying rM(C) = |C| − 1 = r(M). Clearly, a circuit of the
cycle matroid of a graph corresponds to a cycle of the graph. We define
a loop to be any element e ∈ E which is contained in no independent
set, and a coloop to be any element contained in no circuit; equivalently
e ∈ E is a loop if rM({e}) = 0, and a coloop if for all F ⊆ E we have
rM(F ∪ {e}) = rM(F ) + 1. A loop of a graph corresponds to a loop in
its cycle matroid; the graph-theoretic analogue for a coloop is an edge
between biconnected components. Although we disallow loops in graphs in
the majority of this thesis, they will be always be allowed in any discussion
of matroids. The restriction M |A of M to some subset A ⊆ E is itself a
matroid, each of whose independent sets is simply the intersection of A with
an independent set of M , that is, those independent sets of M contained
in A (similarly circuits of M |A are circuits of M contained in A). This can
be viewed as analogous to the subgraph induced by a subset of edges, or
equivalently to that produced by the deletion of the elements of E \A from
E.

Thus restriction to a subset corresponds to deletion of that subset’s
complement. It will often be the case that we wish to delete one element
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only from a matroid; in this case we differ from graph theoretic notation
in order to emphasis that in reality we are removing a subset of cardinality
one, so that the deletion of an element e ∈ E from M will be written as
M \ e3, and is the same thing as the restriction of M to M \ {e}.

It is more difficult to visualise the contraction of an element of a ma-
troid, and we must define it more abstractly: the contraction M/A of M
by a subset A ⊆ E is the matroid which is defined on the same ground-set
E \A as the deletion, but whose independent sets are defined instead to be
all those sets B ⊆ E \ A which are such that B ∪ A is independent in M .
As before, we will denote the contraction of M by a one-element set {e} as
M/e. (In practice, we will use the restriction notation M |A when deleting
more than one edge, and otherwise write M \ e and M/e to respectively
represent deletion and contraction of one element. We will have no need
to contract by more than one element at once.)

We need one more definition, which this time differs somewhat from
graph theory: M is said to be connected if there is at least one circuit
containing any given pair of elements of E. Thus, rather confusingly, con-
nectivity in matroids corresponds directly to biconnectivity in graphs (note
that the cycle matroid does not distinguish between components and blocks
of a graph).

Given our subject matter, we would be amiss to end our discussion of
matroids without mentioning one further example.

Example 2.6. An algebraic matroid M = M(L/K) can be defined on any
(transcendental) field extension L/K. The ground set is the set of subsets
of L containing K, and a given set K ⊆ S ⊆ L is said to be independent
if its elements are algebraically independent over K. Thus the rank rM(S)
of S is the transcendence degree of S over K. Note that any algebraic
extension is therefore associated with a trivial algebraic matroid.

3In order to simplify our expressions we often use “the deletion” and “the
contraction” as proper nouns, referring to the matroid produced by the given
action. Thus we employ the phrases “deletion of e from M” and “matroid
obtained from M by deleting e” interchangeably, for example.
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2.3 Graph polynomials

Graph polynomials are polynomial invariants of graphs, and thus to vary-
ing degrees encode the abstract structure of graphs. They are usually
constructed in order to enumerate certain graph-theoretic properties, how-
ever it is often the case that the polynomial can be made to yield much
more data than was originally intended. The universality of polynomials
in mathematics, and the ease with which they can be manipulated makes
them a useful proxy object for for graph theorists to study, and they are
central to algebraic graph theory. A wide variety of graph polynomials are
currently studied, and new ones appear frequently.

We are concerned in particular with a special family of graph poly-
nomials, which are arguably the most important in graph theory, due to
the surprising amount of graph-theoretical data they encode, the ease with
which they are defined, and the convenient recursive identities which they
satisfy. The defining feature of a family belonging to this class of polyno-
mials is that they satisfy some kind of recurrence relation of the following
kind.

Definition 2.7. Let F be a family of graph polynomials, and write fG(x)
for the member of this family which is assigned to the graph G. We say
that F satisfies a deletion-contraction recurrence relation if, for all graphs
G = (V,E) in F, and all e ∈ E we can express fG(x) (linearly) in terms of
fG−e(x) and fG/e(x).

We shall discuss three families of polynomials, all of which satisfy some
form of deletion-contraction recursion, and which have the property that
any given pair of families comprises one which is a specialisation (perhaps
up to multiplication by some prefactor) of the other. These are in some
sense the true “characteristic polynomials” of graphs, encoding—as they
each do—a huge amount of graph-theoretic information, increasing with
the number of variables.

We will work our way backwards in time, and start with the most
general of the three.
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2.3.1 The multivariate Tutte polynomial

Let G = (V,E) be a finite graph, for each e ∈ E let ve be a variable, and
let v be the collection of these variables. We will refer to the members of
this set as edge-variables4. For each subset of edges A ⊂ E, we denote by
vA the set {ve}e∈A.

Now, let q be another indeterminate. Following [44] we define the mul-
tivariate Tutte polynomial of G to be:

ZG(q,v) =
∑
A⊆E

qk(A) ∏
e∈A

ve. (2.1)

Essentially this is a generating function for the spanning subgraphs
of G, but one which encodes not only the precise edge-content of each
such subgraph (as a product of corresponding edge-variables), but also
its number of connected components (as an exponent of q). This data is
enough not only to uniquely characterise a graph, but to encode all of its
structure; moreover variations are very important in statistical mechanics,
in which it is referred to as the Potts model.

The multivariate Tutte polynomial is multi-affine in its edge-variables—
that is, it has maximum degree 1 in each variable (this follows immediately
from the spanning subgraph interpretation of each monomial, as clearly no
one edge can appear twice in any given subgraph). This makes it ideal for
inductive proofs on the number of edges in a graph, and indeed we shall
present a proof using an analogous idea for matroids in Chapter 7.

The deletion-contraction recurrence for this polynomial is as follows:

ZG(q,v) = ZG−e(q,vÊ) + veZG/e(q,vÊ), (2.2)

where Ê is shorthand for E\{e}. The proof of this identity amounts to little
more than noting that spanning subgraphs of G − e correspond to those
of G which do not contain e; and that spanning subgraphs of G/e are in
one-to-one correspondence with those of G containing e. The simplicity of
this identity adds to the convenience of the multivariate Tutte polynomial
for inductive proofs based around iterative addition or removal of edges
from a graph.

4For consistency we shall retain this terminology in the context of matroids

23



We will study the algebraic properties of this polynomial in Chapter 7,
in particular showing it always has symmetric Galois group over the field of
functions in the edge variables; and that this is true additionally for more
general matroids. Note that adaptations of all three of the polynomials in
this family are important in matroid theory5. We shall define the matroid
theoretic version when it is required in the following chapter.

Now, by making the simple substitution ve ← −1 for all e ∈ E we
obtain the chromatic polynomial PG(q) of G (see 2.3.3 below). Along with
the desirable properties described above, this has led to the multivariate
Tutte polynomial being used to great effect in the study of its more widely
known specialisations, especially as regards the location of chromatic roots
[22, 43, 42].

We discuss next the original bivariate Tutte polynomial, which is a
specialisation of the multivariate case, and a generalisation of the univariate
chromatic polynomial.

2.3.2 The Tutte polynomial

The ideas behind the Tutte polynomial first appeared in a 1947 paper
[48] by its namesake. The original name given to it—the dichromatic
polynomial—betrays its roots in the study of the chromatic polynomial,
and the attempts being made around that time to prove the Four Colour
Conjecture (as it then was). Tutte was interested in deletion-contraction
recurrences, and had purposefully set out to create a bivariate generalisa-
tion of the chromatic polynomial. Although it was originally presented in
a quite different way, the polynomial is now usually defined as follows.

Let G = (V,E) be a graph, and x and y be indeterminates. The Tutte
polynomial of G is the bivariate polynomial in Z[X] of the form

TG(x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |, (2.3)

where k(A) is the number of connected components in the subgraph induced
5In fact, these are direct generalisations: the matroid theoretic polynomials

corresponding to graphic matroids are essentially the same in all three cases as
their graph theoretic counterparts
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by the edge subset A.
The Tutte polynomial of G is obtained from its multivariate generali-

sation ZG(q,v) by making the following substitutions:

q ← (x− 1)(y − 1)

ve ← y − 1, all e ∈ E,

and multiplying by a prefactor (x − 1)−k(E)(y − 1)k(A)−|V |. Thus TG is
essentially equivalent to a special case of ZG in which the same variable is
assigned to every element of E.

Evaluating TG(x, y) at different small integer values of x and y produces
a range information about G, such as the number of forests, spanning
forests, spanning subgraphs and acyclic orientations. In fact, it has recently
been shown [9] that there is a combinatorial interpretation for its evaluation
at any pair of positive integers.

As the Tutte polynomial is not a direct object of study in this thesis,
we shall not attempt to describe it further, or even provide one reference
in particular; the polynomial is so important that whole chapters of graph
and matroid theory texts are devoted to it.

The final polynomial we describe is the oldest, and most specialised.
As it is our main object of study we shall give a thorough introduction.

2.3.3 The chromatic polynomial

Recall that, for some positive integer q, a proper q-colouring of a graph G
is a function from the vertices of G to a set of q colours, with the property
that adjacent vertices receive different colours. The chromatic polynomial
PG(x)6 of G is the unique monic polynomial whose evaluation at each q ∈ N
is the number of proper q-colourings of G. A chromatic root of G is a zero
of PG(x). This polynomial was originally introduced in 1912 by Birkhoff [1]
in an attempt to prove what is now the Four-Colour Theorem (equivalent

6Due to the algebraic slant of our work, we vary from the usual convention of
representing the argument of the chromatic polynomial by q or λ, meaning that
it will occasionally be convenient to view x as some arbitrary number of colours
rather than an indeterminate. This means that PG(x) can be both a univariate
polynomial or a natural number, depending on the context.
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to the statement PG(4) > 0 for all planar graphs G). A summary of these
attempts can be found in his 1946 collaboration with Lewis [2].

Chromatic roots

Chromatic roots have been the subject of much study, especially as regards
their location and distribution on the real line and in the complex plane.
As mentioned in the introduction, the most important results in this area
can be summarised by the following conditions, which are due, respectively,
to Jackson [21], Thomassen [47] and Sokal [43].

Theorem 2.8. (i) There are no negative real chromatic roots, and none
in either of the intervals (0, 1) or (1, 32/27]

(ii) Chromatic roots are dense in the remainder of the real line

(iii) Chromatic roots are dense in the whole complex plane

Surprisingly, there is relatively little known about which specific alge-
braic integers can or cannot be chromatic roots. We do not even know if,
for example, i is a chromatic root or not. A major open problem is to de-
termine which univariate polynomials are chromatic, and various necessary
conditions are known; some simple examples of these are that the coeffi-
cients of such a polynomial must alternate (this follows from the fact that
there are no negative real roots), that the constant term must be zero, and
that, except in the case of the null graph, we must always have PG(1) = 0.
Many more such conditions are known; see in particular [54], and the re-
cent proof of the long-standing conjecture that the absolute values of the
coefficients of any chromatic polynomial form a logarithmically concave
sequence [20].

Combinatorial interpretations

There are a number of combinatorial interpretations for the coefficients of
PG(x) when written in various polynomial bases. One of the most im-
portant expansions is as sums of falling factorials: it can be easily shown
simply by counting the number of possible colourings of each vertex that
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the chromatic polynomial of the complete graph on n vertices is

PKn(x) = (x)n, (2.4)

where (x)n = x(x− 1) · · · (x− n+ 1).
and this reasoning can be generalised as follows. Let ai be the number

of isomorphism classes of proper i-colourings of a graph G (that is, the
number of partitions of the vertices of G into i parts such that no part
contains any two adjacent vertices). Then the number of ways to properly
colour G with i colours is

ai(x)i = aiPKi
(x).

Thus we can count the total number of proper colourings of G by sum-
ming these terms over i, giving us

PG(x) =
n∑
i=0

aiPKi
(x), (2.5)

where n is the order of G (note that we will always have an = 1).
Another important combinatorial interpretation was found by Whitney,

who showed that the coefficients {bi} in the more familiar polynomial basis

PG(x) =
n∑
i=0

bix
i

count what he refers to as “broken circuits” of G. We shall not directly
study these in the present work, and refer the reader instead to the original
paper [51], and to [5] for a number of other combinatorial interpretations
of chromatic polynomials.

As regards its relation to the other polynomials discussed in this sec-
tion, the chromatic polynomial can be obtained from the by multivariate
Tutte polynomial by specialising all the edge-variables to −1 (note that
this directly leads us to another combinatorial interpretation for the coeffi-
cients of the chromatic polynomial: the coefficient of xi in PG(x) is simply
the signed sum of spanning subgraphs of G having i connected components,
where each subgraph (V,A) of G = (V,E) contributes a summand (−1)|A|).
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Identities

Identities for manipulating chromatic polynomials will be used frequently
in this thesis. The most important of these is the following basic deletion-
contraction recurrence, which we can most conveniently obtain from 2.2 by
specialisation7

PG(x) = PG−e(x)− PG/e(x). (2.6)

If e /∈ E(G), then we can express this recurrence instead as:

PG(x) = PG+e(x) + PG+e/e(x); (2.7)

we refer to this form of the identity as addition-contraction.
We will also make use of the following identity concerning joins of graphs

with complete graphs:

Proposition 2.9. Let H be the join of some graph G with Kn. Then
PH(x) = (x)nPG(x− n).

Proof. There are (x)n ways to properly x-colour the vertices of the copy of
Kn. As each of these vertices is connected to all of the vertices of G, this
leaves x− n colours with which to properly x-colour the vertices of G.

Another useful feature of the chromatic polynomial allows us to de-
compose chromatic polynomials of clique-separable graphs as a product of
factors corresponding to the separable subgraphs. We shall sometimes refer
to this as the “clique-sum property”.

Proposition 2.10. Suppose G is a Kn-sum of two subgraphs H1 and H2

for some n ∈ N (that is, H1 ∪H2 = G and H1 ∩H2 = Kn). Then

PG(x) = PH1(x)PH2(x)
(x)n

.

7Although it is not difficult to prove this identity directly, specialisation from
the multivariate Tutte polynomial reduces the proof almost to a triviality; this
is a good example of the somewhat counter-intuitive way in which consideration
of this more general object can simplify proofs of results about the chromatic
polynomial.
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Proof. The number of ways of properly colouring theKn subgraph common
to H1 and H2 with x colours is (x)n. For any fixed colouring of the n ver-
tices of this subgraph, there are PHi

(x)/(x)n ways to colour the remaining
vertices of Hi for i = 1, 2. Hence there are:

PH1(x)PH2(x)
(x)n(x)n

ways to x-colour G for any fixed colouring of the Kn subgraph. As there
are (x)n such colourings of Kn, multiplying by this factor gives the total
number of possible ways to properly x-colour G.

We will need one further quite specialised identity, which follows from
an iterative application of the deletion-contraction identity, and which we
will apply later when constructing families of chromatic polynomials.

Proposition 2.11. Let n1 and n2 be natural numbers greater than 1, let
H1 and H2 be any graphs, and for each 1 ≤ i ≤ 2 let Gi be the join of Hi

with a copy of the complete graph Kni
. Choose some vertex v in the copy of

Kn2 in G2, and add every possible edge between it and the vertices of Kn1

in G1. Let G be the resulting graph. Then we have:

PG(x) = (1− n1

x
)PG1(x)PG2(x).

Proof. Label the edges between v and the copy ofKn1 in G1 as e1, e2, . . . en1 ,

and let e be the set of these edges. Note that contracting any element ej of
e produces the same graph. Moreover, deleting a number of edges before
contracting one of the remaining ones does not affect the outcome: we
still end up with a 1-vertex sum of G2 with G1 (the vertex in question
being contained in Kn1). By Proposition 2.10, this graph has chromatic
polynomial:

PG/ej
(x) = 1

x
PG1(x)PG2(x). (2.8)

Deleting all of the elements of e results again in a combination of G2

and G1, except instead of sharing a vertex they are now disjoint. The whole
graph therefore simply has chromatic polynomial:

PG−e(x) = PG1(x)PG2(x)
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Therefore applying the deletion-contraction identity n1 times, and re-
peatedly substituting using 2.8 gives us:

PG(x) = PG−e(x)− n1PG/e1(x)

= PG1(x)PG2(x)− n1

x
PG1(x)PG2(x)

= (1− n1

x
)PG1(x)PG2(x),

as claimed.

For more information on the chromatic polynomial, a brief yet compre-
hensive introduction can be found in [34]; for a more in-depth reference
see [13], or for a relatively recent survey specifically concerning chromatic
roots we refer the reader to [23].

2.4 Basic algebraic number theory

We only use the most basic aspects of the theory of algebraic numbers
in this thesis. In particular, we are interested in polynomials, the field
extensions their roots generate, and the basic Galois theory that provides
a powerful tool with which to study these extensions. We shall assume
familiarity with much of this, and refer the reader to, for example [46] for
Galois theory, and [27] for more advanced algebraic number theory. (Note
however, that notation varies considerably from source to source, and ours
is not consistent with any one in particular).

We will briefly revise the theory of field extensions, before addressing a
couple of less well-known concepts which appear in Chapter 7.

2.4.1 Field extensions

Let L be field which contains the field K; then K is a subfield of L, and
L is an extension of K. More commonly, we express this setup by simply
writing that L/K is a field extension. The larger field L is a vector space
over K; its dimension is denoted by [L : K], and is referred to as the degree
of the extension. If [L : K] is finite, then the extension is algebraic, and
elements of L are said to be algebraic over K. Two extensions L1 : K and
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L2 : K are said to be isomorphic if there exists a bijective homomorphism
θ : L1 → L2 which is the identity map on elements of K (such a map is
known as an isomorphism of field extensions).

