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Structured abstract  
Background: Ischemic heart disease (IHD) has been linked with poor brain outcomes. The 
brain magnetic resonance imaging (MRI) derived difference between predicted brain age and 
actual chronological age (brain-age delta in years, positive for accelerated brain aging) may 
serve as an effective means of communicating brain health to patients to promote healthier 
lifestyles. 
Objectives: We investigated the impact of prevalent IHD on brain aging, potential 
underlying mechanisms, and its relationship with dementia risk, vascular risk factors, 
cardiovascular structure, and function. 
Methods: Brain age was estimated in subjects with prevalent IHD (n = 1,341) using a 
Bayesian ridge regression model with 25 structural (volumetric) brain MRI features and built 
using UK Biobank participants with no prevalent IHD (n = 35,237).  
Results: Prevalent IHD was linked to significantly accelerated brain aging (p < 0.001) and 
that was not fully mediated by microvascular injury. Brain aging (positive brain-age delta) 
was associated with increased risk of dementia (odds ratio = 1.13, 95% CI [0.04, 1.22], p = 
0.002) and with vascular risk factors as diabetes, and high adiposity. In the absence of IHD, 
brain aging was also associated with cardiovascular structural and functional changes 
typically seen in aging hearts. However, such alterations were not linked with risk of 
dementia. 
Conclusions: Prevalent IHD and coexisting vascular risk factors are associated with 
accelerated brain aging and risk of dementia. Positive brain-age delta representing 
accelerated brain aging may serve as an effective communication tool to illustrate the impact 
of modifiable risk factors and disease supporting preventative strategies. 
 
Condensed abstract  
Ischemic heart disease (IHD) has been linked with poor brain outcomes. Brain age estimated 
from structural brain features and its deviation from actual age (brain-age delta in years, 
positive for accelerated brain aging) can express individual brain health in neurologically 
intact adults. Prevalent IHD is associated with accelerated brain aging and increased risk of 
dementia, that is not fully explained by microvascular injury. Besides shared vascular risk 
factors, additional disease-related mechanisms might contribute to abnormal aging. Brain-age 
delta may serve as an effective communication tool to illustrate the impact of modifiable risk 
factors and disease supporting preventative strategies.  
 
Keywords  
Ischemic heart disease, brain aging, cognitive decline, brain health, vascular risk factors 
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Abbreviations 
BMI = body mass index  
IHD = ischemic heart disease 
LV = left ventricle 
LVEF = left ventricle ejection fraction 
MAE = mean absolute error 
M/V = mass-to-volume ratio 
R2 = coefficient of determination 
RV = right ventricle 
TAC = total arterial compliance 
UKB = UK Biobank 
WMH = white matter hyperintensity 
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INTRODUCTION 

Although the risk of cognitive decline is primarily driven by age, vascular risk factors and 

coexisting diseases may augment the risk of age-related brain deterioration (1)(2). Ischemic 

heart disease (IHD) has been associated with poor brain health independently of the effect of 

aging itself (3)(4). Several pathways involved in the heart-brain crosstalk have been 

proposed, albeit the precise pathophysiological mechanisms by which IHD may cause 

cognitive deterioration remain to be elucidated (5). Cardiac ischemia has been linked with 

macro- and microstructural brain abnormalities in both white and grey matter even before the 

onset of clinical symptoms of dementia (6)(7). Detecting and quantifying subtle deviations 

from age-related brain changes may enable identifying subjects at greater risk of developing 

cognitive decline, to whom preventive strategies and targeted treatments should be directed. 

Recent neuroimaging studies have introduced modelling approaches to estimate individual’s 

brain age based on brain Magnetic Resonance Imaging (MRI) features. The difference 

between estimated brain age and actual age (delta) reflects deviations from normal aging and 

may serve as a biomarker for cognitive deterioration (8). An older appearing brain indicating 

accelerated brain aging (positive delta) has been linked with certain neurological conditions 

and lifestyle factors in cognitively healthy cohorts (9)(10).  

Brain age may represent an effective means of communicating the risk of brain deterioration 

to patients, just as vascular age can be used to express cardiovascular disease risk (11). It can 

increase risk awareness and likely promote healthier lifestyles and preventive actions (12).  

In this paper, we investigated the impact of prevalent IHD on brain aging and the risk of 

dementia, possible mechanisms underlying the association, and the role of vascular risk 

factors, cardiovascular structure, and function using UK Biobank (UKB) data. No previous 

studies have used this approach to evaluate brain health in large IHD cohorts without pre-
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existing neurological conditions. We hypothesize that IHD may be associated with 

accelerated brain aging, reflecting structural brain changes predisposing to cognitive decline 

or dementia. The estimated brain age can thus be used to express the individual risk level and 

motivate IHD patients to improve their health behaviors. 

METHODS 

The UKB dataset 

The UKB is a large prospective population study following the health and wellbeing of over 

half a million participants aged 40–69 years recruited from across the UK. The protocol is 

publicly accessible, and data are made available for researchers through an application 

process (13). Participants’ characteristics, including socio-demographics, lifestyle, 

environmental factors, medical history, genetics, and physical measures, were collected at the 

visits. Since 2015, over 48,000 participants underwent imaging studies, including brain and 

cardiovascular magnetic resonance (CMR) imaging.  

Ethics 

This study complies with the Declaration of Helsinki. It is covered by the ethical approval for 

UKB studies from the NHS National Research Ethics Service on 17th June 2011 (Ref 

11/NW/0382) and extended on 18 June 2021 (Ref 21/NW/0157). Written informed consent 

was obtained from all participants. 

Study populations 

Participants with brain imaging-derived phenotypes (IDP)s available and without any history 

of mental health, neurological disorders, or dementia that could directly affect cognitive 

function were selected for our analysis (n= 36,578) (14). Two distinct subsets were then 

defined (Figure 1). The prevalent IHD group comprised 1,341 subjects with angina, previous 

myocardial infarction, or any manifestation of IHD not resulting in infarction (Supplemental 

Table 1). The non-IHD (control) group was composed of the remaining subjects with no 
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history of IHD at the time of scanning (n= 35,237). This group was further split into training 

and test sets to define the brain aging model. For the post-hoc association analyses 

(performed on IHD and non-IHD test-set), we selected only subjects with available values for 

the exposure variable of interest. 

MRI data acquisition  

Brain MRI data were acquired using a 3T Siemens scanner (Skyra, VD13A SP4, Siemens 

Healthcare, Erlangen, Germany) in accordance with a publicly accessible protocol (15). In 

brief, imaging acquisition included six different sequences, covering structural, diffusion and 

functional imaging for a total of 35 min scan time per participant. MPRAGE sequence with 

1-mm isotropic resolution was used to acquire T1-weighted data, while fluid-attenuated 

inversion recovery contrast was used for T2-weighted scans (1.05 x 1 x 1 mm resolution). 

