1	Diverse diets in small theropods - the Cretaceous feathered
2	dinosaur <i>Microraptor zhaoianus</i> ate mammals
3	
4	Hone, D.W.E. ¹ , Dececchi, T.A. ² , Sullivan, C. ^{3,4} , Xu, X. ⁵ & Larsson, H.C.E. ⁶
5	
6	1. School of Biological and Behavioural Sciences, Queen Mary University of London,
7	London, UK.
8	2. Division of Natural Sciences, Mount Marty College, Yankton, South Dakota, USA.
9	3. Department of Biological Sciences, University of Alberta, Edmonton, Alberta,
10	Canada.
11	4. Philip J. Currie Dinosaur Museum, Wembley, Alberta, Canada.
12	5. Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate
13	Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
14	6. Redpath Museum, McGill University, Quebec, Canada.
15	
16	Abstract: Gut contents are extremely important for inferring trophic interactions
17	between extinct species. These are, however, very rare in the fossil record and it is not
18	always possible to accurately identify both the carnivore and the consumed organisms.
19	Here we describe the remains of a small fossil mammal foot preserved inside the body
20	cavity of the holotype specimen of the small feathered dinosaur Microraptor
21	zhaoianus. This adds to the known diversity of diet for this genus, which also
22	consumed birds, fish, and lizards. Previous interpretations that Microrapator was an
23	arboreal hunter of birds and adept hunter of fish are not supported. Although the
24	various known stomach contents would be plausible prey items based on size, there is

25 no clear evidence that any of them were predated rather than scavenged, and

26 *Microraptor* likely did both and foraged in multiple habitats.

27

28 Keywords: Dinosauria, Theropoda, Paraves, predator-prey

29

30 Introduction:

31 Determining the diet of non-avialan dinosaurs (hereafter, simply 'dinosaurs') is 32 problematic owing to the often sparse and non-specific nature of the data available in 33 the fossil record (Hone & Rauhut, 2010). This is because animals that were consumed 34 by carnivores, either partially or completely, were likely to be involved in a process 35 that limits their preservation potential. Individuals that were consumed may have been 36 subjected to extensive oral processing and then the process of digestion, limiting 37 diagnostic potential even if they are preserved as gut contents. Furthermore, any 38 remains that persisted after the primary predation event are often accessible to 39 scavengers, environmental damage and erosion once the carnivore that ingested them 40 is dead. In addition to these factors, consumers often disrupt or remove parts of the 41 remains. This process not only changes the preservation potential of the prey elements 42 but also their association with each other. These factors reduce our ability to accurately 43 recognize either predation or scavenging in the fossil record, as the elements that 44 would show direct evidence of these events are missing, and therefore, evidence of 45 consumption or scavenging is rare or difficult to determine.

46 Note that here we prefer the term 'carnivore-consumed' over 'predator-prey'
47 (following Hone & Tanke, 2015). The latter, while commonly used in the scientific
48 literature in reference to carnivore gut contents, does imply a specific relationship
49 between actors that cannot be easily verified. A jackal may scavenge and consume a
50 caudal vertebra of an elephant, but this would not involve a predation event, and the

51 consumed animal would not be considered prey. Thus evidence of consumption 52 (through bite marks or gut contents) should not immediately be assumed to represent a 53 direct predatory interaction between the two animals. A predator-prey relationship may 54 be established based on failed predation attempts with distinctive marks and evidence 55 of healing (Chin, 1997), though other explanations are also possible (if less likely) 56 even for observations of this kind. Even exceptional fossil associations, such as the 57 'fighting dinosaurs' specimen with skeletons of a *Protoceratops* and *Velociraptor* 58 interlocked (Holtz, 2003) or fragmentary Deinonychus individuals collected around a 59 partial Tenontosaurus (Roach and Brinkman, 2007) do not definitively indicate a 60 predator-prey relationship between these species. Scavenging can also be determined 61 (or inferred) with appropriate taphonomic data on the state of the consumed specimen 62 (Hone & Watabe, 2010).

63 Evidence pertaining to carnivore-consumed interactions may take such forms as 64 bite traces on bones (e.g. Hone & Tanke, 2015), shed teeth from feeding (e.g., Maxwell 65 and Ostrom, 1995), coprolites (e.g., Chin et al., 1998) or pellets (e.g., Freimuth et al., 2021) containing identifiable bones and, most importantly, gut contents (e.g. Dal Sasso 66 67 and Maganuco, 2011). Bite traces from carnivorous dinosaurs left on the bones of other 68 animals are generally not common (e.g. Jacobsen, 1998; Fiorillo, 1991) and, except in 69 rare occasions (e.g., Currie & Jacobsen, 1995; Hone & Watabe, 2010), it is difficult to 70 be specific about the taxonomic identity of at least one of the two species involved in 71 the interaction (Chin, 2012). Gut contents provide a more reliable source of data (as the 72 consumer is generally identifiable) but are rare (Hone & Rauhut, 2010), and thus every 73 new record is important and can provide much new data. 74 For small carnivorous theropods, certain confounding issues increase the

complexity of determining their possible diets, particularly when it comes to predation.
For example, larger taxa potentially have a wider range of prey sizes to choose from,

77 since they may predate on large or small prey species (even if this capacity is not 78 always exploited, e.g., Costa, 2009) and younger individuals may prey on different 79 species than adults (Dodson, 1975). In addition, as much of this prey choice is 80 relatively larger in larger theropods (i.e. the size of the consumed is a higher proportion 81 of the consumer's mass), a carcass may not be completely ingested and the remaining 82 portion may preserve traces such as tooth marks. Thus the larger absolute size, and the 83 higher chance of incomplete consumption, lead to these items having a higher 84 preservation potential than the more diminutive prey targeted by small theropods. 85 These factors increase the possibility that evidence of carnivore-consumed interactions 86 will be preserved when the carnivore is large. In contrast, smaller taxa, especially those 87 that are less than 10 kg, are expected to have a diet that is more diverse in terms of 88 prey species than those of larger carnivorous taxa, but more restricted in terms of prey 89 size (Carbone et al., 2007). This is linked to the fact that species diversity is greatest at 90 smaller body sizes (Morse et al., 1985; Kozlowski & Gawelczyk, 2002) and more 91 potential prey species should therefore be available to a small predator, even for a 92 narrow range of potential prey size. The increased likelihood of prey being completely 93 consumed coupled with the more delicate nature of the skeletal remains of smaller 94 predators leads to reduced preservation potential for carnivore-consumed interactions 95 involving carnivores in this size class. Thus for smaller taxa we will likely only get a 96 sense of the range of prey through the filter of what preserved stomach contents in 97 exceptional specimens in lagerstatten conditions. This highly biased sampling will 98 therefore underestimate the true feeding niche breadth of smaller theropods. 99 Even accounting for the hypothesis that theropods would have typically taken 100 primarily juvenile prey (Hone & Rauhut, 2010), large carnivorous theropods would 101 have primarily been feeding upon other dinosaurs, as dinosaurs accounted for most 102 large-bodied terrestrial animals of the Mesozoic. In contrast, in addition to very young

103	dinosaurs,	small thero	pods would	l have had	terrestrial	arthropods,	molluscs,	mammals,
							,	

104 squamates, amphibians, and other prey within their envelope (O'Gorman & Hone,

105 2012). This division is tentatively represented in the limited data for gut contents in

106 carnivorous theropods (Table 1) with smaller theropods generally showing a greater

107 variety of exploited clades. By contrast, few large theropods have reported gut

108 contents, though in both cases taphonomic biases are likely at work. Note that

109 spinosaurs are unusual in being large theropods with evidence of a diverse diet, and

110 from relatively few specimens (Hone & Holtz, 2017).

