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Abstract
Scattering amplitudes have their origin in quantum field theory, but have wide-
ranging applications extending to classical physics. We review a formalism to
connect certain classical observables to scattering amplitudes. An advantage of
this formalism is that it enables us to study implications of the double copy in
classical gravity. We discuss examples of observables including the total change
of a particle’s momentum, and the gravitational waveform, during a scattering
encounter. The double copy also allows direct access to classical solutions in
gravity. We review this classical double copy starting from its linearised level,
where it originates in the double copy of three-point amplitudes. The classical
double copy extends elegantly to exact solutions, making a connection between
scattering amplitudes and the geometric formulation of general relativity.
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1. Introduction

At the end of a century of experimental and theoretical work, we know that a theory of
nature must respect both the laws of quantum mechanics and the framework of special rel-
ativity. We have tested the forces of particle physics in detail, and have seen beautiful agree-
ment with both. Gravity, ironically the one facet of fundamental physics whose rudiments
were known to the ancients, stands apart. The spectacular observational tests of Einstein
gravity have been restricted to classical aspects. Observing genuinely quantum aspects of
gravity presumably requires probing extremely short distances experimentally, which is very
difficult.

Theorists are not so easily corralled, however. The late Steven Weinberg taught us how
to control theories, including gravity, even in the ignorance of their short-distance behaviour.
Furthermore, the underlying quantum nature of the rest of physical theory ensures that we can
choose to see any classical measurement as a limit of a quantum one.

We can thus choose to compute the results of any measurement in classical gravity
using quantum-mechanical methods. What is more surprising is that it can be useful to
do so. This surprise, and a particular framework for doing so, are the motivation for this
review.

The surprise has its roots in a relation first noticed in string theory [1]. In the field-theory
limit of string theory, this relation connects amplitudes in gravity theories to ‘squares’ of
amplitudes in Yang–Mills (YM) theories [2, 3]. A different way of formulating such ‘double
copy’ relations presents them as a consequence of a duality between YM colour and kinematic
degrees of freedom [4–6]. This duality can be implemented at a diagrammatic level, providing
a sharp tool useful for loop calculations as well as tree-level ones. In particular, the duality has
direct relevance for classical gravitational radiation [7–10].

In this review, we start by presenting the connection of scattering amplitudes to observ-
ables using an on-shell formalism developed by Maybee and two of the authors (KMOC)
[11]. It starts with quantum observables, expresses them in terms of scattering amplitudes,
and then offers evaluations of the corresponding classical quantities. In this setting, four-
point amplitudes determine quantities such as the scattering angle, with five-point amplitudes
determining radiation. The expression for the waveform in terms of amplitudes [12] estab-
lishes the double copy’s utility for computing the waveform to all orders in perturbation
theory. Other researchers have applied and extended these ideas in a number of important
directions [13–26].

We further review how the double copy applies directly to classical solutions in YM the-
ory and gravity. The starting point is the double copy of three-point scattering amplitudes,
studied in a spacetime with (2, 2) signature instead of conventional Minkowski space. These
amplitudes determine the linearised YM field strength or the space-time curvature of clas-
sical gravitational solutions. The double copy relating the amplitudes then translates into a
double copy relating the classical solutions. Remarkably, for the most important exact solu-
tions of general relativity (GR)—Schwarzschild and Kerr—this double-copy relation extends
naturally beyond the linearised level to an exact statement. The Kerr–Schild [27] and Weyl
[28] double copies are exact formulations of the classical relation. These advances show
that insights from scattering amplitudes into classical gravity extend beyond the perturba-
tive realm, and have a deep connection to the geometric formulation of GR. We give an
overview of the achievements and limitations of the classical double copy, including some open
questions.

Researchers have developed many other approaches to conservative and radiative processes
in the gravitational two-body problem. These include direct solutions of the GR equations,
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either perturbative [29–34] or numerical [35, 36]; effective field theory [37–45] or worldline
[46–52] methods; and use of the eikonal approximation [53–73]. Approaches based on the
modern amplitudes programme include reconstructing the classical potential from four-point
amplitudes [74–87], matching to effective field theory [79, 88–94], and deducing eikonal-
type kernels [95, 96]. Progress on scattering amplitudes has also reinvigorated the study of
gravitational interactions in a fully (special) relativistic formalism, see for example references
[97–104].

In the next section, we review the observables-based formalism of references [11, 12]. We
show how to apply it to the computation of the change of momentum (equivalent to the scat-
tering angle) in section 3. In section 4, we apply it to the waveform of radiation emitted in
the scattering of two particles. Spinorial variables are widely used in modern approaches to
scattering amplitudes, and find a natural partner in Newman–Penrose (NP) scalars, which we
present in section 5. In section 6, we review the use of the (2, 2) signature, using it to show
the connection of three-point amplitudes to the linearised field strength or curvature of classi-
cal solutions. In section 7, we discuss the extension of the amplitudes double copy to a direct
relation between classical solutions. We conclude with some perspectives on future research
in section 8.

This review is one of a series describing the current status of research in scattering ampli-
tudes and their applications; see reference [105] for the overview article. Two chapters in this
series are closely related to ours: reference [106], which reviews the double copy of scattering
amplitudes and their applications, and contains a section on classical gravity; and reference
[107], which is dedicated to the applications of amplitudes in classical gravity, via different
approaches to the one we review here.

2. Observables from amplitudes

We seek a formalism which will express classical observables in terms of scattering amplitudes.
We will consider only observables in scattering processes in this review. There are two starting
ingredients in building such a formalism: a parameter that controls the classical limit, and an
expression for the initial state.

The easiest parameter with which to control the classical limit is h̄. We restore it in expres-
sions by dimensional analysis. We continue to use relativistic units, with c = 1. We must
now distinguish between units of energy and inverse length ([M] and [L]−1 respectively). We
normalize the annihilation and creation operators for massive scalars so that

[ap, a†
p′] = (2π)32Epδ

(3)(p− p′), (1)

with bold symbols denoting spatial three-vectors. It will be convenient to keep the dimension
of single-particle plane-wave states, |p〉, to be [M]−1 just as with natural units,

|p〉 ≡ a†
p|0〉, (2)

with the vacuum state being dimensionless. The state |p〉 represents a particle of momentum p
and positive energy, while 〈p| = 〈0|ap is the conjugate state. We define n-particle plane-wave
states as simply the tensor product of normalized single-particle states.

It will be convenient to hide factors of 2π throughout; we do that by defining an n-fold Dirac
δ distribution with normalization absorbing 2πs,

δ̂(n)(p) ≡ (2π)nδ(n)(p), (3)
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where as usual we omit the superscript for n = 1. We do the same for the measure,

d̂4 p ≡ d4 p
(2π)4

. (4)

It is convenient as well to define a short-hand notation for the on-shell phase-space measure,

dΦ(pi) ≡ d̂4 piδ̂
(+)(p2

i − m2
i ). (5)

In this expression,

δ̂(+)(p2 − m2) = 2πΘ(p0)δ(p2 − m2). (6)

(The energy component of the four-vector is p0.) We leave the mass implicit in dΦ(p).
With our normalization of single-particle states, their inner product is,

〈p′|p〉 = δ̂Φ(p− p′), (7)

where,

δ̂Φ(p− p′) ≡ 2Epδ̂
(3)(p− p′). (8)

We should understand the argument on the left-hand side as a function of four-vectors. With
this abbreviated notation, we can also rewrite the normalization of creation and annihilation
operations (1) in a natural form,

[ap, a†
p′] = δ̂Φ(p− p′). (9)

We will employ the notation a(k) ≡ ak and a†(k) ≡ a†
k to allow for additional indices.

The scattering matrix S and the transition matrix T are both dimensionless. Scattering
amplitudes are matrix elements of the latter between plane-wave states,

〈p′1 . . . p′m|T|p1 . . . pn〉 = A(p1 . . . pn → p′1 . . . p′m)δ̂(4)(p1 + · · · pn − p′1 − · · · − p′m).

(10)

A straightforward consequence of this expression is that n-point scattering amplitudes continue
to have mass dimension [M]4−n in our units where h̄ �= 1.

Factors of h̄ appear in two places: in the couplings, and in the distinction between momenta
and wavenumbers. We consider theories with massless force carriers generally, denoting the
coupling by g. In electrodynamics, the coupling is e, while in gravity it is κ =

√
32πG. Ampli-

tudes are power series in g/
√

h̄, which introduces an increasing number of inverse powers of
h̄ with multiplicity and loop order. An n-point L-loop amplitude scales as

h̄1−n/2−L. (11)

The singular powers of h̄ may appear disturbing at first glance; but we must remember that
amplitudes are not themselves physically observable, and we cannot simply take the classical
limit of amplitudes alone.

In traditional approaches to quantum field theory, momenta serve as primary variables.
(In more modern approaches, it is rather spinor variables—in a sense ‘square roots’ of
momenta—that serve as fundamental variables). We typically make no fundamental distinction
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between massive or massless momenta, and no distinction between momenta and wavenum-
bers. For our purposes, we must now make this distinction. The natural variables turn out to be
the momenta of massive particles, but the wavenumbers of massless particles (or their spinorial
‘square roots’).

We introduce a notation for the wavenumber p̄ associated to the momentum p,

p̄ ≡ p/h̄. (12)

The factors of h̄ that arise from expressing observables in terms of integration over wavenum-
bers compensate the singular factors mentioned above, and ultimately lead to finite values for
physical observables in the classical limit.

In the usual application of scattering amplitudes to collider physics, we take the initial and
final states to be plane-wave states for both massive and massless particles. We cannot do this
if we want to match to a classical limit of localized point particles. Instead we must use a
relativistic wavefunction φ(p) to build a quantum state |ψ1〉in corresponding to one localized
particle,

|ψ1〉in =

∫
d̂4 pδ̂(+)(p2 − m2)φ(p)|p〉in =

∫
dΦ(p)φ(p)|p〉in. (13)

It will be easiest to make this state dimensionless, for which we need φ(p) to have dimensions
of inverse energy. This also allows us to normalize the state to unity, which we can accomplish
by normalizing the wavefunctions,∫

dΦ(p)|φ(p)|2 = 1. (14)

The simplest wavefunctions will localize the momentum p in a neighborhood of the classical
four-velocity u, with the localization becoming tighter as h̄ → 0.

Turning to scattering situations, we build an incoming two-particle state out of localized
states for each particle, with the impact parameter b introduced through a phase factor,

|ψ〉in =

∫
d̂4 p1d̂4 p2δ̂

(+)(p2
1 − m2

1)δ̂(+)(p2
2 − m2

2)φ1(p1)φ2(p2)eib·p1/ h̄|p1 p2〉in

=

∫
dΦ(p1, p2)φ1(p1)φ2(p2)eib·p1/ h̄|p1 p2〉in

≡
∫

dΦ(p1, p2)φb(p1, p2)|p1, p2〉in. (15)

We have abbreviated dΦ(p1, p2) ≡ dΦ(p1)dΦ(p2). The impact parameter b is a four-vector,
necessarily space-like. We take it to be transverse, meaning that p1 · b = 0 = p2 · b. With the
normalization condition (14) imposed on both φ1(p) and φ2(p), the initial state will also be
normalized to unity, in 〈ψ|ψ〉in = 1.

There are three scales that we must consider in the scattering of massive particles: their
Compton wavelengths, �(i)

c = h̄/mi; the packet spread in the wavefunctions φi(p), which we
denote �(i)

w ; and the scattering length determined by the interactions, �s. In order to keep quan-
tum effects small, we must insist that �(i)

c 
 �(i)
w ; in order to treat the scattering as that of

point-like particles, we must also insist that �w 
 �s. The authors of reference [11] discuss the
combined ‘Goldilocks’ conditions in greater detail. These conditions imply that we should inte-
grate over wavenumbers for massless particles—for both virtual and real-emission lines—in
order to make the factors of h̄ explicit before integration, with the integrations having weight
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across unbounded domains. Integrating over momenta would instead result in the factors of
h̄ emerging only from performing the integrals, and the integrations essentially concentrated
around zero values for the corresponding momenta.

We consider observables which can be expressed as the integrated change in a quantity over
the course of the scattering. Such an observable 〈O〉 is determined in the quantum theory by the
difference between the measurement of the corresponding operator, O, in the final and initial
states,

〈O〉=out〈ψ|O|ψ〉out−in〈ψ|O|ψ〉in. (16)

Equation (15) gives a concrete expression for the initial state, once we specify the wavefunc-
tions φi(p); what about the final state?

We can rely on the S matrix, viewed as the evolution operator from the far past to the far
future, to obtain an expression for it,

|ψ〉out = U(∞,−∞)|ψ〉in = S|ψ〉in. (17)

We can then express the integrated observable 〈O〉 as follows,

〈O〉=in〈ψ|S†
OS −O|ψ〉in. (18)

We will leave the ‘in’ subscript implicit going forward. We denote the classical limit of 〈O〉
interchangeably as 〈O〉cl and just as plain O.

We can understand the link between amplitudes and the final-state value of the observable
by inserting a complete set of states,

out〈ψ|O|ψ〉out =

∫∑
X

O(X)|〈X|S|ψ〉|2, (19)

where the
∑

X

∫
symbol indicates a summation over all states X with suitable quantum numbers

as well as an integration over each state’s available phase space, and O(X) is the value of the
observable in that state. We have assumed here that O is diagonalizable, and that the states X
are its eigenstates; but the generalization beyond this assumption is straightforward.