CMR images were acquired using 1.5 Tesla scanners (MAGNETOM Aera, Syngo Platform 

VD13A, Siemens Healthcare, Erlangen, Germany) according to a pre-defined acquisition 

protocol (16). In brief, the cardiac assessment includes a combination of long-axis cines and a 

complete short-axis stack covering both the left and right ventricles (LV, RV) acquired using 

balanced steady-state free precession sequences. 

Brain MRI feature extraction 

Brain IDPs were extracted from brain MRI and accessible through the UKB showcase 

(Supplemental Table 2). We selected 25 volumetric features extracted from structural MRI as 

they were identified among the top informative predictors to model brain age (17)(18). The 

total volume of white matter hyperintensities (WMH)s (not used to model brain age) was 

instead used for the post-hoc mediation analysis. A detailed description of processing data is 

provided in the Supplementary Methods. 

CMR parameters  
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Conventional measures of LV and RV structure and function were extracted using an 

automated pipeline with inbuilt quality control, previously developed, and validated in a large 

sample of the UKB (19). Specifically, we analyzed the following parameters: LV and RV 

volumes in end-diastole and end-systole; LV and RV stroke volumes; LV mass and ejection 

fraction (LVEF).  

Additional cardiac indices able to capture changes in myocardial function in relation to 

structural chamber remodeling were analyzed, including LV mass-to-volume (M/V) ratio, 

and LV global function index (LVGFI). M/V ratio was calculated as LV mass divided by LV 

end-diastolic volume. LVGFI is a validated measure of LV cardiac performance that 

integrates structural components of adverse myocardial remodeling into LV function 

assessment for which the formula is described elsewhere (20).  

Aortic distensibility and total arterial compliance (TAC) obtained at the imaging visit were 

considered as indices of arterial health. Aortic distensibility is a measure of local aortic 

compliance and lower values indicates poor vascular health (21). Aortic distensibility values 

at the proximal descending aorta were obtained from a previous analysis of a large subset of 

the UKB imaging studies using a fully automated image analysis pipeline embedded with 

purpose-designed quality control (22). TAC is an additional descriptor that can be used to 

estimate arterial function. Greater values, indicating reduced arterial load, have been 

associated with better cardiovascular outcomes (23). TAC was estimated using LV stroke 

volume divided by central pulse pressure (24). 

Vascular risk factors 

Vascular risk factors previously linked with brain health, including hypertension, diabetes, 

hypercholesterolemia and (current) smoking were considered as exposures. Body mass index 

(BMI) and waist-hip ratio, two biomedical indices of body adiposity, were also evaluated. 

We also assessed the role of socio-economic deprivation, expressed as Townsend index, a 
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measure of material deprivation relative to national averages. The clinical exposures were 

ascertained using selected UKB fields (Supplemental Table 3). 

Statistical analysis 

A more detailed description of the statistical analysis is provided in the Supplemental 

Methods. All analyses were performed using Python 3.8.10 (Python Software Foundation, 

Delaware USA) and Scikit-learn version 0.23.2. A two-sided p value <0.05 (corrected for 

multiple tests) was considered statistically significant for all analyses.  

Briefly, to assess whether IHD was associated with faster brain aging, whether it, in turn, was 

linked with dementia risk, and to investigate potential mechanistic links and risk factors 

involved in the association, we used a staged approach, which can be summarized as follow. 

Brain age estimation 

Brain age was estimated using Bayesian Ridge regression model as it was shown to provide 

competitive performance (25). In the model, 25 brain IDPs were the independent variables 

while the chronological age was the dependent variable. The actual age was demeaned 

(shifted to have zero mean) before fitting it into the model to have a centered version of the 

outcome (8). Sex, education level, height, and volumetric scaling from T1 head image to 

standard space were used as confounds as they can significantly affect the outcome. The 

confounds were regressed from the features using a linear regression model prior to modeling 

brain age. The model performance was assessed using the Mean Absolute Error (MAE) and 

the coefficient of determination (R2). MAE in brain age studies is interpreted as the deviation 

between predicted brain age and the chronological age expressed in years, with higher values 

indicating older appearing brains. R2 represents the proportion of variance in the predicted 

brain age explained by the used features in the model. 

The brain aging model was first built based on participants with non-IHD by splitting the data 

into two subsets (training set, 80%; testing set, 20%). After removing the age-dependency 
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bias (as described in the supplemental materials), we calculated brain-age delta by subtracting 

the chronological age from the predicted brain age in the test datasets, with positive values 

(expressed in years) indicating accelerated brain aging. Pearson correlation was also 

calculated between actual age and brain-age delta, before and after bias correction.  

Next, brain age was estimated on IHD subjects using the previously trained model to assess 

the deviation of the brain-age delta from the reference (non-IHD) population. IHD and non-

IHD groups were thus compared in terms of model performance, and difference in mean 

brain-age delta, the latter considered as a measure of apparent brain aging (8).  

Brain age and risk of dementia 

Logistic regression was used to analyze the relationship between brain-age delta and incident 

dementia (Supplemental Table 4). The model was adjusted for age, sex, and education level. 

As the number of incident events was low in comparison to non-events, to account for 

imbalance data potentially affecting the model, we repeated the association analysis after 

using propensity score matching based on age and sex. 

Mediation effects of WMH on IHD and brain age 

To study potential mechanistic links, we performed a mediation analysis to test to which 

extent WMH, a marker of cerebrovascular injury, mediated the impacts of IHD on brain 

aging (indirect effect). The ordinary least squares regression was used to study the 

associations (described in terms of effect) between the variables (IHD, WMH as mediator, 

brain-age delta). The model was adjusted for age, sex, and education. 

Association of brain age with vascular risk factors and imaging parameters  

A linear regression model in both IHD and non-IHD (test-set) groups was used to assess the 

role of vascular risk factors and imaging parameters in advancing brain age. The model was 

adjusted for the same confounds used for brain aging model plus age. In the analysis we used 

unstandardized measures to reveal the effect (beta value) of changing one unit in the 
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exposure on the brain-age delta. Specifically, changing the exposures may lead to increasing 

or decreasing in brain-age delta (estimated in years) based on the direction of the association 

(positive vs negative beta value). 

As we found significant associations between certain imaging parameters and brain aging 

only in non-IHD subjects, we studied whether these metrics were linked with incident 

dementia in this group using logistic regression. The model was adjusted for age and sex. 

RESULTS 

Baseline characteristics of the study populations 

People with IHD were on average older than the controls (59.2 6.3 vs 54.6 ± 7.4 years; p 

<0.05), albeit the age range was similar in the two cohorts (40-70 years, Supplemental Figure 

1). The diseased subjects were more likely to be males than those without the disease (71.4% 

vs 46.3%, respectively; p <0.05) (Table 1), with a greater burden of risk factors and worse 

cardiovascular health indices (Table 2). IHD subjects had significantly lower volumes of 

most brain structures and increased volume of WMH than those without the disease 

(Supplemental Table 5). 