Algebraic elements of a field extension are normally defined in terms
of polynomials: we write that α ∈ L is algebraic over K if there is some
irreducible polynomial f(X) ∈ K[X] such that f(α) = 0. Now suppose
that L = K(α); then we say that α is a primitive element of the extension
L/K, and that f(X) is theminimal polynomial of L/K (or that it generates
L over K). If L contains every root of some polynomial f(X) ∈ K[X] then
it is said to be a splitting field for f(X) (as f(X) splits in L—that is, it
factorises into linear factors in L[X]). More commonly, we will refer to the
splitting field of a polynomial f(X); by this we mean the minimal splitting
field of f(X). As we will be studying these in some depth in Part II—
particularly in Chapter 6—we will use the shorthand chromatic splitting
field to denote the splitting field of a chromatic polynomial.

Now, a field extension must satisfy two important conditions if it is
to be studied by classical Galois theory. The first of these is separability:
an irreducible polynomial f(X) ∈ K[X] is separable if it has no repeated
roots; in this case adjoining one or more roots of f(X) to K produces a
separable extension.

The second property of field extensions which is fundamental to Galois
theory is normality: a field extension L/K is normal if L is the splitting
field of some irreducible polynomial in K[X]. If this is not the case, then
we can extend L/K to a normal extension by defining the normal closure
of L over K to be the minimal normal extension of K containing L.

If an algebraic field extension is both normal and separable the we refer
to it as a Galois extension. However, note that any algebraic extension of
a field of characteristic zero is separable. Thus when working exclusively
over such fields Galois extensions and normal extensions are one and the
same, and the terminology may be used interchangeably.

2.4.2 Galois groups

Finally we are able to define one of the central objects of this work, the
Galois group of an algebraic extension. The elements of these groups are
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field automorphisms, which are simply isomorphisms from a field to itself.
A fixed-field automorphism is a special type of field automorphism which
is the identity map on elements of a subfield. The automorphisms of any
given field form a group, of which the groups of fixed-field automorphisms
are subgroups. If L/K is an algebraic extension; then a K-automorphism
of L is simply a fixed-field automorphism of L for which K is the “fixed
field” in question.

If L/K is a Galois extension, then it can be shown that the order of
the group of K-automorphisms of L is precisely [L : K]; we call this group
the Galois group of L/K, and denote it by Gal(L/K). Given that L/K is
a Galois extension, there must be an irreducible polynomial f(X) ∈ K[X]
whose roots generate the extension. The smaller (and not necessarily nor-
mal) extensions which are each obtained by adjoining one individual root
of f(X) to K are pairwise isomorphic, and the isomorphisms between them
are the elements of Gal(L/K). The induced permutations comprise a tran-
sitive action of Gal(L/K) on the set {K(α) : f(α) = 0}; thus Gal(L/K)
acts transitively by permutation on the set of all roots of f(X).

In certain contexts (Chapter 7 in particular) it is convenient to be able to
discuss the Galois group that acts on the roots of the irreducible polynomial
f(X) ∈ K[X] without reference to field extensions. In this case we use the
notation Gal(f/K), and refer to the Galois group of the polynomial f(X);
this is precisely the same object as the group Gal(L/K), where L is the
splitting field of f(X).

2.4.3 Transcendental extensions

An element α ∈ L \K is said to be algebraically independent over K if it
does not satisfy any polynomial equation having coefficients in K. If such
an element exists then it is said to be transcendental over K; its existence
implies that [L : K] is not finite, and we write that L/K is a transcendental
extension (as opposed to an algebraic one). More generally, a subset S of
L of cardinality n is algebraically independent over K if its elements do not
satisfy any polynomial equation in n variables having coefficients inK. The
cardinality of the largest such subset of L is known as the transcendence
degree of L/K.
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Any extension L/K having transcendence degree n is isomorphic to the
function field K(X1, . . . , Xn), where each Xi is an indeterminate. Thus
there is essentially only one unique extension of any given field having
transcendence degree 0 6= n ∈ N.
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Chapter 3

Some families of chromatic
polynomials

In the not-so-distant past, the study of graphs with small order informed
the commonly-held view that all chromatic roots had positive real part.
This conjecture was disproved by a series of discoveries of chromatic roots
with increasingly large negative real part (see, for example, [7],[6],[19]),
culminating with Sokal’s proof [43] that chromatic roots are in fact dense
in the whole complex plane. Many of these discoveries made use of the
large family of generalised theta graphs: a general formula for the chro-
matic polynomials of these graphs is known, and it has the salient feature
of varying according to parameters which appear in the exponents of the
argument [6]. This enables the study of closely related chromatic poly-
nomials having arbitrarily high degree; clearly a desirable property when
studying the distribution of chromatic roots.

We shall follow this principle of studying large families of graphs for
which a general chromatic polynomial formula is known. However, as we
will be considering algebraic properties of chromatic roots—as opposed to
their distribution in C or R—we wish to find families of graphs which
provide us with a range of examples of chromatic polynomials of fixed de-
gree, whose general formulae thus have parameters appearing as coefficients
rather than exponents. This way a range of chromatic roots and splitting
fields of the same degree can be considered and compared.

Below we describe a number of families of such graphs, and in each case

34



derive a formula for the chromatic polynomial of an arbitrary member. All
of these graphs will be referenced at different points in this chapter, with
the family of bicliques in particular being a central object of study.

3.1 Bicliques

Bicliques are complements of bipartite graphs; as such each consists of two
cliques joined by a number of edges1. When we need to be more specific,
we shall refer to a biclique in which the two cliques are of size j and k as a
(j, k)-biclique. By convention, k will be greater than or equal to j, and we
shall refer to the edges between the two cliques as bridging edges.

Figure 3.1: A (3, 5)-biclique

We will give two quite different constructions for the chromatic polyno-
mial of a general biclique, each resulting in a form of the polynomial which
will be useful for certain applications. For the first construction we will
require the following definition.

Definition 3.1. An i-matching of a graph G is a set of i edges of G, no
two of which are incident to a common vertex. Two graphs are said to be
matching equivalent if they have the same number of i-matchings for all
non-negative integers i (by convention, every graph is assumed to have a
single 0-matching).

We will use the notation mi
G for the number of i-matchings of G; thus

two graphs G and H are matching equivalent if and only if mi
G = mi

H for
all i.

1Please note that our definition varies from much of the literature, in which
a biclique is considered to be a complete bipartite graph.
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Construction 1 For some positive integers j and k, let G be a (j, k)-
biclique, and let Ḡ be the complement of G (obtained by replacing edges of
G with non-edges, and vice-versa). Then Ḡ is a subgraph of the complete
bipartite graph Kj,k. We shall construct the chromatic polynomial of G by
considering matchings of Ḡ.

Given some matching of Ḡ, partition the vertices of G such that two
vertices are contained in the same part if and only if the corresponding
vertices of Ḡ are joined by an element of the matching. Then, by assigning
a different colour to each part of this partition, we obtain a proper colour-
ing of G. Conversely, any proper colouring of G corresponds to a partition
induced by some matching of Ḡ. Thus we can compute the chromatic poly-
nomial of G by counting x-colourings of partitions induced by matchings
of Ḡ, as follows.

If each part of such a partition receives a different colour, then there are
(x)j+k−i ways of assigning x colours to a partition induced by an i-matching
of Ḡ (as any such partition consists of j + k − i parts). Thus by the same
reasoning we used in §2.3.3 to obtain (2.5) of the chromatic polynomial,
we get the expression:

PG(x) =
∑
M

(x)j+k−|M |, (3.1)

where the sum is over all possible matchings M of Ḡ.
Now suppose that, for some 1 ≤ p ≤ j, there are p vertices in the

j-clique of G which are adjacent to every vertex of the k-clique. Then
these p vertices are each adjacent to every other vertex of the graph. Thus,
counting proper x-colourings of G, we have that there are (x)p ways in
which to colour these p vertices, and x − p colours remaining with which
to colour the remaining vertices. So the chromatic polynomial of G will be
of the form:

PG(x) = (x)pPH(x− p),

where H is the (j − p, k)-biclique obtained from G by deleting each of the
p vertices and all incident edges. A similar situation arises if some vertices
of the k-clique are adjacent to every vertex of the j-clique. As we are
concerned with algebraic properties of the chromatic polynomial, we shall
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discount these cases, and assume that no vertex of G is connected to every
other vertex of the graph.

It is not difficult to see that no matchings of size larger than j are
possible. Hence we have:

PG(x) =
j∑
i=0

mi
Ḡ(x)j+k−i,

where m0
Ḡ

= 1, and in general mi
Ḡ

is a non-negative integer. Thus the
chromatic polynomial of G is a product of (x)k with a degree j factor g(x)
of the form:

g(x) =
j∑
i=0

mi
Ḡ(x− k)j−i. (3.2)

When all but one of the factors in a general formula for a family of
chromatic polynomials are linear, we shall refer to the non-linear factor
as the interesting factor of the polynomial. As we are chiefly concerned
with algebraic properties of chromatic polynomials it is these interesting
factors that will be our main focus. Note that for certain assignments of
the parameters of a formula the interesting factor may not be irreducible.

The factor g(x) above is the interesting factor of PG(x). The next
construction gives us a different way in which to formulate this factor. The
derivation is much more complicated, but has the advantage of producing
2j − 2 parameters by which to define a (j, k)-biclique; these will become
necessary in what follows.

Construction 2 As just established, the chromatic polynomial of a (j, k)-
biclique G is a product of (x)k with a degree j interesting factor g(x).
Observe that (x)k is the number of ways to properly x-colour the k-clique
of G; thus we can view g(x) as an expression for the number of proper x-
colourings of the j-clique. We can construct this expression independently
of the rest of the polynomial using Möbius inversion, as follows.

Label the vertices of the j-clique 1, 2, . . . , j, and let X be the set of these
j vertices. Let Ai be the set of neighbours of vertex i in the k-clique. We
will represent by a{i1,i2,...,is} the number of vertices lying in Ai1∩Ai2∩· · ·∩Ais
but in none of the other sets. So, for example, a{1,2} is the cardinality of
(A1 ∩ A2) \ ⋃i 6=1,2Ai. Note that any vertex lying in the intersection of all
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the Ai is connected to every other vertex of the graph. As in the previous
construction, we will assume that there is no such vertex, so that

A1 ∩ A2 ∩ · · · ∩ Aj = ∅,

that is, a{1,2,...,j} = 0.
Now, for some partition σ of X, we define fσ(x) to be the number of

ways of colouring the vertices of X with x colours, such that the members
of any given part have the same colour, and such that no part has the same
colour as any of its neighbouring vertices in the k-clique. We also define
gσ(x) to be the number of these colourings in which every part is assigned a
different colour. Write σ ≤ τ if τ is another partition of X which is coarser
than σ, so that every part of σ is contained in a part of τ . It is easy to see
that

fσ(x) =
∑
σ≤τ

gτ (x),

where the sum ranges over all partitions of X which are coarser than σ.
By the Möbius Inversion Theorem, this gives

gσ(x) =
∑
σ≤τ

µ(σ, τ)fτ (x),

where µ is the Möbius function on the poset of partitions. This is known
(see, for example, [39]) to be:

µ(σ, τ) = (−1)p−q(2!)q3(3!)q4 · · · ((j − 1)!)qj ,

where p is the number of parts in the finer partition σ, q is the number of
parts of the coarser partition τ , and qi is the number of parts of τ which
contain exactly i parts of σ.

If σ̂ is the finest partition of X (in which every vertex lies in a different
part), then the interesting factor of PG(x) is precisely gσ̂(x). So by the
above, in order to formulate this interesting factor we need to find fτ (x)
for every partition τ of X.

Let τ be a partition ofX, let τ1, τ2, . . . , τt be the parts of τ , and let fτi
(x)

be the number of colours available with which to colour the vertices in τi .
Then fτ (x) = fτ1(x)fτ2(x) · · · fτt(x). Now, for a given τi, we obtain fτi

(x)
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by subtracting the number of neighbours in the k-clique of the vertices in
τi from x (because each such neighbour has a different colour, and none of
these colours can be used to colour the vertices in τi).

So for example, suppose j = 3, and τ is the partition {{1, 2}, {3}}.
Then

fτ (x) = (x− a{1} − a{2} − a{1,2} − a{1,3} − a{2,3})(x− a{3} − a{1,3} − a{2,3}).

In general, for a given part τi of a partition τ ,

fτi
(x) = x−

∑
S∩τi 6=∅

aS,

and so
fτ (x) =

∏
τi∈τ

(
x−

∑
S∩τi 6=∅

aS

)
.

Finally, using Möbius inversion, we have that the interesting factor of
PG(x) is:

g(x) = gσ̂(x) =
∑
σ̂≤τ

µ(σ̂, τ)
∏
τi∈τ

(
x−

∑
S∩τi 6=∅

aS

)
, (3.3)

where µ is the Möbius function of the partition poset, and σ̂ = {{1}, . . . , {j}}.

3.2 Clique-graphs

Clique-graphs (referred to as clan-graphs in Read’s pioneering study [36])
consist of a graph of which each vertex has been replaced by a clique (pos-
sibly of size 1), and the vertices of each clique have been joined to all those
of its neighbouring cliques (where “neighbourhood” is used with respect to
the original graph connections). We shall discuss three families of these
graphs, giving a general form for the chromatic polynomial of an arbitrary
member in each case. Although the second of these families is of some sig-
nificance itself, our aim is largely to develop the necessary framework for
constructing the chromatic polynomials of what we call clique-theta graphs,
which shall be used later on to show that the set of algebraic integers for
which the nα conjecture holds is dense in the complex plane.
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3.2.1 Clique-paths

Figure 3.2: The clique-path L(1, 2, 3, 2)

Aside from disjoint complete graphs, which are clique-graphs based on
a null graph, the simplest family of clique-graphs have underlying structure
a path; we shall refer to these as clique-paths.

Let L(a1, . . . , an) denote a path of length n, in which the ith vertex has
been blown up into a clique of size ai. Applying the clique-sum property
proved in Proposition 2.10 iteratively gives us the following formula for its
chromatic polynomial:

PL(a1,...,an)(x) = (x)a1+a2 . . . (x)an−1+an

(x)a2 . . . (x)an−1

A similar formula holds for clique-graphs based on more complicated
trees. Algebraically, however, the chromatic polynomials of general clique-
trees hold little interest for us, factorising as they do completely into linear
factors. Thus we omit any further discussion, and note that a specific
formula is given here for clique-paths simply because it will be required
later.

Rings of cliques

Aside from a tree, the simplest underlying structure a clique graph can
have is a simple cycle; we refer to these cyclic clique graphs as rings of
cliques.

Let R(a1, a2, . . . , an) be an n-cycle in which, for each 1 ≤ i ≤ n, the ith
vertex has been blown up into an ai-clique, and every vertex of this clique
has been joined to each of those of its neighbouring ai−1- and ai+1-cliques
(taking indices modulo n).
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Figure 3.3: The ring of cliques R(1, 2, 3, 2)

In [36] Read gives the following general formula for its chromatic poly-
nomial:

PR(a1,a2,...,an)(x) = (x)a1+a2 . . . (x)an+a1

n∑
k=1

(−1)nkvk(x)
(

n∏
i=1

−(ai)k
(x)ai+k

)
,

where vk(x) =
(
x
k

)
−
(

x
k−1

)
.

It is not immediately obvious that this is indeed a polynomial, but
on examination the terms in the denominator of the summation are seen
to be cancelled by some of the preceding linear factors. Interestingly, a
permutation of the {ai} may change the linear factors, but does not affect
the final more complicated factor. This is a desirable property for our
purposes: as has been mentioned, our focus on algebraic properties will
often lead us to concentrate solely on the interesting factor of a chromatic
polynomial.

Now, suppose that a1 = 1. The chromatic polynomial ofR(1, a2, . . . , an)
reduces to the following considerably simpler expression:

PR(1,a2,...,an)(x) = x(x−1)an−1+an−1

(
n−2∏
i=2

(x− ai+1 − 1)ai−1

)
r(1, a2, . . . , an),

(3.4)

41



where
r(1, a2, . . . , an) = 1

x

(
n∏
i=2

(x− ai)−
n∏
i=2

(−ai)
)

is the interesting factor of the polynomial. This specialisation of the pre-
vious formula was discovered, but not published, by Read [33] (a separate
construction is given in [15]).

A special case of a ring of cliques is, of course, the cycle graph Cn on n
vertices, in which ai = 1 for all i. Chromatic polynomials of rings of cliques
have been shown to have various interesting properties. For example, in
[15], Dong et al prove that there are non-chordal rings of cliques having
only integer roots, a property which at one time it had been thought was
restricted to chordal graphs. Furthermore, in [14] it is shown that the real
part of a non-integer chromatic root of a ring of four cliques is dependent
only on the number of vertices in the graph.

We note in passing that the graph R(a, b, c, d) is an (a+b, c+d)-biclique.

Clique-theta graphs

It is natural to next consider clique graphs with underlying structure having
more than one fundamental cycle. Given some natural numbers n, s1, . . . , sn,
each greater than 2, we define the generalised theta graph Θs1,...,sn to be the
graph consisting of n disjoint paths of lengths s1, . . . , sn whose endpoints
are identified2. These graphs are a natural generalisation of cycles, and
their importance in the study of the location of chromatic roots has been
noted.

In the same vein as above, we can now define a clique-theta graph to be
a generalised theta graph whose vertices have been blown up into cliques.
As might be expected given the complicated formula for rings of cliques,
the chromatic polynomials of these graphs are difficult to construct. How-
ever, we can considerably simplify this task by specifying that one endpoint
vertex remains fixed as a singleton; in fact we will see that this condition
is actually necessary to guarantee that the corresponding chromatic poly-
nomials have certain desirable algebraic properties.

