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Abstract
Recent technological developments have provided innovative means for promot-
ing health and well-being through physiological response monitoring. Heart
rate variability (HRV) has arisen as a promising physiological indicator of men-
tal health. This research contributes towards these efforts by investigating the
short-term effects of increased HRV using a biofeedback exercise (paced breath-
ing) on affective states and physiological measures to facilitate the development
of real-time affect recognition systems.

To enable the analysis of high-quality HRV data in real-time applications,
the first study examined the reliability of automatic filtering techniques using
an open-source implementation. The outcomes of this study provided a flexible
control for HRV signal filtering parameters and served as the basis for the
analyses in the following studies. Subsequently, the second study investigated
the minimum reliable window for HRV signals based on the conditions under
which the data were collected. The findings suggested that HRV measures can
be analysed in segments of less than 5 minutes in all conditions. Additionally,
the minimum segment differed in paced breathing compared to resting and
stress. Given the physiological influence of paced breathing, the third study
examined the short-term effects of a heart rate variability biofeedback (HRVB)
intervention on a range of affective states (e.g., relaxation, stress), working mem-
ory, and physiological data. The findings showed a significant improvement in
working memory and relaxation levels following the intervention. The last study
leveraged the major findings of the previous two studies to develop robust
predictive models that identified stress using supervised learning algorithms.

Overall, this research demonstrates that a single HRV biofeedback session
mediates physiological responses and that this mediation can be measured
across a range of affective states. Moreover, it shows that stress levels can
be robustly recognised using supervised learning algorithms. This research
also lays the groundwork for the potential employment of HRV in real-time
applications to predict affective states.
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CHAPTER 1

Introduction

Mental health extends beyond the absence of mental illness or psychological

disorder; it is a fundamental and integral component of overall health (World

Health Organization [WHO], 2001). According to the WHO Constitution, mental

health can be described as follows:

A state of well-being in which the individual realizes his or her own
abilities, can cope with the normal stresses of life, can work productively
and fruitfully, and is able to make a contribution to his or her community
(WHO, 2004, p. 10).

There is now a general consensus that positive mental health and well-being

can influence a wide range of behavioural, emotional, and psychological com-

ponents, including cognitive ability, emotional regulation, physical health and

fitness, productivity, quality of life, and sleep quality (Friedli, 2009). These

components affect the stability—homeostasis—of the autonomic nervous sys-

tem (ANS), which comprises two branches: sympathetic (fight-or-flight) and

parasympathetic (rest-and-digest; Kemp & Quintana, 2013).

In 1932, a novel direction was established by Cannon (1932, as cited in

Kemeny, 2003), indicating that perturbations in the ANS are linked to various

psychological and emotional responses. This phenomenon stimulates sympa-

thetic and parasympathetic activities, which can then be captured through

changes in physiological measures (e.g., an increase in blood pressure [BP] or

heart rate [HR]). More recently, the relationship between disruptions in the

ANS and physiological signs of psychological and behavioural disorders has

1



2 chapter 1. introduction

been delineated by investigations in the domains of psychiatry (Alvares et al.,

2016), depression (Chalmers et al., 2014), emotions (Kreibig, 2010; Levenson,

1992), and stress (Kemeny, 2003; Won & Kim, 2016).

This research work provides a novel perspective that contributes towards

the improvement of mental well-being through the use of sensors to examine

changes in cardiac activity and explore robust machine learning (ML) tech-

niques to identify stress levels. The following sections present the motivation

behind this research, primary research questions, summary of the research

contributions, overview of the thesis structure, and associated publications.

1.1 Motivation

Affective Computing

Over the last few decades, the construct of mental health has evolved, and

these changes have been reflected in the literature. Recent technological break-

throughs have provided innovative means to promote mental health and well-

being (Curtiss et al., 2021; Greene et al., 2016): namely, the monitoring and

management of mental states using psychophysiological measures to document

a meaningful relationship between psychological and physiological responses

(Edgar et al., 2009).

A seminal work in this field is Affective Computing, published in 1997 and

written by Rosalind Picard of the MIT Media Lab (Picard, 1997). This text

created tremendous opportunities for developing effective solutions to recognise,

process, and interpret human feelings using the intersection of human-computer

interaction (HCI) and ML research. Today, affective computing is a broad field

that focuses on the recognition of affective states (e.g., cognition, emotion,



1.1. motivation 3

relaxation, stress) using computers and wearable sensors (McDuff et al., 2016;

Papadopoulou et al., 2019; Umematsu et al., 2020).

Pioneering work by Healey and Picard (2005) showed the feasibility of

recognising drivers’ stress levels in a real-world automotive environment using

physiological data obtained from cardiac activity, muscle activity, respiration,

and skin conductance. A plethora of psychophysiological studies emerged focus-

ing on the identification of affective states using skin conductivity exclusively

(Greco et al., 2016; Kurniawan et al., 2013; Liapis et al., 2015). However, skin

conductance data only capture the stimulation of sympathetic activity provoked

by stressful events (Anusha et al., 2018). Stimulation of parasympathetic ac-

tivity is essential to bring the body into a relaxed state. Thus, the ability to

improve, rather than merely identify, affective states through the stimulation of

parasympathetic activity remains an active area of research.

Cardiac Activity

Recent studies have incorporated HR and heart rate variability (HRV) data

because the cardiovascular system manifests parasympathetic information in

addition to sympathetic responses (Kim et al., 2018). HRV is determined by the

time interval between two consecutive heartbeats, which provides insights into

ANS imbalance (Berntson et al., 1997). Under normal conditions, parasympa-

thetic and sympathetic responses are in a balanced state. When sympathetic

activity is stimulated, HR increases and the variation between heartbeats de-

creases, resulting in reduced HRV (Wehrwein et al., 2016). A lower HRV value

indicates that a person is experiencing stress, whether mental or physical.

On the other hand, the stimulation of parasympathetic activity decreases HR,

resulting in higher HRV levels (Ernst, 2017).

An association between higher resting HRV measures and better emotion
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recognition was demonstrated by Quintana et al. (2012), indicating a rela-

tionship between the ANS and cognitive processes. While exploring ways to

improve HRV, biofeedback through paced breathing exercises emerged as a

promising approach for enabling an individual to increase HRV by activat-

ing the parasympathetic response. Further, heart rate variability biofeedback

(HRVB) is an effective technique for building resilience and improving mental

health and well-being in the long term (Gevirtz, 2013; Lehrer & Gevirtz, 2014).

In a recent meta-analytic study, Lehrer et al. (2020) reported a significant and

small-to-medium effect size regarding the efficacy of multiple-session HRVB in

improving a wide variety of physical (e.g., asthma) and psychological symptoms

(e.g., anxiety, depression).

More recent attention has focused on the short-term effects of a single

HRVB session, and the preliminary results demonstrated significant benefits in

the context of momentary stress management (Prinsloo et al., 2013; Yu et al.,

2018b), inhibitory control (Laborde et al., 2019b), mood improvement (Steffen

et al., 2017), and food-craving control (Meule & Kübler, 2017). Overall, these

studies highlight the positive aspects of a single HRVB session; however, further

research is needed to examine the short-term effects of HRVB practice on

psychophysiological responses.

Real-Time Applications

The provision of real-time applications for continuously monitoring physio-

logical data and providing immediate feedback to the user has a considerable

impact on improving critical mental and physical health decisions (Abdullah

& Choudhury, 2018). For instance, leveraging the cardiac sensing abilities of

wearable devices can provide indicative early insights regarding the symptoms

of anxiety and depression disorders (Chalmers et al., 2014), bipolar disorder
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and schizophrenia (Quintana et al., 2016a), and post-traumatic stress disorder

(Tan et al., 2011).

Within the context of HRV, the analysis is often performed on long-term

(24 h) or short-term (5 min) recordings (Malik et al., 1996). In the last few

decades, there has been a surge of interest in conveying momentary information

about the parasympathetic and sympathetic activities in clinical environments

(Kasaoka et al., 2010) and research settings (Castaldo et al., 2019; Shaffer et al.,

2016). Therefore, ultra-short-term (UST) analysis has emerged as an effective

approach to segment HRV recordings in windows of less than 5-min using

a series of overlapping segments (Pecchia et al., 2018; Shaffer et al., 2020).

These segments are updated in real-time via small time increments to provide

information about the dynamic and momentary changes of HRV (Zhang et al.,

2015).

It could be argued that UST analysis is in fact not a real-time approach

because a short delay may occur due to the analysis’s reliance on ultra-short

segments (He et al., 2019). However, it is a generally acknowledged term

because the ultimate aim is to offer instantaneous and momentary information

based on the real-time acquisition of the HRV data from clinical instruments

or wearable devices (Jiang et al., 2017; Kasaoka et al., 2010; Pecchia et al., 2018;

Shiraishi et al., 2018). Therefore, the minimum reliable UST segment should be

determined to obtain a close approximation of real-time analysis based on the

condition under which the HRV data have been collected.

1.2 Research Questions

The overarching aim of this research is to investigate the short-term effects of

increased HRV using biofeedback on affective states and physiological measures
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for eventual deployment in real-time recognition systems. To achieve this

objective, the following research question was posited:

RQ: How does a single HRVB session using paced breathing mediate

physiological responses across a range of affective states, and can these

affects be robustly recognised by supervised learning algorithms?

Accordingly, there are four main areas of focus and each area is addressed by

an associated research sub-question (SRQ), as follows:

1. Effective research in the psychophysiological domain begins by ensuring

that the relevant signals have sufficient quality and reliability. In the

context of HRV analysis for real-time applications, these concerns were

addressed by the following sub-question and are discussed at length in

Chapter 4:

SRQ1: What signal preprocessing algorithms are necessary for a

reliable real-time HRV analysis?

2. For moment-by-moment analysis, UST segments have been used to anal-

yse HRV signals in periods of less than 5 min to ease deployment in

real-time applications. Thus, the necessary requirements for UST analysis

under resting and non-resting conditions were examined by the following

sub-question and are addressed in Chapter 5:

SRQ2: What are the requirements for a reliable real-time HRV

analysis using UST segments under resting, stress, and paced

breathing conditions?
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3. To determine whether a single-paced breathing HRVB session would

have a positive impact on affective states and physiological measures, the

following sub-question was posed and is further discussed in Chapter 6:

SRQ3: What is the effect of a single paced breathing session on

affective states (cognition, relaxation, stress) and physiological

responses (HRV and BP)?

4. Finally, it was necessary to determine whether the changes in affective

state examined in Chapters 5 and 6 could be correctly classified by robust

supervised learning algorithms, thereby facilitating deployment in real-

time recognition applications. These considerations were expressed in the

following sub-question and are explicated in Chapter 7:

SRQ4: How can robust supervised learning algorithms recognise

stress and relaxed states for eventual deployment in real-time

systems?

1.3 Contributions

The novelty of this research is presented in relation to the major contributions

that it has produced. Further details about the contributions are discussed in

Chapter 8.

1. Preprocessing of Heart Rate Variability Data

To enable batch processing and the deployment of high-quality HRV

data in real-time applications, automatic filtering techniques were imple-

mented to detect and correct existing artefacts using a flexible open-source

environment. Accordingly, a real-time framework was developed for inte-

grating the automatic filtering approach with online HRV data acquisition.
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2. Ultra-Short-Term Analysis of Heart Rate Variability Data

To simulate real-time HRV data acquisition, a concurrent validity assess-

ment of a standard 5-min HRV signal was used to establish the minimum

reliable segment of HRV analysis based on the conditions under which

the data were acquired. Further, the influence of stress and paced breath-

ing was examined, with special consideration given to measurement

consistency across UST segments.

3. Impact of Heart Rate Variability Biofeedback on Affective States

Following HRV preprocessing and UST analysis, the influence of HRVB on

psychophysiological responses was investigated. The results demonstrate

the short-term effects of a single HRVB paced breathing session on a

range of affective states (e.g., attentiveness, fatigue, mood, serenity, stress),

executive function (i.e., a working memory task), and physiological data

(i.e., HRV and BP).

4. Robust Techniques for Stress Recognition

Robust strategies for ML affect recognition based on physiological mea-

sures were proposed to address current limitations in the literature. With

an emphasis on stress as a prominent affective state, these robust tech-

niques were used to predict stress levels from HRV data using supervised

learning algorithms.

1.4 Thesis Outline

The remainder of this thesis is structured as follows (see Figure 1.1):

• Chapter 2 provides background information and discusses relevant work

in the areas of affective states, HRV, and biofeedback, thereby delineating

the foundational knowledge for this research.
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• Chapter 3 elaborates on the methods employed in this research by describ-

ing the experimental design, data collection, data analysis, and ethical

considerations.

• Chapter 4 describes a fundamental study for filtering HRV data via the

detection and correction of existing artefacts in an open-source flexible

environment to facilitate batch processing and real-time analysis.

• Chapter 5 presents an exploratory study on the minimum reliable UST

segment for HRV analysis under resting, stress, and paced breathing

conditions.

• Chapter 6 presents an investigation of the short-term effects of HRVB via

paced breathing on affective states, executive function, and physiological

responses.

• Chapter 7 leverages the datasets and major findings from the two preced-

ing chapters to present robust stress recognition models using supervised

ML algorithms.

• Chapter 8 concludes by summarising the key findings, discussing relevant

contributions in light of the research questions, outlining study limitations,

and proposing potential directions for future research.

CH1
Introduction

CH2
Literature 

Review

CH3
Research 
Methods

CH4 | SRQ1
Preprocessing 

HRV

CH5 | SRQ2
UST Analysis

CH6 | SRQ3
HRV 

Biofeedback

CH7 | SRQ4
Stress 

Recognition

CH8
Discussion 

& 
Conclusions

Figure 1.1: Thesis Outline
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1.5 Publications and Presentations

Parts of this thesis were published or presented as posters in the following

contexts:

• Bahameish, M., & Stockman, T. (2020). Fundamental Considerations of

HRV Analysis in the Development of Real-Time Biofeedback Systems.

2020 Computing in Cardiology Conference (CinC), 47. https://doi.org/10.22489/

CinC.2020.078

• Bahameish, M., & Stockman, T. (2019a). The analysis of heart rate variabil-

ity measures in ultra-short-term window segments. EECS Research Open

Day, Queen Mary University of London, UK

• Bahameish, M., & Stockman, T. (2019b). Facilitating the control of stress

levels in real-time as manifested in measures of heart rate variability. The

1st International Conference on Visualization and Computer-Human Interaction

(VisCHI), Doha, Qatar

https://doi.org/10.22489/CinC.2020.078
https://doi.org/10.22489/CinC.2020.078


CHAPTER 2

Literature Review

This chapter reviews the literature related to the three primary domains
explored in this thesis: affective states, heart rate variability (HRV), and
heart rate variability biofeedback (HRVB). It begins with a description of
the affective states examined as well as their relationship to physiological
responses, with the ultimate goal of utilising these responses in machine
learning-based recognition applications. Moreover, it delineates the physio-
logical and theoretical background of HRV, including methods for signal
preprocessing and analysis, followed by an explanation of HRVB practice
as an approach for improving mental well-being.

2.1 Affective States

Recent trends in the field of affective computing have led to a proliferation of

studies aimed at improving health and well-being (Curtiss et al., 2021; Hasnul

et al., 2021; Schmidt et al., 2019). Although the term "affective" was exclusively

associated with emotions when the field was first established (Picard, 1997), it is

now regarded as an umbrella term that covers a wide range of states, including

cognition, emotion, and stress (Picard, 2016).

The following sections describe the affective states examined in this research

(i.e., stress and executive function) as well as their relationship to physiological

responses, followed by a description of wearable devices that can detect such

responses. Lastly, previous research in the domain of affect recognition using

ML is discussed.

11
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2.1.1 Stress

Feeling stressed or being subjected to a stressful event is an inevitable experi-

ence of life. Although there is no global consensus on the definition of stress, a

widely accepted definition among researchers was coined by Selye (1978): “a

nonspecific response of the body to any demand, whether it is caused by, or

results in, pleasant or unpleasant conditions” (p. 74). Pleasant or unpleasant

conditions result in two distinct forms of stress: positive “eustress” and negative

“distress”. Eustress is accompanied by a feeling of extreme joy or excitement; in

contrast, distress is related to physical or emotional suffering. Selye (1976, as

cited in Fink, 2017) proffered an additional definition of stress for behavioural

science contexts: “perception of threat, with resulting anxiety, discomfort, emo-

tional tension, and difficulty in adjustment” (p. 4). These definitions are closely

interwoven as stress causes the human body to shift from a calm to aroused

state (Healey & Picard, 2005). For the sake of clarity, the term stress in this thesis

hereafter refers to acute psychological distress elicited in a laboratory setting.

According to Cannon (1932, as cited in Fink, 2017), internal bodily reactions

to stress reflect activation of the fight-or-flight response, which disrupts the

body’s homeostasis (i.e., the stabilised state of the ANS; see Section 2.2.2).

Hence, the disruption of homeostasis due to a psychologically demanding

task causes mental arousal, which is interpreted as a stress response and can

be observed in physiological changes (Campbell & Ehlert, 2012; Crosswell &

Lockwood, 2020; Dimsdale, 2008; Kemeny, 2003; Skoluda et al., 2015; Steptoe &

Vogele, 1991). Stress can be further categorised according to its duration. Acute

stress is a short-term feeling of pressure related to anticipated distressing events,

and it evokes such physiological responses as accelerated HR, muscle tension,

rapid breathing, and sweat gland activation. Chronic stress, on the other hand,

is long-term stress resulting from exposure to high-pressure situations (e.g.,
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demanding occupations) and has an adverse effect on mental and physical

health (Greene et al., 2016).

Psychological stress can be investigated in both laboratory settings (Steptoe

& Vogele, 1991) and real-life environments, such as academic examinations

(Melillo et al., 2011) or firefighting scenarios (Smith et al., 2001). Laboratory

settings offer a controlled experimental environment where stress responses

can be safely provoked for the purposes of inferring statistically significant

relationships among the investigated variables. Early research established reli-

able stress protocols for such physiological reactions as hormonal and cardiac

reactivity, including the Trier Social Stress Test (TSST) protocol (Kirschbaum

et al., 1993).

However, it should be noted that lab-based experiments are susceptible to

limitations in ecological validity (Hayes, 2021). Further, there is a distinct lack

of empirical research investigating approaches to improve, rather than merely

identify, stress levels. To address this gap, the present research sought to induce

and alleviate stress using psychological tests and paced breathing practices,

respectively.

2.1.2 Executive Function

Six major domains of cognitive function have been postulated by the American

Psychiatric Association: namely, complex attention, executive function, lan-

guage, learning and memory, perceptual-motor function, and social cognition

(Sachdev et al., 2014). Each domain covers a variety of cognitive processes, as

depicted in Figure 2.1.

Studies on executive function represent a growing field due to its direct

association with activities of daily living (Chan et al., 2008; Starcke et al., 2016).

Executive function refers to the higher cognitive skills underpinning self-control
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Cognitive Domains

Sustained Attention
Selective Attention

Complex Attention

Decision-Making
Working Memory

Object Naming
Word Finding

Long-Term Memory
Implicit Learning Visual Perception

Emotion Recognition
Theory of Mind

Executive Function Language

Learning and Memory Perceptual-Motor 
Function

Social Cognition

Figure 2.1: Cognitive Domains
Note. Originally published in Sachdev et al. (2014)

and goal-directed behaviour, including decision-making, problem-solving, and

self-regulation. It comprises three primary areas: inhibitory control, working

memory, and cognitive flexibility (Diamond, 2013). Inhibitory control involves

the capacity to self-regulate one’s attention, actions, and emotions. Working

memory involves the retention of information for a limited amount of time as it

is being mentally processed. Cognitive flexibility refers to the mental ability to

adapt to new situations or changes, and it is based on inhibitory control and

working memory.

From a neuroscientific perspective, the executive function processes are

predominantly located in the prefrontal cortex of the frontal lobe and supported

by connected brain structures, such as the amygdala (Blair, 2017). Benarroch

(1993) established that central autonomic control is a bidirectional interaction

between the central nervous system (CNS), which consists of the brain, and

the ANS, which governs the organs of the body. Subsequently, Thayer and

Lane (2000) posited the neurovisceral integration model, which emphasises the
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connection between the prefrontal cortex and the cardiovascular system via the

vagus nerve of the ANS (see Section 2.2.2). This model effectively disentangled

the relationship between the brain, heart, and cognitive processes. Further

details of the neurovisceral integration model are discussed in Chapter 6 (see

Section 6.2).

Executive dysfunction poses considerable challenges to the capacities for

concentration, planning, self-control, and task completion. These challenges

can also manifest as deficits in other cognitive domains, such as learning and

memory and social cognition (Groden et al., 2005). Hence, various psychological

tests have been developed to assess for deficits in executive function, such as the

Stroop Color and Word Test (SCWT) to assess inhibitory control, backward digit

span (BDS) and N-back tasks to assess working memory, and task switching to

assess cognitive flexibility. The details regarding the protocol for each task are

described in Diamond (2013) and, more recently, Friedman and Robbins (2022).

As this research sought to assess the capacity of working memory, the N-back

task was selected to evaluate cognitive performance (see Chapter 6); further, a

variation of the BDS was employed as an arithmetic component of the stress

inducer in the TSST (see Chapter 5).

2.1.3 Wearable Sensors

Researchers have long striven to develop ubiquitous wearable technologies

for the purposes of health monitoring and improvement (Dunn et al., 2010;

Lisetti et al., 2003; Luneski et al., 2010; Picard, 2009). An eminent advantage of

wearable sensors is that they provide non-invasive direct physical contact with

the user for long-term periods (Picard & Healey, 1997). The data collected can

yield insights regarding the user’s activity patterns, thereby enhancing future

deployment for physical and mental health management.
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Further, the physiological signals for health monitoring (e.g., brain activity,

cardiac activity, muscle activity, respiration, skin conductance) can be collected

via embedded sensors in wearable devices (Greene et al., 2016). The integration

of wearable sensors with emotion and stress detection has attracted considerable

attention given that affective states primarily influence the ANS, as reflected by

the physiological data (Kreibig, 2010). Consumer-based wearable devices can

collect valuable information, such as the Garmin watch which provides a stress

score on a scale of 0-100 based on cardiac activity (Garmin, 2022). However,

both the accuracy and reliability of such measurements are questionable as

it is impossible to access the raw data (Hinde et al., 2021). These limitations

preclude the generation of in-depth insights about the intrinsic physiological

data gathered as well as the identification of other affective states. The following

section provides a summary of the relevant research undertaken in the field of

affective computing to develop emotion and stress recognition systems.

2.1.4 Recognition Systems

Affect recognition plays a pivotal role in discerning the internal bodily feelings

(e.g., fear, happiness, stress) that influence mental health and well-being (Picard

et al., 2001). Traditionally, mental health symptoms have been assessed using

clinically validated self-reported questionnaires, such as the Patient Health

Questionnaire (PHQ-9) for depression assessment (Kroenke et al., 2001). How-

ever, these questionnaires are susceptible to subjective bias as respondents may

provide inaccurate or imprecise answers (Demetriou et al., 2015). Fortunately,

questionnaires can be supported by physiological data to provide a reliable

approach for determining an individual’s mental state.

The concept of inferring mental states from physiological data is not new.

It dates back to the 1920s, when the lie detector was invented by sensing
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changes in BP, breathing, and HR (Synnott et al., 2015). However, the recent

progress in wearable sensor technology has facilitated the development of more

advanced affect recognition and health monitoring systems. Indeed, continuous

monitoring of physiological data has the potential to identify early warning

signs for mental disorders (Tutunji et al., 2021). Picard envisaged that continuous

monitoring via wearable sensors would alleviate the risk for mental illness by

detecting the phase prior to the transition from “healthy” to “unhealthy”,

“normal” to “depressed”, and “resilient” to “vulnerable” (Mertz, 2016).

Given the complexity of psychophysiological responses, myriad studies

have examined the development of affect detection and recognition prototypes

using ML, including supervised, unsupervised, and deep learning. The ML dis-

cipline is concerned with the development of statistical models that use existing

data to “learn” underlying patterns and behaviours in order to predict future

outcomes (Mitchell, 1997). ML is, thus, a promising approach for classification

and recognition that has achieved remarkable success in a wide variety of fields,

particularly clinical applications (Davenport & Kalakota, 2019; Yan et al., 2019).

At the beginning of the century, Picard et al. (2001) performed pioneering

research that shifted the focus away from affect recognition using facial and

verbal expressions and towards affect recognition using physiological responses.

The data collected from a single participant over several weeks yielded results

with a classification performance of 81% for eight elicited emotions derived

from breathing, cardiac activity, muscular activity, and skin conductance. This

research paved the way for later studies utilising ML algorithms with data

obtained from multiple participants to recognise affective states, including

emotion recognition (Egger et al., 2019; Kim et al., 2004), fear detection (Bălan

et al., 2019; Ihmig et al., 2020), and stress classification (Healey & Picard,

2005; Zhai & Barreto, 2006). Although attempts have been made to apply
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ML algorithms within the field of affective computing, limited datasets have

impeded the processes of learning and prediction. Chapter 7 goes into further

detail regarding these limitations as well as potential mitigation strategies.

In a comprehensive review of affect recognition, Schmidt et al. (2019) ex-

amined the detection of several affective states, including emotion, excitement,

frustration, happiness, relaxation, and stress. Most of the studies (34 out of

46) focused on identifying stress levels (16 studies) and emotional states (18

studies), with the two-dimensional circumplex model (i.e., valence-arousal)

used for the latter (Lang et al., 1997; Russell, 1979). The results highlight the use

of various physiological signals in the reviewed studies: 40 used cardiac activity,

35 used skin conductivity, 15 used miscellaneous signals (e.g., accelerometer

data, muscle activity, respiration, temperature), and seven used brain activity.

Skin conductance was measured using electrodermal activity, sometimes known

as the galvanic skin response, which quantifies the fluctuation of electrical ac-

tivity by applying a low voltage to the skin. Electrical activity often increases as

the skin receives innervating impulses from the brain, as evidenced by sweat

secretion (Boucsein, 2012). Because skin conductivity is entirely governed by the

fight-or-flight response (i.e., the sympathetic branch of the ANS), it is primarily

used to identify arousal in psychological or physiological responses (Kim &

André, 2008).

On the other hand, HRV captures the activity of both branches of the

ANS with a predominance of the parasympathetic activity. Thus, the data

gathered from participants under resting conditions indicate the stimulation

of parasympathetic activity (i.e., a state of calmness and relaxation) and can

provide insights regarding positive mental well-being. In contrast, reduced

parasympathetic activity indicates a threat to homeostasis (e.g., an exposure to

stressful events). The following section presents the physiological background
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of HRV and provides an overview of the methods used for signal preprocessing

and analysis.

2.2 Heart Rate Variability

HRV is a measure of the time variation between successive heartbeats in milli-

seconds (Berntson et al., 1997), which is commonly referred to as the RR interval

or interbeat interval (IBI). HRV is widely used as a non-invasive indicator of

the balance in the ANS (Sztajzel, 2004), which reflects the status of mental

well-being and physical health.

2.2.1 Physiological Background

A heartbeat, or cardiac cycle, is initiated when the sinoatrial (SA) node generates

an electrical impulse that spreads through the upper heart chambers (atria),

causing them to eject blood into the lower heart chambers (ventricles). The

ventricles then contract to pump blood to the body’s organs. In the process,

electrical activity passes through the atrioventricular (AV) node, which controls

blood flow by slowing down electrical impulses before they can reach the

ventricles (Kitney & Rompelman, 1980). The SA node produces 60-100 electrical

impulses per minute and is, thus, considered a natural pacemaker or “the

driving force of heart’s rhythm” (McDonald, 1980, p. 1). There are two processes

that result from the contraction of the atria and ventricles: depolarisation

(activation) and repolarisation (recovery).

The electrocardiogram (ECG) is a time-voltage visual representation of the

cardiac cycle’s events. It can be acquired by attaching two or more electrodes

directly onto the skin. There are three main components of the ECG signal:

the P wave representing atrial depolarisation, the QRS complex representing

ventricular depolarisation, and T wave representing ventricular repolarisation.
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HRV is generally calculated from an ECG as a measure of the time between the

R-peaks of consecutive QRS complexes: hence the name RR interval.

However, photoplethysmography (PPG) can be used as an alternative

method for calculating HRV. It is an optical measurement of light propagation

through the skin to determine the rate of blood flow, as controlled by the

pumping action of the heart. Similar to the ECG, cardiac cycles appear as peaks

in the PPG signal, and the peak-to-peak interval is used to calculate IBI (Allen,

2007). The PPG approach is commonly used in wearable devices because of its

simplicity. Nonetheless, it poses reliability concerns in non-stationary condi-

tions (e.g., during physical exercise; Castaneda et al., 2018). Figure 2.2 presents

a labelled simulation of synthetic ECG and PPG recordings. Throughout this

thesis, RR interval is used to refer to the HRV signal collected from either ECG

or PPG.

ECG

PPG

P

Q S

T

RR interval

peak peak

IBI

R R

Figure 2.2: A snapshot of synthetic ECG and PPG recordings showing the
time variation between successive heartbeats in milliseconds of RR and IBI,

respectively
Note. Created with NeuroKit2 Python package (Makowski et al., 2021)
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2.2.2 Autonomic Nervous System

The nervous system has two components: the CNS and the peripheral nervous

system (PNS). The CNS is composed of the brain and the spinal cord, while the

PNS is composed of the nerves that connect the CNS to the body organs (e.g.,

glands, heart, lungs). A subdivision of the PNS is the ANS, which regulates

internal bodily processes by releasing specific enzymes and hormones to control

them. Examples of these processes include BP, digestion, HR, and respiration

(Kaltsas & Chrousos, 2007).

The ANS bifurcates into sympathetic and parasympathetic branches. The

sympathetic nervous system (SNS) stimulates the fight-or-flight response, which

is a physiological reaction triggered by stressful or threatening situations.

Conversely, the parasympathetic nervous system (PSNS) stimulates the rest-

and-digest response, which is associated with relaxed and resting states. Both

branches seek to maintain a state of equilibrium known as homeostasis, which

is a complex and dynamic stable condition (Bankenahally & Krovvidi, 2016).

Within the context of the cardiovascular system, the ANS branches have an

antagonistic effect. When the SNS is activated, HR increases; conversely, when

the PSNS is activated, HR decreases (Wehrwein et al., 2016). At a resting

condition, parasympathetic activity is dominant, resulting in an average HR of

75 beats/min for healthy adults (Shaffer & Ginsberg, 2017).

The vagus nerve is the longest cranial nerve of the ANS, and it carries

sensory and motor information between the body organs and brain (Porges,

1995). It also provides parasympathetic innervation of the heart, which causes

the HR to slow down. The contribution of vagus nerve activity to the heart is

referred to as vagal tone, and it can be quantified using HRV. In particular, vagal

tone is indexed using respiratory sinus arrhythmia (RSA), which is a natural

increase or decrease in HR in response to respiration. Additionally, vagal tone
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is affected by the baroreflex, which provides rapid feedback regarding BP

changes by decelerating the HR in response to an increase in BP, and vice versa,

to maintain homeostasis. Modulating vagal tone contributes to the dynamic

balance of the ANS, which is vital to both cardiovascular and overall health

(Berntson et al., 2009).

2.2.3 Signal Preprocessing

Artefacts (e.g., abnormalities, outliers) in ECG and PPG recordings can have a

significant impact on the reliability of HRV analysis (Berntson et al., 1997; Choi

& Shin, 2018). The primary sources of artefacts are physiological responses,

such as ectopic beats, and technical issues, such as sensor motion. At the ECG

level, the artefact is represented as an extra or missed beat (see Figure 2.3;

Berntson et al., 1990). These beats are reflected in the HRV signal by a short or

long period between successive intervals relative to the normal RR interval for

extra and missed beats, respectively.

RR2

RR1 RR3

RR2

RR2

b) Extra
Short RR

c) Missed 
Long RR

a) Actual

Figure 2.3: A schematic diagram of ECG signals a) without artefacts, b) with
an extra beat, and c) with a missed beat.

Note. Created with NeuroKit2 Python package (Makowski et al., 2021)
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Two major processes are considered to filter out artefacts for better HRV

signal quality: artefact detection and artefact correction. Several techniques

for artefact detection have been developed by identifying unexpected intervals

based on a fixed arbitrary threshold, such as a 20% difference between RR

intervals (Malik et al., 1989) or a 32.5% increase and 24.5% decrease between

them (Kamath & Fallen, 1995, as cited in Choi & Shin, 2018; Pichot et al., 2016).

Recent fixed detection techniques have employed a modified flexible approach

by calculating a local median or mean threshold value for the HRV signal

(Tarvainen et al., 2016). Advanced techniques have further focused on adaptive,

rather than fixed, approaches by calculating time-varying thresholds (Lipponen

& Tarvainen, 2019). Once the artefacts are identified, they can be corrected using

deletion, averaging, or interpolation techniques (Peltola, 2012). This research

examines HRV preprocessing techniques in detail by assessing the reliability of

artefact detection and correction methods for eventual deployment in real-time

applications (see Chapter 4).

2.2.4 Heart Rate Variability Analysis

Three standardised analytical approaches for quantifying HRV have been artic-

ulated by the Task Force of the European Society of Cardiology and the North

American Society of Pacing and Electrophysiology (Task Force; Malik et al.,

1996): time-domain, frequency-domain, and non-linear methods (see Table 2.1;

Shaffer & Ginsberg, 2017).

Time-Domain primarily consists of statistical analysis of the HRV signal ob-

tained from ECG or PPG recordings and calculated using indices of mean,

standard deviation (SDNN), the absolute differences between succes-

sive beats (NNx), the percentage of differences between successive beats

(pNNx), and the root mean square of successive differences (RMSSD).
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Table 2.1: Heart Rate Variability Measures

Measure Unit Mechanism Description

Time Domain
Statistical
MeanRR ms Average of NN1 intervals
SDNN ms SNS2 and PSNS3 Standard deviation of NN intervals
RMSSD ms PSNS Root mean square of successive differ-

ences between adjacent NN intervals
NN50 – PSNS Number of differences that differ by 50

ms between adjacent NN intervals
pNN50 % PSNS Percentage of differences that differ by

50 ms between adjacent NN intervals
Geometric
TRI – Integral of the density of the RR interval

histogram divided by its height
TINN ms Baseline width of the RR interval his-

togram

Frequency Domain
ULF power ms2 SNS and PSNS* Power of the ultra-low frequency band:

(< .003 Hz)
VLF power ms2 SNS and PSNS Power of the very low-frequency band:

(.003-.04 Hz)
LF power ms2 SNS and PSNS Power of the low-frequency band:

(.04-.15 Hz)
HF power ms2 PSNS Power of the high-frequency band:

(.15-.4 Hz)
Total power ms2 SNS and PSNS Sum of the energy in the ULF, VLF, LF,

and HF bands
LF/HF – SNS and PSNS Ratio of LF to HF power

Non-Linear Methods
SD1 ms Poincaré plot standard deviation perpen-

dicular to the line of identity
SD2 ms Poincaré plot standard deviation along

the line of identity
ApEn – Approximate entropy: measures the reg-

ularity and complexity of a time series
SampEn – Sample entropy: measures the regularity

and complexity of a time series
DFA (α1) – Detrended fluctuation analysis:

describes short-term fluctuations
DFA (α2) – Detrended fluctuation analysis:

describes long-term fluctuations

Note: Originally published in Shaffer and Ginsberg (2017)
1 NN is the RR interval after the signal preprocessing stage (filtered signal).
2 SNS: sympathetic nervous system 3 PSNS: parasympathetic nervous system.
* There is a disagreement regarding the ANS contribution to ULF (Shaffer & Venner, 2013).
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Frequency-Domain provides additional details about the frequency distribution

of the HRV signal based on four bands: ultra-low frequency (ULF), very

low frequency (VLF), low frequency (LF), and high frequency (HF). To

obtain frequency measures, the time-series signal is transformed into the

frequency domain by computing the power spectrum using a fast Fourier

Transform (FFT) algorithm or autoregressive model.

Non-Linear Methods measure the unpredictability, irregularity, and complexity

of the HRV signal. A Poincaré plot is a promising emerging technique

that demonstrates changes in one RR interval as a function of the next RR

interval. The plotted diagram presents information about any abnormali-

ties detected in the HRV recording (Acharya et al., 2006). Thereafter, the

standard deviation parameters (i.e., SD1 and SD2) can be derived from

the Poincaré plot to identify correlations. In addition, the approximated

entropy, sample entropy, and detrended fluctuation analysis (DFA) can be

calculated to gain a deeper understanding of the non-linear behaviour of

the HRV signal.

Given the complexity of the interactions among physiological systems, dis-

cerning which ANS branch influences each HRV measure has long been a matter

of debate. Based on extensive research in the clinical and psychophysiological

domain (Berntson et al., 1997; Malik et al., 1996), Shaffer and Venner (2013)

summarised the dominant mechanisms for time- and frequency-domain HRV

measures (see Table 2.1). Among the various HRV measures, RMSSD and HF

power were most often used to reflect the vagal tone, which is associated with

the PSNS; in contrast, SDNN reflects the activity of the SNS and PSNS (Laborde

et al., 2017).
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2.2.5 Ultra-Short-Term Analysis

Based on the standardised guidelines described by the Task Force (Malik et

al., 1996), the most common durations for HRV analysis are long-term (24

h) and short-term (5 min). Long-term HRV recordings are mainly used in

the assessment of pathological conditions related to cardiac disease and as a

predictor of mortality risk following myocardial infarction (Kleiger et al., 1987;

Kleiger et al., 2005). In contrast, short-term analysis is preferred for ambulatory

HRV data acquisition given its practicality and ease of calculation. However,

the existing literature has shown that short-term HRV analysis is not a strong

predictor of mortality risk compared to long-term analysis (Malik et al., 1996).

Nonetheless, short-term HRV is an effective measure of ANS dysfunction (Malik

et al., 1996), particularly in psychophysiological studies (Alvares et al., 2016;

Laborde et al., 2017; Quintana et al., 2016b).