Estimated brain age in IHD  

In non-IHD subjects (test-set), the model showed a mean difference between the 

chronological age and predicted brain age (MAE) of 4.69 years (Table 3). When applying the 

model to the IHD group, a greater deviation of predicted brain age from actual age was 

observed (MAE = 6.96 years) indicating older appearing brain. A significant difference in 

mean brain-age delta values between the two cohorts was also found (p < 0.001) confirming 

that the IHD subjects had significantly higher brain age than those without the disease. 

The difference between the two groups was further confirmed by R2, with a negative value in 

IHD indicating that the prediction in this group was worse than the mean prediction 
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(Supplemental Figure 2). Such negative value was mentioned in the scikit-learn 

documentation and reported in previous brain aging studies (30).  

The correlation value between brain-age delta and actual age in both cohorts decreased to 

close to zero after the estimated brain age was corrected from bias. This indicates that the 

correction steps were performed correctly, and the derived brain-age delta was free from age 

dependency. That was notably observed in the IHD cohort (Supplemental Table 6).  

Association of brain age with incident dementia 

One unit increase in brain-age delta was associated with an increase of 13% in the odds of 

dementia occurring (OR = 1.13, 95% CI [0.04, 1.22], p = 0.002). Such association remained 

significant after accounting for imbalance between the two groups (dementia vs non-

dementia) (OR = 1.15, 95% CI [1.01, 1.33], p = 0.04) (Table 4). 

Mediation effects of WMH on IHD and brain age 

The association of IHD diagnosis with brain-age delta can be explained as a direct effect, due 

to the disease itself, an indirect effect mediated by WHM, and a total effect, which is the 

result of both (Figure 2).  

Unadjusted model showed that IHD had significant effects on brain-age delta both directly 

and indirectly (p <0.001). However, the direct effect of IHD on brain aging was far larger 

than through WMH as mediator (beta values: 6.41 vs 0.11, respectively). 

When adjusted for covariates, the direct effect remained similar in size and significant (beta 

value=6.62, p < 0.0001), whilst the mediation effect of WMH became nonsignificant. 

Association of brain age with vascular risk factors  

Increasing brain-age delta was significantly associated with a history of diabetes in both 

groups. However, such effect was greater in IHD (beta values up to 2.1 years in IHD vs 1.3 

years in controls). 
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In IHD, faster brain aging was also significantly linked with increased adiposity (larger 

waist-hip ratio and increased BMI). The greatest association was found with waist-hip ratio, 

where for one unit increase of such value, there was an increase in estimated brain age of up 

to 8.02 years from normal aging (as indicated by the beta value) (Table 5). A similar trend 

was observed in control subjects, albeit the associations were not significant. 

The estimated contribution of diabetes and increased adiposity on the acceleration of brain 

aging was overall greater in the presence of IHD (up to 10.2 years in IHD vs 3 years in 

controls, when summing up their beta values). The different effect size of vascular risk 

factors on brain aging in the two cohorts is shown in Figure 3.  

Association of brain age with CMR parameters 

In non-IHD subjects, increasing brain-age delta was significantly associated with smaller LV 

and RV volumes, and lower indices of cardiac function, LV mass, aortic distensibility and 

TAC values. Similar direction of associations was found in the IHD cohort for all imaging 

metrics, albeit not statistically significant (Table 6). None of the CMR metrics were 

significantly associated with the risk of dementia (Supplemental Table 7). 

DISCUSSION  

In this study we estimated the brain age of IHD subjects from the UKB using volumetric 

brain features extracted from MRI data. We found that subjects with IHD showed, on 

average, a more advanced brain age than their chronological age, with their brains appearing 

significantly older than those without the disease. Accelerated brain aging was also linked 

with increased risk of dementia. WMH, a marker of cerebrovascular injury, did not 

significantly mediate the effects of IHD on brain aging, suggesting that other mechanisms 

related to the disease itself were involved in the association. IHD, diabetes and increased 

adiposity were associated with even faster brain aging. Overall, these findings suggest that 
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IHD-related mechanisms and vascular risk factors concur to accelerate biological brain aging 

and so the risk of developing dementia.  

IHD and brain health 

Although our results cannot be directly compared with previous studies given the different 

approaches used to evaluate the impact on brain structures, they are consistent with existing 

research and confirm the association between IHD and poorer brain health (4). There is 

evidence to support faster cognitive deterioration in the years following the diagnosis of IHD 

than before, suggesting possible disease-related mechanisms implicated in the association 

(26).  

We observed that IHD subjects had early structural brain changes in the form of brain 

atrophy and increased WMHs than their peers. WMHs reflect underlying cerebral small 

vessel disease, a form of vascular dysfunction which may occur both in the brain and the 

heart, leading to different clinical manifestations, including ischemia, cognitive dysfunction, 

and dementia (27)(28). However, we observed that the vascular contributions to brain aging 

in IHD, as expressed by WMHs, were nearly insignificant. Instead, it was mainly a direct 

effect of the disease to drive the association. These results confirm the strong association 

between IHD and brain deterioration, and that such relationship is not fully explained by 

WMHs (7)(6).  

Our findings suggest that IHD contributes to brain aging through several disease-related 

mechanisms that this marker of cerebrovascular injury could not capture. Among the 

mechanisms involved are direct ischemic brain injury, blood-brain barrier alterations, and 

various biological pathways, including oxidative stress, immune responses, and endothelial 

dysfunction (5). Future studies using more sensitive measures of brain microstructural 

changes are needed to establish the exact pathophysiological pathways linking IHD, brain 

aging, and cognitive decline in the long term.  
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The role of coexisting vascular risk factors in brain aging 

Vascular risk factors can augment the risk of dementia both through an increased risk of 

cardiac and cerebrovascular diseases and as independent risk factors (2). These potentially 

modifiable conditions promote systemic atherosclerosis which may directly affect brain and 

cardiovascular health (6). When IHD and vascular risk factors coexist, the negative effects on 

cerebral autoregulation and brain perfusion might be further enhanced thus resulting in 

accelerating brain aging. In this view, concomitant IHD may be seen as a more advanced, 

symptomatic end-organ vascular disease and as a surrogate marker of clinically significant 

atherosclerosis affecting the brain (7).  

Similarly, we observed that increased adiposity and diabetes were associated with 

significantly faster brain aging in presence of IHD. This indicates that the impact of such 

factors on brain structures is amplified when there is a coexisting diagnosis of IHD with a 

synergistic effect of vascular and ischemic-related processes on disease progression. 

Diabetes played a significant role in brain aging even in the absence of IHD, confirming that 

this condition is one of the strongest risk factors for dementia (29). We also found a very 

strong association between indices of adiposity and brain aging in IHD. A higher waist-hip 

ratio, a measure of abdominal obesity, was associated with the greatest increase in brain 

aging. This suggests that central adiposity as an indicator of visceral fat might be the 

component that mainly contributes to accelerating brain aging in the presence of IHD. 

