
Queen Mary University of London

Accelerating Deep Reinforcement

Learning via Action Advising

Ercüment İlhan

Primary Supervisor: Diego Perez-Liebana

Secondary Supervisor: Jeremy Gow

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the

School of Electronic Engineering and Computer Science

December 15, 2022

ii

Abstract

Deep Reinforcement Learning (RL) algorithms can solve complex sequential decision-
making tasks successfully. However, they suffer from the major drawbacks of having
poor sample efficiency and long training times, which can often be tackled by knowledge
reuse. Action advising is a promising knowledge exchange mechanism that adopts
the teacher-student paradigm to leverage some legacy knowledge through a budget-
limited number of interactions in the form of action advice between peers. In this
thesis, we studied action advising techniques, particularly in Deep RL domain, both in
single-agent and multi-agent scenarios. We proposed a heuristic-based jointly-initiated
action advising method that is suitable for multi-agent Deep RL setting, for the first
time in literature. By adopting Random Network Distillation (RND), we devised a
measurement for agents to assess their confidence in any given state to initiate the
teacher-student dynamics with no prior role assumptions. We also used RND as an
advice novelty metric to construct more robust student-initiated advice query strategies
in single-agent Deep RL. Moreover, we addressed the absence of advice utilisation
mechanisms beyond collection by employing a behavioural cloning module to imitate
the teacher’s advice. We also proposed a method to automatically tune the relevant
hyperparameters of these components on the fly to make our action advising algorithms
capable of adapting to any domain with minimal human intervention. Finally, we ex-
tended our advice reuse via imitation technique to construct a unified student-initiated
approach that addresses both advice collection and advice utilisation problems. The
experiments we conducted in a range of Deep RL domains showed that our proposal
provides significant contributions. Our Deep RL-compatible action advising techniques
managed to achieve a state-of-the-art level of performance. Furthermore, we demon-
strated that their practical attributes render domain adaptation and implementation
processes straightforward, which is an important progression towards being able to
apply action advising in real-world problems.

Keywords: Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, Deep
Q-Network, Action Advising, Knowledge Reuse, Teacher-Student Framework

iii

iv

Acknowledgements

First and foremost, I would like to thank my primary supervisor Diego Pérez-Liébana
for believing in me and providing me with this invaluable Ph.D. opportunity here at
Queen Mary University of London. As well as being a great researcher role model for
me, he has always been very supportive and has given me the freedom of exploring my
own ideas which I really appreciate. I would also like to thank my second supervisor
Jeremy Gow for his valuable feedback on the publications we have co-authored. I
also wish to thank John Woodward for being my independent assessor to evaluate my
progression constructively at multiple stages of this course.

I am deeply indebted to Matthew E. Taylor for showing interest in my work and
presenting me the opportunity to collaborate with his research group at University of
Alberta. His support has really made the final months of this Ph.D. endurable for me.

My time in London would not have been the same without my dear colleague Alvaro
Ovalle Castañeda. I am very glad to have known him both as a great friend and a
passionate researcher, with whom I have had countless amusing memories and influential
scientific discussions.

I am extremely grateful to my dear parents İclal, Ergun and my dear brother Kerem
for all the love, encouragement and support they have been providing me all this time.
No matter how far we have ended up being from each other, they have always made
me feel like I have them around as if I am back at home with them. I also can not
go without commemorating my grandmother Naciye and my uncle Cengiz, who were
among my biggest supporters from the beginning and would surely be proud to see me
achieve this Ph.D. degree.

Finally, I would like to extend my sincere thanks to Nattaruedee for bringing further
joy to my life and supporting me with her best by being like a family to me whenever I
needed it.

And of course, I gratefully acknowledge the Ph.D. scholarship granted to me by
Queen Mary University of London, which made this study possible.

v

vi

Contents

1 Introduction 1
1.1 Problem Statement . 4
1.2 Contributions . 7
1.3 Organisation of the Thesis . 10

2 Background 13
2.1 Markov Decision Processes . 13

2.1.1 Markov Games . 18
2.1.2 Decentralised Partially Observable Markov Decision

Processes . 20
2.2 Reinforcement Learning . 20

2.2.1 Multi-Agent Reinforcement Learning 22
2.3 Deep Reinforcement Learning . 26

2.3.1 Deep Q-Network . 28
2.3.2 Random Network Distillation 34
2.3.3 Dropout . 36

2.4 Learning from Prior Knowledge . 37
2.4.1 Imitation Learning . 37
2.4.2 Learning from Demonstrations 38
2.4.3 Action Advising . 40

2.5 Action Advising in Classical RL . 42
2.6 Action Advising in Deep RL . 49

3 Games in this Thesis 51
3.1 Cover the Landmarks . 51
3.2 Reach the Goal . 54
3.3 MinAtar . 55
3.4 Arcade Learning Environment . 57

4 Teaching on a Budget in Multi-Agent Deep Reinforcement Learning 61
4.1 Introduction . 61
4.2 The Approach . 64

4.2.1 Agent Specifications . 64

vii

4.2.2 Teaching on a Budget . 65
4.3 Experimental Setup . 67
4.4 Results and Discussion . 74
4.5 Conclusions . 80

5 Student-Initiated Action Advising via Advice Novelty 83
5.1 Introduction . 83
5.2 The Approach . 85
5.3 Experimental Setup . 88
5.4 Results and Discussion . 94

5.4.1 Reach the Goal . 95
5.4.2 MinAtar . 96

5.5 Conclusions . 104

6 Action Advising with Advice Imitation in Deep Reinforcement Learn-
ing 109
6.1 Introduction . 109
6.2 The Approach . 111
6.3 Experimental Setup . 115
6.4 Results and Discussion . 117
6.5 Conclusions . 124

7 Learning on a Budget via Teacher Imitation 127
7.1 Introduction . 127
7.2 The Approach . 129
7.3 Experimental Setup . 133
7.4 Results and Discussion . 136
7.5 Conclusions . 144

8 Conclusions and Future Work 147
8.1 Future Work . 150

8.1.1 Action Advising for Safe Exploration 151
8.1.2 Learning from Incompetent Peers 152
8.1.3 Learning from Multiple Peers 152

viii

List of Figures

2.1 Agent-environment interaction. 13

3.1 Three visualised frames from the Cover the Landmarks game. 52
3.2 Rendered observation of Reach the Goal’s initial state. 54
3.3 Rendered observations of random states from MinAtar games. 56
3.4 Rendered observations of random states from ALE games. 59
3.5 Illustration of ALE preprocessing on Pong frames. 60

4.1 Level structure types in Cover the Landmarks. 72
4.2 Example initial states of different level structures in Cover the Landmarks. 72
4.3 DQN architecture. 73
4.4 Evaluation scores of XP, XP-EA, XP-IA. 78
4.5 Evaluation scores of XP-L, XP-L-EA, XP-L-IA. 79

5.1 DQN architecture. 92
5.2 RND architecture. 92
5.3 Number of advice taken and the evaluation scores Reach the Goal. . . . 97
5.4 Number of advice taken in MinAtar’s Asterix and Breakout. 99
5.5 Number of advice taken in MinAtar’s Freeway, Seaquest, Space Invaders. 100
5.6 Evaluation scores in MinAtar’s Asterix and Breakout. 102
5.7 Evaluation scores in MinAtar’s Freeway, Seaquest, Space Invaders . . . 103

6.1 DQN architecture. 119
6.2 Behavioural Cloning network architecture. 119
6.3 Evaluation scores in Enduro and Freeway. 120
6.4 Evaluation scores in Pong. 121

7.1 Evaluation scores in Enduro and Freeway. 138
7.2 Evaluation scores in Pong and Q*bert. 139
7.3 Evaluation scores in Seaquest. 140
7.4 UMAP embeddings of AIR vs. EA and AIR vs. RA in Seaquest. 141

ix

x

List of Tables

4.1 DQN, RND and action advising module hyperparameters. 75
4.2 Asymptotic performance and AUC values of XP, XP-EA, XP-IA. . . . 76
4.3 Asymptotic performance and AUC values of XP-L, XP-L-EA, XP-L-IA. 77

5.1 DQN and RND hyperparameters. 91
5.2 Final values of the evaluation scores in five MinAtar games. 106
5.3 AUC values of the evaluation scores in five MinAtar games. 107

6.1 DQN and imitation module hyperparameters. 118
6.2 Final and AUC values of evaluation scores. 122
6.3 The number of exploration steps and the number of advice reuses. . . . 123

7.1 DQN and imitation module hyperparameters. 137
7.2 Final evaluation scores and advice reuse percentages. 146

xi

xii

List of Abbreviations

AI Artificial Intelligence

AIR Advice Imitation & Reuse

ANA Advice Novelty-Based Advising

AR Early Advising with Advice Reuse via Imitation

AR+A AR with Automatic Threshold Tuning

AR+A+E . . AR+A with Extended Reuse

AUC Area Under the Curve

BC Behavioural Cloning

DAgger . . . Dataset Aggregation

Dec-POMDP Decentralised Partially Observable Markov Decision Process

DQfD Deep Q-Learning from Demonstrations

DQN Deep Q-Network

EA Early Advising

JAL Joint Action Learners

LfD Learning from Demonstrations

MARL Multi-Agent Reinforcement Learning

MAS Multi-Agent System

MCTS Monte Carlo Tree Search

MDP Markov Decision Process

MG Markov Games

NA No Advising

PER Prioritised Experience Replay

POMDP . . . Partially Observable Markov Decision Process

RA Random Advising

ReLU Rectified Linear Unit

xiii

RHEA Rolling Horizon Evolutionary Algorithm

RL Reinforcement Learning

RND Random Network Distillation

RtG Reach the Goal

SNA State Novelty-Based Advising

UA Uncertainty-Based Advising

UMAP Uniform Manifold Approximation and Projection

xiv

List of Symbols

S Finite Set of states.

A Finite Set of actions.

R Reward function.

T Set of conditional state transition probabilities.

N Finite set of agents.

Ω Finite set of joint observations.

O Set of conditional observation probabilities.

Gt Sum of discounted future rewards obtained from timestep t.

γ Discount factor.

V (s) . . . State value of state s.

Q(s, a) . State-action value of state s and action a.

A(s, a) . State-action advantage value of state s and action a.

π Decision-making policy.

π∗ Optimal decision-making policy.

πS Decision-making policy of student.

πT Decision-making policy of teacher.

ε Termination criterion.

∆ Termination criterion comparison term.

α Learning rate.

tmax . . . Number of training steps.

ε ε-greedy exploration rate.

U Uniform distribution.

θ RL algorithm approximator weights.

Li(θi) . . Loss function with respect to θ at learning step i.

B Minibatch of samples.

D DQN replay memory.

ND . . . DQN replay memory capacity.

xv

MD . . . DQN replay memory size to start learning.

Ttarget . . DQN target network update period.

Ttrain . . DQN training period.

G RND target network.

Ĝω RND predictor network parameterised with ω.

ω RND predictor network weights.

χ Dropout rate.

C BC/LfD samples buffer.

Hη BC network parameterised with η.

η BC network weights.

NC Number of samples needed in C to trigger BC training.

KBC . . . Number of initial BC training iterations.

KBCP . . Number of periodic BC training iterations.

εreuse . . Probability to enable episodic advice-reusing.

εreuse−init Initial value of probability to enable episodic advice-reusing.

εreuse−final Final value of probability to enable episodic advice-reusing.

Tε Number of timesteps to decay εreuse−init value to εreuse−final.

Hu
η (s) . . Epistemic uncertainty of BC model Hη in state s.

Timitation . Number of timesteps needed to trigger periodic BC training.

H Uncertainty values set for the automatic threshold tuning process.

ρH Proportion cutoff point in H to be set as the reuse threshold.

I(s) . . . State importance of state s.

IV (s) . . Variance-based state importance of state s.

ID(s) . . Absolute deviation-based state importance of state s.

U(s) . . . Epistemic/proxy uncertainty for state s.

bask . . . Advice-asking budget of the student.

bgive . . . Advice-giving budget of the teacher.

τask . . . State uncertainty threshold to request advice.

τgive . . . State uncertainty threshold to provide advice.

τimp . . . State importance threshold to request/provide advice.

τreuse . . Advice-reusing threshold.

Υs Student’s state confidence of state s.

Ψs Teacher’s state confidence of state s.

va Scaling hyperparameter to determine the advice-asking probability with Υ.

vg Scaling hyperparameter to determine the advice-giving probability with Ψ.

pask(s) . . Advice-asking probability (derived from U(s)) for state s.

xvi

λ Advice-giving probability scaling term.

λUA . . . Advice-giving probability scaling term of UA.

λSNA . . Advice-giving probability scaling term of SNA.

λANA . . Advice-giving probability scaling term of ANA.

Chapter 1

Introduction

Today, a vast amount of real-world domains ranging from finance to surveillance benefit

from having automation through machines that can exhibit intelligent behaviour. These

kinds of capabilities granted to the machines are referred to as Artificial Intelligence

(AI) and are especially relevant in accomplishing sequential decision-making tasks. For

instance, we build self-driving cars to eliminate human efforts and errors in controlling

vehicles, or we require robotic manipulation for handling various industrial tasks.

Despite its potential, building AI for such practical applications is not straightforward.

A significant portion of the domains are complex and involve non-deterministic, non-

stationary dynamics, i.e. the outcomes of the interactions made within them may be

time-varying and unpredictable. Therefore, manually defined behaviours are not feasible

options for the agents that are responsible to drive decision-making within these domains;

it is critical for them to be able to adapt continually to unseen circumstances and

changing conditions. Because of these reasons, Reinforcement Learning (RL) (Sutton

& Barto 2018), the machine learning paradigm of self-improvement via experience

acquired through trial-and-error interactions, is considered to be a key AI approach to

building intelligent sequential decision-making agents.