We can simplify the starting expression (18) by writing the scattering matrix in terms of
the transition matrix T via S = 1 + iT, in order to make contact with the usual scattering
amplitudes. The no-scattering (unity) part of the S matrix cancels,

〈O〉 = 〈ψ|(−iT†)O+ iOT + T†
OT|ψ〉. (20)

Using the unitarity of the S matrix, S†S = 1, we see that −iT† + iT + T†T = 0, so we can
rewrite our observable,

〈O〉 = i〈ψ|[O, T]|ψ〉+ 〈ψ|T†[O, T]|ψ〉. (21)

This expression holds to all orders in perturbation theory. The first term is linear in a scattering
amplitude, while the latter will contain a product of scattering amplitudes (integrated over
phase space), or equivalently, the discontinuity of a scattering amplitude. It will start at one
higher order in perturbation theory. This suggests the labels of ‘virtual’ and ‘cut’ for the two
terms, though the second term includes contributions with virtual corrections as well.
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3. Impulse

3.1. Quantum observable

A simple but important observable is the net change in the momentum of one of the scattered
particles in the initial state (15). To define this observable, we place detectors at asymptotically
large distances pointing at the collision region. The detectors measure only the momentum of
one of the particles, say particle 1. We assume that these detectors cover all possible scatter-
ing angles. Let Pμ

i be the momentum operator for quantum field i; the change in particle 1’s
momentum is then,

〈Δpμ1 〉 = 〈ψ|S†
P
μ
1 S|ψ〉 − 〈ψ|Pμ

1 |ψ〉

= i〈ψ|[Pμ
1 , T]|ψ〉+ 〈ψ|T†[Pμ

1 , T]|ψ〉.
(22)

This observable is called the impulse on particle 1. It is an on-shell observable, defined in both
the quantum and the classical theories. We label the first term Iμ(1), and the second term Iμ(2). We
can similarly measure the impulse imparted to particle 2,

〈Δpμ2〉 = i〈ψ|[Pμ
2 , T]|ψ〉+ 〈ψ|T†[Pμ

2 , T]|ψ〉. (23)

Let us take another step, and re-express equation (22) in terms of scattering amplitudes.
Substituting in the explicit form of the initial state (15) into Iμ(1), we find

Iμ(1) =

∫
dΦ(p1, p2)dΦ(p′1, p′2)eib·(p1−p′1)/ h̄φ1(p1)φ∗

1(p′1)φ2(p2)φ∗
2(p′2)i(p′μ1 − pμ1 )〈p′1 p′2|T|p1 p2〉.

(24)

In this expression, we label the momenta in one copy of the initial state by p1,2, and those in
the conjugate by p′1,2. We introduce the momentum differences qi = p′i − pi, and then change
variables in the integration from the p′i to the qi. In these variables, the matrix element is

〈p′1 p′2|T|p1 p2〉 = A(p1 p2 → p′1, p′2)δ̂(4)(p′1 + p′2 − p1 − p2)

= A(p1 p2 → p1 + q1, p2 + q2)δ̂(4)(q1 + q2), (25)

so that the first term in the impulse is

Iμ(1) =

∫
dΦ(p1, p2)dΦ(q1 + p1, q2 + p2)

× φ1(p1)φ∗
1(p1 + q1)φ2(p2)φ∗

2(p2 + q2)δ̂(4)(q1 + q2)

× e−ib·q1/ h̄iqμ
1A(p1 p2 → p1 + q1, p2 + q2). (26)

As a reminder, the shorthand notation for the phase-space measure is,

dΦ(q1 + p1) = d̂4q1δ̂
(
(p1 + q1)2 − m2

1

)
Θ(p0

1 + q0
1). (27)

We perform the integral over q2 using the four-fold delta function. Relabelling q1 → q, we
obtain,

7



J. Phys. A: Math. Theor. 55 (2022) 443015 Topical Review

Iμ(1) =

∫
dΦ(p1, p2)d̂4qδ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p0

1 + q0)Θ(p0
2 − q0)

× e−ib·q/ h̄φ1(p1)φ∗
1(p1 + q)φ2(p2)φ∗

2(p2 − q)

× iqμA(p1 p2 → p1 + q, p2 − q). (28)

This expression is valid to all orders in perturbation theory. It is linear in the amplitude. The
incoming and outgoing momenta in this amplitude do not correspond to the initial- and final-
state momenta of the scattering process. Rather, both correspond to the initial-state momenta,
as they appear in the wavefunction and in its conjugate. From the amplitude’s point of view,
the momentum q appears to be a momentum transfer, but for the physical scattering process
it represents a difference between the momentum in the wavefunction and the one in the con-
jugate. We will call it a ‘momentum mismatch’. We may think of Iμ(1) as the interference of a
standard amplitude with an interactionless forward scattering,

Iμ(1) =

∫
dΦ(p1, p2)dΦ(p′1, p′2)eib·(p1−p′1)/ h̄φ1(p1)φ∗

1(p′1)φ2(p2)φ∗
2(p′2)

× i
∫

dΦ(r1)dΦ(r2)(rμ1 − pμ1 )〈p′1 p′2|r1r2〉〈r1r2|T|p1 p2〉. (29)

We depict this term diagrammatically in figure 1.

Figure 1. A diagrammatic representation of the first term in the impulse (22), Iμ(1).

Let us next examine the second term Iμ(2) in the impulse (22). This term contains two transi-
tion matrices, and so we must insert a complete set of states to connect to scattering amplitudes.
We label these states by r1, r2 and X:

Iμ(2) = 〈ψ|T†[Pμ
1 , T]|ψ〉

=

∫∑
X

∫
dΦ(r1)dΦ(r2)〈ψ|T†|r1r2X〉〈r1r2X|[Pμ

1 , T]|ψ〉. (31)

As before, X contains zero or more messengers. We again substitute the explicit forms for the
incoming wavefunction (15). As in Iμ(1), we label the states in |ψ〉 by p1,2, those in the conjugate
by p′1,2. We identify,

〈ψ|T†|r1r2X〉 = A∗(p′1, p′2 → r1, r2, rX)δ̂(4)(p′1 + p′2 − r1 − r2 − rX),

〈r1r2X|T
)
|ψ〉 = A(p1, p2 → r1, r2, rX)δ̂(4)(p1 + p2 − r1 − r2 − rX). (32)
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In these expressions, rX denotes the total momentum carried by the particles in X. We then
obtain,

Iμ(2) =

∫∑
X

∫ ∏
i=1,2

dΦ(ri)dΦ(pi)dΦ(p′i)φi(pi)φ∗
i (p′i)e

ib·(p1−p′1)/ h̄(rμ1 − pμ1 )

× δ̂(4)(p1 + p2 − r1 − r2 − rX)δ̂(4)(p′1 + p′2 − r1 − r2 − rX)

×A(p1, p2 → r1, r2, rX)A∗(p′1, p′2 → r1, r2, rX). (33)

We again introduce the momentum differences qi = p′i − pi, integrate over q2, and relabel
q1 → q to arrive at,

Iμ(2) =

∫∑
X

∫ ∏
i=1,2

dΦ(ri)dΦ(pi)d̂4qδ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p0
1 + q0)Θ(p0

2 − q0)

× φ1(p1)φ2(p2)φ∗
1(p1 + q)φ∗

2(p2 − q)e−ib·q/ h̄(rμ1 − pμ1 )

× δ̂(4)(p1 + p2 − r1 − r2 − rX)A(p1, p2 → r1, r2, rX)A∗(p1 + q, p2 − q → r1, r2, rX).

(34)

A final change of variables removes the final-state momenta ri in favor of momentum transfers
wi ≡ ri − pi. These variables are momenta of (virtual) messengers, and thus scale differently
in the classical limit from the massive-particle momenta. In terms of them, the expression
above is,

Iμ(2) =

∫∑
X

∫ ∏
i=1,2

dΦ(pi)d̂4wid̂
4qδ̂(2pi · wi + w2

i )Θ(p0
i + w0

i )

× δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p0
1 + q0)Θ(p0

2 − q0)

× φ1(p1)φ2(p2)φ∗
1(p1 + q)φ∗

2(p2 − q)e−ib·q/ h̄wμ
1 δ̂

(4)(w1 + w2 + rX)

×A(p1, p2 → p1 + w1, p2 + w2, rX)A∗(p1 + q, p2 − q → p1 + w1, p2 + w2, rX).

(35)

We can interpret this term in the impulse as the weighted cut of an amplitude; we depict it
diagrammatically in figure 2.

Figure 2. A diagrammatic representation of the second term in the impulse (22), Iμ(2).
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3.2. Classical limit

We are now ready to take the classical limit. In order to do so, we must focus on a particular
theory and a particular order in perturbation theory. We will study the leading-order impulse
in electrodynamics and in dilaton gravity. The two computations are very closely related, and
offer a simple application of the double copy.

In practice, taking the classical limit requires the following steps.

• Replace couplings g by g/
√

h̄;
• Change all messenger momentum variables—mismatch, virtual, or real-emission—to

wavenumber variables, k = h̄k̄;
• Approximate φ(p+ h̄q̄) by φ(p). In practice, this trivialises all massive-momentum

integrals;
• Laurent-expand all integrands in h̄;
• Replace all massive-particle momenta pi by their classical values, miui.

It is the change to messenger wavenumber variables, along with the Goldilocks relation,
that justifies the approximation of the wavefunctionφ(p+ h̄q̄), as it will vary little on the scale
of the Compton wavelength.

We denote the ensemble of these steps via the following notation,〈〈
f (p1, p2, . . .)

〉〉
≡

∫
dΦ(p1, p2)|φ1(p1)|2|φ2(p2)|2 f (p1, p2, . . .). (37)

In this expression, f (. . .) is typically a weighted integral over an amplitude or product of
amplitudes.

The classical limit of the first term in the impulse (28) then takes the following form to
leading order,

Iμ(1),cl = i

〈〈∫
d̂4qδ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p0

1 + q0)Θ(p0
2 − q0)

× e−ib·q/ h̄qμA(0)(p1 p2 → p1 + q, p2 − q)

〉〉
. (38)

Performing the coupling replacements and the change of variables detailed above, we obtain,

Iμ,(0)
(1),cl = i

g2

4

〈〈̄
h2

∫
d̂4q̄δ̂(q̄ · p1)δ̂(q̄ · p2)e−ib·q̄q̄μA(0)(p1, p2 → p1 + h̄q̄, p2 − h̄q̄)

〉〉
.

(39)

At this order, this is the complete result for the impulse, as Iμ(2) only enters at O(g4). In

this expression, A(L) denotes the L-loop amplitude with a factor of g/
√

h̄ removed for every
interaction; A(0) thus denotes the tree-level amplitude with a factor of g2/h̄ removed. In the
electromagnetic case, this removes a factor of e/

√
h̄ for each interaction, while in the grav-

itational case, we would remove a factor of κ/
√

h̄. In pure electrodynamics or gravitational
theory, A is independent of couplings. It is still h̄-dependent through its dependence on the
momentum mismatch (or more generally, on momentum transfers).

We are allowed to drop the h̄q̄2 terms inside the delta functions in equation (39) because
there are no multiplying singularities at this order. At higher orders, this is no longer true;
individual contributions are singular, and we must expand the delta functions in a power

10
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Figure 3. The diagram contributing to the 2 → 2 scattering amplitude. In electrodynamics, the exchanged
line is a photon; in dilaton gravity, either a graviton or a dilaton.

series. The singularities in h̄ will cancel in a physical observable (though there is as yet
no all-orders proof of this cancellation). In reference [11], this cancellation was checked
explicitly at order O(G2), and in reference [93], the cancellation was checked implicitly to
order O(G4).

The required 2 → 2 scattering amplitude is given by the lone diagram shown in figure 3. Its
evaluation in electrodynamics gives,

A(0)(p1 p2 → p1 + h̄q̄, p2 − h̄q̄) = Q1Q2
4p1 · p2 + h̄2q̄2

h̄2q̄2
, (40)

where Q1,2 are the charges of the scattering massive particles. The second term is contact-like
and becomes irrelevant in the classical limit. Substituting this expression into equation (39),
we obtain a manifestly h̄-independent expression,

Iμ,(0)
(1),cl = ie2Q1Q2

〈〈∫
d̂4q̄δ̂(q̄ · p1)δ̂(q̄ · p2)e−ib·q̄ p1 · p2

q̄2
q̄μ

〉〉
. (41)

Applying the remaining actions for the classical limit (pi → miui), we find for the impulse,

Δpμ,(0)
1 = ie2Q1Q2u1 · u2

∫
d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u2)e−ib·q̄ 1

q̄2
q̄μ. (42)

Evaluating the q̄ integral and recognizing γ = u1 · u2 as a Lorentz factor gives us a simple
expression,

Δpμ,(0)
1 = −e2Q1Q2

2π
γ√

γ2 − 1

bμ

b2
. (43)

We can use this lowest-order calculation to display a simple example of the YM/gravity
double copy in action. Following the BCJ form [4] of the double copy, we obtain an amplitude
in a gravitational theory. Squaring the numerator in (40) leads to,

M(0)(p1 p2 → p1 + h̄q̄, p2 − h̄q̄) = − 1
16

[4p1 · p2]2 +O(h̄2)

h̄2q̄2
. (44)

This is the amplitude in a theory where the massive particles couple equally to the graviton and
to a massless dilaton. We included a factor −1/16 which arises in the double copy [5, 13]. For
the pure gravitational theory, in this example, the double copy would require a more involved
procedure to project out the dilaton [108]. Accordingly, the impulse in the gravitodilatonic
scattering of two massive particles is,

Δpμ,(0)
1 = −i

κ2

4
m1m2(u1 · u2)2

∫
d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u2)e−ib·q̄ 1

q̄2
q̄μ. (45)

11
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The integral that appears is identical to the one in equation (42); only the factor in front differs.
The impulse is closely related to the classical interaction potential [74–87, 109–111] and

the eikonal phase [53–73] which provide alternative routes linking classical physics and scat-
tering amplitudes which are discussed in more detail in other chapters of this review [106, 107].
The important physical effects of spin can easily be incorporated in the impulse and related
observables using scattering amplitudes [13] building on a deepening understanding of ampli-
tudes for massive spinning particles [112–127].