2Note that this is the “most general” definition of a generalised theta graph;
sometimes members of this family are described as having all paths of the same
length
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Figure 3.4: The clique-theta graph T (1, (2, 2), (3), (1, 2, 1), 2), and its un-
derlying generalised theta graph Θ4,3,5

Clique-theta graphs (with one vertex fixed) are likely to be, in an infor-
mal sense, the largest family of graphs for which a general chromatic poly-
nomial formula is now known. Sokal was able to prove his density result
using slight modifications of only those theta graphs whose paths between
endpoints are all of the same length (thus using just 2 parameters), and
the addition of extra parameters for both path length and clique-size makes
this family an incredibly diverse source of chromatic roots.

Formally, clique-theta graphs can be defined in the following way: let
p be a positive integer, and let S1, . . . , Sk be k non-empty ordered sets
of positive integers with Si = (ai(1), ai(2), . . . , ai(mi)). For each set Si, let
L(1, Si, p) be a clique path with a single vertex at one end, a p-clique at
the other end, and clique sizes otherwise determined by the elements of the
sets Si. The clique-theta graph T (1, S1, . . . , Sk, p) is the graph obtained
by identifying the single vertices at one end of these clique-paths, and the
p-cliques at the other.

Proposition 3.2. The chromatic polynomial of the clique-theta graph
T (1, S1, S2, . . . , Sk, p) is:

[
(x)ak(mk)+p

(
k−1∏
i=1

(x− p− 1)ai(mi)−1

)(
k∏
i=1

mi−1∏
l=1

(x− ai(l+1) − 1)ai(l)−1

)]

×
[(
p(x− p)k−1

k∏
i=1

r(1, ai(1), . . . , ai(mi))
)

+
(

k∏
i=1

r(1, ai(1), . . . , ai(mi), p)
)]

,
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where r(1, ai(1), . . . , ai(mi)) is the interesting factor from the chromatic poly-
nomial of the ring of cliques R(1, ai(1), . . . , ai(mi)).

We will need the following lemma:

Lemma 3.3. For some 1 ≤ i ≤ k let Si = (ai(1), . . . , ai(mi)), and let
S̄i = (ai(2), . . . , ai(mi)). Then:

PT (1,S1,...,Sk,p)(x) =
PT (1,S1,..,Ŝi,..,Sk,p)(x)PL(ai(1),...,ai(mi),p)(x)

(x)p

− ai(1)
(x)ai(1)+ai(2)PT (1,S1,..,S̄i,..,Sk,p)(x)

(x)ai(2)+1
,

where Ŝi indicates that Si has been omitted.

Proof. This follows from a simple application of the deletion-contraction
rule. If we let v be the singleton endpoint vertex of the clique-theta graph,
then deleting the ai(1) edges between v and the ai(1)-clique will produce
a Kp-sum of T (1, S1, . . , Ŝi, . . , Sk, p) and L(ai(1), . . . , ai(mi), p). Contract-
ing one of these edges produces a Kai(2)+1-sum of T (1, S1, . . , S̄i, . . , Sk, p)
and Kai(1)+ai(2) . As the contraction of any edge produces the same graph,
the chromatic polynomial of the latter appears with multiplicity ai(1) (see
Proposition 2.11).

We can now proceed by induction on the sizes of the sets Si.

Proof of Proposition 3.2. First suppose that the size of each set is 1, so
that Si = (ai(1)) for all i. Let v be the single endpoint vertex attached to
all other vertices apart from the p-clique. Note that contracting any added
edge between v and the p-clique produces a Kp-sum of (ai(1) + p)-cliques.
This graph has chromatic polynomial:

f(x) =
∏k
i=1(x)ai(1)+p

(x)k−1
p

,

Also note that adding all edges between v and the p-clique gives aKp+1-sum
of (ai(1) + p+ 1)-cliques, having chromatic polynomial:

g(x) =
∏k
i=1(x)ai(1)+p+1

(x)k−1
p+1

.
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We now apply the contraction-addition identity p times, where “addition”
consists of adding an edge between v and the p-clique, and “contraction”
consolidates the two vertices between which the new edge is to be added.
At every stage the consolidation of these two vertices will produce the graph
with chromatic polynomial f(x), and so, again using Proposition 2.11, our
final graph will have chromatic polynomial which is a sum of g(x) with p
copies of f(x), that is:

PT (1,S1,...,Sk,p)(x) = p

∏k
i=1(x)ai(1)+p

(x)k−1
p

+
∏k
i=1(x)ai(1)+p+1

(x)k−1
p+1

=
(
p(x)ak(1)+p

k−1∏
i=1

(x− p)ai(1)

)
+
(

(x)ak(1)+p+1

k−1∏
i=1

(x− p− 1)ai(1)

)

=
(

(x)ak(1)+p

k−1∏
i=1

(x− p− 1)ai(1)−1

)(
p(x− p)k−1 +

k∏
i=1

(x− ai(1) − p)
)
.

Note that r(1, ai(1)) = 1 and r(1, ai(1), p) = x − ai(1) − p for all i. Hence
Proposition 3.2 holds when |Si| = 1 for all i.

These graphs suffice as the base case for the induction, as we can build
up any clique-theta graph by starting with one having |Si| = 1 for all i,
and systematically increasing the length of the clique-paths. Note that
reordering the Si does not alter the graph, so for ease of notation we can
assume that at each stage the path to which we are adding a new clique is
S1 = (a1(1), a1(2), . . . , a1(m1)). In a similar way, at each stage we can shift
the labelling of the individual cliques up one, so that the new element begin
added to S1 is always a1(1).

Thus, by Lemma 3.3, we need only show that, if Proposition 3.2 holds
for T (1, Ŝ1, . . . , Sk, p) and T (1, S̄1, . . . , Sk, p), then it holds too for T (1, S1, . . , Sk, p).
So assume that T (1, Ŝ1, . . . , Sk, p) and T (1, S̄1, . . . , Sk, p) have chromatic
polynomials of the stated form, and let:

f(x) = (x)ak(mk)+p

(
k−1∏
i=1

(x− p− 1)ai(mi)−1

)(
k∏
i=1

mi−1∏
l=1

(x− ai(l+1) − 1)ai(l)−1

)
.
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Then removing f(x) as a factor from the expressions

1
(x)p

(
PT (1,Ŝ1,...,Sk,p)(x)PL(a1(1),...,a1(m1),p)(x)

)

and
1

(x)a1(2)+1

(
(x)a1(1)+a1(2)(x)a1(2)+1PT (1,S̄1,...,Sk,p)(x)

)
leaves us with, respectively:

(
m1∏
l=2

(x− a1(l))
)(

p(x− p)k−1
k∏
i=2

r(1, ai(1), . . . , ai(mi))
)

+ (x− p)
(
m1∏
l=2

(x− a1(l))
)(

k∏
i=2

r(1, ai(1), . . . , ai(mi), p)
)

(3.5)

and

p(x− p)k−1r(1, a1(2), . . . , a1(m1))
(

k∏
i=2

r(1, ai(1), . . . , ai(mi))
)

+ r(1, a1(2), . . . , a1(m1), p)
(

k∏
i=2

r(1, ai(1), . . . , ai(mi), p)
)
.

(3.6)

By Lemma 3.3, the interesting factor of the chromatic polynomial of
T (1, S1, . . , Sk, p) is obtained by subtracting (3.6) a1(1) times from (3.5).
This gives us a complicated expression which would be not illuminating to
reproduce here. However we may simplify this using the identity(

m1∏
l=2

(x− a1(l))
)
− a1(1)r(1, a1(2), . . . , a1(m1)) = r(1, a1(a), . . . , a1(m1));

on doing so it remains simply to rearrange the resulting expression to pro-
duce our desired formula.
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Chapter 4

Factorisation of chromatic
polynomials

A fundamental algebraic property of a polynomial is its factorisability. As
with much of the algebraic theory of chromatic polynomials, little is known
about the way in which they may factorise. In this section we will survey
the current knowledge and present some new results on this topic.

4.1 Background

It follows from the definition of a chromatic polynomial that, for any graph
G, PG(x) is always divisible by the linear factors

x, (x− 1), . . . , (x− χ(G) + 1),

where χ(G) is the chromatic number of G; that is, the smallest number
of colours required in order to properly colour G. However, these are not
the only linear factors which may occur in a factorisation of a chromatic
polynomial. As the chromatic polynomial of a graph consisting of more
than one connected component is the product of those of the components,
the multiplicity of the factor x in PG(x) corresponds to the number of
connected components of G. Similarly, the multiplicity of (x− 1) gives the
number of blocks of G.

Moreover, other linear factors can appear in connected graphs. For
example, chordal graphs have only integer chromatic roots, and so their

47



chromatic polynomials factorise completely into linear factors. It was at
one point conjectured that these were the only graphs having purely in-
tegral chromatic roots, but Read [35] found a counterexample in 1975.
As mentioned in §3.2.1, Dong et al then found various other examples of
integral-root chromatic polynomials [15].

By Proposition 2.10, clique-separable chromatic polynomials factorise
into polynomials corresponding to the subgraphs involved in the separation.
Farr and Morgan [16] showed furthermore that there exist graphs which
are not clique separable, but which factorise in the same way as clique-
separable graphs. They identified all such graphs of order at most 10, and
showed that each of these are chromatically equivalent to a clique-separable
graph. There also exist chromatic polynomials which have more than one

Figure 4.1: The smallest graph with a chromatic polynomial factorisation
not corresponding to clique-separability

non-linear factor, and whose factorisations do not correspond to clique-
separations (that is, they have at least one irreducible non-linear factor
which is not a factor of a chromatic polynomial of lower degree). One of
the two smallest examples found by Morgan [29] is the graph displayed in
Fig 4.1, which has the following chromatic polynomial

x(x− 1)(x− 2)(x2 − 4x+ 6)(x3 − 8x2 + 23x− 23).

It can be easily verified that there is no chromatic polynomial of degree less
than 8 having x2 − 4x+ 6 as a factor, which means that this factorisation
cannot correspond to a simple clique separation.

The question of which polynomials can actually occur as factors of chro-
matic polynomials is of course the same as that of which algebraic integers
are chromatic roots, and it is this aspect of the subject of chromatic fac-
torisation that we will focus on here.
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4.2 Conditions on coefficients

We begin this section with a conjecture on the form of factors of chromatic
polynomials, which we will refer to as chromatic factors for brevity. It
is well known that the coefficients of chromatic polynomials alternate in
sign, however this by no means implies that the same property holds for
chromatic factors. A proof of the following conjecture would dramatically
increase our knowledge of which algebraic integers can appear as chromatic
roots.

Conjecture 4.1. The coefficients of a chromatic factor are always alter-
nating in sign.

Extensive computer searches [40] have not produced any examples of
non-alternating chromatic factors. However, as mentioned previously, due
to the complexity of computing chromatic polynomials of graphs of high
order, little is known about them, and history tells us that conjectures based
on the properties of chromatic polynomials of low degree should always be
made tentatively.

It is unclear how to approach a proof of Conjecture 4.1, however we
can verify it for some very special cases. The following proposition rules
out the existence of chromatic factors which are alternating in all but the
constant coefficient.

Proposition 4.2. There are no chromatic factors whose constant term is
the same sign as its x term, and whose coefficients are otherwise alternating
in sign.

Proof. Let G be a graph of order n with chromatic polynomial

PG(x) = xn − an−1x
n−1 + . . .± a1x∓ a0.

Note that, as the coefficients of PG(x) alternate, those of (−1)nPG(−x) are
all positive. Let g(x) = ∑m

i=0 bix
i, where bm > 0, b0 < 0 and bi ≥ 0 for

m > i > 0. We will show that g cannot be a factor of (−1)nPG(−x).
Suppose h(x) = ∑p

i=0 cix
i is such that g(x)h(x) = (−1)nPG(−x). Then

a0 = b0c0, and so c0 < 0. Now suppose that ck < 0 for all 0 < k < r. Every
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summand of
ar =

r∑
i=0

bicr−i

other than b0cr is non-positive. But ar ≥ 0, and so cr < 0. So by induction,
every coefficient ci of h is negative. But an = bmcp, and bm > 0. So cp must
be positive, and we have a contradiction.

Thus we have shown that (−1)nPG(−x) has no factor with negative
constant coefficient and all other coefficients non-negative. It follows that
PG(x) has no factor whose constant term and x-coefficient have the same
sign, and whose coefficients are otherwise alternating.

Furthermore, if we impose the condition that a chromatic polynomial
has only one non-linear factor (this does appear to be the case for the vast
majority of chromatic polynomials), then we can show that the coefficient
of the term of second-highest degree in this factor must be negative.

Proposition 4.3. Suppose a chromatic polynomial PG(x) = ∑n
i=0 aix

i fac-
torises as x(x− 1) . . . (x− n + k + 1)f(x), where f(x) = ∑k

j=0 bjx
j. Then

bk−1 ≤ 0.

Proof. We will use that fact that an−1 is the number of edges of G (this
is not difficult to prove; see, for example [13, Theorem 2.2.1]). By the
factorisation of PG(x),

an−1 = 1 + 2 + . . .+ (n− k − 1)− bk−1 =
(
n− k

2

)
− bk−1.

The chromatic number χ(G) of G is n− k, and in an optimal colouring of
G, there must be at least one edge between every pair of colour classes. So

an−1 ≥
(
n− k

2

)
.

Hence bk−1 ≤ 0 (note that if f(x) is irreducible we must have bk−1 =(
n−k

2

)
− |E(G)|).

Now, as there are no negative real chromatic roots, a necessary and
sufficient condition for the zeros of an irreducible chromatic factor f(x) =
x2 + bx + c to be complex with negative real part is for b to be positive.
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A special case is if all of the other factors of the chromatic polynomial
in question are linear; then by Proposition 4.3 b ≤ 0, from which we may
draw the conclusion that if a chromatic polynomial PG(x) factors into linear
factors and one quadratic factor then it has no zeros with negative real part.

Of course, a proof of Conjecture 4.1 would imply that there are no
quadratic chromatic roots with negative real part at all, and this would
generalise to higher degrees: in [10] the authors prove that a positive poly-
nomial (one having strictly non-negative coefficients) of degree n has no
zeros α with | arg(α)| ≤ π/n. Given that a zero of an alternating poly-
nomial is of the form −α, where α is a zero of some positive polynomial,
this implies that an alternating polynomial of degree n has no zeros α with
| arg(α)| ≥ (n− 1)π/n. Thus a verification of Conjecture 4.1 would imply
that for each n ∈ N the region (n−1)π/n ≤ | arg(z)| contains no chromatic
roots of degree less than n+ 1.

4.3 Quadratic factors

We will begin this section by presenting a conjecture on the relative po-
sitions of coefficients of quadratic factors of chromatic polynomials in the
real line, and commenting on its potential implication for the location of
quadratic chromatic roots.

Conjecture 4.4. Suppose p(x) = x2 − bx + c divides a chromatic polyno-
mial. Then b > 0, b ≤ c and c ≤ (b2 + b)/2.

The evidence for this conjecture is, admittedly, rather weak. However,
we have verified it for all chromatic polynomials of degree less than 11, as
well as a number of polynomials of much higher degree belonging to certain
special families such as theta graphs.

In the case that b2 − 4c > 0, the first two assertions of Conjecture
4.4 follow from known facts about the location of chromatic roots in the
real line: firstly, there are no negative real chromatic roots, so b must be
positive. Secondly, there are no chromatic roots in the interval (0, 1): as
one of the zeros of p(x) is (b−

√
b2 − 4c)/2, this means that we must have√

b2 − 4c/2 < b/2 − 1. That is,
√
b2 − 4c < b − 2. Squaring both sides of

the inequality and rearranging gives c > b− 1.
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Now, let p(x) = x2 − bx + c divide a chromatic polynomial, where
b2 − 4c < 0, and let α be a zero of p(x). If we were to suppose that the
first and third of the assertions of the conjecture are true, we would have
the following:

|=(α)| = |
√
b2 − 4c/2|

=
√
|b2 − 4c|/2

≤
√
|−b2 − 2b|/2

=
√
|b2 + 2b|/2

<
√
|b2 + 2b+ 1|/2

= (b+ 1)/2

= <(α) + 1/2.

That is, the entire region of the complex plane defined by |=(z)| <
<(z) + 1/2 could be shown to contain no quadratic chromatic roots.

Now we present a result which gives a lower bound on the order of a
graph having chromatic polynomial which is divisible by certain quadratic
factors.

Theorem 4.5. If b > 4 and 0 < c < 2b−4 then x2− bx+ c does not divide
any chromatic polynomial of degree less than b.

The proof of this theorem depends on the fact that every chromatic
polynomial is a sum of positive multiples of falling factorials. In fact it could
be more generally formulated for any polynomial which can be written as
such a sum. The proof is quite long, especially given that fact that the
theorem is not of great consequence. However, the techniques used are
quite novel, and could potentially be useful for other applications.

Given a quadratic polynomial p(x) and another polynomial f(x) we will
represent by [f(x)]p(x) the coefficient vector of f(x) mod p(x), so that we
have:

f(x) ≡ [f(x)]Tp(x)

1
x

 mod p(x).

We will require the following lemma.
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Lemma 4.6. Let p(x) = x2− bx+ c, for some integers b and c. Then, for
all i ≥ 2:

[(x)i]p(x) =
1− n −c

1 1− i+ b

 [(x)i−1]p(x).