111

112 **Table 1.** Records of ingested bony elements by dinosaurian carnivores. Note that

113 Scipionyx had ingested multiple individuals of both fish and lepidosaurians of different

114 taxonomic affinities and sizes but these records are combined here for simplicity.

115

Carnivorous	Consumed	Consumed elements	Reference
taxon	taxon		
Coelophysis	Crocodylomorph	Partial pelvis and femur	Nesbitt et al., 2006
	S		
Scipionyx	?Lepidosaurs	Centrum, ulna, parts of	Dal Sasso & Maganuco,
		hindlimb and pedes	2011
Scipionyx	Fishes	Scales and vertebrae	Dal Sasso & Maganuco,
			2011
Baryonyx	Iguanodon	Not specified	Charig & Milner, 1997
Baryonyx	Lepidotes (fish)	Scales	Charig & Milner, 1997
Tyrannosaurus	Ornithischian	Various elements (coprolite)	Chin et al., 1998
Daspletosaurus	Hadrosaur	Caudal vertebrae and dentary	Varricchio, 2001
Sinocalliopteryx	Sinornithosaurus	Hindlimb	Ji et al., 2007
	(dromaeosaur)		
Sinocalliopteryx	Confuscisornis	Numerous bones	Xing et al., 2012
	(bird)		
Compsognathus	Bavarisaurus	Nearly a complete individual	Ostrom, 1978
	(squamate)		
Sinosauropteryx	Lizard	Most of an individual	Currie & Chen, 2001
Sinosauropteryx	Mammal	Tooth bearing element	Ji & Ji, 1997
Huaxiagnathus	Unknown	Indeterminate bone	Hwang et al., 2004
Ambopteryx	Unknown	Indeterminate bone	Wang et al., 2019
Anchiornis	Lizards	Numerous bones	Zheng et al., 2018
Anchiornis	Fish	Bones and scales	Zheng et al., 2018

Velociraptor	Azhdarchid	Indeterminate longbone	Hone et al., 2012
	pterosaur		
Microraptor	Enantornithine	Forelimb, both feet	O'Connor et al., 2011
	bird		
Microraptor	Teleost fish	Various bones	Xing et al. 2013
Microraptor	Indrasaurus	Nearly a complete individual	O'Connor et al., 2019
	(lizard)		
Microraptor	Mammal	Pes	Larsson et al., 2010 / this
			study

116

117

118 119 It is difficult to provide any kind of accurate division here between 'large' and 120 'small' theropods. Clearly, there is a continuum from the smallest carnivorous 121 members of this group and the largest, which spans at least three orders of magnitude 122 in body mass. Additionally, ecosystems throughout the Mesozoic are not directly 123 comparable from locality to locality and time to time, making general statements about 124 feeding ecologies impossible. It is reasonable to consider in the context of prey 125 availability that those animals that had a mass in the hundreds or thousands of 126 kilograms are relatively large and those under say 10 kg are relatively small, but a 127 detailed analysis of the separation between the two is beyond the scope of this study. 128 Extant terrestrial mammalian carnivore feeding ecologies can be divided at around 20 129 kg based on prey type and size (Carbone et al., 2007), yet this is unlikely to be a 130 universal value that should be assumed to hold for non-avialan theropods due to their 131 phenotypic differences from mammals, and to differences in community composition 132 between modern and Mesozoic times. There is still likely to be some general rules and 133 some kind of size-based discontinuity in ecology in theropod communities, though if it 134 was similar to modern mammals, or even if it remained constant across the changing 135 climates, clades and biotas that non-avialan theropods occupied over their ~160 million 136 years, is debatable and well beyond the scope of this work.

Even when exceptional data from stomach contents are available, they generally come from a single specimen of a given species. However, in the case of the small Early Cretaceous dromaeosaurid *Microraptor*, there are now numerous records of stomach contents showing a diverse diet. Specimens of this genus have been described containing a bird (O'Connor et al., 2011), a fish (Xing et al., 2013), and a lizard (O'Connor et al., 2019). Here we extend the dietary range of *Microraptor* by describing the foot of a

mammal that is preserved within the ribcage of the holotype of *M. zhaoianus* (Xu et
al., 2000 – Figure 1) and is regarded as gut contents. This represents only the second
case of direct evidence for the consumption of mammals by a theropod dinosaur and
provides new information on the diet of the small dromaeosaurids.

150 Figure 1. Holotype specimen of *Microraptor zhaoianus* (IVPP V 12330). A, chest

151 containing the mammal foot; B, partial skull and right forelimb; C, partial skull; D,

152 pelvis, legs and tail; E, counterpart forelimb; F, G, H, counterparts for the hindlimbs.

153 Scale bar is 100 mm.

154

Institutional Abbreviations: AMNH, American Museum of Natural History, New
York, USA; BMNHC, Beijing Museum of Natural History, Beijing, China; IVPP,
Institute of Vertebrate Paleontology & Paleoanthropology, Beijing, China. MPC,
Mongolia Palaeontological Centre, Ulaan Bator, Mongolia; QM, Qijiang Dinosaur
National Geological Park Museum, Qijiang, China; STM, Shandong Tianyu Museum

160 of Nature, Pingyi, China; UALVP, University of Alberta, Laboratory of Vertebrate

161 Palaeontology, Edmonton, Alberta, Canada.

162

163 **Description**:

164 IVPP V 12330 consists of multiple pieces of the part and counterpart of the 165 articulated, partially preserved holotype of Microraptor zhaoianus (see Xu et al. 2000 166 for more details). The specimen, although incomplete, is articulated and shows no 167 evidence of abdominal or thoracic rupture as the ribs are well articulated on both sides. 168 An articulated mammalian right foot is preserved within the thoracic cavity. The foot 169 overlies ribs from the left side and is overlain by ribs from the right side (Figure 2). 170 The mammalian foot is preserved in dorsal view and largely articulated. It includes all 171 tarsals and metatarsals and most phalanges, including unguals of digits I and probably 172 III. Several small, shafts of apparent longbones are present under and adjacent to it, 173 suggesting that other parts of the mammal are also preserved (Figure 3).

175	\mathbf{T}^{\prime} 2 \mathbf{T} 1 1 1	(A 1D) (1 1	1 1 1
1/5	HIGHTE / I WO alternate Views	$I \Delta$ and \mathbf{R}	I of the mammal	nes preserved with M/
1/5	1 iguie 2. 1 we alternate views	(A and D	1 01 the manifian	p c s p c s c v c u w c u m m
	£)	\	/	

zhaoianus under different lighting conditions. Scale bar for both images is 5 mm.

185

186

Figure 3. (A) Close up of the mammalian pes with (B) interpretative line drawing.
Dark grey shaded elements are mammalian, pale grey elements are *Microraptor* or of
indeterminate origin. Abbreviations are as follows: ph, phalanges; mt, metatarsals; rib, *Microraptor* ribs; ta, tarsals; un, unguals. For clarity, not all elements are labelled.
Scale bar is 5 mm.