4. Waveforms and local observables

It is very satisfying that the impulse, as we saw in the previous section, can be computed from
scattering amplitudes. Closely related observables, such as the radiated momentum, can be
computed by very similar means [11]. In this section, we will show that the gravitational wave-
form itself is determined by scattering amplitudes [12], at least in the case where two compact
objects scatter off one another. The waveform is an example of a local observable, defined
as the expectation value of an operator O(x) which is localised at a spacetime point4. Thus,
local observables have the structure 〈ψ|S†O(x)S|ψ〉. While there are many possible choices of
operator O(x), particularly relevant ones are expectations of the field strength tensor Fμν(x) in
electrodynamics, and of the (linearised) Riemann curvature tensor Rμνρσ(x) in gravity, treated
as an effective field theory.

4.1. Tensorial local operators

We begin with a detailed study of the electrodynamic quantity 〈ψ|S†Fμν(x)S|ψ〉. The analysis
for 〈ψ|S†

Rμνρσ(x)S|ψ〉 is completely analogous, differing only by the more involved tensor
structure. We will therefore only quote key results in the gravitational case. We return to units
with h̄ = 1: factors of h̄ can be restored when needed by dimensional analysis.

It is convenient to work in momentum space. The field strength operator can be obtained by
differentiating the photon field operator, with the result

Fμν(x) = −2 Re
∑
η=±

∫
dΦ(k)ik[με

(−η)
ν] (k)e−ik·xaη(k). (46)

Its expectation can be written directly as

〈ψ|S†
Fμν(x)S|ψ〉 = −2 Re

∑
η=±

∫
dΦ(k)ik[με

(−η)
ν] (k)e−ik·x〈ψ|S†aη(k)S|ψ〉. (47)

Our aim is to express this quantity in terms of scattering amplitudes. To do so, we expand the
S matrix as S = 1 + iT, finding

〈ψ|S†aη(k)S|ψ〉 = 〈ψ|(1 − iT†)aη(k)(1 + iT)|ψ〉

= i〈ψ|aη(k)T|ψ〉+ 〈ψ|T†aη(k)T|ψ〉. (48)

4 This contrasts with global observables, such as the impulse, which do not depend on a specific point.
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We used aη(k)|ψ〉 = 0 (there is no incoming radiation in the initial state) to simplify the bra-ket.
The field strength expectation becomes,

〈ψ|S†
Fμν(x)S|ψ〉 = −2 Re

∑
η=±

∫
dΦ(k)ik[με

(−η)
ν] (k)e−ik·x[i〈ψ|aη(k)T|ψ〉

+ 〈ψ|T†aη(k)T|ψ〉
]
. (49)

Notice that—as is true for the impulse discussed in the previous section—the observable
inevitably has the structure of two terms: one is linear in T while the second involves two
transition matrices.

At this point, it is useful to expand the incoming state (15), to find

〈ψ|S†
Fμν(x)S|ψ〉 = −2 Re

∑
η=±

∫
dΦ(k, p′1, p′2, p1, p2)ik[με

(−η)
ν] (k)

× e−ik·xφ∗
b(p′1, p′2)φb(p1, p2)

×
[
i〈p′1 p′2kη|T|p1, p2〉+ 〈p′1 p′2|T†aη(k)T|p1 p2〉

]
. (50)

The expectation thus depends on two matrix elements: the first, 〈p′1 p′2kη|T|p1, p2〉, involves a
five-point amplitude while the second, 〈p′1 p′2|T†aη(k)T|p1 p2〉, can be written in terms of a prod-
uct of amplitudes by introducing a sum over states. So indeed the field strength is determined
by scattering amplitudes.

We can expand the amplitudes perturbatively to arrive at an explicit expression. Let us work
at leading order. We may then ignore 〈p′1 p′2|T†aη(k)T|p1 p2〉: this is a product of two amplitudes,
so it is higher order in perturbation theory. Meanwhile, at lowest order, 〈p′1 p′2kη|T|p1, p2〉 is a
five-point amplitude of order g3. The leading-order expectation value is,

〈ψ|S†
Fμν(x)S|ψ〉 = 2 Re

∑
η=±

∫
dΦ(k, p′1, p′2, p1, p2)k[με

(−η)
ν] (k)

× e−ik·xφ∗
b(p′1, p′2)φb(p1, p2)

×A(p1 p2 → p′1 p′2kη)δ̂(p1 + p2 − p′1 − p′2 − k). (51)

Despite this derivation, it may seem contrary to intuition that the classical radiation field is
related directly to a five-point amplitude. This amplitude describes the emission of one photon,
while clearly the classical field must contain many photons. However there is no contradiction,
as discussed in detail in reference [23]. Classical radiation is described by a coherent state of
the form

|α〉 = Nα exp

[∑
η

∫
dΦ(k)αη(k)a†

η(k)

]
|0〉, (52)

where the function αη(k) parameterises the radiation, and Nα is a normalisation factor. The
expectation of the field-strength operator on such a coherent state is

〈α|Fμν(x)|α〉 = −2 Re
∑
η=±

∫
dΦ(k)ik[με

(−η)
ν] (k)e−ik·xαη(k). (53)
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Comparing to equation (51), we see that the parameter α of the coherent state is determined
by the five-point amplitude. It is straightforward to check that the expectation value of the
occupation number of the coherent state is large in the classical limit, as one would expect.

So far, we have not taken advantage of simplifications available in the classical limit. This
is manifest in equation (51) in the dependence on the incoming wavepacket. Clearly classical
quantities cannot depend on the details of the wavepacket; we must be able to take advantage
of general properties of wavepackets of particles in the classical regime to remove the explicit
wavepackets from our expressions. As a first step, we again introduce momentum mismatches
q1 and q2 by setting,

p′1 = p1 − q1, p′2 = p2 − q2. (54)

Conservation of momentum then tells us that k = q1 + q2. As usual [11], the momentum
mismatches are of order h̄. In terms of these variables, the on-shell phase space measure in
equation (51) can be written as∫

dΦ(k, p′1, p′2, p1, p2) =
∫

dΦ(k, p1, p2)
∫

d̂4q1d̂4q2δ̂(2p1 · q1 − q2
1)δ̂(2p2 · q2 − q2

2),

(55)

up to Heaviside theta functions Θ(p0
1 − q0

1)Θ(p0
2 − q0

2). These Heaviside functions are always
unity in the classical region, because the scattering must be well below the pair-production
threshold: q0

i 
 p0
i .

In terms of the momentum mismatches, the wavepackets in equation (51) become

φ∗
b(p1 − q1, p2 − q2)φb(p1, p2) = φ∗(p1 − q1)φ∗(p2 − q2)φ(p1)φ(p2)eiq1·b/ h̄

� |φ(p1)φ(p2)|2eiq1·b/ h̄. (56)

In the last line, we took advantage of the fact that the wavefunctions vary little on the scale of
the Compton wavelength.

We can now write the field strength expectation as

〈ψ|S†
Fμν(x)S|ψ〉 = 2 Re

∑
η=±

∫
dΦ(k, p1, p2)|φ(p1)φ(p2)|2

∫
d̂4q1d̂4q2δ̂(2p1 · q1)δ̂(2p2 · q2)

× k[με
(−η)
ν] (k)ei(q1·b−k·x)A(p1 p2 → p′1 p′2kη)δ̂(q1 + q2 − k). (57)

We have approximated δ̂(2pi · qi − q2
i ) � δ̂(2pi · qi); the q2

i shift is negligible in this leading-
order perturbative computation.

The basic role of the wavepackets now is to set the initial conditions: namely, that the rel-
evant momenta pi in the integral are all equal to initial classical values, up to some spread of
order the size of the wavepacket. At leading order in the coupling, we are entitled to take this
spread to be negligible; we could simply evaluate the p1 and p2 integrals. At higher orders, the
situation is more complicated. Excess inverse powers of h̄ cancel between higher order (loop)
five-point amplitudes and the 〈p′1 p′2|T†aη(k)T|p1 p2〉 term. It is only after this cancellation takes
place that we can extract a classical result. We therefore use the notation (37) to tidy away the
remaining integrals over p1 and p2, as well as the wavefunction. In this way, we obtain,
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〈ψ|S†
Fμν(x)S|ψ〉 = 2 Re

∑
η=±

〈〈∫
dΦ(k)d̂4q1d̂4q2δ̂(2p1 · q1)δ̂(2p2 · q2)δ̂(q1 + q2 − k)

× k[με
(−η)
ν] (k)ei(q1·b−k·x)A(p1 p2 → p′1 p′2kη)

〉〉
. (58)

In the gravitational case, assuming that the spacetime is asymptotically Minkowskian, we
measure the expectation of the Riemann curvature rather than of the field strength. We are
only interested in this expectation value at (literally) astronomical distances r from the source
of gravitational waves5, so we are entitled to assume that the metric is of the form

gμν(x) = ημν + κhμν(x), (59)

whereκhμν(x) is small compared to the Minkowski metric ημν . The deviation hμν has an expan-
sion in distance r beginning at 1/r; only this term is of relevance. For this reason, we are entitled
to restrict attention to the linearised Riemann curvature operator, which (in our conventions)
is explicitly given by

Rμνρσ(x) =
κ

2
2 Re

∑
η=±

∫
dΦ(k)k[με

(−η)
ν] (k)k[ρε

(−η)
σ] (k)e−ik·xaη(k), (60)

which can be compared to the field strength operator of equation (46). The expectation of this
operator can be computed in complete parallel with the electromagnetic case, resulting in

〈ψ|S†
Rμνρσ(x)S|ψ〉 = κRe

∑
η=±

〈〈∫
dΦ(k)d̂4q1d̂4q2δ̂(2p1 · q1)

× δ̂(2p2 · q2)δ̂(q1 + q2 − k) ik[με
(−η)
ν] (k)k[σε

(−η)
ρ] (k)ei(q1·b−k·x)

×M(p1 p2 → p′1 p′2kη)

〉〉
. (61)

4.2. Performing the on-shell integral

Given the five-point tree amplitude M(p1 p2 → p′1 p′2kη), equation (61) shows that the classical
curvature is obtained by performing integrals over the mismatches q1, q2 and also over the
wavevector k. Similarly, equation (58) expresses the electromagnetic field strength in terms of
very similar integrals.

Of these integrals, the on-shell integral over k can be performed, in part, without knowledge
of the amplitude. There are many ways of performing this integral; one method was reviewed
carefully in reference [12]. In this review, we choose to perform the integral in a slightly more
direct manner, at the price of making the boundary conditions less transparent than in the
lengthier discussion [12].

We focus for clarity on the electromagnetic case; once again, the gravitational case is very
similar. Let us write the expectation of the field strength as,

〈ψ|S†
Fμν(x)S|ψ〉 = 2 Re i

∫
dΦ(k)J̃μν(k)e−ik·x , (62)

5 It may be interesting to consider situations where other gravitating objects are also present. This is beyond the scope
of this review.
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where J̃μν(k) can be determined by comparing to equation (58):

J̃μν(k) = −i
∑
η=±

〈〈∫
d̂4q1d̂4q2δ̂(2p1 · q1)δ̂(2p2 · q2)δ̂(q1 + q2 − k)

× k[με
(−η)
ν] (k)eiq1·bA(p1 p2 → p′1 p′2kη)

〉〉
. (63)

We write the wavevector as k = (ω,ωn) in preparation for performing the integral over the
spatial components of the wavevector, extracting a power of the frequency ω so that we may
integrate over a dimensionless vector n. Then the field strength becomes

〈ψ|S†
Fμν(x)S|ψ〉 = 2 Re i

∫ ∞

0
d̂ω

∫
d̂3nδ̂(1 − n2)e−iωx0

eiω n·xωJ̃μν(ω,ωn)

= 2 Re i
∫ ∞

0
d̂ω

∫
d̂3n

∫
dλ eiλ(1−n2) e−iωx0

eiωn·xωJ̃μν(ω,ωn).

(64)

In the second equality, we wrote the delta function which enforces the on-shell constraint as
an integral.