More recently, there has been a surge of interest in the feasibility of analysing

HRV in periods of less than 5 min to gain momentary insights regarding current

psychophysiological states. As a result, UST analysis (< 5 min) has emerged

in physical fitness and mental health contexts to measure HRV for eventual

deployment in real-time applications and wearable devices (Shaffer et al., 2020).

To reach these goals, researchers had to first assess the reliability and accuracy

of UST HRV analysis compared to short-term HRV analysis (Burma et al.,

2021; Pecchia et al., 2018; Shaffer et al., 2020). In general, the most common

HRV measures selected for UST reliability evaluation were RMSSD, SDNN, HF

power, and LF power, with the length of the investigated segments ranging

from 10 s to 270 s. The majority of studies have focused on HRV data collected

at a resting condition and analysed via statistical analysis (Baek et al., 2015;

Esco & Flatt, 2014; Munoz et al., 2015; Nussinovitch et al., 2011), although a

small number have examined the reliability of UST analysis in non-resting
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states, such as mental stress (Castaldo et al., 2019; Salahuddin et al., 2007b) and

paced breathing (Melo et al., 2018).

However, there are compelling methodological concerns regarding the ade-

quacy of the statistical tests commonly employed in UST HRV analysis. Accord-

ing to Shaffer et al. (2020), the statistical analyses utilised by Baek et al. (2015),

Melo et al. (2018), Nussinovitch et al. (2011), and Salahuddin et al. (2007b)

were not sufficient to assess the reliability of UST analysis. These analyses

included group-mean differences and correlation tests, which do not provide

information about the agreement levels between both measurements (UST vs.

short-term). Hence, they recommended that agreement levels be assessed using

Bland-Altman analysis (Altman & Bland, 1983), while acceptable measurement

bias is taken into consideration. Such analyses have been performed by Castaldo

et al. (2019), Esco and Flatt (2014), Munoz et al. (2015), and Shaffer et al. (2019).

This research seeks to address the paucity of the existing literature, par-

ticularly in terms of the evaluation of UST analysis in non-resting conditions

(e.g., stress, paced breathing), by examining the reliability of UST analysis using

limits of agreements supported by other statistical analyses (i.e., correlation and

trend analysis) to facilitate the deployment of HRV in real-time applications

and wearable devices (see Chapter 5).

2.2.6 Factors Affecting Heart Rate Variability

Several factors influence the measurement and analysis of HRV (Elliott & Moore,

2018; Fatisson et al., 2016; Sammito & Böckelmann, 2016), which are classified

as follows:

• Demographic factors, such as age and gender, have a significant impact

on HRV. The effect of age has been thoroughly documented via the inverse
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relationship between HRV and age due to the reduction of parasympa-

thetic regulation with time (Agelink et al., 2001; Kuo et al., 1999; Voss et al.,

2015). Regarding the effects of gender, women generally exhibited higher

HRV measures compared to men, indicating that sympathetic activity is

more dominant in men (Antelmi et al., 2004; Kuo et al., 1999; Voss et al.,

2015).

• Physical health has a direct association with HRV. Specific physical health

conditions that have a significant impact on HRV include cancer (Mouton

et al., 2012), cardiovascular diseases (Haensel et al., 2008; Huikuri, 1995;

Thayer et al., 2009b), diabetes (Benichou et al., 2018), respiratory diseases

(Kazuma et al., 1997; Lutfi, 2012; Volterrani et al., 1994), and stroke (Binici

et al., 2011; Lees et al., 2018). Research in this area has reported that

HRV can be used as an indicator of physical health, given the positive

relationship between them.

• Mental health has a clear effect on HRV similar to physical health. Psy-

chiatric disorders, such as anxiety and depression, have been found to

disrupt the balance of the ANS (Kemp & Quintana, 2013). Hence, recent

research has demonstrated a link between low HRV levels and mental

health issues. Additionally, HRV is influenced by cognitive workload

(Luque-Casado et al., 2016), emotional reactions (Kop et al., 2011), and

stress responses (Kim et al., 2018).

• Physical activity has a discernible impact on the ANS. Thus, HRV mon-

itoring has been employed in athletic activities and sporting events to

assess adaptability, endurance, fitness level, and training performance

(Hamer & Steptoe, 2007; Plews et al., 2013). Moreover, HRV can predict

the strength and power needed for athletes’ recovery due to the increase
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in sympathetic activity while performing physical exercise (Nakamura

et al., 1993).

• Nutrition has been shown to have an impact on HRV levels. Both food

type and nutrient amount provide the necessary building blocks for main-

taining the digestion process, which activates the SNS and PSNS. Hence,

low HRV values are linked to digestive disease and obesity (Strüven et al.,

2021).

• External factors have been shown to affect HRV recordings (Quintana et

al., 2016b). These factors include posture (i.e., sitting or supine), smoking

status, and time of measurement (i.e., daytime or evening).

2.3 Biofeedback

The biofeedback discipline emerged from the intersection of psychology and

medicine to treat mental and physical diseases. As the term implies, biological

information is “fed back” to the user in order to regulate physiological ac-

tivities and body functions (Brown, 1977). The definition of biofeedback was

standardised in 2008 by the Association for Applied Psychophysiology and

Biofeedback (AAPB), Biofeedback Certification International Alliance (BCIA),

and International Society for Neuroregulation and Research (ISNR):

Biofeedback is a process that enables an individual to learn how to change
physiological activity for the purposes of improving health and perfor-
mance. Precise instruments measure physiological activity such as brain-
waves, heart function, breathing, muscle activity, and skin temperature.
These instruments rapidly and accurately “feed back” information to the
user. The presentation of this information – often in conjunction with
changes in thinking, emotions, and behavior – supports desired physio-
logical changes. Over time, these changes can endure without continued
use of an instrument. (Schwartz et al., 2016, p. 17)
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Ostensibly, there are two essential components of biofeedback systems: the

instrument used to measure physiological signals and the mode of presen-

tation used to convey the data collected via a display interface (e.g., audial,

haptical, visual). A wide range of physiological biofeedback techniques (e.g.,

neurofeedback, respiratory biofeedback, thermal biofeedback) have been used

in therapeutic settings for rehabilitation (Giggins et al., 2013) as well as the

treatment of asthma (Lehrer et al., 2006), migraines (Nestoriuc & Martin, 2007),

and psychiatric disorders (Schoenberg & David, 2014). Biofeedback is, thus,

a promising non-invasive approach that can be used to improve health and

well-being (Frank et al., 2010).

2.3.1 Heart Rate Variability Biofeedback

One of the most prevalent biofeedback mechanisms is the regulation of car-

diac activity via the generation of RR sinusoidal oscillations produced by the

interaction of multiple integrated regulatory systems, including autonomic,

cardiovascular, and respiratory. Specifically, an increase or decrease in RR oscil-

lations is facilitated by inhalation and exhalation, which activate the SNS and

PSNS, respectively (Khazan, 2013). This phenomenon reflects the synchronisa-

tion of the cardiovascular and respiratory systems (see Section 2.2.2).

In HRVB, the ultimate aim is to maximise RR oscillations, which can be

achieved using paced breathing exercises under a slow respiratory rate. The

maximum HRV level, in which HR rhythms and breathing patterns are syn-

chronised, is commonly referred to as the resonant frequency (RF). Normal RF

rates for adults range between 4.5 to 6.5 breaths/min (Lehrer, 2007). Although

Lehrer et al. (2000) proposed a protocol to determine a unique RF rate for each

individual before commencing HRVB, recent studies have estimated that an

RF rate of 6 breaths/min elicits similar physiological behaviour to a unique RF
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rate (Lehrer et al., 2020; Van Diest et al., 2014; Zaccaro et al., 2018). Breathing

at this RF rate can achieve complete RSA synchrony, as reflected by a peak on

the LF band of approximately 0.1 Hz (.04-.15 Hz). Additionally, the baroreflex

contributes to RSA by sending feedback signals based on changes in BP sensed

by the baroreceptors (Vaschillo et al., 2006). In simple terms, HR increases and

BP decreases with inhalation; thus, the baroreflex causes an immediate increase

in HR, and vice versa, to maintain homeostatic BP levels (Lehrer et al., 2003;

Vaschillo et al., 2002). Overall, a combination of processes is involved in the

HRVB mechanism during paced breathing at RF:

The mechanism for this effect lies in a confluence of processes: (1) phase
relationships between heart rate oscillations and breathing at specific
frequencies, (2) phase relationships between heart rate and blood pressure
oscillations at specific frequencies, (3) activity of the baroreflex, and (4)
resonance characteristics of the cardiovascular system. (Lehrer & Gevirtz,
2014, p. 1)

2.3.2 Heart Rate Variability Biofeedback Techniques

Lehrer et al. (2000) first proposed a 10-session resonance breathing protocol to

train individuals on HRVB techniques. Researchers have widely applied this

protocol to investigate the long-term impact of HRVB on physical health, mental

health, and cognitive performance (Lehrer et al., 2020). The long-term impact

is assessed by comparing the HRV baseline measurement taken from the first

session to the HRV measurement obtained from the last session. Nevertheless,

Lehrer et al. (2013) simplified the training protocol and reduced the number of

sessions to five for research and clinical purposes. In general, HRVB techniques

involve paced breathing at approximately 6 breaths/min with prolonged exha-

lation (Lehrer & Gevirtz, 2014; Shaffer & Meehan, 2020). From a physiological

perspective, exhalation stimulates the PSNS and significantly increases RSA,

thereby increasing vagal tone.
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To date, only a few studies have attempted to examine the short-term effects

of HRVB interventions on vagal tone, focusing specifically on athletes (You

et al., 2021a) as well as stress and other emotions (Laborde et al., 2022; Steffen

et al., 2017; Wells et al., 2012). As an extension of these prior studies, Chapter 6

investigates the short-term impact of a single HRVB session on affective states,

executive function, and physiological responses.

2.3.3 Feedback Modality

Although paced breathing practice without the incorporation of biofeedback

elements has a positive influence on vagal tone (Laborde et al., 2019a; Laborde

et al., 2021; You et al., 2021a), HRVB can provide the user with information

that can potentially promote self-awareness about internal bodily processes

and, by extension, improve self-regulation (Weerdmeester et al., 2020). In a

systematic review of biofeedback approaches used to reduce mental stress, Yu

et al. (2018b) found that HRVB is the most commonly used technique in stress

management applications (19 out of 46), followed by multi-signal biofeedback

(12) and respiratory biofeedback (8). The vast majority of the reviewed papers

(35 out of 46) relied on visual displays as a means of representing biofeedback

information to users, while the remaining studies used audio only (5) or a

hybrid audiovisual approach (6).

More recently, research has introduced novel approaches to feedback modal-

ities in the form of haptic feedback and virtual reality systems (Choi & Ishii,

2020; Yu et al., 2021), which have the potential to provide immersive environ-

ments that can enhance the HRVB experience (Blum et al., 2020; Rockstroh

et al., 2019). Further, the incorporation of various feedback modalities in HRVB

practices has the added benefit of increasing accessibility for individuals of all

abilities.
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2.4 Chapter Summary

This chapter offers an overview of the background details and pertinent research

conducted in the context of affective computing, HRV, and HRVB as they relate

to the primary research question motivating this thesis.

Given the physiological underpinnings of HRV, it has been regarded as a

valuable indicator of both physical and mental health. The use of HRV to infer

intrinsic affective states is a promising approach for recognising mental states in

individuals, and the incorporation of HRVB practices can extend these benefits

by improving individual mental well-being. With an aim to employ HRV in

real-time affect recognition systems, four areas of limitation were identified in

the existing literature:

• HRV Preprocessing for real-time deployment

An essential requirement of reliable HRV analysis is the removal of arte-

facts to obtain a high-quality signal. However, two essential requirements

of real-time HRV applications are flexibility and reliability. Prior studies

have not been able to account for these two aspects of HRV acquisition

and filtering for real-time analysis and batch processing (Benchekroun

et al., 2021; Citi et al., 2012).

• Signal length requirements for real-time HRV analysis

HRV is quantified using a sequence of RR intervals recorded across

varying time periods; thus, the minimum reliable UST segment of the

condition from which the data has been collected should be investigated

prior to use in real-time HRV analysis applications. Recent studies have

focused on the assessment of HRV measures in a resting state (Burma

et al., 2021; Esco & Flatt, 2014; Shaffer et al., 2016). Moreover, a number of

studies have drawn their conclusions based on an inadequate analytical
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test rather than the assessment of the limits of agreements between the

HRV measures derived from the UST segment and 5-min interval (Baek

et al., 2015; Melo et al., 2018; Nussinovitch et al., 2011).

• Short-term effects of HRVB on psychophysiological responses

The long-term effects of biofeedback activities on physical and mental

health have been studied extensively (see Section 2.3). In particular, HRVB

using paced breathing activities over multiple sessions can improve vagal

tone, thereby improving a wide range of interconnected physiological

responses and affective states (Lagos et al., 2008; Lee et al., 2015; van

der Zwan et al., 2015). However, further research is needed to examine

the short-term effects of HRVB practice on physiological responses and

affective states.

• Robust methodological implementations for affect recognition

Researchers have widely investigated the automatic detection of various

affective states (e.g., emotion, stress) using physiological responses via

ML algorithms. However, the use of limited datasets is prevalent within

the field of affective computing, which raises challenges in system devel-

opment and contextual performance interpretation (Castaldo et al., 2019;

Foster et al., 2014; Schmidt et al., 2019). Thus, it is vital to ensure the

adoption of robust methodological implementations to provide effective

technological solutions to enhance mental health and well-being.

These limitations are addressed in the subsequent chapters by outlining the

research methods used in this thesis (Chapter 3), followed by summaries of the

four research studies conducted, each of which is detailed in its own chapter

(Chapters 4-7).



CHAPTER 3

Research Methods

This chapter describes the methodological context underpinning the
four research studies that comprise this thesis. It begins with a brief
theoretical overview, followed by comprehensive details regarding
the experimental design, data collection, data analysis, and ethical
considerations.

3.1 Overview

Psychophysiological research has emerged as a potential means for investigat-

ing the relationship between physiological systems and psychological behaviour

in human beings (Cacioppo et al., 2009). This research domain has been exam-

ined from an HCI perspective in a wide variety of applications by evaluating

the psychophysiological responses under different conditions or developing

effective interfaces for advanced monitoring (Cowley et al., 2016). Broadly, HCI

researchers have used qualitative, quantitative, and mixed research designs

to explore and identify affective states through physiological responses (e.g.,

HR, skin conductance). This thesis adopts a hypothetico-deductive model for

quantitative data collection and analysis guided by the following main research

question:

RQ: How does a single HRVB session using paced breathing mediate

physiological responses across a range of affective states, and can these

affects be robustly recognised by supervised learning algorithms?

35
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The hypothetico-deductive model is a scientific approach that focuses on for-

mulating falsifiable hypotheses to assess theories or observations through empir-

ical studies (Hayes, 2021). The primary goal of this research was to test multiple

hypotheses to gain further insight into the relationship between increased levels

of HRV and mental well-being, as indicated by psychophysiological responses

(i.e., affective states, executive function, and physiological measures) to develop

real-time affect recognition systems (see Figure 3.1). The employed research

paradigm aligns with a positivist epistemology, which focuses on construct-

ing knowledge through experimental research, quantified measurements, and

statistical analysis (Hayes, 2021).

Increased Levels of HRV Mental Well-Being

HRV Biofeedback

Independent Variable Dependent Variable

Mediator Variable

HRV Preprocessing 
and UST Analysis

Data Preparation

Stress Recognition 
for Real-Time Applications

Supervised Learning

Figure 3.1: Conceptual Framework of the Research Approach
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The following sections provide comprehensive details about the experimen-

tal design, data collection, data analysis, and ethical considerations of the four

studies comprising this research.

3.2 Experimental Design

Chapters 4-7 describe the four research studies of this thesis, each of which is

led by a distinct sub-RQ (see Section 1.2). The details of the study designs are

as follows:

CH4: HRV preprocessing study — a reliability analysis study was conducted

to filter HRV data from publicly available datasets to facilitate batch processing

and real-time analysis. The filtering process involved artefact detection and

correction methods; thus, common methods were examined and compared

against the Kubios results to test for the relationship and agreement levels.

Further, an open-source framework to communicate with HRV sensors over

Bluetooth was developed and integrated with the preprocessing algorithms to

enable HRV data acquisition and filtering in real time.

CH5: UST exploratory study — a repeated measures quasi-experiment was

conducted using a three-level independent variable: baseline, stress, and paced

breathing. The dependent variable (HRV) was measured for all participants

under these three different conditions. Based on the documented physiological

relationship of HRV with stress conditions and paced breathing exercises (see

Sections 2.1.1 and 2.3.1), these two stimuli (i.e., stress and paced breathing)

were chosen to evaluate the consistency of HRV within the investigated UST

segments. All participants experienced the same conditions in the same order

to facilitate the comparison of HRV during paced breathing to baseline after

going through a stress phase. As a result, there was no randomisation in
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the condition assignment, hence the quasi-experiment design. A standardised

procedure was followed to ensure that all participants had the same experience,

thereby reducing the potential effect of confounds (e.g., location, time of HRV

measurement).

CH6: HRV biofeedback study — a randomised controlled trial (RCT) based on

a mixed-factorial design was conducted with two groups: intervention group

performing HRVB through paced breathing and a control group (CTRL) breath-

ing at a normal rate. The dependent variables analysed in this study were

affective states, cognitive performance (working memory task), and physio-

logical measures (HRV and BP). Self-reported questionnaires focused on various

affects, such as perceived stress and relaxation levels, were used to assess affec-

tive states (see Section 3.3.2). The HRV data and self-reported questionnaires

were collected four times: at baseline, pre-, mid-, and post-intervention. The

cognitive task took place pre- and post-intervention. BP was measured at base-

line, pre-, and post-intervention to examine BP changes in response to the

cognitive stress task. The independent variables were group (i.e., CTRL or

HRVB; between-subjects) and time (i.e., baseline, pre-, mid-, post-intervention;

within-subject). Group assignment was randomised using a random number

generator. Similar to the previous study, a standardised procedure was followed

to minimise confounding effects.

CH7: Stress recognition study — a binary classification study using supervised

learning algorithms was carried out to recognise stress and relaxation levels

from HRV data. The classifiers were developed using robust ML strategies ad-

dressing limitations related to data segmentation, feature selection, and model

evaluation. To assess for generalisability, the data discussed in Chapters 5 and 6

were used for training, and public independent datasets were used for testing.
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3.3 Data Collection

Two main sources were incorporated for data collection: primary and secondary.

The primary sources comprised data acquired from participants, and the sec-

ondary sources comprised data acquired from online public datasets. Several

types of data were collected as primary sources, such as psychological data via

questionnaires, physiological data via sensors, and task performance data via

computer-logged measurements.

3.3.1 Participants

The characteristics of the targeted population were predetermined as it was

not practically feasible, given the available time and resources, to perform

experiments on the entire population or a genuinely random sample. Samples

of the population were drawn based on the following characteristics: healthy

individuals between 18 and 65 years of age with no physical health conditions

(e.g., cardiovascular disease, respiratory disease) and no severe mental disorders

(e.g., dementia, depression). Power analysis, effect size, and previous research

helped to determine the target sample size required to maintain a minimum

power of 80%. Statistical power analysis for each study is discussed in more

detail in the relevant chapters.

For the UST exploratory study discussed in Chapter 5, participants were

recruited from Queen Mary University of London (QMUL) via a call for partic-

ipation sent to students and faculty in the computer science department. For

the HRV biofeedback study discussed in Chapter 6, an email announcement

was distributed to the mailing list of Hamad bin Khalifa University’s (HBKU)

in the State of Qatar. Personal invitations were also sent by email to friends and

family members who expressed interest in the study. Participants in all studies
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were fully informed about the nature of the experiment and signed consent

forms.

Due to the COVID-19 pandemic and subsequent lockdowns in the United

Kingdom, it was not possible to conduct face-to-face experiments for HRV

data collection. Therefore, the HRV biofeedback study was conducted in a

collaboration with HBKU in the State of Qatar through the Qatar National

Research Fund (QNRF). The principal investigator of the study, Dr Dena Althani

from HBKU, reviewed the research study application and assisted in the data

collection process. My contributions included study conception and design,

data collection, data analysis, and interpretation of results. The study was

conducted in compliance with the Qatar government’s precautionary guidelines

to limit the spread of the infection.

3.3.2 Questionnaires

Several questionnaires were employed to collect demographic information about

participants as well as factual information about their feelings and behaviours.

These questionnaires were used in the studies that involved data collection from

participants (Chapters 5 and 6) unless stated otherwise. Refer to Appendix A

for the full questionnaires.

Demographic attributes, such as age, body mass index (BMI), and gender,

are relevant factors in the assessment of cardiac activity. Hence, a demographic

questionnaire was completed by all participants at the beginning of the study

to gain a better understanding of their backgrounds. Moreover, an HRV-related

questionnaire was applied as a pre-screening survey and to establish a baseline

for comparable results among participants, as recommended by Quintana et al.

(2016b). In general, the questions were designed to identify participants who

should be excluded from the study due to such factors as cardiovascular disease,
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mental disorder, sleeping patterns, and smoking within the last 24 hours before

the experiment.

Mental health states were analysed using self-reported questionnaires ad-

dressing multiple affective states. Chapter 5 reports the results of the General-

ized Anxiety Disorder Scale (GAD-7), which consists of seven self-reported

items focused on symptom severity over the last two weeks. The questionnaire

has excellent internal consistency, as indicated by a Cronbach’s alpha of .92,

and good test-retest reliability, as indicated by an intraclass correlation of .83

(Spitzer et al., 2006).

Focusing on a range of affective states, Chapter 6 reports the results of the

Depression Anxiety Stress Scale (DASS-21; Lovibond & Lovibond, 1995) as well

as the Positive and Negative Affect Schedule (PANAS) questionnaire (Watson &

Clark, 1994). Each subscale of the DASS-21 consists of seven self-reported items

that ask about the extent to which statements apply to the individual over the

last month. According to Antony et al. (1998), the DASS-21 demonstrates a high

level of internal consistency for depression, anxiety, and stress, as indicated by

Cronbach’s alphas of .94, .87, and .91, respectively.

In comparison, the PANAS assesses both positive and negative affective

states over the last week using two 10-item scales, one for positive affect and

one for negative. The internal consistencies for positive and negative affect

are moderately good, as indicated by Cronbach’s alphas with a value greater

than .83 for both (Watson & Clark, 1994). In addition, three components of the

expanded version of the PANAS (PANAS-X) were used to assess attentiveness,

fatigue, and serenity during the study, with questions focused on the partici-

pant’s feelings at the moment. Finally, five-point single-item Likert scales were

used to assess general stress and mood levels at different time points during

the study.
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In addition to affective states, Chapter 6 addresses sleep quality using

the Pittsburgh Sleep Quality Index (PSQI), a self-reported questionnaire that

assesses seven components: sleep quality, sleep duration, sleep latency, sleep

efficiency, sleep disturbances, use of sleep medication, and daytime dysfunction

over the previous month. The questionnaire has moderately good internal

consistency, as evidenced by a Cronbach’s alpha of .83 (Buysse et al., 1989).

Further, Chapter 6 considers physical activity via the short-form version of

the International Physical Activity Questionnaire (IPAQ), which estimates total

physical activity and total time spent sitting over the previous week using seven

self-reported items. The questionnaire has moderately good consistency, as

indicated by a test-retest Spearman’s reliability of .80 (Craig et al., 2003).

All questionnaires used in Chapter 6 were presented in the English and

Arabic languages as most of the participants were non-native English speakers.

The Arabic versions of the questionnaires were obtained as follows: PANAS

(Davis et al., 2020), DASS-21 (Ali et al., 2017), PSQI (Suleiman et al., 2010),

and IPAQ (Helou et al., 2017). The remaining demographic and HRV-related

questionnaires were translated by the researcher (see Appendix E).

3.3.3 Physiological Data

Information about the intrinsic behaviour of the human body can be attained by

collecting data through physiological sensors. However, challenges may arise in

experimental research studies that implement physiological assessment, par-

ticularly in terms of data collection, configuration, analysis, and interpretation

(Lazar et al., 2017). Therefore, sensors were selected based on the reliability

of the signal as well as the ease and convenience of their attachment to the

participant. Moreover, the studies were conducted in a laboratory setting to pro-

vide a comfortable and controlled environment while minimising confounding
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variables.

To capture cardiac activity under different experimental conditions, HRV

was measured using the CorSense device by Elite HRV1, which generates a

PPG signal recorded at a sampling rate of 500 Hz (see Figure B.1). Recent

research has shown that PPG can provide accurate HRV measures that correlate

closely with ECG-derived measures for healthy subjects. Moreover, CorSense

can be easily attached to the user’s finger, ensuring comfort and convenience

compared to the conventional chest strap (Pasadyn et al., 2019).

To determine device reliability, an intraclass correlation coefficient (ICC)

with a 95% confidence interval (CI) was used to compare the CorSense PPG

signal to both a three-leads ECG signal obtained using a BIOPAC MP150

device and a PPG signal obtained using a Polar H7 chest strap sensor; readings

were taken from a single participant under normal breathing conditions. The

correlation coefficients were .84 (95% CI [.82, .86]) with BIOPAC and .85 (95%

CI [.82, 87]) with Polar.

The raw RR intervals of CorSense were exported offline (i.e., after data

collection) using an iOS application developed by the sensor’s manufacturer

(Elite HRV). In general, CorSense transmits data over Bluetooth 4.0 using the

Bluetooth Low Energy (BLE) protocol with a Bluetooth-enabled device (e.g.,

smartphone). To obtain raw data in real-time and integrate CorSense with

various research-based applications, an interface using the Bluetooth standards

was developed as part of the study discussed in Chapter 4.

All signals were subjected to a visual inspection to ensure that they con-

formed to the expected norms and did not contain any unanticipated trends

or outliers. Kubios software was primarily used for the HRV analysis in the

study described in Chapter 4, and for the HRV data exploration in the studies

described in Chapters 5-7; however, the HRV analysis was performed in Python

1https://elitehrv.com/corsense
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using the Systole (Legrand & Allen, 2022) and pyHRV (Gomes, 2018) packages.

In the HRV biofeedback study, systolic blood pressure (SBP) and diastolic blood

pressure (DBP) were recorded using an OMRON M7 Intelli IT upper arm cuff

monitor.

External factors that can affect cardiac activity measurement were consid-

ered. Accordingly, participants were asked to avoid alcohol, coffee, heavy meals,

and intensive workouts prior to the experiment.

3.3.4 Cognitive Performance

There is a well-established relationship between executive function and vagal

tone (Hansen et al., 2003; Kim & Lee, 2013; Thayer et al., 2009a). Working

memory is a facet of executive function characterised by the capacity to retain

limited information for a short period of time while mentally processing the

information (see Section 2.1.2; Baddeley & Hitch, 1974). The study described

in Chapter 6 investigated the effects of HRVB on executive function and, by

extension, working memory, as measured by the N-back cognitive task (Kirch-

ner, 1958). Cognitive performance was determined by calculating the correct

responses and reaction time. Reaction time was measured as the time required

for the participant to make a decision about the correct response.

3.3.5 Datasets

Although there were several publicly available datasets containing ECG and

HRV data, careful consideration was given to selecting the appropriate dataset

based on the study requirements. Following a review of the datasets concerning

the experiment condition, number of participants, signal length, signal quality,

and study protocol, one dataset was selected for Chapter 4, and two datasets

were selected for Chapter 7 (see Table B.1).
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1. Normal breathing group

This group consisted of ECG data for 11 healthy participants (eight women,

three men; ages 20-35) breathing spontaneously during sleep with an

average duration of 6 h each (Peng et al., 1999). Data were taken from

the publicly available PhysioNet database (Goldberger et al., 2000). This

dataset was used to assess the performance of artefact detection and

reliability of correction methods because the HRV data were collected

from healthy participants in a stable condition and the dataset included

annotation files confirming normal heartbeats. The HRV data of the

normal breathing group has been used in relevant research studies (Deka

& Deka, 2020; Gonzalez et al., 2012; Muñoz Diosdado et al., 2010). Further

detail about the dataset is discussed in Section 4.3.1.

2. WESAD

Wearable Stress and Affect Detection Dataset (WESAD) is a publicly

available multimodal dataset consisting of physiological data recordings,

including body temperature and three-axis acceleration, ECG, electroder-

mal activity, electromyograms, and respiration recorded during baseline,

stress, meditation, and amusement conditions using a chest belt and

wrist sensors. Data were collected from 15 participants in a controlled

laboratory experiment and physiological signals were sampled at 700 Hz

(Schmidt et al., 2018). In addition, self-report surveys were administered

to gauge stress and emotional states. This dataset has been widely used

in relevant research studies (Chakraborty et al., 2019; Elzeiny & Qaraqe,

2020; Jiang et al., 2020; Sarkar & Etemad, 2020). All conditions except for

the data collected during the amusement phase were employed in the

present study. WESAD was used as an independent dataset to assess the

generalisability of the supervised learning algorithms (see Section 7.4.1).
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3. SWELL

Smart Reasoning Systems for Well-being at Home and at Work (SWELL)

is a publicly available dataset collected by researchers at the Institute

for Computing and Information Sciences at Radboud University (Koldijk

et al., 2014). It consists of computer recordings of body posture, ECG

signals, facial expressions, and skin conductance from 25 participants

performing two work-related tasks under two types of stress induction

(i.e., receiving unexpected email interruptions and pressure to complete

their work within a certain timeframe). ECG signals were sampled at 2048

Hz. In addition, the researchers collected subjective information regarding

the participants’ emotions, mental effort, perceived stress, and task load.

This dataset has been widely used in relevant research studies (Behinaein

et al., 2020; Koldijk et al., 2018; Sarkar & Etemad, 2020; Sriramprakash

et al., 2017). Like WESAD, SWELL was used as an independent dataset

to determine the generalisability of the supervised learning algorithms

discussed in Section 7.4.1.

3.4 Data Analysis

Overall, the collected data were quantitatively analysed based on descriptive

statistics, inferential analysis, and predictive analysis.

First, a general overview of the collected data was collated using descriptive

statistics; the central tendency, dispersion measures, and CI were reported for

each variable as appropriate. Moreover, correlation analyses were employed to

evaluate the relationship between variables and their agreements: specifically,

Pearson correlation coefficient, Spearman’s rank-order correlation, ICC, and

Bland-Altman analysis. The latter is a graphical approach that calculates the

95% limits of agreement and plots the mean of both measurements against
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differences in means (Altman & Bland, 1983; Giavarina, 2015). As a quantifica-

tion measure for the Bland-Altman analysis, the bias is calculated as the mean

difference of both measurements.

Second, inferential statistical methods were used to gain deeper insight

into the data and assess whether the observed differences between groups

were reliable or merely coincidental. After summarising the variables through

descriptive statistics, the data were checked for normality using the Shapiro-

Wilk test and for homogeneity of variance using Levene’s test; an appropriate

statistical test was selected accordingly (i.e., parametric or non-parametric).

Moreover, the sphericity assumption in repeated measures analysis was assessed

using Mauchly’s sphericity test. To control for Type I errors, the significance

levels were set at 5% for all statistical analyses. To achieve practical significance,

the effect sizes were reported and both sample size and statistical power were

taken into consideration, minimising the likelihood of Type II errors based on

Cohen’s standards (Cairns, 2019; Cohen, 1988).

The group-mean differences statistical tests used in this research were

derived from a broad family of statistical models known as the generalised linear

model (GLM), including analysis of variance (ANOVA), analysis of covariance

(ANCOVA), multilevel linear (MLL) analysis, and t-tests. In addition, linear

and logistic regressions were used to perform predictive analysis. Finally, ML

models using supervised learning algorithms were developed to recognise stress

and relaxation levels based on binary classifiers. The statistical analyses were

performed with RStudio (version 4.0.0), and the ML models were implemented

in Python using the Scikit-Learn package (Barupal & Fiehn, 2019).

Table 3.1 presents a comparative summary of the experimental studies based

on the methodological attributes of each study.
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Table 3.1: Summary of the Experimental Studies

Study 1 Study 2 Study 3 Study 4

Chapter 4 Chapter 5 Chapter 6 Chapter 7

Study Name HRV
Preprocessing

UST
Exploratory

HRV
Biofeedback

Stress
Recognition

Study Objective Develop
reliable and
flexible imple-
mentation for
HRV filtering

Explore the
minimum
reliable
segment for
HRV analysis

Investigate the
short-term
effects of
HRVB on
psycho-
physiological
measures

Evaluate a
robust imple-
mentation for
stress
recognition
using HRV
data

Experiment Design – Quasi-
Experiment

Mixed-
Factorial
Design

–

Data Analysis Correlation
and
Bland-Altman

Correlation,
Bland-Altman,
and MLL

ANCOVA,
Correlation,
MLL, and
Regression
Analysis

Supervised
Learning
Algorithms

Data Source Secondary
(Public
Dataset)

Primary Data
Collection

Primary Data
Collection

Primary and
Secondary:
Dataset of
Studies 2 & 3
and two
Public Dataset

Participants Number 11 20 38 96

3.5 Ethical Considerations

Institutional approval was obtained from the Ethics Committee at QMUL and

the Institutional Review Board (IRB) at Qatar Biomedical Research Institute at

HBKU, as appropriate. Participation was voluntary, and all participants had the

opportunity to read the study details on an information sheet and were asked

to sign a consent form (forms provided by QMUL and HBKU). Accordingly,

participants were aware of their right to withdraw at any time if they desired,

with no adverse consequences. Additionally, a debriefing session was held for

participants interested in obtaining further details about the study’s objectives
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and preliminary results.

Several strategies were employed to maintain data anonymity and confiden-

tiality. First, participants were identified using a randomly generated participant

number and asked not to include any identifying information in their question-

naire responses (e.g., name, mobile number, email address). Second, a unique

coding scheme (XXXX-XXXX-XXX) was used to store all data files for each partic-

ipant in three parts: 1) data type (e.g., questionnaire or physiological measure),

2) group association, and 3) participant ID. Lastly, the data were stored in a

password-protected hard drive only accessible to the researcher conducting the

experiment.

3.6 Chapter Summary

This chapter presents an overview of the research methods and experiment

designs used in the four primary studies. The research approach implemented

required several data collection methods: namely, physiological data, psycho-

logical data, and task performance data, which are discussed at greater length in

Chapters 5 and 6. Further, public datasets, discussed in Chapters 4 and 7, were

employed to provide data diversity and enrichment through the incorporation

of secondary sources. The data used in Chapters 4-6 were analysed quantita-

tively using statistical analyses, and the data used in Chapter 7 were analysed

using supervised learning algorithms. In-depth details about the methods and

procedures for each study are explicated in the methods section of the relevant

chapters. Lastly, ethical considerations for all studies involving participants are

also discussed.





CHAPTER 4

Heart Rate Variability Preprocessing

This chapter serves as the foundation for the subsequent three chapters
by providing methods to obtain high-quality HRV data, with particular
attention to the utilisation of preprocessing algorithms (artefact detection
and correction) that can facilitate batch processing and real-time analysis
for eventual deployment in wearable devices. Lastly, an open-source frame-
work for real-time HRV data acquisition using Bluetooth-based sensors is
described.

4.1 Overview

The reliability of HRV analysis depends, to a great extent, on the signal quality

of the RR intervals. Hence, a preprocessing step is imperative to identify and

correct any existing artefacts. Typically, the presence of an artefact is due to

either physiological reasons or technical issues in the HRV data collection. A

physiological artefact appears when the heart produces abnormal beats, such

as ectopic beats or ventricular fibrillation (Logier et al., 2004; Peltola, 2012). In

contrast, technical artefacts are caused by the physical motion of the sensor or

the user (Peltola, 2012).

Traditionally, trained investigators would visually inspect ECG signals to

identify abnormalities in the QRS complex, after which abnormal beats and

other artefacts were edited and corrected offline (Soler et al., 2018). However, this

process has been adapted to efficiently manage long-term HRV data and large

datasets via automatic artefact detection and correction, thereby enhancing

51
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batch processing. An additional advantage of automatic filtering is that it

supports HRV data collection via wearable sensors by meeting the requirements

of real-time digital health applications. Thus, various algorithms have been

proposed to perform automatic filtering of HRV signals (Jarrin et al., 2012;

Lang, 2019; Ribeiro et al., 2018), which comprises two major stages: 1) artefact

detection and 2) artefact correction.

Among clinicians and researchers, Kubios is one of the most widely used

commercial applications for reliable HRV filtering and analysis (Tarvainen

et al., 2014). The standard version of Kubios is a freeware HRV analysis ap-

plication that provides five predefined levels of artefact detection based on a

fixed-threshold approach (Tarvainen et al., 2016). To detect artefacts, each RR

interval is compared to a local average value obtained via median filtering. If

the difference between the RR interval and local average exceeds the predeter-

mined threshold level, the RR interval is marked as an artefact. Afterwards,

the identified artefacts are corrected using cubic spline interpolation. However,

while these commercial applications are both reliable and efficient, they tend to

be closed source, which places considerable limitations on the performance of

batch processing and real-time analysis.

Accordingly, this study sought to investigate the following research question

by developing essential detection and correction algorithms to flexibly serve

the requirements of batch processing and real-time analysis while maintaining

high agreement levels with Kubios results:

SRQ1: What signal preprocessing algorithms are necessary for a reli-

able real-time HRV analysis?

Hence, the open-source Python programming language was used to import raw

HRV data as well as identify and correct artefacts based on the recommended

filtering methods from the literature discussed in Section 4.2. In addition, an
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interface for CorSense was implemented using Python to enable real-time HRV

data collection via Bluetooth technology.

4.2 Related Work

4.2.1 Detection Techniques

Having an automatic strategy for artefact detection in HRV signals can improve

analysis efficacy and, by extension, promote the use of HRV in clinical and

academic research. There are two main approaches for identifying existing

signal artefacts: 1) fixed threshold and 2) adaptive threshold. See Section 2.2.3

for an overview of artefact types and signal preprocessing techniques.