RL has a long history of development with a rapidly increasing research effort

devoted to it in recent years. It has made its most significant breakthroughs of reaching

1

2 CHAPTER 1. INTRODUCTION

super-human level progressively in difficult domains like Atari games (Mnih et al. 2015),

the game of Go (Silver et al. 2016), StarCraft II (Vinyals et al. 2019) and DotA II

(Berner et al. 2019) in the last few years aided by the emergence of Deep Learning

(Goodfellow et al. 2016) in parallel to the availability of high computational power and

immense amount of data. Consequently, RL has obtained its popular name of Deep

RL to refer to its deep learning variants. In addition to its remarkable performance,

Deep RL’s end-to-end structure and general applicability make it a desirable sequential

decision-making approach for various real-world problems (Popova et al. 2018, Levine

et al. 2018, Bellemare et al. 2020). Nevertheless, these applications are still considered

to be limited. This is due to the Deep RL’s costly requirements of long training times

and large numbers of samples to be acquired through environment interactions, which

are often highlighted as the well-known drawbacks of it (Arulkumaran et al. 2017).

The challenge of accelerating Deep RL is tackled in multiple aspects by different

approaches. The most prominent of these can be listed as follows: learning the

environment dynamics explicitly, i.e. model-based RL (Hafner et al. 2020); learning to

learn faster by using the previous learning experience, i.e. Meta RL (Finn et al. 2017);

improving techniques to make agents more proficient at exploring their environment

mechanics and collecting samples that will yield high-reward strategies (Täıga et al.

2019) and finally, knowledge reuse (or transfer learning) (Zhu, Lin & Zhou 2020) which

stands for the process of leveraging some legacy knowledge obtained from a previous

learning session to improve the learning process in the current task. We now shift our

focus to the latter concept which forms the core idea of this thesis.

The ability to utilise the knowledge obtained from prior experience when learning

a novel task is an important aspect of intelligence. As humans, we demonstrate

remarkable performance when learning and adapting to new concepts. For example, in

the case of playing video games, we rapidly learn and develop a strong understanding

by utilising our prior knowledge in visuals and physics (Dubey et al. 2018). Driven by

this motivation, a considerable amount of methods to leverage past knowledge in RL

are proposed to this date (Taylor & Stone 2009). More recently, these techniques have

3

also been applied in Deep RL with promising results in complex domains (Rusu et al.

2016, Teh et al. 2017, Zhu, Lin & Zhou 2020). As the results of these studies suggest,

these methods are still open to development, and they offer many different avenues for

different scenarios to be studied.

A common method to preserve past knowledge for reusing is to store either the

encountered experience (Ho & Ermon 2016, Hester et al. 2018, Kumar et al. 2019) or the

trained agent policies themselves (Kurenkov et al. 2019). However, in some situations,

it may not be possible to access the relevant RL task prior to the training to generate

such datasets of experience. This may occur when we are to deploy an agent in an

environment with unpredictable characteristics. Furthermore, the previous policies to

be leveraged may not be transferable for unlimited access, e.g., in the case of humans or

other agents without fixed policies. These issues render the aforementioned knowledge

reuse approaches infeasible. As an alternative to these conditions, the learning agent(s)

may instead have access to some interactive peers, be it, humans or other agents,

during the training time either in a multi-agent setting or in an isolated single-agent

environment. This presents a whole new set of opportunities to tackle the learning

inefficiency via peer-to-peer knowledge reuse (da Silva, Warnell, Costa & Stone 2020)

even without any previous datasets or policies at hand.

Action advising (Torrey & Taylor 2013) is a flexible peer-to-peer knowledge exchange

framework that is designed for this exact problem setting. Essentially, the learning

agent (student) receives advice in the form of actions from a more knowledgeable peer

(teacher) to speed up its learning with the aid of a guided exploration process. However,

the maximum number of teacher-student interactions to be made is limited with a

budget in this framework to resemble the practical limitations of communication and

attention in the real-world domains. For this reason, the peer that is responsible to

drive the advice exchange interactions needs to do so carefully in order to make the

most efficient use of the available budget. This notion forms the core challenge of action

advising and distinguishes it from other similar approaches like Policy Reuse (Kurenkov

et al. 2019) that has no limitations in policy interactions. Since the action advising

4 CHAPTER 1. INTRODUCTION

paradigm targets very specific scenarios, it stands at a critical point of being a solution

to these kinds of problem settings. For instance, having an agent deployed remotely to

some previously unknown environment to be trained with the assistance of a human

expert over a costly communication channel can be a very relevant application case for

action advising. A system with multiple agents that learn in a decentralised fashion with

occasional inter-agent communication can also make use of action advising to accelerate

collective learning efficiently. These make action advising an important subject to

be researched. However, due to not being an extensively applicable framework in a

wide range of domains, it has not been studied as much as the other RL acceleration

paradigms. Consequently, all the related work conducted prior to the beginning of this

Ph.D. study remained to be limited to the classical (non-Deep) RL domains. In this

thesis, we study action advising approaches, particularly in Deep RL to address the

present research gaps.

The following sections first describe the problem specifications we target along with

the research questions we tackle (Section 1.1). Then, the scientific contributions we made

in this thesis with their respective publications are listed and detailed (Section 1.2).

1.1 Problem Statement

The main goal of this Ph.D. research is to study action advising methods in order to

accelerate Deep RL. We aim to build modular techniques to make the most of the

limited teacher-student interaction budgets without modifying the underlying Deep RL

algorithms at all. In terms of environment and learning conditions, we are interested

in either fully cooperative decentralised multi-agent scenarios or single-agent tasks in

general, both in partial and fully observable forms where peer-to-peer communication

is allowed but limited with a set budget.

We consider cooperative decentralised multi-agent learning as one of the most relevant

application cases of Deep Multi-agent RL (MARL) with action advising because of the

presence of multiple agents that can learn mutually by communicating with each other.

1.1. PROBLEM STATEMENT 5

This can easily be utilised as a peer-to-peer knowledge exchange setup. Furthermore,

these agents usually tend to learn in different parts of the environment and therefore

end up with heterogeneously distributed knowledge among them. Action advising can

be a very efficient tool to take advantage of this condition by sharing diverse knowledge

among the agents to speed up their learning. Finally, another property of such domains

that makes action advising a suitable framework is the commonly encountered setbacks

in the inter-agent communication channels such as limited bandwidth and time-varying

behaviour. Therefore, it is important to treat communication as a valuable resource to

make the most out of it while it is available, as it is done in action advising.

Even though the described MARL scenario can be an ultimate application case

for action advising, the learning processes in such multi-agent systems can be very

complicated to study. For this reason, in addition to confirming and showcasing the

potential effectiveness of the action advising framework in MARL, we are also interested

in studying action advising algorithms extensively in single-agent domains to develop

more principled approaches in simpler settings that can be scaled up later. Nevertheless,

single-agent Deep RL can also gain substantial benefits from action advising in practice.

It can either be in a scenario where multiple agents learn in their isolated environments

and still can interact with each other over a limited communication channel, or in a

human-agent setting where the agent’s ongoing learning can be aided by a human with

a limited attention span.

We believe that the outcomes of this Ph.D. regarding action advising and related

approaches will have contributions and practical uses both in single-agent and multi-

agent Deep RL scenarios. The research questions we have tackled over the course of

this Ph.D. study are as follows:

[RQ1] Primary Question: To what extent can we accelerate Deep RL via (budget-

limited) action advising with one or more knowledgeable peer(s)?

It is vital to address this question because the outcomes will open up new avenues

of knowledge reuse opportunities in Deep RL to speed up learning significantly,

6 CHAPTER 1. INTRODUCTION

especially in the specific problem scenarios where there is no possibility of pre-

generating useful datasets or transferring the previous policies to the learning

agent for unlimited access.

[RQ2] How can we scale the state-of-the-art action advising approaches from classical

RL to Deep RL/MARL domains?

This can be considered as the first step of establishing action advising methods

in Deep RL by extending the state-of-the-art from the classical RL domains.

The answer(s) to this question will let us identify some of the action advising

challenges that are present in the Deep RL domains.

[RQ3] What can be an efficient heuristic to perform student-initiated action advising

that is also robust to teacher absence conditions in Deep RL?

In addition to developing functional action advising approaches in Deep RL, it

is also important to understand the non-ideal situations regarding the teacher’s

presence and competence to identify the shortcomings of these approaches to be

alleviated. One obvious case in the action advising framework is the assumption

of teacher availability from the beginning of the learning sessions which may not

always hold in practical scenarios. Analysing and alleviating this will help us

build more robust techniques.

[RQ4] Can imprecise usage of action advising budget hamper Deep RL performance?

As it is highlighted in the previous studies in the classical RL domains (Clouse

1996), the negative effects of excessive amounts of advice are a matter to be paid

attention to. Thus, we want to find out if this finding also holds in Deep RL.

[RQ5] How can we further utilise the collected advice by memorising and reusing them

in Deep RL domains?

The objective of the action advising strategies is mainly about determining the

most impactful moments to collect advice to maximise budget efficiency. Yet,

1.2. CONTRIBUTIONS 7

how the advice are leveraged beyond collection also plays a critical role in the

overall learning process. Being able to reuse the previous advice can definitely be

a promising way to strengthen this aspect.

[RQ6] How can we use the advice memorisation techniques to build more efficient advice

collection strategies?

We want to find out how we can integrate our findings into devising a unified

action advising algorithm that is capable of utilising the advice efficiently and

also use this ability to drive the advice collection. This helps us compose the

developments we have achieved over the course of this study into a final algorithm.

1.2 Contributions

The main scientific contributions we have made as a part of this Ph.D. study are as

follows with their respective publications and the chapters they are covered in:

• E. İlhan, J. Gow, and D. Pérez-Liébana, “Teaching on a Budget in Multi-Agent

Deep Reinforcement Learning,” 2019 IEEE Conference on Games (CoG), London,

United Kingdom, August 20–23, 2019.

[Chapter 4]

In this first study, we extended the idea of peer-to-peer knowledge exchange via

action advising with no predefined roles from multi-agent tabular RL (da Silva et al.

2017) to the domain of non-linear function approximation with agents employing

Deep RL algorithms as their task policies. We employed Random Network

Distillation (RND)(Burda et al. 2018), originally a state novelty measurement to

aid exploration techniques, as a proxy of tabular state counting to Deep RL to

facilitate self-assessment of agents’ confidences. This way, the agents can switch

between teacher-student roles and initiate advice exchange interactions whenever

they decide it is appropriate. By doing so, we demonstrated the effectiveness of a

8 CHAPTER 1. INTRODUCTION

heuristic-based action advising algorithm in a Deep RL/MARL setting for the

first time. This study addresses the research questions [RQ1] and [RQ2].

• E. İlhan, J. Gow, and D. Pérez-Liébana, “Student-Initiated Action Advising via

Advice Novelty,” in IEEE Transactions on Games, vol. 14, no. 3, pp. 522-532,

September 2022, doi: 10.1109/TG.2021.3113644.

[Chapter 5]

In this work, we investigated the drawbacks of the existing action advising methods

in the single-agent Deep RL domain and analysed them in an extensive set of

experiments with comparisons. We highlighted the significance of being able

to handle a teacher that joins the communication loop at a later time during

the training rather than being available from the beginning. We also showed

how over-advising can even hamper the performance of an off-policy Deep RL

algorithm. Finally, we proposed an approach that utilises RND to measure the

novelty of the advice instead of the states themselves. This is achieved by updating

RND exclusively by the advised states instead of those encountered in Deep RL

model updates. Our approach overcomes the drawbacks that are present in the

previous action advising techniques as well as performing better than or at least

on par with the best ones. This study addresses the research questions [RQ1],

[RQ3] and [RQ4].

• E. İlhan, J. Gow, and D. Pérez-Liébana, “Action Advising with Advice Imitation

in Deep Reinforcement Learning,” Proceedings of the 20th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2021), Online, May

3–7, 2021, IFAAMAS.

[Chapter 6]

We addressed the absence of further advice utilisation by reusing advice in

Deep RL domains, which is especially crucial in practical settings considering

the importance of making the most of a small amount of budget. To do so,

1.2. CONTRIBUTIONS 9

we presented an approach to enable the student agent to partially imitate the

teacher’s policy through previously acquired advice to reuse them directly in its

exploration steps without any interventions in the Deep RL mechanism itself. In

particular, we employ a Behavioural Cloning (BC) module to imitate the teacher

policy and use dropout regularisation in this model to have a notion of epistemic

uncertainty to keep track of which state-advice pairs are actually collected to

reuse them accurately. This study addresses the research questions [RQ1] and

[RQ5].

• E. İlhan, J. Gow, and D. Pérez-Liébana, “Learning on a Budget via Teacher

Imitation,” 2021 IEEE Conference on Games (CoG), Copenhagen, Denmark,

August 17-20, 2021.

[Chapter 7]

We extended the idea of advice reusing via teacher imitation to construct a

unified student-initiated approach in single-agent Deep RL that addresses both

advice collection and advice utilisation problems. This is achieved by involving

the imitated teacher model’s epistemic uncertainty estimations in the advice

collection decisions. This method makes more efficient use of the budget in terms

of collecting samples that are more useful to build a broader imitation model, e.g.,

constructing a more diverse state-advice dataset. We also proposed a technique

to automatically tune the relevant hyperparameters of these components on the

fly to make the action advising methods able to adapt to any task with minimal

human intervention. This contribution provides an important advantage for the

scenarios when the agent needs to be deployed with minimal domain knowledge

or even blindly. This study addresses the research questions [RQ1] and [RQ6].