We now proceed to perform the three integrals over n and the integral over λ by stationary
phase, justified by the presence of the large distance |x| in the phase factor. In general, the
stationary phase approximation is

∫
dnz ei f (z)g(z) � (2π)n/2

∑
z0

ei f (z0)g(z0)
1√

| det H(z0)|
e

iπ
4 sign H(z0), (65)

where H(z) is the Hessian matrix of second partial derivatives of f (z), sign H(z) is its signature,
and the sum runs over all solutions of the stationary phase condition

f ′(z0) = 0. (66)

In our case, z = (n,λ), and the stationary phase conditions are

n2 = 1, 2λn = ωx. (67)

These can be solved trivially. There are in fact two solutions:

n =
x
|x| , λ =

ω

2
|x|, (68)

and

n = − x
|x| , λ = −ω

2
|x|. (69)

We will soon see that these two branches correspond to retarded and advanced propagation.
For now we retain both.
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To complete the evaluation of our four integrals by stationary phase, we need the Hessian
matrix, which is

H =

⎛
⎜⎜⎝

−2λ 0 0 −2nx

0 −2λ 0 −2ny

0 0 −2λ −2nz

−2nx −2ny −2nz 0

⎞
⎟⎟⎠. (70)

The determinant is −4ω2|x|2, and the four eigenvalues are −2λ,−2λ,−λ+
√

4 + λ2,−λ−√
4 + λ2. Thus when λ = ω|x|/2, the signature of the Hessian is−2, while when λ = −ω|x|/2

the signature is +2.
Having gathered this information, we can perform the integral, finding

〈ψ|S†
Fμν(x)S|ψ〉 = 2 Re

1
4π|x|

∫ ∞

0
d̂ω

[
e−iω(x0−|x|)J̃μν(ω,ωx/|x|)

− e−iω(x0+|x|)J̃μν(ω,−ωx/|x|)
]
.

(71)

Notice that the two terms depend either on the retarded time x0 − |x| or on the advanced time
x0 + |x|. Since we place our observer at a position x in the future of the event which generates
radiation, we may ignore the second (advanced) term. Indeed, in the more careful discussion in
reference [12] it is clear that this second term vanishes for observers in the future of the event.

Thus we arrive at

〈ψ|S†
Fμν(x)S|ψ〉 = 2 Re

1
4π|x|

∫ ∞

0
d̂ω e−iω(x0−|x|)J̃μν(ω,ωx/|x|)

=
1

4π|x|

∫ ∞

−∞
d̂ω e−iω(x0−|x|)J̃μν(ω,ωx/|x|), (72)

where in the second expression we define J̃μν for negative values of ω as

J̃μν(−|ω|,−|ω|x/|x|) ≡ J̃∗
μν(+|ω|,+|ω|x/|x|), whenω < 0. (73)

This ensures that the reality condition is satisfied.
The factor 1/|x| in our expression (72) for the field strength is precisely as expected for a

radiation field. The analogue of the gravitational waveform in this electromagnetic case is the
coefficient of this trivial 1/|x| fall-off. We therefore define a spectral waveform fμν as,

〈ψ|S†
Fμν(x)S|ψ〉 =

∫
d̂ω e−iω(x0−|x|) fμν(ω, n)

|x| , (74)

where n = x/|x|. The spectral waveform depends on the frequency and the direction n from
the source to the observer. Notice that we have chosen to Fourier transform with respect to the
retarded time t = x0 − |x| for convenience. Referring back to equation (63) for the definition
of J̃μν , we may write the spectral waveform as,

fμν(ω, n) =
−i
4π

∑
η=±

〈〈∫
d̂4q1d̂4q2δ̂(2p1 · q1)δ̂(2p2 · q2)δ̂(q1 + q2 − k)

× k[με
(−η)
ν] (k)eiq1·bA(p1 p2 → p′1 p′2kη)

〉〉∣∣∣∣
k=ω(1,n)

. (75)
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In the gravitational case, we may again write,

〈ψ|S†
Rμνρσ(x)S|ψ〉 = 2 Re i

∫
dΦ(k)J̃μνρσ(k)e−ik·x

� 2 Re
1

4π|x|

∫
d̂ω e−iω(x0−|x|)J̃μνρσ(ω,ωn). (76)

In the second step, we used the stationary phase approximation. Defining a spectral gravita-
tional waveform via

〈ψ|S†
Rμνρσ(x)S|ψ〉 =

∫
d̂ω e−iω(x0−|x|) fμνρσ(ω, n)

|x| , (77)

we finally arrive at an expression for the spectral waveform:

fμνρσ(ω, n) =
κ

8π

∑
η=±

〈〈∫
d̂4q1d̂4q2δ̂(2p1 · q1)δ̂(2p2 · q2)δ̂(q1 + q2 − k)

× k[με
(−η)
ν] (k)k[σε

(−η)
ρ] (k)eiq1·bM(p1 p2 → p′1 p′2kη)

〉〉∣∣∣∣
k=ω(1,n)

. (78)

Thus we see that the gravitational waveform is indeed intimately related to five-point ampli-
tudes. It is interesting to consider the behaviour of the waveform in the soft limit, where the
frequency ω of the outgoing radiation becomes very small. In this limit, the five-point ampli-
tude in equation (78) is equal to a four-point amplitude M(p1 p2 → p′1 p′2) times the Weinberg
soft factor. It is then possible to show that the waveform in this long-frequency limit is deter-
mined by the impulse [131, 132]. This phenomenon is an example of the classical memory
effect [128–130].

As five-point amplitudes are intimately related to classical radiation, they appear in expres-
sions for other classical observables related to radiation. An important case studied in [11]
is the total momentum radiated during a scattering event. Physically this is connected to the
total energy flux, an important physical observable in gravitational wave physics. It has been
computed using the KMOC formalism at order G3 [18, 19] in gravity, and at order α3 in elec-
trodynamics [24]. Another interesting observable which connects to five-point amplitudes is
the radiated angular momentum [26]. The relevance of five-point amplitudes with massive legs
to gravitational radiation motivates determining these amplitudes at loop order [108, 133].

5. Newman–Penrose scalars

In the previous section, we saw that waveforms (gravitational and the electromagnetic ana-
logue) may be written in terms of scattering amplitudes. Of course, the actual waveforms
measured in observatories are not tensors: they are scalar quantities. The relevant scalar is
essentially a component of the tensor quantity (78). In this section, we will extract the relevant
component.

In a gravitational wave observatory, measurements are made of the strain h. In transverse-
traceless gauge, the second time derivative of the strain, ḧ is given by the Riemann tensor (see
for example the textbook [134])

ḧ ∼ ei jRi0 j0, (79)

where ei j is an appropriate polarisation object. Thus knowledge of the curvature is knowledge
of the waveform.
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The NP formalism [135] is convenient for capturing the relevant component of the wave-
form, and (as we will see) is also closely related to the successful helicity-based approach to
amplitudes. One way to introduce the NP formalism is to choose a convenient null tetrad—that
is, a basis of spacetime vectors L, N, M and M̄ satisfying6

L · N = 1, M · M̄ = −1, (80)

with all other dot products vanishing. We may choose L and N to be real vectors, while M and
M̄ are complex conjugates of one another.

Referring to either the electromagnetic field strength or gravitational curvature computed
in the previous section, it is natural to define

L = (1, x/|x|), (81)

so that L is the null vector from the source event to the observer. Then the wavevector k in
equations (75) and (78) is k = ωL. We can complete the basis by choosing M and M̄ to be polar-
isation vectors ε(η)(k) associated with the wavevector k; these do not depend on the frequency
ω, so we may regard M and M̄ to be spacetime vectors associated with L. This is helpful since
it is useful to commute the NP basis vectors through the frequency integral in equations (74)
and (77). We complete the definition of the NP tetrad by choosing N to be the gauge vector
associated with the polarisations ε(η)(k), scaled so that L · N = 1. That is,

L = k/ω, M = ε(+)(k), M̄ = ε(−)(k), N =
1
2

(1,−x/|x|), (82)

where we made a particular gauge choice to define N:

N · ε(±)(k) = 0. (83)

It follows that the curvature component Ri0 j0 relevant for the gravitational strain can be obtained
from knowledge of

Ψ4(x) ≡ −Rμνρσ(x)NμM̄νNρM̄σ (84)

and its complex conjugate. The object Ψ4(x) is one of the NP scalars associated with the curva-
ture. In scattering phenomena on asymptotically Minkowski spacetimes, all other components
of the curvature are suppressed relative to Ψ4(x) (see for example, the useful textbook [136])
and so we do not consider them.

Indeed, this is consistent with our understanding of the curvature at large distances from the
source. Let us define the spectral form of Ψ1

4(x) as,

Ψ1
4(x) =

∫
d̂ω e−iω(x0−|x|)Ψ̃1

4(ω, n). (85)

Using equations (77) and (78) we find

6 These vectors were denoted l, n, m and m̄ in the original paper [135]. We use upper case symbols to distinguish the
vectors from masses and loop momenta in quantum field theory.
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Ψ̃1
4(ω, n) =

−κ

8π
ω2

∑
η=±

〈〈∫
d̂4q1d̂4q2δ̂(2p1 · q1)δ̂(2p2 · q2)δ̂(q1 + q2 − k)

× eiq1·bM(p1 p2 → p′1 p′2k+)

〉〉∣∣∣∣
k=ω(1,n)

. (86)

The frequency-space NP scalar is an integral of the helicity amplitude.
The situation in electrodynamics is very similar. The electrodynamic NP scalar most com-

parable to Ψ4(x) is Φ2(x) = Fμν(x)M̄μNν . Again peeling tells us that this component falls off
as 1/distance while the other electrodynamic NP scalars fall off more rapidly. The leading term
of Φ2(x) in this distance expansion, Φ1

2(x), is proportional to a five-point helicity amplitude,
this time with a final-state photon replacing the final-state graviton [12].

6. Curvature in (2, 2) signature

In section 5, we saw that the radiation field (that is, the part of the field strength or
curvature which falls off as 1/distance) due to a scattering event can be recovered from
five-point amplitudes. An immediate question is whether it is possible to recover static
Coulomb/Schwarzschild-type fields from amplitudes. It is clear that the five-point amplitudes
discussed in the previous sections have no role for static fields: these fields only involve
one (incoming and outgoing) massive particle! Instead, three-point amplitudes involving one
massive line and one messenger (photon or graviton) are the natural starting point. Because
the on-shell conditions for these amplitudes lack non-trivial support in Minkowski space,
we instead turn to a spacetime with metric signature (+,+,−,−): such spacetimes are var-
iously described as having (2, 2) [137], split [138], or Kleinian [139] signature. An alternative
viewpoint, which we will not employ here, is to consider complex kinematics in Minkowski
spacetime.

One advantage of working in real (2, 2) signature (rather than complex kinematics) is that
we may work with real spinors: as we will see, these provide an alternative route to manifestly
gauge-invariant expressions for curvature. Since we are working in linearised theory, we can
use flat-space methods to introduce spinors, even in the gravitational context. The basic set up
is similar to the standard spinor-helicity formalism in four-dimensional scattering amplitudes.
We introduce the σ matrices

σμ = (1, iσy, σz, σx), σ̃ = (1,−iσy,−σz,−σx), (87)

where σx,y,z are the Pauli matrices. Note that each σμ matrix is real. The generators of the
Lorentz algebra in the chiral spinor representation are proportional to the six matrices

σμν =
1
4

(σμσ̃ν − σνσ̃μ). (88)

Similarly, in the antichiral representation we have

σ̃μν =
1
4

(σ̃μσν − σ̃νσμ). (89)

The basic reason for the utility of spinors in our discussion is the following. We have seen
above that the electromagnetic field strength, and the Riemann curvature, involve the quantity

k[με
(−)
ν] (k) = − 1√

2
〈k|σμν |k〉, (90)
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where the chiral spinor |k〉, and its antichiral compatriot |k], are defined by

k · σ = |k]〈k|. (91)

As a result, we can write manifestly gauge-invariant expressions for the field strength and
curvature using spinors.

We define the Weyl spinor as a spinorial form of the curvature7

Ψαβγδ(x) = σμν
αβσ

ρσ
γδ Rμνρσ(x). (92)

This spinor is associated to the self-dual part of the curvature, because it is obtained from the
chiral representation (87). The conjugate Weyl spinor, associated to the anti-self-dual part of
the curvature, is obtained by replacing σλη → σ̃λη . Analogously, in electrodynamics, we define
the Maxwell spinor to be

φαβ(x) = σμν
αβFμν(x). (93)

Let us now turn to the computation of Maxwell and Weyl spinors from the perspective
of amplitudes. Once again, we discuss the electromagnetic case in more detail. We label our
coordinates as (t1, t2, x1, x2). The situation involves a single electric charge Q with mass m in
a spatially localised wavepacket so that the initial state is

|ψ〉 =
∫

dΦ(p)ϕ(p)|p〉. (94)

Recall that the measure dΦ(p) involves a Heaviside theta function, which imposes positivity of
the particle energy. However, in split signature there are two energy directions: we choose the
theta function to impose energy positivity along t2. On the other hand, we choose to quantise
the electromagnetic field so that the annihilation operators annihilate the vacuum at large neg-
ative t1. Our S matrix acting on photon creation and annihilation operators will then be the time
evolution operator from large negative t1 to large positive t1. It is this interplay between bound-
ary conditions which leads to novel phenomena in split signature: as we will see, this interplay
allows for non-trivial solutions of the on-shell conditions for the three-point amplitude8.

We may compute the expectation value of the field strength at large positive t1 using
equation (47). Working in terms of spinors, we find

φαβ(x) = 2
√

2 Re
∫

dΦ(k)i|k〉α|k〉β e−ik·x
∫

dΦ(p′, p)ϕ∗(p′)ϕ(p)〈p′|S†a+(k)S|p〉.