192

193 The digits are slender, similar to *Eomaia* or *Sinodelphys* (Chen and Luo 2013), 194 though the phalanges are not as elongate as in these two taxa. The phalangeal index, 195 defined as the ratio of the sum of the lengths of the non-ungual phalanges to the length 196 of the metatarsal, is less than one (0.93) in the consumed foot, a lower value than in the 197 purported highly arboreal Jehol taxa (Chen and Luo 2013). The inter-phalangeal index 198 (the ratio of distal to proximal non-ungual phalanx length) is similar to that seen in 199 Akidolestes, which is suggested to be primarily terrestrial in habit (Chen and Luo 200 2013). The single well-preserved ungual lacks the trenchant, highly recurved 201 morphology seen in extant climbers (Samuels and Vanvalkenburgh, 2008). This 202 combination of a mid-range phalangeal index with only mildly curved claws suggests a 203 predominantly terrestrial habit, unlike the highly arboreal Sinodelphys or Eomaia (Luo 204 et al., 2003; Chen and Luo, 2013; Meng et al., 2017) (Figure xxx). 205 The total length of the digit, not including the ungual, is 8.1 mm. Including the

ungual brings the total digit length to about 9 mm, similar to *Sinodelphys*, *Yancodon*and *Eomaia* (Meng et al., 2017). Although differences in phalangeal proportions and

208 likely ecology make it difficult to be confident in assuming similar body mass, using

these three taxa as a guide suggests a size range between 13-43 g based on mass

210 estimates for more complete contemporaneous mammals (Meng et al., 2019). The mid

211 range estimates for *Eomaia* (digit length 9.1 mm) at 30 g and that of *Yancodon* (digit

212 length 7.5mm) at 21 g define a reasonable size bracket for this taxon.

213

214 **Discussion:**

215 *Ecology of* Microraptor

The ecology and behavior of *Microraptor* is uncertain and even controversial and has, for example, been suggested to be both nocturnal (Schmitz & Montani, 2011) and diurnal (Li et al., 2012). Although *M. gui* appears to be capable of gliding flight (Xu et al., 2003), there is also evidence for powered flight (Xu et al., 2003; Dyke et al., 2013; Alexander et al., 2010; Dececchi et al., 2016, 2020a; Hartman et al., 2019; Kiat et al., 2020; Pei et al., 2020), and little doubt that the taxon was capable of some form of aerial locomotion. As for habitat, both arboreality (Xu et al., 2000, Birn-Jeffery *et al.* 223 2012; Cobb & Sellers, 2020), and terrestriality (Dececchi and Larsson, 2011, Dececchi 224 et al., 2016) have been suggested. However, most agree that *Microraptor* could be at 225 least partly scansorial and that small maniraptoran theropods in general could climb 226 (Naish, 2000). They may not generally be well suited to moving in small diameter 227 branch environments (Dececchi and Larsson, 2011), but the enigmatic 228 scansoriopterygians are a likely exception, and perhaps also the first arboreal theropods 229 (Dececchi et al. 2020b). The diverse range of prey items found within specimens of 230 *Microraptor* do not help solve the habitat riddle, as they range from perching birds to 231 fish.

232 The sheer number of curated *Microraptor* specimens, over 300 of which have been 233 recovered from the Jiufotang Formation (Alexander et al. 2010), may provide some 234 insight into its broad diet. This quantity ensures that more examples of gut contents are 235 currently known for *Microraptor* than for any other dinosaur. Additionally, taxonomic 236 variation within *Microraptor* could at least partially explain the dietary breadth that has 237 been documented for the genus as a whole. Three species have been erected within the 238 genus from specimens collected, differing in body size and in subtle osteological 239 characters. The anatomical differences may reflect different ontogenetic stages, 240 anagenetic species clines sampled from different temporal horizons within the 241 formation, sympatric species, intraspecific variation, or some combination of these 242 factors. To date, specimens assigned to M. zhaoianus have been found with gut 243 contents of a lizard (O'Connor et al. 2019) and now a mammal. M. gui specimens have 244 been found with a fish (Xing et al. 2013) and a bird (O'Connor et al. 2011). 245 246 Size of consumed items

In extant organisms, predators generally exceed the body size of their prey, oftenby a considerable margin (not including 'grazing' on another organism such as cookie-

249 cutter sharks biting out parts of much larger fish) (Cohen et al., 1993; Vézina, 1985). 250 There are inevitably exceptions, and some predators (e.g., some mustelids) may 251 regularly attack, kill and consume prey considerably larger than themselves (Carbone 252 et al. 1999). Larger mammalian carnivores do tend to take prey that is proportionally 253 larger (Carbone et al., 1999), though potentially still smaller than the predator. At least 254 some of these carnivorans hunt cooperatively to facilitate capturing prey larger than 255 each individual, but collectively the pack is larger in mass (e.g., dhole - Cuon alpinus, 256 Woodroffe et al., 2007; painted dogs – Lycaon pictus, Radloff & du Toit, 2004). This 257 behaviour allows individuals to take prey that would be too large for them to subdue 258 alone, at least without extreme risk of injury. However, the general rule that predators 259 exceed the size of their prey holds well, and for mammals at least, smaller carnivores 260 (under 21 kg) typically take prey less than 40% of their own mass (Carbone et al., 261 1999). Similarly, while some large crocodilians are recorded as attacking and eating 262 large prey, their diet mostly comprises much smaller species (Messel and Vorlicek, 263 1989).

264 In the four known examples of *Microraptor* gut contents, the theropod exceeded 265 the size of the consumed items by a considerable margin (Table 2). The consumed bird 266 consisted predominantly of parts of a wing and both feet, and was small (consumed 267 ulna length 10.5 mm compared to 80 mm for the consumer - O'Connor et al., 2011). 268 The lizard was relatively small (consumed femur length 13.4 mm vs 75 mm for the 269 consumer - O'Connor et al., 2019). Similarly, the consumed fish were small based on 270 the size of the preserved vertebrae (Xing et al., 2013). In the new example presented here, the mammal was clearly small (mass estimated to be about 1/10th that of the 271 272 consumer), and the pes fits sits with a small portion of the body cavity. These various 273 consumed items would be within the envelope of potential prey items for *Microraptor* 274 if it were assumed to operate as an active predator following the pattern seen in most

extant animals, and inferred for carnivorous theropods generally (Hone and Rauhut,

276 2010).

277

288

Specimen	<i>Microraptor</i> femur length mm	<i>Microraptor</i> mass g	Prey	Prey size of complete individual (g)	prey % of predator mass
IVPP V13972A	82.3	760	enantiornithine bird	60-70	8-9%
QM V1002	109	1890	teleost fish	90	5%
STM5-32	75	570	scleroglossan squamate	6-12	1-2%
IVPP V 12330	49.8	150	mammal	21-30	14-21%

289

290 Jaw mechanics of dromaeosaurids

291 The craniomandibular morphology of *Microraptor* is consistent with the inference

that this taxon's diet was made up at least in part of small vertebrates, rather than only

small invertebrates. The jaw proportions of faunivores are clearly linked to their

feeding strategy, in that taxa with slender, elongate jaws tend to target small, agile prey

295 whereas taxa with shorter, more robust jaws are more likely to attack larger prey. This 296 relationship has been postulated for non-avialan theropods (Powers et al., 2020) and 297 exists in extant taxa as divergent as crocodilians (Walmsley et al., 2010) and canids 298 (Slater et al., 2009), although seemingly not in felids (Sakamoto et al., 2010). A simple 299 but powerful mechanical explanation for the connection between jaw length and 300 preferred prey type arises from lever mechanics and beam theory, as applied to the 301 tetrapod jaw apparatus (Ostrom, 1964; Bock, 1966; Thomason, 1991; Preuschoft and 302 Witzel, 2002; Therrien, 2005; Therrien et al., 2005, 2021). For a predator with a given 303 configuration of the jaw-closing musculature, the temporal part of the skull, and the 304 posterior part of the mandible, the bite force that can be applied to prey by a given 305 tooth in the anteriormost part of the mouth is inversely proportional to the length of the 306 jaws, or more precisely to the distance between the jaw joint and the position of the 307 tooth in question. Conversely, the speed with which upper and lower teeth in that 308 position can come together along a circular arc to engage the prey is directly 309 proportional to that same anteroposterior distance, for a given angular velocity of jaw 310 closure, and longer jaws also permit greater reach. Jaws that are robustly constructed, 311 in the sense of being dorsoventrally deep and/or mediolaterally thick, are better able to 312 withstand stress than more gracile jaws. Although the stress regime experienced by the 313 jaws is partly determined by the presence or absence of specific feeding behaviours, 314 such as bone cracking in some carnivorous mammals (Therrien, 2005), the size of a 315 given prey animal in proportion to that of the predator is another important factor. 316 Other things being equal, proportionally large prey should be easy to engage with the 317 jaws but are likely to require one or more forceful bites to kill, whereas proportionally 318 small prey should require less bite force to dispatch but are likely to be more elusive 319 and difficult to seize.