Fixed Threshold relies on the assignment of a specific threshold to determine

whether the RR value is a potential artefact. Previous studies have based their

artefact detection strategies on Malik et al. (1989), which established that there

will be an abrupt change in the signal indicating the presence of an artefact

when the difference between each consecutive RR value (dRR; see Equation 4.1)

is greater than a specific value (usually 20%; absolute fixed):

dRR(i) = | RR(i) − RR(i− 1) | , i = 2, 3, ..N (4.1)

Recently, a variety of flexible methods have been developed to determine

whether an RR interval is an artefact by comparing the RR interval to a local av-

erage or median (mRR; see Equation 4.2) and calculating whether the difference

exceeds a predefined threshold (median fixed). This approach is implemented

in the standard Kubios application using the following threshold levels: 1) very

low (450 ms), 2) low (350 ms), 3) medium (250 ms), 4) strong (150 ms), and 5)

very strong (50 ms; Tarvainen et al., 2016).
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mRR(i) = RR(i) −median [ RR(i− 5, ..., i+ 5) ] , i = 1, 2, ..N (4.2)

Adaptive Threshold extends the median-fixed approach and replaces the pre-

defined threshold with a varying threshold. Lipponen and Tarvainen (2019)

proposed an adaptive threshold that is dependent on the time-varying sequence

of RR intervals; in other words, the threshold value changes based on the

distribution of the median RR intervals. First, the algorithm computes the

mRR by considering the local median value of 10 RR intervals surrounding

the investigated RR value, as shown in Equation 4.2. Second, the adaptive

threshold variable (θ) is calculated using the quartile deviation (QD) of the

differences in the mRR based on a window consisting of 90 RR intervals. This

threshold variable is illustrated in Equation 4.3, where α is a constant of 5.2,

as recommended by Lipponen and Tarvainen (2019). The QD is defined as the

product of half the difference between the first and third quartiles. Finally, if

mRR is greater than the adaptive threshold (θ), then the RR value is identified

as an artefact.

θ(i) = αQD [ |mRR(i− 45, ..., i+ 45) | ] i = 1, 2, ..N (4.3)

4.2.2 Correction Techniques

After identifying the location of the artefacts, the appropriate correction method

can be applied. The most common methods for artefact correction are briefly

summarised as follows (Peltola, 2012):

1. Deletion removes the identified artefacts from the original signal and

shifts the subsequent RR intervals, resulting in a shorter signal.
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2. Window Average replaces the identified artefacts with the mean or me-

dian of the neighbouring RR values. The median method can be specif-

ically used to minimise the effect of any other outliers (Thuraisingham,

2006), as shown in Equation 4.4 below for signal s(n):

s ′i(n) = median

[
s(n+m) : |m| ⩽

wm − 1

2

]
(4.4)

Note. where si(n) is the averaged signal at time n and wm is the length of the window

centred around n.

3. Interpolation replaces the artefact with a value calculated from the sur-

rounding data by fitting a straight line (linear interpolation) or smooth

curve (cubic spline interpolation), the latter of which is estimated from a

cubic polynomial.

4.3 Methods

4.3.1 Dataset

The normal breathing group dataset (Peng et al., 1999) from Physiobank (Gold-

berger et al., 2000) was used to assess performance and reliability in the filtering

process. The dataset included a set of ECG recordings with annotations col-

lected from 11 healthy participants (eight women, three men; ages 20-35 years)

breathing spontaneously during sleep for an average duration of 6 h each.

Although HRV measures may vary depending on state (e.g., sleep, conscious)

and seating position (e.g., supine, seated), the goal of this study was to obtain

stable HRV data from healthy participants with a low number of artefacts in

order to synthetically introduce the artefact type of interest.
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The RR intervals were computed based on the time difference between

the R peaks using the Waveform Database Python library provided by Phys-

ioToolkit (Goldberger et al., 2000). Subsequently, four short-term segments were

extracted from each participant manually for 6 min, resulting in 44 RR segments.

Although all R peaks were labelled as normal beats, the data were visually

inspected to select segments free from extreme outliers.

4.3.2 Artefacts Simulation

In accordance with the methods employed in the previous research (Citi et

al., 2012; Lipponen & Tarvainen, 2019), the artefacts were then simulated by

synthetically adding long RR intervals to the signal at different indices of

i = 10n, where n = {1, 2, 3..}. The addition of the long intervals emulated the

presence of technical artefacts introduced by sensor movements as well as

missed beats (see Figure 2.3; Peltola, 2012). The goal was to add a maximum

of 10% artefacts with respect to the total number of samples. In total, there

were 20,851 samples, of which 1,718 were simulated artefacts. Subsequently,

RR signals with simulated artefacts were manually imported into the Kubios

software, and three filtering thresholds were applied (low, medium, and strong).

The medium threshold was selected as it obtained the lowest artefact detection

error rate (2.6%) of the three threshold levels (low: 25%, strong: 128%). Finally,

the resulting filtered signal obtained from Kubios was used as the reference for

analysis in the current study. The following naming conventions were given to

the different signals used:

• Original signal – extracted RR intervals from the ECG signal with a 6-min

duration.

• Erroneous signal – RR intervals of the simulated artefacts.
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• KUB-corrected signal – RR intervals filtered using the Kubios filtering

method configured with a medium threshold. This signal was used as a

reference for the reliability analysis of the correction methods.

• KUB-detected signal – RR intervals of the detected artefacts using the

Kubios filtering method. These were generated by marking artefact indices

resulting from the subtraction of the erroneous signal from the KUB-

corrected signal. This signal was used as a reference for the performance

analysis of the detection methods.

4.3.3 Artefact Detection

Procedure

The implemented artefact detection process involved three threshold-based

techniques: 1) absolute-fixed threshold, 2) median-fixed threshold, and 3) adap-

tive threshold. All techniques were implemented in Python using standard

libraries, such as pandas (McKinney, 2010) and NumPy (Harris et al., 2020). The

source code for the three detection algorithms is available in the researcher’s

repository on Github (Bahameish, 2019).

As described in Section 4.2.1, the absolute-fixed approach was performed

by calculating the difference between consecutive RR values, then assessing

whether the absolute difference was greater than 20% of its preceding RR

value. In contrast, the median-fixed threshold algorithm was similar to the

detection method used in Kubios. First, a local median value was calculated for

a moving window with a size of 10 RR values before comparing the difference

between the median and individual RR values against a threshold of 250 ms,

which corresponded to Kubios’ medium threshold. Following the procedures

recommended by Lipponen and Tarvainen (2019), the adaptive threshold was
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based on the time-varying threshold of a series of median RR intervals (see

Equations 4.2 and 4.3).

Algorithm 1 provides a pseudocode of artefact detection methods to eluci-

date the threshold calculation for each approach. Figure 4.1 depicts the detection

results for five synthetically inserted long RR intervals: the signal with artefacts

is represented by a black line, dRR and mRR are represented by a blue line, and

the computed threshold for each method is represented by a dashed line. Out

of five artefacts, the absolute-fixed approach missed two, and the median-fixed

approach missed one. In contrast, the adaptive threshold approach identified all

artefacts correctly in addition to marking one extra RR interval as an artefact.

Algorithm 1: Artefact Detection Algorithms

# Initialisation: wsm = 11, wst = 91, α = 5.2.
# wsm: Window Size for mRR
# wst: Window Size for adaptive threshold

1 function detectArtefacts(RR,method,wsm,wst):
# Refer to Equations 4.1-4.3 for details about i and N.

2 dRRi = abs( RRi − RRi−1)

3 mRRi = RRi −median [ RR(i− wsm
2 , ..., i+ wsm

2 ) ]

4 θ(i) = αQD [ |mRR(i− wst
2 , ..., i+ wst

2 ) | ]

# Get artefact indices based on the selected method.
5 if method = absolute then
6 index = get_index(dRRi > 0.2RRi)

7 else if method = median then
8 index = get_index(mRRi > 250)

9 else if method = adaptive then
10 index = get_index(mRRi > θi)

11 return index
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a) Absolute-Fixed Threshold
dRR

b) Median-Fixed Threshold
mRR

c) Adaptive Threshold

RR Threshold Actual Detected

mRR

Figure 4.1: An example of the detection algorithms for five
simulated artefacts.
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Performance Metrics

To evaluate the detection method performance, the confusion matrix approach

was employed to classify each RR interval as a normal or abnormal instance

while using the Kubios results as a reference. Accuracy, balanced accuracy,

sensitivity, and specificity were also computed as performance metrics. Lastly,

the processing time was calculated for each detection method. The performance

metrics of this study were defined as follows:

Accuracy measures the ratio of instances correctly classified as normal or

abnormal to the total number of instances in each class.

Balanced accuracy measures the average class accuracy by calculating the

arithmetic mean of sensitivity and specificity metrics. It is often used for

imbalanced datasets (e.g., anomaly detection).

Sensitivity measures the ratio of instances correctly classified as abnormal to

the total number of abnormal instances in the dataset.

Specificity measures the ratio of instances correctly classified as normal to the

total number of normal instances in the dataset.

Processing time measures the average time taken for the algorithm to identify

artefacts in the RR intervals.

In this study, balanced accuracy was selected as the main performance metric

for accuracy assessment due to class imbalance (i.e., normal and abnormal

instances).

Although Kubios provides the total number of detected artefacts, it does not

provide information about their indices. Hence, a simple script was developed to

identify the indices by importing the reports generated by Kubios, extracting the

RR intervals from the KUB-corrected signal, and comparing these intervals to
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their corresponding values in the erroneous signal. As a result, if the difference

between both intervals was not zero, the index was marked as an artefact

identified by Kubios and saved as a new signal (KUB-detected). Kubios detected

1,763 artefacts in total, which was slightly higher than the number of simulated

artefacts in the erroneous signal (1,718).

4.3.4 Artefact Correction

Procedure

After the artefact identification, the RR signals were corrected based on the

techniques recommended by Peltola (2012). Three methods were assessed

in this study: 1) deletion, 2) moving window average, and 3) cubic spline

interpolation. Deletion entailed the removal of an identified artefact sample

from the signal. Moving window average involved calculating a new RR value

based on the mean of 10 samples surrounding the identified artefact. Cubic

spline interpolation replaced the artefact by fitting a third-degree polynomial

from 10 samples to estimate a smooth curve. Subsequently, all corrected signals

were analysed using Kubios to compare the reliability of the resulting HRV

measures. For each correction method, the Kubios application generated 44

reports. Hence, the developed script was used to automate the processes of

importing all Kubios reports and extracting the computed HRV measure for

reliability analysis.

Reliability Analysis

An ICC with a 95% CI was used to assess the reliability of the correlation and

agreement levels between the HRV measures derived from the three correction

methods and KUB-corrected signals. The ICC was computed using a two-way

mixed-effects model based on a single measurement and absolute agreement.
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The results were supported by a Bland-Altman analysis (Altman & Bland,

1983), which was performed by calculating the 95% limits of agreement and

plotting the mean of both measurements against the difference between them.

In this study, the strength of the ICC reliability level was interpreted as follows:

0-.50 poor, .50-.75 moderate, .75-.90 good, and .90-1 excellent (Koo & Li, 2016).

All HRV measures were log-transformed due to violation of the normality

assumption, as assessed with the Shapiro-Wilk test (p > .05).

4.4 Results

4.4.1 Performance of the Detection Methods

A classification table in the form of a confusion matrix was constructed to evalu-

ate the performance of each artefact detection method. Figure 4.2 demonstrates

the confusion matrices for the absolute-fixed, median-fixed, and adaptive thresh-

old techniques against the KUB-detected signal. The absolute-fixed method

had the highest misclassification rate of normal instances (2.8%), approximately

twice as high as the median-fixed (1.3%) and adaptive threshold (1.5%) ap-

proaches.

As outlined in Table 4.1, the adaptive threshold approach obtained the

highest performance metrics in terms of balanced accuracy (90.2%) compared

to absolute-fixed (81.8%) and median-fixed (84.8%). Similarly, the adaptive

threshold had the highest sensitivity score at 81.5%, indicating that 18.5% of

the artefacts were misclassified as normal instances. Nonetheless, all detection

methods had a similar specificity score, ranging from 97% to 98%.

Lastly, the processing time for each detection method was calculated as the

average time taken to identify the artefacts from all data files. The results re-

vealed that the absolute-fixed was the fastest algorithm (0.091 ms, SD = 0.03 ms),
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Figure 4.2: Confusion Matrices for Artefact Detection Methods

(a) Absolute-fixed
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(b) Median-fixed
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(c) Adaptive Threshold
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Table 4.1: Performance Metric for Detection Methods against the KUB-Detected
Signal and Erroneous Signal (%)

Method Accuracy 95% CI Sensitivity Specificity Balanced Acc.

KUB-Detected Signal

Absolute-Fixed 94.6 [94.3, 94.9] 66.4 97.2 81.8

Median-Fixed 96.4 [96.1, 96.6] 71.0 98.7 84.8

Adaptive 97.1 [96.8, 97.3] 81.5 98.5 90.2

Erroneous Signal

Absolute-Fixed 96.8 [96.6, 97.1] 80.4 98.3 89.4

Median-Fixed 98.9 [98.7, 99] 86.5 99.9 93.2

Adaptive 100 [100, 100] 100 99.9 99.9
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followed by the median-fixed (0.717 ms, SD = 0.15 ms) and adaptive thresh-

old (14.6 ms, SD = 3 ms) algorithms. The processing time varied significantly

among all detection algorithms. Further, there was a particularly notable time

difference between both fixed methods (⩽ 1 ms) and the adaptive threshold

(14.6 ms) due to the additional computational steps needed to calculate the

time-varying threshold (see Equation 4.3). Based on these accuracy and pro-

cessing time results, a suitable detection method can be employed in future

research according to the requirements of the real-time application in question.

For this study, the adaptive threshold was selected as the best artefact

detection algorithm among the investigated methods in light of the balanced

accuracy performance metric. In the following section, the reliability of the

correction methods will be discussed.

4.4.2 Reliability of the Correction Methods

After using the adaptive threshold for artefact detection, the RR recordings

were corrected using three different correction methods: deletion, moving

window average, and cubic spline interpolation. Subsequently, HRV analysis

was performed on all corrected signals, including the KUB-corrected signal. The

HRV measures derived from the KUB-corrected signal served as the reference

for this analysis. Further, HRV measures for the original and erroneous signals

were included in the analysis to better understand the effect of the artefacts.

A summary of the average HRV measures obtained by each filtering method

is shown in Table C.1, the ICC results are shown in Table C.2, and the Bland-

Altman analysis is presented in Figure C.1 (see Appendix C).

Overall, the reliability of all correction methods for MeanRR and SDNN

was excellent, with mean absolute error (MAE) of less than .2% and an ICC of 1.

Similarly, NN50 and pNN50 demonstrated excellent reliability when corrected
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with deletion and moving window average (ICC = .99, 95% CI [.98, .99], MAE

< 5%). Although the ICC of the two measures resulting from cubic spline

interpolation was excellent (ICC > .96), the 95% CI range was wide with a lower

CI bound of .70. Further, the MAE rate was greater than 12%, which was high

relative to the other correction methods. Additionally, cubic spline interpolation

of RMSSD had the highest error rate (MAE = 23.9%) compared to deletion and

moving window average (MAE = 16.5%). Finally, the reliability of the RMSSD

measure in all correction methods was good (ICC range .79-.82).

The artefact simulation method used in this study was based on the in-

troduction of abrupt and unexpected changes in the HRV signal, resulting in

high-frequency components in the spectral domain. As a result, the presence of

artefacts had the greatest impact on HF power (ICC = .17, 95% CI [-.02, .15]),

while VLF power had the least effect (ICC = .89, 95% CI [.83, .94]), as shown by

the erroneous signal results. Nonetheless, all correction methods significantly

improved the reliability analysis for all frequency-domain measures: VLF power

(ICC range = .96-.97), LF power (ICC range = .86-.91), and HF power (ICC range

= .71-.72). Among the investigated correction methods, moving window average

had the lowest MAE across all frequency domain measures (see Supplementary

Tables C.1 and C.2). In particular, the MAE of the normalised LF and HF power

(i.e., LFnu and HFnu) using the moving window average was less than 3.3%,

with a good reliability score (ICC = .73) compared to deletion (MAE < 4.9%,

ICC = .66) and cubic spline interpolation (MAE < 10.5%, ICC = .78).

Concerning the non-linear methods, all correction methods showed remark-

able improvements in the reliability analysis compared to the erroneous signal.

On average, deletion (MAE < 5.4%, ICC range = .81-.96) and window average

(MAE < 5.4%, ICC range = .74-.96) had comparable results as well as better

MAE rates than cubic spline interpolation (MAE < 11.9%, ICC range = .78-.97).
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The Bland-Altman analysis was performed to visualise the agreement be-

tween the KUB-corrected signal and HRV measures obtained from each cor-

rection method. Figure C.1 illustrates the Bland-Altman plots for the five most

common HRV measures: MeanRR, RMSSD, SDNN, LF power, and HF power.

The Bland-Altman plots depict the mean difference of measurements, repre-

sented by a solid line, and the 95% agreement limits, represented by the dashed

lines. In general, all correction methods indicated similar agreement levels, with

moving window average and cubic spline interpolation showing slightly better

agreement than deletion for the frequency-domain measures.

An open-source implementation for the preprocessing algorithms will allow

for future integration with wearable sensors so that signals can be cleaned

on the spot while flexibly controlling the filtering parameters (e.g., filtering

method, threshold level, window size). Accordingly, the next section describes

the development of a designated framework to collect HRV data and perform

basic filtering techniques in real time.

4.5 Real-Time Heart Rate Variability Framework

To further explore the feasibility of implementing the preprocessing algorithms

in real-time HRV data acquisition, an interface was developed to communicate

with CorSense over BLE. This interface was implemented as an open-source

framework using the Python programming language and Generic Attributes

(GATT) services (Bluetooth Architectural Review Board, 2021). The source code

for the data acquisition is publicly available in the researcher’s repository on

Github (Bahameish, 2019). Technically, the interface can be connected to any

BLE-based device; however, it was only tested on the CorSense device in this

study.
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The GATT framework consists of various profiles, with each profile com-

posed of one or more services. Each service has a set of characteristics that

indicate its properties and operations. For instance, the Heart Rate Profile en-

ables communication between the GATT server (e.g., HR sensor) and GATT

client (e.g., computer, smartphone). Once the connection between the client and

server is established, HR measurements are transmitted to the client using 23

bytes of data per BLE packet (Medical Working Group, 2011a; 2011b).

In a BLE packet, the presence of RR intervals was determined based on

the format represented in the flag, which is the first byte of the packet (see

Appendix B.3). Based on the flag information, the starting index of the RR

measurements was then calculated. Lastly, the RR intervals were retrieved by

concatenating every two bytes using the little-endian scheme. The results were

then converted into milliseconds, as depicted in Algorithm 2. According to the

GATT specification supplement, the resolution of the RR-interval is 1/1024th of

a second (Bluetooth Architectural Review Board, 2021).

Further, a basic prototype was developed to integrate the CorSense frame-

work with the preprocessing algorithms to identify and correct the artefacts

in real time. The median-fixed threshold approach was adopted for artefact

detection and moving window average for correction (see Figure 4.3). Both

techniques were implemented using a 10-RR interval window preceding the

incoming RR interval.
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Algorithm 2: Extracting RR packets from CorSense over BLE
Data: Bluetooth BLE packets
Input: Data packet and the starting index (i) # 1st RR-interval
Output: RR intervals
# Ensure client-server connection is established.

1 function Extract_RR(data, i):
2 while i ⩽ length(data) do
3 rr← data[i] + data[i+ 1]≪ 8 # Combine every two bytes
4 rr← rr

1024 ∗ 1000 # Resolution 1/1024 s
5 index← i+ 2 # update index

6 return rr

Figure 4.3: A simulation of HRV preprocessing in real-time using
CorSense and median-fixed threshold.



4.6. discussion 69

4.6 Discussion

There is a consensus among clinicians and researchers regarding the need to

remove artefacts from RR intervals for reliable HRV analysis (Peltola, 2012).

Although commercial applications provide effective preprocessing algorithms

for data filtering, there are limitations in the flexibility of the analysis employed

for batch processing or real-time monitoring. Hence, this study examined

various filtering approaches in a flexible open-source environment that can

provide similar performance to the Kubios application based on two major

stages: 1) artefact detection and 2) artefact correction. Moreover, an open-source

framework was implemented to integrate real-time HRV data acquisition using

BLE-based sensors with the proposed processing algorithms.

Among the investigated artefact detection techniques, adaptive threshold

achieved the best performance in artefact identification compared to Kubios

(balanced accuracy = 90%, sensitivity = 81.5%) and the erroneous signal (bal-

anced accuracy = 99.9%, sensitivity = 100%). Although the absolute-fixed and

median-fixed thresholds had balanced accuracies greater than 81%, both missed

approximately one-third of the abnormal instances, with sensitivity rates of

66.4% and 71% respectively. These results are puzzling given that the median-

fixed threshold technique was developed to emulate the artefact detection

algorithm implemented in the standard Kubios software. However, the perfor-

mance discrepancy could be attributed to the window size as the local average

was calculated based on the median filtering of 10 samples surrounding the

artefact. In contrast, the Kubios user guide provides no details regarding the

window size of its median filter algorithm (Tarvainen et al., 2016).

For the purposes of developing real-time applications, processing time is as

important as detection accuracy. Both fixed-threshold approaches were time-

efficient compared to the adaptive threshold approach due to the additional
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computational steps required to calculate a time-varying threshold for artefact

identification. In light of these findings, an appropriate detection algorithm can

be selected based on the application’s requirements with respect to accuracy

and processing time.

While all investigated correction techniques yielded satisfactory HRV mea-

sures, the moving window average provided better agreement levels with the

Kubios results than deletion and cubic spline interpolation. In addition, the

moving window average is computationally efficient and more suitable for

real-time applications given the simplicity of its calculations. In contrast, cu-

bic spline interpolation has a higher computational overhead as it requires

fitting a higher-degree polynomial and calculating second derivatives (Guven

et al., 2016). Deletion resulted in shorter RR intervals, which affected the re-

liability of the HRV analysis. Comparing these findings with those of other

studies confirms that deleting abnormal beats increases the mean error rate for

frequency-domain measures (Choi & Shin, 2018; Peltola, 2012; Salo et al., 2001).

Through an open-source implementation, this study aimed to increase the

flexibility of the HRV filtering process while maintaining a high level of quality

relative to Kubios, a commercially validated application for HRV analysis. The

goal was achieved by providing means to control the essential parameters,

including filtering method type, threshold value, and window size. Moreover,

this study presents approaches to facilitate batch processing for both lengthy

HRV recordings and multiple sets of HRV recordings by automating the signal

preprocessing methods.

The research to date has evaluated HRV filtering and analysis for real-time

purposes by simulating both procedures using an overlapping data segmenta-

tion approach with offline processing (Benchekroun et al., 2021; Citi et al., 2012).

However, this study extends the previous work by providing a controllable
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window approach for artefact detection and correction as well as facilitating

the integration of BLE-based sensors with real-time HRV data acquisition and

filtering. Future practical directions could be explored by fully integrating the

two open-source components (i.e., the preprocessing algorithms and CorSense

framework) and evaluating the performance of various filtering methods in

real-time environments.

4.7 Limitations

In this study, there are three important limitations that must be addressed. First,

the simulated artefacts did not include other types of abnormalities, such as

ectopic beats resulting from misalignment or extra beats resulting from short RR

intervals. Second, the preprocessing performance was evaluated using synthetic

artefacts, which left the algorithm’s capacity to detect and correct other forms

of artefacts unexplored. Third, one correction algorithm was adopted to correct

all detected artefacts regardless of abnormality type. A common strategy in

offline preprocessing algorithms is to apply the most appropriate correction

method based on the identified artefact type (Benchekroun et al., 2022; Citi

et al., 2012; Lipponen & Tarvainen, 2019). For instance, if the detected artefact

is an extra beat, it is removed; if it is a missed beat, an extra interpolated beat

is added. Hence, future research could incorporate this classification scheme

when applying the open-source implementation in real-time settings.

4.8 Chapter Summary

This chapter addresses SRQ1 by assessing various artefact detection and correc-

tion algorithms to obtain reliable and flexible HRV analysis for future deploy-

ment in real-time applications. For the flexibility aspect, this study focused on
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the provision of an open-source implementation to facilitate flexible adjustment

and control of the parameters for each algorithm in accordance with user or

application requirements. For the reliability aspect, the results of this study

were compared to those obtained from the Kubios application as a benchmark.

The artefact detection algorithms employed in this study presented a trade-

off between accuracy and processing time. Ostensibly, advancements in artefact

detection accuracy introduced computational overheads (see Section 4.4.1),

which then affected processing time. Considering accuracy and processing

time, the use of the median-fixed threshold approach for detection and moving

window average for correction may provide acceptable results for real-time

analysis. However, the adaptive threshold approach is recommended for offline

batch processing given its high performance with respect to accuracy.

In an attempt to integrate real-time HRV data acquisition with the prepro-

cessing algorithms, a preliminary open-source interface was developed to com-

municate with BLE-based HR sensors. This interface employed a window-based

approach to identify and correct artefacts in real-time using the median-fixed

approach and window average method, respectively.

The next chapter examines the minimum reliable window for HRV analysis

to facilitate the development of real-time affective recognition systems, focusing

on the batch processing of HRV data collected from several participants at

different time points. Hence, the adaptive threshold approach and window

average method were employed in the HRV preprocessing stage to ensure high

levels of accuracy.
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Ultra-Short-Term Analysis

This chapter introduces the significance of ultra-short-term (UST) segments
of heart rate variability (HRV) data by outlining the relevant research,
followed by an evaluation of the reliability of UST HRV analysis under
resting and non-resting conditions (i.e., stress and paced breathing). The
influence of stress and paced breathing conditions on HRV is also explored,
with special consideration given to measurement consistency across UST
segments.

5.1 Overview

UST HRV analysis (< 5 min) has received considerable scholarly attention in

recent years given its capacity to provide momentary insights regarding current

physiological states. According to standards established by the Task Force

(Malik et al., 1996), HRV can be analysed over long periods, with a maximum

recording length of 24 h, or short periods, with a minimum recording length of

5 min. While previous research has considered the 5-min duration to be the gold

standard for short-term analysis, there is no scientific evidence to support this

claim. Quintana et al. (2016b) pointed out that the persistence of this standard

is likely due to the processing limitations of the computers used for ECG data

acquisition in the 1960s. However, power spectral analysis should be conducted

with caution while considering signal characteristics (e.g., sampling frequency,

signal stationarity; Li et al., 2019).

73
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Several studies have explored the feasibility of using HRV analysis in periods

of less than 5 min to monitor dynamic HR fluctuations. Their primary aim

was the incorporation of UST analysis in physical exercise and mental health

applications, thereby facilitating future deployment in wearable devices and

real-time systems (Castaldo et al., 2015; Lee et al., 2022; Wu et al., 2020). However,

most of these studies focused on HRV measures in a resting state.

Using a concurrent validity approach, the present study sought to extend

these findings by investigating the reliability of UST HRV segments under

resting conditions as well as two additional non-resting conditions (i.e., stress

and paced breathing). Concurrent validity is a criterion validity in which

reliability is evaluated by comparing new measurements to previously validated

standard measurements (Shaffer et al., 2020). In this study, correlation analysis,

limits of agreements, and trend analysis were used to compare HRV measures

derived from the UST analysis to those obtained from the standard 5-min

recording (Malik et al., 1996).

5.2 Related Work

The growing demand for individual mental health improvement combined

with the recent development of wearable technologies have brought attention

to real-time health monitoring (Can et al., 2020; Hinde et al., 2021). Real-time

health monitoring can track and record physical activity, physiological signals,

and social interactions. This technology has led to new approaches in the

identification of early warning signs for mental health conditions as well as

the facilitation of timely clinical interventions, thus preventing conditions from

worsening. For instance, leveraging the sensing abilities of wearable devices

during physical activity can provide indicative insights regarding the symptoms

of bipolar disorder and depression (Abdullah & Choudhury, 2018).
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As discussed earlier, HRV provides a good indication of stress levels and

physical health; however, a minimum window of 5 min does not conform to

real-time requirements. Accordingly, researchers have investigated the reliability

of UST analysis during resting states. For instance, Sheridan et al. (2021) used

the Pearson correlation coefficient to assess correlations between commonly

assessed HRV measures (e.g., HF power, LF power, RMSSD, SDNN) using a

5-min HRV recording and the first minute of that recording. They found a high

correlation between HF power and RMSSD (r > .90 for both), whereas moderate

correlation coefficients were shown in SDNN (r = .63) and LF power (r = .71).

However, the study had a number of drawbacks, including a small sample size

of four participants, details about participants’ conditions during the assessed

segments not being reported, and sole reliance on Pearson correlation analysis.

In a review of research on the reliability and validity of HRV measures

resulting from UST analysis, Pecchia et al. (2018) demonstrated that correlation

analysis is not sufficient for concluding that an HRV measure derived from

the UST analysis is a reliable estimate for the 5-min standard. In light of the

identified methodological ambiguities and inconsistencies, the authors proposed

a set of protocols for appropriate and rigorous assessment of UST segment

reliability compared to a benchmark: 1) correlation to examine the association,

2) Bland-Altman analysis to visually inspect bias between means, 3) statistical

significance among resting and stress conditions, and 4) trend analysis to ensure

consistency across time segments during stress conditions.

In seeking to develop an auto-detect stress classifier, Castaldo et al. (2019)

followed the reported guidelines and discussed the results of time-domain,

frequency-domain, and non-linear measures in 3-min, 2-min, 1-min, and 30-s

periods during resting and stress phases. They found that MeanRR, SDNN, HF,

and SD2 presented great consistency at the 1-min segment as well as a high
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correlation with the 5-min recordings. In the 30-s segments, the computation

of some HRV measures (e.g., LF, HF, LF/HF) led to erroneous values due to

the insufficient number of samples. In fact, Malik et al. (1996) pointed out

that the length of the segment in the spectral analysis should be 10 times the

wavelength of the lower bound frequency of the investigated spectral band

in spectral analysis. For example, to obtain a reliable analysis of HF power

(frequency band .15-.40 Hz), the minimum length should be around 1 min,

which is calculated as 10× 1
.15 ≈ .66 seconds. Nevertheless, Shiraishi et al. (2018)

provided a promising visualisation approach for the power spectrum of HRV

in real-time during exercise. They selected a moving window of 30 s updated

with every heartbeat, and the analysis was performed using maximum entropy

rather than the FFT or autoregressive methods.

Munoz et al. (2015), a seminal work in this field, provided a thorough

reliability test for UST analysis of segments with durations of 2 min, 30 s,

and 10 s using Bland-Altman analysis, Cohen’s d, and correlation analysis. At

three averaged 10-s segments, they achieved high correlation coefficients with

the standard 5-min intervals (RMSSD: r = .94; SDNN: r = .86). However, this

study was limited to the RMSSD and SDNN measures taken from the time

domain during a resting condition. In contrast, Shaffer et al. (2016) examined

UST reliability in a resting condition by adopting strict validity criteria for

Pearson’s r (r > .90). They found that a 1-min segment was required for reliable

estimation of time-domain measures (e.g., RMSSD, SDNN, NN50, pNN50), a

2-min segment for LF power, and a 3-min segment for HF power and LF/HF.

A recent study by Burma et al. (2021) investigated the reliability of UST

HRV measures by extracting 240-, 180-, 120-, 60-, and 30-s segments from a

5-min recording during a resting condition. They employed concurrent validity



5.2. related work 77

using Bland-Altman plots with 95% limits of agreement, coefficient of determi-

nation, coefficient of variation, and repeated measures ANOVA. They found

that RMSSD and SDNN in segments of less than 240 s showed low levels of

agreements with the 5-min window. Hence, they concluded that a minimum

of 4 min (240 s) is the shortest recommended window for reliable UST HRV

analysis. However, the scope of the study was primarily concerned with an

upright orthostatic position. Therefore, the generalisability of these findings on

supine or seated positions is limited due to the impact of posture on the SNS

(Quintana et al., 2016b).

Additionally, Melo et al. (2018) evaluated the reliability of 180-, 120-, and 60-s

UST segments against a 5-min RR interval under two breathing conditions using

the Pearson’s correlation and statistical group mean differences test. The authors

found that RMSSD in paced breathing had a higher correlation coefficient

compared to spontaneous breathing, and this correlation was reliable at the 60-s

segment. Although a t-test analysis revealed a greater difference in the means

of paced breathing compared to spontaneous breathing, no considerations were

given to the limits of agreements nor quantification of an acceptable difference

between measurements. Moreover, the shortest duration investigated was 60 s.

Expounding upon the comprehensive review conducted by Pecchia et al.

(2018), Shaffer et al. (2020) critically addressed the limitations of various ana-

lytical comparison approaches utilised in 28 studies. They argued that Bland-

Altman analysis with a priori is the most appropriate analysis to identify

acceptable agreement levels between the 5-min RR interval and shorter seg-

ments. Accordingly, the reliability of UST analysis is investigated in the present

study under resting, stress, and paced breathing conditions using Bland-Altman

analysis with a priori, Pearson’s correlation, and trend analysis. The latter was

used for non-resting conditions to ensure trend consistency. Moreover, the
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influence of mental stress and paced breathing conditions was analysed for the

5-min segment and across UST segments. Accordingly, this study sought to

address the following research question:

SRQ2: What are the requirements for a reliable real-time HRV anal-

ysis using UST segments under resting, stress, and paced breathing

conditions?

5.3 Hypotheses

The hypotheses associated with SRQ2 are as follows:

Hypothesis 1 (H1): UST analysis can provide reliable HRV measures com-

pared to the 5-min standard under resting, stress, and paced breathing

conditions.

Hypothesis 2 (H2): HRV measures under non-resting conditions (i.e., stress

and paced breathing) differ from those under resting conditions, and these

HRV measures are consistent across UST segments in each condition.

The reliability of H1 was defined as the degree to which HRV measures

resulting from UST segments could accurately and consistently estimate the

corresponding measures of the 5-min standard recording using concurrent

validity.
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5.4 Methods

5.4.1 Participants

A sample size of at least 20 was deemed necessary for 80% statistical power in

detecting a medium effect size of .3, a significance level of .05, and a correlation

among repeated measures of .50, as calculated using a priori power analysis

in G*Power for a one-way repeated measures ANOVA (Erdfelder et al., 1996).

While determining the target sample size, the number of participants involved

in similar studies was also considered (i.e., a minimum of 20 participants; Esco

& Flatt, 2014; Melo et al., 2018; Salahuddin et al., 2007a).

Twenty-four healthy participants (aged 20-36 years) from QMUL were

recruited to participate in the study based on a call for participation sent

to students and faculty in the computer science department. To minimise

external factors that could affect cardiac activity measurements, participants

were instructed to avoid caffeine, smoking, and eating heavy meals for 2 h prior

to the study as well as engaging in intense physical workouts for 24 h prior to

the experiment (Laborde et al., 2017; Quintana et al., 2016b). As recommended

by Quintana et al. (2016b), participants completed a simple questionnaire

asking about their alcohol/coffee intake, fitness level, sleep routine, and overall

physical health (see Appendix A.2). In addition, the GAD-7 questionnaire

was given to all participants to ascertain the impact of self-reported anxiety

on HRV levels (see Section 3.3.2 and Appendix A.3; Quintana & Heathers,

2014). The study was approved by the Queen Mary Research Ethics Committee

(QMERC2019/58). All participants were informed about the nature of the

experiment and signed a written consent form. The documents related to ethical

approval and consent are shown in Appendix D (see Figures D.1 and D.2).

After the data filtering process, four participants were excluded due to a
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high percentage of artefacts in the signal exceeding 5% of the RR recording.

Hence, the analysis was conducted with 20 participants: 11 men (age: M = 27.6

± 4.3 years) and nine women (age: M = 27.9 ± 2.2 years).

5.4.2 Experiment Design

The study was based on a repeated measures quasi-experimental design aimed

at collecting HRV data (dependent variable) in three conditions (independent

variable): 1) before the study as a baseline measurement, 2) during mental

stress task, and 3) during paced breathing. The paced breathing was performed

by all participants as a post-stress recovery exercise to improve HRV and reduce

stress. HRV was measured using the CorSense device, a PPG-based sensor with

a sampling rate of 500 Hz (see Section 3.3.3).

Prior to the study, additional demographic and affective information were

collected using the GAD-7 questionnaire. Further, participants were asked to

rate their experience with deep breathing, fitness level, and physical activity

using a five-point single-item Likert scale. To facilitate the comparison of HRV

changes, all participants experienced the same conditions in the same order

from baseline to paced breathing after going through a stress phase. This order

is in keeping with the 3 Rs approach (i.e., resting, reactivity, and recovery)

proposed by Laborde et al. (2017).

Trier Social Stress Task

Widely implemented in laboratory settings, the TSST protocol includes speaking

and arithmetic tasks that can effectively induce stress in individuals (Kirschbaum

et al., 1993). This study adapted the TSST protocol to elicit a stress response in

participants. First, the speaking task had 10 different topics, such as education,

environment, family, travel, and work. Participants had to choose a random
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number from one to 10 to select a topic. Each topic included three questions

written on small cards to facilitate speaking (e.g., “Do you think job satisfaction

is more important than salary when choosing a job?”, “What skills do you think

are needed to get a good job these days?”, “What jobs do you think are most

valuable to society?”). Second, the arithmetic task involved a mental sequential

subtraction activity with standardised initiation and subtraction numbers. Prior

to the study participants were generally informed that the HRV data would be

collected during three conditions: resting, mental task, and paced breathing.

The details of the TSST protocol were provided during the phase of the mental

task.

Heart Rate Variability Processing

The collected HRV data passed through four phases of signal processing: 1)

filtering, 2) quality check, 3) segmentation, and 4) HRV analysis. A schematic

diagram illustrating these phases is shown in Figure 5.1.

HRV Data

CorSense

Signal 
Filtering

Segmentation HRV AnalysisArtefact 
< 5%?

Yes

No

Exclude Data

Figure 5.1: HRV Signal Processing Phases

Initially, an exploratory HRV analysis was conducted using the Kubios

application. However, Kubios does not support batch processing and controlled

window analysis. Thus, signals were filtered using the adaptive threshold

artefact detection and moving window average correction methods, according

to the implementation discussed in Chapter 4 (see Section 4.8). Subsequently,

the HRV analysis for the time-domain and frequency-domain analyses was
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performed in Python using Systole (Legrand & Allen, 2022), while the HRV

analysis for non-linear analyses was performed using pyHRV (Gomes, 2018).