Additionally, the following study was also conducted during this Ph.D. with no direct

contributions to this thesis:

• D. Pérez-Liébana, R. D. Gaina, O. Drageset, E. İlhan, M. Balla, and S. M. Lucas,

10 CHAPTER 1. INTRODUCTION

“Analysis of Statistical Forward Planning Methods in Pommerman,” Proceedings

of the Fifteenth AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, AIIDE 2019, Atlanta, Georgia, 2019, pp. 66-72.

We developed a Java version of the Pommerman Framework with forward envi-

ronment models that are available to the agents. By using this framework, we

experimented with two prominent Statistical Forward Planning methods, namely

Monte Carlo Tree Search (MCTS) and Rolling Horizon Evolutionary Algorithm

(RHEA). We provided findings and insights on how the agents behave and ex-

plained their performances. Results show that MCTS is a better performer than

RHEA in this particular domain in several different settings. We also identified

what could be promising improvements, such as improved opponent modelling,

further algorithm tuning and assumptions for the partial observability cases.

1.3 Organisation of the Thesis

The remainder of this thesis is structured as follows:

• Chapter 2 provides the background information and prior work on the relevant

topics of RL, Deep RL, and the approaches to leverage prior knowledge with an

emphasis on the action advising framework.

• Chapter 3 describes the game domains we employed in our experiments across

the thesis.

• Chapter 4 covers our first study titled “Teaching on a Budget in Multi-Agent

Deep Reinforcement Learning” (Ilhan et al. 2019).

• Chapter 5 is based on our second work “Action Advising via Advice Novelty”

(Ilhan et al. 2022) is explained in details.

• Chapter 6 describes our third piece of work “Action Advising with Advice Imitation

in Deep Reinforcement Learning” (Ilhan et al. 2021a).

1.3. ORGANISATION OF THE THESIS 11

• Chapter 7 covers our final piece of work “Learning on a Budget via Teacher

Imitation” (Ilhan et al. 2021b).

• Chapter 8 finalises the thesis with some concluding remarks and potential future

work directions.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter provides the background knowledge required to understand the technical

aspects of the approaches presented in this thesis.

2.1 Markov Decision Processes

The process of taking a series of actions in order to achieve the desired goal in a domain

is referred to as sequential decision-making. This kind of problem setting is generally

formulated by using a formalisation called Markov Decision Process (MDP).

Figure 2.1: Agent-environment interaction.

In MDP, an agent makes decisions in an environment by receiving observations

and rewards, and executing actions sequentially in a cycle over multiple time steps

13

14 CHAPTER 2. BACKGROUND

t = 0, 1, 2, · · · as it is shown in Figure 2.1. The environment is defined by a tuple

〈S,A,R, T 〉, where S is a finite set of states, A is a finite set of actions, R : S ×A → R

is a reward function and T : S ×A× S → [0, 1] is a set of conditional state transition

probabilities denoted as T (s, a, s′) = P (s′ | s, a). At every timestep t in a state s ∈ S,

the agent executes an action a ∈ A to advance its state to s′ ∈ S with probability

P (s′ | s, a) and obtain a reward r = R(s, a). It is worth mentioning that it is common

to see the reward function defined in the forms of R : S → R (action-independent)

and R : S × A × S → R (next state-dependent). In this thesis we consider rewards

to be determined deterministically by the current state and the action executed in it,

regardless of the next state the agent ends up advancing to.

Actions to be taken by the agent in a state st at every timestep t are determined

by the agent’s policy π : S ×A → [0, 1] which is a probability distribution over actions

given states. We denote the action probability distribution of π for a given state s with

π(a | s). If the policy is purely deterministic, it is possible to define it as π : S → A

that maps states to actions which is denoted as π(s). We use either form to model

action selection depending on the use cases and problem formulations across the thesis.

A key property that directly affects the decision-making formulation in MDPs is

referred to as the Markov property. According to this, the transitions in the process

depend only on the present state and the executed action without any dependence on

history. This assumes that the state perceived by the agent contains all the relevant

information for decision-making. In this case, the conditional state transition probability

for a state st and action at that determines the next state st+1 satisfies the following:

P (st+1 | st, at) = P (st+1 | s1, s2, . . . , st, at). (2.1)

With the aid of this, the optimal agent policy can be a function of the current state, as

we describe in the remainder of this section.

The objective of the agent is to maximise the expected sum of discounted future

rewards Gt (also referred to as return) obtained from any timestep t, over a horizon T

2.1. MARKOV DECISION PROCESSES 15

where γ ∈ [0, 1] is the discount factor:

Gt = rt+1 + γrt+2 + · · ·+ γT−1rt+T =
T−1∑
k=0

γkrt+k+1. (2.2)

The discount factor here is responsible for determining the importance of future rewards.

For instance, if γ is set as 0, then, the agent will only be concerned with maximising

the immediate rewards; whereas setting it as 1 will make the rewards at every future

timestep equally valuable. In practice, γ is usually set to be a value close to 1, e.g. 0.99,

to ensure that the infinite sum in Equation 2.2 (when T =∞) has a finite value.

A common strategy to define optimal agent behaviour involves computing the values

of states and actions to drive the agents’ decisions by selecting the most valuable ones.

The value of a state s under a stochastic policy π is defined as follows:

V π(s) =
∑
a∈A

π(a | s)
∑
s′∈S

T (s, a, s′)
[
R(s, a) + γV π(s′)

]
. (2.3)

It is also possible to decompose V π(s) into the state-action values Qπ(s, a) as follows:

V π(s) =
∑
a∈A

π(a | s)Qπ(s, a), (2.4)

where

Qπ(s, a) =
∑
s′∈S

T (s, a, s′)
[
R(s, a) + γV π(s′)

]
. (2.5)

With the aid of these equations, the agent’s objective can be defined as obtaining

the optimal policy π∗ = arg maxπ V
π(s). Similarly, π∗ = arg maxπQ

π(s, a) can also

be constructed using the state-action value function. Here, the optimal state value

and state-action value functions can be defined as V ∗(s) = maxπ V
π(s) and Q∗(s, a) =

maxπQ
π(s, a), respectively. Considering the fact that the agent’s ultimate goal is to

follow the optimal policy based on the optimal state and state-action value functions

V ∗ and Q∗, it is possible to formulate the state-action values independently from the

16 CHAPTER 2. BACKGROUND

policy as follows:

V ∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′)
[
R(s, a) + γV ∗(s′)

]
, (2.6)

Q∗(s, a) =
∑
s′∈S

T (s, a, s′)
[
R(s, a) + γmax

a′∈A
Q∗(s′, a′)

]
. (2.7)

As it can be seen, Equations 2.6 and 2.7, which are also referred to as Bellman equations,

involve computing the values of the successor states. Thus, computing these is done by

bootstrapping over the previous estimations which are corrected over multiple iterations

via dynamic programming. It should be noted that by definition, the optimal policy for

an MDP is deterministic as it can be seen in these equations too. When it comes to

some MDP extensions (Section 2.1.1), it is possible that the optimal policies can also

be stochastic ones, e.g. competitive multi-agent scenarios. Regardless, we adopt the

stochastic notation for generality.

When the complete model of an MDP (S,A,R, T variables) is known, it is trivial

to find the optimal policy by solving these Bellman equations. First, given a policy

π (stochastic or deterministic), it is possible to compute the value of each state by

performing Policy Evaluation (Algorithm 1). Furthermore, when we have the computed

state values V , we can use these to construct a better policy π. For the case of

deterministic policies, this can be done by following the Policy Construction algorithm

(Algorithm 2). Clearly, these two algorithms can be executed subsequently to improve

each other. Policy Iteration (Algorithm 3) is the algorithm that combines these two

procedures into a complete policy construction strategy. As an alternative to these,

Value Iteration (Algorithm 4) or State-Action Value Iteration (Algorithm 5) algorithms

that integrates Policy Evaluation and Policy Improvement into a single step effectively

can be incorporated to solve an MDP. All these algorithms require full access to the

MDP components, e.g., iterating through every s in S. If any of the MDP components

are unknown, however, the problem formulation changes drastically as it is covered

later in Section 2.2.

2.1. MARKOV DECISION PROCESSES 17

Algorithm 1 Policy Evaluation

Input: Policy π, termination criterion threshold ε

1: Initialise V (s) arbitrarily (usually as 0) for every s ∈ S
2: ∆← an arbitrary value greater than ε, e.g. ε+ 1

3: while ∆ > ε do

4: for all s ∈ S do

5: Vold ← V (s)

6: V (s)←
∑
a′∈A

π(a′ | s)
∑
s′∈S
T (s, a′, s′)

[
R(s, a′) + γV (s′)

]
7: ∆← max(∆, |Vold − V (s)|)
8: end for

9: end while

10: return V

Algorithm 2 Policy Construction

Input: Policy π, value function V

1: policy stable← True

2: for all s ∈ S do

3: aold ← π(s)

4: π(s)← arg maxa∈A
∑
s′∈S
T (s, a, s′)

[
R(s, a) + γV (s′)

]
5: if aold 6= π(s) then

6: policy stable← False

7: end if

8: end for

9: return π, policy stable

Algorithm 3 Policy Iteration

Input: Policy π, termination criterion threshold ε

1: policy stable← False

2: while policy stable is False do

3: V ← PolicyEvaluation(π, ε)

4: π, policy stable← PolicyConstruction(π, V)

5: end while

6: return π

18 CHAPTER 2. BACKGROUND

Algorithm 4 State Value Iteration

Input: Termination criterion threshold ε

1: Initialise V (s) arbitrarily (usually as 0) for every s ∈ S
2: ∆← an arbitrary value greater than ε, e.g. ε+ 1

3: while ∆ > ε do

4: for all s ∈ S do

5: Vold ← V (s)

6: V (s)← maxa∈A
∑
s′∈S
T (s, a, s′)

[
R(s, a) + γV (s′)

]
7: ∆← max(∆, |Vold − V (s)|)
8: end for

9: end while

10: return π(s) = arg maxa∈A
∑
s′∈S
T (s, a, s′)

[
R(s, a) + γV (s′)

]

Algorithm 5 State-Action Value Iteration

Input: Termination criteria threshold ε

1: Initialise Q(s, a) arbitrarily (usually as 0) for every s ∈ S and a ∈ A
2: ∆← an arbitrary value greater than ε, e.g. ε+ 1

3: while ∆ > ε do

4: for all (s, a) ∈ {S ×A} do

5: Qold ← Q(s, a)

6: Q(s, a)←
∑
s′∈S
T (s, a, s′)

[
R(s, a) + γmaxa′∈AQ(s′, a′)

]
7: ∆← max(∆, |Qold −Q(s, a)|)
8: end for

9: end while

10: return π(s) = arg maxa∈AQ(s, a)

2.1.1 Markov Games

In some problem domains, there may be more than one agent interacting within the

environment. This special case of a decision-making system is referred to as Multi-

Agent System (MAS). Since it is assumed that only a single agent is active within

the environment by definition in typical MDPs, MAS renders the standard MDP

formalisation unsuitable to model its problems. Therefore, Markov Games (MG) (or

2.1. MARKOV DECISION PROCESSES 19

Stochastic Games) is proposed by Littman (1994) as an extension of MDPs to provide

a more general framework that supports multiple agents.

In MG, the tuple that defines an environment takes the form of 〈S,A,R, T ,N〉 where

N = {0, 1, . . . , , n} is a finite set of agents, S is a finite set of states,A : A1×A2×· · ·×An

is a finite set of actions, R : S × A → Rn = (r1, r2, . . . , rn) is a reward function,

T : S ×A× S → [0, 1] is a state transition probability function. As a consequence of

these changes, the fundamental state value function in Equation 2.3 also transforms

into the following, from perspective of an agent i:

V πi (s) =
∑
a∈A

[
π(a | s)

∑
s′∈S

T (s, ai,a−i, s′)
[
R(s, ai,a−i) + γV πi (s′)

]]
, (2.8)

where −i denote the set of other agents (shorthand notation of N \ {i}). According to

this equation, the optimal policy π∗i of agent i which is the best response to the other

agents’ policies then can be expressed as follows:

π∗i (a
i | s,π−i) = arg max

πi

V
(πi,π−i)
i (s)

= arg max
πi

∑
a∈A

πi(a
i | s)π−i(a

−i | s)
∑
s′∈S

T (s, ai,a−i, s′)
[
R(s, ai,a−i)

+ γV
(πi,π−i)
i (s′)

]
.

(2.9)

As it can be seen, π∗i now depends on the joint policy π−i(a
−i | s) which is determined

by the joint action of other agents. This term introduces non-stationarity since it

changes as the strategies of the corresponding agents change, and agent i has no control

over it. This makes the solutions far more challenging to be achieved, as also detailed

later in Section 2.2.1. It should also be noted that πi(a
i | s) and π−i(a

−i | s) are

independent probability distributions at the time of execution even though they might

have been derived by incorporating the information regarding each other’s previous

timestep versions.