Proof. Note that

(x)i = (x− i+ 1)(x)i−1 = x(x)i−1 + (1− i)(x)i−1,

and let

C(p(x)) =
0 −c

1 b


be the companion matrix of p(x). Then we have:

[(x)i]p(x) = [x(x)i−1]p(x) + [(1− i)(x)i−1]p(x)

= C(p(x))[(x)i−1]p(x) + (1− i)I[(x)i−1]p(x)

=
1− i −c

1 1− i+ b

 [(x)i−1]p(x).

We are now ready to proceed with the proof of the theorem.

Proof of Theorem 4.5. Let p(x) = x2 − bx + c, where b > 4 and 0 < c <

2b−4. Recall that the chromatic polynomial PKi
(x) of the complete graph

on i vertices is the falling factorial (x)i = x(x − 1) · · · (x − i + 1), and
that any chromatic polynomial is a sum of positive multiples of chromatic
polynomials of complete graphs. This means that if G has order n, then
we have:

PG(x) = PKn(x) + an−1PKn−1(x) + · · ·+ a2PK2(x) + a1x,

and so:

[PG(x)]p(x) = [(x)n]p(x) + an−1[(x)n−1]p(x) + · · ·+ a2[(x)2]p(x) + a1

0
1

 ,
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where each ai is non-negative. If we set

Ai =
1− i −c

1 1− i+ b

 ,
then from Lemma 4.6 we obtain:

[PG(x)]p = AnAn−1 · · ·A2

0
1

+ an−1An−1 · · ·A2

0
1

+ · · ·+ a1

0
1

 . (4.1)

Let α1 and α2 be the two roots of p(x) = 0. As Ai = C(p(x)) + (1− i)I
for any i ≥ 2, the eigenvalues of Ai are

λ1i
= 1− i+ α2

λ2i
= 1− i+ α1,

and eigenvectors corresponding to these are, respectively,
−α1

1

 and
−α2

1

.
Let A = AjAj−1 . . . A2 for some 2 ≤ j ≤ n. As the eigenvectors of the Ai

are independent of i, they are also eigenvectors for A, and the corresponding
eigenvalues λ1 and λ2 of A are then the product of the eigenvalues of the
Ai, 2 ≤ i ≤ j, namely:

λ1 =
j∏
i=2

λ1i
=

j∏
i=2

(1− i+ α2) = (α2 − 1)j−1

λ2 =
j∏
i=2

λ2i
=

j∏
i=2

(1− i+ α1) = (α1 − 1)j−1. (4.2)

Thus we can diagonalise A in the standard way. Let

D =
λ1 0

0 λ2

 , B =
−α1 −α2

1 1

 .
Then D = B−1AB, and so

A = BDB−1 = 1
α1 − α2

λ1α1 − λ2α2 α1α2(λ1 − λ2)
λ2 − λ1 λ2α1 − λ1α2


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As A multiplies
0

1

 in (4.1), we will only be concerned with its second

column. Consider the (1, 2)-entry (A)1,2 of A. Using the identities of (4.2),
this becomes:

(A)1,2 = α1α2

α1 − α2
[(α2 − 1)j−1 − (α1 − 1)j−1]. (4.3)

Now suppose that α1 = (b −
√
b2 − 4c)/2, and that therefore α2 =

(b+
√
b2 − 4c)/2. As b > 4 and 0 < c < 2b− 4, it is not difficult to see that

α1 and α2 are real, and that we have with

0 < α1 < 2 < b− 2 < α2 < b.

This means that every factor of (α2 − 1)b−2, and hence every factor of
(α2 − 1)j−1 for 2 ≤ j < b, is positive. Clearly then, for all 2 ≤ j < b:

(α2 − 1)j−1 > (α1 − 1)j−1. (4.4)

Now, consider the expression given in (4.3) for the (1, 2) entry (A)1,2 of
A = AjAj−1 . . . A2. Looking at the constituent parts of this formula, we
have the following:

• α1α2 = c > 0;

• α1 − α2 = −
√
b2 − 4c < −b+ 4 < 0;

• (α2 − 1)j−1 − (α1 − 1)j−1 > 0.

Hence (A)1,2 is negative.
To complete the proof, we suppose that p(x) divides a chromatic poly-

nomial PG(x) of degree n < b. Then using the previous notation for the
coefficient vector of the residue of a polynomial modulo p(x), we have that

[PG(x)]p(x) =
0

0

. So (4.1) gives us a pair of linear equations in the {ai},

1 ≤ i ≤ n− 1, represented by:

[PG(x)]p(x) = AnAn−1 · · ·A2

0
1

+an−1An−1 · · ·A2

0
1

+· · ·+a1

0
1

 =
0

0

 ,
(4.5)
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where each ai is the coefficient of (x)i in the representation of PG(x) as a
sum of falling factorials.

For each 0 ≤ j ≤ n, let xj be the (1, 2)-entry of the matrixAjAj−1 . . . A2.
Then the first of the two equations in (4.5) can be written:

xn + an−1xn−1 + an−2xn−2 + . . .+ a2x2 = 0. (4.6)

However, as we have established, each xj is negative. So in any non-zero
solution to (4.6) at least one of the ai must be negative, which contradicts
the fact that every chromatic polynomial is the sum of positive multiples
of falling factorials.

Now, there have been a number of conjectures in the past as to which
graphs may or may not have chromatic roots in the interval (1, 2) (see,
for example, [41, 12]). Theorem 4.5 has the following corollary regarding
quadratic chromatic roots in this interval.

Corollary 4.7. Let G be a graph. Then any quadratic chromatic root of G
having rational part greater than |V (G)|/2 lies outside the interval (1, 2).

Proof. Suppose there is a real quadratic zero α of PG(x) with rational part
greater than |V (G)|/2 lying in the interval (1, 2). Let p(x) = x2 − bx + c

be the corresponding irreducible factor of PG(x); then the rational part
of α is b/2. Any chromatic root of a graph on less than 4 vertices is an
integer, and so |V (G)| ≥ 4, which implies that b > 4. This means that
α is of the form (b −

√
b2 − 4c)/2, and so we have (b −

√
b2 − 4c)/2 < 2,

giving b− 4 <
√
b2 − 4c. Squaring both sides and rearranging we find that

8b−16 > 4c, and so c < 2b−4. Finally note that c > 0, as it is the product
of two positive real numbers.

So we have shown that if G has a chromatic root α with rational part
greater than |V (G)|/2 lying in the interval (1, 2) then PG(x) is divisible by
p(x) = x2 − bx + c, where b > 4 and 0 < c < 2b − 4. By Theorem 4.5
then, G must have order at least b. This contradicts the assertion that the
rational part of α is greater than |V (G)|/2.

It should be noted that the above corollary is not a new result. Let
β = (108 + 12

√
93)1/3. In [11] Dong showed that for 6 ≤ n ≤ 8 and
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n ≥ 9, the largest non-integer real chromatic roots of graphs of order n are,
respectively, n− 4 + β/6− 2/β and (n− 1 +

√
(n− 3)(n− 7))/2. If a real

quadratic integer lies in the interval (1, 2) and has rational part greater than
n/2 then its conjugate will be greater than n − 2. in this sense Corollary
4.7 is implied by Dong’s result.

We finish this section by mentioning one final implication of the above
results on the location of chromatic roots of certain dense graphs.

Corollary 4.8. Suppose a graph G of order n has chromatic number χ(G) =
n − 2. Then, if |E(G)| > (n2 − 3n + 6)/2, PG(x) has no real zeros in the
interval (1, 2).

Proof. If G has chromatic number n − 2, then PG(x) = x(x − 1) . . . (x −
n + 3)(x2 − bx + c). As mentioned previously, the coefficient of xn−1 in
PG(x) is precisely −|E(G)|. Hence |E(G)| = 1 + 2 + · · · + (n − 3) + b =
(n−3)(n−2)/2+b. So if |E(G)| > (n2−3n+6)/2, then b > (n2−3n+6)/2−
(n− 3)(n− 2)/2 = n. So the rational part b/2 of the zeros of x2− bx+ c is
greater than n/2, and by Corollary 4.7, the zeros of x2− bx+ c—and hence
all zeros of PG(x)—lie outside the interval (1, 2).

It is not difficult to construct graphs satisfying the hypotheses of Corol-
lary 4.8; indeed the subfamily of bicliques discussed in §6.3 provide many
such examples. To see this, let G be a (2, n− 2)−biclique, with m > n− 1
bridging edges. Then G has chromatic number n− 2, and

|E(G)| =
(
n− 2

2

)
+m+ 1 = n2 − 5n+ 2m+ 8

2 >
n2 − 3n+ 6

2 .
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Chapter 5

The α + n conjecture

In [8] it was conjectured that for every algebraic integer α there is a natural
number n such that α + n is a chromatic root. The authors proved this
conjecture for quadratic integers, but it has remained unresolved for alge-
braic numbers of higher degree. In this chapter we present an alternative
proof of the quadratic case, and then show how a similar technique can be
used to prove the conjecture for cubic integers.

Our methods are constructive: given any quadratic or cubic integer
α, we not only show that there is, respectively, a (2, k)-biclique or (3, k)-
biclique having a chromatic root which is an integer translation of α, but
detail an explicit construction which produces a large (in most cases infi-
nite) family of graphs satisfying the hypothesis.

Indeed, an interesting question raised by this work is that of how many
graphs there are having a chromatic root which is a shift of each given
algebraic integer. This question is equivalent to that of how often different
number fields arise as splitting fields of factors of chromatic polynomials:
once we know that every possible such field arises in this way, the natural
next question is as to whether or not some are more prevalent than others,
and why. This is beyond the scope of the current work, and would be
likely to require the application of probabilistic and enumerative methods.
However, in the next chapter we do approach this question obliquely, by
investigating operations on graphs which preserve such splitting fields.

Referring back to §3.1, we recall the useful fact that the chromatic
polynomial of any given biclique factorises into one “interesting factor”and
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otherwise linear factors. Note that we need only concern ourselves with
these interesting factors when considering algebraic properties.

We will write that a polynomial of degree d is reduced if its second-
highest degree term has coefficient lying in the set {0, 1, . . . , d − 1}. The
following simple observation is key to our proof method.

Lemma 5.1. For any irreducible polynomial f(x) ∈ Z[x] there is some
integer m such that f(x−m) is reduced.

Proof. Let
f(x) = xd + ad−1x

d−1 + . . .+ a1x+ a0

be some polynomial in Z[x]. Then setting m = bad−1
d
c will give us 0 ≤

[xd−1]f(x−m) ≤ d− 1, as required.

Our proof method is as follows: given some algebraic integer α, we
wish to show that there is some n ∈ N such that α+n is a chromatic root.
By definition, there exists a minimal polynomial of α; that is, a monic,
irreducible polynomial f(x) ∈ Z[X] of degree d such that f(α) = 0. And
by Lemma 5.1, there is a unique integer m such that f(x−m) is reduced.
Clearly, α +m is a zero of this reduced polynomial.

Suppose now that we can show there is a chromatic factor g(x) and
integer k such that f(x−m) = g(x+k). This means that f(x) = g(x+k+
m), and setting n = k +m, we have that α is a zero of g(x+ n), implying
that α + n is a zero of g(x), and hence a chromatic root. By dispensing
with direct consideration of algebraic integers, and focusing instead on their
minimal polynomials, the above reasoning leads us to the following much
more approachable statement of the α + n conjecture.

Conjecture 5.2. For every reduced polynomial f(x) there is a chromatic
factor g(x) and integer n such that g(x+ n) = h(x).

As mentioned above, we will show that the chromatic polynomials of
bicliques furnish all the chromatic factors necessary to prove the quadratic
and cubic cases of this conjecture.
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5.1 Quadratic integers

The interesting factor of a (2, k)-biclique is, simply:

ga,b(x) = (x− a)(x− b)− (x− a− b), (5.1)

where a and b represent the numbers of neighbours in the k-clique of each
of the vertices of the 2-clique (this follows from a basic application of the
Möbius inversion method of §3.1). In order to prove our result it suffices to
show that, given any reduced quadratic polynomial h(x), there are natural
numbers a, b and n such that h(x) = ga,b(x+ n).

To begin with, suppose the x-coefficient of h(x) is zero, so h(x) = x2+a0

for some a0 ∈ Z. Let

a = −1/2 + n− (
√

4n− 4a0 − 3)/2

b = −1/2 + n+ (
√

4n− 4a0 − 3)/2.

Then ga,b(x) = x2 − 2nx + n2 + a0 = h(x − n), as desired. By choosing n
high enough, and such that 4n− 4a0− 3 is a perfect square, we can always
ensure that a and b are non-negative integers.

Note that if a0 is positive here, we can simply choose a = a0 and
b = a0 + 1; this would give ga,b(x) = h(x− a0 − 1).

The second case we need to consider is where the x-coefficient of h(x)
is 1, that is, where: h(x) = x2 + x+ a0 for some a0 ∈ Z. We can approach
this in a similar way: this time let

a = −1 + n−
√
n− a0 − 1

b = −1 + n+
√
n− a0 − 1.

Then ga,b(x) = x2 +(1−2n)x+n2 +a0−n = h(x−n). Again, by choosing
n high enough, and such that n− a0− 1 is a perfect square, we can ensure
that a and b are non-negative integers.

In an analogous way to the previous case, if a0 is positive there is a
particularly simple solution: choose a = a0 and b = a0 + 2, then we have
ga,b(x) = h(x− a0 − 2).

So we have shown that, given any quadratic reduced polynomial h(x),
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we can find non-negative integers a, b and n such that ga,b(x + n) = h(x),
thus proving the quadratic case of the α + n conjecture.

5.2 Cubic integers

Let G be a (3, k)-biclique. Label the three vertices of the 3-clique v1, v2 and
v3; let a, b and c represent, respectively, the number of neighbours of v1, v2

and v3 in the k-clique; and let d, e and f represent the number of vertices
in the k-clique joined to both v2 and v3, both v1 and v3, and both v1 and
v2 respectively. Then we can use the second construction of the chromatic
polynomials of bicliques given in §3.1 to construct the interesting factor of
the chromatic polynomial of G as follows:

g(x) = (x− a− e− f)(x− b− d− f)(x− c− d− e) (5.2)

− (x− a− b− d− e− f)(x− c− d− e)

− (x− a− c− d− e− f)(x− b− d− f)

− (x− b− c− d− e− f)(x− a− e− f) + 2(x− a− b− c− d− e− f).

As in the previous section, it suffices to show that, given any reduced cu-
bic polynomial h(x), there is an interesting factor g(x) and natural number
n such that h(x) = g(x+ n).

We will proceed with each of the three types of reduced polynomial in
turn, showing that for each type, and for every choice of the x−coefficient
and constant term, the parameters a, . . . , f can be chosen in such a way as
to produce the desired chromatic polynomial. There are no doubt many
possible ways in which to correctly choose the parameters; in each case we
will mention just one.
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Case 1: a2 = −1

Let h(x) = x3 − x2 + a1x+ a0, and let i represent any number. Assign the
below values to the parameters a, b, c, d, e, f :

a = (2n+ a0)2 − 11a0 + 35 + a1 − (8a0 − 45)i− (16i+ 24)n+ 16i2

b = −2i+ n− 3

c = (2n+ a0)2 − 13a0 + 46 + a1 − (8a0 − 53)i− (16i+ 28)n+ 16i2

d = i+ 1

e = −(2n+ a0)2 + 12a0 − 41− a1 + (8a0 − 50)i+ (16i+ 27)n− 16i2

f = i

Let g(x) be the polynomial obtained by substituting these values into (5.2).
Then we have

g(x) = x3 +(−3n−1)x2 +(3n2 +2n+a1)x−n3−n2−a1n+a0 = h(x−n),

as desired. It remains to show that, for any a0 and a1, appropriate values
for i and n can be found such that each of the above parameters are non-
negative integers. From the expressions for b, d and f , i must be non-
negative and n must satisfy n ≥ 2i + 3. We introduce a new variable t by
making the substitution

n = −a0/2 + 2i+ t,

giving us new expressions for a, c and e:

a = a0 + 35 + a1 − 3i− 24t+ 4t2

c = a0 + 46 + a1 − 3i− 28t+ 4t2

e = −3a0/2− 41− a1 + 4i+ 27t− 4t2
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Requiring that all these be non-negative then gives us the three inequalities:

3i ≤ a0 + 35 + a1 − 24t+ 4t2 (5.3)

3i ≤ a0 + 46 + a1 − 28t+ 4t2 (5.4)

4i ≥ 3a0/2 + 41 + a1 − 27t+ 4t2 (5.5)

Let t be an integer that is greater than 3, greater than a0/2 + 3, and
otherwise large enough to satisfy:

a0 + 46 + a1 − 28t+ 4t2
3 ≥ 3a0/2 + 41 + a1 − 27t+ 4t2

4 + 1.

There is at least one integer between the expression on the left and the
quotient on the right. Choose i to be such an integer; then the chosen
values for i and t satisfy (5.4) and (5.5). Because t ≥ 3, (5.4) implies (5.3).
Finally set n = d−a0/2e+ 2i+ t. Because t > a0/2 + 3, we then have that
n satisfies the condition n ≥ 2i+ 3.

The remaining two cases are similar, and so will be more briefly de-
scribed.

Case 2: a2 = 0

Let h(x) = x3 + a1x+ a0x, and again let i be any number. This time set:

a = (n+ a0)2 + a1 + 14 + 19i+ 9i2 − (6i+ 8)n− (6i+ 6)a0

b = −2i+ n− 3

c = (n+ a0)2 + a1 + 20 + 25i+ 9i2 − (6i+ 10)n− (6i+ 8)a0

d = i+ 1

e = −(n+ a0)2 − a1 − 18− 23i− 9i2 + (6i+ 10)n+ (6i+ 7)a0

f = i

Let g(x) be the polynomial obtained by substituting these values into (5.2).
Then

g(x) = x3 − 3nx2 − (3n2 − a1 + 3n2)x− n3 − a1n+ a0 = h(x− n).
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Now make the substitution

n = −a0 + 3i+ t.