Systole provides an exclusive implementation of the Welch’s periodogram, an

FFT-based method, for power spectral estimation. Thus, the frequency-domain

measures in this study were computed using Welch’s method.

For the stress condition, HRV was separately recorded for the speaking

and arithmetic tasks; however, these were later combined into one signal as

the paired-sample t-test showed non-significant differences in HRV measures

between both stress tasks (p > .05 for all). Subsequently, a 5-min interval was

extracted from the centre of the combined HRV signal during analysis.

Data Analysis Approach

For this experimental study, the hypothesis regarding the reliability of UST anal-

ysis (H1) was assessed based on concurrent validity with 5-min RR-intervals

using Bland-Altman analysis with 95% limits of agreement, Pearson’s correla-

tion coefficient, and trend analysis. The latter was used to ensure the consistency

of changes from baseline to non-resting conditions. To assess the hypothesis

regarding significant changes in HRV measures based on varying experimental

conditions (H2), MLL model analysis was applied, followed by Tukey’s post-

hoc analysis of pairwise comparisons. An overview of the statistical analysis

approach used for both hypotheses is depicted in Figure 5.2.

As a measure of effect size, the omega squared (ω2) was reported for the

MLL analysis. The values of .01, .06, and .14 were interpreted as small, medium,

and large effect sizes, respectively (Cohen, 1988). For the dependent pairwise

comparisons, the correlation coefficient (r) was reported with the values of .1,

.3, and .5, indicating small, medium, and large effect sizes, respectively (Cohen,

1988).
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Figure 5.2: A Flowchart for the Statistical Analyses Approaches
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5.4.3 Procedure

The experiment sessions were conducted in the daytime (9:30 am to 12:30

pm) over several days, and each session lasted 35 min. The experimental

study consisted of HRV collected under 1) a controlled condition to establish a

baseline measurement during which participants were instructed to sit quietly

and breathe naturally for 6 min, 2) a mental stress task based on TSST with a

duration of 15 min, and 3) a paced breathing exercise for 6 min as a post-stress

activity.

During the stress task, participants had 5 min to mentally prepare for the

speaking task without written notes, and then 5 min to deliver a speech. The

last 5 min were dedicated to the mental arithmetic task in which participants

were asked to subtract 13 from 1,022 sequentially. All TSST protocols were

followed while interacting with the participants, as recommended by Birkett

(2011). For instance, if a participant paused for 20 s during the speaking task,

they were prompted to continue speaking with the phrase: “You still have

time remaining”. In addition, if a mistake was made in the arithmetic task, the

participant was asked to start over from the beginning.

The post-stress task activity was a paced breathing exercise lasting 6 min,

which was designed to reduce stress via HR regulation and increase HRV. To

breathe at a rate of 7 breaths/min with an equal inhalation-to-exhalation ratio

(Lin et al., 2014), participants were asked to follow an illustrative opening and

closing circle guide from the Elite HRV application. Each HRV measurement

was preceded by a 20-s stabilisation period to allow HR to level out. HRV was

measured for 6 min to ensure a minimum recording length of 5 min.
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5.5 Data Analysis

5.5.1 Exploratory Analysis

A snapshot of the RR interval and spectral density from one participant during

baseline, stress, and paced breathing conditions are shown in Figure 5.3. Closer

inspection of this figure shows that the average HRV was slightly lower in stress

compared to baseline and paced breathing. Moreover, the signal during paced

breathing followed a regular rhythmic pattern, indicated by a peak in the LF

band at around 0.1 Hz.

Figure 5.3: A sample of 5-min recording of the RR-Intervals
under a) baseline, b) stress, and c) paced breathing
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In addition, a time-frequency analysis was performed to visualise changes

in the power spectrum with respect to time. Figure 5.4 demonstrates an example

of the time-frequency analysis performed on data drawn from one participant

during baseline, stress, and paced breathing. During baseline and stress, the

frequency components were distributed between the HF and LF bands; con-

versely, the frequency components were localised in the upper frequency of the

LF band (i.e., around 0.15 Hz) during the full recording period under the paced

breathing condition. This analytical approach can assess how well participants

followed the breathing guide, thus leading to further improvements in breathing

regulation and consistency.

A preliminary analysis using histogram plots and the Shapiro-Wilk test

showed that HRV measures were not normally distributed (p < .05); thus, data

were logarithmically transformed. For simplicity and ease of interpretation,

HRV data are presented in their non-transformed form (i.e., absolute values) in

this chapter, while the log-transformed data are included in Appendix D (see

Tables D.1-D.6).
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a) Baseline

b) Speaking

c) Arithmetic

d) Paced breathing

HF Band

LF Band

VLF Band

Figure 5.4: Time-Frequency Analysis for a) Baseline, b) Speaking,
c) Arithmetic and d) Paced Breathing.

Note. Created with HRVAS toolkit in Matlab (Ramshur, 2010)
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5.5.2 Descriptive Statistics

A descriptive statistical overview of participants’ demographic characteristics

is provided in Table 5.1, while a summary of the average HRV measures over

the 5-min interval for each condition (baseline, stress, and paced breathing) is

shown in Table 5.2.

Table 5.1: Demographic Information Summary (N=20)

Age GAD-7 Deep Breathing Physical Activity Fitness Level Sleep Hours

27.9 ± 5.7 3.5 ± 4.3 2.3 ± 1.2 3.35 ± .8 3.15 ± .8 7.2 ± 1.1

As assessed by the Pearson’s correlation coefficients, there were no signifi-

cant relationships between the GAD-7 score and HRV measures in all conditions

or the remaining survey questions (p > .05 for all). Although there were no

significant mean differences related to gender among all baseline HRV measures

(p > .13 for all), the average baseline RMSSD, and HF power were higher in

women than men, as shown in Figure 5.5 (see Section 2.2.6).
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Figure 5.5: Boxplots for the Baseline MeanRR, RMSSD, and HF
Power based on Gender.
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Table 5.2: Summary Statistics of HRV Measures in the 5-min
Recording

Measure
Baseline Stress Breathing

M SD M SD M SD

Time-Domain

MeanRR 820.8 94.0 737.8 103.3 830 119.7

RMSSD 47.3 19.2 44.1 32.2 57 27.5

SDNN 70.8 24.4 78.3 45.5 100 37.5

pNN50 18.8 12.5 18.5 13.1 28 16.4

Frequency-Domain

VLF power 1316.7 1045.8 1529.8 1777.8 4289.8 13354.0

LF power 1859.2 1219.8 2487.7 2279.0 6762 5415.3

HF power 681.3 469.4 1277.3 1937.1 1003 843.8

LFnu 72.2 12.7 72.6 13.3 85.7 11.3

HFnu 27.8 12.7 27.4 13.3 14.3 11.3

LF/HF 3.4 2.3 3.8 2.9 9.0 5.5

Total power 3857.3 2264.9 5294.8 5727.3 12054.8 15444.2

Non-Linear

SD1 31.2 13.6 35.2 22.8 43.8 19.4

SD2 94.8 32.0 104.4 60.7 133.0 50.2

SampEn 1.4 0.2 1.2 0.3 1.0 0.3

DFA1 1.3 0.1 1.3 0.1 1.4 0.2

DFA2 0.8 0.2 0.7 0.1 0.6 0.2
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5.5.3 Reliability of Ultra-Short-Term Analysis

Method

Each HRV recording in the dataset was divided into shorter time segments of

120, 60, 30, 20, and 10 s. The segmentation process was conducted by randomly

selecting a starting point within the recording and then proceeding in a recursive

manner. Figure 5.6 illustrates the segmentation process, where:

• st0 is the starting time of the 5-min recording,

• sti is the starting time of the subsequent segment,

• wi is the length of the window segment, and

• endi is the ending time point.

Figure 5.6: HRV Data Segmentation Process

At each UST segment, the ICC was used as a test-retest reliability assessment

for the HRV measures obtained from the random segmentation of the RR

intervals (Koo & Li, 2016). There was excellent agreement among the five

generated samples, with an ICC of .97 and a 95% CI between .969 and .971 (p <

.001). Accordingly, one of these randomly generated samples was selected for

the analysis in the present study. According to Table 2.1, the HRV measures
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were compared with the 5-min standard as a benchmark using Bland-Altman

analysis, Pearson’s correlation coefficient, and trend analysis.

Long-term HRV recordings are recommended to compute ULF and VLF

power for a reliable analysis (Malik et al., 1996); thus, these two measures

were excluded from this study. In addition, NN50 was excluded because it

depends on the absolute number (i.e., count) for the difference between adjacent

RR intervals that exceed 50 ms. Moreover, SD1 and SD2 from the non-linear

methods were included for the 120- and 60-second segments because the

measures in ultra-shorter segments could not otherwise be computed (Chou

et al., 2021).

For Bland-Altman analysis, the Shapiro-Wilk test demonstrated that the

differences in measurements were normally distributed (p > .05). The Bland-

Altman bias, or acceptable mean difference, was set to 10% as a priori. In the

context of this study, the strength of the correlation was interpreted as follows:

0-.19 negligible, .20-.39 very weak, .40-.59 weak, .60-.79 moderate, .80-.89 strong,

and .90-1 very strong (Schober & Schwarte, 2018).

Results | Bland-Altman Analysis

Bland-Altman analysis was performed across all HRV measures and conditions

as a visual approach to assess agreement levels. Supplementary Figures D.3-D.8

show the results of the analysis with 95% limits of agreement.

Moreover, bias in the Bland-Altman analysis (i.e., mean difference) with

a 95% CI was calculated as a percentage to compare the results with a pre-

determined a priori of 10% (see Supplementary Tables D.7-D.9). Figure 5.7

demonstrates bias trends across the UST segments in all conditions. Generally,

the bias of all HRV measures noticeably increased as the segments became

shorter.
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Figure 5.7: Bland-Altman bias (%) of HRV Measures in Baseline,
Stress, and Paced Breathing.
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Although the bias of MeanRR followed the general trend of increasing bias

with decreasing length of the segment, the bias of all UST segments was less

than 5% across all conditions. During baseline, RMSSD maintained a bias of

less than 5% across all segments. However, RMSSD bias increased in segments

of less than 60 s during stress and paced breathing (30 s: bias > 10%). The bias

of SDNN increased at the 30-s segment during baseline and stress, with a bias

greater than 10%. Conversely, SDNN maintained a bias of less than 5% across

all segments during paced breathing. The pNN50 maintained a bias of less than

10% during baseline and paced breathing across all segments, while pNN50

bias was significantly high at the 60-s segment in stress condition (14.1%).

The bias of the frequency-domain measures was higher than that of the time-

domain measures. The bias of HF power at the 60-s segment during baseline

was 10%. LF power maintained a bias of less than 10% up to the 20-s segment

during paced breathing, while LF bias was significantly high at the 20-s segment

in resting and stress conditions (28% and 52%, respectively). Total power had a

similar trend to LF power, with bias increasing significantly as the segments

became shorter; further, bias was lower in paced breathing compared to the

other conditions. Lastly, SD1 and SD2 from the non-linear methods showed a

bias of less than 10% at the examined segments (i.e., 120 s and 60 s).

Results | Pearson’s Correlation Analysis

For each experimental condition, Pearson’s correlation was performed on the

log-transformed HRV measures obtained from the UST segments and the 5-min

RR segment (see Figure 5.8 and Supplementary Tables D.10-D.12).

Out of all the HRV measures, MeanRR maintained very strong relationships

with the 5-min interval across all UST segments in all conditions (r > .90 for all,

p < .001 for all). The remaining HRV measures showed a similar trend, with
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Figure 5.8: Pearson’s correlation coefficient of HRV measures in
Baseline, Stress, and Paced Breathing.
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the correlation coefficient decreasing as the segment became shorter. During

baseline, RMSSD and SDNN showed strong relationships at the 120-s segment

(rRMSSD = .98, 95% CI [.97, 1.0]; rSDNN = .90, 95% CI [.82, .96]). However, the

correlation coefficient decreased at the 10-s segment, with RMSSD and SDNN

showing strong and weak relationships, respectively (rRMSSD = .89, 95% CI [.73,

.96]; rSDNN = .59, 95% CI [0.19, 0.82]). The pNN50 measure presented a similar

pattern to the RMSSD.

Concerning the frequency-domain measures, the segments shorter than

60 s showed a substantial drop in correlation coefficients as segment length

decreased. For instance, total power exhibited strong (r = .81) and weak rela-

tionships (r = .44) at the 60-s and 30-s segments during baseline, respectively. In

addition, LF/HF showed correlation coefficients of less than .76 across all time

segments in all conditions. Conversely, HF power maintained strong correlation

coefficients up to the 60-s segment in all conditions. Regarding the non-linear

measures, SD1 and SD2 had strong relationships at the 60-s segment across all

conditions (r > .86 for all, p < .001 for all).

Further, the correlation varied based on the condition in which the data

were collected. For instance, SDNN and LF power during paced breathing

showed higher correlation coefficients at the 10-s segment (rSDNN = .74, 95% CI

[.48, .85]; rLF =.65, 95% CI [.40, .85]) compared to resting and stress conditions

(rSDNN < .65, rLF < .35). Moreover, the correlation of RMSSD during stress was

slightly lower than that obtained at segments below 30 s in the other conditions,

as demonstrated in Figure 5.7.
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5.5.4 Influence of Stress and Paced Breathing on Heart Rate Variability

Method

An MLL model was used to analyse the impact of the conditions (resting, stress,

and paced breathing) on the HRV measures. This model was selected over one-

way repeated measures ANOVA due to violation of the sphericity assumption in

which the variances of the differences among all pairs were unequal, as assessed

with Mauchly’s test (W = .62, p < .05, ϵ = .72). Furthermore, Tukey’s post-hoc

analysis was conducted to perform pairwise comparisons of the HRV measures

between the different conditions. The significance level was established as 5%.

Results

The mean of HRV measures based on the experimental condition is presented

in Figure 5.9. In addition, the results of the MLL analysis for all HRV measures

across all time segments are summarised in Supplementary Table D.13. In this

section, the statistical results discussed are those of the 5-min segment, unless

otherwise stated.

The experimental condition had a significant effect on HRV measures across

all time segments, including MeanRR and SDNN from the time-domain method

(MeanRR χ2(2) = 54, p < .001, ω2 = .72; SDNN χ2(2) = 12, p = .003, ω2 =

.22). However, there were no significant changes in RMSSD (χ2(2) = 4.3, p =

.12, ω2 = .05). Although there was a significant effect on pNN50 at 5 min, it was

not consistent across all UST segments (5 min: χ2(2) = 7.6, p = .02, ω2 = .13;

120 s: χ2(2) = 5.2, p = .07). Similarly, there were significant effects on the

frequency-domain measures across all time segments (LF: χ2(2) = 25, ω2 = .43;

LF/HF: χ2(2) = 22, ω2 = .39; total power: χ2(2) = 13, ω2 = .24; p < .001 for all).

Moreover, SD1 and SD2 were statistically significant between the conditions

across the investigated time segments (p < .05 for all). By contrast, the results
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Figure 5.9: Mean of HRV Measures with 95% CI in Baseline,
Stress, and Paced Breathing across all UST Segments
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of HF power were not significant across all time segments, except for the 30-s

segment (5 min: χ2(2) = 1.1, p = .6, ω2 = −.03; 30 sec: χ2(2) = 8.2, p = .02).

According to the Tukey’s post-hoc results, MeanRR was significantly lower

during the mental stress task at the 5-min segment compared to baseline (b =

−0.11, t(38) = −8.8, p < .001, r = .82) and paced breathing (b = −0.12, t(38) =

−9.3, p < .001, r = .83), representing large effect sizes. However, there were no

significant changes in MeanRR between baseline and paced breathing (t(38) =

.6, p = .84, r = .10). In contrast, SDNN increased significantly during paced

breathing compared to baseline (b = .33, t(38) = 3.4, p < .001, r = .48) and

compared to stress (b = .28, t(38) = 2.9, p = .02, r = .43). Similarly, pNN50

increased from stress to paced breathing (b = .50, t(38) = 2.7, p = .03, r = .40).

Although there was no significant change in RMSSD, the average RMSSD in

paced breathing was relatively higher than baseline (b = .21, t(38) = 1.7, p =

.21, r = .27) and stress (b = .23, t(38) = 1.9, p = .16, r = .29), representing

medium sized-effects, respectively.

Further, a significant increase in LF power was found during paced breathing

compared to baseline (b = 1.19, t(38) = 5.4, p < .001, r = .66) and paced

breathing compared to stress (b = .94, t(38) = 4.3, p < .001, r = .57). Similarly,

LF/HF and total power showed a significant increase during paced breathing

compared to baseline and stress (p < .05 for all). Although there was no

significant change in HF power, the average HF power in paced breathing

was relatively higher than baseline (b = .25, t(38) = .90, p = .62, r = .15),

representing a small effect size. Regarding the non-linear methods, a significant

increase was shown in paced breathing compared to baseline in SD1 (b =

.32, t(38) = 2.8, p = .02, r = .41). Moreover, SD2 was significantly higher in

paced breathing compared to baseline (b = .33, t(38) = 3.3, p = .01, r = .47) and

paced breathing compared to stress (b = .29, t(38) = 2.9, p = .02, r = .43).
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5.5.5 Heart Rate Variability Measures Trend Analysis

Method

Following the MLL analysis, trend consistency was explored across all time

segments. The change in HRV means from baseline to stress and from baseline

to paced breathing determined the direction of change, which is represented by

the t-statistic score retrieved from the post-hoc analysis. The p-value was used

to indicate the significance of the change.

Results

Table 5.3: Trend Analysis

Measure
Stress Breathing

300 120 60 30 20 10 300 120 60 30 20 10

MeanRR ⇊ ⇊ ⇊ ⇊ ⇊ ⇊ ↑ ↑ ↑ ↑ ↑ ↑
RMSSD ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑
SDNN ↑ ↑ ↑ ↓ ↓ ↓ ⇈ ⇈ ⇈ ⇈ ⇈ ⇈
pNN50 ↓ ↓ ↓ ↓ ↓ ↓ ⇈ ↑ ↑ ⇈ ↑ ⇈
LF power ↑ ↑ ↓ ↓ ↓ ↓ ⇈ ⇈ ⇈ ⇈ ⇈ ⇈
HF power ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑
LF/HF ↑ ↓ ≈ ↑ ↑ ↓ ⇈ ⇈ ⇈ ⇈ ⇈ ⇈
Total power ↑ ↓ ↓ ↓ ↓ ↓ ⇈ ⇈ ⇈ ⇈ ⇈ ⇈
SD1 ↑ ↓ ↓ ⇈ ↑ ↑
SD2 ↑ ↑ ↑ ⇈ ⇈ ⇈

The trends in the average HRV measures during stress tasks and paced

breathing were investigated for each UST segment. Table 5.3 summarises the

results, with arrows (↑, ↓) indicating the direction of change from baseline (i.e.,

increase or decrease), double arrows (⇈,⇊) indicating the significance of the

change, and the approximation symbol (≈) indicating no change in the state

compared to baseline.



100 chapter 5. ultra-short-term analysis

During the stress condition, MeanRR, RMSSD, pNN50, and SD2 maintained

their consistency across all UST segments. The trend of SDNN changed at the

30-s segment from higher to lower than baseline. Similarly, total power and SD1

showed an opposite trend at the 120-s segment compared to the 5-min recording.

HF power and LF power maintained their trend consistency until the 60-s and

120-s segments, respectively. Conversely, all HRV measures maintained trend

consistency during paced breathing. Although the trend direction in pNN50

and SD1 was consistent, the significance of the change varied among the UST

segments during paced breathing.

5.6 Discussion

This study investigated the reliability of UST HRV analysis during resting,

stress, and paced breathing to provide fundamental considerations for HRV

incorporation in real-time systems. The subsequent sections provide a compre-

hensive discussion of each investigated hypothesis as well as a summary of the

overall findings, followed by the limitations of the study.

5.6.1 Minimum Reliable Ultra-Short-Term Segment

Following the recommendations for UST reliability analysis made by Pecchia

et al. (2018) and Shaffer et al. (2020), we propose the following validity criteria

to examine the reliability of HRV measures derived from UST segments under

resting and non-resting conditions, with particular attention to a priori for

Bland-Altman bias and the acceptable CI lower bound for Pearson correlation

analysis:
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• Identification of acceptable mean differences between UST segments

and the standard 5-min interval using Bland-Altman analysis with a

priori mean difference (i.e., bias) of 10%.

• Establishment of a significant strong relationship between the dif-

ferent time segments and standard 5-min interval, with correlation

coefficients greater than 80% (p < .05, 95% CI lower bound > 75%).

Further, a supplementary criterion was added for non-resting states to

ensure trend consistency compared to baseline:

• Trend consistency in the average value across all time segments from

baseline to stress and from baseline to paced breathing conditions,

assessed by the direction and significance of the statistical ratio of

post-hoc analysis (i.e., t-statistic).

Table 5.4 summarises the results of the minimum reliable UST segment based

on the satisfaction of all criteria, while Supplementary Table D.14 outlines the

results according to each criterion separately.

Overall, the results of the HRV measures derived from UST analysis during

baseline and stress were similar (see Table 5.4). During paced breathing, SDNN

met the reliability criteria at the 30-s segment compared to the 60-s segment in

baseline and stress. Similarly, LF power during paced breathing was reliable

at the 60-s segment, but none of the UST segments were found reliable in the

remaining conditions. These findings can be explained by the periodicity of

slow HRV oscillations during paced breathing (Russo et al., 2017). Additionally,

these ultra-shorter segments (i.e., 30 s, 60 s) included more than one completed

respiratory cycle (7 breaths/min), which may have improved the analysis by

providing sufficient data regarding the underlying signal pattern (Yu et al.,

2018a).
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Table 5.4: Proposed Minimum Reliable UST Segment

Measure Baseline Stress Paced Breathing

MeanRR 10 10 10
RMSSD 60 60 60
SDNN 60 60 30

pNN50 120 120 –
LF power – – 60
HF power 60 60 120

LF/HF – – –
Total power – – –

SD1 60 – 60
SD2 60 60 60

An important outcome of this study is that a 10-s segment was found

to reliably estimate MeanRR in all conditions (i.e., resting, stress, and paced

breathing). This finding is consistent with those obtained by Shaffer et al. (2016),

who examined UST reliability under resting conditions. Further, we found

that a 60-s segment can reliably estimate RMSSD under all conditions. These

results are in agreement with those of Esco and Flatt (2014) and Shaffer et al.

(2016), which both focused on resting conditions, as well as those of Castaldo

et al. (2019), which focused on resting and stress conditions. However, Munoz

et al. (2015) conducted a UST reliability study using a large sample size of

approximately 3,000 participants and concluded that a 30-s segment, or three

averaged 10-s segments, can provide a good estimate of RMSSD. Overall, these

results lend further evidence to support recent calls to shorten the window

of HRV analysis to less than 5 min to conform to real-time requirements. In

particular, the outcomes of this study provide insights related to the minimum

reliable segment for HRV analysis in non-resting conditions.
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5.6.2 Influence of Condition on Heart Rate Variability

Regarding the influence of stress and paced breathing on the HRV measures, the

results of this study are in line with previous findings. For instance, MeanRR

significantly decreased during the stress task, indicating an elevation in HR

(Khazan, 2013). Although MeanRR approximately returned to baseline during

paced breathing, SDNN showed a significant increase, which is consistent with

the findings of Lin et al. (2014), Steffen et al. (2021), and You et al. (2021a).

Similarly, the frequency-domain measures (e.g., LF power, LF/HF, total power)

significantly increased during the paced breathing exercise due to slow res-

piratory oscillations, which is consistent with the findings of Clamor et al.

(2016) and Steffen et al. (2017). The increase in LF power during paced breath-

ing has been shown to be associated with vagal tone by manifesting the RSA

(Kromenacker et al., 2018; Shaffer & Meehan, 2020; Van Diest et al., 2014).

Contrary to expectations, the stress task did not produce significant changes

in RMSSD and HF power, which are commonly used to index vagal tone at nor-

mal breathing rates (Laborde et al., 2017). These results are not consistent with

the systematic review conducted by Castaldo et al. (2015), which demonstrated

an overall reduction in RMSSD and HF power during mental stress tasks. This

phenomenon could be due to the small sample size of the present study or

because the designed tasks were not stressful enough, with respect to stress

duration or stress type, to significantly decrease parasympathetically related

HRV measures.

This study sought to extend investigations into the influence of stress and

paced breathing on HRV measures by examining trend consistency in UST

segments compared to baseline. During the stress condition, the trend of some

of the HRV measures (e.g., SDNN, HF power) changed at segments shorter

than 60 s. However, HRV measures maintained trend consistency across all UST
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segments during paced breathing. These findings provide further considerations

for determining the minimum reliable segment for HRV analysis in non-resting

conditions.

5.6.3 Overall Discussion

The overall outcomes of this study partially supports H1 in which UST analysis

provided reliable estimates for the time-domain HRV measures, HF power and

SD2 compared to the 5-min segment under resting, stress, and paced breathing

conditions. However, the UST analysis of the LF power was only found to be

reliable in the paced breathing condition. Similarly, the results partially support

H2 in which HRV measures differed significantly between paced breathing

and baseline. However, there was insufficient evidence to conclude that mental

stress altered HRV relative to the baseline.

However, these findings may be limited due to the participants’ profile

because they were recruited via a call for participation made to the computer

science department at QMUL. Thus, there is a limit to how broadly the results

can be applied to different age groups, academic majors, or occupational stress

categories given that demographic factors may influence HRV levels and stress

perception.

5.7 Limitations

A significant limitation of this study is the utilisation of a random UST seg-

mentation approach. Although there was an excellent agreement among the

various randomised UST segments based on ICC (see Section 5.5.3), extracting

a single random UST segment from each RR interval may have presented some

drawbacks that could have impaired HRV analysis. A better strategy would be
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to perform the reliability analysis on multiple extracted UST segments from the

5-minute recording, similar to the strategy adopted by Melo et al. (2018).

Another limitation concerns the method employed to calculate power spec-

tral analysis, which may have resulted in inaccurate frequency-domain measures

in the UST segments. This relates to the underlying mathematical assumptions

of power spectral analysis regarding the signal length, as discussed by Malik

et al., 1996 (see Section 5.2). Additionally, the maximum length of the investi-

gated segment in the present study was 120 s, which may have constrained the

reliability analysis of some of the measures (e.g., total power, LF/HF). Lastly,

an arguable weakness is the arbitrariness of selecting a predetermined a priori

value of 10%. The acceptable a priori threshold should be investigated and

defined based on clinical evidence. Future studies could assess the reliability of

UST analysis in segments longer than 120 s (e.g., 180 s, 240 s), with particular

attention given to the frequency-domain measures by examining other spectral

density estimation techniques (e.g., maximum entropy method), as suggested

by Shiraishi et al., 2018.

5.8 Chapter Summary

This chapter addresses SRQ2 by providing an empirical investigation of UST

HRV analysis for future use in real-time systems and wearable devices under

three conditions: resting, stress, and paced breathing. It establishes criterion

validity to explore the minimum reliable window for HRV analysis with a

standard 5-min interval by assessing correlation, limits of agreement, and trend

consistency for non-resting conditions.

The findings of this study indicate that UST reliability assessment differs in

paced breathing compared to resting and stress because of differences in signal
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characteristics under a slow respiratory rate. For instance, SDNN showed high-

reliability levels at 30 s during paced breathing compared to 60 s in the other

conditions. Based on a priori criteria for Bland-Altman’s bias and a Pearson’s

correlation coefficient of greater than .80 (95% CI lower bound > .75), MeanRR

was the only HRV measure that obtained a high agreement level and correlation

with the 5-min RR interval at segments less than 1 min across all conditions,

with high reliability up to 10 s. At the 60-s segment, RMSSD and SD2 reliably

estimated the 5-min recording in all conditions. In contrast, the remaining

HRV measures were either reliable at the 120-s segment or not reliable at the

examined segments.

Given the notable effects of paced breathing on physiological responses

demonstrated by SDNN and LF power, the next chapter further examines the

impact of paced breathing on HRV, BP, and a range of affective states, including

cognition, relaxation, and stress.



CHAPTER 6

Heart Rate Variability Biofeedback

This chapter examines the short-term effects of heart rate variability biofeed-
back on mental well-being via a paced breathing exercise. It focuses on
the assessment of affective states (attentiveness, fatigue, mood, serenity,
and stress), executive function (cognitive performance in a working mem-
ory task), and physiological responses (heart rate variability and blood
pressure).

6.1 Overview

Around the world, mental health and well-being are widely scrutinised topics;

however, greater awareness, improved treatment, and increased support are still

needed for both. According to a report from the WHO, the global incidence of

mental health conditions (e.g., anxiety, bipolar disorder, depression, neurodevel-

opmental disorders) was one in every eight people in 2019, with the latest data

indicating an increase of more than 20% in 2020 due to the pandemic (WHO,

2022a; 2022b). These findings are crucial as mental health and well-being can

have a significant impact on an individual’s cognitive and emotional abilities

(Dattani et al., 2021). Furthermore, numerous psychiatric disorders can cause

abnormal cardiac reactivity, such as increased HR and BP (Alvares et al., 2016).

Therefore, researchers and clinicians have investigated the best methods for

regulating HR via increased HRV, which, by extension, increases the parasym-

pathetic activity responsible for stimulating the rest-and-digest response. In

107
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general, interaction within the cardiorespiratory system has been shown to

improve HRV and RSA, indicating a significant contribution from parasympa-

thetic activity (Vaschillo et al., 2002; Zaccaro et al., 2018). Consequently, HRVB

via paced breathing exercises has emerged as a promising non-invasive psy-

chotherapy approach that can effectively build resilience and improve overall

health and well-being (Lehrer & Gevirtz, 2014; Steffen et al., 2021).

Many studies have examined the positive impact of HR regulation via

long-term HRVB practices on psychophysiological responses, as demonstrated

in a meta-analysis of 58 studies conducted by Lehrer et al. (2020). However,

relatively little research has investigated the efficacy of single-session, short-

term HRVB in terms of instantaneous effects on mental well-being, whether

during or after a paced breathing exercise. Hence, this study sought to examine

the short-term effects of HRVB on affective states, cognitive performance, and

physiological measures, including HRV and BP. The next section reviews the

existing literature and presents an associated research question, followed by the

study hypotheses.

6.2 Related Work

HRVB plays a significant role in increasing HRV measures, thereby improving

physical and mental health (Kemp et al., 2012; Lehrer et al., 2003; Lehrer et al.,

2004; Quintana et al., 2012). Lehrer et al. (2013) proposed a simplified protocol

for HRVB by determining RF over five sessions. Despite the authors’ argument

regarding the importance of determining the RF for each individual, more

recent research has shown similar physiological behaviour when breathing at a

rate of 6 breaths/min (Van Diest et al., 2014; Zaccaro et al., 2018). Preliminary

evidence suggests that HRVB stimulates activity in the vagus nerve, which is
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a major parasympathetic nerve associated with relaxation and reduced stress

levels (Gerritsen & Band, 2018).

Several studies have assessed the efficacy of stimulating parasympathetic

activity through long-term HRVB interventions (i.e., multiple sessions of paced

breathing exercises) to treat mental health conditions, including anxiety (Lagos

et al., 2008; Lee et al., 2015), depression (Caldwell & Steffen, 2018; Karavidas

et al., 2007), and stress levels (Goessl et al., 2017; Hallman et al., 2011; van der

Zwan et al., 2015). However, the short-term impact of a single HRVB session

on mental health and cognitive performance remains unclear. In an RCT of a

single-session HRVB intervention on musicians’ performance, Wells et al. (2012)

reported an increase in parasympathetic levels, as reflected by an increase in

their HF power. Moreover, the study showed that anxious musicians reported

lower anxiety scores after the intervention during a stressful performance.

A similar study was also recently conducted by Laborde et al. (2022), who ex-

amined the impact of a single HRVB session on psychophysiological responses.

These responses included perceived stress, emotions, and the RMSSD measure

from HRV time-domain analysis of two groups performing paced breathing

with and without biofeedback. The authors addressed some of the limitations in

Wells et al. (2012) by adopting a within-subject research design and recruiting

a larger sample size representative of the general population. They reported

improvement in emotional control and high levels of RMSSD during the paced

breathing exercise. Although Laborde et al.’s (2022) results for parasympathetic

activity were similar to those obtained by Wells et al. (2012), the former study

lacked a control condition, which hinders interpretation of the results.

Under a theoretical approach, the neurovisceral integration model has

been introduced (Thayer & Lane, 2000) and revised (Thayer et al., 2009a) over

the last two decades. The proposed model demonstrates the link between
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the prefrontal cortex and cardiac vagal tone, thus delineating the association

between HRV and emotion, cognition, and mental health. For instance, Mather

and Thayer (2018) found that HRVB via a paced breathing exercise generated

high-amplitude oscillations that influenced brain rhythms, thereby enhancing

emotional regulation and well-being.

One of the critical domains of the neurovisceral integration model is the

relationship between cognitive function and HRV, particularly RMSSD and HF

power (Thayer et al., 2009a; Thayer & Lane, 2000). Forte et al. (2019) identified

the major cognitive areas used in HRV studies by conducting a systematic

review of the literature and concluded that, in general, higher resting HRV

measures were associated with improved cognitive functioning, as examined in

tasks assessing attention (Williams et al., 2016), global cognition (Solernó et al.,

2012), and memory (Hansen et al., 2004; Hansen et al., 2003).

Accordingly, HRVB emerged as a powerful technique for increasing HRV

measures and, by extension, improving cognitive performance. In a seminal

empirical study linking HRVB to cognitive function, Prinsloo et al. (2011)

demonstrated that a single short-term HRVB session improved cognitive perfor-

mance, as assessed by the reaction time and response accuracy from a modified

Stroop task. However, there is still controversy over the extent of HRVB efficacy

on cognitive function, as discussed in a recent systematic literature review by

Tinello et al. (2022). While there was a generally positive relationship between

HRVB and cognitive performance in the reviewed studies, there was a lack of

association between HRV measures and cognition improvement, as half of the

reviewed studies (8 out of 16) did not report physiological data following the

intervention.

Moreover, research on single-session HRVB interventions has shown that

they can increase relaxation (Lin et al., 2020; Prinsloo et al., 2013; Yu et al., 2018a),
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improve mood (Steffen et al., 2017), and reduce perceived stress and anxiety

(Kennedy & Parker, 2019; Lemaire et al., 2011; Schuman & Killian, 2019; Yu

et al., 2018b). In particular, Steffen et al. (2017) conducted a controlled study to

examine the effect of a single HRVB session on BP, HRV physiological measures,

and mood in three groups: 1) RF-breathing at the individual’s determined

RF, 2) RF+1-breathing at 1 breath/min higher than the determined RF, and 3)

breathing at a normal rate acting as a control. They found that the RF group

reported a higher positive mood and lower SBP in response to the stress task

than the other two groups. Nonetheless, both paced breathing groups (RF

and RF+1) showed improvements in the physiological measures. Overall, this

study presents promising findings regarding the benefits of a short-term HRVB

intervention on emotional and physiological responses.

A few studies have addressed the short-term lasting effects of a single HRVB

session on physiological responses. Using a within-subject design to study 24

athletes, You et al. (2021a) examined the influence of a paced breathing exercise

without a biofeedback element on the RMSSD measure during, immediately

after, and 1 h after the intervention. They found a significant increase in RMSSD

during the intervention, which returned to baseline post-intervention. Similarly,

Laborde et al. (2019b) investigated the impact of paced breathing on executive

function in athletes after physical exercise; however, they incorporated a larger

sample size of 107 in a mixed-factorial design. The authors utilised the Stroop

task as a stress inducer and to assess inhibitory control (see Section 2.1.2).

Although the paced breathing group showed significant improvements in

perceived stress and cognitive performance, the improvement in cognitive

performance was not mediated by vagal tone, as measured by RMSSD.

Due to the notable paucity of evidence-based literature addressing the

potential impact of a single-session, short-term HRVB intervention, the present
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study aimed to investigate the influence of HRVB on a range of affective states

(attentiveness, fatigue, mood, serenity, and stress), executive function (cognitive

performance in a working memory task), and physiological measures (HRV

and BP). Moreover, the HRV measures during and after the paced breathing

exercise were investigated as predictors of the individual participants’ affective

states via the following research question:

SRQ3: What is the effect of a single paced breathing session on affective

states (cognition, relaxation, stress) and physiological responses (HRV

and BP)?

6.3 Hypotheses

The hypotheses associated with SRQ3 are as follows:

Hypothesis 1 (H1): HRVB improves affective states: attentiveness, fatigue,

mood, serenity, and stress.

Hypothesis 2 (H2): HRVB improves cognitive performance as demon-

strated by working memory.

Hypothesis 3 (H3): HRVB results in lower BP reactivity during a cognitive

stress task.

Hypothesis 4 (H4): Affective states and cognitive performance can be pre-

dicted from HRV measures during and after a paced breathing exercise.
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6.4 Methods

6.4.1 Participants

The sample size was determined based on a priori power analysis; thus, the

target sample size was estimated as a total of 34 participants using G*Power for

a repeated measures ANOVA with a between-subjects factor design, statistical

power (1-β) of 80%, significance level (α) of .05, correlation among repeated

measures of .50, and capacity to detect a large effect size (f) of .40 (Erdfelder

et al., 1996).

Accordingly, 44 healthy adults (aged 23-62 years) were recruited to partici-

pate in this study. They were randomly assigned to either an intervention or

control group. Participants were recruited from HBKU in Qatar as well as the

general community through email advertisements and personal invitations. The

exclusion criteria included physical health conditions related to cardiovascular

or respiratory diseases, diagnosed psychiatric conditions, and an age outside

the range of 18-65 years at the time of recruitment. Participants were asked to

avoid caffeine, smoking, and eating heavy meals for 2 h prior to the study as

well as engaging in intense physical workouts for 24 h, to minimise any con-

founding effects on the physiological responses (Laborde et al., 2017; Quintana

et al., 2016b). The study was approved by the IRB at Qatar Biomedical Research

Institute at HBKU (QBRI-IRB-2021-03-088), as data collection was conducted

in the State of Qatar (see Section 3.3.1). All participants were informed about

the nature of the experiment, and they signed a digital consent form. All docu-

ments related to ethical approval and consent are shown in Appendix E (see

Figures E.1 and E.2).