20 CHAPTER 2. BACKGROUND

2.1.2 Decentralised Partially Observable Markov Decision

Processes

Another generalisation of MDPs, namely, Decentralised Partially Observable Markov

Decision Process (Dec-POMDP)(Oliehoek & Amato 2016) extends the MG framework

in two ways: partial observability and decentralisation. Partial observability is the

case where the agent can’t directly access the full state s but instead perceives an

observation (also referred to as state) generated by an observation function. This

variant is especially relevant for the realistic domains where the full states are usually

inaccessible. Decentralisation is the concept that is related to the MAS, which refers to

the case where the agents are operated by their individual controllers rather than having

one centralised controller. A Dec-POMDP is defined by a tuple 〈S,A,R, T ,N ,Ω,O〉

where S is a finite set of states, A = ×i∈IAi is a finite set of joint actions, R is a

reward function, T is a state transition probabilities, N is a finite set of agents as in

Section 2.1.1; additionally, Ω = ×i∈IΩi is the finite of set of joint observations, O is the

set of conditional observation probabilities. At each timestep t in a state s, each agent

i perceives observation oi determined by O(o | s′,a), where a = 〈a1, · · · , an〉 is the

joint action that caused the state transition from s to s′ according to T (s′ | a, s), and

receives reward ri determined by R(s,at). In the fully-cooperative case, every agent

gets the same shared reward as ri = · · · = rn. This formalisation is especially useful and

necessary when we deal with a multi-agent problem where the agents are in cooperation

and are responsible to act in a decentralised fashion while only getting local observations.

In Chapter 4, we model our multi-agent problem domain as a Dec-POMDP.

2.2 Reinforcement Learning

When the complete model of an MDP is accessible, it is trivial to obtain the optimal

policy as it is covered in Section 2.1. However, in a wide range of sequential decision-

making problems, the environment components, e.g., T , S, R, are usually unknown. In

2.2. REINFORCEMENT LEARNING 21

these cases, the agent is expected to develop its policy by learning through trial-and-error

interactions within the environment. This paradigm is referred to as Reinforcement

Learning (RL) which, as a term, stands for both the class of problems and their solutions

(Sutton & Barto 2018).

In RL, the state space, consequences of actions, state transitions and even the

rewards are discovered progressively on the fly. Due to this, the ground-truth state and

state-action values are no longer directly available to define an optimal policy. Therefore,

RL methods that utilise these values rely on the estimations that are constantly updated

through the collected samples instead. Even though there are also policy-based RL

techniques that directly derive the policy itself via samples, e.g. policy gradients, we

base our approaches in this thesis on the value-based class of them; therefore, we briefly

describe only the most relevant value-based algorithms in the RL sections.

One of the fundamental and most widely used value-based RL algorithms is Q-

learning (Watkins 1989) which can be seen as an RL equivalent of State-Action Value

Iteration (Algorithm 5). Q-learning tries estimate the state-action values Q(s, a) (which

is a decomposition of value function V (s) into actions) through repeated interactions

by utilising the update rule given in Equation 2.10 where α is the learning rate. Then,

these values are used to specify the agent’s policy. A complete breakdown of this

algorithm is shown in Algorithm 6 with its corresponding policy shown in Algorithm 7.

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
. (2.10)

An important notion in RL is the exploration-exploitation trade-off. Since the agent

lacks the knowledge about S, T ,R, it is responsible to explore these components at

the same it is improving its policy to maximise its cumulative rewards. Therefore,

RL algorithms also deal with the exploration problem in parallel, differently from the

dynamic programming methods. For instance, in a typical policy often incorporated by

Q-learning (Algorithm 7), the agent adopts a straightforward way to achieve this by

alternating between random (exploration) and greedy (exploitation) actions. However,

22 CHAPTER 2. BACKGROUND

Algorithm 6 Q-Learning

Input: Number of training steps tmax, learning rate α ∈ (0, 1].

1: Initialise Q(s, a) arbitrarily (usually as 0) for every s ∈ S and a ∈ A
2: for training steps t ∈ {1, 2, . . . tmax} do

3: Get observation st from Environment if it is reset

4: at ← π(st) . Get action from policy, e.g., ε-greedy, for the current state st
5: Execute at and obtain rt+1, st+1 from Environment

6: Q(st, at)← Q(st, at) + α
[
rt+1 + γmaxaQ(st+1, a)−Q(st, at)

]
7: st ← st+1

8: end for

Algorithm 7 ε-greedy Policy

Input: Action set A, Q-value table (or Q-values approximator) Q, state s, explo-

ration rate ε.

1: u ∼ U(0, 1) . Draw a number uniformly at random

2: if u < ε then

3: return a random action drawn uniformly from A . Exploratory action

4: else

5: return arg maxa∈AQ(s, a) . Greedy action

6: end if

as the problems and the RL algorithms become more complicated, the exploration

strategies also need to be more sophisticated than this as we cover in the later sections.

2.2.1 Multi-Agent Reinforcement Learning

As it is described in Section 2.1.1, MAS introduces some additional challenges in the

sequential decision-making problems. Linked to these differences in the foundation,

the branch of RL that deals with MAS, namely, Multi-agent Reinforcement Learning

(MARL), needs to overcome some exclusive challenges that have arisen due to the

presence of multiple agents, as well as the present ones in single-agent RL that are

further intensified. The most significant ones of these setbacks can be summarised as

follows:

1. Non-stationarity: The state transition and reward functions depend on the

2.2. REINFORCEMENT LEARNING 23

joint action of all agents. Since the environment is no longer stationary from an

agent’s perspective, the Markov property which is the key assumption of most

single-agent RL algorithms, is invalidated. Therefore, the algorithms in MARL

now have to deal with the non-stationarity-induced moving target problem.

2. Curse of dimensionality: MAS consist of multiple agents to take into cal-

culations, result in a joint action space A : A1 × A2 × · · · × An which grows

exponentially with the number of agents. These directly affect computational

complexity. Additionally, as reported in Lowe et al. (2017), the probability of tak-

ing a gradient step in the correct direction in policy gradient algorithms decreases

exponentially with the number of agents.

3. Game-theoretic effects: Interaction of multiple agents is accompanied by

interesting mechanics. Due to the dynamic nature of strategies, convergence to

equilibrium can not be relied on; therefore, environments need to be analysed

with techniques like Evolutionary Game Theory (Bloembergen et al. 2015). In

addition, even in conflict-of-interest situations, cooperation with competitors or

vice versa may be crucial to obtain short or long-term benefits. Lastly, since the

rewards are often correlated and can not be maximised individually, defining goals

in MARL tend to be problematic.

4. Multi-agent credit assignment: The long-studied credit assignment problem

in sequential decision-making and RL has some additional aspects in MARL. For

example, in typical Q-learning, the values are stored for individual actions, yet

they are actually determined by the joint action. This makes it difficult to figure

out which agent’s action is responsible for an outcome. This is referred to as

action shadowing (Fulda & Ventura 2007). Furthermore, in lazy agent problem

(Sunehag et al. 2017) that emerges in cooperative settings, agents sometimes

become lazy and discouraged to explore, leading to a failure in learning as a

consequence of having one successful active agent.

24 CHAPTER 2. BACKGROUND

5. Exploration-exploitation: In MARL, agents now have to explore other agents’

strategies as well as the environment dynamics through their learning process.

Moreover, these strategies are not stationary, requiring them to be dealt with

constantly in terms of exploration.

MARL research mainly revolves around overcoming these hindrances. Due to them

being such a large variety, the approaches in MARL are also very diverse. For this

reason, even the surveys in this subject (Shoham et al. 2003, Busoniu et al. 2008,

Bloembergen et al. 2015, Hernandez-Leal et al. 2017, 2018) differ greatly in the way

they analyse and categorise them. As pointed out in these studies, the primary subjects

MARL research currently deals with can be listed as follows: the combination of

deep learning with MARL, learning to communicate, emergent behaviour, opponent

modelling, knowledge reuse, heterogeneous systems, analysis of emergent behaviour,

tracking versus convergence, dynamic number of agents. Despite being dominated

by Deep RL (described in Section 2.3.1) based techniques, it is not easy to identify

state-of-the-art approaches because of the differences in the types of environment and

training conditions followed in these. In this regard, in order to better understand what

a MARL algorithm can address, it is helpful to determine which intersection of the

following categorisations they fall:

• Environment Objective:

[Covered in Bloembergen et al. (2015), Hernandez-Leal et al. (2018).]

– Fully cooperative: The agents try to achieve a common goal and the

reward functions are the same for every agent (r1 = r2 = ... = rn).

– Fully competitive: This scenario is also referred to as zero-sum where the

agents have exactly opposite goals (r1 = −r2 for 2-agent case).

– Mixed: The environment is neither fully cooperative nor fully competitive.

• Environment Observability:

[Covered in Hernandez-Leal et al. (2017).]

– Full: Agents can observe the complete state of the environment.

2.2. REINFORCEMENT LEARNING 25

– Partial: Agents only get a partial information o of the actual state s,

determined by an emission function O(s).

• Inter-agent communication:

[Covered in Hernandez-Leal et al. (2018).]

– Present: Agents may explicitly exchange information with each other.

This may have various specifications in terms of channels, dictionary size,

bandwidth, permissions and noise.

– Absent: Agents may not communicate.

• Learning approach:

[Covered in Shoham et al. (2003), Bloembergen et al. (2015).]

– Independent Learners: The agents learn independently by ignoring the

presence of other agents and treating them as a component of a non-stationary

environment. This way, they learn and act as they would in a single-agent

environment.

– Joint Action Learners (JAL): The agents model other agents’ strategies

explicitly. Specifically, they are aware of the presence of other entities and

they incorporate this knowledge explicitly in their learning dynamics similarly

to Equation 2.9.

• Training and execution:

[Covered in Hernandez-Leal et al. (2018).]

– Centralised: Agents are linked at the computational level and are managed

together. This way, they can be trained by taking advantage of collective

knowledge such as common value functions, e.g., V (s), Q(s, a).

– Decentralised: Agents have no links between each other; their RL models

are completely independent. The only way they can convey knowledge

between each other is through their behaviour or communication (if the

environment allows it).

26 CHAPTER 2. BACKGROUND

The approaches that can exploit non-independent learning dynamics tend to be more

successful with the aid of centralised training with decentralised execution (Rashid

et al. 2018, Lowe et al. 2017, Foerster, Farquhar, Afouras, Nardelli & Whiteson 2017).

However, such algorithms face problems when it comes to practical applications as

it is not always possible to maintain the environment conditions in training. And

it is a desired property for agents to be able to keep learning even when they are

deployed in a decentralised way. Therefore, there is also a significant amount of interest

in independent learners with decentralised learning (Tampuu et al. 2015, Leibo et al.

2017, Foerster, Nardelli, Farquhar, Torr, Kohli & Whiteson 2017) (or semi-independent

decentralised learners with slight modifications (Omidshafiei et al. 2017)) since they

exhibit promising empirical results despite of their shortcomings in performance in

comparison with centralised methods. In our studies that deal with MARL (Chapter 4),

we also follow the independent-learners approach.

2.3 Deep Reinforcement Learning

In the previous sections, the RL problem and one of the fundamental RL algorithms,

Q-learning (Algorithm 6) are described. A key property of these classical RL techniques

is that the state and state-action values are stored in a look-up table, which holds a

specific entry for every state and state-action pair. While this seems sufficient, when

the state space becomes more complex (1018 in checkers, ≈ 1050 in chess (Allis et al.

1994) for example), these approaches become infeasible due to two major drawbacks.

Firstly, such large numbers of states make it impractical to store and look up the values.

Secondly, in a tabular approach, every state is evaluated independently no matter how

similar they are to a previously encountered state. As result, knowledge acquired from

one state can’t be generalised to others. This is a significant setback in learning with

large state spaces and results in policies that have no way to deal with even slight

state differences. Due to these, a family of RL algorithms were developed to address

these setbacks via function approximation through the features generated from states.

2.3. DEEP REINFORCEMENT LEARNING 27

According to these, the values such as V (s) and Q(s, a) are approximated as V̂θ(s) and

Q̂θ(s, a) with parameters θ that is relevant to the selected function approximator.

To this date, various forms of techniques are applied, ranging from linear function

approximation methods over features like coarse coding, tile coding, and radial basis

functions to more complex, non-linear function approximation methods like artificial

neural networks (Sutton & Barto 2018). Even though linear function approximation

helps with generalising between similar states, its poor representational capacity has

remained as a limitation for the algorithms. Moreover, generating the features for linear

function approximation often requires manual labour and domain knowledge, which

hinders the general applicability of the developed techniques. This has been especially

problematic in domains with complex sensory inputs such as high-dimensional visual

streams from a camera.

By the emergence of deep learning with the introduction of Convolutional Neural

Networks and its groundbreaking success in visual tasks (Krizhevsky et al. 2012), deep

neural networks (Goodfellow et al. 2016) became an attractive choice of non-linear

function approximation for RL. Eventually, they have been successfully integrated with

RL in the pioneering study of Deep Q-Network (DQN) (Mnih et al. 2013). This has

led to the creation of the popular RL subfield: Deep RL. Today, the majority of RL

research is concentrated on Deep RL to develop algorithms that employ deep neural

networks as their function approximators due to their strong generalisation properties

and removing the need for hand-specified (and often misspecified) input features. As

a result of being studied extensively, the Deep RL family consists of many successful

techniques devised for different problem conditions. In this thesis, we employ DQN

among these due to its simplicity, customisability, and off-policy learning capability, i.e.

being able to be trained with samples generated by a different policy. The next section

describes DQN and its enhancements in detail.

