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A B S T R A C T
Cloud computing is a mainstay of modern technology, offering cost-effective and scalable
solutions to a variety of different problems. The massive shift of organization resource needs
from local systems to cloud-based systems has greatly increased the costs incurred by cloud
providers in expanding, maintaining, and supplying server, storage, network, and processing
hardware. Due to the large scale at which cloud providers operate, even small performance
degradation issues can cause energy or resource usage costs to rise dramatically. One way in
which cloud providers may improve cost reduction is by reducing energy consumption. The use
of intelligent task-scheduling algorithms to allocate user-deployed jobs to servers can reduce the
amount of energy consumed. Conventional task scheduling algorithms involve both heuristic
and metaheuristic methods. Recently, the application of Artificial Intelligence (AI) to optimize
task scheduling has seen significant progress, including the Gated Graph Convolution Network
(GGCN). This paper proposes a new approach called HunterPlus which examine the effect of
extending the GGCN’s Gated Recurrent Unit to a Bidirectional Gated Recurrent Unit. The paper
also studies the utilization of Convolutional Neural Networks (CNNs) in optimizing cloud-fog
task scheduling. Experimental results show that the CNN scheduler outperforms the GGCN-
based models in both energy consumption per task and job completion rate metrics by at least
17 and 10.4 percent, respectively.

1. Introduction
Cloud-fog computing refers to the utilization of non-local computing resources such as storage and processors that

are accessed via a network and supplied by a cloud provider [1]. Users do not have to purchase any hardware and
can rent computing resources on-demand as determined by their needs [2]. Cloud-fog computing offers organizations
scalability and flexibility as it is simple and convenient to obtain more computational resources from the cloud provider
as organizational needs increase. The diminished need for onsite hardware greatly reduces the costs and the need for
hardware maintenance [3]. There is also no longer any need to spend time setting up and provisioning local hardware.
There has been a massive expansion of cloud-fog computing usage by businesses, meaning cloud providers must invest
in greater numbers of hardware resources. Consequently, cloud providers face a higher energy consumption footprint,
further increasing their costs. This makes it desirable to minimize the amount of energy used by these resources [4]. In
addition, service reliability may also be impacted by high energy consumption, as higher energy consumption correlates
to higher operating temperatures that can create hotspots, which have an impact on performance. Traditional techniques
of reducing energy consumption focused on leveraging the dynamics of the cooling systems, such as efficient airflow
configurations [5] and the use of controlled fan systems [6]. Another approach is intelligent workload scheduling, where
jobs are allocated or migrated to servers such that energy consumption is minimized. Migration is the process by which
jobs running on one physical node are moved to another physical node. Migration may be necessary if downtime
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is scheduled on the existing physical node, or if the physical node is displaying signs of performance degradation.
Migration can ensure that the process can continue seamlessly from a captured checkpoint on another machine, instead
of starting the process again from scratch on the new machine [7]. Migration is therefore an essential part of modern-
day cloud-fog task scheduling, saving time, cost, and energy. Noel et al. [8] demonstrated the effectiveness of dynamic
load distribution in reducing hotspots, obtaining significantly improved throughput and latency in storage servers.
Furthermore, Li et al. [9] explained that an optimal energy solution may not always be an optimal reliability solution.
They attempt to overcome this dilemma using the Ella-W and Ella-B scheduling algorithms. These algorithms work
using a novel metric that unifies computing energy, cooling energy, and server reliability. While these methods fail
to significantly improve reliability performance, they decrease energy consumption by up to nearly 30%. Young et
al. [10] developed a heuristic-based method to minimize energy consumption via task consolidation. Their heuristics
are used to allocate servers such that performance remains robust while minimizing energy usage. This method is
effective, although the performance improvement is only 18% compared to the random server allocation. There has
been also research into evolutionary algorithms, with Gill et al. [11] utilizing the Cuckoo optimization algorithm to
maximize resource utilization in the CRUZE cloud management system. Resources are assigned using fitness values
calculated using a predefined objective function that considers both the resources’ energy consumption and reliability.
In addition to conventional algorithmic and heuristic methods, there has been an increasing interest in applying artificial
intelligence models that can optimize resource allocation. Ran et al. [12] developed a deep reinforcement learning
framework that optimizes both task scheduling and system airflow settings, using feedforward neural networks to model
the system rewards and airflow. Chen et al. [13] trained a Recurrent Neural Network (RNN) model on the Google cluster
dataset and achieved resource savings of up to 10% by predicting and terminating tasks that were highly likely to fail.
Tuli et al. [14] extended the use of RNNs with their HUNTER resource allocation system by integrating graph neural
networks into their model, based on the Graph Recurrent Neural Network [15]. HUNTER is a Gated Graph Convolution
Network (GGCN) that acts as a surrogate model that estimates Quality of Service (QoS) parameters based on usage
metrics of the hosts and tasks. It then schedules its decisions based by determining which combination of hosts and
tasks together maximize the given QoS parameter. Our work continues in the direction of applying neural networks to
cloud-fog task scheduling to improve energy efficiency, and the main contributions of this paper are:

• We propose a new approach called HunterPlus, by extending HUNTER [14] to include a Bidirectional Gated
Recurrent Unit (GRU) to evaluate the graph inputs in both forward and backward direction.

• We implement a novel CNN model that takes the host and task metrics in a preprocessed 2D array form and
maps it to the energy consumption metric.

• Our evaluation demonstrate that HunterPlus is able to improve energy consumption and job completion rates by
at least 17% and 10.4%, respectively, compared to the state-of-the-art baselines.

The rest of the paper is structured as follows: In section II, we briefly review algorithms from various domains used for
scheduling purposes to reduce energy consumption. In Section III, we describe the core of our work, where we discuss
and present details of our solution models, the dataset used, and the testing framework. In section IV, we present and
discuss the results of our experiment. Finally, Section V concludes and provides future directions.