320 Powers et al. (2020) provided a useful foundation for evaluating jaw proportions in 321 dromaeosaurids by carrying out a principal components analysis of maxillary shape in 322 Eudromaeosauria. All the taxa in the analysis fell into one of three visually apparent 323 clusters occupying different positions along PC 1. The highest-scoring taxa on PC 1 324 were the North American forms Deinonychus and Atrociraptor, characterized by short, 325 deep maxillae with near-identical length/height ratios of about 1.7 (calculated from 326 supplementary data in Powers et al., 2020). An intermediate cluster contained the 327 North American taxa Saurornitholestes, Bambiraptor and Acheroraptor together with 328 the Asian taxon Achillobator, with maxillary length/height ratios of about 2.0 (based 329 on Saurornitholestes langstoni UALVP 55700 and Bambiraptor feinbergi AMNH 330 FARB 30556, as other maxillae in this cluster were damaged; note that ratios for left 331 and right maxillae were averaged when both maxillae were available). Finally, the 332 lowest-scoring taxa on PC 1 were the Late Cretaceous Asian velociraptorines 333 Linheraptor, Tsaagan and Velociraptor, characterized by comparatively long and 334 shallow maxillae with length/height ratios ranging from 2.4 in Linheraptor exquisitus 335 IVPP V 16923 to 3.4 in Velociraptor sp. MPC-D 100/982. Powers et al. (2020) 336 suggested that Velociraptor, Linheraptor and Tsaagan were best suited on the basis of 337 their snout proportions to predation on vertebrates much smaller than themselves, 338 whereas Atrociraptor and Deinonychus were best suited to attacking relatively large 339 prey. Achillobator, Acheroraptor, Bambiraptor and Saurornitholestes were 340 intermediate between these extremes, and perhaps more generalist in their feeding 341 habits. 342 In many *Microraptor* specimens, including IVPP V 12330, the proportions of the 343 maxilla cannot be reliably measured because both maxillae are absent, unexposed, 344 damaged, or difficult to fully demarcate from adjacent bones. However, the 345 length/height ratio of the maxilla is 2.2 in Microraptor sp. BMNHC PH881 (measured

from Pei et al., 2014: Fig. 3) and 2.0 in Microraptor sp. IVPP V 13475, values close to 346 347 those obtained for taxa in the "intermediate" eudromaeosaurian cluster of Powers et al. 348 (2020). Furthermore, the snout of *Microraptor* is overall shorter in proportion to its 349 height than those of Velociraptor (Barsbold and Osmólska, 1999), Tsaagan (Norell et 350 al., 2006) and Linheraptor (Xu et al., 2010), and more comparable in shape to that of 351 Saurornitholestes (Currie and Evans, 2020). The fairly short, deep rostrum of 352 *Microraptor* would therefore have been suitable for feeding on prey that were 353 relatively easy to seize but required a forceful bite to injure. In a tiny dromaeosaurid 354 with a body mass well under 1 kg, such snout proportions are consistent with small 355 vertebrates forming a substantial part of the diet at least, whereas an exclusively 356 insectivorous dromaeosaurid of the same size might be expected to have longer, 357 shallower jaws more like those of Velociraptor.

358

359 *Predation vs scavenging in* Microraptor

360 The consumed mammal is interpreted as predominantly occupying terrestrial 361 habitats based on its limited claw curvature. Although it is tempting to infer that the 362 mammal was consumed in a predation event in a terrestrial setting by a terrestrial 363 theropod, this is not known. It is also possible that the mammal was a scansor climbing 364 in the trees or other elevated surfaces when it was seized by the theropod, or that it was 365 found dead and was scavenged rather than preved upon. Thus the inferred ecology of 366 the mammal can provide only weak evidence regarding the ecology of the consumer. 367 There is evidence for both predation (Fowler et al., 2011) and scavenging (Hone et 368 al., 2010b) in dromaeosaurs, and most carnivorous animals are at least facultative 369 scavengers taking advantage of opportunities that may arise when foraging. 370 Scavenging itself as a behaviour is underappreciated and more common than often 371 realised (De Vault et al., 2003), and should not be dismissed as a rare behaviour or an

372 activity only usually engaged in by specialists. The majority of mortality in some 373 ecosystems may not be through predation, but scavengers can nevertheless consume 374 and remove whole organisms (De Vault et al., 2003). Gut contents in vertebrate 375 carnivores should not therefore be assumed to be the result of predation. 376 Although the evidence is limited, the consumption of a mammal foot could 377 potentially be attributed to scavenging. Dromaeosaurs do appear to be capable of 378 swallowing relatively large items (Hone et al., 2012), but the various items consumed 379 by *Microraptor* are generally small. The mammalian pes and possible other elements 380 are collectively small and, although the *Microraptor* specimen is incomplete, these are 381 the only consumed elements. Apparently the animal would have had the capacity to 382 consume other elements, but did not do so. Most animals show stereotyped patterns of 383 consuming carcasses (when not swallowed whole or in large parts), beginning with 384 major parts of muscle mass and viscera and ending with areas with little or no muscle 385 (Blumenschine, 1986). These low-muscle areas would therefore be the parts most often 386 available for consumption by scavengers with the more muscled areas already 387 removed. The pes is a part of the body that would contain relatively little nutrition, and 388 would be among the last parts of a carcass to be consumed. This suggests that the pes 389 was ingested during late stage carcass consumption, and potentially in a scavenging 390 event.

The suggestion of O'Connor et al. (2011) that *Microraptor gui* actively hunted birds in an arboreal setting based on the presence of a bird wing as gut contents is problematic on both major points. No evidence was provided that the relationship was genuinely one of a predator-prey interaction and that that the bird was actively killed and consumed, rather than scavenged. Indeed, the ingestion of parts of the avian skeleton which would yield little in the way of muscles or viscera (e.g., radius and ulna, pes) could be used to argue that this was also a scavenging event based on typical 398 patterns of carcass consumption (Blumenschine, 1986). Secondly, even perching birds 399 may spend a considerable amount of time on the ground foraging and may be predated 400 upon by fully terrestrial carnivores, potentially including theropods (Xing et al., 2012). 401 For example, striped hyenas (Crocuta crocuta - Leakey et al., 1999), cheetahs (Acionyx 402 jubatus - Farhadinia et al., 2012), and red foxes (Vulpes vulpes - Larivière & 403 Pasitschniak-Arts, 1996) are known to capture and feed on flying birds. Foxes will take 404 birds on nests and will climb trees on occasion (Larivière & Pasitschniak-Arts, 1996). 405 Therefore, although it is possible that *M. gui* hunted arboreal birds in the trees, we do 406 not agree that this is supported simply by the presence of a partially ingested bird. 407 Similarly, Xing et al. (2013) considered *Microraptor* adept at hunting aquatic 408 prey based on the presence of preserved fish gut contents, but noted they could not rule 409 out scavenging. It is difficult to picture this taxon as adept at hunting both birds in trees 410 and fish in water, foraging modes that would require very different specializations. 411 Regardless of how appealing it is to interpret the presence of a certain prey item as a 412 strong indicator of specific ecological traits in the consumer, the lack of clear evidence 413 to support hunting over scavenging makes it impossible to support the conclusion that 414 Microraptor actively hunted fish, let alone did so proficiently. As the majority of gut 415 contents for *Microraptor* recovered to date represent a wide variety of vertebrates, with 416 three of four being non-aquatic, it is difficult to reconcile these data with the 417 hypothesis that this genus would be in some way well adapted to catching aquatic prey. 418 In short, there is no strong support for attributing any of these consumption 419 events by various Microraptor specimens to predation or scavenging specifically, let 420 alone a discernible overall pattern. The variety of consumed vertebrates known to be 421 consumed by *Microraptor* is far greater than for most theropod taxa. However, this 422 may in fact be more typical for theropods but is rarely documented in the fossil record 423 because few if any specimens with preserved for gut contents are known for most taxa.