(95)

In the classical case, ϕ∗(p′)ϕ(p) � |ϕ(p)|2. Working at lowest order in perturbation theory, we
may replace

〈p′|S†a+(k)S|p〉 � i
〈

p′, k+
∣∣T|p〉, (96)

so that the Maxwell spinor is

φαβ(x) = −2
√

2 Re
∫

dΦ(k)δ̂(2p · k)|k〉α|k〉β e−ik·xA(p→ p′k+). (97)

7 We assume that the observation point x is in vacuum, so that the Riemann and Weyl curvature tensors are equal.
8 The boundary conditions were chosen precisely so that the three-point amplitude would have non-trivial support.
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To arrive at this expression, we performed the integral over the wavefunction, taking it to be so
sharply peaked that we can set the momentum of the incoming particle to its classical expec-
tation value. Notice that all the information about the specific interaction between our point
source and the electromagnetic field is contained in the scattering amplitude. The simplest
application of the general formula is to the Coulomb case—then the amplitude, describing a
scalar charge interacting with a photon, is simply

ACoul(p→ p′k±) = −2Qp · ε±(k). (98)

Inserting this amplitude into (97) yields the Maxwell spinor of the Coulomb solution analyti-
cally continued to (2, 2) signature.

Our justification for the Maxwell spinor (97) was based on expanding the S matrix, trun-
cating at lowest order in perturbation theory. However, the result is valid to all orders. This
occurs because the out state S|ψ〉 is actually a coherent state of the electromagnetic field [140].
The expectation of the field strength operator on this coherent state is equal to its leading
perturbative approximation.

From the perspective of scattering amplitudes, equation (97) is very natural. The amplitude
A(p→ p′k+) carries helicity weight which is cancelled by the spinors in the equation. Aside
from this, the Maxwell spinor is nothing but an on-shell Fourier transform of the amplitude. It
is the simplest it could be. The natural gravitational equivalent is

Ψαβγδ(x) = 2κRe
∫

dΦ(k)δ̂(2p · k)|k〉α|k〉β |k〉γ |k〉δ e−ik·x iM(p→ p′k+).

(99)

This expression is indeed the expectation value of the Weyl spinor as a detailed calculation
[140] demonstrates (this calculation also supplies the overall factor required to agree with the
classical normalisation). It is worth emphasising again that the outgoing gravitational state
S|ψ〉 is coherent to all orders in perturbation theory. However, equation (99) only computes the
expectation value of the linearised Riemann tensor operator, which is the operator we started
with in equation (60).

The Maxwell spinor (97) and the Weyl spinor (99) are very interesting from the perspective
of the double copy. At the level of three-point amplitudes, the double copy from electrodynam-
ics (or, equivalently at this order, from YM theory) to gravity is simple: up to overall factors,
the gravitational amplitude is the square of the YM amplitude. The simplest case is the gravi-
tational three-point amplitude M(p→ p′k+) involving a massive particle and a graviton: this
is the square of the Coulombic amplitude (98). In this case the Weyl spinor (99) is nothing but
the Weyl spinor of the linearised Schwarzschild solution. Therefore the double copy extends
beyond the domain of scattering amplitudes and has concrete implications in classical field
theory, even for stationary situations. We will explore this topic in greater detail in the next
section of the review.

More generally, equations (97) and (99) present the spinorial curvatures, in on-shell momen-
tum space, as double copies whenever the relevant scattering amplitudes are double copies of
one another. Recent progress [112, 114, 120, 141–143] in our understanding of massive scatter-
ing amplitudes in four dimensions has revealed two very simple deformations of the ‘Coulomb
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amplitude’ (98) and its double copy. One deformation9 is [141],

Adyon(p→ p′k±) = e±iθACoul(p→ p′k±). (100)

The deformation can be easily interpreted by computing the corresponding Maxwell spinor. In
general, the (Minkowski signature) Maxwell spinor has the structure

φαβ ∼ (E + iB) · σαβ , (101)

in terms of electric and magnetic fields. Thus the deformation upgrades the simple Coulomb
charge to a dyon, with electric and magnetic charges Q cos θ and Q sin θ. The angle θ is asso-
ciated with electric-magnetic duality. The double copy of this amplitude in gravity leads to the
linearised Weyl spinor of the Taub–NUT solution: the NUT parameter is determined by the
mass and sin θ. Thus we see that NUT charge is the double copy of magnetic charge. This is
consistent with earlier findings from the classical double copy [144].

The second deformation induces a large, classical spin [114, 120]. The deformation is

A
√

Kerr(p→ p′k±) = e∓k·aACoul(p→ p′k±). (102)

The parameter a is a four-vector satisfying p · a = 0. Referring back to equation (97), we find

φ
√

Kerr
αβ (x) = −2

√
2 Re

∫
dΦ(k)δ̂(2p · k)|k〉α|k〉β e−ik·(x−ia)A(p→ p′k+). (103)

Notice that this spinor satisfies

φ
√

Kerr
αβ (x) = φCoul

αβ (x − ia). (104)

This is the Newman–Janis shift [145], appearing in electrodynamics. For this reason the solu-
tion has been termed

√
Kerr. Under the double copy, it is related to the Kerr solution, obtained

directly via the same Newman–Janis shift from the Schwarzschild solution [120, 146]. Again,
this is consistent with earlier findings from the classical double copy [27]. Considering both
deformations together [143], it is easy to see that the linearisation of the Kerr–Taub–NUT
solution is a double copy of a spinning dyon solution, obtained via a Newman–Janis shift of
the dyon. It is further possible to consider double copies involving the product of amplitudes
for opposite helicities, thereby making contact with solutions involving non-trivial dilatons and
axions [147], as we will discuss in the next section.

From the perspective of scattering amplitudes, spacetimes of (2, 2) signature are very natural
for the study of stationary solutions. It is exciting that this spacetime signature has also risen to
prominence recently with a different motivation: celestial holography [139, 148, 149]. Clearly
there is much more to understand in this context.

7. The classical double copy

In earlier sections, we reviewed above direct connections between scattering amplitudes and
classical observables. The structural similarity between the gauge theory and gravity examples
we considered is clear. This begs the question of how the famed double copy between scattering
amplitudes in these two classes of theories manifests itself in classical physics. Previously, we
gave examples of how the double copy of amplitudes had implications for classical solutions.

9 We present the deformations in Minkowski space.

23



J. Phys. A: Math. Theor. 55 (2022) 443015 Topical Review

In this section, we will take this one step further by formulating the double copy directly in
terms of the classical solutions.

7.1. From amplitudes to classical solutions

The double copy for scattering amplitudes is discussed in a companion article [106]; for a more
detailed review, see reference [150]. Its schematic form is

M = A · S−1 · Ã, (105)

where M is a gravity amplitude, A is a gauge theory amplitude, and S is an amplitude in the
‘bi-adjoint’ cubic scalar theory. For each scattering amplitude, we have the same number of
external particles, with the same momenta. The external states in the gravity amplitude are
tensor products of the ones in the gauge theory amplitudes, e.g. εμν = εμε̃ν , with εμ from A
and ε̃μ from Ã. One realisation of the schematic form (105) is to interpret A as a vector of
colour-ordered amplitudes. Then, in the bi-adjoint scalar theory, S is interpreted as a matrix of
bi-colour-ordered amplitudes, whose matrix inverse is S−1. We have suppressed coupling con-
stants in the three types of theory. The realisation of equation (105) obtained in this way—i.e.
in terms of colour ordering—is the celebrated KLT relation [1] in the field-theory limit. In
this limit, it expresses the notion that gravity is a double copy of gauge theory. An alternative
realisation of equation (105) is the BCJ double copy [4, 5], based on a representation of the
amplitudes in terms of trivalent diagrams. In this version, we have

S =
∑
Γ

cΓc̃Γ∏
αΓ

p2
αΓ

, A =
∑
Γ

nΓcΓ∏
αΓ

p2
αΓ

, M =
∑
Γ

nΓñΓ∏
αΓ

p2
αΓ

, (106)

where the sum is over all trivalent diagrams, the denominators encode the propagator factors,
and we have again suppressed couplings. The Lie algebra colour factor cΓ associated to a
trivalent diagram is built from the structure constants f abc, while the kinematic numerator nΓ
depends on the momenta and polarisations of the external particles. In gauge theory, the fact
that the colour factors are not all linearly independent (due to Jacobi relations) implies that
the choice of kinematic numerators is not unique. The expression for the gravity amplitude in
equation (106), with two copies of gauge theory kinematic numerators, is valid if at least one
set, say nΓ, satisfies the same algebraic identities as a set of colour factors cΓ, in particular the
Jacobi relations:

cΓ ± cΓ′ ± cΓ′′ = 0 ↔ nΓ ± nΓ′ ± nΓ′′ = 0. (107)

Kinematic numerators satisfying this property, known as the colour-kinematics duality, are
called BCJ numerators. For the expressions above, we focused on tree-level amplitudes, but
there are analogous loop-level expressions valid for loop integrands.

As we have argued in this review, the double copy is not just an elegant property connect-
ing the S-matrices of gauge theory and gravity. It is also an extremely useful tool for practical
computations of gravity amplitudes. The range of applications is remarkable: supergravity and
superstring amplitudes, effective field theories (for which analogues of the double copy exist)
and, for what concerns us in this article, the study of classical general relativity. We have seen
that gravitational observables can be constructed from gravitational scattering amplitudes, and
these in turn can be obtained with double copy techniques. Note that the relevant amplitudes
involve not just gravitons but also massive states, describing black holes or other astrophysi-
cal objects of interest, such as neutron stars; in contrast, most older applications of the double
copy dealt only with massless states. A crucial aspect of the formalism we reviewed is that
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it is on-shell, which means that a double copy prescription for scattering amplitudes can be
directly applied to classical gravity. ‘Off-shell’ double copy approaches have also been pur-
sued, e.g. based on worldline effective field theory, building on the successful history of this
type of formalism in classical gravity. A parallel line of work has aimed to translate the double
copy into the traditional geometric setting of general relativity. Surprisingly, this has provided
a complete double-copy interpretation of the most important exact solutions to the Einstein
equations, such as the Schwarzschild and Kerr solutions. In the remainder of this section, we
will review various double copy approaches, with emphasis on how the exact solutions story
fits in with the double copy of amplitudes.

With hindsight, and to maintain the flow from the previous sections, we find it may ben-
efit the reader to present the developments in non-chronological order. For instance, the
Kerr–Schild double copy introduced in reference [27] and the convolutional double copy
first discussed in reference [151] are put on a clearer footing by discussing first the on-shell
connection between solutions and scattering amplitudes.

In the previous sections, we reviewed the connection between the Riemann curvature of
spacetime and amplitudes. This direct connection applies to weak fields (the far field in the
case of gravitational waves). Indeed, while scattering amplitudes are gauge invariant, in gravity
there are no local gauge-invariant observables, except in the weak field approximation because
the linearised curvature tensor is indeed gauge invariant. Similarly, the field strength is gauge
invariant in linearised YM theory, i.e. electromagnetism. In this context, it is simple to proceed
with the derivation that the linearised Schwarzschild solution is a double copy of the Coulomb
solution, because the three-point amplitudes that generate the linearised solutions satisfy the
double copy. That is, we can take the expressions (97) and (99) obtained in reference [147], and
recognise that M(p→ p′k±) is proportional to

(
A(p→ p′k±)

)2
. The proportionality factor has

a natural physical interpretation in light of equation (105), namely that

M(p→ p′k±) =

(
A(p→ p′k±)

)2

S(p→ p′k±)
, (108)

where we ignore coupling constants and normalisation conventions. Via this three-point KLT
relation, we can obtain an amplitude for emission of a massless scalar, which then allows us to
construct a solution to the scalar wave equation as,

S(x) = Re
∫

dΦ(k)δ̂(2p · k)e−ik·xS(p→ p′k+). (109)

This should be interpreted as a linearised solution to the bi-adjoint scalar theory. The scalar
solution associated to the Coulomb and Schwarzschild cases, for which S is just a constant, is
simply a (2, 2) signature version of the solution 1/r in Lorentzian signature sourced by a static
point particle, as may be expected. So spin-0, spin-1 and spin-2 all fit into this framework. (It is
a triviality to construct analogous solutions for higher-spin linear equations of motion.) In the
previous section, we saw how the self-dual part of the field strength/curvature was associated
to the amplitude to emit a positive helicity photon/graviton. Likewise, S(x) represents a ‘self-
dual’ part of the scalar field. The source of the solution, specified by the scalar amplitudes
for positive and negative helicities, may be such that S �= S̄, so that the full solution is S + S̄,
in the same way that the field strength/curvature is built from the self-dual and anti-self-dual
parts.
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7.2. Perturbative versus exact double copy

A natural question is: how does the formula (108) for three-point amplitudes translate directly
into a relation for the linearised classical solutions (109), (97) and (99)? The latter is a
momentum-space expression, whose products turn into convolutions in position space. This
leads to the expected answer

Ψαβγδ = Φ(αβ ◦ S−1 ◦ Φγδ). (110)

Here, ◦ denotes a convolution, such that ( f ◦ g)(x) =
∫

dDy f(x − y)g(y), and S−1(x) is formally
defined as the inverse of S(x) with respect to the convolution. The idea of a convolutional double
copy applying to linearised fields was first explored in reference [151] and further developed
in works to be discussed below. For now, let us note that the expression (110) is not straight-
forward: its explicit application at linearised level is already intricate, and there have been few
attempts to extend it to higher order in perturbation theory.