After data collection, the HRV recordings were visually inspected and

filtered for noise and artefacts. Consequently, the data of six participants were
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discarded due to poor signal quality, where noise exceeded 5% of the recording.

Out of the remaining 38 participants, 20 were women (mean age: 35.5 ± 11) and

18 were men (mean age: 34.4 ± 9.86).

6.4.2 Experiment Design

An RCT study was designed to investigate the impact of HRVB through paced

breathing on a range of affective states, executive function, and physiological

measures in healthy individuals. The study was based on a mixed-factorial

design with two independent variables: group (i.e., between-subjects) and

time (i.e., within-subject). Participants were randomly assigned to one of two

groups: 1) paced breathing with a biofeedback intervention (HRVB) or 2) normal

breathing with no intervention, acting as a control group (CTRL).

The HRV data and affective state questionnaires were collected at four-time

points during the study: 1) baseline, 2) pre-intervention (i.e., during the first

cognitive task), 3) mid-intervention, and 4) post-intervention (i.e., during the

second cognitive task). To measure BP response to the cognitive stress task, the

BP data were only collected at baseline, pre-intervention, and post-intervention

(see Figure 6.1). Similar to the previous study discussed in Chapter 5, the HRV

data were collected using a PPG-based sensor attached to the non-dominant

hand. The SBP and DBP measurements were acquired through an upper arm

cuff device.
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Figure 6.1: A Flowchart for the Experimental Protocol.
Note. HRV was collected during baseline, pre-, mid-, and post-intervention.
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Questionnaires

Generally, the study requirements were similar to those of the previous study

discussed in Chapter 5. Hence, all participants also filled out the HRV-related

questionnaire developed by Quintana et al. (2016b) as a screening survey to

assess their eligibility. Furthermore, participants completed a set of question-

naires during baseline, including questions related to demographics; PANAS to

assess emotional state; DASS-21 to assess depression, anxiety, and stress; IPAQ

to measure physical activity; and PSQI to assess sleep quality (see Section 3.3.2

and Appendix A).

In addition, affective states were measured during the experiment via self-

reported questionnaires on mood and stress using a single-item Likert scale,

while attentiveness, fatigue, and serenity were measured using the PANAS-X,

which is based on a multiple-item Likert scale (see Appendix A.8).

N-Back Task

Although executive function can be considered a component of affective state, it

was assessed separately in this study using the N-back task, a computer-based

cognitive test (Kirchner, 1958).

The N-back test was employed to assess the cognitive performance of the

working memory capacity and serve as a stress inducer. It consists of a series

of random alphabetical letters presented on a laptop screen. Participants had

to determine whether the current letter was the same as the letter presented

in the prior N trials. For this study, the N-back task was implemented using

the PsyToolkit web-based platform, and N was set to 2 (Stoet, 2010; 2017; see

Appendix E). Each letter was presented for 1800 ms, followed by a 500-ms blank

screen period (see Figure 6.2). If there was a match, the participant had to press

"M" on the keyboard; otherwise, no response was required. Hence, there were
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three possible responses to this cognitive task: correct responses (CR), missed

responses (MR), and false alarms (FA), as explained in Table 6.1.

D R T R L

Match (2-back)

Time

500 ms

1800 ms

Figure 6.2: A Schematic Representation of the 2-Back Task

reaction time (RT) was measured as the amount of time it took for the

participant to correctly press the letter "M" on the keyboard after the letter was

presented. The task consisted of two blocks, each with 50 trials. All letters were

randomised to eliminate the possibility of bias. Participants also underwent a

training session consisting of 25 trials to become familiar with the task prior

to completing it. To measure cognitive performance improvement, participants

had to solve the N-back task at two-time points: pre- and post-intervention.

Table 6.1: Possible Responses to the N-Back Task

Correct Responses Participant correctly pressed "M", where the current letter
matched the letter from two trials ago.

Missed Responses Participant did not press "M", although the current letter
matched the letter from two trials ago.

False Alarms Participant incorrectly pressed "M", where the current letter
did not match the letter from two trials ago.

Physiological Data

After each cognitive task, BP was measured for all participants by wrapping

the cuff of an OMRON M7 Intelli IT around the upper arm. HRV was recorded
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using CorSense by Elite HRV as this device could be easily attached to the finger,

with a sampling rate of 500 Hz. Each measurement was preceded by a 20-s

stabilisation period to allow HR to level out. In the event of any technical issues,

HRV was measured for 6 min to ensure a minimum recording length of 5 min.

Participants were instructed to minimise hand movements as much as possible

to maintain a high-quality signal. The Systole Python package (Legrand & Allen,

2022) was used for the HRV time- and frequency-domain analysis, while the

pyHRV Python package (Gomes, 2018) was used for the non-linear methods.

All signals were filtered using the adaptive threshold artefact detection and

moving window average correction methods, based on the approach discussed

in Chapter 4.

Data Analysis Approach

For this experimental study, the statistical mean differences between the groups

were examined for H1-H3 using ANCOVA, with particular attention given

to the effect of other covariates (e.g., baseline measurements, pre-intervention

measurements). An ANCOVA is essentially an ANOVA of adjusted depen-

dent variables after controlling for the effect of covariates (Bonate, 2000). The

independent variables were set with the group factor (HRVB vs. CTRL; between-

subject) and time factor (baseline, pre-, mid-, post-intervention; within-subject).

In contrast, the dependent variables consisted of psychophysiological and cogni-

tive measures collected during the experiment, including attentiveness, fatigue,

and serenity scores; CR and RT retrieved from the cognitive task; and BP and

log-transformed HRV measures. Additionally, MLL analysis was conducted on

HRV measures to assess group mean differences, followed by Tukey’s test for

post-hoc analysis of pairwise comparisons. Lastly, logistic and linear regres-

sion analyses were used for H4 to examine the relationship between HRV and
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cognitive performance as well as the relationship between HRV and affective

states.

As a measure of effect size, the omega squared (ω2) was reported for all

ANOVA tests and their variations, including ANCOVAs and MLL analysis.

The values of .01, .06, and .14 were interpreted as small, medium, and large

effect sizes, respectively. Moreover, Hedges’ g was reported for all independent

pairwise comparisons, with the values of .2, .5, and .8, indicating small, medium,

and large effect sizes, respectively. For the dependent pairwise comparisons,

the correlation coefficient (r) was reported with the values of .1, .3, and .5,

indicating small, medium, and large effect sizes, respectively (Cohen, 1988).

6.4.3 Procedure

The experimental sessions were conducted during the daytime (9:00 am to 2:00

pm) in the HCI lab at HBKU, and each session lasted 45 minutes. The HCI lab is

a quiet small room designed to facilitate in-person experimental studies (see Fig-

ure E.3). The experiment protocol involved collecting psychophysiological data

at 1) baseline, 2) pre-intervention, 3) mid-intervention, and 4) post-intervention.

Upon arrival at the lab, participants were asked to sign the consent form

and fill out the baseline questionnaires related to demographic information as

well as anxiety, depression, stress, emotional state, physical fitness, and sleep

quality. Subsequently, a 6-min HRV recording was collected at rest, followed by

a BP measurement. Following the baseline measurements, participants began

the first cognitive task, which was presented on a laptop screen; HRV data

were also recorded during this period. The participants were left alone in the

room to complete the cognitive tasks. However, the researcher was present

between phases to ensure there were no technical issues and to address any

concerns. Subsequently, participants received a randomly generated message
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on the screen indicating their group assignment to Group 1 or Group 2 (CTRL

or HRVB, respectively). The HRVB group had to perform a paced breathing

exercise by following a breathing guide for 6 min using the Elite HRV deep

breathing feature, which shows an opening and closing circle on an iPad

screen. Additionally, a biofeedback element was conveyed to participants via

visualisation of the sinusoidal wave of the HRV signal during breathing, along

with instructional audio prompting inhalation and exhalation.

A brief explanation of the trend between HRV and breathing was communi-

cated to participants so that they would be aware of any deviations from the

expected sinusoidal pattern. For the paced breathing activity, a 2-min training

session was conducted to ensure that participants were able to perform the

breathing activity correctly. The breathing ratio was set to 4 s of inhalation

and 6 s of exhalation (6 breaths/min). Participants in the CTRL were asked

to sit quietly for 6 min and breathe normally (i.e., similar to baseline). Lastly,

all participants had to solve the second cognitive task. Figure 6.3 shows the

experiment setup, including the CorSense sensor, BP device, the biofeedback

interface, and the cognitive task screen.

Figure 6.3: An Illustration of the Experimental Setup
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6.5 Data Analysis

The preliminary analysis assessed by histogram plots and the Shapiro-Wilk test

showed that the HRV measures were not normally distributed (p < .05); thus,

the data were logarithmically transformed. Hence, all parametric statistical

analyses were performed on the log-transformed HRV measures to obtain a

better approximation of the normal distribution. In this chapter, the HRV data

are presented in their non-transformed form (i.e., absolute values) for simplicity

and ease of interpretation, while the log-transformed data are included in

Appendix E (see Tables E.1-E.4).

6.5.1 Descriptive Statistics

A descriptive statistical overview of demographic characteristics and baseline

psychophysiological measures based on the group are shown in Table 6.2. At

baseline, there were no significant differences between the groups in terms

of age; BP; BMI; depression, anxiety, and stress (DASS-21); experience with

deep breathing; experience with meditation; HRV measures; physical activity

level (PSQI); positive and negative affective states (PANAS-X); or sleep quality

(PSQI; see Table 6.2). Gender was balanced, with 10 women and nine men

in each group. The effect of gender on the baseline HRV measures was also

examined, and the independent t-test revealed no significant mean differences

(p-values > .32 for all; see Figure 6.4).

The correlations among variables presented in Table 6.2 were calculated

using the Pearson’s correlation coefficient of the log-transformed HRV measures.

There were significant positive relationships between the negative affective states

measured by the PANAS and DASS-21 (depression: r = .69, anxiety: r = .72,

stress: r = .71, p < .05) and sleep quality measured by the PSQI (r = .39, p < .05).

As expected, there were significant inverse relationships between age and the
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Figure 6.4: Boxplots for the Baseline MeanRR, RMSSD, and HF Power based
on Gender.

baseline HRV measures, including SDNN, SD1, and SD2 (Laborde et al., 2017;

Quintana et al., 2016b). However, there were no significant relationships between

age and the remaining HRV measures. Figure 6.5 demonstrates the relationship

between age and baseline SDNN based on gender in a scatter-density plot.
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Figure 6.5: Scatterplot and Density plots for SDNN based on Age and Gender



Table 6.2: Demographic and Baseline Characteristics by Group (N=38)

Total CTRL HRVB t p

mean (SD) mean (SD) mean (SD)

Demographic

Age 34.9 (10.3) 33.6 (6) 36.3 (13.4) -0.78 .44

BMI 25.7 (4.7) 25.6 (5.1) 25.8 (4.3) -0.13 .90

Deep Breathing 2.5 (0.95) 2.63 (1.0) 2.37 (0.90) 0.85 .40

Meditation 2.08 (1.0) 2.21 (1.1) 1.95 (0.91) 0.81 .42

PANAS

Positive mood 24.4 (7.9) 26.2 (6.6) 22.5 (8.9) 1.45 .16

Negative mood 8.95 (6.5) 8.7 (5.9) 9.2 (7.2) -0.20 .84

DASS-21

Depression 1.58 (1.5) 1.63 (1.5) 1.53 (1.5) 0.22 .83

Anxiety 2.2 (1.6) 2.2 (1.5) 2.1 (1.5) 0.21 .84

Stress 1.1 (1.4) 1.1 (1.4) 1.1 (1.4) 0.00 1.0

PSQI

Sleep Quality 6.66 (3.4) 7.21 (3.7) 6.11 (3.1) 1.0 .32

IPAQ

MET 1547 (2196) 1092.3 (1152) 2002 (2855.3) -1.29 .21

kCal 1848 (2765) 1198.8 (1068.3) 2497.3 (3699.5) -1.47 .16

HRV Time

MeanRR 783 (104) 766 (84) 800 (121) -1.0 .32

RMSSD 46 (49) 52 (44) 40 (33) 0.97 .34

SDNN 60.4 (33) 61 (36) 59 (31) 0.18 .86

pNN50 20.4 (20) 23 (21) 18 (20) 0.80 .43

HRV Frequency

LF Power 1557 (2799) 1949 (3277) 1165 (2246) 0.86 .40

HF Power 1266 (1707) 1368 (1856) 1164 (1588) 0.36 .72

LF/HF 1.8 (1.6) 2.1 (1.9) 1.6 (1.3) 0.97 .34

Total power 3691 (4992) 4308 (5820) 3075 (4068) 0.76 .45

HRV Non-Linear

SD1 42.9 (34.6) 44 (36) 42 (34) 0.13 .90

SD2 72.4 (34.7) 74 (39) 71 (31) 0.25 .81

Blood Pressure

Systolic 102.8 (13.8) 103.1 (13.7) 102.4 (14.2) 0.15 .88

Diastolic 76.3 (6.0) 77.5 (5.6) 75.0 (6.3) 1.32 .20

123
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6.5.2 H1 | Affective States

The first hypothesis posed that a single session of HRVB would have positive

effects on levels of perceived attentiveness, fatigue, mood, serenity, and stress.

Methods

Affective states were measured subjectively based on self-reported question-

naires of attentiveness, fatigue, mood, serenity, and stress at four-time points: 1)

baseline, 2) pre-, 3) mid-, and 4) post-intervention.

Participants had to rate their stress and mood on a five-point single-item

Likert scale: for stress, a score of 1 indicated “not at all stressed”, while 5

indicated “extremely stressed”; for mood, 1 indicated “extremely sad”, while 5

indicated “extremely happy”. Attentiveness, fatigue, and serenity components

were adopted from the PANAS-X self-report questionnaire (see Appendix A.8).

Each component consisted of multiple terms measuring affective states at that

moment, and these terms had to be rated 1 for “not at all” to 5 for “extremely”.

Table 6.3 lists the terms for each assessed component.

Table 6.3: PANAS-X Terms

Attentiveness alert, attentive, concentrating, determined

Fatigue drowsy, sleepy, sluggish, tired

Serenity at ease, calm, relaxed

As the data were collected from single-item Likert scale questions, stress

and mood were ordinal metrics. The remaining PANAS-X components were

interval-level metrics because scores were calculated as the sum of multiple

Likert scale questions. Therefore, mood and stress were analysed based on

standard descriptive statistics by calculating the change in scores from base-

line, and the PANAS-X components were analysed using inferential statistics
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of the group mean differences. The outcomes were labelled as low or high

based on the differences between the reported scores from the mid- and post-

intervention time points (independently) and the reported scores from the

pre-intervention time point. The CTRL group and low scores were coded as

0, and the HRVB group and high scores were coded as 1. The relationship

between both groups (CTRL vs. HRVB) and the PANAS-X components was

assessed using Spearman’s rank-order correlation (rs).

Results | Stress and Mood

After the first cognitive task (i.e., pre-intervention), participants in both groups

reported higher average stress scores compared to baseline. However, the mid-

intervention average stress score of the HRVB group (M = -.12, SD = .73)

was lower than the average stress score of the CTRL (M = .21, SD = .86), as

shown in Figure 6.6a. This indicates that the participants in the HRVB group

reported lower perceived stress levels immediately after the intervention in

comparison to the CTRL. However, both groups reported a similar stress score

average (Mboth = .26, SDHRVB = .93, SDCTRL = .87) after the second cognitive task

(post-intervention).

Regarding the mood scores, participants in both groups reported approx-

imately similar average scores pre-intervention (MCTRL = .16, SDCTRL = .60;

MHRVB = .21, SDCTRL = .54). Although the average mood scores slightly im-

proved as the experiment progressed, the CTRL (M = .42, SD = .61) reported

higher average mood scores mid-intervention than the HRVB (M = .26, SD = .81),

as shown in Figure 6.6b. However, there was overlap in all CIs for the mood

and stress scores (see Figure 6.6), indicating a lack of significant between-group

differences at each time point.



126 chapter 6. heart rate variability biofeedback

0.0

0.5

1.0

pre mid post

Time

N
or

m
al

is
ed

 M
ea

n 
S

tr
es

s 
S

co
re

s

group CTRL HRVB

(a) Stress

0.00

0.25

0.50

0.75

pre mid post

Time

N
or

m
al

is
ed

 M
ea

n 
M

oo
d 

S
co

re
s

group CTRL HRVB

(b) Mood

Figure 6.6: Average Changes in Stress and Mood Scores at each Time Point from
Baseline

Results | Attentiveness, Fatigue, and Serenity

While controlling for the effect of the pre-intervention scores, a two-way mixed

ANCOVA was performed to assess the impact of the group (HRVB vs. CTRL;

between-subject) and time (mid- and post-intervention; within-subject) on the af-

fective states reported from the PANAS-X questionnaire, including attentiveness,

fatigue, and serenity scores. All scores at the pre-, mid-, and post-intervention

time points were normalised by subtracting the scores reported at baseline

(see Figures 6.7-6.9). Skewed data were log-transformed, and the Shapiro-Wilk

test was conducted to ensure normality (p > .05 for all). Homogeneity of

variances was found for all PANAS-X components, as assessed by Levene’s

test (p > .36 for all). A visual inspection of the scatterplots revealed a linear

relationship between the covariates and dependent variables for each group.

Moreover, there was homogeneity of the regression slopes as the interaction

term was not statistically significant for attentiveness (F(1, 68) = 2.16, p = .15)

fatigue (F(1, 68) = .01, p = .93), and serenity (F(1, 68) = .02, p = .88). Pre-

intervention covariate scores were significantly related to mid- and post- in-

tervention scores: (serenity: F(1, 71) = 2.25, p < .05, r = .26, attentiveness:
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F(1, 71) = 12.56, p < .05, r = .75, fatigue: F(1, 71) = 9.51, p < .05, r = .83).

The attentiveness score had a significant effect on the group factor after

controlling for the effect of covariates (F(1, 71) = 12.57, p < .0001, ω2 = .17).

Planned contrasts revealed a significant difference between the HRVB and

CTRL groups at the mid- (t(71) = 2.74, p < .05, Hedges’ g = .79) and post-

intervention time points (t(71) = 3.05, p < .05, Hedges’ g = .89). The time factor

did not have a significant effect; however, participants in the HRVB and CTRL

groups reported a higher attentiveness score after the second cognitive task

(i.e., post-intervention) in comparison to the previous time point (MHRVB = .73,

MCTRL = .53, SE = .47). Furthermore, the group factor (HRVB or CTRL) was

significantly correlated to changes in the attentiveness scores from pre- to mid-

intervention (rs = .36, p = .03) and pre- to post-intervention (rs = .41, p = .01).
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Figure 6.7: Average Changes in Attentiveness Scores at each
Time Point from Baseline

Regarding the fatigue scores, there were no significant differences between

the groups or across the mid- and post-intervention time points (p > .05).

However, participants in the HRVB group reported a higher average difference
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at mid-intervention (Madj = .95, SE = .98) than the CTRL group (Madj = .47,

SE = .69), representing a small-sized effect (Hedges’ g = .13). Conversely, the

HRVB group reported a lower average difference in fatigue scores after the

second cognitive task in comparison to the CTRL group (Madj = -.54, SE = .73),

representing a small-sized effect (Hedges’ g = .19). In addition, there was a

non-significant correlation between the group factor and changes in fatigue

scores from the pre- to mid-intervention (rs = .16, p = .30) and pre- to post-

intervention (rs = .17, p = .30) time points.
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Figure 6.8: Average Changes in Fatigue Scores at each Time
Point from Baseline

The serenity scores had a significant effect on the group factor after con-

trolling for the effect of the covariates, (F(1, 71) = 25.18, p < .0001, ω2 = .37).

Planned contrasts revealed that the paced breathing exercise significantly in-

creased the serenity scores mid- (t(71) = 5.02, p < .0001, Hedges’ g = 1.66)

and post-intervention (t(71) = 4.47, p < .0001, Hedges’ g = 1.35). Although

there were no significant effects of the time factor, the average adjusted serenity
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score decreased after the second cognitive task (post-intervention) in compari-

son to the mid-intervention time point for the HRVB group (Mdiff = −.97, t =

−1.24, p = .60, r = .15) and the CTRL group (Mdiff = −.53, t = .69, p = .90, r =

.08). Moreover, the group factor was significantly correlated with the changes

in serenity scores from pre- to mid-intervention (rs = .63, p < .001) and pre- to

post-intervention (rs = .44, p = .006).
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Figure 6.9: Average Changes in Serenity Scores at each Time
Point from Baseline

6.5.3 H2 | Executive Function

The second hypothesis stated that a single session of HRVB would improve the

cognitive performance via a working memory task.

Methods

Cognitive performance was assessed using the N-back task by evaluating three

metrics: CR, FA, and RT. Participants were asked to solve the task pre- and post-

intervention. Hence, a one-way ANCOVA was run to assess group differences
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in the post-intervention task by controlling for the effect of performance on the

pre-intervention task. The Shapiro-Wilk test was conducted to ensure normality

on all cognitive performance metrics for each group. The results were non-

significant, indicating that the metrics were approximately normally distributed

(p > .11 for all). The variance was homogeneous between the groups for all

metrics, as assessed by Levene’s test (p > .56 for all).

In addition, the correlations between group (CTRL, coded as 0; HRVB, coded

as 1) and cognitive performance were assessed using Spearman’s rank-order

correlation (rs). Cognitive performance was represented as a dichotomous

variable with low and high outcomes (coded as 0 and 1, respectively) based on

the difference in CR between pre- and post-intervention scores.

Results

The preliminary analysis for both groups showed a linear relationship between

pre- and post-intervention results for CR, FA, and RT, as assessed by visual

inspection of the scatter plots. There was homogeneity of the regression slopes

given that the interaction was not statistically significant for CR (F(1, 34) =

2.56, p = .11), FA (F(1, 34) = .16, p = .69) and RT (F(1, 34) = .28, p = .60). Further,

the covariates were significantly related to the post-intervention results for CR

(F(1, 35) = 30.06, p < .0001, r = .98), FA: (F(1, 35) = 34.56, p < .0001, r = .99), and

RT (F(1, 35) = 9.72, p < .005, r = .98).

After adjusting for the pre-intervention scores, a significant difference in the

CR results was found between the HRVB and CTRL groups (F(1, 35) = 81.55, p <

.0001, ω2 = .68). Tukey’s post-hoc analysis showed a significant increase in CR

in the HRVB group (Mdiff = 29, SE = 2.3, t(35) = 9, p < .0001). In contrast, the

average FA post-intervention was not significant between the HRVB and CTRL

groups (Mdiff = .4, SE = .93, F(1, 35) = .08, p = .78). Further, the Spearman’s
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rank-order correlation showed a statistically significant relationship between

group and CR (rs = .84, p < .001). Regarding the RT, there was no significant

difference between both groups (F(1, 35) = .10, p = .77, ω2 = −.02, rs = −.05).

Figure 6.10 shows density and box plots for the differences in CR and RT.
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Figure 6.10: Results of the Difference in Cognitive Performance (Post-Pre)
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6.5.4 H3 | Blood Pressure

The third hypothesis posited that a single HRVB session would result in lower

BP reactivity during the cognitive stress task.

Methods

BP was measured as SBP and DBP, with the measurements taken at base-

line, pre-intervention, and post-intervention time points. A one-way ANCOVA

was applied to analyse the differences in BP between the CTRL and HRVB

groups post-intervention, with a covariate of BP measurements collected pre-

intervention. Subsequently, Tukey’s post-hoc analysis was performed, and

the Shapiro-Wilk test was conducted to ensure normality. All SBP and DBP

measurements were non-significant, indicating that the measurements were

approximately normally distributed (p > .14 for all). The variance was ho-

mogeneous between both groups, as assessed by Levene’s test (p > .17 for

all).

Results

The preliminary analysis showed a linear relationship between the pre- and

post-intervention SBP and DBP measurements for both groups, as assessed by

a visual inspection of the scatterplots. The interaction term was not statistically

significant for SBP and DBP (p > .06); thus, there was homogeneity in the

regression slopes. The pre-intervention SBP and DBP measurements were

significantly related to post-intervention BP measurements (SBP: F(1, 35) =

104.5, p < .0001, r = 1; DBP:F(1, 35) = 83.17, p < .0001, r = 1).

After adjusting for the pre-intervention BP measurements, a statistically

significant difference in post-intervention SBP was found between the HRVB

and CTRL groups (F(1, 35) = 46.2, p < .0001, ω2 = .54). Tukey’s post-hoc
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analysis revealed a significant decrease in SBP in the HRVB group compared

to the CTRL group (Mdiff = -16 mmHg, t(35) = −6.80, p < .0001, r = .75).

However, there was no significant difference in the DBP measurements between

the groups (F(1, 35) = .2, p = .66 ω2 = .02). Figure 6.11 shows the average SBP

and DPB measurements at baseline, pre-, and post-intervention.
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Figure 6.11: Blood Pressure Measurements
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6.5.5 H4 | Heart Rate Variability Measures

The primary aim of the fourth hypothesis was to investigate whether the exam-

ined affective states and cognitive performance could be predicted from HRV.

Based on the results obtained from Section 6.5.2, serenity level was selected

as the affective state for examination in this analysis. Accordingly, two major

statistical analyses were conducted. First, the relationship and group mean

differences were determined between underlying physiological responses, as

indexed by HRV, and affective states, as measured by serenity scores and cogni-

tive performance. Second, regression analyses were conducted to determine if

the HRV measures could be used to predict serenity and cognition levels.

Impact of Condition on Heart Rate Variability Measures

Taking age into consideration as a covariate, an MLL mixed model was em-

ployed to analyse the HRV measures based on the within-subject time factor

(baseline, pre-, mid-, and post-intervention) as well as between the groups

(CTRL vs. HRVB). This model was used instead of a two-way mixed ANOVA

due to a violation of the sphericity assumption, as assessed with Mauchly’s test

(W = .49, p < .05, ϵ = .67). To perform pairwise comparisons, Tukey’s post-hoc

analysis was subsequently conducted for each HRV measure. To ensure normal-

ity, the Shapiro-Wilk test was calculated for the log-transformed values of each

experimental condition. The results across all conditions were non-significant,

indicating that the measurements were normally distributed (p > .05 for all).

Figure 6.12 illustrates the average HRV measures at each condition for CTRL

and HRVB.
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Figure 6.12: Mean of HRV Measures with 95% CI in Baseline,
pre-, mid-, and post-Intervention.
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• Time-Domain Measures

There were statistically significant interaction effects of group×time on

SDNN, (χ2(3) = 13.7, p = .003, ω2 = .09); thus, a post-hoc analysis was con-

ducted to break down the interaction. The results revealed a significant differ-

ence in SDNN value between the CTRL and HRVB groups mid-intervention

(b = .66, t(36) = 3.7, p = .02, Hedges’ g = 1.47), and this difference was

significantly higher than the SDNN values of the HRVB group across all time

points (p < .01 for all). On average, the post-intervention SDNN maintained

a higher value in the HRVB group (M = 79.2 ms, SE = 14.6 ms) than the

CTRL group (M = 55.9 ms, SE = 7.8 ms). However, this difference was not

significant (b = .19, t(36) = 1.6, p = .96), representing a small effect size

(Hedges’ g = .27).

Although there were no significant interaction effects on MeanRR (χ2(3) =

5.4, p = .15, ω2 = .02), time had a significant main effect on MeanRR,

(χ2(3) = 40.1, p < .0001, ω2 = .29). The post-hoc analysis revealed a sig-

nificant decrease in MeanRR pre-intervention compared to the baseline

measurement for both groups, indicating HR elevation during the first cogni-

tive stress task for the CTRL group (b = .057, t(108) = 4.2, p < .01, r = .38)

and the HRVB (b = .073, t(108) = 5.43, p < .001, r = .46). Moreover, the

results showed a significant increase in MeanRR for the HRVB group mid-

intervention (b = .056, t(108) = 4.2, p < .0001, r = .37) compared to pre-

intervention. The average MeanRR for the HRVB group significantly in-

creased post-intervention compared to pre-intervention (b = .05, t(108) =

3.6, p = .01, r = .33). On average, the post-intervention MeanRR was higher

in the HRVB group (M = 778.7 ms, SE = 24 ms) than in the CTRL group

(M = 731.4 ms, SE = 18 ms). However, this difference was not significant

(b = .06, t(36) = 1.5, p = .81), representing a small effect size (r = .24).
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Group and time showed no statistically significant interaction or main

effects on the RMSSD (χ2(3) = 7.2, p = .06, ω2 = .04) and pNN50 measures

(χ2(3) = 3.3, p = .35, ω2 = .001). However, the interaction of RMSSD repre-

sented a small-to-medium effect size. The average RMSSD was higher for

the HRVB group than the CTRL group mid-intervention (Mdiff = 13.8 ms,

SE = 11.7), and post-intervention (Mdiff = 16 ms, SE = 16.9). However, these dif-

ferences were neither significant mid-intervention (b = .26, t(36) = 1.2, p =

.93, Hedges’ g = .39) nor post-intervention (b = .10, t(36) = .22, p = .99,

Hedges’ g = .12), representing small-to-medium and small effect sizes, re-

spectively. In addition, RMSSD for the HRVB group noticeably increased from

baseline to post-intervention (Mdiff = 27.7 ms, SE = 17.9, b = .44, t(108) =

3.1, p = .05, r = .29), representing a medium effect size.

• Frequency-Domain Measures

There were statistically significant interaction effects of group×time on LF

power (χ2(3) = 13.8, p = .003, ω2 = .09), and LF/HF (χ2(3) = 32.9, p <

.001, ω2 = .23). The post-hoc analysis revealed that the HRVB group had a

significant mid-intervention increase in LF power (b = 1.4, t(36) = 3.45, p <

.05, Hedges’ g = 1.2), and LF/HF (b = 1.3, t(36) = 4.65, p < .001 Hedges’ g =

1.4) compared to the CTRL. Overall, these measures showed significant

differences between the HRVB group mid-intervention and at all other time

points (p < .05 for all).

According to the descriptive statistics and exploratory graphs, the average

HF power at post-intervention was greater for the HRVB group than the

CTRL group (Mdiff = 2066.8, SE = 1291.6). This difference was not significant

(b = .43, t(36) = .88, p = .98), representing a small effect size (Hedges’ g =

.24). Similarly, the average total power was higher for the HRVB group
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than the CTRL mid-intervention (Mdiff = 4922, SE = 1587) and CTRL post-

intervention (Mdiff = 6366, SE = 3750). However, the differences were not

significant (p > .05), representing medium-to-large-sized (Hedges’ g = .74)

and small-sized effects (Hedges’ g = .20) for the mid-intervention and post-

intervention, respectively.

• Non-Linear Analysis

Time had a significant main effect on SD2 (χ2(3) = 15.56, p < .005, ω2 = .02).

Tukey’s post-hoc analysis showed a significant difference in SD2 for the HRVB

group at the mid-intervention time point in comparison to the other time

points (p < .05 for all). Moreover, the descriptive statistics and exploratory

graphs showed that mid-intervention SD2 was higher in the HRVB group

(M = 121.97, SE = 13.7) than the CTRL (M = 74.33, SE = 5.6); however, this

difference was not significant (b = .42, t(36) = 2.42, p > .05), representing a

large-sized effect (Hedges’ g = .86). There were no significant differences in

SD1 (χ2(3) = 5.4, p = .14, ω2 = .008).

Regression Analysis

Based on the statistical results presented in the previous subsection, a series

of regression analyses was conducted to examine whether the changes in

HRV measures mid- and post-intervention could predict participants’ cognitive

performance and serenity scores.

First, a binomial logistic regression analysis was performed to determine

whether the intervention, as characterised by SDNN and LF power, could

classify participants according to their appropriate groups. Second, a linear

regression analysis was performed to explore whether paced breathing, as

characterised by SDNN, could predict serenity levels. Finally, a linear regression

analysis was performed to predict cognitive performance post-intervention
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using MeanRR as a predictor variable, given that the previous analysis identified

it as the HRV measure most influenced by the biofeedback practice. The RMSSD

measure was also used as a predictor of both linear regression analyses due to

its documented association with vagal tone and resistance to the respiratory

influence compared to HF power (Laborde et al., 2017).

• Group Classification

Binomial logistic regression was performed to ascertain the effect of the mid-

intervention SDNN and LF power on the likelihood of correctly predicting

the group to which participants were assigned. The logistic regression models

were statistically significant for SDNN (χ2(1) = 17.2, p < .0001) and LF power

(χ2(1) = 21.6, p < .0001). The SDNN model (B = 3.28, B SE = 1.09, z = 3.02,

p < .01) significantly accounted for 48.5% (Nagelkerke R2: 95% CI [4.4, 350])

of the intervention variance. Further, the LF power model (B = 2.4, B SE = .8,

z = 3.0, p < .01) explained 57.8% (R2: 95% CI [3.1, 77.7]) of the variance.

• Serenity Prediction

After adjustment for age, the linear regression model established that SDNN

mid-intervention could statistically predict serenity levels, as assessed by the

difference in scores pre- and mid-intervention (Smid-pre: F(2, 35) = 3.08, p =

.03). SDNN accounted for 14.5% of the explained variance in the Smid-pre with

an adjusted R2 of 10.1% (B = 2.02, SE B = .86, t = 2.3, 95% CI [.28, 3.7]).

To evaluate the association between relaxation levels and vagal tone, the

post-intervention RMSSD was selected as a predictor and serenity levels

were selected as an outcome, as assessed by the difference in pre- and post-

intervention scores (Spost-pre). After adjustment for age, the results demon-

strated that the RMSSD could not statistically significantly predict Spost-pre

(F(2, 35) = .07, p = .93) and the RMSSD (B = .21, SE B = .58, t = .35, 95% CI

[-.97, 1.3]) accounted for .3% of the variance in Spost-pre.
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• Cognitive Performance Prediction

After adjustment for age, a linear regression model established that MeanRR

post-intervention could statistically predict cognitive performance, as as-

sessed by the difference in CR pre- and post-intervention (CRdiff: F(2, 35) =

3.9, p = .03). The adjusted MeanRR significantly accounted for 18.2% of the

explained variation in the CRdiff with an adjusted R2 of 12.3% (B = 50.5, SE

B = 25.1, t = 2.01, 95% CI [11, 101]).

To assess the neurovisceral integration model, the post-intervention

RMSSD was selected for the linear regression analysis. After adjustment

for age, the results demonstrated that the post-intervention RMSSD (B = .85,

SE B = 4.2, t = .20, 95% CI [.05, 1.44]) accounted for 8.9% of the variance in

CRdiff, with an adjusted R2 of 3.7% (F(1, 36) = 1.7, p = .19).

6.6 Discussion

The hypotheses of this study were designed to gain a more in-depth under-

standing of the influence of a single HRVB session on short-term affective states,

cognitive performance, and physiological responses. The subsequent sections

provide a thorough discussion of each investigated area as well as a summary

of the overall findings, followed by the limitations of the study.

6.6.1 Affective States

Several self-reported affective states were investigated in this study, including

attentiveness, fatigue, mood, serenity, and stress. The attentiveness and serenity

components of the PANAS-X questionnaire revealed positive results for the

attention scores and relaxation levels after the HRVB intervention. These find-

ings are in line with those reported in previous studies focused on attention

control (de Bruin et al., 2016) and relaxation (Clamor et al., 2016; Lin et al.,
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2020; Prinsloo et al., 2013; Van Diest et al., 2014; Zaccaro et al., 2018). The

present study extended these findings by examining participants’ subjective

perception of their own attentiveness and relaxation following the stress task

and HRVB session. Regarding serenity levels, Lehrer and Gevirtz (2014) stipu-

lated that the mechanisms underlying HRVB induce a relaxation response by

stimulating parasympathetic activity mediated by vagal tone. The attentiveness

score outcomes in this study suggest a link to improved performance in the

cognitive task after the biofeedback intervention. During the debriefing session,

one participant in the HRVB group commented: “The deep breathing practice

helped me think clearly about strategies to solve the cognitive task”.

Although there was no statistical evidence regarding the influence of paced

breathing on perceived fatigue, the HRVB group reported slightly higher av-

erage scores in comparison to the CTRL immediately after the intervention.

This finding could be due to the participants’ lack of familiarity with paced

breathing exercises, which resulted in a dyspnoeic or uncomfortable experience.

In the same vein, You et al. (2021b) explained that the increase in perceived

stress following a 5-min paced breathing exercise in their study was due to

breathing discomfort, which is typical for individuals who are unfamiliar with

the practice. Moreover, there were no significant changes in the reported stress

and mood scores, which could be attributed to the unidimensionality aspect of

using single-item Likert scales to assess complex constructs, such as stress and

mood (Hasson & Arnetz, 2005).

6.6.2 Cognitive Performance

For the cognitive performance aspect of this study, the HRVB group performed

better than the CTRL in the second N-back task, which assessed participants’

working memory capacity with respect to CR. These results are consistent with
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Prinsloo et al.’s (2011) findings regarding improvement in cognitive performance

(i.e., inhibitory control measured using a Stroop task) after a single HRVB

session. This observed significant increase in CR could be attributed to the

HRVB intervention, which stimulated the vagus nerve. In particular, previous

studies have linked the activation of parasympathetic activity with working

memory and attention-based tasks (Forte et al., 2019; Hansen et al., 2004; Hansen

et al., 2003).

However, there was no significant difference in RT between the two groups

post-intervention in the present study, which is in direct contrast to Prinsloo et al.

(2011). This rather contradictory result may be due to the experimental protocol

as the previous study advised participants to consider speed when responding,

whereas participants were not similarly advised in this study. Another possible

explanation may be that this study looked at RT for CR to accurately quantify

processing speed (Ratcliff, 1993). Mahinrad et al. (2016) found that poor pro-

cessing speed and long RT in cognitive functioning evaluated by a Stroop task

were associated with low HRV measures. However, the authors analysed HRV

signals using a 10-s segment, while the present study analysed HRV signals

using a 5-min segment. There is a well-established trade-off between accuracy

and response time in cognitive activities: individuals compromise accuracy for

speed, or vice versa (Donkin et al., 2014; Franzon & Hugdahl, 1987; Wylie et al.,

2009). Further, Mahinrad et al. (2016) focused on a specific age group (i.e., older

participants), thus limiting the generalisability of their findings to younger age

groups.