2. Background and Related Work
This section provides a background of the various heuristics, meta-heuristics and machine learning based

approaches common in prior work.
2.1. Heuristic methods

This section gives some context for the many heuristics based techniques that have been used in previous research.
2.1.1. First Come First Serve (FCFS)

This algorithm schedules tasks based on the order in which they arrive. Maharan et al. [16] demonstrate this method
has the highest energy consumption per task when compared with other evolutionary methods.
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2.1.2. Max-Min
The max-min algorithm works by computing the execution times required for workloads and assigning tasks that

require the most time to hosts that can complete them in the minimum amount of time. The algorithm is not as effective
in minimizing the time taken per task and the energy consumed per task when compared with genetic methods [17].
2.1.3. Most Efficient Server First (MESF)

This algorithm determines the most efficient servers available in a heterogeneous host configuration and allocates
tasks to the most efficient server first. Subsequent tasks are allocated to the next most efficient server, and so on. When
server specifications are similar, tasks are allocated until a noticeable degradation of performance is observed. MESF
can be up to 70 times more energy efficient than random task schedulers [18].
2.2. Metaheuristic methods

Heuristic methods are problem specific, while metaheuristic methods are general methods that can be applied to any
given optimization problem. Metaheuristic algorithms consist of 3 operators: transition, evaluation, and determination
[19]. Transition modifies the current solution in different ways, and evaluation is done using an objective function that
gives the fitness of the new solutions. Determination then picks those solutions which demonstrate optimal results.
Examples include the hill climbing algorithm and the simulated annealing algorithm. Evolutionary algorithms also
fall into this category and have seen significant research interest for cloud task scheduling.
2.2.1. Genetic Algorithms (GA)

The genetic algorithm is a population-based metaheuristic approach that has seen widespread use thanks to its
good results and adaptability to different domains [19]. The technique takes inspiration from biological evolution,
and works through the selection, mutation, crossover, and reproduction operators. Chang-tian et al. [20] use dynamic
voltage staging in conjunction with a genetic algorithm that optimizes server makespan and energy consumption.
The task scheduling is represented directly using integers and vectors, with samples possessing lower makespan and
energy consumption values being assigned higher fitness values. The ETU-GA and ETDF-GA algorithms can show
a good balance between maintaining optimal makespan while minimizing energy consumption. Liu et al. [21] used a
multi-objective genetic algorithm to find the optimal balance between energy consumption and the cloud providers’
profits. Scheduling is represented using matrices. Chen et al. integrated a greedy algorithm with a GA to speed up the
scheduling process by eliminating early obvious bad candidates [13]. The chromosomes are represented as 1D arrays
that map physical machines to virtual machines (VM). The algorithm minimizes the number of physical machines
being used saving a significant amount of energy.
2.2.2. Ant Colony Optimization (ACO)

Ant colonies consist of simple rule-based agents (ants). Each agent constructs a separate path during each iteration,
and the quality of each path is evaluated and updated to the pheromone matrix, which guides the agents during
the subsequent iteration. Ultimately, an optimal path is constructed by all the agents. Liu et al. [22] utilized this
algorithm to minimize the number of physical servers required to host a given number of virtual machines and obtained
significantly better energy performance (especially for many VMs) compared to the first-fit decreasing algorithm. The
Load Balancing Ant Colony Optimization (LBACO) algorithm proposed by Li et al. [23] extended the conventional
ACO approach by also considering the prevalent load of a host machine before making an allocation decision. This
approach can handle varying loads much better than FCFS and ACO.
2.3. Deep Learning-based Scheduling

This approach involves training neural networks over historical cloud trace data and predicting QoS parameters to
make scheduling decisions.
2.3.1. Artificial neural networks (ANNs)

ANNs are graph structures consisting of nodes (known as neurons) and directed edges that exist between neurons in
progressing layers of the network, where each neuron gives an output resulting from an activation function applied to the
neuron’s inputs. ANNs can model complex nonlinear phenomena when network weights are tuned (via learning and 3
backpropagation) and can be branched into either feed-forward or recurrent networks. Outputs in feedforward networks
are independent of any previous output, while outputs of recurrent networks depend on the previous network output,
due to the presence of looped edges in the graph. Witanto et al. [24] developed and trained a simple ANN model that
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Figure 1: The basic structural unit of an unrolled RNN

uses active host, resource usage, and workload data along with current performance metrics to determine the best load
consolidation algorithm for scheduling tasks. This model does not predict any QoS parameter; it simply chooses the best
algorithm for a given scenario. This technique demonstrates significantly improved performance over no-migration-
based scheduling. ANNs have also been combined with Reinforcement Learning models, such as PArameterized action
space based Deep Q-Network (PADQN) model developed by Ran et al [12].
2.3.2. Recurrent neural networks (RNNs)