And yet, one could have hoped that at least some known solutions in general relativity, such
as the Schwarzschild and Kerr solutions, possess a double copy description that is both simple
and exact (i.e. not just at linearised level). Remarkably, this is indeed the case. The expression
of this fact that most closely resembles equation (110) is the Weyl double copy [28, 152]: there
is a class of exact vacuum gravity solutions whose Weyl spinor obeys the decomposition,

Ψαβγδ =
Φ(αβΦγδ)

S
, (111)

where the field strength on the right-hand side satisfies the flat-spacetime vacuum Maxwell
equations, and the scalar field satisfies the flat-spacetime wave equation. WritingΦαβ = a(αbβ),
we have Ψαβγδ ∝ a(αbβaγbδ). According to the Petrov classification of the algebraic structure
of the Weyl tensor (see e.g. [153]), it is clear that such spacetimes are algebraically special,
either of type D (aα ∝� bα) or of type N (aα ∝ bα). Type D solutions can be thought of as
‘Coulombic’ gravity solutions, e.g. the Kerr–Taub–NUT family that includes Schwarzschild.
Type N solutions are purely radiative, and the simplest example is that of pp-waves. All type
D or N spacetimes admit the form (111). For type D spacetimes (and also pp-waves), this
is guaranteed by the existence of a Killing two-spinor [154], from which the various objects
can be built. In order for the Maxwell and scalar fields on the right-hand side to satisfy flat-
spacetime equations of motion, there needs to be a natural map between the curved spacetime
and a flat spacetime. In the type D case, this condition is guaranteed by the fact that all such
spacetimes admit a Kerr–Schild or double-Kerr–Schild form (explained later) [155], whereas
in the type N case, this condition is valid at least for non-twisting solutions [152]. In these
cases, equation (111) provides a simple and exact double-copy interpretation of the spacetime,
as elegant as one could hope for. Notice that it is highly non-trivial that the same solutions
can satisfy equation (111) and, at linearised level, equation (110), which is the statement most
directly connected to the double copy of three-point amplitudes. This fact relies on the details
of the solutions, as worked out recently for Kerr–Taub–NUT spacetimes [147]. We will return
to this point. More generally, this indicates that we cannot hope for a double copy description
of generic dynamical solutions, such as a spacetime representing the scattering of black holes,
to be as simple as equation (111).

The expressions (111) and (110) exemplify the two distinct avenues that have been taken
regarding the double copy of classical solutions: either one considers simple formulations valid
for exact solutions, which necessarily possess a lot of symmetry (otherwise we could not con-
struct them exactly!), or one considers a more general but messier formulation valid for any
perturbative solution, starting at linearised level.
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Let us discuss first the known instances of an exact double copy. We have already men-
tioned the Weyl double copy (111). It was introduced in reference [28] as a four-dimensional
curvature-based version of the original exact prescription: the Kerr–Schild double copy [27],
which we now discuss. Kerr–Schild spacetimes are defined by the property that, for a spe-
cial choice of coordinates, the metric can be written as an exact deviation from the flat
case:

gμν = ημν + φkμkν , (112)

where kμ is null and geodesic with respect to ημν , and therefore also with respect to gμν . We
have gμν = ημν − φ kμkν , where kμ = ημνkν = gμνkν . The crucial simplification is that the
Ricci tensor, as a

( 1
1

)
-tensor, is linear in the metric deviation:

Rμ
ν =

1
2
∂α[∂μ(φkαkν) + ∂ν(φkαkμ) − ∂α(φkμkν)], (113)

where we denote ∂μ = ημν∂ν . This means that the Einstein equations are linear in the ‘graviton
field’. We now restrict further to solutions that are stationary in the sense of invariance with
respect to ∂t, where t is a Minkowskian time coordinate of ημν , and additionally choose to set
kt = 1, which can be achieved by rescaling φ. Then, we conclude that

R t
μ =

1
2
∂νFμν , for Fμν = ∂μAν − ∂νAμ, Aμ = φkμ. (114)

Hence, any such vacuum gravity solution is associated to a flat-spacetime Maxwell solution.
In fact, there is also a stationary solution to the flat-spacetime scalar equation �φ = 0, since
R t

t =
1
2∂

i∂iφ. We have, therefore,

Double copy : gμν = ημν + φkμkν , Single copy : Aμ = φkμ, Zero − th copy : φ.

(115)

The simplest example, where φ = constant/|x| and kμ = (1, x/|x|), gives: the Schwarzschild
solution in gravity, where t is not the usual Schwarzschild time coordinate; the Coulomb solu-
tion in gauge theory, in a particular gauge; and the scalar solution ∝ 1/r. That is, it gives exact
spherically-symmetric solutions with a static ‘point source’. This double copy of classical solu-
tions matches the expectation based on scattering amplitudes discussed above. The interesting
feature is that here we have exact solutions, because Schwarzschild admits Kerr–Schild coor-
dinates. (Obviously, any Maxwell and scalar wave equation solutions are also exact abelian
solutions in YM theory and bi-adjoint scalar theory, respectively.) This basic example can
be generalised to the full Kerr–Taub–NUT family in vacuum gravity [144], where the NUT
parameter requires an extension from equation (112) to the double-Kerr–Schild case, i.e. there
are two mutually orthogonal ‘deviation terms’. The Taub–NUT solution, for instance, is the
double copy of a dyon. This is a simple example of how the classical double copy provides
an exact map between solutions that were long thought to be analogous. It also agrees with
the scattering-amplitudes story discussed above. While the Kerr–Schild double copy does not
include all type D cases covered by the Weyl double copy (e.g. the C-metric, which has no
equivalent to the stationarity condition), it has the advantage that the higher-dimensional exten-
sion is straightforward. It can also be extended to include a cosmological constant [144, 156,
157]; see also reference [158].

Notice that, strictly speaking, the double copy in equation (115) is just φ kμkν . It is the
‘graviton field’ that is a double copy, not the full metric. An event horizon, when it exists, is
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the result of the interplay between ημν and φ kμkν , so there is no counterpart of it in the single
and zero-th copy. We are discussing here vacuum solutions, and not necessarily considering
their global structure. For instance, the Kerr solution can represent a black hole or a naked
singularity, depending on whether the mass and the rotation parameter satisfy the extremality
bound, but here the mass is just a constant prefactor in φ.

Before proceeding, let us address an obvious question. Gravity is meant to be the double
copy of YM theory, which is also non-linear. In the examples above, however, the single copy is
a Maxwell solution, which is indeed a solution of YM theory, but where the colour dependence
is trivial. From the perspective of the Kerr–Schild double copy, the solution to this puzzle is
clear: the exact linearisation of the Einstein equations found in (113) is a gravitational coun-
terpart of the linearisation of the YM equations, so it makes sense that the single copy is an
abelian-type solution. Any solution to the Einstein equations that is known exactly has a large
symmetry, whether it is manifest or hidden. It belongs to an integrable sector of the space
of solutions, and it is perhaps not surprising that it is ‘linear’ in some sense. This is widely
expected not to be the case with dynamical solutions representing, say, the scattering of two
black holes. In such scenarios, the non-abelian structure is essential. Exact non-abelian solu-
tions have been considered in the context of the double copy, but again these are special. For
instance, it was argued in reference [159] that both the abelian Dirac monopole and the non-
abelian Wu–Yang monopole can be interpreted as the single copy of the Taub–NUT solution;
indeed, they are related by a (singular) gauge transformation. A double-copy interpretation of
topological aspects of these solutions, expressed in terms of Wilson lines, was discussed in
reference [160]. Non-abelian solutions of the bi-adjoint scalar field have also been explored,
with the hope that they will provide an insight into the double copy at non-perturbative level
[161–163].

Returning to the Kerr–Schild double copy, we can relate it directly to the earlier linearised-
level discussion. For a concrete illustration, we focus on the solutions with rotation generated
by the amplitudes (ignoring constant prefactors)

M(p→ p′k±) = (p · ε±)2 e∓k·a, A(p→ p′k±) = (p · ε±)e∓k·a. (116)

From these amplitudes, respectively, we get the Weyl spinor of the Kerr solution via
equation (99), and the Maxwell spinor of the

√
Kerr solution via equation (97). This is pre-

cisely reproduced by the Kerr–Schild double copy: in equation (115), the Kerr solution is
the double copy, and

√
Kerr is the single copy. What about the zero-th copy? The KLT rela-

tion (108) defines S(p→ p′k±) = e∓k·a, and therefore defines also a scalar solution from
equation (109). This solution S, which is complex in Lorentzian signature, is the one appear-
ing in the Weyl double copy (111) for Kerr, and φ = S + S̄ is the zero-th copy scalar solution
appearing in equation (115) for Kerr. We see that the Kerr–Schild double copy, the Weyl
double copy and the amplitudes double copy are all consistent. Notice that there is some
freedom in defining the double-copy interpretation of the Kerr solution, because of the free-
dom to choose the scalar field. In this discussion, we took the amplitudes double copy to be
M±(a) = (A±(a))2/S±(a), where a is rotation parameter, and we denoted S±(a) = e∓k·a, etc.
Given the form of the amplitudes, however, we could just as well have taken the double copy
to be M±(a) =

(
A±(a/2)

)2
/S(0). The Kerr–Schild and Weyl prescriptions select the former

choice, which is more attuned to the algebraic structure of the solutions, and which makes it
possible to turn the statement of the classical double copy from a linearised one into an exact
statement. The freedom to choose the scalar, altering what we mean by the zero-th copy and
therefore also the single copy, is a generic feature of the classical double copy. In this example,
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it is related to the fact that the Kerr ‘particle’ is a massive extended object of size |a|10. We
have some freedom then to choose whether the scalar is also sourced by an extended object
or by a point particle, the latter being the case S(x) ∝ 1/r obtained from S(0). An analogous
example would be to consider, instead of a rotation parameter, an electric-magnetic-type dual-
ity angle, which can also apply to the scalar solution. For more details, see reference [147].
In the case of type N solutions, there is even greater freedom in choosing the scalar, as dis-
cussed in reference [152]. This is unfamiliar in the older context of scattering amplitudes only
because the linearised solutions considered there are straightforward plane waves, whereas the
classical double copy admits more complicated solutions. As long as they arise from scattering
amplitudes, at least, their grounding in the basic statement (108) is clear.

Given the difficulty in constructing exact solutions to the Einstein equations, it is not sur-
prising that the exact classical double copy has received strong attention. It motivates a new
understanding of the solution space in gravity. The algebraically special solutions covered by
the Kerr–Schild and Weyl double copy maps arise in many contexts. One interesting example
is the fluid/gravity duality, where the Navier–Stokes equations are seen to arise from a near-
horizon expansion in general relativity; see e.g. [164]. Reference [165] discussed how the fluid
solutions in the fluid/gravity duality relate to Maxwell solutions via the Weyl double copy,
finding, for instance, that a constant vorticity fluid maps to a solenoid gauge field. Variations
on the Kerr–Schild or Weyl double copy have also been explored. One example includes an
accelerating (rather than stationary) source producing Bremsstrahlung radiation, which duly
satisfies the double copy between gauge theory and gravity [7]. Another example is a double
copy proposal for a class of self-dual metrics, including the Eguchi–Hanson instanton [166];
see [28] for an alternative discussion of the latter solution. References [167–169] explored
complexified solutions. Reference [170] investigated the occurrence in solutions known in
the literature of expressions similar to the Weyl double copy. We will later mention other
examples.

In recent years, there has been a renewed interest in the topic of asymptotic symmetries and
their role in a celestial holographic description of asymptotically flat spacetimes. The applica-
tion to gravity and gauge theory is a natural setting for the double copy. The electric-magnetic
duality in electromagnetism, interpolating between the Coulomb solution and a magnetic
monopole, was identified in references [141, 171, 172] as the single copy of a BMS supertrans-
lation interpolating between Schwarzschild and pure NUT, known as an Ehlers transformation.
This applies to exact solutions, but is easier to understand when looking at the three-point
amplitudes that generate the linearised solutions, namely

Adyon(p→ p′k±) = e±iθACoul(p→ p′k±), (117)

MTaub–NUT(p→ p′k±) = e±iθMSchw(p→ p′k±). (118)

Asymptotic symmetries have also been explored in the non-abelian case, restricting to self-dual
gauge fields and metrics [173]. It was shown that the asymptotic symmetry transformations pre-
serving the self-duality conditions in gauge theory and gravity were related by the double copy.
The self-dual sectors are optimal settings for the double copy, because the colour-kinematics
duality can be made manifest, as shown in reference [174]. In particular, there is a Lie algebra
of area-preserving diffeomorphisms that is the kinematic counterpart of the colour Lie algebra.
See also reference [175] for deformations of the self-dual case.

10 It may be puzzling that the amplitude for emitting a massless scalar may depend on a ± polarisation-type sign. The
reason is precisely that the massive ‘particle’ is actually an extended object of size |a| in the rotating case.
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Various works have explored asymptotic realisations of the classical double copy. In ref-
erence [176], conformal primary wavefunctions of spin 2, which are associated to type N
spacetimes, were shown to be related by a celestial version of the double copy to conformal
primary wavefunctions of spin 1. This work was partly motivated by the realisation of the
double copy for celestial amplitudes [177]. In references [178, 179], the classical double copy
was investigated for the leading behaviour of asymptotically flat solutions around null infinity,
turning into a relation between the leading coefficients of that expansion. The goal is to pro-
vide a double copy of characteristic initial data, which determines the solutions away from null
infinity. The C-metric, first described as a double copy in reference [28], has been interpreted
as expressing a finite superrotation in reference [180]; in reference [178], its single copy was
interpreted as a large gauge transformation, as expected by the double copy. See also reference
[181] for related work.

Since scattering amplitudes are directly associated to asymptotic states, it is not surprising
that they encode the asymptotic information of the solutions that they generate, as in the dis-
cussion of (117) and (118). Similar (2, 2) signature constructions of linearised solutions from
scattering amplitudes to that presented in references [140, 147] were discussed in references
[139, 149]. Reference [139] further studied the global structure of exact Kerr–Taub–NUT
solutions in this signature. In reference [149], the construction of linearised solutions from
scattering amplitudes made use of twistor variables.