Visceral adipose tissue inducing insulin resistance and increased systemic inflammation 

might play a key role in causing vascular endothelial dysfunction and eventually subclinical 

brain damage (30). Thus, we hypothesize that coexisting IHD and increased central adiposity 

might represent a condition of higher vascular risk burden. In this view, several factors might 

interact and lead to a greater risk of structural and vascular cerebral changes potentially 

resulting in more accelerated brain aging. 
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The role of cardiovascular hemodynamics in brain aging  

In the absence of IHD, we found significant associations between accelerated brain aging and 

cardiovascular changes typically seen in aging hearts: smaller ventricular volumes, reduced 

LV global performance, and poorer aortic compliance. However, such alterations did not 

translate into an increased risk of dementia. These changes in cardiovascular hemodynamics 

likely reflect the coupling of ventricular and vascular stiffening processes over the lifetime, 

which can occur even in the absence of explicit cardiovascular conditions, with a potential 

impact on brain health before the onset of cognitive impairment (31)(14).  

None of the CMR measures analyzed was significantly linked with brain aging in IHD. 

Although that can be due to the smaller number of IHD subjects, other types of cardiac 

changes, likely ischemia-related and not captured by conventional indices of cardiac function 

and structure might play a role in the association with brain aging. Further studies using 

advanced imaging metrics (32) and integrating a more comprehensive assessment of the 

extent of myocardial ischemia are thus needed to shed light on the complex relationship 

between IHD and brain aging. 

Clinical implications 

Our findings highlight the importance of preventing IHD and promoting healthier behaviours 

to delay brain deterioration and possible dementia. Brain age can be considered an attractive 

communication tool to inform patients about their risk status and the toll of vascular risk 

factors on the brain’s health. Communicating the risk in age has been shown to increase risk 

perceptions and to provide greater emotional impact, such as further motivating patients to 

make lifestyle changes (12). That can be particularly useful for young individuals, who may 

perceive their absolute short-term risk as too low to be emotionally impactful due to their 

young age (33). Emotional reactions can play a role in rational behavior by influencing the 

perception of risk in a more intuitive, rapid, and understandable way than cognitive 



 17

evaluations (34). However, future prospective trials demonstrating the effectiveness of using 

brain age for communicating risk information are needed before recommending such an 

approach in clinical practice. 

Study limitations 

We used volumetric brain features to estimate brain age as they were previously identified 

among the top informative predictors. However, including multiple imaging modalities might 

probably lead to better model performance. 

The number and type of brain IDPs used in the model can affect the estimated value of brain-

age delta. However, our purpose was to use this parameter to illustrate the differences in 

brain aging rate between IHD vs non-IHD rather than propose a quantification of aging itself. 

Additional factors, including genetics and early brain developments, can likely influence 

brain structures. Future studies based on longitudinal imaging data could help determine such 

factors' role in the individual change trajectories of brain aging. 

The average actual age of IHD and non-IHD differed significantly. However, we applied an 

age-bias correction method that eliminated the effects of age from the estimated brain age 

delta.   

We assessed the effect of certain previously validated exposures linked to brain health. 

Additional covariates, including biological, psychological, and behavioral parameters, were 

not evaluated. That was done to avoid model overfitting, potentially decreasing the sensitivity 

to real effects. Differences in sample size, age range and methods used to select covariates 

and brain features might explain some discrepancies between the current and previous brain 

aging results on UKB. 

Although the direction of associations between exposures and brain-age delta might indicate 

the potential impact of the exposure itself on brain aging (accelerating vs decelerating), these 

results do not allow for causal inference. We cannot infer temporal relationships between 
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brain aging and exposures as this is a cross-sectional study. Future longitudinal investigations 

using serial brain and CMR data linked with clinical outcomes might evaluate the effect of 

having an older appearing brain in the long term. 

CONCLUSIONS 

Prevalent IHD is associated with accelerated brain aging and increased risk of dementia, that 

is not fully explained by microvascular injury. Besides shared vascular risk factors, additional 

disease-related mechanisms might contribute to abnormal aging. Using brain age to 

communicate the risk levels for cognitive deterioration may increase patients’ awareness and 

improve their adherence to therapies and lifestyle changes.  

 

PERSPECTIVES 

Competency in medical knowledge 

Our findings highlight the importance of looking for early signs of poorer brain health in the 

form of subtle (volumetric) changes in brain structures in subjects with prevalent IHD and 

vascular risk factors.  

Translational outlook 1 

Brain age can help identify IHD subjects at higher risk of developing cognitive deterioration 

who may benefit from early and more aggressive treatment and preventative interventions. 

Translational outlook 2 

Brain age can be used to efficiently communicate the risk of brain deterioration to patients 

and promote healthy behaviors.  

Translational outlook 3 

Given the projected increase of prevalent IHD and dementia due to global population aging, 

there is a need for insights into causal mechanisms underlying heart-brain interactions and 

early signs of cognitive impairment before overt symptoms.  
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Figure legends (titles and captions) 

Figure 1. Study population selection 

IDPs = imaging-derived phenotypes, IHD = ischemic heart disease, WMH = white matter 

hyperintensity. 

 

Figure 2. Mediation of effects of IHD on brain-age delta 

Unadjusted (A) and adjusted models (B). The (beta) values indicate the effect size. IHD = 

ischemic heart disease, WMH = white matter hyperintensity. * The association is statistically 

significant (p <0.05).  

 

Figure 3. Comparing the effect size of vascular risk factors on brain aging in IHD vs 

non-IHD 

Higher beta-value (in years) indicates faster brain aging. * The association is statistically 

significant (p <0.05).  

 

Central Illustration. IHD and vascular risk factors accelerate brain aging  

Brain aging estimated from MRI data, reflects structural brain changes. Ischemic heart 

disease and coexisting vascular risk factors can accelerate biological brain aging and increase 

the risk of dementia.  
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Table 1. Demographic characteristics of the study groups used for brain age prediction 

Demographic characteristics 
Non-IHD 

(n= 35,237) 

IHD 

(n= 1,341) 

Age, at the imaging visit (years) * 
54.6 (±7.44) 59.2(±6.3) 

Male (n, %) * 
16,338 (46.3%)

 
958 (71.4%)

 

Values are mean (±standard deviation) when continuous or number (percentage) when categorical. IHD = ischemic heart disease.  

*Differences between the two groups are statistically significant (p <0.05). 