RNNs are deep learning models that demonstrate excellent performance with sequential data and are extensively
utilized in tasks such as language modelling, text generation, machine translation, and speech recognition [25]. A
simple RNN can be mathematically described as an input 𝑋 and a hidden state H at time 𝑡, which are transformed into
inputs to an activation function using and weight matrices respectively as shown in Figure 1. A bias may also be added.
The structure of a basic RNN is shown in Fig. 1. 𝑋𝑛 refers to the input at each timestep. Except for the first timestep, any
output 𝑂𝑛 depends on the previous hidden state 𝐻𝑛−1 and the current input 𝑋𝑛. RNNs work well with sequential data
due to their ability to keep an internal memory of previous inputs. This memory ensures that context is remembered
when the RNN processes subsequent input data; previous outputs influence future outputs. Recurrent neural networks
are implemented using two different methods. These are long short-term memory (LSTM), and gated recurrent unit
(GRU). RNNs can suffer from both vanishing gradients (where backpropagation updates become meaningless) and
exploding gradients (where the network becomes unstable). LSTMs can help overcome these problems. They consist
of a cell, an input gate, an output gate, and a forget gate [22] . The input gate determines what information from the
new inputs should be stored in the internal state. The output gate determines the new hidden state, based on the new
input, the new internal state (obtained from the input gate), and the hidden state. The forget gate determines what parts
of the internal state should be retained based on the previous hidden state and current output. Together, the three gates
control the flow of information in the network. GRUs are simpler versions of LSTMs, having two gates instead of three.
These are the reset gates (like the forget gate in LSTM), and the update gates (like the input gate in LSTM). It has the
advantage that it is less complex and easier to train. LSTMs and GRUs can also be encapsulated in a Bidirectional
layer. This means that training is done by passing inputs through both forward and backward RNN cells. The output is
then obtained by concatenating the results of both forward and backward RNN cells at each time step. This provides
better context for the model and can improve performance. Tuli et al. [14] used the GGCN model, which is a GRU
combined with Graph Neural Network (GNN), to approximate QoS parameters for task scheduling purposes. Karim et
al. [26] developed the BHyPreC prediction model, which uses a Bidirectional LSTM stacked on top of similar RNNs
to predict future CPU workloads. The model initially takes pre-processed data passed through a 1D Convolution layer,
and this is passed into the Bidirectional layer. The model was trained and tested using the Bitbrain dataset and proved
to be more stable and more accurate than single-direction LSTM or GRU-based models.

2.3.3. Convolutional Neural Networks (CNNs)
CNNs are a type of neural network primarily used in computer vision and image processing [27]. Generally, CNNs

have convolutional layers, pooling layers, and fully connected layers. Convolutional layers have kernels that slide down
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Table 1
Comparison of proposed work HunterPlus with existing works

Work cloud-fog Method Type Workload Type QoS prediction Coupled simulation for decision making Aid
Mahran et al. [16] Yes Heuristic Stochastic No No

Liu et al. [22] Yes Meta-heuristic Stochastic No No
Tuli et al.[14] Yes Gated Graph Convolution Network Stochastic Yes Yes

Ridwan et al. [8] Yes Heuristic Stochastic No No
Ying et al. [20] Yes Meta-heuristic Stochastic No No
Ran et al.[12] Yes Deep reinforcement Learning Stochastic No No

Witanto et al.[24] Yes Deep learning Stochastic No No
HunterPlus (this work) Yes Convolutional neural network Stochastic Yes Yes

and across the input to produce output by multiplying each weight in the kernel with the corresponding matrix element
value over which the kernel acts. The result is then summed to get the output. The kernel has weights that are updated
through backpropagation during the training process. Pooling layers are used to reduce the dimensionality of the feature
maps and for more robust feature detection. CNNs have seen limited use in task scheduling problems compared to other
neural networks. Talaat et al. [28] used a CNN to classify appropriate fog servers according to their resource usage
metrics.
2.4. Critical Analysis

Table 1 compares HunterPlus with existing works. We analyzed different methods and algorithms for task
scheduling with stochastic workloads. Many works used simulations to aid in search methods but none of them used
coupled simulation for QoS parameters prediction and to collect additional data for aiding in the decision-making of
an AI model except [14]. According to the best of our knowledge, none of the works have used CNN-based coupled
simulation for the collection of additional data for the decision-making of an AI model. Furthermore, among the most
popular AI algorithms, we selected to utilize Deep Learning (CNN) for scheduling tasks rather than Reinforcement
Learning (RL). Many previous works in the literature [29, 30, 31] reported that RL approaches are slow to adapt
to a highly volatile environment. They are unable to adapt when a host is running at high capacity. This mean they
predict an overload host for large number of scheduling intervals. Therefore, task cannot be assigned to same interval
and need to wait for either it is assigned to other host or resource released from that hosts. Another issue with RL
approaches is their low scalability, which increases waiting time with increase in resources. However, proposed DL
(CNN) based approach has capacity to adapt quickly to environment as neural model update in every iteration and do
not face scalability issue on even large scale experiments.

3. The HunterPlus Scheduler
This section describes the system architecture of the HunterPlus scheduler, the sustainability models, and the CNN-

based Surrogate model.
3.1. System Architecture

This section describes the architecture of our system shown in Fig. 2. We considered a standard heterogeneous
and distributed fog environment. We assume a single fog datacenter with geographically distributed edge and cloud
layers as computational nodes. Tasks are docker container instances that take inputs from sensors and other Internet of
Things (IoT) devices and output to the actuators. All management of tasks and hosts is done in the management layer
on fog broker. Gateway devices are facilitating communication between end user and fog broker. Compute nodes in the
resource layer have diverse computational capacities and are referred as hosts. We divided our system in three layers:
IoT layer, Management layer and Resource layer.

• IoT Layer: IoT layer consists of IoT and gateway devices. The workloads are sent by users with inputs from
sensors or other IoT devices to the broker. Edge devices such as smartphones and tablets are used as gateway
devices.

• Management Layer: In the management layer, the broker receives incoming tasks and distributes these to
worker nodes in the resource layer. The management layer consists of three main modules: Service manager,
Resource manager, and Datacentre manager.
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Figure 2: System Architecture of HunterPlus

– Service Manager: The service manager module manages heterogeneous services while processing
workloads. This module consists of two parts:

– SLA Manager: It contains and manages details of Service Level Agreements (SLA) between the service
user and service provider based on Quality of Service.

– QoS Manager: It contains and manages the quality of service requirements for the workloads.
– Resource Manager: The resource manager contains the HUNTERPlus scheduler which takes tasks

(realized using containers) as input and orchestrates these tasks using resource metrics from the resource
monitor. To schedule resources, the resource manager uses a CNN-based surrogate model that estimates
QoS parameters. It performs training and on-the-fly tuning of the CNN model to adapt in non-stationary
settings. This manager also runs an exploration strategy that checks the QoS scores for a set of allocations
and chooses the best one as the scheduling decision

– Datacentre Manager: Datacentre manager monitors resource utilization of tasks and nodes, QoS param-
eters, and performs allocation and migration of tasks.