Twistors have played an important role in the modern study of scattering amplitudes since
the discovery almost two decades ago that certain amplitudes have a simple geometric descrip-
tion in twistor space [182]; see reference [183] for an introduction. In the discussion above,
we derived the linearised version of the classical double copy from three-point amplitudes in
momentum space. There is an alternative derivation from twistor space, introduced in refer-
ence [184]. Very briefly, twistor space can be identified with CP

3, and we denote a point in
twistor space as ZA = (μα̇,λα) ∈ CP3, A = 1, . . . , 4. The relation between spacetime fields
and twistor space representatives is given by the Penrose transform. This is a correspondence
between a solution of the linearised equation of motion for a massless field of spin s, which has
‘curvature’ spinor ϕα1α2...α2s(x), and a twistor space cohomology class of homogeneity weight
w = −(s + 2), i.e. satisfying f [w](LZA) = Lw f [w](ZA). The Penrose transform is

ϕα1α2...α2s (x) =
1

2πi

∮
Γ

(λβdλβ)λα1λα2 . . . λα2s f [−s−2](μα̇,λα)
∣∣
μα̇=xαα̇λα

, (119)

where Γ is a contour in CP1 with homogeneous coordinates λα. The restriction μα̇ = xαα̇λα is
known as the incidence relation. Reference [184] described how the Weyl double copy relation
(111) follows from the Penrose transform via a twistor space double copy,

f [−6] =
f [−4] f̃ [−4]

f [−2]
, (120)

for suitably chosen twistor representatives. In fact, it allows for f [−4] �= f̃ [−4], representing
a double copy involving two distinct gauge fields (more on this possibility later). It leads to
examples beyond type D and type N, namely of type III, although the conclusion is restricted
to linearised solutions. One outstanding question is what determines the twistor representatives
within the appropriate cohomology class that make equation (120) valid [149, 185, 186]. The
twistor approach has been used to provide a double-copy interpretation of the multipole expan-
sion of vacuum type-D solutions [187]. An earlier instance of a double copy of multipoles, for
describing spinning matter, was given in references [132, 188].
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Finally, regarding exact solutions, an interesting line of related work addresses the ques-
tions of how to define scattering amplitudes in curved backgrounds, rather than in Minkowski
spacetime, and how the double copy applies to perturbation theory in such backgrounds. Ref-
erences [189, 190] studied scattering amplitudes on ‘sandwich’ plane wave backgrounds in
both YM theory and gravity, finding that the memory effect caused by the plane wave on the
scattered states exhibits a double copy. One area where this type of question—of scattering on
strong backgrounds—is commonly asked is strong field quantum-electrodynamics. Motivated
by this connection, aspects of the classical double copy have been investigated in references
[191–193].

7.3. Beyond vacuum gravity

So far, we have discussed vacuum gravity solutions obtained as the ‘square’ of a gauge-theory
solution, e.g. Schwarzschild as the square of Coulomb. However, the double copy can involve
the product of two distinct gauge-theory solutions. In general, the double copy of YM theory
is the theory of a massless rank-2 tensor field, i.e. its perturbative spectrum includes not just
the graviton, but also the dilaton and the B-field (anti-symmetric two-form field). This theory
is the universal massless sector of supergravity, and arises from the zero-mass level of the
closed string. It is sometimes known as N = 0 supergravity or NS–NS gravity. Pure Einstein
gravity (vanishing dilaton and B-field) arises as a consistent truncation at the classical level.
The double copy of two distinct gauge-theory solutions, and even the most general ‘square’ of
a single solution, require us to work with NS–NS gravity.

It is instructive to look at the double copy of linearised plane waves, which are the asymp-
totic states in scattering amplitudes. Given two gauge-theory plane waves with null momentum
kμ, and polarisations εμ and ε̃μ, we can take εμε̃ν as a straightforward double copy. And yet,
a moment’s reflection opens the possibilities of considering ε(με̃ν) or ε[με̃ν]. There is also the
possibility of considering ε · ε̃ Δμν ; here, Δμν = ημν − (kμqν + kνqμ)/(k · q) projects into the
space where the polarisation vectors live, taken to be orthogonal to kμ and to a null reference
momentum qμ (a gauge choice). The most general double copy of the two gauge theory plane
waves is, therefore, the linear combination

εμν = ch

(
ε(με̃ν) −

Δμν

D − 2
ε · ε̃

)
+ cBε[με̃ν] + cφ

Δμν

D − 2
ε · ε̃, (121)

where we have the graviton, B-field and dilaton contributions. (We work in the Einstein frame,
where the propagator does not mix the graviton and the dilaton.)

We can express the double copy of classical solutions at linearised level exactly as in (121),
but in position space, as discussed in reference [194] based on a ‘fat graviton’ field incorpo-
rating graviton, dilaton and B-field. For the ‘square’ of the Coulomb solution, for instance, the
Schwarzschild solution arises by picking only the graviton contribution, with the mass param-
eter associated to ch. There can be no B-field contribution because this requires two distinct
gauge-theory solutions, analogously to ε[μεν] = 0. However, a dilaton contribution is allowed
by turning on cφ. The solution obtained in this way is known exactly: it is the unique static,
spherically symmetric and asymptotically flat solution to the Einstein equations with a min-
imally coupled scalar field, discovered by Newman, Janis and Winicour (JNW) [195]. This
two-parameter family (ch, cφ) is the most general double copy of the Coulomb solution. The
Schwarzschild solution is the special case of vacuum gravity, cφ = 0; all the other cases have
a naked singularity at the origin (cf uniqueness theorems).

Recall that the direct connection between scattering amplitudes and the linearised classical
double copy is manifest at the level of ‘curvatures’, i.e. the curvature tensor in gravity and the
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field strength in gauge theory. In order to extend this beyond vacuum gravity, reference [147]
introduced a generalised curvature, based on Riemann–Cartan geometry, which incorporates
the graviton, the dilaton and the B-field. This is precisely the curvature of the fat graviton
field Hμν of [194]. At linearised level, we have Rμν

ρσ = − κ
2∂[μ∂

[ρHν]
σ], which generalises

the standard Riemann curvature, related to the ordinary graviton via Rμν
ρσ = − κ

2∂[μ∂
[ρhν]

σ];
in both instances, the linearised curvatures are gauge invariant, which is why they can relate
directly to amplitudes. The connection to amplitudes is easier to express using the spinorial
form of the generalised curvature tensor in four dimensions:

Rαα̇ββ̇γγ̇δδ̇ = Xαβγδε̄α̇β̇ ε̄γ̇δ̇ + X̄α̇β̇γ̇δ̇εαβεγδ +Φαβγ̇δ̇ ε̄α̇β̇ εγδ + Φ̄α̇β̇γδεαβ ε̄γ̇δ̇ . (122)

At the linearised level, Xαβγδ = Ψαβγδ is the self-dual graviton contribution, i.e. the Weyl spinor
encountered previously. In the connection to three-point amplitudes seen in (99), this compo-
nent arises from the polarisation tensor ε+μ ε

+
ν . Similarly, Ψ̄αβγδ arises from ε−μ ε

−
ν . The two other

cases, ε+μ ε
−
ν and ε−μ ε

+
ν , are associated to Φαβγ̇δ̇ and Φ̄α̇β̇γδ . These contributions arise from the

dilaton and the axion (the single degree of freedom of the B-field in four dimensions).
An elegant interplay of parameters occurs in the components of the generalised curva-

ture when we consider the double copy of rotating dyons, building on our previous dis-
cussions. Recalling section 6, a rotating dyon is generated by the (Lorentzian) three-point
amplitudes

e±(−k·a+iθ)ACoul
± , (123)

where ACoul
± = ACoul(p→ p′k±) generate the Coulomb solution. The self-dual field strength

spinor is given by

φαβ(x) = eiθφCoul
αβ (x − ia). (124)

For the double copy, we take the product of left (L) and right (R) amplitudes:

eηL(−k·aL+iθL)ACoul
ηL

× eηR(−k·aR+iθR)ACoul
ηR

, (125)

where ACoul
ηL

×ACoul
ηR

generate the JNW solution. There are four cases, according to the signs
ηL and ηR, leading to four linearised curvature spinors associated to equation (122). These
spinors are

ψαβγδ(x) = ei(θL+θR)ψJNW
αβγδ(x − i(aL + aR)),

Φαβγ̇δ̇(x) = ei(θL−θR)ΦJNW
αβγ̇δ̇

(x − i(aL − aR)),
(126)

and their conjugate spinors; see reference [147] for details. Notice how the parameters θL + θR

and aL + aR are associated to the graviton spinors, while θL − θR and aL − aR are asso-
ciated to the dilaton/axion spinors. Each of the linearised curvature spinors satisfies the
equations of motion independently. Indeed, for the graviton spinor on the right-hand side,
we could have substituted the superscript ‘JNW’ by ‘Schwarzschild’. The graviton spinor
on the left-hand side is that of a linearised Kerr–Taub–NUT solution. Let us now ignore
the rotation and focus on θL, θR. In gravity, via the double copy, these lead to two distinct
parameters: θL + θR corresponds to the Ehlers duality transformation of the Schwarzschild
spinors, as discussed above (118), while θL − θR corresponds to the supergravity dilaton-axion
duality rotation. Both duality transformations in gravity arise as a double copy of electric-
magnetic duality in gauge theory! Considering now the rotation parameters, it is interesting
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that there is a new Newman–Janis-like shift for the axion and the dilaton, at least at linearised
level.

We mentioned that the generalised curvature is the curvature of a ‘fat graviton’ incorporat-
ing the graviton, the dilaton and the B-field. There is a natural map from the gravity three-point
amplitudes to the generalised curvature, e.g. equation 99; see reference [147] for more details.
This map is straightforward because the linearised curvature is gauge invariant. We can obtain
a map directly to the fat graviton (equivalently, to its graviton, dilaton and B-field parts), but
in this case one needs to specify a gauge. Working with a gauge-invariant object is certainly
more in the spirit of the scattering amplitudes methods. Nevertheless, one may be interested
in looking at the fields, and taking them off-shell, in order to construct a Lagrangian, for
instance.

In this context, let us revisit the convolutional double copy map, mentioned earlier in
equation (110). There should be a suitably defined map that applies generally, at least at lin-
earised level. As observed in reference [151], the linearised map from YM theory to gravity
should take the schematic form

Hμν = Aa
μ ◦ φ−1

ab ◦ Ãb
ν , (127)

where φ−1
ab is an inverse of the bi-adjoint scalar field with respect to the convolution, and Hμν

should be interpreted as what we called the fat graviton. This schematic form is the counterpart
of the polarisations relationship εμν = εμε̃ν . Just as for the latter, the linearised gauge trans-
formations match on both sides, which can be interpreted as the gauge symmetry in gravity
arising from that in gauge theory [151]. The precise definition of the convolutional map is
not straightforward. It is easier to apply it to solutions of the linearised equations of motion
(i.e. on-shell), as in references [196, 197]. It is trickier, as one may expect, to apply it to
off-shell fields, as discussed in references [198, 199]. The off-shell degrees of freedom in
gravity are the double copy of those in gauge theory only if the ghosts are included, which
leads to a double copy map for the BRST quadratic Lagrangians [198]. Reference [200] pre-
sented a construction of the linearised JNW solution as a convolutional double copy of the
Coulomb solution, with the ghosts playing a role. References [201–203] took these insights
beyond linear theory with the aim of describing the double copy structure of the interacting
Lagrangian. The convolutional map has also been applied with certain non-trivial backgrounds
[204, 205].

Returning to the comparison between equation (110), based on the convolutional double
copy, and equation (111), valid for certain exact solutions, it may be helpful to see an example
of how they can both apply, based on reference [147]. We consider the particularly simple
example of the Coulomb solution, which leads via the double copy to the JNW solution. The
graviton contribution to the generalised curvature tensor Rμνρσ is, up to a constant prefactor,

Pμνρσ
τληω

(
Fτλ ◦ S−1 ◦ Fηω

)
= −3Pμνρσ

τληω

FτλFηω

S
, (128)

where S = 1/r, and Pμνρσ
τληω projects out the traces, leading to the Weyl tensor. The non-trivial

properties of the solutions and the projector make it possible to disentangle the convolutions
[147]. Then, the expression above is simply a tensorial (rather than spinorial) version of the
Weyl double copy. However, the same simplification does not arise in the dilaton contribution
to Rμνρσ , which, up to a constant prefactor, turns out to be
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(
Fλ[μ ◦ S−1 ◦ Fλ[ρ

)
δν]

σ] = −3
Fλ[μδν]

[ρFσ]λ

S
+ (4π)2S3

(
δ[μ

[ρ δ
ν]
σ] − δ[μ

[ρ uν]uσ]

)
. (129)

Due to the last term, a Weyl-type double copy for the dilaton contribution does not take a
simple form in position space. A remarkable simplification like equation (128) is only possible
in special cases. Fortunately, some of the most important known exact solutions fall into this
category. In fact, for JNW, while the solution with dilaton does not admit a simple position-
space Weyl double copy—at least as currently understood—it does admit an exact double copy
of Kerr–Schild type, as we now discuss.