This gives us the following expressions for a, c and e:

a = t2 + a1 + 14− 5i+ 2a0 − 8t

c = t2 + a1 + 20− 5i+ 2a0 − 10t

e = −t2 − a1 − 18 + 7i− 3a0 + 10t,

leading to the inequalities:

5i ≤ t2 + a1 + 14 + 2a0 − 8t

5i ≤ t2 + a1 + 20 + 2a0 − 10t

7i ≥ t2 + a1 + 18 + 3a0 + 10t.

Again, by choosing t to be very large, a positive value for i can be found
to satisfy these for any a0, a1.

Case 3: a2 = 1

Let h(x) = x3 + x2 + a1x+ a0x, and set:

a = a2
0 + 5− a0 + a1 + (3− 4a0)i− 2n+ 4i2

b = −2i+ n− 3

c = a2
0 + 6− 3a0 + a1 + (7− 4a0)i− 2n+ 4i2

d = i+ 1

e = −a2
0 − 7 + 2a0 − a1 − (6− 4a0)i+ 3n− 4i2

f = i

Substituting into (5.2) we obtain

g(x) = x3 + (1− 3n)x2 + (3n2− 2n+ a1)x−n3 +n2− a1n+ a0 = h(x−n).
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We now express i in terms of a new parameter t, by setting:

i = a0/2− t.

This gives us

a = 5 + a0/2 + a1 − 3t− 2n+ 4t2

c = 6 + a0/2 + a1 − 7t− 2n+ 4t2

e = −7− a0 − a1 + 6t+ 3n− 4t2,

and so we must satisfy

2n ≤ 5 + a0/2 + a1 − 3t+ 4t2

2n ≤ 6 + a0/2 + a1 − 7t+ 4t2

3n ≥ 7 + a0 + a1 − 6t+ 4t2.

This time we need to choose a large negative value for t. If it is large
enough then d and f will be non-negative, and we can easily find a positive
n to satisfy the three inequalities, as well as the requirement n ≥ 2i+ 3.

Thus we have given a means to construct a (3, k)-clique with a chromatic
root α + n for any cubic integer α, thereby proving the cubic case of the
α + n conjecture.

Remark 5.3. Given the exponential increase in the number of (j, k)-cliques
as j increases (constructed as in §3.1, a (j, k)-clique has 2j−2 parameters),
it seems entirely plausible that they might satisfy the general conjecture.
Unfortunately the increase in parameters leads to difficulties in finding
correct specialisations in the manner of the two cases proved so far, and it
seems likely that a different method from that used here would need to be
found for algebraic numbers of higher degree.
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Chapter 6

Chromatic splitting
field-equivalence

The main motivation behind this chapter could perhaps best be summed
up by the simple question: how is the the abstract structure of a graph
related to the algebraic properties of its chromatic roots?

Recall that the splitting field of a polynomial is the smallest field ex-
tension of Q in which that polynomial factorises entirely into linear factors
(equivalently, the smallest field extension containing every zero of the poly-
nomial), and that we refer to the splitting field of the chromatic polynomial
of a graph as its chromatic splitting field. An obvious way to investigate
correspondences between graphs’ structures and the algebraic properties
of their chromatic roots is to look for families of graphs having the same
chromatic splitting field. A number of such families will be presented and
studied in this chapter.

As a means of constructing these families, we will be interested in cer-
tain graph operations—by which we simply mean sequences of additions
and removals of edges and vertices—which preserve chromatic splitting
fields. Some types of chromatic splitting field-preserving operation can be
performed on any graph. For example, let G be a graph, and let H be the
new graph formed by adding a single vertex v to G connected to only one
of the existing vertices. Then for any proper x-colouring for G there are
additionally x − 1 choices of colour for v, and so PH(x) = (x − 1)PG(x);
thus H clearly has the same chromatic splitting-field as G. Similarly, if G
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contains a k-clique, then connecting a new vertex to every vertex of this
clique will give us a new graph with chromatic polynomial (x− k)PG(x).

In Proposition 2.9 we proved that the join of any graph G with an n-
clique has chromatic polynomial (x)nPG(x − n). This gives a slightly less
trivial chromatic splitting field-preserving operation, and one which has the
following interesting consequence:

Corollary 6.1. If α is a chromatic root, then so too is α+n for all n ∈ N.

We shall discuss some much more unexpected chromatic splitting field-
preserving operations which can be performed on some of the graphs from
Chapter 3. The first of these enables us to prove that a multiplicative
analogue of Corollary 6.1 holds for certain chromatic roots.

6.1 The nα conjecture

The following was proposed by Cameron and Morgan in [8]:

Conjecture 6.2 (The nα conjecture). If α is a chromatic root, then so
too is nα for any natural number n.

This conjecture is currently very far from being resolved either way.
However, in connection with it the authors did make the following obser-
vation (recall from §3.2.1 that R(a1, . . . , ak) represents a ring of cliques):

Proposition 6.3. If α is a non-integer chromatic root of R(1, a2, . . . , ak),
then nα is a chromatic root of R(1, na2, . . . , nak).

Proof. Any non-integer zero of the chromatic polynomial of R(1, a2, . . . , ak)
is a zero of the interesting factor:

1
x

(
k∏
i=2

(x− ai)−
k∏
i=2

(−ai)
)
, (6.1)

as all other factors are linear. The corresponding factor of the chromatic
polynomial of R(1, na2, . . . , nak) is

1
x

(
k∏
i=2

(x− nai)−
k∏
i=2

(−nai)
)
,
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and dividing through by nk−1 gives

1
x

(
k∏
i=2

(x/n− ai)−
k∏
i=2

(−ai)
)
. (6.2)

If α is a zero of (6.1), then nα is a zero of (6.2).

This means that increasing the sizes of all but one of the cliques in a
ring of cliques by some fixed factor preserves the chromatic splitting field of
the graph. Now, as rings of cliques are a special case of clique-theta graphs,
it is natural to speculate as to whether we can use a similar method to show
that the nα conjecture holds for this more general family. As we shall see,
this is indeed the case, and a direct implication is that there exists a set
of chromatic roots which is both dense in the complex plane, and closed
under multiplication by positive integers.

Recall that in Proposition 3.2 we presented a general formula for the
chromatic polynomials of clique-theta graphs. In what follows, given a set
of numbers S and an integer a, we shall denote by aS the set produced by
multiplying every element of S by a.

Theorem 6.4. Suppose α is a non-integer chromatic root of the clique-
theta graph T (1, S1, S2, . . . , Sk, p); then nα is a chromatic root of
T (1, nS1, nS2, . . . , nSk, np).

Proof. Again we need only consider the interesting factors of the relevant
chromatic polynomials. For T (1, S1, S2, . . . , Sk, p) this is, by Proposition
3.2:[
p(x− p)k−1

k∏
i=1

r(1, ai(1), . . . , ai(mi))
]

+
[
k∏
i=1

r(1, ai(1), ai(2), . . . , ai(mi), p)
]
.

(6.3)
Expanding the interesting factors of the rings of cliques, this becomes:
[
p(x− p)k−1

k∏
i=1

1
x

(
mi∏
l=1

(x− ai(l))−
mi∏
l=1

(−ai(l))
)]

+
[
k∏
i=1

1
x

(
(x− p)

mi∏
l=1

(x− ai(l)) + p
mi∏
l=1

(−ai(l))
)]

. (6.4)
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For T (1, nS1, nS2, . . . , nSk, np), we have:
[
np(x− np)k−1

k∏
i=1

1
x

(
mi∏
l=1

(x− nai(l))−
mi∏
l=1

(−nai(l))
)]

+
[
k∏
i=1

1
x

(
(x− np)

mi∏
l=1

(x− nai(l)) + np
mi∏
l=1

(−nai(l))
)]

.

(6.5)

Let s = ∑k
i=1(mi + 1) Then dividing (6.5) by ns gives:

[
p(x/n− p)k−1

k∏
i=1

1
x

(
mi∏
l=1

(x/n− ai(l))−
mi∏
l=1

(−ai(l))
)]

+
[
k∏
i=1

1
x

(
(x/n− p)

mi∏
l=1

(x/n− ai(l)) + p
mi∏
l=1

(−ai(l))
)]

.

(6.6)

If α is a zero of (6.4), then nα is a zero of (6.6).

As we shall see, not much more work will be required to show that
6.4 implies the following, which is the most important consequence of this
section.

Corollary 6.5. The set of chromatic roots satisfying the nα conjecture
is dense in the complex plane. Thus there exists a set of chromatic roots
which is both dense in the complex plane, and closed under multiplication
by positive integers.

By [43], the chromatic roots of those generalised theta graphs having
paths of one fixed length are dense in the whole complex plane, with the
exception of the disc {z ∈ C : |z − 1| < 1}. As a generalised theta graph
is simply a clique-theta graph with all cliques of size one, Corollary 6.5
follows from Theorem 6.4 for this region. However, we still need to provide
a proof for the excluded disc.

Sokal was able to prove that chromatic roots are dense inside this disc
simply by allowing joins with copies of K2 (see Corollary 1.3 in [43]). We
can follow this approach, but need to modify it slightly.

Proof for the disc |z − 1| < 1. Let z ∈ C be such that |z − 1| < 1, and
let ε > 0 be arbitrarily small (in particular we may assume that ε < |2 −
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<(z)|). We wish to show that there is a chromatic root α which satisfies
the following two conditions:

a) |α− z| < ε

b) For all natural numbers n there exists a graph having chromatic root
nα

Let w = z − 2. Then, by Sokal’s result, there exists some generalised
theta graph G1 having a chromatic root β such that |β − w| < ε. Now let
G2 be the join of G1 with K2, and let α = β + 2. Then α is a chromatic
root of G2 by Proposition 2.9, and we have:

|α− z| = |β − w| < ε,

thus proving part (a).
For part (b), let n be any natural number, and let Gn be the clique-

theta graph obtained from G1 by blowing up all but one endpoint vertex
into a clique of size n. By Theorem 6.4, Gn then has a chromatic root nβ,
and thus the join of Gn with K2n has a chromatic root:

nβ + 2n = n(β + 2) = nα

6.2 Complementary bicliques

We will now discuss a splitting field-preserving operation that can be per-
formed on any biclique. The proof of the main result regarding bicliques
that we present in this section is quite technical: a more enlightening (and
more general) one appears in §6.4, where we examine the relation in more
detail.

Let G be a (j, k)-biclique. As we saw in §3.1, the chromatic polynomial
of G is of the form:

PG(x) = (x)kg(x),

where (x)k denotes the falling factorial x(x− 1)(x− 2) . . . (x− k + 1), and
g is the interesting factor of degree j. Let H be the graph consisting of
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Figure 6.1: A complementary (3, 3)-clique pair

the same two cliques, but with edges between them which complement
those of G. That is, to form H we replace all edges in G between the two
cliques by non-edges, and vice-versa. We will refer to such a pair of graphs
as complementary (j, k)-bicliques. Being another (j, k)-biclique, H has a
chromatic polynomial of the same form as G:

PH(x) = (x)kh(x),

where h(x) has degree n. In terms of the parameters given by the second
construction of §3.1, h(x) is obtained from g(x) by switching each aS with
its “complement” aX\S.

Proposition 6.6. For some positive integers j and k with j ≤ k let G and
H be complementary (j, k)-bicliques, and let g(x) and h(x) be the interesting
factors of PG(x) and PH(x) respectively. Then:

g(x+ j + k − 1) = (−1)jh(−x).

Whenever there exists some integer c such that two degree j polynomials
g(x) and h(x) satisfy g(x) = (−1)jh(−x + c) we will write that they are
reflections of each other. In the next section we will see that Proposition
6.6 is in fact a special case of a more general result on reflections between
interesting factors of chromatic polynomials of bicliques. It is perhaps the
most striking special case however, and for now we will restrict ourselves
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to proving it directly.
For the purposes of the proof it is more convenient to express Proposi-

tion 6.6 in a different way. Note that

PG(x+ j + k − 1) = (x+ j + k − 1)kg(x+ j + k − 1),

and

(−1)kPH(−x) = (−1)k(−x)kh(−x)

= (x+ k − 1)kh(−x).

Thus we can rewrite Proposition 6.6 as:

PG(x+ j + k − 1) = (−1)j+k (x+ j + k − 1)k
(x+ k − 1)k

PH(−x). (6.7)

If the chromatic polynomials of any two bicliques G and H are related in
this way, then we will write that the pair satisfies (6.7).

We will require the following lemma:

Lemma 6.7. Let G and H be complementary (j, k)-bicliques, and let e be
a bridging edge of G. Suppose that (6.7) holds for complementary (j −
1, k−1)-bicliques. Then, if (6.7) holds for G and H, we have the following
similar relationship for G/e and H/e:

PG/e(x+ j + k − 1) = (−1)j+k−1 (x+ j + k − 1)k
(x+ k − 1)k

PH/e(−x).

Proof. Suppose e joins the vertices u and v. Bringing these two vertices
together inG orH is the same as first deleting them, along with all adjacent
edges, and then adding a new vertex w joined to every remaining vertex.
Let G\uv represent the graph formed by deleting u and v from G. Then:

PG/e(x) = xPG\uv(x− 1) (6.8)

and
PH/e(x) = xPH\uv(x− 1). (6.9)

Deleting u and v from G and H leaves us with a pair of complementary
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(j− 1, k− 1)-bicliques G\uv and H\uv. By hypothesis, (6.7) holds for this
pair. That is:

PG\uv(x+ j + k − 3) = (−1)j+k−2 (x+ j + k − 3)k−1

(x+ k − 2)k−1
PH\uv(−x). (6.10)

So we have:

PG/e(x+ j + k − 1) = (x+ j + k − 1)PG\uv(x+ j + k − 2)

= (x+ j + k − 1)PG\uv((x+ 1) + j + k − 3)

= (−1)j+k−2(x+ j + k − 1)((x+ 1) + j + k − 3)k−1

((x+ 1) + k − 2)k−1
PH\uv(−(x+ 1))

= (−1)j+k−2(x+ j + k − 1)(x+ j + k − 2)k−1

(x+ k − 1)k−1
PH\uv(−x− 1)

= (−1)j+k−2 (x+ j + k − 1)k
(x+ k − 1)k−1

PH\uv(−x− 1)

= (−1)j+k−2 (x+ j + k − 1)k
(x+ k − 1)k−1

1
−x

PH/e(−x)

= (−1)j+k−1 (x+ j + k − 1)k
(x+ k − 1)k

PH/e(−x)

Here the first equality follows from (6.8), the third from (6.10), and the
sixth from (6.9).

Lemma 6.8. Let G0 and H0 be complementary (j, k)-bicliques with the
property that G0 has every possible edge between the two cliques, and H0

has none. Then (6.7) holds for G0 and H0.

Proof. Note that G0 is a (j + k)-clique, and H0 is the disjoint union of an
j-clique and a k-clique. We have:

PG0(x+ j + k − 1) = (x+ j + k − 1)j+k,

and

(−1)j+kPH0(−x) = (−1)j+k(−x)j(−x)k
= (x+ j − 1)j(x+ k − 1)k.
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So (6.7) clearly holds for (G0, H0).

We are now ready to proceed with the proof of the proposition, which is
by induction on j. First, let G′ and H ′ be complementary (1, k)-bicliques,
in which G′ has m edges between the clique and the singleton, and H ′

therefore has k−m such edges. We will show that G′ and H ′ satisfy (6.7).
We have:

PG′(x+ k) = (x+ k)k(x+ k −m),

and

(−1)1+kPH′(−x) = (−1)1+k(−x)k(−x− k +m)

= (x+ k − 1)k(x+ k −m).

Hence
PG′(x+ k) = (−1)1+k (x+ k)k

(x+ k − 1)k
PH′(−x) (6.11)

as desired.
Now assume that j ≥ 2, suppose the result is true for any pair of

complementary (j−1, k−1)-bicliques, and let G and H be complementary
(j, k)-bicliques, with H having m edges bridging the two cliques. Label the
bridging edges of H as {e1, . . . , em}. We will construct a series of graphs
{Gi}, starting with G0 (the graph having all possible bridging edges) and
culminating in Gm = G, by removing edges ei from G0 one at a time. That
is:

G1 = G0 \ e1, G2 = G1 \ e2, . . . , G = Gm−1 \ em.

By the addition-contraction identity (2.7), for all 1 ≤ i ≤ m we have:

PGi
(x) = PGi−1(x) + PGi−1/ei

(x). (6.12)

At the same time, we can construct another series of graphs {Hi}, this
time starting with H0 (the graph with no bridging edges) and adding the
edges ei one at a time, so that:

H1 = H0 + e1, H2 = H1 + e2, . . . , H = Hm−1 + em.
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Now, inserting negative arguments into (2.6) gives us, for all 1 ≤ i ≤ m:

(−1)j+kPHi
(x) = (−1)j+kPHi−1(x) + (−1)j+k−1PHi−1/e1(x). (6.13)

Note that Gi and Hi are complementary (j, k)-bicliques for all i.
By Lemma 6.8, condition (6.7) holds for G0 and H0. Assume that, for

some i, (6.7) holds for some pair Gi and Hi, so that:

PGi
(x+ j + k − 1) = (−1)j+k (x+ j + k − 1)k

(x+ k − 1)k
PHi

(−x).

Then, by Lemma 6.7, it holds too for Gi/ei+1 and Hi/ei+1, that is

PGi/ei+1(x+ j + k − 1) = (−1)j+k−1 (x+ j + k − 1)k
(x+ k − 1)k

PHi/ei+1(−x).