• Resource Layer: Resource layer consists of a group of heterogeneous resources. Some of the resources are fog
resources which are assumed to be resource constrained but offer lower latency and others are cloud resources
which are located in geographically distant locations but are connected via the same virtual network.

3.2. Sustainability Models
We also briefly mention the energy model used in the study. In this work, to decouple the different aspects of

sustainable resource management [14], we have designed two different models: energy and cooling. For completeness,
we reproduce the formulae from prior work [14], with necessary adaptations for the new formulation.
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Algorithm 1 The HUNTERPlus scheduler
Require:

Pre-trained function approximator 𝑓 (𝑥; 𝜃)
Dataset used for training Λ
Convergence threshold 𝜖
Iteration limit 𝜎
Learning rate 𝛾
Initial random decision 
Performance metric 𝑂

1: procedure MINIMIZE(, 𝑓 , 𝑆)
2: Initialize decision matrix 𝜙()
3: 𝑖 = 0
4: do
5: 𝑥 ← [𝑆, 𝜙()] ⊳ Concatenation
6: 𝛿 ← ∇𝜙()𝑓 (𝑥; 𝜃) ⊳ Partial gradient
7: 𝜙() ← 𝜙() − 𝛾 ⋅ 𝛿 ⊳ Decision update
8: 𝑖 ← 𝑖 + 1
9: while |𝛿| > 𝜖 and 𝑖 ≤ 𝜎

10: end do while
11: Convert matrix 𝜙() to scheduling decision ∗

12: return ∗

13: end procedure
14: procedure HUNTERPLUS(scheduling interval 𝐼𝑡)
15: if (t == 0)
16: Initialize random decision 
17: else
18:  ← ∗ ⊳ Output for the previous interval
19: Get 𝑆 as the system state
20: ∗ ← MINIMIZE(, 𝑓 , 𝑆)
21: Fine-tune 𝑓 with loss =
22: 𝑀𝑆𝐸(𝑂𝑡, 𝑓 ([𝜙,𝑡−1]; 𝜃))
23: return ∗

24: end procedure

Figure 3: Architecture of HunterPlus neural network.

3.2.1. Energy model
The energy model developed by Gill et al. [11] is used. Energy consumption is formulated as the sum of the energy

expended by computer hardware and the energy expended on cooling facilities as shown in equation 1.
𝐸T = 𝐸Comp + 𝐸Cool (1)
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Computer hardware includes processors, storage, and networking devices, amongst other items. The cooling energy is
obtained as the sum of energy used by air-conditioners, fans, compressors, and pumps. 𝐸Comp can be defined as

𝐸Comp = 𝐸Pr + 𝐸S + 𝐸Mem + 𝐸Net + 𝐸additional (2)
Here, 𝐸Pr denotes the energy consumption by processors, 𝐸S represents the storage energy, 𝐸mem represents the
memory energy, 𝐸Network represents the network energy, 𝐸additional represents the extra energy.
Processor. Here, EPr stands for the total energy used by the Processor, which is determined by adding the energy used
when the processor is idle to the power used while it is dynamic processing data. Consequently,

𝐸Pr =
𝑐𝑜𝑟𝑒
∑

𝑝=1
𝐸𝑝

dy + 𝐸𝑝
idl (3)

where 𝐸𝑝
dy and 𝐸𝑝

idle are the dynamic and idle energy consumption of the 𝑝-th core respectively. Here, 𝐸dy is calculated
using

𝐸dy =
𝐸lin

dy + 𝐸non-lin
dy

2
(4)

𝐸lin
dy is calculated as

𝐸lin
dy = 𝐶𝑉 2𝑓 (5)

where 𝐶 is CPU capacitance, 𝑓 is CPU clock frequency, and 𝑉 is CPU voltage. 𝐸non-lin
dy is calculated using

𝐸non-lin
dy (ℎ𝑗) = 𝜇1 ⋅ 𝑢𝑗 + 𝜇2 ⋅ 𝑢

2
𝑗 (6)

where 𝜇1 and 𝜇2 are non-linear model parameters and 𝑢𝑗 is CPU utilization of host ℎ𝑗 .
Storage. 𝐸S is the energy used by storage devices for storing data. The data write and read operations account for
the energy consumption in such devices. Storage energy is combination of energy consumed by read operation, write
operation and idle (when there is no read or write operation):

𝐸S = 𝐸R + 𝐸W + 𝐸I (7)
𝐸Mem is the consumption of energy of the main memory (RAM/DRAM), represented as DR, and cache memory
(SRAM) represented as SR, which is calculated using

𝐸Mem = 𝐸SR + 𝐸DR (8)
Network. 𝐸Net is the energy consumption of network parts such as switches (Switch), routers (Rout), LAN cards
(LAN), and gateways (Gate) and is calculated as

𝐸Net = 𝐸Rout + 𝐸Switch + 𝐸Gate + 𝐸LAN (9)
Peripherals. 𝐸additional represents the energy consumption of other parts, including the current conversion loss and
others and is calculated as

𝐸additional = 𝐸mb +
∑

𝑘∈𝐾
𝐸𝑘

con (10)

where 𝐸mb is the energy consumed by motherboard(s) and ∑

𝑘∈𝐾 𝐸𝑘con is the energy consumed by a connector (port)
running at the frequency k, where the set of port frequencies is denoted by 𝐾 .
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3.2.2. Cooling model
: In this model, ECool is the energy consumed by cooling devices to maintain the temperature of a cloud datacenter,

which is calculated using equation 1:
𝐸Cool = 𝐸Air conditioner + 𝐸Compres + 𝐸fan + 𝐸pump (11)

where 𝐸Air Conditioner is the energy consumed by the air-conditioner inside the datacenter, 𝐸Compres is the energy
consumed by the compressor, 𝐸fan is energy consumed by the fans and 𝐸pump is that of the pump attached with
all-in-one cooling solution made up of water.
3.3. CNN based Surrogate Model