There is a well-known ‘doubled’ formalism that applies specifically to NS–NS grav-
ity, which is double field theory (DFT) [206]; see references [207, 208] for an introduc-
tion. Very briefly, DFT is an approach to the low-energy limit of closed string theory that
makes the action of T-duality manifest, by considering a doubled geometry with points
labelled by XM = (xμ, x̃ν). For a toroidal spacetime in D dimensions, these coordinates on
the doubled 2D-dimensional space are conjugate to momenta and winding. The idea is that
T-duality acts linearly on the doubled space, by the action of O(D, D). Therefore, O(D, D)-
covariance ensures manifest T-duality. For our purposes, what matters is that the NS–NS
fields are nicely packaged into a ‘generalised metric’ HMN , which is an O(D, D) tensor, and
a ‘DFT dilaton’, which is an O(D, D) scalar. The connection to the classical double copy
was introduced in reference [209], via a DFT Kerr–Schild-type ansatz for the generalised
metric:

HMN = H0MN + φ
(
KMK̄N + KN K̄M

)
, (130)

where H0MN is a trivial generalised metric associated to Minkowski spacetime. We will not
present details, but hopefully the analogy with the usual Kerr–Schild ansatz (112) is clear. KM

and K̄M are built from null vectors kμ and k̄μ, respectively, in such a way that they are chiral
and anti-chiral with respect to a notion of chirality that can be traced back to the chirality on
the closed string worldsheet. In this way, they are associated to left- and right-movers on the
worldsheet—the same decomposition that lies at the heart of the KLT relations in string theory
[1]. Since kμ and k̄μ are each associated to a solution to the Maxwell equations, similarly to
the usual Kerr–Schild double copy, the ‘left- and right-moving gauge fields’ provide a KLT
interpretation of the Kerr–Schild double copy. Reference [209] provided the first examples of
exact double copy involving the dilaton and the B-field. More importantly, it described how the
‘double’ in double copy and DFT can be identified. The exact double-copy interpretation of the
JNW solution follows an ansatz which is a small generalisation of equation (130) [210]. The
generalisation means that the map is not ‘local’ in position space, because the relation between
the gauge fields and the gravity fields involves integrations. This may have some relation to
the feature found in equation (129).

There are also examples of the classical double copy beyond NS–NS gravity. So far we
only considered pure NS–NS gravity. The introduction of a gauge field in the gravity theory
has been investigated thoroughly in the context of scattering amplitudes; see e.g. reference
[211], or see reference [150] for a review. One obtains a ‘heterotic gravity theory’: the gauge
field is coupled not only to the graviton, but also to the dilaton and the B-field, in the manner
dictated by the zero-mass level of the heterotic string. This perturbative spectrum is reproduced
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straightforwardly from the product of two copies of YM theory, one of which is coupled to a
scalar field. For illustration, the tensor product in four dimensions gives,

(ε+, ε−)⊗ (ε+, ε−,ϕ) = (ε+ ⊗ ε+, ε− ⊗ ε−, ε+ ⊗ ε−, ε− ⊗ ε+, ε+ ⊗ ϕ, ε− ⊗ ϕ),

where ϕ is the scalar wavefunction. The NS–NS gravity spectrum is supplemented by a gauge
field with its two polarisations. Building on this map of states studied for scattering amplitudes,
examples of linearised double copy of black holes with gauge fields were presented in refer-
ences [196, 197]. In reference [212], a Kerr–Schild-type ansatz in heterotic DFT provided
examples of exact double copy, an idea further developed in references [213–216]. Exten-
sions to exceptional field theories, which arise in the low-energy limit of string/M-theory, were
presented in references [217, 218].

One important point to keep in mind is that pure Einstein–YM theory is not known to
admit a double-copy description. In many instances in the amplitudes literature, people refer
to Einstein–YM theory when they really mean the heterotic theory with dilaton and B-field.
The pure Einstein–YM theory is not (even classically) a consistent truncation of the heterotic
theory such that the dilaton and the B-field are turned off, because a non-vanishing gauge
field generically sources these fields. Said in a different way, the tree-level amplitudes involv-
ing only external gravitons and gluons do not agree in the pure Einstein–YM theory and in
the heterotic theory, because the dilaton and B-field participate in the scattering in the lat-
ter case. This feature has consequences also for the classical double copy. For instance, the
Kerr–Newman black hole is a solution to the pure Einstein–YM equations (in particular, to the
pure Einstein–Maxwell equations), but is not a solution to the heterotic theory. This is because
turning on the ‘Coulombic’ gauge field necessarily backreacts on the dilaton non-linearly. The
appropriate black hole solution is the dilatonic charged black hole, whose exact double copy
description was given in reference [212]. The fact that the Kerr–Newman spacetime admits
Kerr–Schild coordinates and has a Weyl tensor of type D does not imply that it has a double-
copy interpretation, at least not in the sense that the double copy is typically understood. The
connection between the linearised solution and three-point scattering amplitudes, investigated
in references [219, 220], holds as expected. For a discussion related to this paragraph, see the
last appendix of reference [178]. Recently, in reference [221], an extension of the vacuum Weyl
double copy was proposed such that the gravity, gauge and scalar fields satisfy equations of
motion with sources. It would be interesting to check whether this idea can provide exam-
ples with a complete double copy description, which should now include the Ricci part of the
curvature as well as the sources.

Another interesting setting beyond vacuum gravity is that of three-dimensional space-
times. Gluons have a single physical polarisation in three dimensions, so the double copy
of YM theory has a single propagating degree of freedom. Indeed, in three dimensions, the
only propagating degree of freedom of NS–NS gravity is the dilaton. The double copy of a
point charge has been investigated from the perspective of a non-vacuum Kerr–Schild double
copy in references [222, 223]. References [224, 225] discussed the application of the double
copy to anyons and to topological quantisation conditions. Another interesting example of the
double copy relating three-dimensional theories is that of topologically massive gravity and
topologically massive YM theory [226–230]. In this context, a natural analogue of the Weyl
double copy has recently been presented: the Cotton double copy, based on the Cotton tensor
[231, 232].

The classical double copy has also been used to investigate non-singular black holes in
string theory and other settings [233–235].
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7.4. Higher-order perturbative double copy

In the previous subsection, we discussed a large variety of exact classical gravity solutions,
in various theories and in various dimensions. And yet, all can be related via the double copy
to abelian gauge-theory solutions. This is a manifestation of the powerful symmetries that
allow us to write those solutions down explicitly in the first place. The symmetries indicate
that the solutions are linear for special choices of (possibly complexified) coordinates. Take
the Schwarzschild solution, which is a Kerr–Schild spacetime. Perturbative field theory con-
structions of the Schwarzschild solution unguided by its symmetries have been, to date, very
laborious, and fail to capture the resummation that yields an exact solution [79, 236, 237]. (The
Aichelburg–Sexl shockwave solution, which arises from Schwarzschild via an ultra-relativistic
boost, is easier to construct, and the perturbative double copy has been verified there to all
orders [61]; see also reference [14] for a more recent approach building on the KMOC formal-
ism.) If one considers more-generic spacetimes of interest—e.g. those describing the scattering
of a pair of black holes, or a black hole binary—then no special symmetries are known to arise.
An exact analytical approach is, therefore, not an option: either one considers a perturbative
analytical approach of some type (in this article, we focus on post-Minkowskian), or the only
option is numerical relativity.

The double copy has been applied perturbatively to classical gravity in various ways, which
fall into two groups: on-shell methods (i.e. strictly scattering amplitudes) and off-shell meth-
ods. Examples of off-shell methods applied beyond linearised order include worldline effective
field theory approaches [8, 9, 238–245] and the ‘fat graviton’ construction mentioned in the
previous section [194, 210]. In many examples, the relation between off-shell quantities and
amplitudes may be enough to understand how to apply the double copy off-shell, but a generic
method is still missing. Recall that the linearised off-shell double copy of reference [198]
involved ghosts. Indeed, the double copy is only known to be straightforward when fully off-
shell if we restrict to the self-dual sector and use light-cone gauge [174]. Recently, however,
progress has been made towards understanding the perturbative double copy structure of clas-
sical fields, rather than amplitudes. Reference [246] described a ‘covariant colour-kinematics
duality’ at the level of the equations of motion. Reference [247] showed that currents (one leg
off-shell) obtained from perturbative DFT satisfy a simple generalisation of the on-shell KLT
relations; see [248–250] for related work. Regarding complete ‘off-shellness’, it is worth men-
tioning that there exist elegant and useful Lagrangians for gravity that were at least motivated
by the double copy [251, 252].

The application of the double copy to on-shell methods for classical gravity is very nat-
ural, as we hope this review article has conveyed. In the important case of the gravitational
two-body problem, both the KLT prescription and the BCJ prescription have been used. For
instance, reference [89] and subsequent work used the KLT relation for tree amplitudes appear-
ing in unitarity cuts that enter the construction of a conservative Hamiltonian, while reference
[10] used the BCJ prescription to compute the five-point amplitude relevant to the emission of
gravitational radiation (and also presented a method to eliminate the dilaton degree of freedom
from the double copy in this approach). More recently, references [95, 253, 254] presented
an algorithmic realisation of the BCJ double copy for heavy mass effective theory, which can
be directly applied to the gravitational two-body problem, and which also sheds light on the
algebraic structure of the colour-kinematics duality. We encourage the reader to see the grav-
itational waves section of the companion article on the double copy of amplitudes [106], as
well as reference [107], which reviews different approaches to describing classical gravity in
terms of amplitudes.
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8. Conclusions and future directions

As we have seen, the application of scattering amplitudes to classical gravitational physics in
recent years has led to significant progress in our understanding both of observables in classical
gravity and of the structure of scattering amplitudes themselves. Progress has been rapid, but
many questions still remain. It seems likely that work on these questions will lead to further
insights in years to come.

Compact object coalescences are the basic systems of interest in gravitational wave astro-
physics. These are bound systems of black holes or neutron stars. In this review we focused
instead on scattering processes, because the connection between amplitudes is at its most
straightforward in that context. It is of course possible to link on-shell computations to bound
systems, for example using effective theories [79, 88–90, 93, 94, 255, 256]. However a
more direct link, presumably building on the analytic continuation highlighted in references
[18, 257–259], would be very desirable.

Returning to scattering events, we have seen that the gravitational waveform is an integral
of a five-point amplitude. This result holds to all perturbative orders; beyond the leading-order
example discussed in the text, one needs to subtract cuts of five-point amplitudes. The con-
nection between the waveform and amplitudes is very welcome as it shows that double-copy
and unitarity methods can be used to determine the waveform. One particularly challenging
issue for the future is the computation of all the relevant integrals. The amplitudes themselves
are massive five-point amplitudes which involve loop integrals that are extremely challeng-
ing. However, the integrals should simplify in the classical limit [18, 19], though it will be
important to understand all the relevant classical regions in the loop integrals [94]. This is
not the end of the story: one must integrate over momentum mismatches as for example in
equation (78); these integrals were clearly elucidated recently in reference [48]. It would be
very interesting to understand the function space resulting from similar integrals at higher
orders.

Black holes are not simple pointlike objects. They have event horizons, and can absorb
energy and momentum. We made no attempt to include these dissipative aspects of black hole
physics, which nevertheless compete with more traditional post-Minkowskian effects in black
hole dynamics [260–263]. Goldberger and Rothstein have recently developed [260] an effec-
tive field theoretic approach to this issue, but it would also be interesting to understand if
dissipation can be incorporated more directly in the amplitudes themselves.

Bryce DeWitt famously observed that the only observable in quantum gravity is the S matrix.
It should therefore be true that any observable (which makes sense in both the quantum and
the classical theories) should determined by scattering amplitudes. We have seen examples of
this: the impulse on point particles, the momentum radiated and of course the waveform are
essentially amplitudes. The same is true of the change in spin of a particle [13, 255, 264] (and
the change in colour in YM theories [16, 21]). Can we then recover all of the physical content
of the Einstein equation from amplitudes in asymptotically locally Minkowskian spacetimes?

At cosmological scales, the universe appears to be in a de Sitter phase, which presents
a fundamental challenge to the amplitudes programme. There are tentative signs that some
on-shell simplifications persist beyond the locally Minkowski case. For example, Kerr–Schild
metrics play an important role in the classical double copy, and there is no problem generalising
Kerr–Schild solutions to de Sitter space [144]. Indeed, it is trivial to generalise the Kerr–Schild
form of the double copy from Coulomb to Schwarzschild to the de Sitter case. We have also
learned that the double copy, at the level of scattering amplitudes, can be formulated for some
classes of non-trivial exact solutions [179, 189, 190]. Amplitudes themselves appear as residues
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in the study of cosmological correlators [265]. Can we find a fully non-perturbative formulation
of the double copy?

Even in Minkowski space, there are important outstanding puzzles regarding amplitudes,
the double copy, and exact solutions. We saw that the double copy naturally leads to a rela-
tion between the leading-order Maxwell and Weyl spinors in on-shell momentum space. This
relationship endures upon computing the integrals for a special class of solutions, includ-
ing Schwarzschild and Kerr. Classically, these spacetimes are known to admit Kerr–Schild
coordinates, and in these coordinates the double copy appears very simply as an exact rela-
tionship of the form gμν = ημν + φkμkν , Aμ = φkμ [27]. But from the perspective of scattering
amplitudes, it is difficult to understand the role of Kerr–Schild coordinates: indeed, ampli-
tudes compute gauge-invariant quantities, so there seems to be no role for coordinates. Sim-
ilarly, we know classically that the Weyl spinors for Schwarzschild, Kerr, etc are linear in
the mass given an appropriate choice of frame. As this linearised Weyl spinor is precisely
computed by the quantum theory this suggests that the double copy is an exact relationship
in these cases. How can we understand this exactness from the perspective of the scattering
amplitudes?
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