424 Diet in theropods likely varied not just interspecifically, but intraspecifically among 425 individuals, as well as potentially across regions, seasons and ontogenetic stages (as 426 recently shown in Deinonychus - Frederickson et al., 2020). Preservation may also bias 427 our interpretations further. For example, arthropods or other invertebrates may have 428 made up the majority of the diet but would be very unlikely to preserve. The remains 429 of insects and arachnids sufficient to diagnose them to family levels have been 430 recovered from pellets of some small extant owls (Mrykalo et al., 2009), though, 431 suggesting the possibility they could be recovered in theropods. As yet the only 432 theropod pellets found in association with a theropod are for the troodontid Anchiornis 433 (Zheng et al., 2018), so perhaps dromaeosaurs still had a more plesiomorphically 434 thorough digestion and less chances of preserving any traces that were not bones or 435 teeth. Recently, Freimuth et al. (2021) described pellets bearing the remains of 436 mammals and tentatively referred them to *Troodon*. Thus despite multiple examples of 437 gut contents, it is difficult to reach firm conclusions about diet. Even carnivores that 438 are well-adapted to scavenging large terrestrial mammals, like hyenas, eat small fish, 439 fruits and seeds (Leakey et al., 1999), and such items may not show up in the gut 440 contents. Additional data from studies such as enamel microwear and stable isotopes 441 may provide a clearer picture of what a typical diet was for *Microraptor*.

442

443 Conclusions:

This specimen does provide clear evidence that *Microraptor* consumed mammals, at least on occasion and this is a rarely documented interaction between a theropod and Mesozoic mammal. At a wider level, on the subject of the carnivorous ecology of *Microraptor*, all that we can say with confidence is that was probably a generalist predator and at least an occasional scavenger that mostly ate small vertebrates. In this regard was probably no different from many other small, carnivorous theropods. 450 Although gut contents are known disproportionately from exceptionally preserved

451 specimens of theropods, it is notable that in addition to *Microraptor, Scipionyx*,

452 Sinocalliopteryx and Anchiornis (Table 1) all show evidence of a highly varied diet

453 including multiple vertebrate groups from gut contents alone. In the case of

454 *Velociraptor* there is evidence to suggest consumption of both small ceratopsians and

455 pterosaurs (Hone et al., 2010; 2012). As discussed above, the diversity of prey species

456 available to small carnivores is much wider than that for larger taxa and it is likely that

457 many smaller theropods were generalists and took a wide range of prey in addition to

458 opportunistic scavenging and even consuming food items like fruit.

459

460 Acknowledgements:

461 We thank Jin Meng for discussion on the identity of the mammal. Funding support for

this project to HCEL was supported by an NSERC Discovery Grant and Canada

463 Research Chair. XX was supported by a grant from the National Natural Science

464 Foundation of China (41688103), and CS by an NSERC Discovery Grant (RGPIN-

465 2017-06246) and start-up funding provided by the University of Alberta.

466

467

470

468 **References:**

Alexander, D.E., Gong, E., Martin, L.D., Burnham, D.A. and Falk, A.R. 2010. Model

tests of gliding with different hindwing configurations in the four-winged

- dromaeosaurid *Microraptor gui*. *Proceedings of the National Academy of Sciences* 107: 2972-2976.
- Barsbold, R. and Osmólska, H. 1999. The skull of *Velociraptor* (Theropoda) from the
 Late Cretaceous of Mongolia. *Acta Palaeontologica Polonica* 44: 189-219.

475	Birn-Jeffery, A.V., Miller, C.E., Naish, D., Rayfield, E.J. and Hone, D.W. 2012. Pedal
476	claw curvature in birds, lizards and Mesozoic dinosaurs-complicated
477	categories and compensating for mass-specific and phylogenetic control.
478	<i>PLoS One</i> , 7(12).
479	Blumenschine, R.J., 1986. Carcass consumption sequences and the archaeological
480	distinction of scavenging and hunting. Journal of human evolution, 15: 639-
481	659.
482	Bock, W.J. 1966. An approach to the functional analysis of bill shape. The Auk 83: 10-
483	51.
484	Carbone, C., Mace, G.M., Roberts, S.C. and Macdonald, D.W. 1999. Energetic
485	constraints on the diet of terrestrial carnivores. Nature, 402: 286-288.
486	Carbone, C., Teacher, A. and Rowcliffe, J.M. 2007. The costs of carnivory. PLoS Biol,
487	5: p.e22.
488	Charig, A.J. and Milner, A.C., 1997. Baryonyx walkeri, a fish-eating dinosaur from the
489	Wealden of Surrey, 53: 11-70.
490	Chen, M. and Luo, Z.X., 2013. Postcranial skeleton of the Cretaceous mammal
491	Akidolestes cifellii and its locomotor adaptations. Journal of Mammalian
492	<i>Evolution</i> , 20(3), pp.159-189.
493	Chin, K. 1997: What did dinosaurs eat? Coprolites and other direct evidence of
494	dinosaur diets. In Farlow J.O. & Brett-Surman M.K. (eds): The Complete
495	Dinosaur, 371–382. Indiana University Press, Bloomington.
496	Chin, K., Tokaryk, T.T., Erickson, G.M. and Calk, L.C. 1998: A king-sized theropod
497	coprolite. <i>Nature</i> 393: 680–682.
498	Chin, K. 2012. What did dinosaurs eat: coprolites and other direct evidence of dinosaur
498 499	Chin, K. 2012. What did dinosaurs eat: coprolites and other direct evidence of dinosaur diets. In Brett-Surman M.K., Holtz, T.R., and Farlow J.O. (eds): <i>The Complete</i>

501	Christiansen, P., and Fariña, R.A. 2004. Mass prediction in theropod dinosaurs.
502	Historical Biology, 16: 85-92.
503	Cobb, S.E. and Sellers, W.I. 2020. Inferring lifestyle for Aves and Theropoda: a model
504	based on curvatures of extant avian ungual bones. <i>PloS one</i> , 15: p.e0211173.
505	Cohen, J.E., Pimm, S.L., Yodzis, P. and Saldaña, J. 1993. Body sizes of animal
506	predators and animal prey in food webs. Journal of animal ecology, 62: 67-
507	78.
508	Costa, G.C. 2009. Predator size, prey size, and dietary niche breadth relationships in
509	marine predators. Ecology, 90: 2014-2019.
510	Currie, P.J., and Evans, D.C. 2020. Cranial anatomy of new specimens of
511	Saurornitholestes langstoni (Dinosauria, Theropoda, Dromaeosauridae) from
512	the Dinosaur Park Formation (Campanian) of Alberta. Anatomical Record
513	303: 691-715.
514	Currie, P.J., and Jacobsen, A.R. 1995: An azhdarchid pterosaur eaten by a
515	velociraptorine theropod. Canadian Journal of Earth Sciences, 32: 922–925.
516	Dececchi, T.A., and Larsson, H.C. 2011. Assessing arboreal adaptations of bird
517	antecedents: testing the ecological setting of the origin of the avian flight
518	stroke. <i>PloS one</i> , 6(8).
519	Dececchi, T.A., Larsson, H.C. and Habib, M.B. 2016. The wings before the bird: an

- 520 evaluation of flapping-based locomotory hypotheses in bird antecedents.
- 521 *PeerJ*, 4: p.e2159.
- Dececchi, T.A., Larsson, H.C.E., Pittman, M. and M. Habib, M.B. 2020a. High flyer or
 high fashion? A comparison of flight potential among small bodied paravians. *Bulletin of the American Museum of Natural History*, 420: 295-320.