 



Table 2. Baseline characteristics of the IHD vs non-IHD groups 

Baseline characteristics  Non-IHD (test-set)   IHD   

Clinical characteristics  
Deprivation (Townsend score)  -2.5 (-3.9, -0.7)  -2.6 (-3.9, -0.5)  

Current smoker (%, n) *  251 (6.1%)  86 (8%)  

Diabetes (%, n) *  128 (3.1 %)  88 (8.2 %)  

Hypertension (%, n) *  193 (4.7 %)  125 (11.6 %)  

High cholesterol (%, n) *  566 (13.9 %)  204 (19%)  

Biomedical measurements  
Waist-hip ratio *  0.9 (±0.1)  0.90 (±0.08)  

BMI (kg/m2), median (IQR) *  26 (23.6, 28.6)  27.1 (25, 29.7)  

Indices of arterial compliance  
Aortic distensibility (10-3/mmHg), median (IQR) *  2.2 (1.59, 2.9)  2.0 (1.5, 2.7)  

TAC (ml/m2 x mmHg), median (IQR) *  0.7 (0.6, 0.8)  0.6 (0.5, 0.8)  

CMR indices of cardiac structure and function  
LVEDVI (ml/m2) *  79.2 (±13.6)  81.5 (±16.3)  

LVESVI (ml/m2), median (IQR) *  31.4 (26.5, 36.9)  32.8 (27.4, 39.3)  

LVSVI (ml/m2)  46.9 (±8.2)  46.5(±8.2)  

LVMI (g/m2) *  45.8 (±8.6)  49.0 (±9.6)  

RVEDVI (ml/m2)  84.2 (±15.4)  83.4 (±14.3)  

RVESVI (ml/m2)  36.4 (±9.5)  36.4 (±8.9)  

RVSVI (ml/m2) *  47.7 (±8.7)  46.9 (±8.5)  

LVEF (%) *  59.5 (±6)  57.7 (±7.4)  

M/V ratio (g/ml), median (IQR) *  0.56 (0.5, 0.62)  0.59 (0.54, 0.66)  

LVGFI (%) *  47.7 (±6.7)  45.1 (±7.4)  

Values are mean (±standard deviation) when continuous or number (percentage) when categorical. Data are presented as median 

(interquartile range) where absolute skew is ³ 0.9. The data shown here are from the subjects with values that were available. IHD 

= ischemic heart disease,  BMI = body mass index, TAC = total arterial compliance, LVEDVI = left ventricular end-diastolic 

volume index, LVESVI = left ventricular end-systolic volume index, LVSVI = left ventricular stroke volume index, LVMI = left 

ventricular mass index, RVEDVI = right ventricular end-diastolic volume index, RVESVI = right ventricular end-systolic volume 

index, RVSVI = right ventricular stroke volume index, LVEF = left ventricular ejection fraction, M/V = LV mass-to-volume ratio, 

LVGFI = left ventricle global function index. 

* Differences between the two groups are statistically significant (p <0.05). 

 



Table 3. Model performance for brain age prediction 

Model performance 
Non-IHD 

(Train) 

Non-IHD 

(Test) 
IHD 

MAE (years)  4.72 4.69 6.96 

R
2
 (variance in age explained)  0.38  0.39  -0.76 

MAE indicates the mean difference between the chronological age and the predicted brain age expressed in years, with higher 

values indicating older-appearing brain. R2 represents the proportion of variance in the predicted brain age explained by the 

used features in the model. In IHD group, a greater deviation of predicted brain age from chronological age was observed 

compared to non-IHD (test-set) (MAE = 6.96 years for IHD vs MAE =4.69 years for non-IHD). IHD = ischemic heart disease, 

MAE = Mean Absolute Error, R2 = Coefficient of determination. 

 



Table 4. Association of brain-age delta with incident dementia 

Model 1  
Sample (n) Dementia (n, %) Beta value Odds ratio (95% CI) P value 

8,389 27 (0.32%) 0.124 1.13 (0.04 3 1.22) 0.002 
Model 2 

Sample (n) Dementia (n, %) Beta value Odds ratio (95% CI) P value 

54 27 (50%) 0.146 1.15 (1.01 3 1.33) 0.04 
Model 1 was performed using all non-IHD (test-set) and IHD subjects. Model 2 was performed after selecting the sample 

using propensity score matching based on age and sex. CI = confidence interval.  

 



Table 5. Associations between brain-age delta and vascular risk factors 

Exposures  Non-IHD  IHD  
  Beta value  P value  Beta value  P value  

Smoking a  0.58 0.26 0.56 1 
Deprivation  0.05 0.33 0.05 1 
BMI, kg/m2  0.03 1 0.1  0.003* 
Diabetes a  1.3 0.001* 2.06 <0.001* 
Hypertension a  0.45 1 0.84 1 
Hypercholesterolemia a  0.21 1 0.25 1 
Waist-hip-ratio  1.72 0.81 8.02 <0.001* 

The beta value is interpreted as the difference in the dependent variable (brain-age delta) for changing one unit in the 

independent variable (exposure). Specifically, changing one unit in the exposure leads to increasing (positive beta value) or 

decreasing (negative beta value) in brain-age delta. For instance, in non-IHD, diabetes is associated with an increased brain-

age delta = 1.3 years, whilst in IHD such increase is near 2.1 years. IHD = ischemic heart disease, BMI = body mass index. 

* Statistically significant after Bonferroni correction (p < 0.05). 
 
a Indicate categorical variables. The other variables are continuous. 

 
 
 
 



Table 6. Associations between brain-age delta and cardiovascular imaging parameters 

Exposures Non-IHD IHD 
 Beta value P value Beta value P value 

LVEDVI, ml/m2 -0.03 <0.001 * -0.01 0.65 
LVEF, % -0.03 0.05 0.01 1 
LVESVI, ml/m2 -0.03 0.001* -0.02 0.82 
LVMI, g/m2 -0.03 <0.001 * -0.004 1 
LVSVI, ml/m2 -0.05 <0.001 * -0.01 1 
RVEDVI, ml/m2 -0.03 <0.001 * -0.02 0.27 
RVESVI, ml/m2 -0.03 <0.001 * -0.03 0.95 
RVSVI, ml/m2 -0.05 <0.001 * -0.03 0.86 
LVGFI, % -0.04 <0.001 * 0.001 1 
M/V ratio, g/ml 1.41 0.75 2.19 1 
Aortic distensibility, 10-3/mmHg -0.37 <0.001 * -0.07 1 
TAC, ml/m2 x mmHg -1.65 <0.001 * -1.29 0.66 

The beta value is interpreted as the difference in the dependent variable (brain-age delta) for changing one unit in the 

independent variable (exposure). Specifically, changing one unit in the exposure leads to increasing (positive beta value) or 

decreasing (negative beta value) in brain-age delta. IHD = ischemic heart disease, LVEDVI = left ventricular end-diastolic 

volume index, LVEF = left ventricular ejection fraction, LVESVI = left ventricular end-systolic volume index, LVMI = left 

ventricular mass index, LVSVI = left ventricular stroke volume index, RVEDVI = right ventricular end-diastolic volume index, 

RVESVI = right ventricular end-systolic volume index, RVSVI = right ventricular stroke volume index, LVGFI = left ventricle 

global function index, M/V = LV mass-to-volume ratio, TAC = total arterial compliance. 

* Statistically significant after Bonferroni correction (p < 0.05). 
 