For scheduling using CNN-based surrogate model, we utilized both host and task resource usage data to best
optimize the allocation of tasks to hosts. The task allocations, host resource usage details, and similar information are
represented in a matrix form (a so-called ‘image’ of the present state of the cloud-fog environment). The image is
constrained such that only a maximum number of tasks are allowed to exist over a given number of hosts. As we have
4 hosts which can be allocated a maximum of 20 total tasks. It is not necessary that tasks be divided equally among
the hosts; instead, this is left to the scheduler to determine. The image consists of 20 rows and 13 columns, where
each row represents a task, and the columns represent hosts. Feature vector of tasks include Instructions per Seconds
(IPS), RAM, Disk and Bandwidth consumption. The columns also contain a one-hot vector representation of the host
to which the task is currently allocated. A task that does not yet exist is represented by all zeroes in the columns.
During execution, the scheduler extracts all the relevant data about the system, does some preprocessing, and converts
it into the image form that is required for input into the CNN. This representation ensures that current tasks are linked
together with their hosts. The CNN model itself consists of a series layers with increasing number of channels followed
by series of layers with decreasing number of channels. Because the inputs are not images in the classical sense, the
max pooling layer that is usually applied after a convolution is discarded.

Due to the nature of the problem, application of max pooling would cause loss of information. Padding is also
applied when kernel convolutions are applied, to minimize information loss. Kernel size is defined in tandem with
padding to ensure consistent subsequent channel size. The reason for reducing the number of channels afterward is to
minimize the number of features once the channel outputs are flattened into the fully connected layer. There is only
one fully connected layer ending in the sigmoid activation function. The scheduling decision is taken by obtaining an
optimal image via PyTorch, deep learning framework, to optimize features that maximize the QoS values and then
extracting the relevant host allocation components that are available in the optimal image matrix.

An algorithmic representation of the working of HunterPlus is shown in Algorithm 1 and Fig. 3. We represent
the CNN or GGCN based model using 𝑓 (𝑥, 𝜃) where the weights of the model are denoted by 𝜃. We initialize the
decision of the scheduler as . We use the state of the system, denoted by 𝑆 that consists of the CPU, RAM and Disk
utilization characteristics of the host machines in the fog environment. We then run gradient based optimization using
the surrogate model as per the MINIMIZE function in Alg. 1. This uses the partial gradient of the surrogate function
with respect to the decision vector to execute optimization in the decision space. Finally, once the gradient based search
converges as per the threshold based convergence criterion, we enact the final decision ∗ and fine-tune the model
using the Mean-Square-Error (MSE) loss to adapt the policy in dynamic settings. The MSE loss is calculated with the
performance parameter 𝑂𝑡 defined as

𝑂𝑡 = 1 − (𝛼 ⋅ 𝐴𝐸𝐶𝑡 + 𝛽 ⋅ 𝐴𝑇𝑡 + 𝛾 ⋅ 𝑆𝐿𝐴𝑉𝑡), (12)
where 𝐴𝐸𝐶𝑡, 𝐴𝑇𝑡 and 𝑆𝐿𝐴𝑉𝑡 denote the average normalized energy consumption, average normalized temperature
and SLA violation for the leaving tasks in interval 𝐼𝑡. Here, 𝛼, 𝛽, 𝛾 are convex-combination weights. To minimize the
metrics of energy, temperature and SLA violations, we maximize 𝑂. We use 𝛼 = 𝛽 = 𝛾 = 1

3 in our evaluation, although
the performance improvements are seen for other values as well.

4. PERFORMANCE EVALUATION
This section evaluates the proposed model HunterPlus and compares it with baseline models.
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Figure 4: Training and testing losses for each scheduler model.

4.1. Evaluation Setup
We rely on a real cloud-fog environment using the COSCO framework [31]. For statistical significance, we run

experiments for each model 4 times and average the results. In the physical setup, we initialized 4 Standard Azure
B2s virtual machines in the UK, each with 2 cores and 4GB of RAM. An average of 2 tasks at Poisson distribution
(1.5) from the DeFog benchmark were created during each scheduling interval. DeFog consists of diverse and non-
stationary AI workloads. We realized these workloads using docker containers to execute on our physical setup. The
scheduling interval itself was set to 300 seconds to allow sufficient time for the deployed tasks to complete execution.
Each experiment is run for 20 intervals to collect QoS metrics.
4.2. Datasets

The training datasets were generated using a random scheduler for 100 intervals for two different workload settings.
The normal workload involved creating a mean of 2 tasks per interval, and the intense workload involved creating a
mean of 4 tasks per interval. The initial aim was to have each dataset for over 200 intervals; this was not possible
as latency issues significantly slowed down the dataset generation process (due to the random scheduler being used).
However, since the number of VMs is 4, 100 scheduling intervals are deemed sufficient to train the models. The datasets
include data such as CPU usage, RAM usage, and Disk I/O for both hosts and containers. The host IDs and numbers
of containers present in each host is also available in the datasets, along with performance metrics such as response
time, energy consumption, and number of SLA violations. The reason for generating 2 datasets is to train models over
different workload conditions and quantify the effect the different models would have on performance for a single
workload configuration.
4.3. Training

The GGCN, Bidirectional GGCN and CNN models are trained on Datasets 1 and 2. The models take the utilization
matrix of the active tasks and the capacity matrix of the target hosts as input. All models are trained using the Adam
optimization algorithm, with a learning rate of 0.001, with the loss determined using the mean square error (MSE) loss
function. Each model was trained for 100 epochs, and the losses are shown for training and testing in Figure 4.