525	Dececchi, T.A., Roy, A., Pittman, M., Kaye, T. G., Xu, X., Habib, M.B., Larsson, H.C.,
526	Wang, x. and Zhang, X. 2020b. Aerodynamics show membrane-winged were
527	a poor gliding dead-end. iScience, 23: 101574.
528	DeVault, T.L., Rhodes, Jr, O.E. and Shivik, J.A. 2003. Scavenging by vertebrates:
529	behavioral, ecological, and evolutionary perspectives on an important energy
530	transfer pathway in terrestrial ecosystems. Oikos, 102: 225-234.
531	Dodson, P. 1975. Functional and ecological significance of relative growth in
532	Alligator. Journal of Zoology, 175: 315–355.
533	Dyke, G., De Kat, R., Palmer, C., Van Der Kindere, J., Naish, D. and
534	Ganapathisubramani, B. 2013. Aerodynamic performance of the feathered
535	dinosaur Microraptor and the evolution of feathered flight. Nature
536	Communications, 4: 1-9.
537	Evans, S.E. and Wang, Y. 2010. A new lizard (Reptilia: Squamata) with exquisite
538	preservation of soft tissue from the Lower Cretaceous of Inner Mongolia,
539	China. Journal of Systematic Palaeontology, 8: 81-95.
540	Farhadinia, M. S., Hosseini-Zavarei, F. Nezami, B., Harati, H., Absalan, H., Fabiano,
541	E., and Marker, L 2012. Feeding ecology of the Asiatic cheetah Acinonyx
542	jubatus venaticus in low prey habitats in northeastern Iran: Implications for
543	effective conservation. Journal of arid environments, 87: 206-211.
544	Fiorillo, A.R. 1991. Prey bone utilisation by predatory dinosaurs. Palaeogeography,
545	Palaeoclimatology, Palaeoecology, 88: 157–166.
546	Fowler, D.W., Freedman, E.A., Scannella, J.B. and Kambic, R.E. 2011. The predatory
547	ecology of <i>Deinonychus</i> and the origin of flapping in birds. <i>PLoS One</i> , 6(12).
548	Frederickson, J. A., Engel, M. H., and Cifelli, R. L. 2020. Ontogenetic dietary shifts in
549	Deinonychus antirrhopus (Theropoda; Dromaeosauridae): Insights into the

550	ecology and social behavior of raptorial dinosaurs through stable isotope
551	analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 552: 109780.
552	Freimuth, W.J., Varricchio, D.J., Brannick, A.L., Weaver, L.N. and Wilson Mantilla,
553	G.P., 2021. Mammal-bearing gastric pellets potentially attributable to
554	Troodon formosus at the Cretaceous Egg Mountain locality, Two Medicine
555	Formation, Montana, USA. Palaeontology - in press.
556	Hartman, S., Mortimer, M., Wahl, W.R., Lomax, D.R., Lippincott, J. and Lovelace,
557	D.M. 2019. A new paravian dinosaur from the Late Jurassic of North
558	America supports a late acquisition of avian flight. PeerJ, 7: p.e7247.
559	Holtz, T.R., 2003. Dinosaur predation. In: Kelley, P.H., Kowalewski, M, and Hansen
560	T.A., Predator-Prey Interactions in the Fossil Record, pp. 325-340. Springer
561	Press, Boston, MA.
562	Hone, D.W. and Rauhut, O.W. 2010. Feeding behaviour and bone utilization by
563	theropod dinosaurs. Lethaia, 43: 232-244.
564	Hone, D.W. and Watabe, M. 2010. New information on scavenging and selective
565	feeding behaviour of tyrannosaurids. Acta Palaeontologica Polonica, 55:
566	627-635.
567	Hone, D.W.E., Choiniere, J., Sullivan, C., Xu, X., Pittman, M. and Tan, Q. 2010. New
568	evidence for a trophic relationship between the dinosaurs Velociraptor and
569	Protoceratops. Palaeogeography, Palaeoclimatology, Palaeoecology, 291:
570	488-492.
571	Hone, D., Tsuihiji, T., Watabe, M. and Tsogtbaatr, K., 2012. Pterosaurs as a food
572	source for small dromaeosaurs. Palaeogeography, Palaeoclimatology,
573	Palaeoecology, 331: 27-30.

574	Hone, D.W.E. and Tanke, D.H., 2015. Pre-and postmortem tyrannosaurid bite marks
575	on the remains of Daspletosaurus (Tyrannosaurinae: Theropoda) from
576	Dinosaur Provincial Park, Alberta, Canada. PeerJ, 3: p.e885.
577	Hone, D.W.E. and Holtz Jr, T.R., 2017. A century of spinosaurs-a review and revision
578	of the Spinosauridae with comments on their ecology. Acta Geologica Sinica-
579	English Edition, 91: 1120-1132.
580	Hwang, S.H., Norell, M.A., Qiang, J. and Keqin, G. 2004. A large compsognathid
581	from the Early Cretaceous Yixian Formation of China. Journal of Systematic
582	Palaeontology, 2: 13-30.
583	Jacobsen, A.R. 1998: Feeding behavior of carnivorous dinosaurs as determined by
584	tooth marks on dinosaur bones. Historical Biology, 13: 17–26.
585	Ji, S.A., Ji, Q., Lü, J. and Yuan, C. 2007. A new giant compsognathid dinosaur with
586	long filamentous integuments from Lower Cretaceous of Northeastern China.
587	Acta Geologica Sinica, 81: 8-15.
588	Ji, Q. and Ji, S.A. 1997. Advance in the study of the avian Sinosauropteryx prima.
589	Chinese Geology, 242: 30-32.
590	Kiat, Y., Balaban, A., Sapir, N., O'Connor J.K., and Xu, A. 2020. Sequential Molt in a
591	Feathered Dinosaur and Implications for Early Paravian Ecology and
592	Locomotion. Current Biology, 30: 18.
593	Kozlowski, J., and Gawelczyk, A.T. 2002. Why are species' body size distributions
594	usually skewed to the right? Functional Ecology, 16: 419-432.
595	Larivière, S., and Pasitschniak-Arts, M. 1996. Vulpes vulpes. Mammal Species, 537: 1-
596	11.
597	Larsson, H.C.E., Hone, D.W.E., Dececchi, T.A., Sullivan, C. and Xu, X., 2010. The
598	winged non-avian dinosaur Microraptor fed on mammals: implications for
599	the Jehol Biota ecosystems. Journal of Vertebrate Paleontology, 30A: 39.