 



Figure 1: Study population selection IDPs = imaging-derived phenotypes, IHD =

ischemic heart disease, WMH = white matter hyperintensity. 



Figure 2: Mediation of effects of IHD on brain-age delta Unadjusted (A) and adjusted

models (B). The (beta) values indicate the effect size. IHD = ischemic heart disease,

WMH = white matter hyperintensity. * The association is statistically significant (p

<0.05). 



Figure 3: Comparing the effect size of vascular risk factors on brain aging in IHD vs

non-IHD Higher beta-value (in years) indicates faster brain aging. * The association is

statistically significant (p <0.05). 



Central Illustration: IHD and vascular risk factors accelerate brain aging Brain aging

estimated from MRI data, reflects structural brain changes. Ischemic heart disease

and coexisting vascular risk factors can accelerate biological brain aging and

increase the risk of dementia. 



Supplemental Methods 

 

Brain MRI feature extraction 

We used imaging-derived phenotypes (IDP)s resulted from an image pre-processing pipeline 

developed by the UK Biobank (UKB) working group described in details elsewhere (1). 

Further protocols details are available online at: 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf.  

In brief, pre-processing structural MRI included face removal, brain extraction, linear 

alignment to standard MNI152 brain template. Brain MRIs were segmented into three 

categories that are: white matter, grey matter, and cerebrospinal fluid using a Functional MRI 

of the Brain (FMRIB)’s Automated Segmentation Tool (FAST). Then, the segmented data 

were used to perform a SIENAX-style analysis (Structural Image Evaluation, using 

Normalization, of Atrophy: Cross-sectional) (2). Volumes of different regions were 

calculated both normalized and not normalized to head size to generate the IDPs accessible 

through the UKB showcase. The subcortical structural volumes for each hemisphere were 

calculated using, an FMRIB’s Integrated Registration and Segmentation tool (FIRST). The 

total volume of white matter hyperintensities (WMH), used in the mediation analysis, was 

calculated using T2-weighted brain MRI data and the lesion is segmented using the Brain 

Intensity Abnormality Classification Algorithm (BIANCA) tool. 

Statistical analysis 

To assess whether IHD was associated with faster brain aging, whether it, in turn, was related 

to the risk of dementia, and to investigate potential mechanistic links between IHD and brain 

aging, including the role of some risk factors, we used a four-staged approach, which can be 

summarized as follow (Figure 1): A) estimating brain age in IHD; B) assessing the 

relationship between brain age and risk of dementia; C) evaluating the role of WMH as a 



potential mediator in the association between IHD and brain aging; D) evaluating the 

association of brain aging with vascular risk factors and imaging parameters. A detailed 

description of each stage of our analysis is provided below. 

Differences between groups were assessed using proportions t-tests for categorical variables 

and Student’s t-tests with unequal variances for continuous variables, with p < 0.05 

considered statistically significant for all tests (corrected for multiple comparisons). 

Brain age estimation 

Brain age was estimated using Python 3.8.10 and Scikit-learn version 0.23.2. Bayesian Ridge 

regression was used as a regression model to estimate brain age as it was shown to provide 

competitive performance (3). In the model, the 25 brain MRI features (described in 

Supplemental Table 2) were the independent variables while the chronological age was the 

dependent variable. The features were normalized to zero mean and unit variance to account 

for different measurement scales. The actual age was demeaned (shifted to have zero mean) 

before fitting it into the model to have a centered version of the outcome (4). Sex, education 

level, height, and volumetric scaling from T1 head image to standard space were used as 

confounds as they can significantly affect the outcome. The confounds were regressed from 

the features using a linear regression model prior to modeling brain age.  

The brain aging model was built based on participants with non-IHD by splitting the data into 

two subsets (training set, 80%; testing set, 20%). The model performance for both training 

and test datasets was assessed using the Mean Absolute Error (MAE) and the coefficient of 

determination (R2). MAE in brain age studies is interpreted as the deviation between 

predicted brain age and the chronological age expressed in years, with higher values 

indicating older appearing brains. R2 represents the proportion of variance in the predicted 

brain age explained by the used features in the model.  



Brain age estimation may involve an observed bias, with age underestimation in older 

participants, overestimation in younger subjects and more accurate estimation for those with 

ages close to the mean age (5). We removed the age-dependency bias using the statistical 

method described previously (6)(3). In brief, we calculated the slope (α) and the intercept (β) 

from the training data as follow: D= α*Ω+β, where D is the brain age delta and Ω is the 

actual age. Then we used the slope and the intercept to correct the estimated brain age in the 

test dataset as follows: corrected predicted brain age = predicted brain age – (α*Ω+β). After 

bias-correction, we calculated brain-age delta by subtracting the chronological age from the 

predicted brain age in the test datasets, with positive values (expressed in years) indicating 

accelerated brain aging. Pearson correlation was also calculated between actual age and 

brain-age delta, before and after bias correction.  

Next, brain age was estimated on IHD subjects using the previously trained model to assess 

the deviation of the brain-age delta from the reference (non-IHD) population. The same steps 

of features preparation and bias correction using the parameters calculated on the training 

data were applied. IHD and non-IHD groups were compared in terms of model performance 

and difference in mean brain-age delta, the latter considered as a measure of apparent brain 

aging (4).  

Relationship between brain age and risk of dementia 

To evaluate whether brain age was related with risk of dementia, we studied the association 

between brain-age delta and incident dementia using logistic regression on a sample 

comprising both IHD and non-IHD (test set) subjects (n = 8,389). Among them, 27 

developed dementia after the imaging visit (incident event). Criteria used to define dementia 

based on selected UKB fields are reported in Supplemental Table 6. 



Logistic regression model was fitted using brain-age delta as the predictor variable and 

incident dementia (0 = non-dementia, 1= dementia) as the response variable. The model was 

adjusted for age, sex, and education level.  

Since there were fewer subjects with incident dementia than those without (27 vs 8,362, 

respectively), to account for imbalance between the two groups, we used propensity score 

matching based on age and sex to identify an equal number of non-dementia subjects. We 

then repeated the association analysis using logistic regression on the 54 subjects (dementia, 

n=27 vs non-dementia, n=27) adjusted for education level. The association between brain-age 

delta and risk of dementia are presented in terms of beta value, odds ratio (OR) and 95% 

confidence interval (CI). 

Mediation effects of WMH on IHD and brain age 

We performed a mediation analysis to test to what extent the effects of IHD on brain aging 

(as expressed by brain-age delta) were mediated by WMH, a proxy of cerebrovascular injury. 

The analysis was conducted using ordinary least squares regression, as described in a 

previous publication (7). In the model, the input was whether the subject had IHD or not (0, 

1), the output was the brain-age delta, and the mediator was WMH. For this analysis, the 

associations between variables were described using the term effect as per statistical 

convention. Specifically, we evaluated the following associations' pathways: 1) IHD with 

brain-age delta (direct effect), indicating that IHD directly affects brain aging without any 

mediator; 2) IHD with brain-age delta through WMH (indirect effect), indicating that the 

effects of IHD on brain aging are indirect as WMH mediates them. The total effect indicates 

the combination of both direct and indirect effects of IHD on brain aging. 