6.6.3 Physiological Measures

Similar to the study discussed in Chapter 5, this study examined the impact of

cognitive stress and paced breathing on HRV measures. However, the stress task
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in this study was specifically focused on working memory. Further, the paced

breathing exercise utilised a prolonged exhalation period. Longer exhalations

have been shown to be a stimulating protocol for notable improvements in

cardiac vagal tone (Van Diest et al., 2014), as indexed by RMSSD measure

(Laborde et al., 2021). Overall, the results of the present study were similar to

those of the previous study. In addition, they are consistent with earlier research

in which LF/HF, LF power, and SDNN increased during the paced breathing

exercise and MeanRR decreased during the stress task (see Section 5.6).

An interesting finding from the current study is that the MeanRR of

the HRVB group maintained a high value during the cognitive task post-

intervention compared to pre-intervention, suggesting that a single HRVB

session can have short-term lasting effects on HRV after returning to a normal

rate of breathing. However, it is possible that this finding may be biased due to

the uncertainty of the relationship between MeanRR and vagal tone (Shaffer &

Ginsberg, 2017).

Contrary to the results reported in You et al. (2021a), the present study

did not find significant group differences in RMSSD during the intervention;

however, these results are in line with those of Laborde et al. (2019b). While

this study implemented a paced breathing rate similar to that in You et al.

(2021a), the discrepancy in results could be due to the number and duration of

paced breathing exercises (e.g., three 5-min sessions), type of participant (e.g.,

athletes), or type of control (e.g., watching TV).

The BP measurements were collected at baseline and after the two cognitive

tasks. After the first cognitive task (pre-intervention), SBP increased for both

groups relative to baseline. However, there were no significant changes in

the DBP measurements. This finding corroborates earlier research concerning

the influence of stress on SBP elevation (Hjortskov et al., 2004; Steffen et al.,
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2017). Conversely, some studies have reported changes in SBP but not DBP

(Vrijkotte et al., 2000). A possible explanation for the relative insensitivity of

DBP reactivity in this study is the mild effect elicited by the chosen stress

inducer. In comparison to the CTRL, the HRVB group exhibited lower SBP

levels (i.e., similar to baseline) in response to the second cognitive task post-

intervention. This finding is seemingly consistent with the results of Steffen et al.

(2017), which showed that participants who performed resonance breathing

had lower SBP reactivity in response to the stress task than participants in the

other study groups. The greater effects of paced breathing on SBP than DBP

could be explained by the direct relationship between SBP and the baroreflex

activity (Lehrer et al., 2020).

6.6.4 Overall Discussion

Taken together, the findings partially support H1 because the HRVB group

reported higher attentiveness and serenity scores post-intervention compared

to the CTRL. In contrast, there was insufficient evidence to claim improvements

in stress, mood, and fatigue following the HRVB intervention. In addition, the

findings partially support H2 because the HRVB group performed better in

the cognitive task compared to the CTRL, as assessed by CR. However, no

differences were found with respect to RT.

At the physiological level, the findings partially support H3 because the

HRVB group exhibited lower SBP in response to the post-intervention stress

task than the CTRL, while no significant effect was observed on DBP. Further,

the SDNN and frequency-domain measures significantly increased during the

intervention, whereas MeanRR increased for the HRVB group post-intervention.

Further, higher levels of SDNN during the intervention predicted improved
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relaxation, as reported by the serenity questionnaire. In addition, the find-

ings support H4 because increased MeanRR post-intervention predicted high

cognitive performance, as assessed by CR. Moreover, increased SDNN mid-

intervention predicted relaxation levels, as indexed by the serenity scores.

Although vagal tone, as reflected by RMSSD, was higher in the HRVB

group post-intervention compared to baseline with medium effect size, the

results were not statistically significant in comparison to the CTRL. Therefore,

there was a lack of significant association between vagal tone and improved

cognitive performance and relaxation levels. These findings are in agreement

with prior research demonstrating that a single-paced breathing session does

not sufficiently improve RMSSD after the session (Laborde et al., 2019b; You

et al., 2021a). Consequently, the present study obtained a similar conclusion

regarding post-intervention RMSSD and vagal tone, despite the previous two

studies not including a biofeedback component in their design.

6.7 Limitations

There are a number of limitations in the present study related to the biofeedback

protocol. First, the lack of participants’ familiarity with paced breathing exer-

cises may have posed challenges in correctly performing the activity. Although

the exercise duration was intentionally selected to be short (6 min) to minimise

discomfort in participants unfamiliar with the exercise, a better strategy may be

to adopt multiple consecutive short sessions with breaks in between, as in You

et al. (2021a). Second, all participants performed the breathing exercise at the

same rate of 6 breaths/min rather than determining the RF for each participant.

Although several studies have indicated similar physiological behaviour with 6

breaths/min during the exercise, Steffen et al. (2017) observed differences in

self-reported mood and SBP between breathing at RF and RF+1. Consequently,
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future studies could investigate the distinctions between RF and breathing at a

fixed rate after the paced breathing exercise at a psychological level.

6.8 Chapter Summary

This chapter addresses SRQ3 by presenting the results of an RCT experiment

design used to investigate the short-term effects of HRVB on affective states,

cognitive performance, and physiological responses. The experiment involved

two independent groups: a paced breathing intervention group (HRVB) and a

spontaneous breathing group (CTRL). Affective states (i.e., attentiveness, fatigue,

mood, serenity, and stress) were assessed using self-reported questionnaires.

Cognitive performance was assessed using cognitive performance in a working

memory task based on computer-logged CR and RT data. The physiological

data involved HRV and BP measures.

Overall, the findings prominently indicate improvements in relaxation levels

and cognitive performance following the HRVB intervention, as reflected by the

serenity and CR scores, respectively. Moreover, the HRVB group exhibited lower

SBP reactivity to the stress task compared to the CTRL. Although HRV measures

were not statistically significant post-intervention (except for MeanRR), they

were on average higher in the HRVB group compared to the CTRL, with

small-sized effects. In addition, regression analyses established that SDNN

mid-intervention and MeanRR post-intervention could predict relaxation levels

and cognitive performance, respectively.

Having demonstrated the influence of HRVB on various physiological and

psychological responses, the next chapter focuses on the employment of ML

algorithms to identify stress and relaxation levels from the examined HRV

measures.
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Stress Recognition

This chapter leverages the datasets and main findings of the previous
two chapters to develop robust predictive models for supervised learning
algorithms capable of recognising stress and relaxation states using short-
term and ultra-short-term heart rate variability measures.

7.1 Overview

Recognising various levels of stress can assist in the development of strategies

for early intervention, stress management, and risk prevention to promote

mental health and well-being (Hazer-Rau et al., 2020). A growing number of

researchers have investigated stress detection by developing predictive mod-

els using ML algorithms based on physiological data (Bobade & Vani, 2020;

Castaldo et al., 2019; Dalmeida & Masala, 2021; Sarkar & Etemad, 2020; Theeng

Tamang et al., 2020). Among the various physiological measures studied, HRV is

recognised as a significant biomarker for monitoring mental stress responses by

reflecting the activity levels of the parasympathetic and sympathetic branches

of the ANS.

Although limited datasets are commonly used in affective computing and

psychophysiological research, caution must be applied in the development

of ML algorithms to avoid biased conclusions regarding model performance.

Schmidt et al.’s (2019) review of affect recognition using ML found that most of

the studies included data collected from fewer than 40 participants (43 out of

147
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46 studies), and only one study included more than 100 participants. Moreover,

the review indicated a wide gap in the reported performance metrics among

the 46 studies, with the accuracy rates ranging from 40% to 97%. Concerns

were raised in the domains focused on biomedical studies (Foster et al., 2014)

and psychiatric disorders (Cearns et al., 2019) as significant variation in ML

model accuracy with the use of limited datasets could indicate performance

overestimation or methodological issues.

In the present study, predictive models were developed to classify stress

levels based on HRV measures, as addressed by the following research sub-

question:

SRQ4: How can robust supervised learning algorithms recognise stress

and relaxed states for eventual deployment in real-time systems?

Particular attention was given to overcoming the primary shortcomings

related to ML algorithm implementation and interpretation identified in the

literature. These shortcomings included data segmentation, feature selection,

and model evaluation, which are associated with the use of limited datasets

(see Section 7.2). Accordingly, this study was designed in accordance with the

recommendations for ML with small datasets (Cearns et al., 2019; Foster et al.,

2014; Stevens et al., 2020; Vabalas et al., 2019), and these recommendations are

summarised in Section 7.2.2.
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7.2 Related Work

7.2.1 Methodological Limitations

Stress detection using ML techniques has gained considerable attention in the

fields of affective computing and psychophysiology (Dalmeida & Masala, 2021;

Gedam & Paul, 2021; Healey & Picard, 2005). Recent advancements in tech-

nology, particularly wearable devices, have provided non-invasive approaches

for physiological data collection and analysis. However, a reliance on small

sample sizes in conjunction with certain common methodological limitations

pose problems for the implementation and interpretation of ML algorithms.

These problems include overfitting, overly optimistic performance, and general-

isability issues.

Data Segmentation

The principal issue related to data segmentation concerns the tendency to

increase the dataset size by dividing the physiological signals from each par-

ticipant into multifold segments, which violates the statistical assumption of

the independence of observations (Chen et al., 2021; Dalmeida & Masala, 2021;

Oskooei et al., 2021). Hence, the resulting segments are dependent because data

were generated from the same participant, which can cause data leakage by

way of dependent observations in the training and testing sets (Foster et al.,

2014).

An additional source of potential dependency is the adoption of an overlap-

ping window segmentation approach instead of a non-overlapping approach

(Schmidt et al., 2018; Smets et al., 2016; Tervonen et al., 2021). In the overlapping

approach, the observations are not only generated from the same participant
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but the physiological data are also partially shared among the observations (see

Figure 7.1).

S1 S2 S3

(a) Non-Overlapping Segmentation

S1 S2 S3 S4

(b) Overlapping Segmentation

Figure 7.1: Physiological Data Segmentation Approaches with a 50-s Window
Size.

To detect the severity of panic attacks in 10 participants, Rubin et al. (2016)

used an overlapping window approach with HRV data to generate a vast

number of observations, reaching a maximum of 1,700 samples and, by ex-

tension, boosting the size of the training and testing sets. Similarly, Schmidt

et al. (2018) adopted an overlapping window approach with a shift of .25 s

for physiological data collected from 15 participants. However, they employed

a subject-independent validation strategy to mitigate data leakage (see Sec-

tion 7.2.1). In a fear classification study, Petrescu et al. (2021) used overlapping

and non-overlapping segmentation techniques on a dataset consisting of 32

participants. They reported equivocal results regarding the ML model perfor-

mance for each segmentation approach. However, it is not clear to what extent

classification accuracy is impacted by the use of an overlapping technique vs.

a non-overlapping one (Anusha et al., 2018). In fact, Dehghani et al. (2019)

demonstrated that improved model performance is associated with the use

of dependent observations and the employment of an inadequate validation

strategy.

Data leakage provides overly optimistic estimates of generalisation perfor-

mance because dependent observations are presented in the training and testing
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sets. Further details regarding the theoretical and mathematical derivations

of performance overestimation are discussed in Cawley and Talbot (2010) and

Hastie et al. (2009, p. 228). In Castaldo et al.’s (2019) remarkable study, mental

stress levels were classified by mitigating the violation of the independence

assumption using two considerations. First, the authors did not use any segmen-

tation methods in their implementation. Second, the ML models were trained

and tested on different groups of participants using data collected in the same

experiment and analysed using a subject-independent validation approach (see

Section 7.2.1). They reported high classification performance for the selected ML

models, with a minimum accuracy rate of 88%. However, the generalisability of

their findings is limited due to the extremely small training (25 participants)

and testing sets (17 participants).

Model Evaluation and Selection

Given the general limitations of small sample sizes, the strategy employed

for model evaluation can aggravate the interpretation of ML performance.

Several validation strategies are commonly used in the implementation of

supervised ML algorithms, such as the hold-out method and cross validation

(CV) techniques (Hastie et al., 2009). The latter is more often employed in the

context of limited datasets because of its ability to utilise the entire dataset in

model fitting and evaluation.

K-fold is a prominent CV technique that randomly splits the dataset into K

groups and then trains the model iteratively on the K-1 groups while keeping

the remaining group for validation (Hastie et al., 2009). Subsequently, overall

performance is calculated as the average accuracy rate resulting from all K trials.

However, random splitting with dependent observations poses a data leakage

problem as the training and testing sets may include data segments from the
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same participant. As briefly discussed in the previous section, data leakage

leads to biased and overly optimistic generalisation performance estimates.

Recent research has suggested splitting the data per participant using a subject-

independent CV, also known as a leave-one-out CV, to limit the effect of the

dependent observations on the development and evaluation of the ML models

(Dehghani et al., 2019; Esterman et al., 2010). The leave-one-out CV is an

example of the K-fold method, where K is the total number of observations

or participants. In a review of affect recognition conducted by Schmidt et

al. (2019), 13 studies (out of 46) used the K-fold CV, while the remaining

studies incorporated variations of the leave-one-out CV. This demonstrates

that the leave-one-out CV is the preferred approach to mitigate the violation

of the independence assumption within the context of affective computing

applications.

Hyperparameter selection is commonly performed prior to model evalu-

ation, although the use of a standard CV procedure with both processes can

cause model selection bias. In particular, the use of the same test set in each

process can introduce overly optimistic estimates of the expected generalisation

performance (Cawley & Talbot, 2010). Consequently, the nested CV technique

can be used to manage both model evaluation and hyperparameter selection

as integral processes, albeit with different validation/test sets. Further details

about the nested CV are discussed in Section 7.4.4.

Feature Selection

An additional issue relates to the number and choice of features employed in the

ML classifiers. The current literature has reported two extremes in the feature

selection process: the inclusion of all collected physiological measures regardless

of dataset size and the inclusion of features irrelevant to the investigated
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problem (e.g., behavioural, clinical; Cho et al., 2017; Coutts et al., 2020; Schmidt

et al., 2018).

Vabalas et al. (2019) delineated the increased likelihood of overfitting when

many features were included relative to the sample size, particularly with small

datasets. Overfitting is often caused by complicated model development that

results in memorisation of the training data rather than learning of the underly-

ing patterns to be applied in future predictions (Hawkins, 2004). As a result,

the ML model performs poorly on the testing set, despite high performance in

the training set. Therefore, a large number of features and redundant features

increase model complexity, leading to inaccurate ML performance assessment

(Ying, 2019).

Irrelevant feature selection based on the context of the examined clinical

condition also restricts contextual interpretation of the predictive models. For

instance, Castaldo et al. (2016) selected non-linear HRV measures to classify

stress levels based on a statistical correlation analysis between the features

and target. However, the physiological rationale behind feature selection was

not discussed. Additionally, an analysis of 30-s segments was performed to

obtain VLF power (.0033-.04 Hz) from the HRV frequency domain as an ML

feature (Dalmeida & Masala, 2021). However, a segment with a minimum

length of 5 min was found to be necessary for the robust computation of

frequency components in the VLF band (Shaffer & Ginsberg, 2017). From a

clinical perspective, a physiological measure calculated from an ultra-short

segment may increase the risk of interpreting results that are not representative

of their actual medical meanings because the number of samples is insufficient

for reliable analysis (Malik et al., 1996). Thus, a reliability analysis of UST

measures is essential prior to feature selection.
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7.2.2 Recommendations

Given the limitations discussed in the previous section, the following sub-

sections provide recommendations to deal with limited datasets and avoid

overfitting and performance overestimation, as advocated by Cearns et al.

(2019), Foster et al. (2014), Stevens et al. (2020), and Vabalas et al. (2019).

Validation Strategy

It is well established that the larger the dataset, the better the ML performance.

However, independence among the observations should be considered when

dealing with data generated from the same participant or obtained from seg-

mentation, particularly when splitting the dataset into training and testing sets

to avoid data leakage during model selection. To reduce the effect of the depen-

dent observations, an appropriate validation strategy should be implemented.

The leave-one-out CV technique is particularly effective for small datasets with

dependent observations (Foster et al., 2014).

Moreover, performance overestimation, especially with small datasets, may

arise during model selection from using the same validation/test set in the

hyperparameter selection and model evaluation processes. In the Scikit-Learn

Python package, model training and evaluation for hyperparameter selection are

implicitly conducted by automatically refitting the model using GridSearchCV

(Buitinck et al., 2013; Scikit-Learn Developers, 2022). Hence, the nested CV

approach is proposed as a mitigation strategy for selection bias and performance

overestimation (Cawley & Talbot, 2010; Cearns et al., 2019; Vabalas et al., 2019).
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Feature Optimality

Features should be rationally selected based on the clinical or physiological

motivation of the investigated ML problem to facilitate the contextual inter-

pretation of algorithm performance (Remeseiro & Bolon-Canedo, 2019). After

determining the most relevant features, several techniques can be used to se-

lect the optimal features, such as correlational analysis or feature elimination

methods. Moreover, principal component analysis can be used to reduce high

dimensionality (Chandrashekar & Sahin, 2014).

To minimise the effect of performance overestimation and reduce computa-

tional costs, the selected features should be limited to a reasonable feature-to-

sample ratio (Vabalas et al., 2019). A common practice in biomedical research

using small datasets is to choose one feature for every 10 independent observa-

tions (Foster et al., 2014).

7.3 Proposed Classification Approach

To achieve results comparable with the literature reviewed in this chapter, six

common supervised ML algorithms were selected: logistic regression (LR),

decision trees (DT), k-nearest neighbours (KNN), Naive Bayes (NB), random

forest classifier (RFC), and support vector machine (SVM). These models were

fitted on the datasets described in Chapters 5 and 6. The nested CV method was

used to perform hyperparameter selection and model evaluation as integral

processes using the leave-one-group-out (LOGO) CV, which is a variation of

the leave-one-out method (Maleki et al., 2020). Further details about the LOGO

CV are described in Section 7.4.4.

As discussed in Chapters 5 and 6, the HRV data of each participant in the

dataset were assigned three labels based on the condition of data acquisition: 1)
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neutral (baseline), 2) stress (TSST or N-back stress task), and 3) relaxed (paced

breathing exercise). In a preliminary analysis of a three-class ML classifier

using DT, the algorithm showed high accuracy rates in identifying the neutral

(90%) and relaxed states (97%) but failed to distinguish the stress from neutral

states (34%). This confusion between the neutral and stress states could be

due to the moderate effect of mental stressors on HRV measures, as discussed

in Sections 5.6 and 6.6. Therefore, two independent binary classifiers were

implemented to differentiate the stress state from each non-stress state: 1) stress

vs. neutral and 2) stress vs. relaxed.

To assess generalisability, the ML model that showed the best performance

resulting from the nested CV method was evaluated using two combined

independent datasets with 300-s short-term (ST)1 HRV recordings. Moreover,

one 60-s UST segment was extracted from the middle of each HRV recording to

assess classification performance for potential future deployment in wearable

devices. The ML algorithms were implemented using the Scikit-Learn Python

package (Barupal & Fiehn, 2019). Figure 7.2 illustrates the overall process,

including data preprocessing, feature selection, model selection, and evaluation.

1The abbreviation "ST" is only used in this chapter.



Training Dataset
N = 58 participants,
S = 696 observations,

F = 10 features

Features
Importance and

relevance analyses

Observations
Missing data
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3 features

Nested CV
IL: Hyperparameter selection
OL: Performance evaluation

Predictive Model

7 features excluded

76 observations excluded
(19 participants labelled relaxed)

Testing Dataset

N = 38 participants,
S = 129 observations

Observations
Missing data

120 observations

WESAD: 8 & SWELL: 1
observations excluded

Datasets

Preprocessing

Model Selection
& Evaluation

Figure 7.2: A flowchart of the ML process including dataset split, preprocessing, model selection and evaluation.
Note. IL: Inner Loop, OL: Outer Loop. Adapted from Stevens et al., 2020
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7.4 Methods

7.4.1 Dataset

As described in the UST exploratory (20 participants; Chapter 5) and biofeed-

back studies (38 participants; Chapter 6), the collected HRV data exhibited

similar HRV trends in response to the employed stress tasks and paced breath-

ing exercise. Therefore, these two datasets were combined to develop ML binary

stress classifiers. In total, the dataset included 58 participants, and three la-

belled HRV recordings were applied to each under neutral, stress, and relaxed

conditions. This dataset (i.e., original dataset) was used as the training set for

the ML model development.

As the data for the second stress task in the biofeedback dataset were

collected after paced breathing, they were discarded to obtain a consistent

protocol. Additionally, because participants in the CTRL group (19) did not

perform the paced breathing exercise, the data on their relaxed state were

excluded. Each recording was divided into four non-overlapping segments with

a duration of 60 s. Hence, the total number of observations was 620, of which

232 samples were labelled neutral (58 participants × 4 segments), 232 samples

were labelled stress (58 participants × 4 segments), and 156 were labelled

relaxed (39 participants × 4 segments). Further details about the participants in

the exploratory and biofeedback studies are provided in Sections 5.4 and 6.4,

respectively.

The generalisability of the developed ML models was assessed using two

external datasets: WESAD (15 participants; Schmidt et al., 2018) and SWELL

(23 participants; Koldijk et al., 2014). Several publicly available datasets were

reviewed, but these two were selected because they included data on mental

stress tasks, 5-min or longer HRV recordings, and detailed explanations of the
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experimental methods and protocol (see Table B.1). The data labelled stress and

relaxed for eight participants were excluded from the WESAD dataset because

they performed the paced breathing exercise before the stress task. As the

present study was focused on three states (i.e., neutral, stress, and relaxed), the

HRV data collected during the amusement condition were also excluded (see

Section 3.3.5). This dataset (i.e., independent dataset) was used as the testing

set for the ML model generalisability assessment.

All data were filtered and checked for signal quality, resulting in the ex-

clusion of one HRV recording in the relaxed state from the SWELL’s dataset

because the number of samples was insufficient for HRV analysis. Therefore,

the total number of observations was 120: 38 samples were labelled neutral, 53

were labelled stress (23 × 2 SWELL + 7 WESAD), and 29 were labelled relaxed

(15 × 2 - 1 WESAD). Further details about the participants and experimental

protocol applied to each dataset are presented in Section 3.3.5.

7.4.2 Data Preprocessing

Due to the physiological differences among participants across the four datasets,

all recordings were normalised based on the average HRV of each participant’s

baseline measurement (see Equation 7.1; Sacha, 2013; Sacha & Pluta, 2008).

RR(i) =
RR(i)

mean(RRbaseline)
, i = 1, 2, ..N (7.1)

Based on the findings obtained from the UST analysis described in Chapter 5,

a non-overlapping segmentation approach was used on the original dataset to

divide the 300-s HRV recording into shorter segments with a window size of

60 s. To minimise dependency among segments, a 10-s gap was applied in the

segmentation process, resulting in four segments per condition per participant

(see Figure 7.3).
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Figure 7.3: Non-Overlapping Segmentation Approach

To maintain consistency between the original and independent datasets,

the ECG signals from the WESAD (700 Hz) and SWELL (2048 Hz) datasets

were downsampled to 500 Hz. Subsequently, peaks were detected to extract

the RR intervals using the NeuroKit2 Python package (Makowski et al., 2021).

Thereafter, a 300-s segment was extracted from the centre of each HRV recording.

The HRV signals were then normalised based on Equation 7.1, filtered using

the adaptive threshold detection and moving average correction algorithms

(see Chapter 4), and analysed using the pyHRV and Systole Python packages

(Gomes, 2018; Legrand & Allen, 2022).

7.4.3 Feature Selection

This study sought to distinguish between stress and non-stress states (i.e.,

neutral and relaxed). Hence, different features were selected based on the

purpose of the developed ML binary classifier, albeit using a similar feature

selection strategy.

According to Vabalas et al. (2019), the feature-to-sample ratio in limited

datasets should be reasonably low. A common practice in biomedical research

using small datasets is to select one feature for every 10 independent obser-

vations (Foster et al., 2014). Thus, a maximum number of three features was

selected as the original dataset consisted of 58 participants, while the two states

(stress vs. non-stress) were obtained from the same participant. These criteria

resulted in 29 independent observations.
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The statistical analysis of the influence of stress and paced breathing on

the HRV measures showed that MeanRR significantly changed from neutral to

stress and from stress to paced breathing (see Section 5.5.4). Hence, MeanRR

was selected as the first feature in the implementation of both ML binary

classifiers because it reflected the average variation in HRV and could be

reliably measured in 60-s HRV segments. SDNN was selected as the second

stress vs. relaxed feature given that a significant statistical change was noted in

SDNN between both states due to its association with paced breathing (Shaffer

& Ginsberg, 2017). Further, it could be calculated from the 60-s segment (see

Table 5.4).

To determine the significance of the remaining features in relation to the ML

models, relative feature importance was calculated using an RFC implemented

via Scikit-Learn, which computed a weighted average score based on the degree

to which the feature reduced impurity in the tree node. Based on the results

of the feature importance calculation, RMSSD and HF power were selected as

the stress vs. neutral classifiers. Both measures reflected cardiac vagal tone and

could be calculated from the 60-s segment (see Table 5.4; Shaffer & Ginsberg,

2017). In contrast, SD2 was selected as the stress vs. relaxed feature due to its

association with LF power and potential to be computed using 60-s segments

in both states (see Table 5.4; Shaffer & Ginsberg, 2017).

A summary of the importance scores of the selected features is outlined

in Table 7.1. The Spearman’s rank-order correlation revealed non-significant

correlation coefficients among the selected features (p > .05). As the features

had different scales, a standardisation approach was applied to numerical

features by removing the mean value and dividing it by the SD, resulting in a

distribution with unit variance.
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Table 7.1: Feature Importance Scores

Feature Score

Stress vs. neutral
MeanRR 40.1%
RMSSD 30.1%
HF power 29.8%
Stress vs. relax
MeanRR 32.5%
SDNN 34.2%
SD2 33.3%

7.4.4 Nested Cross-Validation

Model selection was performed using the CV method and divided into two

main steps: hyperparameter selection and performance evaluation. These steps

are often assessed using the same validation/test set. An extension of the CV

method is the nested CV approach, which is performed to overcome the biased

performance estimates introduced by a standard CV (see Section 7.2.2). The

nested CV approach consists of two CV procedures, each of which is performed

in a different loop: the inner loop is used for the hyperparameter selection,

while the outer loop is used for the performance evaluation.

A specific CV method can be selected for each loop from a pool of available

methods (e.g., K-fold, leave-one-out). As previously discussed, the leave-one-out

method is recommended for limited datasets and dependent observations. In

this study, the LOGO method was adopted to group segments associated with

each participant based on participant ID (Maleki et al., 2020). LOGO is similar

to leave-one-out, but it allows for the assignment of multiple observations to

a single group. The total number of splits was equal to the total number of

participants in the original dataset (58), which corresponds to a 58-K-fold CV

procedure.
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Figure 7.4 shows the overall nested LOGO CV approach process using

a simplified example of four participants, with each having four associated

segments. First, the segments were grouped based on participant ID. Second,

the original dataset was split into N outer training validation sets, where N was

the number of participants (N = 4).

Optimal 
Parameters

I N N E R  L O O P
H y p e r p a r a m e t e r  

S e l e c t i o n

Original Dataset

O U T E R  L O O P
M o d e l  E v a l u a t i o n

TrainV

Train Train

Train Train

Train V

Train Train

Train

P1 P2 P3 P4

S1
S2
S3
S4

V

V

Train V

V

V

Figure 7.4: A Conceptual Illustration of the Nested CV Procedure with Four
Participants, Each with Four Segments.

Note. V refers to validation set, S refers to segment number, and P refers to participant ID.
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In the outer loop, a training set was selected from each iteration and inserted

into the inner loop for the hyperparameter selection. In the inner loop, the

selected training set was split into three (N-1) internal training validation sets.

A GridSearchCV with a predefined search space for each ML algorithm was

implemented to find the optimal hyperparameters, as shown in Table 7.2. The

optimal hyperparameters were then selected to fit the model on the outer

training set and evaluate it on the outer validation set. Four performance

estimates were generated from the outer loop, and the average performance

and stability were calculated for each ML algorithm. Lastly, the original dataset

was retrained on the model with the highest performance and stability.

Table 7.2: Predefined Hyperparameters for the GridSearchCV

Algorithm Hyperparameter Value

LR C (regularisation strength) 10i, i=[-4, 4]

DT max_depth
min_samples_leaf

[1, 2, 3, 4]
[.02, .04, .06, .08]

KNN n_neighbours [2, 3,.., 9]

NB var_smoothing 10i i = [-9, 0]

RFC max_depth
min_samples_leaf

[2, 3] + None
[.05, .1]

SVM C (regularisation strength)
kernel

10i, i=[-4, 4]
Radial-basis
function (rbf)

Although the nested LOGO CV method can be computationally expensive,

it was preferentially selected over the remaining CV strategies because of its

capacity to obtain unbiased true error rate estimates, thus minimising the risk

of obtaining overly optimistic performance metrics (see Section 7.6).
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7.4.5 Performance Metrics

ML performance was evaluated using the following metrics: accuracy, precision,

recall, F1 score, confusion matrix, area under the curve (AUC), and Matthew’s

correlation coefficient (MCC; see Appendix F for the performance metrics

equations).

• Accuracy measures the ratio of correct instances classified as stress and

non-stress to the total predictions made by the classifier.

• Precision measures the ratio of correct instances classified as stress to the

total predictions in the stress class. A precision of 100% indicates that the

ML model generates no false positives.

• Recall measures the ratio of correct instances classified as stress to the

actual total number of stress instances in the dataset; this metric is sim-

ilar to the sensitivity measure discussed in Chapter 4. A recall of 100%

indicates that the ML model generates no false negatives.

• F1 score represents the harmonic mean of precision and recall. It can be

a useful measure when precision and recall are equally important in a

classification model assessment.

• Confusion matrix summarises the number of correct and incorrect predic-

tions for a binary classifier in a 2 × 2 table by representing the true and

predicted instances in each class, thereby conveying information about

the rate of observations that are correctly classified as non-stress (true

negative) and stress (true positive). Moreover, a confusion matrix can de-

termine the rate of observations that are incorrectly classified as positive

or stress (false positive) and as negative or non-stress (false negative).
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• MCC evaluates the quality of binary classifiers by summarising the con-

fusion matrix into a single quantification measure (Baldi et al., 2000;

Gorodkin, 2004; Matthews, 1975). It computes a value between -1 and 1,

where 1 indicates perfect class prediction and -1 indicates inverse class

prediction.

• AUC score is a quantification measure for the area under the receiver

operating characteristic (ROC) curve. The ROC curve demonstrates the

trade-off between true positive and false positive rates at different proba-

bility thresholds. Thus, AUC can be calculated as a representative measure

of ROC to better interpret and assess classifier performance.

In this study, the classifications of both states (stress and non-stress) were

equally important. In other words, the primary aim of the model assessment was

to minimise the impact of both error rates: false positives and false negatives.

Hence, the F1 score was selected as the most appropriate performance metric

to provide a single representative measure for precision and recall. Moreover,

the confusion matrix, accuracy, precision, recall, AUC score and MCC were

employed as auxiliary performance metrics.

7.5 Results

To compare the results of this study with those of the literature, six common

supervised ML algorithm models were assessed: LR, DT, KNN, RFC, NB,

and SVM with a non-linear kernel (i.e., radial-basis function). The model

with the best performance and stability was selected for the independent

test evaluation. The stability was measured using the SD of the outer CV

performance evaluation.
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7.5.1 Classification of Stress and Neutral States

Model Selection

Table 7.3 shows the average performance metrics resulting from the nested CV

approach used to classify stress and neutral instances from the original dataset.

Overall, the ML models had relatively low performance in classifying stress

and neutral states (accuracy: 49%-60%). More specifically, the precision scores

obtained by all models were less than 62% indicating a high misclassification

rate of the neutral instances (i.e., high false positives). However, the recall of

DT and RFC was greater than 80% indicating good performance in identifying

stress instances. The AUC score of all classifiers was in the range of 60%-

76%. Among all the classifiers, RFC showed the best performance and highest

stability, with an F1 score of 67.3% (SD = 6%) and an MCC of 56.7%. The

remaining classifiers had F1 scores in the range of 41%-59%. Hence, the RFC

with the following hyperparameters was selected for the independent dataset

evaluation: max_depth = 3, min_samples_leaf = .05.

Table 7.3: Nested CV performance (stress vs. neutral) (%).

Metric F1 Score (SD) Accuracy Precision Recall AUC MCC

LR 41.5 (11) 53.7 41.0 52.6 75.0 13.3

DT 63.5 (8.2) 58.4 56.0 81.0 64.8 47.2

KNN 59.1 (9.4) 59.7 61.6 63.8 63.3 28.4

NB 29.7 (11) 49.6 28.9 39.2 76.3 3.60

RFC 67.3 (6.1) 60.8 60.3 84.1 65.2 56.7

SVM 56.4 (10) 56.9 53.0 65.9 60.9 23.5

Generalisability Assessment

Two publicly available datasets were combined to act as an independent dataset

for the assessment of ML algorithm generalisability. As the duration of the
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300-s ST segments obtained from the independent datasets was too lengthy

to support the incorporation of the ML approach into real-time systems, the

signals were further divided into 60-s UST segments. Accordingly, the testing

process was independently performed on both ST and UST segments.

The confusion matrix results of the ST and UST datasets are presented in

Figure 7.5, and the performance metrics are summarised in Table 7.4. The F1

scores of the ST and UST were 70.7% and 61.2%, respectively. In addition, the

MCC of the ST (57.9%) was higher than UST (34.4%). Moreover, the results

showed that the RFC in the ST dataset correctly classified all neutral instances

(100% precision), but it misclassified approximately half of the stress instances

(54.7% recall). However, the performance decreased in the UST dataset, with a

precision of 81.3% and a recall of 49.1%.

Figure 7.5: Confusion Matrix of the Independent Dataset (Stress vs. Neutral)
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Table 7.4: Performance Evaluation of RFC on the Independent
Dataset (Stress vs. Neutral) (%)

F1 Score Accuracy Precision Recall AUC MCC

ST (300 s) 70.7 73.6 100 54.7 70.9 57.9

UST (60 s) 61.2 63.7 81.3 49.1 63.1 34.4
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7.5.2 Classification of Stress and Relaxed States

Model Selection

Table 7.5 shows the average performance metrics of the supervised ML al-

gorithms resulting from the nested CV approach used to classify stress and

relaxed instances from the original dataset.

Overall, the ML models had relatively high classification accuracy rates,

ranging from 78% to 82%. RFC and DT had the highest recall score ranging

from 90%-93%, indicating good performance in identifying stress instances (i.e.,

low false negatives). Moreover, the precision of all classifiers was in the range

of 76%-86%, indicating lower false positives in stress vs. relaxed compared

to stress vs. neutral. The AUC score and MCC of all classifiers were greater

than 76%. Among all the classifiers, RFC had the best F1 score and stability

at 82.2% and 6.3%, respectively. Thus, the RFC was selected as the best model

with the following hyperparameters for the independent dataset evaluation:

max_depth = 2, min_samples_leaf = .05.

Table 7.5: Nested CV Performance (Stress vs. Relax) (%)

Metric F1 Score (SD) Accuracy Precision Recall AUC MCC

LR 78.7 (8.6) 80.8 86.0 79.7 76.9 78.6

DT 81.5 (7.2) 76.3 76.8 92.7 82.4 81.5

KNN 78.8 (8.1) 78.2 80.9 82.3 78.7 78.9

NB 78.6 (8.9) 79.7 85.1 80.6 80.0 78.7

RFC 82.2 (6.3) 80.0 80.1 90.5 84.9 82.2

SVM 79.0 (8.6) 78.0 80.2 84.1 80.6 78.9

Generalisability Assessment

A similar procedure to the stress vs. neutral classification was followed for the

generalisability assessment. The confusion matrices for the ST and UST datasets
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are shown in Figure 7.6, and the ML performance metrics are summarised in

Table 7.6. The overall performance levels of both datasets were similar, showing

an 86.6% accuracy rate for the ST dataset and 85.4% for the UST. However, the

ML model performed better in the ST dataset (97.7% precision) compared to

the UST dataset (91.1% precision) based on the confusion matrix and precision

scores. The F1 scores for the ST and UST datasets were 88.7% and 88.2%,

respectively. Moreover, the MCC of the ST (74.5%) was slightly higher than UST

(69.3%).

Figure 7.6: Confusion Matrix of the Independent Dataset (Stress vs. Relaxed)
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Table 7.6: Performance Evaluation of the RFC on the Indepen-
dent Dataset (Stress vs. Relax) (%)

F1 Score Accuracy Precision Recall AUC MCC

ST (300 s) 88.7 86.6 97.7 81.1 90.4 74.5

UST (60 s) 88.2 85.4 91.8 84.9 92.1 69.3
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7.6 Effects of Validation Strategy on Model Performance

To demonstrate the effect of the chosen validation strategy on classification

performance, all ML models were evaluated using the standard K-fold, nested

K-fold, standard LOGO, and nested LOGO CV methods, where K was set to

10. Figure 7.7 illustrates the classification performance of the stress vs. relaxed

dataset using the accuracy metric. All HRV features were included in this

analysis: MeanRR, RMSSD, SDNN, pNN50, LF power, HF power, LF/HF, and

total power.
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Figure 7.7: Average Accuracy Rate for each CV Method

Overall, both K-fold CV methods had higher performance than the LOGO

CV methods across all ML models. The nested LOGO CV had the lowest per-

formance among all investigated CV methods. On average, the standard K-fold

performance was around 5% greater than the nested LOGO CV performance

across all ML models. In particular, the RFC using the standard K-fold method

was approximately 6.6% higher than that obtained using the nested LOGO CV.