Using (6.12) we have:

PGi+1(x+ j + k − 1) = PGi
(x+ j + k − 1) + PGi/ei+1(x+ j + k − 1)

= (x+ j + k − 1)k
(x+ k − 1)k

(
(−1)j+kPHi

(−x) + (−1)j+k−1PHi/ei+1(−x)
)

= (−1)j+k (x+ j + k − 1)k
(x+ k − 1)k

PHi+1(−x),

where the last equality follows from (6.13). Hence (6.7) holds for Gi+1

and Hi+1, and so by induction for G and H. Thus we have shown that,
if condition (6.7) holds for complementary (j − 1, k − 1)-bicliques, then it
holds too for complementary (j, k)-bicliques. As k was arbitrary in the
initial case of a (1, k)-clique pair, the result follows by further induction on
j.

6.3 (2, k)-bicliques

Recall that any (2, k)-biclique is uniquely defined by two integers a and
b, which represent the number of neighbours in the k-clique of each of the
vertices in the 2-clique (as usual, we are assuming that no vertex is adjacent
to every other vertex of the graph ). As mentioned in §5.1, the chromatic
polynomial of such a graph is a product of linear factors and the interesting
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factor:
ga,b(x) = (x− a)(x− b)− (x− a− b).

We will use this fact to classify every (2, k)-biclique according to its chro-
matic splitting field.

Proposition 6.9. Let a and b be non-negative integers, and let ga,b(x) be
the interesting factor from the chromatic polynomial of the (2, k)-biclique
defined by a and b. Let z be some integer. Then:

1. ∆(ga,b(x)) = −4z if and only if a = z + i2 and b = z + (i + 1)2 for
some i ∈ Z.

2. ∆(ga,b(x)) = −4z + 1 if and only if a = z + i2 + i and b = z + (i +
1)2 + (i+ 1) for some i ∈ Z.

Proof. Recall that the discriminant of ga,b(x) is:

(a− b)2 − 2(a+ b) + 1.

In order to prove sufficiency for the first statement we simply need to note
that evaluating this expression at a = z + i2, b = z + (i + 1)2 gives −4z.
Similarly, evaluating at a = z+ i2 + i, b = z+(i+1)2 +(i+1) gives −4z+1.

The proof of the converse is slightly trickier. First let a = z + c, where
c is not a perfect square. Suppose that there is some b ∈ N such that
∆(ga,b(x)) = −4z. Then we have:

(z + c− b)2 − 2(z + c+ b) + 1 = −4z.

Expanding this equation and solving for b gives b = z+ c+ 1± 2
√
c, which

contradicts the assertion that b is a natural number. This means that in
order for the discriminant of ga,b(x) to equal −4z, both a and b must be a
sum of z with a perfect square.

Now let j be any integer, let a = z + j2, and suppose that b is another
integer such that ga,b(x) has discriminant −4z. Then we have:

(z + j2 − b)2 − 2(z + j2 + b) + 1 = −4z.
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Solving this for b gives that b = z + (j + 1)2 or b = z + (j − 1)2. Thus if
∆(ga,b(x)) = −4z then a = z + i2 and b = z + (i+ 1)2 for some i ∈ Z.

We can use a similar method to prove necessity in the second statement.
Let a = z + c, where c is not of the form i2 + i for some integer i. Suppose
that there is some b ∈ N such that ∆(ga,b(x)) = −4z + 1. Then we have:

(z + c− b)2 − 2(z + c+ b) + 1 = −4z + 1.

Solving for b gives b = z + c + 1 ±
√

4c+ 1. As 4c + 1 is only a perfect
square if c = i2 + i for some i ∈ Z, we have a contradiction.

Now let j be any integer, let a = z + j2 + j, and suppose that b is
another integer such that ga,b(x) has discriminant −4z + 1. Then we have:

(z + j2 + j − b)2 − 2(z + j2 + j + b) + 1 = −4z + 1.

Solving this for b we see that either:

b = z + (j + 1)2 + (j + 1),

or:
b = z + (j − 1)2 + (j − 1).

Thus if ∆(ga,b(x)) = −4z+1 then a = z+ i2 + i and b = z+(i+1)2 +(i+1)
for some i ∈ Z.

Corollary 6.10. Let a, b, c and d be non-negative integers. Then the (2, k)-
biclique defined by a and b has the same discriminant as that defined by c
and d if and only if there is some integer k such that:

c = (k + 2)(k + 1 + a− b) + b

d = (k + 1)(k + a− b) + b

Proof. Sufficiency is proved simply by noting that, with the given assign-
ments for c and d:

∆(ga,b(x)) = (a− b)2 − 2(a+ b) + 1 = ∆(gc,d(x)),

for any integer k.
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For the converse, suppose that ∆(ga,b(x)) = ∆(gc,d(x)) = −4z for some
z ∈ Z. Then by Proposition 6.9 there are integers i and j such that:

a = z + i2

b = z + (i+ 1)2

c = z + (j − 1)2

d = z + j2

Let k = i− j. Then:

(k + 2)(k + 1 + a− b) + b = (i− j + 2)(−i− j) + z + (i+ 1)2

= z + (j − 1)2

= c,

and similarly, (k+ 1)(k+ a− b) + b = d. This proves the result in the case
that ∆(ga,b(x)) is congruent to 0 (mod 4).

Now suppose that ∆(ga,b(x)) = ∆(gc,d(x)) = −4z + 1 for some z ∈ Z.
Then by Proposition 6.9 there are integers i and j such that:

a = z + i2 + i

b = z + (i+ 1)2 + (i+ 1)

c = z + j2 + j

d = z + (j + 1)2 + (j + 1)

This time let k = i− j − 1. Then:

(k + 1)(k + a− b) + b = (i+ j + 2)(−i− j − 2) + z + (i+ 1)2 + (i+ 1)

= z + j2 + j

= c,

and similarly, (k + 1)(k + a− b) + b = d.

Corollary 6.10 enables us to classify (2, k)-bicliques according to the
discriminants of the interesting factors in their chromatic polynomials. As
all of the other factors in these polynomials are linear, and the discriminant
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of a quadratic polynomial determines its splitting field, in some cases we
can use this corollary to deduce that two given (2, k)-bicliques have the
same splitting field.

However, in order for two quadratic polynomials to generate the same
splitting field it is not essential that they have the same discriminant; this
also occurs when the discriminant of one is a perfect square multiple of
that of the other. So there is some more work to do in order to completely
classify (2, k)-bicliques according to their chromatic splitting field.

Theorem 6.11. Let a, b, c and d be non-negative integers, and let

∆(ga,b(x)) = (a− b)2 − 2(a+ b) + 1

be the discriminant of ga,b(x). Suppose, without loss of generality, that

|∆(ga,b(x))| ≤ |∆(gc,d(x))|.

Then the (2, k)-biclique defined by a and b generates the same splitting field
as that defined by c and d if and only if there are integers k and n such
that:

c = (k + 2)(k + 1 + a− b) + b+ 1
4(1− n2)∆(ga,b(x))

d = (k + 1)(k + a− b) + b+ 1
4(1− n2)∆(ga,b(x))

Proof. It can be easily verified using computer algebra software that

∆(gc,d(x)) = n2∆(ga,b(x))

for both cases, thus proving sufficiency. For the converse, we must split the
proof into two cases: where ∆(ga,b) is odd, and where it is even.

First suppose ∆(ga,b) is even, so that ∆(ga,b) = −4z for some z ∈ Z,
and suppose that gc,d(x) generates the same splitting field as ga,b(x). Then

∆(gc,d(x)) = n2∆(ga,b(x)) = −4n2z

for some integer n. Proposition 6.9 implies that a = z+i2 and b = z+(i+1)2

for some i ∈ Z, and as −4n2z ≡ 0 (mod 4) for all n, the same result gives
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that c = n2z + (j − 1)2 and d = n2z + j2 for some j ∈ Z.
As in the proof of Corollary 6.10, we now let k = i− j. Then:

(k + 2)(k + 1 + a− b) + b+ 1
4(1− n2)∆(ga,b(x))

= (k + 2)(k + 1 + a− b) + b− (1− n2)z

= (i− j + 2)(−i− j) + (i+ 1)2 + n2z

= n2z + (j − 1)2

= c,

and

(k + 1)(k + a− b) + b+ 1
4(1− n2)∆(ga,b(x))

= (k + 1)(k + a− b) + b− (1− n2)z

= (i− j + 1)(−i− j − 1) + (i+ 1)2 + n2z

= n2z + j2

= d.

This proves necessity in the case that ∆(ga,b) is even.
Now we consider the case that the discriminant of ga,b(x) is odd, that

is: ∆(ga,b) = −4z+ 1 for some z ∈ Z. Suppose again that gc,d(x) generates
the same splitting field as ga,b(x). Then

∆(gc,d(x)) = n2∆(ga,b(x)) = −4n2z + n2

for some integer n. By Proposition 6.9 a = z+ i2 + i and b = z+ (i+ 1)2 +
(i+ 1) for some i ∈ Z.

We have two subcases to consider. First suppose that n is odd. Then
−4n2z + n2 ≡ 1 (mod 4), in which case Proposition 6.9 tells us that

c = n2z − 1
4n

2 + 1
4 + j2 + j

and
d = n2z − 1

4n
2 + 1

4 + (j + 1)2 + (j + 1)
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for some j ∈ Z. Let k = i− j − 1. Then:

(k + 2)(k + 1 + a− b) + b+ 1
4(1− n2)∆(ga,b(x))

= (k + 2)(k + 1 + a− b) + b+ 1
4(1− n2)(−4z + 1)

= (i+ j + 2)(−i− j − 2) + z + (i+ 1)2 + i+ 1 + 1
4(1− n2)(−4z + 1)

= n2z − 1
4n

2 + 1
4 + j2 + j

= c,

and

(k + 1)(k + a− b) + b+ 1
4(1− n2)∆(ga,b(x))

= (k + 1)(k + a− b) + b+ 1
4(1− n2)(−4z + 1)

= (i+ j + 2)(−i− j − 3) + z + (i+ 1)2 + i+ 1 + 1
4(1− n2)(−4z + 1)

= n2z − 1
4n

2 + 1
4 + (j + 1)2 + j + 1

= d.

Now suppose that n is even. Then −4n2z + n2 ≡ 0 (mod 4), in which
case c = n2z − 1

4n
2 + (j − 1)2 and d = n2z − 1

4n
2 + j2 for some j ∈ Z.

Substituting i− j + 1
2 for k, along with the previously specified values for

a and b, gives:

(k + 2)(k + 1 + a− b) + b+ 1
4(1− n2)∆(ga,b(x))

= (k + 2)(k + 1 + a− b) + b+ 1
4(1− n2)(−4z + 1)

= (i− j + 5
2)(−i− j − 1

2) + z + (i+ 1)2 + i+ 1 + 1
4(1− n2)(−4z + 1)

= n2z − 1
4n

2 + (j − 1)2

= c,
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and

(k + 1)(k + a− b) + b+ 1
4(1− n2)∆(ga,b(x))

= (k + 1)(k + a− b) + b+ 1
4(1− n2)(−4z + 1)

= (i− j + 3
2)(−i− j − 3

2) + z + (i+ 1)2 + i+ 1 + 1
4(1− n2)(−4z + 1)

= n2z − 1
4n

2 + j2

= d.

Theorem 6.11 provides us with an equivalence relation on the collection
of 2-sets of natural numbers, whereby two sets are equivalent if the (2, k)-
bicliques they define have the same chromatic splitting field. Thus we have
completely classified (2, k)-bicliques according to the splitting fields of their
chromatic polynomials.

It seems likely that this technique could be used to similarly classify
members of other families of graphs having chromatic polynomials with one
quadratic factor and the rest linear, such as the rings of cliques R(1, a, b, c).
However, as Galois extensions of degree 3 and higher are no longer com-
pletely characterised by the discriminants of their minimal polynomials,
different techniques are required when the interesting factors are of higher
degree.

6.4 Shifts and reflections of chromatic roots
of bicliques

Staying with the family of bicliques, but turning now to the first construc-
tion of the chromatic polynomial given in §3.1, we will show how matchings
of the complements of these graphs can be used to prove some chromatic
splitting field equivalences between (j, k)-bicliques with j > 2.

It is clear that, in order for two bicliques to share the same chromatic
splitting field, the interesting factors of their chromatic polynomials must
be of the same degree. That is, there must be positive integers j, kG and
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kH with j ≤ kG ≤ kH such that one graph is a (j, kG)-biclique and the
other is a (j, kH)-biclique. The simplest way in which two such graphs
might share the same chromatic splitting field is if the interesting factor of
one chromatic polynomial is an integer shift of that of the other, and it is
easy to show that this is always the case when the graphs’ complements
are matching equivalent.

Proposition 6.12. Let j, kG and kH be positive integers with j ≤ kG ≤ kH ,
and let G and H be, respectively, a (j, kG)-biclique and a (j, kH)-biclique.
Denote by g(x) and h(x) the degree j interesting factors of PG(x) and
PH(x). If Ḡ and H̄ are matching equivalent then g(x) = h(x+ kH − kG).

Proof. Suppose that Ḡ and H̄ are matching equivalent. As mi
H̄

= mi
Ḡ
for

all 0 ≤ i ≤ j, we have from (3.2) that

g(x) =
j∑
i=0

mi
Ḡ(x− kG)j−i

and
h(x) =

j∑
i=0

mi
Ḡ(x− kH)j−i,

so clearly g(x) = h(x+ kH − kG).

The converse of Proposition 6.12 is not true: there exist pairs of non-
matching equivalent bicliques having chromatic polynomials with interest-
ing factors which are integer shifts of each other. Later in this section
we will show, without using Proposition 2.9, that for any given integer c
there exist interesting factors g(x) and h(x) of chromatic polynomials of
bicliques having non-matching equivalent complements with the property
that g(x) = h(x+ c).

Now, let g(x) and h(x) be polynomials of equal degree, and suppose
there exists some integer c such that g(x) = (−1)jh(−x+ c). As previously
mentioned, we shall refer to such polynomials as reflections of each other.
There turns out to be many more pairs of bicliques having chromatic poly-
nomials which are related by a reflection than the complementary graphs
discussed in §6.2. The following theorem gives a necessary and sufficient
condition for two bicliques to be related in this way.
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Theorem 6.13. Let j, kG and kH be positive integers satisfying j ≤ kG ≤
kH , and let G and H be, respectively, a (j, kG)-biclique and a (j, kH)-
biclique, having chromatic polynomials PG(x) = (x)kG

g(x) and PH(x) =
(x)kH

h(x). Then g(x) = (−1)jh(−x+ c) for some integer c if and only if

mi
Ḡ =

i∑
l=0

(−1)lml
H̄

(
j − l
j − i

)
(kG + kH + j − c− l − 1)i−l, (6.14)

for all 0 ≤ i ≤ j.

Proof. Suppose that the stated condition holds. From (3.2), we have that:

g(x) =
j∑
i=0

mi
Ḡ(x− kG)j−i,

and so substituting for mi
Ḡ
we get:

g(x) =
j∑
i=0

i∑
l=0

(−1)lml
H̄

(
j − l
j − i

)
(kG + kH + j − c− l − 1)i−l(x− kG)j−i

=
j∑
l=0

(−1)lml
H̄

j−l∑
i=0

(
j − l

j − i− l

)
(kG + kH + j − c− l − 1)i(x− kG)j−i−l

=
j∑
l=0

(−1)lml
H̄

j−l∑
i=0

(
j − l
i

)
(kG + kH + j − c− l − 1)i(x− kG)j−i−l

=
j∑
l=0

(−1)lml
H̄(x+ kH + j − c− l − 1)j−l

=
j∑
l=0

(−1)lml
H̄(−1)j−l(−x− kH + c)j−l

=(−1)j
j∑
l=0

ml
H̄(−x− kH + c)j−l

=(−1)jh(−x+ c).

The converse is proved by simply reversing these steps.

Theorem 6.13 enables us to give another proof of Proposition 6.6. We
will require the following lemma, which is essentially a specialisation or
rephrasing of similar results by, among others, Riordan [38], Farrell and
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Whitehead [18] and Zaslavsky [55]. For the sake of completion, we shall
include a full proof here.

Lemma 6.14. Let Ḡ be a spanning subgraph of the complete bipartite graph
Kj,k, where j ≤ k, and let H̄ be the complement of G in Kj,k. Then:

mi
Ḡ =

i∑
l=0

(−1)lml
H̄

(
j − l
j − i

)
(k − l)i−l.

Proof. Given some 0 ≤ i ≤ j, let X i be the set of all i-matchings of Kj,k,
and for each edge e ofKj,k letAie ⊂ X i be the collection of those i-matchings
containing e. Label the edges of H̄ as {1, 2, . . . ,m}. The i-matchings of Ḡ
are simply those i-matchings of Kj,k not containing any edge of H̄, and so
the number of i-matchings of Ḡ is:

mi
Ḡ =

∣∣∣∣∣X i \
m⋃
e=1
Aie

∣∣∣∣∣ .
By the Principle of Inclusion-Exclusion, the right-hand side of this equation
is precisely: ∑

I⊆{1,...,m}
(−1)|I|

∣∣∣∣∣⋂
e∈I
Aie

∣∣∣∣∣ . (6.15)

Now, note that the i-matchings contained in ⋂e∈I Aie are precisely those
i-matchings of Kj,k containing every e ∈ I. Furthermore, if I ⊆ {1, . . . ,m}
is not a matching, or else has size greater than i, then the number of i-
matchings of Kj,k containing every e ∈ I is zero; and if I is a matching
of size less than or equal to i then the number of i-matchings of Kj,k

containing every e ∈ I depends only on the cardinality of I (not on its
precise edge-content). Thus (6.15) is equivalent to the alternating sum,
over all 0 ≤ l ≤ i, of the product of the number of i-matchings of Kj,k

containing a given l-matching, with the number of possible l-matchings of
H̄.