We conducted both unadjusted and adjusted analyses using sex, education level, age, height, 

and volumetric scaling from the T1 head image to standard space as covariates. We used the 

tool PROCESS (R & SPSS) as an implementation of the mediation analysis.  



Association of brain age with vascular risk factors and imaging parameters  

To assess the role of vascular risk factors and imaging parameters to model brain age, the 

association between brain-age delta values and such exposures was evaluated using a linear 

regression model in both IHD and non-IHD (test-set) groups. In the model, the brain-age 

delta was the dependent variable while the exposure was the independent variable adjusted 

for the same confounds as before plus age. The p-values were corrected for multiple 

comparisons using the Bonferroni method (alpha= 0.05; number of tests = 19). In the 

regression model we used unstandardized measures to reveal the effect (beta value) of 

changing one unit in the exposure on the brain-age delta. Specifically, changing the 

exposures may lead to increasing or decreasing in brain-age delta (estimated in years) based 

on the direction of the association (positive vs negative beta value).  

Finally, to evaluate whether the imaging parameters were actually linked with the risk of 

dementia, we studied the association between the CMR metrics and incident dementia using 

logistic regression. This test was conducted only on the non-IHD group (test-set) (n= 8,389) 

as this was the only subset where we observed significant associations between brain-age 

delta and some imaging parameters. The number of non-IHD (test-set) subjects with available 

CMR metrics who developed dementia (incident event) was 8. Logistic regression model was 

fitted using the CMR measures as the predictor variable and incident dementia (0 = non-

dementia, 1= dementia) as the response variable. The model was adjusted for age and sex. 
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Figure 1. Illustration of the staged approach 

 

A – Brain age and its deviation from chronological age (brain-age delta, a marker of brain aging), was estimated in subjects 

with prevalent IHD using a Bayesian ridge regression model with 25 structural (volumetric) brain MRI features (IDPs) and 

built using UK Biobank participants with non-IHD. B – Validation of brain aging model by studying its association with 

dementia risk using logistic regression analysis. C – Evaluating potential mechanistic links between IHD and brain aging 

using mediation analysis: to what extent WMH, marker of microvascular injury, mediated the effects of IHD on brain aging. 

D – Evaluating the association of vascular risk factors and CMR metrics with brain aging in IHD vs non-IHD using linear 

regression analysis. IHD, ischemic heart disease; BAD, brain-age delta; IDPs, imaging-derived phenotypes; WMH, white 

matter hyperintensity. 
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Supplemental Table 1. List of ICD-10 codes used to define ischemic heart disease from 

the UK Biobank showcase 

Source UKB Field  ICD-10 
value Description 

ICD10 Summary diagnoses 41270, 41280 I20 Angina pectoris 
  I21 Acute myocardial infarction 
  I22 Subsequent myocardial infarction 

  I23 Certain current complications following acute myocardial 
infarction 

  I24 Other acute ischaemic heart diseases 
  I25 Chronic ischaemic heart disease 
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Supplemental Table 2. UK Biobank data sources for ascertainment of brain imaging-

derived phenotypes (IDP)s  

UKB Field  Description 
 25 brain IDPs used in the brain age model 

T1 structural brain MRI  
25001 Volume of peripheral cortical grey matter (normalised for head size) 
25002 Volume of peripheral cortical grey matter 
25003 Volume of ventricular cerebrospinal fluid (normalised for head size)  
25004 Volume of ventricular cerebrospinal fluid 
25005 Volume of grey matter (normalised for head size)  
25006 Volume of grey matter 
25007 Volume of white matter (normalised for head size)  
25008 Volume of white matter  
25009 Volume of brain, grey + white matter (normalised for head size)  
25010 Volume of brain, grey + white matter 
25025 Volume of brain stem + 4th ventricle  

Subcortical volumes (FIRST)  
25011 Volume of thalamus (left) 
25012 Volume of thalamus (right)  
25013 Volume of caudate (left) 
25014 Volume of caudate (right) 
25015 Volume of putamen (left)  
25016 Volume of putamen (right) 
25017 Volume of pallidum (left)  
25018 Volume of pallidum (right)  
25019 Volume of hippocampus (left)  
25020 Volume of hippocampus (right)  
25021 Volume of amygdala (left) 
25022 Volume of amygdala (right)  
25023 Volume of accumbens (left)  
25024 Volume of accumbens (right) 

 Brain IDP used in the mediation analysis 
T2-weighted brain MRI  

25781 Total volume of white matter hyperintensities (from T1 and T2_FLAIR images) 
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Supplemental Table 3. UK Biobank data sources for ascertainment of clinical exposures 

Source UKB Field  Description 

Body Mass Index (BMI)   

Body size measures: 
Standing height, weight 50, 21002 BMI (Kg/m2) = weight (kg)/ height2 (m) 

Diabetes   

Diagnosed by doctor 2443 Diabetes 
Self-reported medication  6177, 6153 Insulin 
Blood biochemistry 30750 Glycated haemoglobin (HbA1c) > 48 mmol/mol 

Hypercholesterolemia  

Self-reported medication  6177, 6153 Cholesterol lowering medication 
Blood biochemistry 30690 Serum total cholesterol >7 mmol/L 

Hypertension   

Self-reported medication  6177, 6153 Blood pressure medication 

Smoking (current smoker)   

Self-report 1239 
Yes, on most or all days 
Only occasionally 

Townsend index   

Baseline characteristics 189 Townsend deprivation index at recruitment 

Waist-hip-ratio   

Body size measures:  
Waist circumference, hip 
circumference 

48,49 Waist-hip-ratio = Waist circumference/ Hip circumference 
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Supplemental Table 4. UK Biobank data sources for ascertainment of incident dementia 

Data source Data-Field Code 

Non-cancer illness code, self-
reported 20002 1263 

ICD10 41270 

A810, F106, G300, G301, G308 

F000, F001, F002, F009, G310 

G311, G318, F010, F011, F012 

F013, F018, F019, F020, F021 

F022, F023, F024, F028, F03, 
F051 

ICD9 41271 2900, 2904, 2941, 3310, 3312, 
3315 

First occurrence  

130836 
Date F00 first reported 
(dementia in Alzheimer’s 
disease) 

130838 
Date F01 first reported 
(vascular dementia) 

130840 
Date F02 first reported 
(dementia in other diseases 
classified elsewhere) 

130842 
Date F03 first reported 
(unspecified dementia) 

131036 
Date G30 first reported 
(Alzheimer’s disease) 
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Supplemental Table 5. Volumes of brain structures (IDPs) in non-IHD vs IHD cohorts 

Brain IDPs 
Non-IHD cohort IHD cohort 

P-value 
mean std mean std 

Volume of peripheral cortical grey 
matter (normalised for head size) 618959.8 40626.84 599087.3 40014.86 < 0.001 