However, the estimated SD of the nested LOGO CV was higher than that of the

remaining CV methods, which could suggest model instability.
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ML performance was further evaluated in 30 trials of the LR classifier using

the standard and nested versions of the K-fold and LOGO CV methods (see

Figure 7.8). Each trial was computed by shuffling the observations and changing

the seed parameter of the K-fold method. However, group randomisation or

shuffling was not necessary as all observations in the LOGO CV were involved

in the analysis, regardless of order; thus, performance was the same across all

trials, as represented by a flat line in Figure 7.8.
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Figure 7.8: Performance of standard and nested implementations
of K-fold and LOGO CV methods over 30 trials.

Note. Code Adapted from Sci-kit Learn (Scikit-Learn Developers, 2019)

GridSearchCV was used to execute hyperparameter selection for the nested

methods in the inner loops and standard methods in the main loops. Next,

the optimal hyperparameters were selected to fit the training set. For the

nested approach, the accuracy rate was averaged on the hold-out dataset splits

in the outer loop. Generally, the standard (i.e., non-nested) approaches of

both CV methods had higher accuracy rates than their corresponding nested

implementations. Moreover, both K-fold methods outperformed the LOGO

methods.
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These performance estimates are indicative of bias level in the standard CV

approaches, with overestimation potentially representing higher bias due to 1)

the use of the same test set for hyperparameter selection and model evaluation

in the case of standard CV methods or 2) the presence of dependent observations

in the training and testing sets in the case of the K-fold CV methods.

7.7 Discussion

The purpose of this study was to assess the classification performance of super-

vised learning algorithms in the detection of stress levels based on HRV features.

This was accomplished by developing and implementing methodologically ro-

bust ML classifiers that address the key limitations associated with overfitting,

overly optimistic performance, and generalisability issues identified in the

current literature

Two independent binary classifiers were implemented to identify stress

from non-stress states (i.e., neutral and relaxed states). Based on the nested CV

model selection results, the RFC achieved the highest performance among the

remaining ML algorithms in terms of identifying both stress and non-stress

states. In a seminal investigation of the performance of various ML classifiers,

Fernández-Delgado et al. (2014) assessed 179 classifiers from 17 families in

121 datasets and concluded that RFC had the best performance. When de-

ploying affect recognition systems in real-world applications, explainable and

interpretable ML models are important considerations for use by clinicians

or individuals (Adadi & Berrada, 2018; Du et al., 2020). Given that RFC is

based on ensemble learning of numerous decision trees, there may be a lack

of understanding regarding how particular decisions were made between the

predictors and the outcome (Aria et al., 2021). Therefore, several strategies were

proposed to address this issue, including the introduction of a taxonomy of
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RFC interpretative models via model visualisation and post-hoc explanatory

methods (Aria et al., 2021; Haddouchi & Berrado, 2019). According to the

findings of the current study, DT achieved comparable performance to RFC (see

Tables 7.3 and 7.5), which is considered as a simple and easy-to-understand

classification algorithm in the healthcare field (Podgorelec et al., 2002).

Generally, the RFC classification performance of stress vs. relaxed (F1 score

= 82.2%) was better than stress vs. neutral (F1 score = 67.3%) due to the

remarkable physiological effect of paced breathing on cardiovascular activity

compared to the mild effect of mental stress tasks. The relevant HRV features

used in the stress vs. relaxed classifier were significantly different between

the two states. However, a note of caution is needed here as the relaxed state

was associated with the paced breathing exercise itself. A better representation

of the relaxed state could be generated by measuring HRV following paced

breathing, similar to the approach taken by Dalmeida and Masala (2021).

The accuracy rate of the RFC in the stress vs. neutral case was 60.8%,

which is significantly lower than the accuracy rate of 80% or greater reported

by similar stress classification studies (Bobade & Vani, 2020; Can et al., 2020;

Schmidt et al., 2018). This discrepancy in performance could be attributed to two

reasons: 1) the implementation of the overlapping segmentation approach with

an inadequate validation strategy, which violates the independence constraint

among observations, and 2) inclusion of a large number of features relative to

the size of the dataset. These issues were mitigated in a stress classification study

conducted by Castaldo et al. (2019), where no segmentation was implemented

for the training set and a minimal number of relevant features was selected for

model development. Their findings revealed that the best classifier was KNN,

with an accuracy rate of 94% and an AUC of 99%. These rates are far higher

than those obtained by the current study using the RFC (60.8% accuracy, 65.2%
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AUC). However, Castaldo et al. (2019) utilised a small dataset for training (25

participants) and testing (17 participants) compared to the dataset size used in

the present study (training: 58 participants, testing: 38 participants). Generally,

small training and testing sets do not represent the general population and, by

extension, cannot support an accurate assessment of the generalisability of ML

model performance (Foster et al., 2014).

To overcome performance overestimation during model selection, the nested

LOGO CV method was used for the training process and hyperparameter

selection, as discussed in Section 7.4.4. Despite the variance-bias trade-off

(Hawkins et al., 2003), this approach is only advised for small datasets as the

variance of generalisation performance can be quite high otherwise. In the

case of large datasets, more than one group can be employed for validation

by aggregating the participant-dependent observations to simulate the K-Fold

method (e.g., leave-five-group-out).

An important aspect of ML development is generalisability. Therefore, the

current study employed two independent datasets for the testing phase. Al-

though a generalisability test evaluates how well the ML algorithms adapt to

unseen data, acceptable levels of generalisation should still be determined (Fu-

toma et al., 2020). Hence, the independent datasets were carefully selected based

on the experimental protocol and HRV recording length. Nevertheless, the HRV

data from these datasets were collected with an ECG-based instrument rather

than a PPG-based one. Further, although the participants in the SWELL dataset

underwent a work-related stress task that differed slightly from the stressors

used in the original dataset, the task still evoked a mental stress workload.

Thus, the determination of generalisability was not only focused on testing

the ML models on the external dataset but also on extending their application

to different instruments and mental stressors. Altogether, the classification
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performance of the RFC model on the independent datasets was relatively high,

with F1 scores of 70% and 87% for the stress vs. neutral and stress vs. relaxed

states, respectively.

Stress prediction based on UST HRV segments facilitates deployment in

wearable devices for the purposes of improving monitoring and diagnosis. The

ST classification performance metrics in the stress vs. neutral case were higher

than those obtained with the UST approach. These findings are consistent

with the literature (Castaldo et al., 2019; Tervonen et al., 2021), indicating that

supervised learning algorithms perform better with longer HRV segments.

However, no differences in performance metrics were noticeable between ST

and UST HRV in the stress vs. relaxed case. These results may be due to the

stronger correlation of UST HRV segments during paced breathing (i.e., relaxed

state) compared to stress or neutral states, as thoroughly discussed in Chapter 5

(see Section 5.6).

Overall, performance overestimation was conveyed via the comparison of

different validation strategies. Consistent with the literature, this study found

that the LOGO CV and, in particular, nested LOGO CV methods obtained

unbiased performance estimates compared to the standard and nested K-fold

CV methods, with a mean difference of 5% among the investigated ML models.

Using accelerometer data to examine various validation strategies for human

activity recognition systems, Bragança et al. (2022) found that the K-fold CV

of an RFC overestimated accuracy by 13% compared to the leave-one-out CV,

leading to an inaccurate ML performance assessment.

7.8 Limitations

Although the present study successfully demonstrated the impact of using

a robust ML methodology for small datasets, it features certain limitations
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in terms of dependency, labelling strategy, and model stability. First, pure

dependency is not necessarily implied when the violation of the independence

assumption is mitigated by grouping associated segments via the LOGO CV

method (Little et al., 2017). The observations were still interdependent within

a group because they were generated from the same participant. Second, the

observations were assigned to one of three classes (neutral, stress, and relaxed)

based on the conditions under which the data were collected. In accordance

with the methods employed in similar studies (Chen et al., 2021; Coutts et al.,

2020; Petrescu et al., 2021), it may have been more effective to supplement the

dataset with the subjective scores reported by participants as these reflected

their current stress or relaxation levels. Lastly, the relatively high SD of the

outer CV performance indicates stability issues in the LOGO CV methods (see

Section 7.6). Hence, further research is needed to investigate the causes of model

instability and explore approaches to better stabilise the model.

7.9 Chapter Summary

This chapter addresses SRQ4 by exploring the potential for recognising stress

levels from HRV measures using binary classification through the implemen-

tation of supervised learning algorithms. It begins by reviewing the existing

methodological shortcomings associated with limited datasets in the relevant

literature, such as data segmentation, feature selection, and model evaluation.

These shortcomings pose problems for the development of robust ML algo-

rithms, including overfitting, overly optimistic performance, and generalisability

issues. Next, this chapter proposes mitigation strategies, including an appro-

priate selection of the validation strategy and relevant features based on the

context of the investigated problem.
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By following these recommendations, this study was able to identify stress

from non-stress states (i.e., neutral and relaxed), with the RFC achieving the

best performance, F1 scores were 67% and 82% for neutral and relaxed states,

respectively. Furthermore, the generalisability aspect was explored by evalu-

ating the RFC on the independent datasets, F1 scores were 70% and 87% for

neutral and relaxed states, respectively. However, the classification performance

was relatively lower than those reported in similar studies, indicating perfor-

mance overestimation that most likely arose from data leakage or selection

bias in the reviewed studies. When it comes to ML development using limited

physiological datasets, the appropriate methodological procedures should be

followed not only to improve model generalisability but also to facilitate the

interpretability of the developed model based on the context of the targeted

application.



CHAPTER 8

Conclusions

This research draws on a quantitative paradigm to investigate the potential
of promoting mental well-being in two ways: 1) examining affective states
and physiological changes in response to heart rate variability biofeedback
and 2) exploring a robust approach for the development of effective stress
recognition systems. Hence, this chapter presents the conclusions of the
overall thesis by summarising the primary findings of the studies conducted
and highlighting key contributions in light of the research questions. Lastly,
it describes the major limitations encountered during data collection and
analysis and provides directions for future research.

8.1 Reflections on the Research Questions

The overall aim of this research is to provide means to promote mental well-

being by improving HRV analysis for eventual deployment in real-time affect

recognition systems. This research investigates the short-term effects of HRVB

via a paced breathing exercise across a range of affective states. The following

main research question was posed:

RQ: How does a single HRVB session using paced breathing mediate

physiological responses across a range of affective states, and can these

affects be robustly recognised by supervised learning algorithms?

For a comprehensive articulation of the main research question, four areas of

focus emerged: HRV preprocessing, UST analysis, HRVB, and stress recognition.

179
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Each area was addressed by an associated research sub-question. Accordingly,

the following subsections discuss the contributions and key findings of this

research through reflection on the research questions for each area.

Preprocessing of Heart Rate Variability Data

Assuring high-quality HRV signals and flexible implementations for HRV

analysis is critical for the development of real-time applications as well as batch

processing; hence, Chapter 4 addresses the following research sub-question:

SRQ1: What signal preprocessing algorithms are necessary for a reli-

able real-time HRV analysis?

To address this question, Chapter 4 provides a comprehensive overview of

HRV signal preprocessing algorithms and their importance in reliable HRV

data analysis. Using common preprocessing methods, the existing artefacts

in the HRV signal were identified via fixed and adaptive threshold detection

techniques and cleaned via correction algorithms, including deletion, averaging,

and interpolation. Following the correction process, the HRV measures obtained

from the cleaned signals were compared to the unfiltered signal. The results

demonstrate the necessity of HRV signal filtering, as discussed in Section 4.6.

More importantly, Chapter 4 describes the development of a flexible signal

preprocessing algorithm based on a controllable window approach to facilitate

deployment in real-time systems. The flexibility feature of the preprocessing

algorithm was designed to control the necessary parameters for batch pro-

cessing and real-time analysis (e.g., changing the threshold value, controlling

the window size, selecting the desired preprocessing algorithm) while main-

taining high-agreement levels with the Kubios HRV application. Accordingly,

the outcomes of this study serve as the basis for the HRV analysis performed
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in the subsequent chapters. The findings of this study suggest a trade-off be-

tween artefact detection accuracy and processing time. In light of these findings,

the adaptive threshold approach is recommended for offline batch processing

given its high performance with respect to accuracy. However, the median-fixed

threshold for detection may provide acceptable results for real-time analysis

based on accuracy and processing time.

To date, the research has evaluated HRV filtering and analysis for real-time

purposes by simulating both procedures using an overlapping segmentation

approach with offline processing of existing datasets. Hence, this study extends

the previous work by integrating the filtering component with an online HRV

data acquisition framework via a BLE-based sensor using an open-source imple-

mentation (see Section 4.5). The source codes for the preprocessing algorithms

and real-time HRV framework are available on GitHub (Bahameish, 2019, see

Sections 4.3.3 and 4.5). To further this research, an empirical evaluation of the

integrated online framework should be conducted to assess the performance

and reliability of HRV filtering in a real-time setting.

Ultra-Short-Term Analysis of Heart Rate Variability Data

To simulate real-time HRV data acquisition and facilitate deployment in real-

time applications, UST segments have been used to analyse HRV signals in

periods of less than 5 min. Thus, this study examined the necessary require-

ments for UST analysis under resting and non-resting conditions, as outlined

by the following research sub-question and addressed in Chapter 5:

SRQ2: What are the requirements for a reliable real-time HRV anal-

ysis using UST segments under resting, stress, and paced breathing

conditions?
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Chapter 5 provides new insights regarding the impact of mental stress and

paced breathing on HRV measures derived from short-term and UST segments

and analysed using time-domain, frequency-domain, and non-linear methods

(see Section 5.8). Although UST analysis has been studied in the literature,

the majority of studies have focused on the assessment of HRV measures in

a resting state. Moreover, a number of studies have drawn their conclusions

based on an inadequate analytical test (e.g., group-mean differences) rather

than the assessment of the limits of agreements between the HRV measures

derived from the UST segment and 5-min interval.

Using a concurrent validity assessment of the standard 5-min HRV interval,

Chapter 5 establishes the minimum reliable segment for HRV analysis based

on the conditions under which the data were acquired. UST reliability was

confirmed using the correlation analysis, limits of agreement, and trend con-

sistency (see Section 5.6). Overall, the results indicate that 10 s is a reliable

window for estimating MeanRR in all investigated conditions. Moreover, SDNN

was reliable at 30 s in paced breathing compared to 60 s in resting and stress

conditions given the periodicity of the HRV signal under paced breathing.

In addition, this study extends investigations of the influence of stress and

paced breathing on HRV measures by examining the trend consistency of UST

segments compared to baseline. These findings have important implications for

the design and development of HRV-related real-time applications in which

measurement conditions must be taken into consideration. Thus, the outcomes

of this study informed the feature selection employed in the stress recognition

study described in Chapter 7. To develop a full picture of the impact of mental

stress on vagal tone, additional studies are needed to explore stress tasks with

different stress types, higher intensity levels, and longer durations compared to

the task employed in this study (i.e., TSST).
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Impact of Heart Rate Variability Biofeedback on Affective States

Following the necessary preparations for HRV signal quality and an examina-

tion of the influence of stress and paced breathing on HRV measures, Chapter 6

takes a major step towards addressing the main research question by assess-

ing the impact of a single HRVB session on a range of affective states and

physiological measures, as reflected by the following research sub-question:

SRQ3: What is the effect of a single paced breathing session on affective

states (cognition, relaxation, stress) and physiological responses (HRV

and BP)?

Chapter 6 presents an investigation of the influence of HRVB on physiological

measures, psychological measures, and cognitive performance using a quantita-

tive RCT, which allowed for the statistical assessment of group-mean differences

as well as the feasibility of predicting mental well-being via HRV measures (see

Section 6.6).

Further, Chapter 6 provides evidence-based knowledge regarding the impact

of a single short-term HRVB session on affective states and physiological

measures, both during and after the session (see Section 6.8). As demonstrated

by the correct responses and attentiveness scores, cognitive performance showed

promising improvement following the biofeedback intervention, despite the lack

of an associated increase in vagal tone reflected by RMSSD. The lack of increase

in vagal tone could be explained by several factors, such as the biofeedback

protocol, duration of the biofeedback session, or participants’ lack of familiarity

with paced breathing.

An additional prominent finding is the improvement in relaxation levels

measured via self-reported serenity scores after the biofeedback intervention.

Moreover, the HRVB group demonstrated lower SBP reactivity to the stress task
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than the CTRL. Although HRVB had short-term effects on the HRV measures

during the paced breathing intervention, only MeanRR was significant after-

wards. Further, fatigue, mood, and stress were not found to be associated with

HRV measures, and there were no significant differences among these affective

states during the various conditions of the experiment. These outcomes could

be due to the use of a single-item Likert scale for assessing mood and stress

as well as the other anticipated limitations related to the study design (see

Sections 6.7 and 8.3).

Despite the fact that this study employed a different stress task (N-back)

than the previous study described in Chapter 5 (TSST), parasympathetically

related HRV measures (i.e., RMSSD and HF power) were not significantly

different during the stress task compared to baseline. In addition, these two

HRV measures did not differ significantly between HRVB and CTRL groups

across all time points. However, vagal tone, as indexed by RMSSD, was higher

in the HRVB group post-intervention compared to baseline, with a medium

effect size. To gain an in-depth understanding of vagal tone within the context

of the neurovisceral integration model, future studies should employ alternative

cognitive stress tasks to elicit a higher mental workload (e.g., the dual N-back

task, which combines auditory and visual stimuli). With respect to the effects

of paced breathing on vagal tone, the biofeedback protocol can be similarly

improved by determining the RF for each participant or incorporating a longer

paced breathing session.

Nonetheless, the findings of this study have significant implications regard-

ing the impact of a single short-term HRVB session on BP, cognitive perfor-

mance, HRV measures, and relaxation, thereby laying the foundation for future

research (see Section 8.4).
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Robust Techniques for Stress Recognition

Finally, the potential of identifying stress levels from HRV data using robust

supervised learning algorithms was examined in Chapter 7 by leveraging the

dataset and key findings of the previous two chapters, thereby facilitating

deployment in real-time systems. The associated research sub-question was

posited as follows:

SRQ4: How can robust supervised learning algorithms recognise stress

and relaxed states for eventual deployment in real-time systems?

Chapter 7 proposes robust strategies for limited dataset sizes in supervised

learning algorithms by highlighting the current methodological limitations de-

scribed in the domain-relevant reviewed studies; the limitations and strategies

are explicated in Sections 7.2.1 and 7.2.2, respectively. Specifically, this proposal

addresses the selection of appropriate ML methodological decisions (e.g., data

segmentation, feature selection, model evaluation) when using short-term and

UST HRV data in the domain of affective recognition, particularly stress recog-

nition. Further, Chapter 7 offers an evaluation of binary stress classifiers via

the proposed strategies to mitigate the shortcomings associated with limited

datasets while assessing for model generalisability, as explained in Section 7.7.

Using short-term HRV data, the RFC, which had the best performance,

achieved good performance in identifying stress from neutral and relaxed states

(F1 scores > 70%). For deployment in real-time applications, the RFC was also

tested on UST HRV segments. The results were comparable to those of the

short-term segments, indicating the potential efficacy of this classifier in the

development of real-time recognition systems. However, the results of the ML

model development were relatively low compared to the reported performance
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metrics in the reviewed studies, which is indicative of overly optimistic perfor-

mance estimates resulting from inappropriate validation strategies or the use of

a limited dataset with dependent observations in the reviewed studies.

Another possible explanation for the notable variation in ML algorithm

performance in the affective computing field is that current implementations do

not consider differences between individuals in terms of perception or reaction.

The individual’s susceptibility to stress varies depending on a variety of factors,

including genetic predisposition, personality traits, and social support (Dumitru

& Cozman, 2012; Salleh, 2008). Given that a single classifier cannot adapt to

all individuals, a personalisation approach based on individual differences

and transfer learning has been proposed to provide a unique experience (see

Section 8.4 for further details; Taylor et al., 2015; Umematsu et al., 2020; Zheng

& Lu, 2016).

Overall Research Reflection

It is evident how the main research question was naturally divided into four

sub-questions, and the previous subsections demonstrate how the research

addressed each of these questions. Overall, it can be concluded that paced

breathing during a single HRVB session does mediate physiological responses

and that this mediation can be measured across a range of affective states.

Furthermore, it has been shown that these affects can be robustly recognised by

supervised learning algorithms. However, careful attention must be given to

the methodology used when deploying such algorithms to obtain reliable and

interpretable results.
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8.2 Summary of Contributions

This research work contributes towards the improvement of mental well-being

by using HRV data to examine changes in affective states and physiological re-

sponses as well as exploring robust ML techniques to identify stress levels. This

section presents a summary of the contributions of this research to the current

state of knowledge of HRV analysis within the context of affect recognition.

• An improved understanding of high-quality filtering techniques for HRV

data that meet the requirements of real-time applications via the integra-

tion of a flexible open-source implementation, automatic preprocessing

algorithms, and a real-time HRV data acquisition framework using BLE-

based sensors.

• New insights regarding the minimum reliable window for HRV anal-

ysis based on the conditions under which the data were acquired (i.e.,

resting, stress, and paced breathing). The findings are underpinned by a

concurrent validity assessment to facilitate future deployment in real-time

systems.

• Evidence-based knowledge regarding the influence of the HRVB paced

breathing intervention on affective states, executive function, and physio-

logical responses (i.e., HRV and BP), with the findings obtained using

a quantitative RCT to facilitate the statistical assessment of group-mean

differences as well as the feasibility of predicting affective states via HRV

measures.

• A proposal for robust ML affect recognition strategies using physiological

measures that address the current limitations associated with limited

datasets in the research. With an emphasis on stress as a prominent
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affective state, these strategies were employed in the development and

evaluation of binary classifiers to predict stress levels from short-term and

UST HRV data.

8.3 Limitations

The primary limitations of this research are related to population and sampling:

specifically, population characteristics, sample selection, and sample size. In

addition, the technological instrument used for HRV data collection may have

yielded reduced accuracy due to potential bias. Specific limitations for each

study were explained in the limitations section of the relevant chapters (see

Sections 4.7, 5.7, 6.7 and 7.8).

Population and Sample

As discussed in Chapter 5, participants in the HRV exploratory study were

students ranging from 20-36 years of age; further, all participants were recruited

via a call for participation made to the university computer science department.

Thus, there is a limit to how broadly the results can be applied to older or

younger age groups given that demographic factors may have an impact on

HRV. The subsequent study sought a more representative sample of the tar-

geted population by focusing on a wider age range (23-62 years; see Chapter 6).

However, both studies relied on volunteer and opportunity sampling techniques

(Hayes, 2021), and participants were primarily recruited via university calls for

participation and personal invitations. Despite the convenience and practicality

of these sampling techniques in research conducted under time and resource

constraints, the samples obtained may not be truly representative of the popula-

tion as the use of volunteer participants alone can introduce unintended forms

of bias (Hayes, 2021). A better strategy would be to limit the characteristics
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of the target population and purpose behind employing a random sampling

technique (e.g., focusing on a specific age group or health condition).

The sample size was determined based on a priori power analysis with 80%

statistical power, which is a widely accepted minimum power level (Cohen,

1988). Nonetheless, higher statistical power (e.g., 95%) is more desirable for

drawing accurate conclusions about actual effects as it reduces the risk of Type

II errors (Lakens, 2013). Moreover, it is well established that the performance of

ML algorithms heavily depends on the size and quality of the dataset. Therefore,

the sample size of the studies discussed in Chapters 5 and 6 in turn limited the

dataset used in the development of the ML classification approach described in

Chapter 7.

Heart Rate Variability Sensor

Another possible limitation is the use of a PPG-based sensor for HRV data

collection. Previous research has revealed that motion artefacts, skin tones, and

environmental noise are the main sources of PPG data inaccuracies (Castaneda

et al., 2018). Given that optical sensors rely on the transmission of green infrared

light, the accuracy of PPG data may decrease for highly pigmented skin tones

as melanin absorbs a significant amount of green light. In a comprehensive

assessment of PPG-based wrist sensors under different conditions, Bent et al.

(2020) found no significant differences in HR and HRV accuracy among different

skin tones. However, the accuracy and consistency of HR measurements were

dependent on the type of activity and model of the sensor device. In addition,

the authors reported higher error rates in PPG compared to ECG during a

typing task. Interestingly, the error rates of PPG during deep breathing were

lower than in all other conditions.
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Therefore, further research is required to systematically validate the rele-

vance of these findings on finger-worn PPG sensors, particularly CorSense. In

this thesis, the data of a few participants were excluded due to poor signal

quality, especially during the stress task. This could be attributed to uninten-

tional hand movements, sensors not being in direct contact with the skin, or

environmental noises (e.g., typing on a keyboard, vibrations from technological

devices).

8.4 Future Research Directions

This research creates potential avenues for future directions to better assess the

impact of HRVB on improving mental well-being.

Focused Groups

Further studies could examine the short-term effects of HRVB using paced

breathing exercises on physiological measures (e.g., BP, HRV), affective states

(e.g., mood, stress), or cognitive performance in real life rather than a laboratory

setting, such as academic performance assessment for university students or

work-related stress environment assessment for employees. Additional inves-

tigations could explore the impact of vagal tone improvement via long-term,

multiple-session HRVB on emotional adaptability, resilience, and self-regulation.

Moreover, future research could focus more specifically on the short-term or

long-term effects of HRVB on individuals with certain diagnosed physical

conditions (e.g., hypertension), psychiatric or mental health conditions (e.g.,

anxiety, depression), or neurodevelopmental conditions (e.g., autism, attention

deficit hyperactivity disorder [ADHD]).
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Multimodal and Multisensory Channels

One promising potential approach for enriching and diversifying physiological

data representation is to explore the effectiveness of alternative sensory channels

for conveying biofeedback information. Such advancements could be achieved

by leveraging the potential of auditory and tactile interfaces to interpret HRV

data. By placing particular emphasis on HCI design principles, visual cues

could be supported or replaced, thereby enhancing feedback perception (see

Section 2.3.3). In addition, future work could explore the incorporation of other

medical signals (e.g., BP, respiration, skin conductance) in conjunction with

HRV to promote health and well-being.

Combining instruments that gather various physiological data via different

sensory modalities could help in the development of biofeedback interfaces

based on an inclusive design approach. The incorporation of alternative sen-

sory channels could alleviate the limitations of HRV data inaccuracy caused

by unintentional hand movements in people with autism or ADHD as they

tend to have increased psychomotor activity manifested by fidgeting or hand

flapping (Groden et al., 2005). Additionally, it could assuage the limitations of

PPG sensors based on green infrared light when used on people with highly

pigmented skin (see Section 8.3; Bent et al., 2020).

Affective Forecasting

Another potentially fruitful avenue for future research is to leverage ML al-

gorithms in extending the recognition approach for forecasting affective states

using deep learning, as discussed in Chapter 7. Forecasting is a form of predict-

ing future events based on collected historic data. Within the context of affective

computing, Suhara et al. (2017) used deep learning algorithms to predict severe

depressed mood based on self-reported data collected during the previous two
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weeks. In the same vein, Jaques et al. (2017) employed self-reported data, skin

conductance, and weather information to predict stress and mood levels for the

following day based on data from the present day. Accordingly, the prediction

of future affective states could provide means for personal adjustments, early

intervention, and risk prevention for serious mental health issues.

8.5 Concluding Remarks

Prior to the present research, the short-term effects of HRVB on mental well-

being had not been thoroughly investigated in the context of real-time affect

recognition system development. This research offers in-depth analyses of the

methods used to obtain high-quality HRV signals, including the examination of

various filtering methods employed in a flexible environment and the determi-

nation of the minimum reliable segment for HRV analysis under resting and

non-resting conditions. One of the key strengths of this investigation is the vari-

ety of data used to assess mental well-being, including computer-logged task

performance data, physiological responses, and self-reported affective states.

Further, the ML models for stress classification were developed using robust

techniques to provide effective solutions for stress recognition systems. Overall,

this research lays the groundwork for the employment of HRV in real-time

applications to predict affective states.
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Appendix A

Questionnaires

A.1 Demographic

1. What is your gender?

2. What is your age?

3. Weight (Kg): Height (cm):

4. What is your current occupation?

2 Student 2 PT Employed 2 FT Employed 2 Retired 2 Unemployed

5. What is the highest degree you have completed?

# High School Diploma # Bachelor’s degree # Postgraduate degree
# Professional degree # Other, please specify

6. What is your experience level with the following items:

(1: No experience at all, 5: Expert) 1 2 3 4 5
Meditation/ Yoga exercises? # # # # #
Deep breathing activities? # # # # #

7. When did you get up this morning?

8. When did you go to sleep last night?

9. On a scale from 1 to 5, how would you rate the following about yourself?

(1: Poor/Low, 5: Excellent) 1 2 3 4 5
Your physical fitness # # # # #
Your physical activity # # # # #
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A.2 HRV-Related Questionnaire

Please answer the following questions:

Yes No

1. Have you rushed in order to arrive on time for this experiment? # #

2. Have you consumed any caffeine beverages in the past two hours? # #

3. Have you consumed any alcoholic beverages in the past 24 hours? # #

4. Do you usually smoke? If yes, please report the number of cigarettes
you smoke on a daily basis.

# #

5. Have you smoked in the past two hours? # #

6. Have you eaten in the past two hours? # #

7. Do you suffer from any mental disorders, for example, severe
depression or anxiety disorder?

# #

8. Do you currently take any cardioactive medications such as anti-
depressant or anti-hypertensive?

# #

9. Do you have any chronic heart issues or respiratory conditions? # #

10. Do you have any known blood pressure conditions? # #

11. Did you follow your usual sleep routine last night? # #

A.3 GAD-7 | Generalised Anxiety Disorder Questionnaire

Over the last 2 weeks, how often have you been bothered by the following
problems?

1 2 3 4

1. Feeling nervous, anxious or on edge # # # #

2. Not being able to stop or control worrying # # # #

3. Worrying too much about different things # # # #

4. Trouble relaxing # # # #

5. Being so restless that it is hard to sit still # # # #

6. Becoming easily annoyed or irritable # # # #

7. Feeling afraid as if something awful might happen # # # #
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A.4 DASS-21 | Depression, Anxiety and Stress Scale

Please read each statement and rate your answer. There are no right or wrong
answers. Do not spend too much time on any statement.

0 – Did not apply to me at all
1 – Applied to me to some degree, or some of the time
2 – Applied to me to a considerable degree or a good part of time
3 – Applied to me very much or most of the time

0 1 2 3

1. I found it hard to wind down # # # #

2. I was aware of dryness of my mouth # # # #

3. I couldn’t seem to experience any positive feeling at all # # # #

4. I experienced breathing difficulty (e.g. excessively rapid
breathing, breathlessness in the absence of physical exertion)

# # # #

5. I found it difficult to work up the initiative to do things # # # #

6. I tended to over-react to situations # # # #

7. I experienced trembling (e.g. in the hands) # # # #

8. I felt that I was using a lot of nervous energy # # # #

9. I was worried about situations in which I might panic and
make a fool of myself

# # # #

10. I felt that I had nothing to look forward to # # # #

11. I found myself getting agitated # # # #

12. I found it difficult to relax # # # #

13. I felt down-hearted and blue # # # #

14. I was intolerant of anything that kept me from getting on
with what I was doing

# # # #

15. I felt I was close to panic # # # #

16. I was unable to become enthusiastic about anything # # # #

17. I felt I wasn’t worth much as a person # # # #

18. I felt that I was rather touchy # # # #

19. I was aware of the action of my heart in the absence of
physical exertion (e.g. sense of heart rate increase, heart missing
a beat)

# # # #

20. I felt scared without any good reason # # # #

21. I felt that life was meaningless # # # #
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A.5 PANAS | Positive and Negative Affect Schedule

This scale consists of a number of words and phrases that describe different
feelings and emotions. Indicate to what extent you have felt this way during
the last week.

very
slightly or
not at all

a little moderately quite a bit extremely

1. attentive # # # # #

2. strong # # # # #

3. irritable # # # # #

4. inspired # # # # #

5. afraid # # # # #

6. alert # # # # #

7. upset # # # # #

8. active # # # # #

9. guilty # # # # #

10. nervous # # # # #

11. excited # # # # #

12. hostile # # # # #

13. proud # # # # #

14. jittery # # # # #

15. ashamed # # # # #

16. scared # # # # #

17. enthusiastic # # # # #

18. distressed # # # # #

19. determined # # # # #

20. interested # # # # #
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A.6 IPAQ | International Physical Activity Questionnaire

We are interested in finding out about the kinds of physical activities that
people do as part of their everyday lives. The questions will ask you about the
time you spent being physically active in the last 7 days. Please answer each
question even if you do not consider yourself to be an active person. Please
think about the activities you do at work, as part of your house and yard work,
to get from place to place, and in your spare time for recreation, exercise or
sport.

Vigorous Activities
Think about all the vigorous activities that you did in the last 7 days.
Vigorous physical activities refer to activities that take hard physical effort
and make you breathe much harder than normal. Think only about those
physical activities that you did for at least 10 minutes at a time.

1. During the last 7 days, on how many days did you do vigorous phys-
ical activities like heavy lifting, digging, aerobics, or fast bicycling?

days per week
2 No vigorous physical activities −→ skip to question 3

2. How much time did you usually spend doing vigorous physical
activities on one of those days?

hours per day
minutes per day

2 Don’t know/Not sure

Moderate Activities
Think about all the moderate activities that you did in the last 7 days.
Moderate activities refer to activities that take moderate physical effort
and make you breathe somewhat harder than normal. Think only about
those physical activities that you did for at least 10 minutes at a time.

3. During the last 7 days, on how many days did you do moderate
physical activities like carrying light loads, bicycling at a regular
pace, or doubles tennis? Do not include walking.

days per week
2 No moderate physical activities −→ skip to question 5

4. How much time did you usually spend doing moderate physical
activities on one of those days?

hours per day
minutes per day

2 Don’t know/Not sure
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Walking
Think about the time you spent walking in the last 7 days. This includes
at work and at home, walking to travel from place to place, and any
other walking that you have done solely for recreation, sport, exercise, or
leisure.

5. During the last 7 days, on how many days did you walk for at least
10 minutes at a time?

days per week
2 No walking −→ skip to question 7

6. How much time did you usually spend walking on one of those
days?

hours per day
minutes per day

2 Don’t know/Not sure

Sitting
The last question is about the time you spent sitting on weekdays during
the last 7 days. Include time spent at work, at home, while doing course
work and during leisure time. This may include time spent sitting at a
desk, visiting friends, reading, or sitting or lying down to watch television.

7. During the last 7 days, how much time did you spend sitting on a
week day?

hours per day
minutes per day

2 Don’t know/Not sure
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A.7 PSQI | Pittsburgh Sleep Quality Index

The following questions relate to your usual sleep habits during the past month
only. Your answers should indicate the most accurate reply for the majority of
days and nights in the past month. Please answer all questions.

1. During the past month, what time have you usually gone to bed at night?
BED TIME:

2. During the past month, how long (in minutes) has it usually taken you to
fall asleep each night?

NUMBER OF MINUTES:

3. During the past month, what time have you usually gotten up in the
morning?

GETTING UP TIME:

4. During the past month, how many hours of actual sleep did you get at
night? (This may be different than the number of hours you spent in bed.)

HOURS OF SLEEP PER NIGHT:

For each of the remaining questions, check the one best response.

0 – Not during the past month

1 – Less than once a week

2 – Once or twice a week

3 – Three or more times a week

5. During the past month, how often have you had trouble sleeping because
you . . .

0 1 2 3

a. Cannot get to sleep within 30 minutes # # # #
b. Wake up in the middle of the night or early morning # # # #
c. Have to get up to use the bathroom # # # #
d. Cannot breathe comfortably # # # #
e. Cough or snore loudly # # # #
f. Feel too cold # # # #
g. Feel too hot # # # #
h. Had bad dreams # # # #
i. Have pain # # # #
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During the past month . . . 0 1 2 3

6. how often have you taken medicine to help you sleep
(prescribed or "over the counter")?

# # # #

7. how often have you had trouble staying awake while
driving, eating meals, or engaging in social activity?

# # # #

8. During the past month, how would you rate your sleep quality overall?

# Very good
# Fairly good
# Fairly bad
# Very bad

9. During the past month, how much of a problem has it been for you to
keep up enough enthusiasm to get things done?

# No problem at all
# Only a very slight problem
# Somewhat of a problem
# A very big problem
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A.8 Affective State Questionnaire

1. How stressed you are right now? (1: Not Stressed at all, 5: Extremely
Stressed)

1 2 3 4 5
# # # # #

2. How are you feeling right now? (1: Very Sad, 5:Very Happy)

1 2 3 4 5
# # # # #

3. This scale consists of a number of words and phrases that describe differ-
ent feelings and emotions. Read each item and then mark the appropriate
answer in the space next to that word. Indicate to what extent you have felt
this way at this moment. Use the following scale to record your answers:

Very slightly
or not at all

A little Moderately
Quite a

bit
Extremely

1. calm # # # # #

2. attentive # # # # #

3. sluggish # # # # #

4. relaxed # # # # #

5. tired # # # # #

6. sleepy # # # # #

7. at ease # # # # #

8. drowsy # # # # #

9. determined # # # # #

10. concentrating # # # # #
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Appendix B

Heart Rate Variability

B.1 CorSense

(a) CorSense (b) Finger Attachment Instructions

(c) EliteHRV Application

Figure B.1: CorSense by EliteHRV
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B.2 Dataset Review

Table B.1: Applicability Review for the Public Datasets

Dataset Name Reference Applicable? Description

MIT-BIH Normal Goldberger et al., 2000 No Long term recordings (i.e.,
not a controlled experiment;
thus, activity condition was
not specified)

Yoga and Chi Peng et al., 1999 No Study involved controlled
breathing activity

Normal Group Peng et al., 1999 Yes Chapter 4

Ironman Peng et al., 1999 No Participants were athletes.

WESAD Schmidt et al., 2018 Yes Chapter 7

SWELL Koldijk et al., 2014 Yes Chapter 7

Spiders Ihmig et al., 2020 No Stress inducer: video clips (i.e.,
not a mental stress task)

BigIdeasLab Bent et al., 2020 No Study involved a physical ac-
tivity

DEAP Koelstra et al., 2012 No Stress inducer: video clips (i.e.,
not a mental stress task)

SPM Vollmer et al., 2019 No Baseline HRV was collected
during a standing position
(i.e., not seated) and the study
involved a physical activity

DaLia Reiss et al., 2019 No Study involved a physical ac-
tivity

CogLoad Gjoreski et al., 2020 No No HRV data for baseline con-
dition
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B.3 GATT Heart Rate Measurement

Description

The Heart Rate Measurement characteristic is a variable-length structure con-
taining a Flags field, a Heart Rate Measurement Value field and, based on
the contents of the Flags field, may contain additional fields such as Energy
Expended or RR-Interval.