28 CHAPTER 2. BACKGROUND

2.3.1 Deep Q-Network

Deep Q-Network (DQN) (Mnih et al. 2013) is the scaled-up, Deep RL version of

Q-learning (Algorithm 6) with non-linear function approximation that is suitable for

complex domains, which attempts to obtain the optimal policy by learning state-action

values approximation in an end-to-end fashion. In essence, it utilises a (deep) neural

network with weights θ to map an input state s to Q(s, a)1 by minimising the following

loss term Li(θi) via stochastic gradient descent over randomly sampled transitions,

where i refers to the current training step and D denotes the set of stored transitions

〈s, a, r, s′〉:

Li(θi) = Es,a,r,s′∼D
[
r + γmax

a′∈A
Qθ(s

′, a′)−Qθ(s, a)
]
. (2.11)

As it is hinted by the components of this loss term, DQN operates in a different way

than its counterpart Q-learning to maintain functionality and stability of learning in the

domain of Deep RL. First of all, instead of using the encountered transitions to update

the Q(s, a) estimations instantaneously, these transitions are stored as 〈s, a, r, s′〉 tuples

in a limited size first in-first out buffer D (also referred to as replay memory) to perform

model updates via random batch of samples. Not only do such off-policy updates

improve sample efficiency, but also help break the non-i.i.d. property of the samples to

make the model’s convergence easier. This is a common practice followed when training

neural network models and is referred to as experience replay in the specific context of

RL. Secondly, DQN keeps the network weights θ in a separate copy network as θ that is

updated periodically by copying the θ over and is used as a reference point in the loss

function to stabilise learning. Without this tweak, the moving target problem in RL

can be very problematic as it renders the model learning non-stationary. A simplified

breakdown of DQN is given in Algorithm 8.

Following its breakthrough, DQN has been enhanced with some extension to alleviate

its shortcomings and to make it compatible with more challenging RL tasks. The most

1For brevity, we use Q(.) and V (.) instead of Q̂θ(.) and V̂θ(.) to represent the approximated values in
the context of Deep RL. Sometimes we may also use Qθ(.) and Vθ(.) to explicitly specify the underlying
approximation parameters.

2.3. DEEP REINFORCEMENT LEARNING 29

Algorithm 8 Deep Q-Learning

Input: Number of learning steps tmax, learning rate α, target network update

period Ttarget, training period Ttrain, replay memory capacity ND, replay memory

size to start learning MD.

1: Initialise empty replay memory D with capacity ND to store state transition tuples

2: Initialise online deep Q-network with weights θ randomly

3: Initialise target deep Q-network with weights θ copied from θ

4: for training steps t ∈ {1, 2, . . . tmax} do

5: Get observation st from Environment if Environment is reset

6: at ← πθ(st) . Get action from policy, e.g., ε-greedy (Algorithm 7)

7: Execute at and obtain rt+1, st+1 from Environment

8: Store 〈st, at, rt+1, st+1〉 in D
9: Remove 〈st−ND , at−ND , rt+1−ND , st+1−ND〉 from D if |D| > ND

10: if D ≥MD and t mod Ttrain = 0 then

11: Draw a minibatch of transitions B from D
12: Perform a gradient descent step with B to minimise Equation 2.11 (at α rate)

13: end if

14: θ ← θ if it is target network updating period (t mod Ttarget = 0)

15: st ← st+1

16: end for

prominent of these modifications are combined and studied under the name of Rainbow

DQN (Hessel et al. 2018). We employed DQN as our main deep RL algorithm in every

chapter of this study. The main reasons that motivated this decision of ours are as

follows:

• It is an off-policy RL algorithm. This allows us to incorporate the transitions

that are generated by a different policy in the learning process.

• It is a fundamental, simple yet efficient algorithm. This makes the impact of our

modifications clearer and easier to be analysed. Furthermore, we believe that

providing improvements for a simpler algorithm can make it applicable to a wider

range of algorithms.

• It is well-studied in the literature with many useful modifications that suit different

use cases. Among these, we employ Double Q-learning (van Hasselt et al. 2016),

30 CHAPTER 2. BACKGROUND

Dueling Networks (Wang et al. 2016), Noisy Networks (Fortunato et al. 2018)

and Prioritised Experience Replay (Schaul et al. 2016) in the different parts of

this thesis, which we believe are the most impactful ones. These are described in

detail in the remainder of this section.

Double DQN

In the default version of DQN, the max operator in Equation 2.11 (and also in the

default version of Q-learning, Equation 2.10) relies on the same Q-values whether it is

for selecting or evaluating an action. If there happens the be a case of overestimation

in the process of building these Q-values, such selections amplify this negative effect

even further. Double Q-learning (van Hasselt et al. 2016) algorithm alleviates this issue

by modifying the DQN loss function to take the following form:

Li(θi) = Es,a,r,s′∼D
[
r + γQθ(s

′, arg max
a′∈A

Qθ(s
′, a′))−Qθ(s, a)

]
. (2.12)

As it can be seen, the max operation is now split in order to allow the greedy policy

estimation to be done with the current values whereas the target network weights are

still responsible for a fair evaluation of this policy. This modification brings significant

performance improvements with very minimal trade-offs.

Dueling Networks

Another significant improvement DQN has had is achieved by employing a special

network architecture designed for the value-based Deep RL algorithms, namely Dueling

Networks (Wang et al. 2016). In this model, the final Q-values are constructed with the

aid of two streams of input from that are separated in the previous layer as advantage

and value2. This decomposition can be written in the following form:

Qθ(s, a) = Vθ,θV (s) + Aθ,θA(s, a), (2.13)

2This is also visually illustrated in our network architectures in Figures 4.3, 5.1 and 6.1

2.3. DEEP REINFORCEMENT LEARNING 31

where θV and θA are the weights belonging to the outputs of the value stream that

produces state values (denoted by V) and the advantage stream that produces state-

action advantage values (denoted by A), respectively. However, in this given form, it is

impossible to recover unique V and A values for a given set of Q values. To address

this, Equation 2.13 is transformed into the following form to ensure that the advantage

is zero for the selected action:

Qθ(s, a) = Vθ,θV (s) +

(
Aθ,θA(s, a)−max

a′∈A
Aθ,θA(s, a′)

)
. (2.14)

Alternatively, the following form of the equation is proposed with more stable opti-

misation properties as it is reported in Wang et al. (2016), which then became the

established version of Dueling Networks:

Qθ(s, a) = Vθ,θV (s) +

(
Aθ,θA(s, a)− 1

|A|
∑
a′∈A

Aθ,θA(s, a′)

)
. (2.15)

This modification only applies to the network structure itself without any additional

changes in the Deep RL algorithm. Therefore, it is also an extension of DQN that is

preferred over the default version in the majority of the problem cases.

Noisy Networks

Noisy Networks (NoisyNets) (Fortunato et al. 2018) is an eminent exploration technique

devised for Deep RL algorithms, which is also employed in Rainbow DQN (Hessel

et al. 2018) as the default exploration strategy. In principle, NoisyNets is a modified

linear layer with noise perturbations with the noisy weights θ := µ + Σ � ε. Here,

ζ := (µ,Σ) denote the learnable parameters, ε denote the zero-mean noise and �

represent element-wise multiplication. This modification causes the Deep RL loss to

take the expectation form L(ζ) = E
[
L(θ)

]
over ε. Linked to this, a linear layer that is

32 CHAPTER 2. BACKGROUND

defined as y = wx+ b now takes the following form:

y = (µw + σw � εw)x+ µb + σb � εb, (2.16)

where the input is x ∈ Rp, the output is y ∈ Rq, the learnable parameters are µw ∈ Rq×p,

σw ∈ Rq×p, x ∈ Rp, µb ∈ Rq, σb ∈ Rq, and the noise parameters are εw ∈ Rq×p, εb ∈ Rq

for input size of p and output size of q. As the learning progresses, the noisy components

are learnt to be ignored in a state-conditional trend. This gives the agent an implicitly

driven exploration ability that diminishes for the states that are seen more often.

The exploration behaviour and the algorithm performance are defined by the

specifications of the noisy layers. In terms of noise distributions, two options are

presented:

• Independent Gaussian noise: Every weight and bias has independently gen-

erated noise from a unit Gaussian distribution resulting in pq + q number of noise

variables for each noisy later.

• Factorised Gaussian noise: Number of noise variables are reduced to p+ q by

factorising εwi,j and εbj as εwi,j = f(εi)f(εj) and εbj = f(εj). The real-valued function

f is set as f(x) = sgn(x)/
√
|x| in Fortunato et al. (2018). This is also the variant

that is used in the experiments with Dueling Networks enhanced DQN.

Another important benefit of having NoisyNets is being able to obtain a form of

uncertainty estimation by using the predictive variance of a noisy layer as described

in (Chen et al. 2018). This is computed for action a and state s in the final layer that

outputs Q(s, a) values as follows:

V ar[Qθ(s, a)] = V ar[waφ(s)] + V ar[ba]

= φ(s)ᵀdiag(σwa

2)φ(s) + σba
2,

(2.17)

where φ(s) is the latent features generated from state s to be fed this layer, wa and ba

are the weight and bias terms, respectively. The uncertainty in state s is then obtained

2.3. DEEP REINFORCEMENT LEARNING 33

by taking the predictive variance of the action with the largest Q-value as follows:

U(s) = V ar[Q(s, arg max
a∈A

Q(s, a))]. (2.18)

Due to these two important advantages of providing advanced exploration capabilities

and access to uncertainty estimations, we utilise NoisyNets in Chapter 4 (particularly

for exploration) and Chapter 5 (particularly for uncertainty estimations). However, we

also found that the addition of NoisyNets makes the experimental process significantly

slower and more difficult to analyse after; therefore, it is left out in Chapters 6 and 7

where we do not necessarily need to benefit from these advantages.

Prioritised Experience Replay

In Deep RL environments with sparse rewards, it may take a significantly longer

amount of time until the encountered rewards are incorporated into the learning due

to the delayed experience replay dynamics of DQN. Consequently, DQN keeps doing

its updates with outdated targets that slow down learning. In addition, sometimes,

an infrequent transition may be much more useful to learn from regardless of having

a reward associated with it. To alleviate these issues, Schaul et al. (2016) proposed

Prioritised Experience Replay (PER) as a customised experience replay technique.

In PER, the transitions are stored in the replay memory with a priority value pt

computed proportionally to their temporal-difference error where % defines the shape of

the distribution:

pt ∝
∣∣∣r + γmax

a′
Qθ(s

′, a′)−Qθ(s, a)
∣∣∣% . (2.19)

Then, transitions are sampled from this buffer during learning with respect to their

priorities (new samples are given maximum priority since they have no recorded error

value). PER in general provides very significant learning speed benefits, but there are

also situations it falls behind the default uniform replay memory sampling. Furthermore,

non-uniform sampling from the replay memory influences the way the samples are

34 CHAPTER 2. BACKGROUND

utilised in learning which interferes with our proposed techniques by making them either

far more stronger or far more weaker. This makes it difficult to see the actual impact

of the modifications. Therefore, we considered PER only in our first study (Chapter 4)

in this thesis.

2.3.2 Random Network Distillation

Random Network Distillation (RND) (Burda et al. 2018) is a technique built to provide

intrinsic curiosity rewards for RL agents to enhance their exploration capabilities in

environments with sparse rewards. For this purpose, RND aims to assess the novelty

of the encountered states. It involves the usage of two neural networks alongside the

actual task-level RL algorithm, namely target and predictor networks, denoted by

differentiable functions G and Ĝ respectively. These networks are identical in structure,

which is defined arbitrarily, and are able to map state observations to embeddings as

in G : S → Rk and Ĝ : S → Rk. They are initialised with different random weights;

therefore, they produce different embeddings even for identical inputs in their initial

state. Over the course of training, samples used in the task-level RL algorithm are

used to train predictor network Ĝ using gradient descent to minimise the mean squared

error ‖Ĝω(s)−G(s)‖2. By doing so, the predictor network becomes more accurate at

matching the target network’s outputs for the samples it observes more, which is referred

to as distilling a randomly initialised network. The error between target and predictor

are expected to be higher for the type of states that are seen less frequently and it

acts as a natural indicator of state novelty, which is used to augment the environment

reward to provide the agent intrinsic motivation to explore.

Burda et al. (2018) highlights four types of causes behind the error between the

predictor and the target networks:

1. Epistemic Uncertainty: This is caused by the insufficient number of training

samples seen by the predictor; incorporating more samples in the learning makes

this smaller.

2.3. DEEP REINFORCEMENT LEARNING 35

2. Aleatoric Uncertainty: Stochasticity in the target function produces this error,

e.g. stochastic environment dynamics when attempting to predict forward model

dynamics.

3. Model Misspecification: This kind of error arises when the predictor model is

incapable of matching the target function’s complexity.

4. Learning Dynamics: Any kind of setback in the predictor model’s optimisation

process itself can cause this error.

Since the predictor model is set to be deterministic and identical to the target network

(hence equally capable), #2 and #3 don’t contribute to the error. Therefore, RND

can be a good measurement of epistemic uncertainty which is the main factor to drive

the exploration. This property motivated us to use RND scores as a measurement of

novelty.

In order to be able to use RND reliably, it is especially important to have observations

normalised due to having the target network’s parameters frozen which renders it

incapable to adapt to different scales. This consequently may result in extremely

smaller variances in the embedding outputs without any valuable information. To

tackle this issue, an observation normalisation scheme is suggested. According to

this, every dimension of observation is whitened by subtracting the running mean and

then dividing by the running standard deviation. Finally, the resulting observation is

clipped to be in a certain range ([−5, 5] by default). To do so, several steps of random

behaviour are executed to collect observations to construct the running mean and the

running standard deviations. This normalisation process is applied for both the target

and predictor networks, independently from the actual RL algorithm’s observation

preprocessing. In this thesis, we employ RND for state novelty measurement as a proxy

of tabular state counting instead of incorporating it as an extra reward in learning.

36 CHAPTER 2. BACKGROUND

2.3.3 Dropout

Dropout (Srivastava et al. 2014) is a simple yet powerful regularisation method developed

to prevent neural networks from overfitting. Its working principle is based on involving

some random noise in the hidden layers of the networks. A neural network layer with the

feed-forward operation can be described as y = f(wx+ b), where the output is y ∈ Rq,

the input is x ∈ Rp, the network weights for this particular layer are w ∈ Rq×p and

b ∈ Rq, f is any activation function, for input size of p and output size of q. In a layer

with dropout, this equation takes the form of y = f(wx̃+ b) where x̃ = d ∗x represent

randomly dropped out input which is determined by d ∼ Bernoulli(χ). Hence, the

learning process gets to be regularised with this random noise which is re-determined in

every forward pass. The value χ controls the rate of dropout and is responsible for the

regularisation strength. During the test time, χ is set as 0 hence disabling the dropout

mechanism.