All models display a downward trend, though the GCNN model settles much more quickly than the other two
models, which show a lot of fluctuation as the loss decreases. All testing and training losses settle under the 0.02 range,
demonstrating good training [32].
4.4. Testing

Testing was conducted with the aim of observing how the energy consumption QoS parameter varies under different
training datasets and models. Each model was tested 4 times to ensure the reliability of the results. The testing was
done for 20 intervals per test, with workloads created at a mean of 2 tasks per scheduling interval. Figure 5 shows the
rate of generation of containers for 4 tests of all schedulers.

Sundas Iftikhar et al.: Preprint submitted to IoT Elsevier Page 10 of 19



HunterPlus: AI based Energy-Efficient Task Scheduling for Cloud-Fog Computing Environments

Table 2
Energy Consumption (Per completed task, KW-hr)

GGCN
2/Interval

GGCN
4/Interval

BiGGCN
2/Interval

BiGGCN
4/Interval

CNN
2/Interval

Test1 105.5 99.0 103.1 93.8 71.4
Test 2 122.7 103.4 103.1 68.5 74.8
Test 3 133.9 119.9 84.3 78.3 57.8
Test 4 75.3 71.5 89.8 92.8 72.4
Average 109.3 98.4 95.1 83.8 69.1

4.5. Evaluation Metrics
For comparison of the proposed approach with baseline schedulers (GGCN, Bidirectional GGCN), we considered

the following metrics:
• Energy Consumption is calculated using equation 1.

• SLA violation rate is the sum of SLA violations divided by the sum of jobs where the value of 𝑆𝐿𝐴𝑖 is 1 if SLA
of 𝐽𝑜𝑏𝑖 is violated, o otherwise. It is calculated using equation 13.

𝑆𝐿𝐴violation =
Σ 𝑆𝐿𝐴𝑉𝑖
Σ 𝐽𝑜𝑏𝑖

(13)

• Job Completion Rate is the ratio of completed jobs to the assigned Jobs. It is calculated as given in equation 14:

𝐽𝑜𝑏 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
Σ 𝐽𝑜𝑏𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑
Σ 𝐽𝑜𝑏𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑

(14)

• Scheduling time is the average time a scheduler takes to make a decision.
• Wait time is calculated as the average time a job spends in the waiting queue.
We choose Job completion ratio with other metrics as it is important for energy consumption to be minimized, it is

equally important that assigned tasks are completed. This metric is different to the SLA violation metric, which looks
at whether jobs are completed within a given time. This metric is unique to the given testing circumstances, otherwise
SLA violation is the preferred metric when evaluating the reliability of the scheduler. This metric measured the ratio
of completed jobs to assigned jobs.
4.6. Results

Figure 6 shows QoS parameters comparison of Hunterplus with other baseline models. In this section, we will
discuss the results of HunterPlus for all the specified evaluation metrics in detail.
4.6.1. Energy consumption

Table 2 and Figure 6 summarizes the energy results for all the models.
As shown in Figure 6(a), we observe that the GGCN-I and Bidirectional GGCN-I models outperform their normal

counterparts, with the GGCN-I model saving an average of 10.9 KW-hr worth of energy compared to the GGCN
model, while the Bidirectional GGCN-I model saves an average of 12.2 KW-hr worth of energy. The nature of the
dataset upon which the model is trained has a clear and positive impact on performance. In this case, Dataset, which
has a mean workload of 4 tasks every interval, can improve the performance of a task scheduling application where
the mean workload is 2 tasks for every interval.

Another interesting observation is the variability in the data for GGCN compared to the other models. The ranges
for the normal and intense GGCN models are 58.6 KWh and 48.4 KW-hr respectively, whereas the maximum range
in any of the remaining models is only 25.3 KW-hr. Although extra testing is required for more robust analysis, the
Sundas Iftikhar et al.: Preprint submitted to IoT Elsevier Page 11 of 19
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Table 3
Average Job Completion Rate (Job completion ratio for all tests)

GGCN
2/Interval

GGCN
4/Interval

BiGGCN
2/Interval

BiGGCN
4/Interval

CNN
2/Interval

T1
Total Containers 37 39 35 38 37
Completed Containers 25 25 25 26 32
completion ratio 0.68 0.64 0.71 0.68 0.86

T2
Total Containers 43 40 38 41 37
Completed Containers 22 26 25 36 32
completion ratio 0.51 0.65 0.66 0.88 0.86

T3
Total Containers 39 36 36 46 48
Completed Containers 20 22 29 33 43
completion ratio 0.51 0.61 0.81 0.72 0.90

T4
Total Containers 38 41 37 33 44
Completed Containers 32 35 28 26 34
completion ratio 0.84 0.85 0.76 0.79 0.77

Avg
Total Containers 39.25 39 36.5 39.5 41.5
Completed Containers 24.75 27 26.75 30.25 35.25
completion ratio 0.64 0.69 0.73 0.77 0.85

*Abbreviations used are- T1:Test 1, T2:Test 2, T2:Test 3, T4:Test 4, avg: Average

initial results indicate that the GGCN model performs unpredictably compared to the other models. The Bidirectional
GGCN displays much more consistent performance, suggesting that the addition of the Bidirectional layer to the model
and its ability to learn from both past and future data provides better context when scheduling decisions are taken.
Parallel to this, the significant fluctuation in performance for the same model may also be in part attributed to the
randomness of the jobs’ selected. Although task generation is random, there is a possibility that some tests may have
been repeatedly given easier tasks to perform which lent themselves to better scheduling. Again, this would influence
scheduling performance, but it should not be as significant as the results seen. The performance benefit of adding a
Bidirectional layer is clear when GGCN and Bidirectional GGCN are compared. For normal workloads, a Bidirectional
GGCN consumes 14.2 KW-hr worth of energy less per completed task than a GGCN. For intense workloads, this
value increases to 15.1 KWhr. The more consistent performance range of the Bidirectional GGCN and better energy
consumption performance clearly demonstrate the effectiveness of the Bidirectional layer.