Flags Field

0 1 2 3 4 5 6 7

HR SCD SCS EE RR RFFU︸ ︷︷ ︸
format

︸ ︷︷ ︸
detection

︸ ︷︷ ︸
support

︸ ︷︷ ︸
EE/RR presence

︸ ︷︷ ︸
reserved for future use

Figure B.2: Heart Rate Service Flag Byte.

Table B.2: Detailed Description of the Flag Byte

Bit Acronym Definition Value

0 HR Heart Rate Value Format 0:UINT8, 1:UNIT16

1 SCD Sensor contact detected 0:false, 1:true

2 SCS Sensor contact supported 0:false, 1:true

3 EE Energy Expended present 0:false, 1:true

4 RR RR intervals present 0:false, 1:true

5-7 RFU Reserved for Future Use
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Table C.1: Mean of HRV measures obtained from each correction method compared with KUB-corrected signal (benchmark). Data are presented
as mean ± standard deviation (mean absolute error [%])

Feature KUB-corrected Deletion Window Average Cubic Spline Original Erroneous

Time-Domain

MeanRR 950.93 ± 169.26 953.71 ± 171.39 (0.3) 952.62 ± 170.13 (0.2) 952.76 ± 170.12 (0.2) 948.62 ± 166.6 (-0.2) 983.26 ± 169.42 (3.4)

SDNN 65.16 ± 12.32 65.01 ± 12.44 (-0.2) 65.06 ± 12.37 (-0.2) 65.05 ± 12.38 (-0.2) 65.28 ± 12.28 (0.2) 62.92 ± 11.7 (-3.4)

RMSSD 66.05 ± 30.02 76.94 ± 51.56 (16.5) 76.98 ± 50.05 (16.5) 81.83 ± 49.29 (23.9) 64.04 ± 39.36 (-3) 210.66 ± 24.93 (218.9)

NN50 130.16 ± 80.46 127.91 ± 88.7 (-1.7) 131.8 ± 91.31 (1.3) 147.95 ± 86.02 (13.7) 116.27 ± 81.54 (-10.7) 174.41 ± 69.57 (34)

pNN50 30.09 ± 21.54 31.33 ± 23.98 (4.1) 30.58 ± 23.68 (1.6) 33.97 ± 22.64 (12.9) 29.62 ± 23.36 (-1.6) 40.44 ± 19.59 (34.4)

Frequency-Domain

VLF Power 442.06 ± 655.52 523.49 ± 719.06 (18.4) 453.81 ± 639.25 (2.7) 410.99 ± 583.9 (-7) 514.03 ± 882.67 (16.3) 480.88 ± 472.3 (8.8)

LF Power 2308.56 ± 2370.28 2900.82 ± 3090.94 (25.7) 2767.12 ± 3021.2 (19.9) 2606.03 ± 3035.99 (12.9) 2543.99 ± 2771.45 (10.2) 10011.8 ± 3730.3 (333.7)

HF Power 1778.14 ± 1773.71 2853.45 ± 3571.53 (60.5) 2709.2 ± 3373.93 (52.4) 2783.07 ± 3369.31 (56.5) 2180.36 ± 2713.63 (22.6) 14600.27 ± 3621.34 (721.1)

LFnu 55.18 ± 14.05 57.39 ± 15.88 (4) 56.66 ± 16.52 (2.7) 50.47 ± 13.23 (-8.5) 58.9 ± 17.51 (6.7) 40.14 ± 6.23 (-27.3)

HFnu 44.75 ± 14.04 42.56 ± 15.87 (-4.9) 43.28 ± 16.52 (-3.3) 49.45 ± 13.23 (10.5) 41.07 ± 17.52 (-8.2) 59.77 ± 6.2 (33.6)

Total Power 1.48 ± 0.88 1.83 ± 1.46 (23.6) 1.75 ± 1.34 (18.2) 1.18 ± 0.63 (-20.3) 2.05 ± 1.68 (38.5) 0.69 ± 0.2 (-53.4)

Non-Linear

SD1 1.19 ± 0.08 1.19 ± 0.08 (0) 1.24 ± 0.08 (4.2) 1.23 ± 0.07 (3.4) 1.18 ± 0.08 (-0.8) 1.04 ± 0.15 (-12.6)

SD2 1.54 ± 0.19 1.55 ± 0.19 (0.6) 1.58 ± 0.19 (2.6) 1.62 ± 0.18 (5.2) 1.57 ± 0.19 (1.9) 1.08 ± 0.32 (-29.9)

DFA1 1 ± 0.22 0.97 ± 0.26 (-3) 1.01 ± 0.23 (1) 0.98 ± 0.2 (-2) 1.01 ± 0.26 (1) 1.03 ± 0.13 (3)

DFA2 0.37 ± 0.14 0.39 ± 0.16 (5.4) 0.39 ± 0.16 (5.4) 0.38 ± 0.15 (2.7) 0.39 ± 0.15 (5.4) 0.22 ± 0.08 (-40.5)
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Table C.2: Reliability of the correction methods on the HRV features compared to those obtained from the analysis of the KUB-corrected signal
through the Intraclass Correlation Coefficients with their associated 95% confidence intervals

Deletion Window Average Cubic Spline Original Erroneous

Feature ICC 95% CI ICC 95% CI ICC 95% CI ICC 95% CI ICC 95% CI

Time-Domain

MeanRR 1 [1, 1] 1 [1, 1] 1 [1, 1] 1 [1, 1] .98 [.23, 1]

SDNN 1 [1, 1] 1 [1, 1] 1 [1, 1] 1 [1, 1] .98 [.33, .99]

RMSSD .82 [.68, .89] .82 [.68, .90] .79 [.54, .89] .93 [.88, .95] .05 [-.01, .17]

NN50 .99 [.98, .99] .99 [.98, .99] .96 [.70, .99] .98 [.64, .99] .82 [.02, .94]

pNN50 .99 [.98, .99] .99 [.98, .99] .98 [.78, .99] .99 [.99, 1.0] .88 [.03, .97]

Frequency-Domain

VLF Power .96 [.92, .98] .97 [.95, .98] .96 [.94, .98] .91 [.85, .94] .89 [.83, .94]

LF Power .86 [.76, .92] .91 [.84, .95] .91 [.85, .95] .95 [.91, .97] .17 [-.04, .45]

HF Power .71 [.50, .83] .72 [.54, .84] .72 [.51, .83] .88 [.79, .93] .04 [-.02, .15]

Total Power .36 [.13, .56] .41 [.19, .60] .64 [.42, .78] .34 [.12, .54] .11 [-.06, .30]

LFnu .66 [.49, .78] .73 [.59, .83] .78 [.58, .87] .74 [.59, .83] .17 [-.05, .38]

HFnu .66 [.5, .78] .73 [.59, .83] .78 [.58, .87] .74 [.59, .83] .17 [-.05, .39]

Non-Linear

SD1 .92 [.87, .95] .80 [.20, .92] .79 [.33, .91] .89 [.81, .93] 0 [-.12, .15]

SD2 .81 [.71, .88] .74 [.60, .83] .78 [.46, .89] .84 [.75, .90] .19 [-.07, .44]

DFA1 .87 [.79, .92] .93 [.88, .96] .94 [.89, .96] .90 [.84, .94] .71 [.56, .81]

DFA2 .96 [.92, .98] .96 [.89, .98] .97 [.95, .98] .96 [.93, .98] .30 [-.06, .57]
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Figure C.1: Bland-Altman Plot with 95% Limits of Agreements Comparing HRV Measures of Various Correction Methods against KUB-Filtered Signal. Note.
Results of Original Signal (artefact-free) is also Presented.
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Figure D.1: Ethical Approval
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Figure D.2: Consent Form
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Table D.1: Summary Statistics of the Log-Transformed HRV
Measures in the 5-min Recording

Feature Baseline Stress Breathing

M SD M SD M SD

Time-Domain
MeanRR 6.70 .12 6.59 .14 6.71 .15
RMSSD 3.69 .45 3.68 .60 3.91 .56
SDNN 4.20 .37 4.25 .45 4.53 .38
pNN50 2.65 .90 2.56 1.02 3.06 .82
Frequency-Domain
VLF power 6.94 .73 6.81 1.08 6.93 1.25
LF power 7.28 .80 7.53 .78 8.47 .91
HF power 6.25 .85 6.44 1.21 6.49 1.02
LFnu 4.26 .20 4.27 .19 4.44 .17
HFnu 3.22 .47 3.18 .54 2.46 .61
LF/HF 1.04 .66 1.09 .73 1.98 .76
Total power 8.08 .68 8.20 .87 8.91 .98
Non-Linear
SD1 3.35 .45 3.40 .56 3.67 .50
SD2 4.49 .36 4.54 .45 4.82 .37
SampEn .30 .15 .16 .28 -.04 .26
DFA1 .24 .11 .27 .11 .31 .21
DFA2 -.23 .27 -.34 .17 -.68 .45

Table D.2: Summary Statistics of the Log-Transformed HRV
Measures in the 120-s Segment

Feature Baseline Stress Breathing

M SD M SD M SD

Time-Domain
MeanRR 6.71 0.15 6.58 0.15 6.72 0.15
RMSSD 3.73 0.47 3.70 0.57 3.89 0.55
SDNN 4.16 0.40 4.19 0.44 4.49 0.38
pNN50 2.75 0.91 2.51 1.11 3.02 0.91
Frequency-Domain
LF power 7.38 0.94 7.40 1.01 8.33 1.02
HF power 6.33 1.05 6.43 1.26 6.60 0.92
LFnu 4.27 0.18 4.23 0.30 4.40 0.15
HFnu 3.22 0.44 3.21 0.56 2.68 0.60
LF/HF 1.05 0.61 1.02 0.83 1.72 0.75
Total power 8.08 0.88 8.01 1.01 8.69 0.86
Non-Linear
SD1 3.38 0.47 3.36 0.57 3.66 0.49
SD2 4.45 0.40 4.47 0.43 4.78 0.37
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Table D.3: Summary Statistics of the Log-Transformed HRV
Measures in the 60-s Segment

Feature Baseline Stress Breathing

M SD M SD M SD

Time-Domain
MeanRR 6.71 0.15 6.58 0.15 6.72 0.15
RMSSD 3.73 0.48 3.70 0.61 3.88 0.57
SDNN 4.16 0.41 4.16 0.48 4.49 0.37
pNN50 2.74 0.94 2.48 1.22 3.00 0.94
Frequency-Domain
LF power 7.39 1.00 7.36 1.07 8.33 1.04
HF power 6.37 1.09 6.39 1.28 6.62 0.96
LFnu 4.26 0.19 4.23 0.27 4.40 0.16
HFnu 3.25 0.42 3.22 0.56 2.69 0.61
LF/HF 1.01 0.60 1.01 0.81 1.71 0.77
Total power 8.05 0.93 7.92 1.07 8.66 0.90
Non-Linear
SD1 3.38 0.48 3.35 0.61 3.65 0.51
SD2 4.43 0.41 4.45 0.48 4.77 0.36

Table D.4: Summary Statistics of the Log-Transformed HRV
Measures in the 30-s Segment

Feature Baseline Stress Breathing

M SD M SD M SD

Time-Domain
MeanRR 6.72 0.16 6.55 0.16 6.73 0.15
RMSSD 3.74 0.56 3.60 0.67 4.01 0.56
SDNN 4.09 0.45 4.06 0.58 4.55 0.38
pNN50 2.73 1.00 2.31 1.19 3.20 0.77
Frequency-Domain
LF power 7.17 0.97 6.99 1.10 8.53 0.93
HF power 6.28 1.04 5.89 1.46 6.77 1.08
LFnu 4.18 0.37 4.23 0.26 4.39 0.18
HFnu 3.28 0.59 3.13 0.76 2.62 0.78
LF/HF 0.89 0.93 1.10 1.01 1.77 0.95
Total power 7.60 0.90 7.36 1.14 8.75 0.88
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Table D.5: Summary Statistics of the Log-Transformed HRV
Measures in the 20-s Segment

Feature Baseline Stress Breathing

M SD M SD M SD

Time-Domain
MeanRR 6.72 0.16 6.56 0.16 6.73 0.16
RMSSD 3.72 0.58 3.56 0.70 3.98 0.57
SDNN 4.09 0.47 4.00 0.55 4.50 0.39
pNN50 2.63 1.23 2.17 1.25 3.17 0.80
Frequency-Domain
LF power 6.90 1.01 6.73 1.39 8.38 1.07
HF power 6.13 1.03 5.71 1.54 6.53 1.27
LFnu 4.12 0.43 4.16 0.40 4.38 0.23
HFnu 3.34 0.64 3.15 0.88 2.53 0.96
LF/HF 0.77 1.03 1.02 1.24 1.84 1.17
Total power 7.39 0.89 7.17 1.29 8.61 1.02

Table D.6: Summary Statistics of the Log-Transformed HRV
Measures in the 10-s Segment

Feature Baseline Stress Breathing

M SD M SD M SD

Time-Domain
MeanRR 6.72 0.16 6.55 0.17 6.74 0.15
RMSSD 3.71 0.58 3.52 0.71 3.98 0.58
SDNN 3.98 0.43 3.87 0.53 4.50 0.40
pNN50 2.58 1.36 1.97 1.22 3.16 0.82
Frequency-Domain
LF power 6.62 0.91 6.33 1.18 8.11 1.02
HF power 6.11 0.91 5.91 1.39 6.62 1.20
LFnu 3.98 0.59 3.95 0.55 4.29 0.33
HFnu 3.47 0.65 3.53 0.69 2.80 0.91
LF/HF 0.50 1.21 0.42 1.20 1.49 1.22
Total power 7.25 0.71 6.99 1.15 8.43 0.92
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Table D.7: Bias [95% CI] calculated from Bland-Altman Analysis between 5-min and UST segments during baseline (%)

Feature 120 60 30 20 10

Time

MeanRR .44 [-11.3, 12.1] .76 [-11, 12.5] 1.45 [-13.2, 16.1] 1.21 [-14, 16.4] 1.95 [-14.1, 18.1]

RMSSD .97 [-23.6, 25.6] 3 [-35.7, 41.7] 2.21 [-43.3, 47.7] 1.78 [-46.4, 50] 1.4 [-51.6, 54.4]

SDNN 3.51 [-31.5, 38.5] 4.35 [-30.7, 39.4] 10.6 [-43.7, 64.9] 10.86 [-45.4, 67.1] 21.23 [-48.3, 90.8]

pNN50 10.08 [-22.8, 42.3] 9 [-34.3, 52.3] 7.38 [-54.3, 69.1] 2.52 [-121.5, 126.6] 8.82 [-155.5, 173.2]

Frequency

LF power 8.53 [-95, 112.1] 14.75 [-112.7, 130.2] 7.73 [-163.2, 178.6] 28.38 [-149.5, 206.3] 50.38 [-113.5, 214.3]

HF power 8.56 [-81.8, 99] 10.02 [-85.5, 110] 2.32 [-116.9, 121.5] 11.34 [-98.2, 120.9] 12.15 [-115.1, 139.4]

LF/HF 1.05 [-94.4, 96.5] 1.84 [-109.2, 112.9] 12.93 [-145.5, 171.4] 22.43 [-148.7, 193.5] 38.76 [-137.8, 215.3]

Total power .25 [-87.1, 87.6] 3.46 [-98.4, 105.3] 41.12 [-103.5, 185.7] 58.09 [-82.9, 199.1] 70.1 [-53.1, 193.3]

Non-Linear

SD1 3.27 [-10.5, 17.1] 3.7 [-12.9, 20.3]

SD2 4.63 [-34.4, 43.7] 5.74 [-34, 45.4]
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Table D.8: Bias [95% CI] calculated from Bland-Altman Analysis between 5-min and UST segments during stress (%)

Feature 120 60 30 20 10

Time

MeanRR 1.85 [-4, 7.7] 1.7 [-4.3, 7.7] 4.15 [-7.6, 15.9] 3.62 [-9.6, 16.8] 4.73 [-9.9, 19.3]

RMSSD 4.33 [-31.5, 40.1] 4.78 [-35.3, 44.8] 11.76 [-42.2, 70.8] 12.24 [-45.9, 82.1] 15.05 [-51.9, 95.7]

SDNN 5.52 [-27, 38.1] 8.56 [-34.3, 51.4] 13.53 [-40.4, 77.5] 16.46 [-36.2, 85.1] 22.61 [-38.9, 110.1]

pNN50 4.71 [-56.8, 66.2] 14.11 [-107.4, 135.7] 17.64 [-98.5, 169.7] 18.58 [-109.5, 216.6] 20.65 [-96.4, 235.7]

Frequency

LF power 10.02 [-80.4, 100.9] 13.59 [-86.7, 113.9] 41.94 [-108.6, 192.5] 52.95 [-107.3, 213.2] 87.17 [-58.7, 233]

HF power 0.36 [-101.3,102] 1.74 [-111.1,114.5] 46.28 [-109.5, 202.1] 58.54 [-97, 214.1] 41.31 [-130.5, 213.2]

LF/HF 6.17 [-97.7, 110] 6.53 [-109.1, 122.2] 1.5 [-144.4, 147.4] 6.4 [-167.2, 180] 52.33 [-126.1, 230.7]

Total power 14.17 [-76.5, 104.9] 22.22 [-73.1, 117.6] 64.45 [-73.3, 202.2] 73.46 [-66.9, 213.8] 92.21 [-32.2, 216.6]

Non-Linear

SD1 4.32 [-31.5, 40.1] 4.8 [-35.3, 44.9]

SD2 6.3 [-27.7, 40.3] 9.82 [-35, 54.6]
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Table D.9: Bias [95% CI] calculated from Bland-Altman Analysis between 5-min and UST segments during paced breathing (%)

Feature 120 60 30 20 10

Time

MeanRR .46 [-5.1, 6] .44 [-5.8, 6.6] 2.13 [-5.7, 10] 2.16 [-6.8, 11.2] 2.5 [-6.4, 11.4]

RMSSD .17 [-29.8, 30.1] 3.18 [-25.4, 31.7] 10.75 [-24.5, 44.4] 8.8 [-25.4, 43] 7.32 [-42.6, 57.3]

SDNN 4.3 [-27.4, 36] 4.41 [-27.3, 36.1] 2.06 [-41.5, 45.6] 2.99 [-51.6, 57.5] 3.02 [-59.4, 65.4]

pNN50 3.36 [-44, 50.7] 5.53 [-49.8, 60.9] 6.57 [-38.5, 65.7] 10.58 [-55.8, 77] 9.29 [-70.1, 88.6]

Frequency

LF power 4.52 [-76.9, 104] 7.24 [-83, 109.5] 7.31 [-106.2, 120.8] 7.6 [-112.2, 127.4] 28.72 [-101.2, 158.6]

HF power 10.05 [-65.5, 85.8] 11.5 [-70.6, 93.6] 21.91 [-88, 131.8] 2.18 [-139.2, 143.6] 5.85 [-154.2, 165.9]

LF/HF 8.15 [-79.1, 125.4] 13.72 [-83.7, 131.2] 16.3 [-120.5, 153.1] 8.87 [-148.8, 166.6] 36.23 [-135.9, 208.4]

Total power 8.07 [-75.4, 111.5] 14.81 [-78.1, 119.8] 8.98 [-114.4, 132.4] 21.16 [-106.8, 149.1] 34.25 [-97.6, 166.1]

Non-Linear

SD1 1.29 [-22.3, 24.9] 2.21 [-27.4, 31.9]

SD2 4.69 [-28.3, 37.7] 4.96 [-27.6, 37.5]
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Table D.10: Pearson Correlation Coefficients of HRV Measures for the Baseline Condition with 95% CI

Feature 120 60 30 20 10

Time

MeanRR .99 [.98, .98] .98 [.94, .97] .95 [.86, .96] .94 [.83, .96] .92 [.80, .95]

RMSSD .98 [.97,1.00] .94 [.85, .99] .92 [.74, .98] .91 [.72, .97] .89 [.70, .96]

SDNN .90 [.82, .96] .89 [.75, .96] .78 [.52, .89] .78 [.51, .91] .59 [.19, .82]

pNN50 .98 [.96, .99] .97 [.93, .99] .95 [.87, .98] .86 [.68, .95] .82 [.59, .92]

Frequency

LF power .80 [.56, .92] .74 [.45, .89] .32 [-.15, .67] .21 [-.26, .59] .06 [-.39, .49]

HF power .88 [.79, .95] .87 [.76, .95] .77 [.50, .90] .81 [.57, .92] .68 [.34, .86]

LF/HF .68 [.34, .86] .55 [.14, .80] .35 [-.11, .69] .29 [-.18, .65] .36 [-.10, .69]

Total power .85 [.65, .94] .81 [.57, .92] .44 [.00, .74] .43 [-.01, .73] .31 [-.16, .66]

Non-Linear

SD1 .99 [.97, 1.00] .98 [.96, .99]

SD2 .86 [.78, .95] .87 [.76, .95]
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Table D.11: Pearson Correlation Coefficients of HRV Measures for the Stress Condition with 95% CI

Feature 120 60 30 20 10

Time

MeanRR .98 [.96, .99] .98 [.95, .99] .93 [.82, .97] .90 [.77, .97] .90 [.76, .96]

RMSSD .98 [.95, .99] .97 [.93, .98] .90 [.73, .96] .86 [.71, .95] .72 [.59, .83]

SDNN .93 [.85, .97] .89 [.76, .95] .84 [.64, .94] .81 [.57, .92] .65 [.30, .85]

pNN50 .96 [.89, .98] .89 [.73, .95] .90 [.76, .96] .84 [.63, .93] .76 [.48, .90]

Frequency

LF power .85 [.66, .94] .83 [.62, .90] .51 [.09, .78] .36 [-.10, .69] .35 [-.11, .69]

HF power .89 [.81, .95] .85 [.77, .94] .71 [.39, .88] .71 [.39, .88] .63 [.26, .84]

LF/HF .76 [.47, .90] .67 [.32, .86] .54 [.13, .79] .51 [.09, .78] .27 [-.20, .64]

Total power .79 [.54, .92] .77 [.50, .91] .51 [.09, .78] .43 [-.01, .73] .53 [.11, .79]

Non-Linear

SD1 .95 [.87, .98] .94 [.85, .98]

SD2 .92 [.81, .97] .87 [.78, .95]
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Table D.12: Pearson Correlation Coefficients of HRV Measures for the Paced Breathing Condition with 95% CI

Feature 120 60 30 20 10

Time

MeanRR .98 [.96, .99] .98 [.95, .99] .96 [.91, .99] .95 [.89, .98] .95 [.87, .97]

RMSSD .96 [.91, .99] .97 [.92, .98] .95 [.88, .98] .95 [.84, .97] .90 [.75, .96]

SDNN .95 [.81, .96] .94 [.79, .96] .86 [.76, .93] .81 [.52, .88] .74 [.48, .85]

pNN50 .96 [.91, .99] .95 [.89, .98] .94 [.85, .98] .90 [.76, .96] .86 [.67, .94]

Frequency

LF power .88 [.80, .95] .87 [.76, .95] .75 [.46, .89] .76 [.47, .90] .65 [.30, .85]

HF power .92 [.81, .97] .90 [.77, .96] .77 [.50, .91] .74 [.44, .89] .54 [.13, .79]

LF/HF .72 [.41, .88] .68 [.35, .86] .56 [.16, .81] .55 [.14, .80] .45 [.01, .74]

Total power .78 [.52, .91] .76 [.48, .90] .56 [.15, .80] .54 [.13, .80] .39 [-.07, .71]

Non-Linear

SD1 .97 [.93, .99] .95 [.88, .98]

SD2 .89 [.76, .96] .89 [.75, .96]
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Figure D.3: Bland-Altman Plots with 95% Limits of Agreements of HRV Time-Domain Measures during baseline.
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Figure D.4: Bland-Altman Plots with 95% Limits of Agreements of HRV Frequency-Domain Measures during baseline.
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Figure D.5: Bland-Altman Plots with 95% Limits of Agreements of HRV Time-Domain Measures during stress.
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Figure D.6: Bland-Altman Plots with 95% Limits of Agreements of HRV Frequency-Domain Measures during stress.
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Figure D.7: Bland-Altman Plots with 95% Limits of Agreements of HRV Frequency-Domain Measures during Paced Breathing.



258

−1
50

00
0

15
00

0 LFpower  300 vs  120

 

 

LFpower  300 vs  60

 

 

LFpower  300 vs  30

 

 

LFpower  300 vs  20

 

 

LFpower  300 vs  10

 

 

−5
00

0
50

00

HFpower  300 vs  120

 

 

HFpower  300 vs  60

 

 

HFpower  300 vs  30

 

 

HFpower  300 vs  20

 

 

HFpower  300 vs  10

 

 

−3
0

0
20

LFHF  300 vs  120

 

 

LFHF  300 vs  60

 

 

LFHF  300 vs  30

 

 

LFHF  300 vs  20

 

 

LFHF  300 vs  10

 

 

−4
00

00
0

40
00

0TotalPower  300 vs  120

 

 

TotalPower  300 vs  60

 

 

TotalPower  300 vs  30

 

 

TotalPower  300 vs  20

 
 

TotalPower  300 vs  10

 

 

Differences in Measurements

M
ea

ns
 o

f M
ea

su
re

m
en

ts

−6000 0 4000 LFpow
er  300 vs  120

 

 

LFpow
er  300 vs  60

 

 

LFpow
er  300 vs  30

 

 

LFpow
er  300 vs  20

 

 

LFpow
er  300 vs  10

 

 

−4000 0 4000H
Fpow

er  300 vs  120

 

 

H
Fpow

er  300 vs  60

 

 

H
Fpow

er  300 vs  30

 

 

H
Fpow

er  300 vs  20

 

 

H
Fpow

er  300 vs  10

 

 

−10 0 5 10

LFH
F  300 vs  120

 

 

LFH
F  300 vs  60

 

 

LFH
F  300 vs  30

 

 

LFH
F  300 vs  20

 

 

LFH
F  300 vs  10

 

 

−10000 0 10000TotalPow
er  300 vs  120

 

 

TotalPow
er  300 vs  60

 

 

TotalPow
er  300 vs  30

 

 

TotalPow
er  300 vs  20

 

 

TotalPow
er  300 vs  10

 

 

D
ifferences in M

easurem
ents

Means of Measurements

−600004000LF
po

w
er

  3
00

 v
s 

 1
20

 

 

LF
po

w
er

  3
00

 v
s 

 6
0

 

 

LF
po

w
er

  3
00

 v
s 

 3
0

 

 

LF
po

w
er

  3
00

 v
s 

 2
0

 

 

LF
po

w
er

  3
00

 v
s 

 1
0

 

 

−400004000H
Fp

ow
er

  3
00

 v
s 

 1
20

 

 

H
Fp

ow
er

  3
00

 v
s 

 6
0

 

 

H
Fp

ow
er

  3
00

 v
s 

 3
0

 

 

H
Fp

ow
er

  3
00

 v
s 

 2
0

 

 

H
Fp

ow
er

  3
00

 v
s 

 1
0

 

 

−100510

LF
H

F 
 3

00
 v

s 
 1

20

 
 

LF
H

F 
 3

00
 v

s 
 6

0

 

 

LF
H

F 
 3

00
 v

s 
 3

0

 

 

LF
H

F 
 3

00
 v

s 
 2

0

 

 

LF
H

F 
 3

00
 v

s 
 1

0

 

 

−10000010000To
ta

lP
ow

er
  3

00
 v

s 
 1

20

 

 

To
ta

lP
ow

er
  3

00
 v

s 
 6

0

 
 

To
ta

lP
ow

er
  3

00
 v

s 
 3

0

 

 

To
ta

lP
ow

er
  3

00
 v

s 
 2

0

 

 

To
ta

lP
ow

er
  3

00
 v

s 
 1

0

 

 

D
iff

er
en

ce
s 

in
 M

ea
su

re
m

en
ts

Means of Measurements

Figure D.8: Bland-Altman Plots with 95% Limits of Agreements of HRV Frequency-Domain Measures during Paced Breathing.
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Table D.13: Multilevel Linear Model Analysis Results

Feature
5 min 2 min 1 min 30 sec 20 sec 10 sec

χ2 p-value χ2 p-value χ2 p-value χ2 p-value χ2 p-value χ2 p-value

MeanRR 54.2 <.001 44.4 <.001 42.97 <.001 40.2 <.001 37.0 <.001 38.4 <.001

RMSSD 4.3 .117 2.6 .266 2.25 .324 8.3 .016 8.2 .016 9.2 .01

SDNN 12.0 .003 11.4 .003 12.63 .002 18.4 <.001 18.6 <.001 25.2 <.001

pNN50 7.6 .022 5.2 .074 5.08 .079 13.8 .001 13.0 .002 16.7 <.001

LF power 25.0 <.001 15.1 <.001 14.05 <.001 27.3 <.001 22.1 <.001 28.1 <.001

HF power 1.0 .601 1.0 .598 0.94 .626 8.2 .017 5.4 .069 5.0 .081

LF/HF 22.3 <.001 11.3 .003 11.57 .003 8.8 .013 9.2 .01 9.5 .009

Total power 13.3 .001 9.9 .007 9.72 .008 26.0 <.001 21.5 <.001 26.4 <.001

SD1 8.4 .015 7.1 .028 6.46 .04

SD2 11.9 .003 11.9 .003 13.30 .001



Table D.14: Detailed Summary of the Minimum Reliable UST
Segment based on each Criterion

Feature Analysis Baseline Stress Paced Breathing

MeanRR
BA 10 10 10
PC 10 10 10
TA 10 10

RMSSD
BA 10 60 60
PC 60 60 10
TA 10 10

SDNN
BA 60 60 10
PC 60 60 30
TA 60 10

PNN50
BA 120 120 30
PC 30 120 20
TA 10 –

LF power
BA 120 120 20
PC – – 60
TA 120 10

HF power
BA 60 60 120
PC 60 60 60
TA 60 10

LF/HF
BA 60 20 120
PC – – –
TA – 10

Total power
BA 60 – 120
PC – – –
TA – 10

SD1
BA 60 60 60
PC 60 60 60
TA – 10

SD2
BA 60 60 60
PC 60 60 60
TA 60 60

Note. BA is the Bland-Altman Analysis; where bias is less than 10%.
PC is the Pearson Correlation Analysis; where r > .80 95% CI lower bound > .75.
TA is the Trend Analysis for non-resting conditions.
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Figure E.1: Ethical Approval
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Figure E.2: Consent Form
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(a) A panoramic view of the HCI Lab

(b) Experimental Setup

Figure E.3: Photos of the study room and the experimental setup
at HBKU.
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Table E.1: Baseline Scores and Log-Transformed HRV Measures
by Group (N=38)

Total CTRL HRVB

mean (SD) mean (SD) mean (SD)

Affective State

Stress 1.76 (0.97) 1.95 (1.13) 1.58 (0.77)

Mood 3.5 (0.69) 3.63 (0.5) 3.37 (0.83)

Attentiveness 15.03 (2.53) 15.37 (2.91) 14.68 (2.11)

Fatigue 7.47 (2.48) 6.37 (1.8) 8.58 (2.61)

Serenity 11.26 (2.48) 11.47 (2.61) 11.05 (2.39)

Time-Domain

MeanRR 6.65 (0.13) 6.64 (0.11) 6.67 (0.15)

RMSSD 3.57 (0.7) 3.69 (0.71) 3.44 (0.68)

SDNN 3.97 (0.51) 3.98 (0.52) 3.96 (0.51)

pNN50 2.35 (1.31) 2.49 (1.4) 2.22 (1.24)

Frequency-Domain

LF Power 6.47 (1.21) 6.65 (1.33) 6.3 (1.1)

HF Power 6.24 (1.39) 6.27 (1.45) 6.22 (1.37)

LF/HF 0.23 (0.95) 0.38 (0.87) 0.08 (1.03)

Total Power 7.62 (1.04) 7.73 (1.11) 7.52 (0.98)

Non-Linear Methods

SD1 3.5 (0.71) 3.53 (0.68) 3.47 (0.75)

SD2 4.18 (0.46) 4.18 (0.48) 4.17 (0.45)

Blood Pressure

Systolic 102.8 (13.8) 103.1 (13.7) 102.4 (14.2)

Diastolic 76.3 (6.0) 77.5 (5.6) 75.0 (6.3)
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Table E.2: Pre-Intervention Scores and Log-Transformed HRV
Measures by Group (N=38)

Total CTRL HRVB

mean (SD) mean (SD) mean (SD)

Affective State

Stress 2.26 (1) 2.42 (1.07) 2.11 (0.94)

Mood 3.68 (0.81) 3.79 (0.63) 3.58 (0.96)

Attentiveness 16.11 (3.16) 16.16 (3.2) 16.05 (3.21)

Fatigue 6.68 (3.06) 5.79 (2.18) 7.58 (3.58)

Serenity 9.97 (2.37) 9.95 (2.32) 10 (2.47)

Time-Domain

MeanRR 6.59 (0.13) 6.58 (0.1) 6.6 (0.15)

RMSSD 3.77 (0.58) 3.8 (0.38) 3.73 (0.74)

SDNN 3.93 (0.55) 3.86 (0.42) 3.99 (0.66)

pNN50 2.95 (0.91) 2.95 (0.79) 2.95 (1.04)

Frequency-Domain

LF power 6.42 (1.12) 6.24 (0.85) 6.59 (1.34)

HF power 6.21 (1.53) 6.15 (1.41) 6.28 (1.67)

LF/HF 0.2 (0.81) 0.1 (0.87) 0.31 (0.75)

Total power 7.55 (1.14) 7.45 (0.94) 7.64 (1.32)

Non-Linear Methods

SD1 3.59 (0.61) 3.48 (0.42) 3.69 (0.76)

SD2 4.1 (0.51) 4.03 (0.37) 4.17 (0.63)

Blood Pressure

Systolic 75.7 (7.38) 119.6 (17.6) 115.5 (13.7)

Diastolic 117.6 (15.7) 78.4 (8.1) 72.9 (5.6)
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Table E.3: Mid-Intervention Scores and Log-Transformed HRV
Measures by Group (N=38)

Total CTRL HRVB

mean (SD) mean (SD) mean (SD)

Affective State

Stress 1.82 (0.98) 2.16 (1.07) 1.47 (0.77)

Mood 3.84 (0.86) 4.05 (0.62) 3.63 (1.01)

Attentiveness 15.39 (3.09) 14.84 (3.2) 15.95 (2.95)

Fatigue 8.18 (4.03) 6.84 (3.13) 9.53 (4.45)

Serenity 10.87 (2.97) 9.16 (2.48) 12.58 (2.41)

Time-Domain

MeanRR 6.63 (0.12) 6.6 (0.1) 6.66 (0.13)

RMSSD 3.73 (0.66) 3.6 (0.64) 3.86 (0.66)

SDNN 4.23 (0.55) 3.89 (0.39) 4.56 (0.49)

pNN50 2.73 (1.17) 2.58 (1.29) 2.88 (1.06)

Frequency-Domain

LF power 7.2 (1.35) 6.5 (0.82) 7.89 (1.45)

HF power 6.54 (1.32) 6.54 (1.09) 6.54 (1.55)

LF/HF 0.69 (1.1) 0.03 (0.87) 1.34 (0.92)

Total power 8.01 (1.14) 7.6 (0.85) 8.41 (1.27)

Non-Linear Methods

SD1 3.73 (0.65) 3.62 (0.58) 3.85 (0.71)

SD2 4.46 (0.51) 4.25 (0.36) 4.67 (0.57)
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Table E.4: Post-Intervention Scores and Log-Transformed HRV
Measures by Group (N=38)

Total CTRL HRVB

mean (SD) mean (SD) mean (SD)

Affective State

Stress 2.03 (0.85) 2.21 (0.98) 1.84 (0.69)

Mood 3.97 (0.75) 4.11 (0.66) 3.84 (0.83)

Attentiveness 16.03 (3.11) 15.37 (3.68) 16.68 (2.33)

Fatigue 7.18 (3.43) 6.37 (2.83) 8 (3.84)

Mood 3.97 (0.75) 4.11 (0.66) 3.84 (0.83)

Serenity 10.13 (2.68) 8.63 (2.36) 11.63 (2.11)

Stress 2.03 (0.85) 2.21 (0.98) 1.84 (0.69)

Time-Domain

MeanRR 6.62 (0.12) 6.59 (0.11) 6.65 (0.13)

RMSSD 3.84 (0.74) 3.79 (0.63) 3.89 (0.85)

SDNN 3.97 (0.68) 3.88 (0.54) 4.07 (0.8)

pNN50 2.99 (1.03) 3.02 (0.92) 2.96 (1.15)

Frequency-Domain

LF power 6.75 (1.4) 6.62 (1.13) 6.87 (1.64)

HF power 6.4 (1.75) 6.19 (1.5) 6.62 (1.99)

LF/HF 0.34 (0.8) 0.44 (0.91) 0.25 (0.69)

Total power 7.73 (1.44) 7.58 (1.08) 7.87 (1.75)

Non-Linear Methods

SD1 3.72 (0.77) 3.64 (0.64) 3.81 (0.88)

SD2 4.17 (0.64) 4.11 (0.49) 4.23 (0.77)

Blood Pressure

Systolic 108.1 (16.2) 117.2 (14.8) 98.9 (11.9)

Diastolic 76.3 (6.76) 78.2 (6.6) 74.4 (6.5)
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Performance Metrics

Confusion Matrix

T
ru
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L
a
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Negative TN FP

Positive FN TP

Negative Positive

Predicted Label

Figure F.1: Confusion Matrix
Note. TN: True Negative, FN: False Neagative, FP: False Positive, TP: True Positive

Equations

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F1 Score =
2× Precision× Recall

Precision+ Recall

MCC =
TP× TN− FP× FN√

(TP+ FP)× (TP+ FN)× (TN+ FP)× (TN+ FN)
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