In addition to its regularisation capability, dropout can also be used to estimate the

epistemic uncertainty of a neural network model, as investigated in Gal & Ghahramani

(2016). For any particular input, performing forward passes multiple times yield

different outputs due to the dropout-induced stochasticity, which can be treated as

an approximation of probabilistic deep Gaussian process. Following this idea, the

variance in these output values can therefore be interpreted as a representation of the

model’s uncertainty. Finally, since these forward passes can be performed concurrently,

this approach provides a practically viable option to evaluate the uncertainty in deep

learning models.

In Deep RL, the learning objective is to overfit to the task at hand during the

training because it is assumed that the task will remain the same later unless there is a

generalisation objective. Furthermore, Deep RL itself contains enough variance that

provides natural regularisation to the learning process. Therefore, the conventional

regularisation methods are usually refrained from in Deep RL models except for some

special cases (Liu et al. 2021). In our studies, we also follow this idea and do not employ

2.4. LEARNING FROM PRIOR KNOWLEDGE 37

any regularisation in the Deep RL algorithms themselves. Yet, we use them in our side

techniques to have access to uncertainty estimations as we describe in Chapters 6 and 7.

2.4 Learning from Prior Knowledge

In this section, we describe the most widely adopted paradigms for leveraging prior

knowledge into RL with a particular focus on those that are closely related to our core

framework, action advising, which is described in detail in the final section along with

the previously proposed algorithms.

2.4.1 Imitation Learning

Imitation learning is the process of learning some expert behaviour through presented

demonstrations without any access to the environment rewards themselves. Even though

the agent can be allowed to interact with the environment during this, it is assumed that

no reward signals are available. This difference distinguishes imitation learning from

the typical RL problem and makes it more similar to supervised learning. Imitation

learning is especially useful in situations where it is more difficult to specify reward

functions than to record/provide some expert demonstration.

The problem formulation is based on the MDP formalisation where the provided

expert demonstrations dataset that contains state-action pairs is represented as C =

{〈s0, a0〉, 〈s1, a1〉, . . . }. There are two main approaches in imitation learning:

• Direct (Behaviour Cloning): The expert policy is imitated through supervised

learning via the samples in C by considering them as the input features and the

labels.

• Indirect (Inverse RL): Goal or reward function of the expert policy is learned

through the samples in C; then, a policy is derived with this information.

In some of our studies (Chapters 6 and 7), we make use of the direct variant in

its simplest form, Behaviour Cloning (BC) (Pomerleau 1991). In the case of Deep

38 CHAPTER 2. BACKGROUND

RL, the expert policy is typically modelled with a function approximator with enough

complexity, e.g. a neural network Hη with weights ω. An appropriate loss function

such as L(η) =
∑
〈s,a〉∈C − logHη(a | s) is minimised to train this model by treating the

state-action pairs in C as i.i.d. samples. Consequently, a state-conditional generative

model is obtained that is capable of imitating the expert actions for the demonstrated

states. In practice, however, this approach is unreliable to be used as a task policy

as it is. This is because the agent often encounters states that are not contained in

the provided dataset, and therefore, ends up exhibiting sub-optimal behaviour in these

states which leads to further divergence in the trajectories. However, adopting the idea

in this most basic form is sufficient in our study as it provides us with the adequate

functionality of generating actions correctly for the states we ensure Hη is trained with.

In order to address the problem of distribution mismatch, an algorithm with a

slightly modified training procedure, namely Dataset Aggregation (DAgger) (Ross et al.

2011) was proposed. In principle, it adopts the idea of typical behavioural cloning.

However, it relies on the assumption that there is an expert in the loop that can be

queried on demand during training. By using this advantage, the algorithm requests the

expert labels (actions) for the unlabelled states, e.g. out-of-distribution ones, whenever

they are encountered. At every iteration, the policy is rolled out to encounter new

data and then is re-trained with the aggregated dataset to have better state coverage.

Eventually, the imitated policy becomes an accurate approximation of the expert policy.

This process is summarised in Algorithm 9.

2.4.2 Learning from Demonstrations

As its name suggests, Learning from Demonstrations (LfD) (Schaal 1996) idea is about

utilising a dataset of previously recorded demonstrations to facilitate the agent’s learning

process. However, differently from Imitation Learning, LfD does this by also making

use of the reward signals present in the RL problem. For this reason, it is considered to

be a combination of Imitation Learning and RL.

2.4. LEARNING FROM PRIOR KNOWLEDGE 39

Algorithm 9 Dataset Aggregation (DAgger)

Input: Number of training steps tmax, trajectory length T , expert with policy π∗.

1: C ← ∅ . Initialise empty demonstration dataset

2: Initialise initial policy π1

3: for training steps t ∈ {1, 2, . . . tmax} do

4: Sample T -step trajectory by executing πi
5: Generate expert dataset Ci = {〈s0, π

∗(s0)〉, . . . } of the sampled states in the

trajectory

6: C ← C ∪ Ci . Aggregate datasets

7: Train πi+1 with C
8: end for

A fundamental LfD technique that is designed for Deep RL is called Deep Q-Learning

from Demonstrations (DQfD) (Hester et al. 2018). They propose an LfD framework on

top of DQN as the baseline algorithm. Specifically, a DQN agent is trained as it would

be normally, but its learning is assisted by pre-populating its replay memory with the

demonstration samples. During learning, these samples are incorporated efficiently with

two additional changes in the base RL algorithm. Firstly, the agent is pre-trained for

several steps before interacting with the environment. Secondly, the RL algorithm’s loss

function is customised with some additional terms. These modifications make DQfD

different and more successful than its predecessors that only fill up the replay memory

with previously collected data without any further treatment to them (Lipton et al.

2018). The DQfD loss LDQfD(θ) is formulated as follows:

LDQfD(θ) = Es,a,r,s′∼D
[
JDQ(θ) + λ1Jn(θ) + λ2JE(θ) + λ3JL2(θ)

]
, (2.20)

where,

JDQ = r + γmax
a′

Qθ(s
′, a′)−Qθ(s, a), (2.21)

Jn = rt + γrt+1 + · · ·+ γn−1rt+n−1 + γn max
a∈A

Qθ(st+n, a), (2.22)

JE = max
a∈A

[Qθ(s, a) + l(aE, a)]−Qθ(s, aE). (2.23)

40 CHAPTER 2. BACKGROUND

The term JDQ is the default DQN loss (Equation 2.11). Jn is the n-step returns loss

that was found to be especially beneficial in the pre-training phase by propagating the

expert’s trajectory. JE is the large margin margin classification loss (Piot et al. 2014),

where aE is the demonstrator action taken in state s, l(aE, a) is a margin function that

takes value of 0 when a = aE and a positive value otherwise. This loss term causes the

values of the actions different from the demonstrator’s choice to be at least a margin

smaller than those of the demonstrator, which enforces imitation and helps ground the

values of the unseen actions. Finally, JL2 is the regularisation term that is included to

prevent the model from overfitting during the pre-training phase with a relatively small

number of samples. The constants λ1, λ2 and λ3 are hyperparameters that control the

importance of their corresponding loss terms by weighting them in the aggregation to

form the total loss L(θ) in Equation 2.20. For instance, setting λ1 to be greater will

make the agent optimise for the n-step return loss Jn more than before as it will have

more impact on the total loss LDQfD and vice versa. Yet, setting these hyperparameters

is non-trivial as every loss term can be on different scales.

2.4.3 Action Advising

Action advising (Torrey & Taylor 2013) is a peer-to-peer knowledge transfer framework

that utilises the teacher-student paradigm to accelerate RL process. In its simplest

form, an RL agent that is learning to perform a task (student) is monitored by a more

knowledgeable peer (teacher) that tries to guide the student’s learning with the advice

it provides in the form of actions. Requiring only a common understanding over a

communication protocol and a set of actions makes action advising one of the most

flexible among the interactive knowledge exchange approaches (da Silva, Warnell, Costa

& Stone 2020).

An important aspect of action advising is the limitation in the number of teacher-

student interactions via a budget. This notion is incorporated considering the real-world

challenges of limited inter-agent communication and human attention span; neither

2.4. LEARNING FROM PRIOR KNOWLEDGE 41

can be expected to last over the course of a long training session. Therefore, the peer

that is in charge of initiating the advice exchange interactions needs to be aware of this

limitation and do so only in the most appropriate moments to make efficient use of the

available budget. In the initially proposed version (Torrey & Taylor 2013), where the

teacher constantly observes the student give advice (teacher-initiated), the teacher takes

this responsibility; whereas in other forms, i.e. jointly-initiated and student-initiated

(to be covered later), either of the peers can be in charge of these decisions. In addition

to the budget limitation itself, the fact that the execution of a particular advised action

can have different effects in the learning dynamics in different stages of learning requires

the advice exchanges to be timed carefully. Therefore, the main goal of the action

advising algorithms is to answer the question of “when to ask for/to provide an advice?”

in the best way possible to address these altogether.

The aforementioned characteristics of action advising distinguish it from the similar

learning paradigms we have covered previously. First of all, it does not require any

pre-generated datasets of previous experience like Imitation Learning and DQfD. Thus,

given that there is a peer to be interacted with, action advising can deal with problem

settings where the environment properties are unknown until the time the learning

agent is deployed for learning, or when it is costly and difficult to generate useful

environment interactions to be provided to the agent. Secondly, the budget limitation

in the interactions makes action advising significantly different from the approaches

that also consider an interactive expert to be in the training loop to assist the student,

such as DAgger. Due to these, action advising is capable of dealing with a unique set

of problems, unlike any other similar technique.

There have been various action advising methods presented prior to the date we

started conducting our study. While some of them rely on simple heuristics to distribute

the advice, there are also more advanced ones that employ methods such as Meta RL.

In the remainder of this section, we present a literature survey of the action advising

approaches both in classical RL and Deep RL.

42 CHAPTER 2. BACKGROUND

2.5 Action Advising in Classical RL

The idea of peer-to-peer knowledge sharing through actions has its roots in classical

single-agent RL. Clouse (1996) is one of the first studies to investigate the benefits of

integrating a competent agent’s decisions in a learner’s process. To do so, they combined

RL with apprentice learning where the learning agent is made to mimic a trainer agent’s

behaviour by replicating its action decisions, in a form of student-initiated advising,

in which a learning agent is assisted by an expert agent whenever it asks for advice

about its decisions. For this purpose, a metric to assess the importance of a state s (as

confidence from the student’s perspective) is formulated as follows:

I(s) = max
a′∈A

Q(s, a′)−min
a′∈A

Q(s, a′). (2.24)

This measurement is compared with a threshold value k to determine whether a state

s satisfies the condition I(s) < τimp for the student to request advice. In addition

to showing that getting feedback from the trainer even at random times provides a

performance boost, when to ask for advice is claimed to be critical.

Later, Torrey & Taylor (2013) proposed teacher-student action advising framework

for RL for the first time. In this framework, an expert teacher agent with policy πT

constantly monitors a student agent’s learning process and provides it action advice as

πT (s) (which are the teacher’s best actions for any given state s) whenever they are

decided necessary. This study has introduced the notion of advice budget limitation

considering the practical concerns regarding attention and communication. According

to this, the teacher starts with a budget of bgive which is decreased by 1 every time

it provides a piece of advice. When bgive becomes 0, the teacher can no longer give

advice. Therefore, addressing the challenge of when to advise became more crucial with

the introduction of this particular setting. They attempted to solve this problem by

devising the following heuristic approaches:

• Early Advising: By intuition, the agents are thought to benefit more from

2.5. ACTION ADVISING IN CLASSICAL RL 43

teaching earlier in the learning process; this forms the main motivation of this

heuristic. The teacher provides advice to the student for every state from the

beginning until it runs out of budget bgive.

• Importance Advising: Even though earlier states are usually very impactful

in learning, not every single of them may worth to be given advice. Therefore,

a budget may be better spent on the states that are determined to be more

important. In this method, the importance of a state s is computed similarly to

Clouse (1996), but this time from the teacher’s perspective:

I(s) = max
a′∈A

QT (s, a′)−min
a′∈A

QT (s, a′). (2.25)

This formula makes use of the teacher’s fully-learned Q-values (QT) and is consid-

ered to be a better indicator of the state’s importance. Advice is given whenever

there is an available budget bgive and I(s) greater than the pre-determined impor-

tance threshold τimp.

• Mistake Correcting: The budget efficiency of Importance Advising can be

further improved by making the advice exchange be performed only when there

is a disagreement in the selected action to be executed by the student and the

teacher. Therefore, the student first announces its action-to-be-executed a. Then,

if there is a budget bgive available and the conditions of πT (s) 6= a and I(s) > τimp

are satisfied, the teacher proceeds with the advice. The extra communication

steps make this heuristic less practical than the previous ones.

• Predictive Advising: A way to improve Mistake Correcting to make it easier

to be employed would be removing the requirement for the student to broadcast

its intended action. In this heuristic, this is achieved by training a model of the

student’s policy to predict its actions with a supervised learning model π̂S. For

any state s the student is in, the teacher predicts its action a as a = π̂S(s). Then,

if there is an available budget bgive and the conditions πT (s) 6= a and I(s) > τimp

44 CHAPTER 2. BACKGROUND

hold, the student is given an action advice. Even though this approach removes

the need for additional communication step, it suffers from some challenges. The

supervised learning model should be capable of representing the student’s policy

efficiently; it needs to be trained incrementally; it should handle the noisy data

generated by the student during its exploration stage; finally, it needs to take into

account the fact that student’s policy is also non-stationary.