Volume of peripheral cortical grey 
matter 480148 46281.87 473869.2 44952.75 < 0.001 

Volume of ventricular cerebrospinal 
fluid (normalised for head size) 46237.34 19787.14 53153.54 21182.61 < 0.001 

Volume of ventricular cerebrospinal 
fluid 36319.79 17036.72 42494.42 18274.66 < 0.001 

Volume of grey matter (normalised 
for head size) 794023.4 47572.36 768429.7 47479.02 < 0.001 

Volume of grey matter 615842.1 55827.31 607745.1 54850.85 < 0.001 

Volume of white matter (normalised 
for head size) 702272.1 40667.01 698004 41216.11 < 0.001 

Volume of white matter 545987.3 61865.18 553256.1 60999.43 < 0.001 

Volume of brain, grey + white matter 
(normalised for head size) 1496296 72794.98 1466434 70042.4 < 0.001 

Volume of brain, grey + white matter 1161829 111840 1161001 108259.5 0.790 

Volume of thalamus (left) 7763.514 770.7964 7652.83 760.4853 < 0.001 

Volume of thalamus (right) 7570.728 746.9204 7467.788 742.5225 < 0.001 

Volume of caudate (left) 3381.543 425.1762 3392.709 426.7801 0.350 

Volume of caudate (right) 3564.397 448.1929 3579.341 451.284 0.244 

Volume of putamen (left) 4771.879 605.4202 4738.842 601.0369 0.057 

Volume of putamen (right) 4828.078 595.7929 4800.423 598.7282 0.105 

Volume of pallidum (left) 1757.298 246.4241 1756.316 257.1644 0.889 

Volume of pallidum (right) 1802.18 246.7956 1784.172 257.2562 0.011 

Volume of hippocampus (left) 3785.05 482.4387 3723.634 499.445 < 0.001 

Volume of hippocampus (right) 3898.62 494.3978 3833.532 527.2664 < 0.001 

Volume of amygdala (left) 1263.909 247.5637 1287.664 257.5384 0.001 

Volume of amygdala (right) 1226.507 273.073 1249.522 279.9848 0.003 

Volume of accumbens (left) 494.9743 120.8047 477.5845 126.1691 < 0.001 

Volume of accumbens (right) 389.2074 111.4514 365.6991 112.4412 < 0.001 

Volume of brain stem + 4th ventricle 22885.63 2889.264 22917.28 2888.373 0.702 

Total volume of white matter 
hyperintensities (from T1 and 

4858.15 6323.31 6724 7612.60 < 0.001 
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T2_FLAIR images) 

Values (expressed in mm3) are presented as mean ± standard deviation with the p-value for the difference (assessed with the 

t-test) between the two cohorts. IHD = ischemic heart disease.
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Supplemental Table 6. Correlation between brain-age delta and actual age before and 

after age-bias adjustment 

Correlations 
Non-IHD 

Train 

Non-IHD 

Test 
IHD 

Correlation between predicted age and chronological age before correction 0.62 0.62 0.55 

Correlation between brain age-delta and chronological age before correction -0.001 -0.001 -0.70 

Correlation between predicted age and chronological age after correction  089 0.85 

Correlation between brain age-delta delta and chronological age after correction  0.004 0.02 

The correlation value between brain-age delta and chronological age in both cohorts decreased to close to zero after the 

predicted brain age was corrected from bias, indicating that the derived brain-age delta was free from age dependency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Table 7: Association of CMR indices with incident dementia in non-IHD  
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Feature Beta value P value 

LVEF, % -0.0002 0.07 

LVEDVI, ml/m2 0.0000 1 

LVESVI, ml/m2 0.0000 1 

LVSVI, ml/m2 -0.0001 1 

LVMI, g/m2 0.0000 1 

RVEDVI, ml/m2 -0.0001 1 

RVESVI, ml/m2 0.0000 1 

RVSVI, ml/m2 -0.0001 0.45 

TAC, ml/m2 x mmHg -0.002 1 

M/V ratio, g/ml -0.003 1 

Aortic distensibility, 10-3/mmHg -0.001 1 

LVGFI, % -0.0002 0.05 

LVEDVI = left ventricular end-diastolic volume index, LVEF = left ventricular ejection fraction, LVESVI = left ventricular 

end-systolic volume index, LVMI = left ventricular mass index, LVSVI = left ventricular stroke volume index, RVEDVI = 

right ventricular end-diastolic volume index, RVESVI = right ventricular end-systolic volume index, RVSVI = right 

ventricular stroke volume index, LVGFI = left ventricle global function index, M/V = LV mass-to-volume ratio, TAC = total 

arterial compliance. 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Figures  
 

Figure legends (titles and captions) 
 
Supplemental Figure 1. Distribution of actual age range in IHD vs non-IHD groups 

The two cohorts showed a similar age range (40-70), albeit the distribution was slightly 

skewed to the left in the IHD cohort. The black dashed line indicates the mean value; the 

solid green line indicates the 95% percentile. The mean age for non-IHD (A) was 54.6 ± 7.4 

years, and for IHD (B) was 59.2 ± 6.3 years. Very few participants had an age range above 

the 95% percentile in both groups. 

Supplemental Figure 2. Predicted brain age in both groups 

The regression line (red dashed) from the trained model fits well with the test (non-IHD) (A) 

but not with the IHD data (B), explaining the higher MAE value in the IHD group. The age 

ranges in both cohorts appear different from the actual ones (40-70) because age was 

demeaned before fitting into the model. The boxplots (C, D) describe the distribution of 

predicted brain age (demeaned) in both cohorts, with the mean (median) value, and the first 

and third quartiles. The mean predicted brain age for IHD (D) is higher than for the test group 

(C). Furthermore, both cohorts have no predicted brain age as an outlier. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Supplemental Figure 1. Distribution of actual age range in IHD vs non-IHD group 

 
 
The two cohorts showed a similar age range (40-70), albeit the distribution was slightly skewed to the left in the IHD cohort. 

The black dashed line indicates the mean value; the solid green line indicates the 95% percentile. The mean age for non-IHD 

(A) was 54.6 ± 7.4 years, and for IHD (B) was 59.2 ± 6.3 years. Very few participants had an age range above the 95% 

percentile in both groups. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplemental Figure 2. Predicted brain age in both groups 

 
 
The regression line (red dashed) from the trained model fits well with the test (non-IHD) (A) but not with the IHD data (B), 

explaining the higher MAE value in the IHD group. The age ranges in both cohorts appear different from the actual ones 

(40-70) because age was demeaned before fitting into the model. The boxplots (C, D) describe the distribution of predicted 

brain age (demeaned) in both cohorts, with the mean (median) value, and the first and third quartiles. The mean predicted 

brain age for IHD (D) is higher than for the test group (C). Furthermore, both cohorts have no predicted brain age as an 

outlier. 