The CNN model demonstrates significantly improved performance compared to the original GGCN and the
Bidirectional GGCN models. It saves 14.2 KW-hr more energy than the best performing GGCN-based system, whether
trained on any of two datasets. Thus, CNN reduces energy consumption by at least 17% compared to the baseline
methods. Furthermore, the CNN model has a range of only 17 KW-hr, which is lower than all but 1 of the other
models, demonstrating its ability to manage the inherent stochastic behavior in the system due to the dynamism in
workload resource requirements and host resource capacities.
4.6.2. Job completion rate

While it is important for energy consumption to be minimized, it is equally important that assigned tasks are
completed. This metric is different to the SLA violation metric, which looks at whether jobs are completed within a
given time. This metric is unique to the given testing circumstances, otherwise SLA violation is the preferred metric
when evaluating the reliability of the scheduler. This metric measured the ratio of completed jobs to assigned jobs.
Table 3 and figure 6(c) summarizes the job completion rate results.

Job completion rates1 are an important measure of performance for our models. Merely obtaining the energy
consumed per task is insufficient as there is a possibility that excessive containers could have been deployed, which
naturally means that more will be destroyed, which would drive the energy performance up. To preclude this possibility,
from Table 3, we note that the CNN model has an average of 41.5 containers deployed across all tests. Although this
is greater than for all other models, the range for average number of containers across all models is just 5, and for most
models it is at most greater than half of this range. The mean workload is 2 tasks/interval, deployed over 20 intervals,
which gives a total expected workload of 40 tasks. The COSCO framework uses a Python-based statistics library to

1Job completion ratio and Job completion rate are used interchangably.
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Figure 5: Container creation rate for all the schedulers

create the workload using a normal distribution. However, for the sake of a complete analysis, it is worthwhile to show
that the generated workloads really do belong to the specified normal distribution. We can use hypothesis testing to
determine the likelihood of obtaining 41.5 containers from the workload generator. The mean workload is set at 2 tasks
per interval, with a standard deviation (S.D) of 1.5. Therefore, this workload deployment has a normal distribution of 𝑋
∼𝑁(2, 2.25), where 2.25 is the variance obtained by squaring the standard deviation. To apply this normal distribution
model, we take our sample size as 80.

This approach essentially combines all 4 tests together (T1:Test 1, T2:Test 2, T2:Test 3, T4:Test 4), where each
test has 20 samples (intervals). The mean number of tasks deployed is calculated from the data is 2.075. The problem
then boils down to determining how likely it is to obtain the above mean value from the 𝑋 ∼ 𝑁(2, 2.25) distribution.
The approach is to model the sample data using a distribution of the form 𝑋̄ ∼ 𝑁(2, 0.028), where 0.028 is obtained
by dividing the variance by the sample size. Then, our null hypothesis is that the mean number of tasks is 2, while our
alternative hypothesis is that the mean number of tasks is greater than 2.075. The probability 𝑃

(

𝑋̄ ≥ 2.075
) according

to the 𝑋̄ ∼𝑁(2, 2.08) distribution is calculated as 0.33. As this is greater than 0.05, we can be confident that the results
are statistically significant to a level of 5%, and that there is no excessive container deployment that may have skewed
the results. Figure 6(f) shows the relationship between energy consumption and the job completion ratio. As expected,
a higher job completion ratio mirrors lower energy consumption per completed task. The CNN model demonstrates the
best job completion ratio, completing an average of 85% percent of tasks within the schedulers run. Both models for
GGCN demonstrate variability in performance, like that observed in energy consumption. GGCN trained on dataset1
demonstrates the lowest job completion ratio, finishing just 64% of the created workloads. On the other hand, the
GGCN trained on the dataset 2 completes 69% of the workload during its scheduling run. A similar trend is observed
for the Bidirectional models, with 73% and 77% of tasks completed for normal and intense dataset-trained models
respectively. Compared to the best baseline, CNN achieves an improvement in job completion ratio of 10.4%.
4.7. Task allocation analysis

Artificial neural network schedulers can work well compared to other heuristic and meta-heuristic-based methods,
but the reasoning behind scheduling decisions can still be rather opaque, and such networks are often referred to
as ‘black box’ methods. This section aims to analyze some of the scheduling decisions taken by our models. We
examine the fluctuations in the number of tasks assigned to host for all tests of any given scheduler. Starting with the
GGCN scheduler, we note that the second test for this scheduler has an energy consumption of 122.7 KW-hr, and a
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Figure 6: Comparison of HunterPlus with baseline Schedulers

Table 4
. Total Containers, completed containers, and job completion rates.

Interval CPU(% Usage, Host0, Host1,Host2,Host2)
12 100,100,0.2,100
13 100,100,23.1,100
14 100,100,30.5,100
15 100,100,0.1,100
16 100,100,26.5,100
17 100,100,75.9,100
18 75.5100,77.9,100

job completion rate of just 51%. The host allocation data for this shows a preference to minimize the number of tasks
assigned to one of the hosts; in particular, before the 16th interval, the model assigns multiple tasks to all hosts except
for Host 2. During this period, the model only assigns a new task to host 2 once the existing task has finished. However,
when the existing total workload exceeds 15 containers (which happens after the 16th interval), Host 2 is assigned more
tasks. This behavior suggests that the model is attempting to minimize energy consumption by utilizing one host as
little as possible, while overloading the others. When the other hosts are completely overwhelmed, the scheduler starts
assigning tasks to Host 2. This is observed in Table 4, which shows a cross-section of CPU performance for an interval
range between intervals 12 and 18. We can observe that since all other hosts are at 100% capacity, the scheduler begins
to use host 2. The scheduler uses Host 2 as the host of last resort.