The results of this work obtained in RL domains with linear function approximation

settings have outlined the significance of action advising and have opened new research

avenues by inspiring follow-up studies.

An extended version of this work (Taylor et al. 2014) later introduced two new state

importance metrics of variance-based importance:

IV (s) =
1

|A|

|A|∑
i=1

(QT (s, ai)−QT (s, a))2, (2.26)

and absolute deviation-based importance:

ID(s) =
1

|A|

|A|∑
i=1

|QT (s, ai)−QT (s, a)|, (2.27)

where QT (s, a) is the mean of the teacher’s Q-values for a state s. The methods in

both studies (Torrey & Taylor 2013, Taylor et al. 2014) were tested in more complex

environments again with non-linear function approximation and obtained promising

results.

Following these, Zimmer et al. (2014) treated the optimal way of spending the

budget in terms of acceleration in student’s learning performance as a RL problem

and attempted to solve it from the teacher’s perspective. By running a learning

session multiple times, the teacher learns (via Meta RL) the most appropriate times to

give advice based on the student’s state in environment as well as its learning state.

Moreover, a technique is proposed for the student to make the most of advice it acquires;

2.5. ACTION ADVISING IN CLASSICAL RL 45

however, this requires modifications to be made in student’s internal RL algorithm.

Even though the results show how efficient these techniques can be, there are some

significant shortcomings of this kind of approach. First of all, running a learning session

multiple times changes the problem setting majorly. In the real world where there are

no simulations and no previous access to an unseen task, this is clearly inapplicable.

Secondly, the teacher’s Meta RL reward mechanism was made to work by employing

detailed information regarding the task properties, such as maximum obtainable reward

and timesteps until the goal. This is also difficult information to obtain in realistic and

more complex tasks. Therefore, Meta RL class of methods like this one tends to be

more tailored for a small subset of domains.

In Amir et al. (2016), the action advising framework, that was originally proposed

as a teacher-initiated, was converted into a jointly-initiated version. As opposed to

the previous methods in which advising occurs only with the student (Clouse 1996) or

the teacher (Torrey & Taylor 2013) initiation, the interactions are performed with the

agreement of both sides. Jointly-initiated action advising makes use of two heuristics

selected for the student and the teacher, and advice exchange is done if both conditions

are satisfied. For instance, when both the student and the teacher employ the state

importance heuristic, the student in a state s first checks whether it is uncertain

(Istudent(s) > τask where τask is the student’s threshold). If this condition is satisfied,

then the student forwards its request to the teacher, who then checks its importance

metric to determine (Iteacher(s) > τgive where τgive is the teacher’s threshold) whether it

is suitable to provide advice. This way, the need for the student agent to be constantly

monitored is discarded, which makes the action advising techniques more feasible to be

incorporated, especially in the human-agent interaction settings. However, teachers are

still required to have competent, fixed policies.

Zhan et al. (2016) extended the teacher-student framework to take advantage of

getting advice from multiple teachers by combining the advice using a voting-based

selection. Moreover, the case of getting suboptimal advice when the student surpasses

the teacher’s performance is also addressed. Even though this improvement relaxed the

46 CHAPTER 2. BACKGROUND

requirement of expert teachers, it still assumes them to follow fixed policies that are

good enough to provide advice. This study also provided theoretical analyses of action

advising in these conditions, however, the findings are limited to very simple tabular

environments.

Fachantidis et al. (2019) made further investigations in learning-to-teach concept

based on Zimmer et al. (2014). They distinguished the qualities of being an expert

in the task from being good at teaching, claiming that the best performers are not

necessarily the best teachers. As well as learning when to advise, teachers are made to

learn what to advise to make the student learn as quickly as possible. This work shares

the same drawbacks with Zimmer et al. (2014) in terms of being limited to the Meta

RL suitable problem cases.

All of these previously mentioned studies are based on agents that operate in isolated

single-agent environments. In MARL, multiple agents simultaneously learn in the same

environment while affecting each others’ policies, rendering it non-stationary. Due to

this, even when we have agents with good policies, they can no longer be guaranteed

to follow a fixed policy. Moreover, the assumption of teacher and student roles within

agents is not straightforward to hold in MARL, especially when there is a large number

of agents. Despite being a challenging domain, these properties of MARL reflect a more

natural and realistic application case for peer-to-peer knowledge sharing.

The application of action advising methods in MARL is a challenging and fairly new

subject. da Silva et al. (2017) was the first to propose a teacher-student framework that

is suitable for multi-agent settings where agents are a part of the environment from

each other’s perspective and they learn simultaneously. They extended the heuristics

from Torrey & Taylor (2013) by introducing several metrics based on the number of

state visits to measure confidence in a given state, in order to make it possible for the

agents to do self-assessment in order to overcome the challenge of having no fixed roles

of student and teacher via executing jointly-initiated advice exchanging (as in Zhan

et al. (2016)). In every state s, agents determine their advice-asking and advice-giving

2.5. ACTION ADVISING IN CLASSICAL RL 47

probabilities as follows:

Pask(s,Υ) = (1 + va)
−Υ(s), (2.28)

Pgive(s,Ψ) = 1− (1 + vg)
−Ψ(s). (2.29)

Here, Υ and Ψ are the confidence evaluation functions; va and vg are the scaling

hyperparameters. With the advantage of being designed for non-Deep RL domains, the

confidence functions are designed to utilise state counters:

Υ(s) =
√
nvisits(s), (2.30)

Ψ(s) = log2 nvisits(s). (2.31)

During training, agents interact with each other based on the probabilities computed

according to these formulas. Advice from multiple peers is fused with majority voting.

They tested their methods in Half Field Offense environment (Hausknecht et al. 2016)

using a cooperative team of agents utilising SARSA(λ) with linear function approxi-

mation as task-level policies; and showed that the proposed modifications accelerated

team-wide learning. However, the complexity of the non-linear function approximation

was kept limited as they rely on state visit counters. They also did not develop any

mechanisms for agent selection for advice requests, as well as for the fusion of advice.

In Omidshafiei et al. (2018), teaching in MARL is approached as an advising-level

Meta RL problem as in Zimmer et al. (2014), Fachantidis et al. (2019). They proposed a

centralised training and decentralised execution procedure using multi-agent actor-critic

Deep RL (learning to coordinate and teach reinforcement) for teaching-level policies

and tabular Q-learning for the agent’s task-level policies. They demonstrated the

efficiency of the method in a set of different environments including a repeated game,

and two different gridworld environments, namely hallway game and room domain.

One important aspect of this is highlighting that optimal action given by an expert

agent is not always the best possible advice a learning agent can take to accelerate

its learning. Despite its promising results, this work has some shortcomings which

48 CHAPTER 2. BACKGROUND

are being limited to 2 agents only, using tabular and linear representations in simple

environments, and requiring multiple, centralised learning sessions before its execution.

Moreover, since advising occurs bidirectionally without any fixed roles, the agents learn

these behaviours at the same time and therefore end up actually being tuned for each

other only.

Differently from the previous work on this subject, Zhu, Cai, Leung & Hu (2020)

addressed the issue of utilising the collected advice further. They consider the cases

where the communication may be noisy to rely on a constant stream of advice and the

budget may be too limited. Furthermore, it is also highlighted that the student agent

usually needs to execute the same advice multiple times until it is actually learned,

especially when there is stochasticity in the environment. As a solution to these, they

proposed several techniques to reuse the previously collected advice. The state-advice

pairs are stored in a look-up table; then, they are reused based on the selected reuse

heuristic which can be one of the following:

• Q-change per Step: This is applicable when the student uses Q-learning. The

state-advice pairs are kept in the look-up table to be reused whenever they are

available as long as their execution leads to an increment (determined by a

threshold) in their corresponding Q-values.

• Reusing Budget: Separate reusing budgets are set for the states which are

decreased every time advice reusing occurs. Advice are reused for any state as

long as there is an available reusing budget for it.

• Decay Reusing Probability: Advice reusing happens according to a state-

dependent probability function that is based on state visit counts. These proba-

bility values are also decayed after every reuse.

These were found to be very effective to make more of the advice budget in the

experiments conducted in both single-agent and multi-agent environments. Reusing not

only lets the student execute the advice multiple times regardless of the budget without

consuming it, but also can potentially help the student spend it more efficiently with

2.6. ACTION ADVISING IN DEEP RL 49

the aid of a previous state-advice look-up table. Nevertheless, the techniques introduced

in this study are applicable to a limited set of non-Deep RL domains only.

2.6 Action Advising in Deep RL

The adoption of action advising techniques in the Deep RL domain has begun only

recently. Following Omidshafiei et al. (2018), Kim et al. (2020) extended the idea

of learning to efficiently give and take advice in Omidshafiei et al. (2018) to agents

that use deep neural networks in their task-level policies and act in environment with

continuous state and action spaces. In order to do so, they employed Hierarchical RL

(Nachum et al. 2018) and took advantage of some algorithm-specific properties to tackle

teacher credit assignment problem in deep RL action advising scenarios. Despite being

effective in forming teacher-student interactions bidirectionally without any fixed roles,

these learning-to-teach approaches share the drawbacks of requiring the agents to be

trained over multiple, centralised learning sessions due to the Meta RL mechanisms.

This may also undesirably cause the agents to end up being tuned for each other and

face difficulties when paired with different peers.

Another line of work in Deep RL involves applying action advising methods by

following heuristics without any pre-training, which forms the specific group of ap-

proaches our study belongs. In (Chen et al. 2018), the DQfD algorithm was combined

with active learning by making the student agent query for demonstrations itself in

a very similar way to action advising. To do so, they make use of some specialised

network architectures that make it possible for the student agent to measure its state

uncertainty, and be able to use this estimation to determine the most appropriate times

and states to request advice for.

More recently, at the time this Ph.D. study was being conducted, da Silva, Hernandez-

Leal, Kartal & Taylor (2020) proposed a heuristic-based student-initiated action advising

algorithm for Deep RL. They utilised uncertainty measurements obtained via multiple

neural network heads in the student’s model to time the advice requests in single-agent

50 CHAPTER 2. BACKGROUND

domains, similarly to (Chen et al. 2018); however, they don’t employ a special loss

function as in DQfD. The uncertainty calculation for a state s is performed as follows:

U(s) =

∑
∀a∈A

var(Q(s, a))

|A|
. (2.32)

Here, Q(s, a) denotes the matrix of h different (determined by the number of heads h)

Q(s, a) values, and var(Q(s, a)) denotes the variance of these values. Their experiments

against other baselines of Importance Advising and randomly advising in a simple

GridWorld domain as well as in the more complex Atari game Pong demonstrated

significant improvements both in learning acceleration and budget usage efficiency. An

obvious drawback of these uncertainty-based approaches is that they require specific

neural network architectures for accessing uncertainty estimations to be functional.

Chapter 3

Games in this Thesis

In this chapter, we describe the game environments we used as evaluation domains in

the experiments of this thesis.

3.1 Cover the Landmarks

This is a multi-agent grid-based game with discrete space and time, in which the agents

must spread and cover the landmark positions cooperatively to maximise their shared

rewards. The grid is sized 10 × 10 and consists of 3 agents and 3 landmarks. The

objective of the agents is to move as quickly as possible to cover all the landmarks

of the level. While the landmarks remain stationary, the agents can navigate around

the grid by using a discrete set of actions A = { Do Nothing, Move Up, Move Down,

MoveLeft, MoveRight }. Movement actions executed by an agent change its position

on the grid by 1 tile in the corresponding direction. At each timestep, the agents

observe the relative positions of the other agents and landmarks in form of x-axis and

y-axis values, plus the current timestep. All values are normalised to [−1, 1] using the

maximum distance and game duration, respectively. Agents also receive a common

reward in [0, 1], determined by how many of the landmarks have an agent covering

51

52 CHAPTER 3. GAMES IN THIS THESIS

them. The game’s reward is calculated as:

1

|L|

|L|∑
l=1

1
(
∑|N|

i=1 1‖dli‖=0)
> 1, (3.1)

where N is the set of agents; L is the set of landmarks; 1 is the indicator function which

equals 1 if the value of its subscript satisfies the condition coming after the notation,

and equals to 0 otherwise; dli is the Manhattan distance between landmark l and agent

i. In other words, in order to act optimally and maximise the total reward, the agents

must determine the lowest cost (in terms of distance) of the agent-landmark pair set

and move to the appropriate landmark following the shortest path. Since the agents

have no access to a forward model, they are expected to learn these strategies through

interactions.

Figure 3.1: Three visualised frames from the Cover the Landmarks game. On the left
is an initial game state at t = 0 with three landmarks (grey) and three agents (blue,
green and red). In the middle is an advanced game state at t = 1 when the agents
(blue, green and red) take actions On the right is the terminal state with all agents over
the landmarks with their (suboptimal) trajectories are shown as a shaded colour.