600	Leakey, L.N., Milledge, S.A.H., Leakey, S.M., Edung, J., Haynes, P., Kiptoo, D.K. and
601	McGeorge, A. 1999. Diet of striped hyaena in northern Kenya. African
602	Journal of Ecology, 37: 314-326.
603	Li, Q., Gao, K.Q., Meng, Q., Clarke, J.A., Shawkey, M.D., D'Alba, L., Pei, R., Ellison,
604	M., Norell, M.A. and Vinther, J. 2012. Reconstruction of Microraptor and the
605	evolution of iridescent plumage. Science, 335: 1215-1219.
606	Luo, Z.X., Ji, Q., Wible, J.R. and Yuan, C.X. 2003. An Early Cretaceous tribosphenic
607	mammal and metatherian evolution. Science, 302: 1934-1940.
608	Maxwell, W.D., and Ostrom, J.A. 1995. Taphonomy and paleobiological implications
609	of Tenontosaurus–Deinonychus associations. Journal of Vertebrate
610	Paleontology 15: 707–712.
611	Meng, Q.J., Grossnickle, D., Liu, D., Zhang, Y.G., Neander, A.I., Ji, Q., and Luo, Z.X.
612	2017. New gliding mammaliaforms from the Jurassic. Nature, 548: 291–296.
613	Meri, S. 2010. Length-weight allometries in lizards. Journal of Zoology. 281: 218-226.
614	Messel, H. and Vorlicek, G.C. 1989. Ecology of Crocodylus porosus in northern
615	Australia. In: Crocodiles: their ecology, management and conservation,
616	pp.164-183. IUCN, Gland, Switzerland.
617	Morse, D.R., Lawton, J.H., Dodson, M.M., and Williamson, M.H. 1985. Fractal
618	dimension of vegetation and the distribution of arthropod body lengths.
619	<i>Nature</i> , 314: 731–733.
620	Mrykalo, R.J., Grigione, M.M., and Sarno, R.J. 2009. A comparison of available prey
621	and diet of Florida Burrowing Owls in urban and rural environments: a first
622	study. The Condor, 111: 556-559.
623	Naish, D. 2000. Theropod dinosaurs in the trees: a historical review of arboreal habits
624	amongst nonavian theropods. Archaeopteryx, 18: 35-41.

- Nesbitt, S.J., Turner, A.H., Erickson, G.M. and Norell, M.A., 2006. Prey choice and
 cannibalistic behaviour in the theropod *Coelophysis*. *Biology Letters*, 2: 611614.
- 628 Norell, M. A., Clark, J. M., Turner, A. H., Makovicky, P. J., Barsbold, R. and Rowe, T.
- 629 2006. A new dromaeosaurid theropod from Ukhaa Tolgod (Ömnögov,
 630 Mongolia). *American Museum Novitates* 3545: 1-51.
- O'Connor, J., Zhou, Z. and Xu, X. 2011. Additional specimen of *Microraptor* provides
 unique evidence of dinosaurs preying on birds. *Proceedings of the National Academy of Sciences*, 108: 19662-19665.
- O'Connor, J., Zheng, X., Dong, L., Wang, X., Wang, Y., Zhang, X. and Zhou, Z. 2019.
 Microraptor with Ingested Lizard Suggests Non-specialized Digestive
 Function. *Current Biology*, 29: 2423-2429.
- 637 O'Gorman, E.J., and Hone, D.W. 2012. Body size distribution of the dinosaurs. *PloS*638 *one*, 7: p.e51925.
- 639 Ostrom, J.H. 1964. A functional analysis of jaw mechanics in the dinosaur *Triceratops*.
 640 *Postilla*, 88: 1-35.
- 641 Ostrom, J.H. 1978. The osteology of *Compsognathus longipes* Wagner. Zitteliana, 4:
 642 73-118.
- Pei, R., Li, Q., Meng, Q., Gao, K.Q. and Norell, M.A., 2014. A new specimen of
 Microraptor (Theropoda: Dromaeosauridae) from the Lower Cretaceous of
- 645 western Liaoning, China. *American Museum Novitates*, 2014: 1-28.
- 646 Pei, R., Pittman, M., Goloboff, P.A., Dececchi, T.A., Habib, M.B., Kaye, T.G.,
- 647 Larsson, H.C., Norell, M.A., Brusatte, S.L. and Xu, X. 2020. Potential for
- 648 powered flight neared by most close avialan relatives, but few crossed its
- 649 thresholds. *Current Biology*, 30, 4033-4046.

650	Powers, M.J., Sullivan, C. and Currie, P.J. 2020. Re-examining ratio based
651	premaxillary and maxillary characters in Eudromaeosauria (Dinosauria:
652	Theropoda): Divergent trends in snout morphology between Asian and North
653	American taxa. Palaeogeography, Palaeoclimatology, Palaeoecology, 547:
654	109704.
655	Preuschoft, H., and Witzel, U. 2002. Biomechanical investigations on the skulls of
656	reptiles and mammals. Senckenbergiana Lethaea, 82: 207-222.
657	Radloff, F.G., and Du Toit, J.T. 2004. Large predators and their prey in a southern
658	African savanna: a predator's size determines its prey size range. Journal of
659	Animal Ecology, 73: 410-423.
660	Roach, B.T., and Brinkman, D.L. 2007:. A reevaluation of cooperative pack hunting
661	and gregariousness in Deinonychus antirrhopus and other nonavian theropod
662	dinosaurs. Bulletin of the Peabody Museum of Natural History, 48: 103–138.
663	Sakamoto, M., Lloyd, G.T., and Benton, M.J. 2010. Phylogenetically structured
664	variance in felid bite force: the role of phylogeny in the evolution of biting
665	performance. Journal of Evolutionary Biology, 23: 463-478.
666	Samuels, J.X., and Van Valkenburgh, B., 2008. Skeletal indicators of locomotor
667	adaptations in living and extinct rodents. Journal of morphology, 269: 1387-
668	1411.
669	Dal Sasso, C., Maganuco S. 2011. Scipionyx samniticus (Theropoda:
670	Compsognathidae) from the Lower Cretaceous of Italy. Memorie della
671	Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di
672	<i>Milano</i> , 37: 1-281
673	Schmitz, L., and Motani, R., 2011. Nocturnality in dinosaurs inferred from scleral ring
674	and orbit morphology. Science, 332: 705-708.

675	Slater, G.J., Dumont, E.R., and Van Valkenburgh, B. 2009. Implications of predatory
676	specialization for cranial form and function in canids. Journal of Zoology,
677	278: 181-188.

- Sullivan, C., Hone, D.W., Xu, X. and Zhang, F. 2010. The asymmetry of the carpal
 joint and the evolution of wing folding in maniraptoran theropod dinosaurs. *Proceedings of the Royal Society B: Biological Sciences*, 277: 2027-2033.
- Therrien, F. 2005. Mandibular force profiles of extant carnivorans and implications for
 the feeding behaviour of extinct predators. *Journal of Zoology* 267: 249-270.
- Therrien, F., Henderson, D.M., and Ruff, C.B. 2005. Bite me: biomechanical models of
 theropod mandibles and implications for feeding behavior. In: Carpenter, K.
 (ed.), *The Carnivorous Dinosaurs*, pp. 179-237. Indiana University Press,
- 686 Bloomington.
- Therrien, F., Zelenitsky, D. K., Voris, J. T. and Tanaka, K. 2021. Mandibular force
 profiles and tooth morphology in growth series of *Albertosaurus sarcophagus*
- 689 and *Gorgosaurus libratus* (Tyrannosauridae: Albertosaurinae) provide
- 690 evidence for an ontogenetic dietary shift in tyrannosaurids. *Canadian Journal*691 *of Earth Sciences*, in press.
- Thomason, J.J. 1991. Cranial strength in relation to estimated biting forces in some
 mammals. *Canadian Journal of Zoology*, 69: 2326-2333.