We can count the i-matchings of Kj,k containing a given l-matching as
follows: the l edges of the l-matching join l vertices on the “j-side” of Kj,k

to l vertices on the “k-side”. From the remaining j−l vertices on the j-side,
we have a choice of i − l to be incident to the extra edges in our desired
i-matching. For each such choice of i − l vertices we then have (k − l)i−l
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ways to choose their neighbours on the k-side. So we have that the number
of i-matchings of Kj,k containing a given l-matching is:

(
j − l
i− l

)
(k − l)i−l =

(
j − l
j − i

)
(k − l)i−l.

The number of possible l-matchings of H̄ is simply ml
H̄
, and so putting

this all together we obtain from (6.15) the desired expression:

mi
Ḡ =

i∑
l=0

(−1)lml
H̄

(
j − l
j − i

)
(k − l)i−l. (6.16)

Now, note that if G and H are complementary (j, k)-bicliques, then Ḡ
and H̄ complement each other inside the complete bipartite graph Kj,k.
Hence, by Lemma 6.14:

mi
Ḡ =

i∑
l=0

(−1)lml
H̄

(
j − l
j − i

)
(k − l)i−l.

This expression is simply (6.14) with kG = kH = k and c = j + k − 1, and
so by Theorem 6.13 we have that

g(x) = (−1)jh(−x+ j + k − 1),

or equivalently:
g(x+ j + k − 1) = (−1)jh(−x).

Thus we have an alternative proof of Proposition 6.6.
Theorem 6.13 in fact enables us to show that there are many pairs of

bicliques other than complementary pairs having chromatic polynomials
with reflected interesting factors. We will give some examples of these for
the case j = 3.

We will use the parametrisation of a (3, k)-clique G in the same way
as described at the beginning of §5.2. To recap: we label the three ver-
tices in the 3-clique of G as v1, v2 and v3; let a, b and c represent the
number of neighbours of v1, v2 and v3 respectively in the k-clique; and let
d, e and f represent the number of vertices in the k-clique joined to both
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v2 and v3, both v1 and v3, and both v1 and v2 respectively. The 6-tuple
(a, b, c, d, e, f) then completely describes G, and we will simply write that
G = (a, b, c, d, e, f).

It will be helpful for what follows to point out some properties of the
complement of this graph. So note that the order of Ḡ is

|V (Ḡ)| = a+ b+ c+ d+ e+ f + 3;

that the number of edges of Ḡ is

|E(Ḡ)| = 2a+ 2b+ 2c+ d+ e+ f ;

and that the degrees of v1, v2 and v3 in Ḡ are (b + c + d), (a + c + e) and
(a+ b+ f) respectively.

Proposition 6.15. Let r, s, t, u and v be non-negative integers satisfying
u+ v = 4t− r− s+ 3, and let G = (r, s, t, t, t, u) and H = (r, s, t, t, t, v) be
(3, k)-bicliques, having chromatic polynomials with interesting factors g(x)
and h(x) respectively. Then:

g(x) = −h(−x+ 6t+ 4).

Proof. First note that the number of vertices connected only to v1, v2 and
v3 in Ḡ are t, t and u respectively, and the corresponding values for H̄ are
t, t and v. Furthermore, in both Ḡ and H̄ the number of vertices connected
to both v2 and v3, both v1 and v3, and both v1 and v2 are r, s and t

respectively.
Now, it is clear that m0

Ḡ
= m0

H̄
= 1. The matching numbers m1

Ḡ
and

m1
H̄
can also be easily found, as they are simply the numbers of edges of Ḡ

and H̄, that is:
m1
Ḡ = 2r + 2s+ 4t+ u

and
m1
H̄ = 2r + 2s+ 4t+ v.

Now, let B be the subgraph of Ḡ resulting from the removal of those
edges incident only to v3 and no other vi, and let A be the subgraph of
B obtained by removing v3 and all remaining incident edges. For l = 2

87



or l = 3, we can split each l-matching of Ḡ into one of two groups: those
containing one of the u edges incident to v3 and no other vi, and those not
containing such an edge. The former consists of every l-matching which is
a union of an (l − 1)-matching of A with one of the u edges in question;
the latter are simply the l-matchings of B. So we have, for l = 2 or 3:

ml
Ḡ = uml−1

A +ml
B. (6.17)

By enumerating the edges of A we immediately find thatm1
A = r+s+4t.

The 2-matchings of A can be counted by multiplying the number of vertices
adjacent to v1 by the number adjacent to v2, and subtracting t (as there
are t vertices adjacent to both v1 and v2), giving us:

m2
A = (r + 2t)(s+ 2t)− t = rs+ 2rt+ 2st+ 4t2 − t.

It remains to find m2
B and m3

B. The 2-matchings can be found by
subtracting the number of pairs of edges of B which are incident to a
common vertex from the total number of pairs of edges of B. The total
number of pairs of edges of B is:(

|E(B)|
2

)
=
(

2r + 2s+ 4t
2

)
= 1

2(2r + 2s+ 4t)(2r + 2s+ 4t− 1),

and if we represent by d(v) the degree of the vertex v, then the number of
pairs which are incident to a common vertex is:

∑
v∈V (B)

(
d(v)

2

)
= 1

2
∑

v∈V (B)

(
d(v)2 − d(v)

)

= −|E(B)|+ 1
2

∑
v∈V (B)

d(v)2

= s2 + 2st+ 4t2 + r2 + 2rt+ rs− t.
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Thus:

m2
B = 1

2(2r + 2s+ 4t)(2r + 2s+ 4t− 1)

− (s2 + 2st+ 4t2 + r2 + 2rt+ rs− t)

= r2 + 3rs+ 6rt− r + s2 + 6st− s+ 4t2 − t.

To count 3-matchings, note that the total number of choices of 3 edges
such that one is incident to each of the vi is

(s+ 2t)(r + 2t)(r + s).

From this we will need to subtract:

1. the t(r+ s) 3-matchings in which the chosen edges incident to v1 and
v2 share a common endpoint;

2. the s(r + 2t) 3-matchings in which the chosen edges incident to v1

and v3 share a common endpoint; and:

3. the r(s + 2t) 3-matchings in which the chosen edges incident to v2

and v3 share a common endpoint.

This gives us:

m3
B = (s+ 2t)(r + 2t)(r + s)− t(r + s)− s(r + 2t)− r(s+ 2t).

Finally, substituting all of these into (6.17), we have:

m2
Ḡ = u(r + s+ 4t) + r2 + 3rs+ 6rt− r + s2 + 6st− s+ 4t2 − t,

and

m3
Ḡ = u(rs+ 2rt+ 2st+ 4t2 − t)

+ (s+ 2t)(r + 2t)(r + s)− t(r + s)− s(r + 2t)− r(s+ 2t).

The matching numbers of H̄ can now be derived by simply substituting
v for u in these expressions, giving:

m2
H̄ = v(r + s+ 4t) + r2 + 3rs+ 6rt− r + s2 + 6st− s+ 4t2 − t,
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and

m3
H̄ = v(rs+ 2rt+ 2st+ 4t2 − t)

+ (s+ 2t)(r + 2t)(r + s)− t(r + s)− s(r + 2t)− r(s+ 2t).

It is now simple, if rather tedious, to verify that for each 0 ≤ i ≤ 3:

mi
Ḡ =

i∑
l=0

(−1)lml
H̄

(
3− l
3− i

)
(4t+ r + s+ 1− l)i−l.

This equation is simply (6.14) with the substitutions:

kG = r + s+ 3t+ u

kH = r + s+ 3t+ v

j = 3

c = 6t+ 4,

which means that G and H satisfy the conditions of Theorem 6.13, and

g(x) = −h(−x+ 6t+ 4).

An alternative proof of Proposition 6.15 can be found by substituting
the appropriate 6 parameters into the construction (5.2) and writing it in
the falling factorial basis (this can be easily done using Stirling numbers of
the second kind). For each 0 ≤ i ≤ 3 the number of i-matchings of Ḡ will
then be the coefficient of (x)i in this basis.

The following two results can be proved in exactly the same way as
Proposition 6.15, and so we will spare the reader the details. In both cases
G and H are (3, k)-bicliques having chromatic polynomials with interesting
factors g(x) and h(x) respectively.

Proposition 6.16. Let r, s, t, u and v be non-negative integers satisfying
u + v = 4t− 2r + 4. If G = (r, r + s− 1, t, t, s + t, u) and H = (r, r + s−
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1, t, t, s+ t, v), then:

g(x) = −h(−x+ 2s+ 6t+ 4).

Proposition 6.17. Let r, s, t, u and v be non-negative integers satisfying
u + v = 4s − 2r + t2 + 2t + 4. If G = (r, r, s, s +

(
t+1

2

)
, s +

(
t+2

2

)
, u) and

H = (r, r, s, s+
(
t+1

2

)
, s+

(
t+2

2

)
, v), then:

g(x) = −h(−x+ 6s+ 2t2 + 4t+ 6).

This is just a sample of reflection relations between bicliques; there
are likely to be more such relations for the relatively simple case j = 3,
and no doubt many more for larger j. Even the few examples we have
presented do however suggest patterns which invite further investigation;
it would be desirable to find a more graph-theoretic classification of pairs
of bicliques having chromatic polynomials which are related by a reflection
than that given by Theorem 6.13. In addition, note that the pivotal relation
between the chromatic polynomials of these graphs and matchings of their
complements in fact holds for any triangle-free graph (see [18] for a proof),
raising the possibility that our results might generalise to larger classes of
graphs.

There is an interesting link between proper colourings and acyclic orien-
tations of pairs of bicliques of the same order that have chromatic polyno-
mials related by a reflection, which is as follows: for some positive integers
j and k satisfying j ≤ k let G and H be (j, k)-bicliques having chromatic
polynomials with interesting factors g(x) and h(x) respectively, and sup-
pose that g(x) = (−1)jh(−x+ c) for some integer c. Then:

g(x+ c) = (−1)jh(−x),

and so

PG(x+ c) = (−1)j (x+ c)k
(−x)k

PH(−x) = (−1)j+k (x+ c)k
(x+ k − 1)k

PH(−x).
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Evaluating this equation at x = 1 gives:

PG(c+ 1) =
(
c+ 1
k

)
(−1)j+kPH(−1). (6.18)

Now, Stanley [45] showed that (−1)nPG(−1) is the number of acyclic ori-
entations of an n-vertex graph G. Thus (6.18) implies that the number
of proper (c + 1)-colourings of G is

(
c+1
k

)
times the number of acyclic ori-

entations of H. In particular, Proposition 6.6 implies that the number of
proper (j + k)-colourings of a (j, k)-biclique is

(
j+k
k

)
times the number of

acyclic orientations of its complementary partner. It seems likely that a
combinatorial proof of this result could be found, which might shed some
more light on the results we have presented in this section.

Finally, we return to our previous assertion, that any integer can be re-
alised as the shift between two interesting factors of chromatic polynomials
of bicliques having non-matching equivalent complements.

Corollary 6.18. Given any c ∈ Z, there exists a pair of (3, k)-bicliques
having non-matching equivalent complements and chromatic polynomials
with cubic interesting factors g(x) and h(x) which satisfy g(x) = h(x+ c).

Proof. The condition g(x) = h(x+ c) holds if and only if h(x) = g(x− c),
and so without loss of generality we may assume that c > 0. Let G be the
(3, 3c + 3)-biclique defined by the parameters (1, 1, c, c, c, 1), and let H be
the (3, 7c+2)-biclique defined by (c, c, 4c, 1, 1, c). Let g(x) be the interesting
factor of PG(x). By Proposition 6.15 the graph J = (1, 1, c, c, c, 4c) has a
chromatic polynomial with interesting factor j(x) = −g(−x+ 6c+ 4). This
graph is the complementary partner of H, and so by Proposition 6.6 we
have that the interesting factor of PH(x) is:

h(x) = −j(−x+ 7c+ 4) = g((x− 7c− 4) + 6c+ 4) = g(x− c).

Clearly Ḡ and H̄ are not matching equivalent, as they have, respectively,
4c+ 5 and 13c+ 2 edges. Thus G and H are our desired graphs.
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Chapter 7

Galois groups of Tutte
polynomials

The work in this chapter was inspired by the relatively recent discovery by
Merino, de Mier and Noy [28] that the reducibility of the Tutte polynomial
TM(x, y) of any matroid M corresponds precisely to the connectedness of
M . It is not difficult to show that, if M is not connected, then TM(x, y) is
a product of the Tutte polynomials of its connected components. However,
the authors of the above paper were able to show that connectedness of M
is in fact sufficient to guarantee irreducibility of TM(x, y) over K(y), where
K is any field of characteristic zero. A consequence of this theorem is that
the degree of the Galois group of TM(x, y) over Q(y) depends only on that
of the Tutte polynomial of M , and thus only on the rank of M . This led
us to speculate as to whether there exist any other clear correspondences
between properties of matroids and those of the Galois groups of their Tutte
polynomials.

We computed the Galois groups of the Tutte polynomials of all con-
nected graphic matroids having rank less than ten in the case K = Q, and
discovered that every such group was the full symmetric group of degree
corresponding to the rank of the matroid. It would be quite remarkable
if this were true in general, but we were not able to prove this, and it
remains an open problem. However the malleability afforded by extra vari-
ables enabled us to prove an analogous result for the multivariate Tutte
polynomial, and one which holds for any coefficient field K.
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We will provide three separate self-contained proofs of this result, each
of which provides some illumination as to why such a wide-ranging object
is restricted in this way. It is necessary to first show that the multivariate
Tutte polynomial of a connected matroid is irreducible over fields of arbi-
trary characteristic; this follows from the original paper of Merino et al.
for fields of characteristic zero, but, as the the authors themselves note, the
Tutte polynomial is in fact reducible over some finite fields. Our proof only
holds for the multivariate version, however it is significantly more efficient
than that given in [28].

The bivariate Tutte polynomial will be addressed in §7.2, where we
discuss the results of our computation, and note some interesting implica-
tions for the chromatic polynomial which would follow from a proof of our
original conjecture.

We shall begin by defining the multivariate Tutte polynomial of a ma-
troid, and explaining its relation to the previously defined graph-theoretical
version (§2.3.1). Note that any discussion of graphs in this chapter will in-
clude those with loops and multiple edges.

7.1 The multivariate Tutte polynomial

The multivariate Tutte polynomial for matroids appears to have been dis-
covered a number of times; the first appearance we are aware of is in [25],
where the author denotes it the “Tugger polynomial” and credits its dis-
covery to one R.T Tugger1. However, for the sake of continuity, we shall
continue to follow [44].

Let M be a finite matroid of positive rank on the set E (our results are
trivial for a matroid having zero rank). As previously, we assign a variable
ve to each element e ∈ E, write v for the collection of all these variables and
vA for the set {ve}e∈A, and define q to be another indeterminate. Sokal
gives the following definition for the multivariate Tutte polynomial of a

1For the benefit of those readers who may otherwise follow us in searching
fruitlessly for this author’s original work, we should note that “R.T. Tugger” is
in fact Kung’s cat, whose full name is Rum Tum Tugger [24].
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matroid M :
Z̃M(q,v) =

∑
A⊆E

q−rM (A) ∏
e∈A

ve.

It can easily be seen that Z̃M(q,v) is therefore a polynomial in 1
q
with

coefficients in Z[v]. For our purposes it is more convenient to use the
following minor modification:

ẐM(q,v) = qr(M)Z̃M(q,v).

We then have:

ẐM(q,v) =
∑
A⊆E

qr(M)−rM (A) ∏
e∈A

ve. (7.1)

which is closer to the graph theoretical version defined in §2.3.1. Note that
ẐM(q,v) is a polynomial of degree r(M) in q, which is monic ifM contains
no loops (note that this is certainly the case whenever M is connected).
Analogously to the previous definition for graphs, ẐM(q,v) is a generating
function for the content and rank of the subsets of E, and thus encodes all
of the information about M2

As matroids are generalisations of graphs, the results of this section of
course apply directly to these objects. In fact, by simply substituting, for
example, “biconnected graph” for “connected matroid,” each proof can be
easily translated into graph theoretical terms whilst retaining exactly the
same structure. With this in mind, to avoid repetition we shall henceforth
dispense with graphs and concentrate on the stronger matroid formulations.

Our main result is the following:

2To see precisely how to derive the graph-theoretical multivariate Tutte poly-
nomial from (7.1), let M(G) be the cycle matroid of a graph G = (V,E). Then
for any subset A ⊆ E of the edge-set of G, we have rM(G)(A) = |V |−k(A), where
k(A) is the number of connected components of the subgraph (V,A). Hence we
can define the multivariate Tutte polynomial of G to be:

ẐG(q,v) =
∑
A⊆E

qk(A)−k(G) ∏
e∈A

ve.

Multiplication by the prefactor qk(G) then produces the previous definition of
ZG(q,v) given in (2.1).
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Theorem 7.1. Let M be a finite connected matroid with positive rank
n = r(M), and let ẐM(q,v) be as defined above. Let K be an arbitrary
field. Then the Galois group of ẐM(q,v) over K(v) is the symmetric group
on the n roots of ẐM(q,v).