If we compare the results of Test 2 for the normal GGCN model with the other tests, we note that there is a tendency
to under-assign Host 2. There is also a tendency to allocate an excessive number of tasks to Host 3. We note that both
Test 2 and Test 3 have the highest workloads of the 4 tests, and have the worst energy performance and job completion
ratios. This is an indication that the normal GGCN model is unable to handle intense and dynamic workloads. This
is the reason for the poor energy performance of the normal GGCN model; the constant overloading of Host 3 means
that many tasks are left unfinished. Consequently, the energy performance and the job completion ratio both suffer.
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Another thing to note is that Test 4 had the lowest workload, and the best energy consumption and job completion ratio
results. This is further indication of the scheduler’s inability to handle dynamic workloads.

The intense GGCN model displays similar behavior to the normal GGCN model, preferring to allocate as many
tasks to Host 3 as possible. Test 4, although having a total of 41 tasks deployed over the 20 intervals, has a consistently
low number of tasks deployed to each host. Only Host 3 sees a higher number of tasks towards the end of the scheduling
process. There is also the same tendency to assign more tasks to Host 3, although it is relatively less pronounced. The
results indicate that several tasks were completed simultaneously; a total of 8 tasks are completed over intervals 6 and
7. The reason for this is that the tasks in intervals 1-5 were distributed very evenly among the hosts, allowing quicker
execution of the tasks. Another possible reason is that some of the initially deployed tasks were computationally less
expensive than tasks that were deployed later in the scheduling regime.

The normal Bidirectional GCNN displays somewhat more stable behavior when allocating and migrating tasks to
hosts. It also displays a tendency to minimize the number of tasks allocated to Host 2; the corresponding chart in Figure
7 clearly shows that there is hardly more than 1 task for any test case assigned to Host 2. Test 2 displays concerning
unstable behavior, where the scheduler overloads Host 1 to an astonishing extent (we note that the graph overshoots;
the maximum number of tasks in Host 1 was 12 for this test). During the period between intervals 4 and 8, a total of 13
tasks are created, which is excessive, and the Normal Bidirectional GGCN is unable to compromise properly between
its attempt to keep Host 2 as empty as possible (to save energy) and allocating the incoming tasks to a host capable of
handling them. It is possible the scheduler got stuck due to insufficient training. It is important to note that all models
optimize the total energy of the system, rather than the energy consumed per task. This has an impact on performance
as the model does not consider the execution time of the tasks. On the other hand, Test 4 shows that if the workload
being deployed is not consistently too high over a series of intervals, the Normal Bidirectional GGCN scheduler can
allocate tasks to hosts more effectively. The Intense Bidirectional GGCN scheduler also consolidates many tasks into
a single host during periods of intense workload creation; however, it ensures that the host is not overwhelmed and
does not ignore the other hosts present. The best illustrated by Test 3 and Test 4 for this scheduler.

Finally, we examine the Normal CNN scheduler performance. There is a consistent and even distribution of tasks
across all hosts, with an attempt to minimize usage of Host 3. The Normal CNN scheduler demonstrates exceptional
ability to handle intense workloads; this can be seen clearly in Test 3. Intervals 8-13 saw a total of 20 tasks being
created, yet the scheduler allocates all tasks effectively across all hosts, as shown by the noticeable increase in host
task allocation across all hosts, instead of just one. Even though the scheduler generally minimizes task allocation to
Host 3, it begins assigning more tasks to this host once excessive workloads are experienced.

5. Conclusions and Future Directions
This work proposes a new CNN-based resource scheduling approach called HunterPlus which extends the existing

GGCN scheduler (HUNTER) and develops a new CNN scheduling model, and the results consistently demonstrate
the superiority of the CNN model over the GGCN and Bidirectional GGCN schedulers according to the energy
consumption per task and job completion ratio metrics. The nature of the dataset has an impact on scheduler
performance; datasets generated from higher workload baselines are more effective in training relatively stable
schedulers. The addition of the Bidirectional layer also tends to improve performance. GGCN based schedulers tend
to consolidate as many tasks as possible in a minimal number of hosts. This strategy proves ineffective when workload
deployment is high for consecutive numbers of intervals, as tasks are not executed as quickly. Finally, HunterPlus
proves to be the best scheduler among those considered, according to all evaluation metrics. The stable behavior of the
CNN model is also shown by the consistent and even task allocation and migration actions.

Many avenues are possible for further research. The current work requires that each host configuration have its own
dataset; for example, the datasets used to train the models in this work would be ineffective in a configuration with 5
hosts. This constraint may be solved by preprocessing the data into a normalized form that is agnostic to the number
of hosts present in the configuration. The use of a CNN also proved effective in this work, but it does not account for
temporal information in the data, i.e., how it changes over time. It only takes a single snapshot of performance at a given
time. Creating a combined RNN and CNN model would permit the exploitation of temporal information and possibly
improve performance even more. There is also scope to incorporate system reliability metrics when training the model
in addition to the energy metric used in this work. For this experiment, we realized task with docker container instance
as considered but in the future experiments, we aim to consider other scenarios related to scalability and reliability.
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(a) GGCN Container-Host Allocations with Normal and Intensive workload
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(b) BiGGCN Container-Host Allocations with Normal and Intensive workload
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(c) CNN Container-Host Allocations with Normal workload
Figure 7: Container-Host Allocations with workload variations
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Software Availability
All code, datasets and result reproducibility scripts are publicly available as part of a GitHub repository under

CC-BY License. The repository can be accessed at: https://github.com/sun-das/HunterPlus/tree/ggcn.
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