694 Varricchio, D.J., 2001. Gut contents from a Cretaceous tyrannosaurid: implications for
695 theropod dinosaur digestive tracts. *Journal of Paleontology*, 75: 401-406.

696 Vézina, A.F. 1985. Empirical relationships between predator and prey size among

697 terrestrial vertebrate predators. *Oecologia*, 67: 555-565.

- Wang, M., O'Connor, J.K., Xu, X. and Zhou, Z., 2019. A new Jurassic
- 699 scansoriopterygid and the loss of membranous wings in theropod dinosaurs.
- 700 *Nature*, 569: 256-259.

701	Walmsley, C.W., Smits, P.D., Quayle, M.R., McCurry, M.R., Richards, H.S., Oldfield,
702	C.C., Wroe, S., Clausen, P.D., and McHenry, C.R. 2013. Why the long face?
703	The mechanics of mandibular symphysis proportions in crocodiles. PLoS
704	<i>ONE</i> , 8: e53873.
705	Woodroffe, R., Lindsey, P.A., Romañach, S.S. and Ranah, S.M.O. 2007. African wild
706	dogs (Lycaon pictus) can subsist on small prey: implications for conservation.
707	Journal of Mammalogy, 88: 181-193.
708	Xing, L., Bell, P.R., Persons IV, W.S., Ji, S., Miyashita, T., Burns, M.E., Ji, Q. and
709	Currie, P.J. 2012. Abdominal contents from two large Early Cretaceous
710	compsognathids (Dinosauria: Theropoda) demonstrate feeding on
711	confuciusornithids and dromaeosaurids. PLoS One, 7: p.e44012.
712	Xing, L., Persons IV, W.S., Bell, P.R., Xu, X., Zhang, J., Miyashita, T., Wang, F. and
713	Currie, P.J. 2013. Piscivory in the feathered dinosaur Microraptor. Evolution,
714	67: 2441-2445.
715	Xu, X., Zhou, Z. and Wang, X. 2000. The smallest known non-avian theropod
716	dinosaur. Nature, 408: 705-708.
717	Xu, X., Zhou, Z., Wang, X., Kuang, X., Zhang, F. and Du, X. 2003. Four-winged
718	dinosaurs from China. Nature, 421: 335-340.
719	Xu, X., Choiniere, J. N., Pittman, M., Tan, Q., Xiao, D., Li, Z., Tan, L., Clark, J. M.,
720	Norell, M. A., Hone, D. W. E. and Sullivan, C. 2010. A new dromaeosaurid
721	(Dinosauria: Theropoda) from the Upper Cretaceous Wulansuhai Formation
722	of Inner Mongolia, China. Zootaxa, 2403: 1-9.
723	Zheng, X., Wang, X., Sullivan, C., Zhang, X., Zhang, F., Wang, Y., Li, F. and Xu, X.
724	2018. Exceptional dinosaur fossils reveal early origin of avian-style digestion.
725	Scientific reports, 8:14217.
726	

727

FIGURE 1. Holotype specimen of Microraptor zhaoianus (IVPP V 12330) with

729 mammal foot gut contents. A, entire specimen. Box inset indicates the location of B

- and C. B, close-up view of mammal foot. C, illustration of visible bones: dark gray
- 731 elements are *Microraptor* ribs, yellow bones are the articulated mammalian foot and

732	light gray are unidentified bones. Note the juxtaposition of the foot over the inside of
733	the left ribs and the overlap of the right ribs over the foot, particularly over digits II and
734	III. Abbreviations: ast, astragalus; cal, calcaneum; mtI, metatarsal 1; nav, navicular; lr,
735	left rib; rr, right rib. Scale bar in A equals 100 mm and in B and C equals 5 mm.
736	
737	
738	TABLE 1. Records of ingested bony elements by dinosaurian carnivores. Note that
739	Scipionyx had ingested multiple individuals of both fish and lepidosaurians of different

taxonomic affinities and sizes but these records are combined here for simplicity.

741 Femur lengths from citing reference or from #Dececchi et al. (2020b) and *Wilson et

742 al. (2016).

743

Consumer	Carnivorous		Carnivorous taxon Femur		
body size	taxon	Consumed taxon	length (mm)	Consumed elements	Reference
Less than 100	Coelophysis	Crocodylomorphs	209#	Partial pelvis and femur	Nesbitt et al., 2006
kg	Scipionyx	?Lepidosaur	37.3#	Centrum, ulna, parts of hindlimb and pedes	Dal Sasso & Maganuco, 2011
	Scipionyx	Fish	37.3#	Scales and vertebrae	Dal Sasso & Maganuco, 2011
	Sinocalliopteryx	Sinornithosaurus (dromaeosaur)	210#	Hindlimb	Ji et al., 2007
	Sinocalliopteryx	Confuscisornis (bird)	est. 290	Numerous bones	Xing et al., 2012
	Compsognathus	Bavarisaurus (squamate)	65.8#	Nearly a complete individual	Ostrom, 1978
	Sinosauropteryx	Lizard	86#	Most of an individual	Currie & Chen, 2001
	Sinosauropteryx	Mammal	108"	Tooth bearing element	Ji & Ji, 1997
	Huaxiagnathus	Unknown	163"	Indeterminate bone	Hwang et al., 2004
	Ambopteryx	Unknown	36.8	Indeterminate bone	Wang et al., 2019
	Anchiornis	Lizards	71	Numerous bones	Zheng et al., 2018
	Anchiornis	Fish	35	Bones and scales	Zheng et al., 2018
	Velociraptor	Azhdarchid pterosaur	194	Indeterminate longbone	Hone et al., 2012
	Microraptor	Enantornithine bird	82.3	Forelimb, both feet	O'Connor et al., 2011
	Microraptor	Teleost fish	109	Various bones	Xing et al. 2013
	Microraptor	Indrasaurus (lizard)	est. 75 mm	Nearly a complete individual	O'Connor et al., 2019
	Microraptor	Mammal		Pes	Larsson et al., 2010
Greater than 100 kg	Baryonyx	Iguanodon	est. 1200*	Not specified	Charig & Milner, 1997
	Baryonyx	Lepidotes (fish)	est. 1200*	Scales	Charig & Milner, 1997
	Tyrannosaurus Daspletosaurus	Ornithischian Hadrosaur	1321 [#] 1030 [#]	Various elements (coprolite) Caudal vertebrae and dentary	Chin et al., 1998 Varricchio, 2001

744

745

746

747	TABLE 2.	Estimated body	masses	of Microrapto	r specimens	and char	acteristics of	of
				1	1			

- their gut contents. *Microraptor* specimen masses are based on femoral length per
- 749 Christiansen and Fariña (2004). Prey size masses are estimated for a complete
- individual, not only the body portion preserved. Bird mass based on the estimate in
- 751 O'Connor et al. (2011). Fish mass based on osseous mass of fish inQMV1002 being of
- similar dimensions (minimally 3.5×1.6 cm) as the regurgitate in *Anchiornis* specimen
- 753 STM0-224, which was estimated at 93 g by Friemuth et al. (2021). Mass of squamate
- 754 Indrasaurus estimated from SVL using Meri (2010); SVL estimated based on closely
- related and similar sized (femur length 83% of that of *Indrasaurus* specimen of
- 756 *Liushusaurus* (Evans & Wang 2010).
- 757
- 758
- 759

Specimen	Microraptor femur length (mm)	Microraptor mass (g)	Prey	Prey size of complete individual (g)	Prey % of predator mass
IVPP V13972A	82.3	760	enantiomithine bird	60–70	8–9%
QM V1002 STM5-32	109 75	1890 570	teleost fish scleroglossan	90 6–12	5% 1–2%
IVPP V 12330	49.8	150	mammal	21–30	14-21%