All three of the proofs we present here depend fundamentally on the
fact that ẐM(q,v) is linear in ve for all e ∈ E. The first and second proofs
are inductive, and both are based on a well known result linking special-
isations of polynomials with Galois subgroups. However, they are quite
different: in the first we use techniques from algebraic number theory to
prove the result from the deletion-contraction recurrence, effectively using
induction on individual elements of the ground set E of M ; in the second
we employ group-theoretic arguments, and our induction is on connected
“sub-matroids” (that is, connected restrictions of M to subsets of E). In
the final proof, which is by far the simplest of the three (and was inevitably
the last we discovered), we prove directly that ẐM(q,v) is a “generic” poly-
nomial, in that its set of coefficients (viewed as elements of K(v)) form an
algebraically independent set over K.

As discussed previously (§2.2.3), for any e ∈ E the deletion M \ e
and the contraction M/e of e are both matroids on the set E \ e. The
essential tool for our first proof is a theorem of Tutte (see [32, Theorem
4.3.1]), which says that connectivity of M implies that of at least one of
the matroids M \ e or M/e. Since M is connected, e is not a coloop, so
r(M \ e) = rM(E \ e) = rM(E) = r(M). By [32, Prop. 3.1.6] we have
that r(M/e) = rM(E) − rM(e). Now rM(e) = 1, since e is not a loop. So
r(M/e) = r(M)− 1.

The proof will be based on some lemmas.

Lemma 7.2. Let M be a finite connected matroid and e ∈ E. Then

ẐM = ẐM\e + veẐM/e.

Proof. Since M is connected, e is neither a loop nor a coloop. By [44,
(4.18a)] Z̃M = Z̃M\e + ve

q
Z̃M/e, hence

ẐM = qr(M)−r(M\e)ẐM\e + qr(M)−r(M/e)ve
q
ẐM/e.
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The claim then follows from the previous determination of the ranks of
E \ e and E/e.

As an intermediate step in the proof of the theorem, we need to know
that ẐM is irreducible over K(v). As TM is essentially a specialisation of
ẐM , this would follow from [28] in the case where K has characteristic zero.
However, the multivariate case allows for a much simpler proof, and one
which holds for any characteristic.

Lemma 7.3. Let M be a finite connected matroid. Then ẐM is irreducible
over K(v).

Proof. The induction proof is most conveniently formulated by considering
a counterexample M where r(M) is minimal. Among those counterexam-
ples, we pick one where |E| is minimal. Clearly, the result holds for r(M) =
1, so let r(M) ≥ 2. Pick e ∈ E. By Lemma 7.2, ẐM = ẐM\e + veẐM/e.
Note that ve does not appear in ẐM\e and ẐM/e. If M \ e is connected,
then ẐM\e is irreducible by minimality of |E|. As ẐM and ẐM\e have the
same degree, setting ve = 0 shows that ẐM is irreducible, a contradiction.
So M \ e is not connected, which by Tutte’s theorem means that M/e is
connected. So r(M/e) ≥ 1 (because r(M) ≥ 2), and ẐM/e is monic. Note
also that because M is loopless, so too is M \ e, and hence ẐM\e is also
monic.

Now, consider a non-trivial factorization of ẐM . Since ẐM is monic and
linear in ve, we can write ẐM = (U+veV )W , where U, V,W are polynomials
in K[v][q] in which ve does not appear, and where each factor has positive
degree in q.

So (U + veV )W = ẐM\e + veẐM/e. Comparing coefficients with respect
to ve gives UW = ẐM\e and VW = ẐM/e. By minimality of the coun-
terexample, ẐM/e is irreducible. But W has positive degree in q, so V = 1
and W = ẐM/e. Thus UẐM/e = ẐM\e. Now, ẐM/e and ẐM\e are monic of
degrees r(M)− 1 and r(M) respectively. So U = q+ β for some β ∈ K[v].
Let v̄ = v \ {ve}, and note that

ẐM\e(1, v̄) =
∏
i∈E\e

(1 + vi) = ẐM/e(1, v̄),
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so β = 0. Now setting q = 0 gives ẐM\e(0, v̄) = 0. This means that the
only basis of M \ e is the empty set, which is only possible if every element
of E \ e is a loop. So we have a contradiction.

In order to prove the theorem, we need more precise information about
how Galois groups of multivariate polynomials behave under specialisations
of variables. The next result is well-known, although it is what one might
describe as a “folklore” result, in that it is surprisingly difficult to find a
proof of it. The only direct and well-explained one we know of appears
in the unlikely setting of a paper about rigidity in planar graphs [31];
otherwise, it follows from the much more general [26, Theorem IX.2.9].

Proposition 7.4. Let R be an integral domain which is integrally closed
in its quotient field F . Let f ∈ R[X] be monic and irreducible over F . Let
R → k, r 7→ r̄ be a homomorphism to a field k. If f̄ ∈ k[X] is separable,
then Gal(f̄/k) is a subgroup of Gal(f/F ).

The following two lemmas can be obtained through applications of this
proposition.

Lemma 7.5. Let A be a subset of E. Then Gal(ẐM |A/K(vA)) is a subgroup
of Gal(ẐM/K(v)).

Proof. Let B be such that A ⊂ B ⊆ E, and let e be an element of B \ A.
Note that removing e from B corresponds to specialising ve to zero in
ẐM |B. Let R = K(vB\e)[ve], and let I be the maximal ideal of R generated
by ve. The image of ẐM in the canonical homomorphism R → R/I is
either qẐM |(B\e) or ẐM |(B\e), depending on whether or not e is a coloop. In
both cases we have a separable polynomial, as factorisation into repeated
non-linear factors would contradict the fact that ẐM |(B\e) is linear in the
elements of vB\e. Furthermore, R is integrally closed in its quotient field
K(v). So we have that Gal(ẐM |(B\e)/K(vB\e)) ≤ Gal(ẐM |B/K(vB)) by
Proposition 7.4, and the result follows by induction.

Lemma 7.6. Let y be a variable over the field k, and U, V ∈ k[X] with
deg V = n − 1, and U monic of degree n (where n ≥ 2). Suppose that
f(X) = U(X) + yV (X) is irreducible over k(y) (which is equivalent to U
and V being relatively prime). If Gal(U/k) = Sn or Gal(V/k) = Sn−1, then
Gal(f/k(y)) = Sn.
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Proof. First suppose that Gal(U/k) = Sn. Then the assertion follows im-
mediately from Proposition 7.4 by setting R = k[y] and considering the
homomorphism R→ k, h(y) 7→ h(0).

Now assume that Gal(V/k) = Sn−1. Set t = 1/y and consider the
polynomial

f̂(X) = tXnf(1/X) = Xn(tU(1/X) + V (1/X))

obtained by multiplying the reciprocal function of f(X) = U(X) + 1
t
V (X)

by t. Then k(t) = k(y), and we have that Gal(f/k(y)) = Gal(f̂/k(t)). The
coefficient of Xn in f̂ is tu+ v, where u and v are the constant terms of U
and V . If v = 0, then V has the root 0. However, V is irreducible, since
Gal(V/k) = Sn−1. So we must have that V is linear; that is, n = 2. The
result therefore holds in this case, as an irreducible polynomial of degree 2
clearly has Galois group S2.

So assume v 6= 0. Let R ⊂ k(t) be the localisation of k[t] with re-
spect to the ideal (t), so that R consists of the fractions p(t)/q(t) with
q(0) 6= 0. Note that 1

tu+v f̂ is monic with coefficients in R. Also, R
(as a local ring) is integrally closed in k(t). Let R → k be the homo-
morphism given by p(t)/q(t) 7→ p(0)/q(0). Proposition 7.4 then gives
Gal(f̂/k(t)) ≥ Gal(XnV (1/X)/k) = Sn−1. Because Gal(f̂/k(t)) is transi-
tive on the n roots of f̂ , we must have Gal(f̂/k(t)) = Sn.

We are now ready to prove Theorem 7.1.

First proof of Theorem 7.1. Again assume that the matroid M is a coun-
terexample with rM(E) minimal, and among these cases pick one with
|E| minimal. Note that the statement is trivially true if r(M) = 1, thus
r(M) ≥ 2 in the minimal counterexample.

Pick e ∈ E. By Lemma 7.2 ẐM = ẐM\e + veẐM/e. Let v̄ = v \ {ve},
and set k = K(v̄). Recall that ẐM is irreducible over k(ve) by Lemma
7.3. We have seen above that r(M \ e) = r(M) = n and r(M/e) = n− 1.
As established previously, either M \ e or M/e is connected. By assuming
a minimal counterexample we have Gal(ẐM\e/k) = Sn or Gal(ẐM/e/k) =
Sn−1. Theorem 7.1 then follows from Lemma 7.6.
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Our second proof of Theorem 7.1 uses induction on restrictions of ma-
troids and subgroups. It is perhaps slightly more intuitive than the above,
but requires us to prove the base case of circuits separately.

Lemma 7.7. Let C ⊆ E be a circuit of a finite matroid M . Then:

Gal(ẐM |C/K(vC)) = SrM (C).

Proof. The rank of any proper subset of C is the same as its cardinality,
and rM(C) = |C| − 1, so:

ẐM |C(q,v) = qn + σ1q
n−1 + σ2q

n−2 + . . .+ σn−1q + (σn + σn+1),

where n = rM(C) and σi is the ith elementary symmetric polynomial in
the {ve}e∈C for each i. The elementary symmetric polynomials are alge-
braically independent, and thus so too are the coefficients of ẐM |C(q,v). It
is well known that the Galois group of a polynomial with algebraically inde-
pendent coefficients is the full symmetric group (see, for example, Chapter
VI, §2 of [26]).

Second proof of Theorem 7.1. Let C be a circuit of maximum cardinality
in M . By Lemma 7.7, Gal(ẐM |C/K(vC)) = SrM (C). This will serve as the
base case for the induction.

Now, let A be any proper subset of E such that C ⊆ A and M |A is
connected, and suppose that Gal(ẐM |A/K(vA)) = SrM (A). Identify a non-
empty independent set B ⊆ E \A of minimal size such that M |(A ∪B) is
connected, and let A′ = (A∪B). We will show that Gal(ẐM |A′/K(vA′)) =
SrM (A′).

By connectivity of M |A′, we have rM(A′) < rM(A) + rM(B), and min-
imality of B implies that rM(B) ≤ rM(C). Thus

rM(A′) < rM(A) + rM(C). (7.2)

By Lemma 7.5, SrM (A) = Gal(ẐM |A/K(vA)) ≤ Gal(ẐM |A′/K(vA′)). So
Gal(ẐM |A′/K(vA′)) must contain at least one transposition. Let H be
the group generated by all of the transpositions in Gal(ẐM |A′/K(vA′));
then H is a direct product of symmetric groups. As Gal(ẐM |A′/K(vA′)) is
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transitive, each of these symmetric groups must have the same degree i,
which must therefore divide the degree of Gal(ẐM |A′/K(vA′)). By Lemma
7.3, ẐM |A′ is irreducible, and its Galois group must therefore be transitive
of degree rM(A′). So we have that ji = rM(A′) for some positive integer j.

Now, SrM (A) contains at least one of the transpositions of H, so must
be a subgroup of one the Si, which means rM(A) ≤ i. So we have:

jrM(A) ≤ ji = rM(A′),

and substituting from (7.2) we obtain

jrM(A) < rM(A) + rM(C).

Now suppose that j ≥ 2. Then 2rM(A) < rM(A)+rM(C), and so rM(A) <
rM(C). This is impossible, as C ⊂ A. So j = 1, and hence i = rM(A′). This
means that H is a direct product of symmetric groups of degree rM(A′).
But H is a subgroup of Gal(ẐM |A′/K(vA′)), which is transitive of degree
rM(A′), and so Gal(ẐM |A′/K(vA′)) = H = SrM (A′).

Now, in view of the proof of Lemma 7.7, one might wonder if the coef-
ficients of ẐM(q,v) are algebraically independent for any finite connected
matroid. This does indeed turn out to be the case, leading us to our third
and final proof of Theorem 7.1.

Third proof of Theorem 7.1. Let M be a finite connected matroid of rank
r(M) = n ≥ 1, and write ẐM(q,v) = qn+an−1q

n−1+· · ·+a1q+a0 ∈ K[v][q],
where K is an arbitrary field. It suffices to show that the coefficients
a0, a1, . . . , an−1 are algebraically independent over K.

If n = 1, then ẐM(q,v) = q − 1 + ∏
e∈E(ve + 1), so the claim clearly

holds. Thus we may assume n ≥ 2.
Assume that M is a counterexample in which |E| is minimal. We will

use the deletion-contraction identity ẐM = ẐM\e + veẐM/e of Lemma 7.2.
First consider the case that M \ e is connected. By the assumption of a
minimal counterexample, the coefficients of ẐM\e (excluding the leading
coefficient 1) are algebraically independent over K. However, these coef-
ficients arise from the coefficients a0, a1, . . . , an−1 upon setting ve = 0. Of
course, an algebraic dependency relation between a0, a1, . . . , an−1 over K
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remains an algebraic dependency relation upon setting ve = 0, a contradic-
tion.

Thus M \ e is not connected, so we may assume that M/e is connected.
For each 0 ≤ i ≤ n−1, write ai = bi+veci, where bi and ci are polynomials
in the elements of vE\e. Each cj is then the coefficient of qj in ẐM/e,
so cn−1 = 1 (as r(M/e) = n − 1) and c0, c1, . . . , cn−2 are algebraically
independent over K. As a0, a1, . . . , an−1 are algebraically dependent, there
is a non-zero polynomial P in n variables over K such that

P (b0 + vec0, . . . , bn−2 + vecn−2, bn−1 + ve) = 0.

Let Q be the expansion of P with respect to ve, so that Q is a polynomial
in ve with coefficients in K[vE\e]. As the elements of v are algebraically
independent, these coefficients must be identically zero. Let d be the total
degree of P . Then Q has degree d in ve, and the vde term must arise from
a K-linear sum of products of the form:

(b0 + vec0)d0 . . . (bn−2 + vecn−2)dn−2(bn−1 + ve)dn−1 ,

where d0, . . . , dn−1 are non-negative integers which sum to d. This means
that the coefficient of vde in Q is a K-linear combination of monomials of
the form cd0

0 . . . c
dn−2
n−2 , where di ≥ 0 for each i, and d0 + · · ·+ dn−2 ≤ d. The

vanishing of this coefficient then implies that the set of such monomials is
linearly dependent overK, which contradicts our assertion that c0, . . . , cn−2

are algebraically dependent over K.

Remark 7.8. Sokal showed that the the multivariate Tutte polynomial for
matroids factorizes over summands (see [44, (4.4)]). That is, if M is the
direct sum of connected matroids M1,M2 on the sets E1, E2 respectively
(where E1 and E2 are disjoint and E = E1 ∪ E2) then:

ẐM(q,v) = ẐM1(q,vE1)ẐM2(q,vE2).

As vE1 and vE2 are disjoint, there are clearly no algebraic dependencies
between the roots of ẐM1 and ẐM2 , so we have that

Gal(ẐM/K(v)) = Gal(ẐM1/K(vE1))×Gal(ẐM2/K(vE2)).
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Theorem 7.1 then implies that the Galois group of the multivariate Tutte
polynomial of any matroid is a direct product of symmetric groups corre-
sponding to the connected direct summands.

7.2 The bivariate Tutte polynomial

The Tutte polynomial of a matroid M is usually defined to be:

TM(x, y) =
∑
A⊆E

(x− 1)r(M)−rM (A)(y − 1)|A|−rM (A).

Similarly to the graph-theoretical version described in §2.3.2, it can be
obtained from the multivariate Tutte polynomial ẐM(q,v) by making the
following substitutions:

q ← (x− 1)(y − 1)

ve ← y − 1

for each e ∈ E, and multiplying by a prefactor (y − 1)−r(M).
Thus TM is essentially equivalent to a special case of ẐM in which the

same variable is assigned to every element of E. As with the multivariate
Tutte polynomial, we can use the formula rM(G)(A) = |V | − k(A), where
M(G) is the cycle matroid of the graph G = (V,E), to derive the following
graph-theoretic formulation of the Tutte polynomial:

TG(x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |.

The work which eventually led to Theorem 7.1 was originally inspired
by a computation of the Galois groups (over Q(y)) of the Tutte polyno-
mials of all biconnected graphs on up to 10 vertices. We found that all
were the symmetric group, which led us to conjecture that this was the
case for every biconnected graph. As mentioned in the introduction to
this chapter, the Tutte polynomial of any connected matroid is irreducible
over fields of characteristic zero, and so it is natural to extend this con-
jecture to connected matroids. However, unlike the multivariate version,
the Tutte polynomial is not necessarily irreducible over fields of positive
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characteristic. So we are led to the following most general possible form of
our conjecture.

Conjecture 7.9. Let M be a finite connected matroid with positive rank
n = r(M), and let K be a field of characteristic zero. Then the Galois
group of the Tutte polynomial TM(x, y) over K(y) is the symmetric group
of degree n.

The fact that the bivariate Tutte polynomial is a specialisation of the
multivariate version implies that, for fields of characteristic zero, Theorem
7.1 would follow from a proof of Conjecture 7.9 (via an application of
Proposition 7.4). However, without the flexibility afforded by the extra
variables of the multivariate Tutte polynomial, it is difficult to see a way
of proving the conjecture.

Interestingly, specialising the Tutte polynomial further produces a range
of different Galois groups. For example, it was shown in [8] that all of the
transitive permutation groups of degree at most 5 apart from C5 appear as
Galois groups of just one family of chromatic polynomials. Furthermore,
Morgan [30] showed that a range of transitive groups of higher degree occur
for chromatic polynomials of graphs on up to 10 vertices. If Conjecture 7.9
is true, then given any matroidM , Hilbert’s Irreducibility Theorem implies
that almost all rational specialisations y ← a of TM(x, y) produce a polyno-
mial with symmetric Galois group over Q. Thus a proof of this conjecture
would make the rich algebraic structure of the chromatic polynomial all
the more surprising.
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