A set of rendered visuals can be seen in Figure 3.1 with Blue (B), Green (G) and Red

(R) agents Figure 3.1 (a) shows an example initial state s0 at t = 0. Figure 3.1 (b) shows

the successor state s1 at t = 1 resulted by the agents B, G, R taking actions MoveLeft,

Move Up, Do Nothing, respectively. Following are the numerical observations the

3.1. COVER THE LANDMARKS 53

agents perceive as observations in these states s0 and s1:

oB0 = [

oG0 = [

oR0 = [

0.3 −0.5 0.5 −0.4 −0.2 −0.3 0.1 −0.4 −0.3 0.2 1],

−0.3 0.5 0.2 0.1 −0.5 0.2 −0.2 0.1 −0.6 0.7 1],

−0.5 0.4 −0.2 −0.1 −0.7 0.1 −0.4 0 −0.8 0.6 1].

oB1 = [

oG1 = [

oR1 = [

0.2 −0.4 0.5 −0.3 −0.2 −0.2 0.1 −0.3 −0.3 0.3 0.92],

−0.2 0.4 0.3 0.1 −0.4 0.2 −0.1 0.1 −0.5 0.7 0.92],

−0.5 0.3 −0.3 −0.1 −0.7 0.1 −0.4 0 −0.8 0.6 0.92].

Here, the first 10 numbers denote the relative distances of entities in the y-axis and

x-axis, where the origin is considered to be at the upper-left corner of the observation

grid. In oB, the order of pairs is green agent, red agent followed by the landmarks;

in oG, the order of pairs is blue agent, red agent followed by the landmarks; in oR,

the order of pairs is blue agent, green agent followed by the landmarks. All of these

observation arrays are also appended with the remaining timesteps value for the episode

(normalised to be in [−1, 1]). In this particular example, the order of landmarks in the

observation array is the middle landmark, the left landmark and the right landmark

(according to Figure 3.1); however, the landmarks are equal with no special meanings

and their order is randomly determined every time a level is generated.

Despite this environment’s representational and mechanical simplicity, it still is

capable of presenting complex behavioural challenges for MARL. Therefore, this game

was employed in the experiments in Chapter 5 to focus on behavioural learning challenges

while keeping the computational expense at minimum. The game’s complexity was

tuned in terms of observation size and reward sparsity, in order to ensure that the

environment is solvable at least sub-optimally by independent DQN learners employed

in Chapter 5, and there remains to be some exploration challenge to keep the knowledge

of the peers valuable to the agent.

54 CHAPTER 3. GAMES IN THIS THESIS

3.2 Reach the Goal

Reach the Goal1 is a grid structured environment with a size of 9 × 9, composed of

ground (grey), pit (black) tiles, and goal (green) as visualised in Figure 3.2 where the

agent is represented in white. The environment is perceived by the agent as binary

tensors with a size of 9 × 9 × 3. In this observation, every channel represents the

presence of different tile types which are the agent, grounds (or pits) and the goal. The

agent starts in a fixed position in the top-left corner of the top-left room (as shown in a

white cell in Figure 3.2, top-left), and must navigate to the goal tile in the top-right

corner of the top-right room, with 4 available actions of spatial movement in order to

get a reward of +1. Every time the agent attempts to take an action, it has a chance to

execute another action uniformly at random instead, with a probability of 0.1; however,

if a random action happens to move the agent on a pit tile, it instead holds the agent

in its previous position to prevent uncontrollable terminations. Reaching the goal,

stepping on a pit tile or exceeding the maximum timesteps of 50 terminates the episode

with 0 points of reward. Considering the possibility of random movements and the tight

timesteps limit, this game presents a significant exploration challenge despite its simple

rules.

Figure 3.2: Rendered observation of Reach the Goal’s initial state.

1Codes are available at https://github.com/ercumentilhan/gridworld/tree/

1df98160e8c009f61e4bac68aae025e54ed7aa87

https://github.com/ercumentilhan/gridworld/tree/1df98160e8c009f61e4bac68aae025e54ed7aa87
https://github.com/ercumentilhan/gridworld/tree/1df98160e8c009f61e4bac68aae025e54ed7aa87

3.3. MINATAR 55

3.3 MinAtar

MinAtar (Young & Tian 2019) is an environment composed of minimal versions of five

popular Atari games2. While the core game mechanics are kept the same, the observation

and the action spaces are reduced to cut down the representational complexity. Every

game has a common action space of 6, and the observations are binary tensors with sizes

of 10×10×n, where n denotes the number of the object categories in the game. Different

from the default version, we set any game episode to have a maximum timesteps of 1000.

Figure 3.3 shows the screenshots taken from these games, and their brief descriptions

are as follows:

• Asterix: The game has a constant stream of enemies and treasures that spawn

and move in horizontal directions. The agent can move in 4 directions and must

collect treasures to obtain +1 reward while avoiding enemies which kill the agent

and terminates the game.

• Breakout: The agent controls a paddle in the bottom of the screen by moving it

in horizontal directions. The objective is to keep hitting the ball to keep it within

the screen to avoid losing the game. Hitting the bricks with the ball breaks them

and yields +1 reward. New lines of bricks keep appearing after they are cleared

up.

• Freeway: The agent’s objective is to cross the way by avoiding cars moving at

different speeds in horizontal directions. Upon reaching the goal, +1 reward is

awarded and the agent is sent back to the starting point, and the cars’ directions

and speeds are randomised. Being hit by a car also sends the agent back to the

starting point.

• Seaquest: This is the game with the most complex rules among MinAtar games.

The agent controls a submarine in a sea filled with enemy submarines, fish, and

2Our version: https://github.com/ercumentilhan/MinAtar/tree/original

https://github.com/ercumentilhan/MinAtar/tree/original

56 CHAPTER 3. GAMES IN THIS THESIS

divers to be rescued by navigating around. Shooting the enemies yields +1 reward,

as well as taking each diver to the surface. Moreover, the agent must keep an eye

on the remaining oxygen level and have it replenished by going to the surface;

which increases the difficulty each time it is done. If the agent goes up to the

surface with no divers, is hit, or has no remaining oxygen, the game terminates.

• Space Invaders: The agent is in charge of controlling a spaceship that can

shoot bullets at the upcoming group of aliens from the top of the screen. Each

shot-down alien yields a reward of +1, and upon being cleared up, a new wave of

aliens spawns with an increased movement speed. The aliens can also shoot back

at the agent. If the agent is hit by a bullet or an alien, the game is terminated.

(a) Asterix (b) Breakout (c) Freeway

(d) Seaquest (e) SpaceInvaders

Figure 3.3: Rendered observations of random states from MinAtar games Asterix,
Breakout, Freeway, Seaquest and Space Invaders.

Directions of the moving sprites are also encoded in the observations by having a

separate category for their trails to ensure full observability. Asterix, Seaquest and

3.4. ARCADE LEARNING ENVIRONMENT 57

Space Invaders also involve a periodical difficulty ramping that occurs at every 100th

timestep.

3.4 Arcade Learning Environment

In order to have an adequate amount of representational complexity in the experiments,

e.g. continuous state space, that is relevant to the modern deep RL algorithms, we

employ the widely experimented Arcade Learning Environment (ALE) (Bellemare et al.

2013) that contains more than 100 Atari 2600 games.

We selected a subset of 5 well-known games among these, namely Enduro, Freeway,

Pong, Q*bert, Seaquest, which involve different mechanics and present various learning

challenges to be used in the different stages of our studies.

• Enduro: The player controls a racing car on a long-distance track over multiple

in-game days. On each day, if the player manages to pass a certain number of

other cars (200 on the first day, 300 on the rest) in the race, it gets to advance

to the next day. Progression during the days is visualised by different colour

schemes that resemble the day-night cycle. Furthermore, there are other factors

of seasonal events that affect the gameplay such as fogs and icy patches appearing

on the road. Finally, as the days progress, the game increases in difficulty due to

the other cars’ behaviour becoming more aggressive.

• Freeway: In this game, the objective is to cross a chicken across a highway

comprised of ten lanes with vehicles traversing in different directions and speeds.

If the player hits the cars along the way, it gets pushed back toward starting point.

Every time the player manages to reach the goal, it acquires a reward and gets

teleported back to the starting point.

• Pong: This game consists of two paddles on each side of the screen and a ball

traversing around. The paddles are controlled by one player each. The players

58 CHAPTER 3. GAMES IN THIS THESIS

must hit the incoming balls to avoid them passing through their side as well as

getting them thrown back at the opponent. If a player lets the ball pass through

the gap behind its paddle, the opponent earns 1 point. In the single-agent variant

of this game used in our study, the player controls the right side paddle while the

other one is controlled by a built-in AI.

• Q*bert: The player is in control of an avatar that navigates over platforms in

a pyramid-structured layout. In order to advance the game to the next stage,

every platform must be jumped on once to have its colours changed. In the later

stages, it takes multiple jumps to change the colour of a platform. Even though

the player receives rewards for every successful platform interaction, it requires

solving the puzzle elements in the game layout to beat the game levels.

• Seaquest: The player controls a submarine manoeuvring in the sea to destroy

enemy sprites by shooting at them while also rescuing the divers to score. While

doing so, the player must avoid the bullets sent by the enemies as well as not having

its oxygen-depleted completely; else the 1 life is lost, and the game terminates

after 3 losses. In order to refill the oxygen and return the rescued divers, the

submarine must go to the surface. As time passes, the game becomes gradually

difficult with more aggressive enemies with different behaviours.

3.4. ARCADE LEARNING ENVIRONMENT 59

(a) Enduro (b) Freeway (c) Pong

(d) Q*bert (e) Seaquest

Figure 3.4: Rendered observations of random states from ALE games Enduro, Freeway,
Pong, Q*bert and Seaquest.

Each of these games has an observation size of 160 × 210 × 3, representing RGB

images of the game screen that are produced at 60 frames per second (FPS). To make

experimenting in these games computationally tractable, we employ some preprocessing

steps that are also followed commonly in other studies (Castro et al. 2018). First, each

observation is made greyscale and resized down to the size of 80× 80× 1. Since the

games run at a high FPS, the frame that is shown to the player is set to be only every

4th one (which is composed of the maximum pixel values of previous 3 frames), and

the player’s actions are repeated for the skipped frames. Moreover, since these games

contain a fair amount of partial observability, such as the direction of the ball in Pong,

the final form of the observation to be perceived by the player is made to be a stack of

60 CHAPTER 3. GAMES IN THIS THESIS

4 pre-processed frames with a size of 84× 84× 4 (which contains the information of

the most recent 16 actual game frames). An example of input and output observations

generated with this preprocessing technique in the game of Pong is shown in Figure 3.5.

The motion of the ball is obvious in the preprocessed version whereas this information

is absent in the original input. This is a clear example of how beneficial frame stacking

can be to deal with partial observability in ALE.

(a) Input observation (b) Preprocessed observation

Figure 3.5: A 160× 210× 3 RGB input observation from the game of Pong (a) and its
84× 84× 4 greyscale preprocessed version (unstacked) augmented with previous frames.

In order to deal with the varying range of reward scales and reward mechanisms

within these games, every reward obtained in a single step in the game is clipped to be

in [−1, 1].

Every game episode is limited to last for maximum 108k frames by default, which

corresponds to approximately 30 minutes of actual gameplay time in real life. In some

of our experiments, the maximum episode length may be different than this default

value; it is stated in that case.

Finally, another set of modifications also takes place to introduce more stochasticity

within the games to turn them into more challenging RL tasks. At the beginning of the

games, the player takes no-op actions a random number of times in [0, 30], to simulate

the effect of having different initial states. Additionally, with a probability of 0.25, the

actions executed by the player are repeated for an additional step, which is referred to

as sticky actions.

Chapter 4

Teaching on a Budget in

Multi-Agent Deep Reinforcement

Learning

This chapter covers our first study that is published with the title “Teaching on a

Budget in Multi-Agent Deep Reinforcement Learning” (Ilhan et al. 2019). The research

questions we addressed in this chapter are as follows:

• [RQ1] To what extent can we accelerate Deep RL via (budget-limited) action

advising with one or more knowledgeable peer(s)?

• [RQ2] How can we scale the state-of-the-art action advising approaches from

classical RL to Deep RL/MARL domains?

4.1 Introduction

There are many opportunities for knowledge reuse in MARL presented through the

addition of other agents (da Silva et al. 2018, Da Silva & Costa 2019). The earliest

works in this line of research involve learning the distributions of agents’ roles to use as

priors in new tasks with different roles (Wilson et al. 2008), reusing joint action policies

61

62 CHAPTER 4. TEACHING ON A BUDGET IN MULTI-AGENT DEEP RL

across tasks of varying difficulty in terms of agent number (Boutsioukis et al. 2011) and

employing propositional rule-based methods across tasks decomposed in complexity

(Vrancx et al. 2011). Later, in Taylor et al. (2013) a framework for simultaneous

learning in source and target tasks through inter-agent experience transfer is proposed.

Curriculum learning has also been a popular choice of making learning feasible within

complex strategies (Bansal et al. 2017) and environments (Shao et al. 2018). Obviously,

even though the existing challenges make it more problematic to employ the prominent

single-agent knowledge reuse techniques, the range of opportunities also becomes much

wider.

In MARL, an agent can potentially benefit from other agents’ knowledge via

observing and/or communicating with them. This makes it possible to reuse the

knowledge obtained in the same task from different sources. Due to this, MARL

is considered to be a very suitable and attractive domain for the action advising

framework. Nonetheless, the presence of such a rich set of possibilities brings some

difficulties together. The most significant of these MARL inherent knowledge reuse

challenges that are relevant to action advising, in particular, can be listed as follows:

• The algorithms have to deal with not only the differences in the tasks themselves

but also the number and type of agents present in them.

• Choosing the right agent(s) to learn from is difficult. The system may be het-

erogeneous, containing agents of different types with distinct abilities and goals.

Furthermore, it may not be obvious which agents actually have useful information

and are worth learning from.

• Determining the right moments to obtain and utilise knowledge from other agents

is important. Communication between agents may have limited bandwidth. Addi-

tionally, performing such transfers too frequently either through communication

or observation may be infeasible in terms of computational budget.

• Partial observability and limitations in communication may result in distorted

4.1. INTRODUCTION 63

information exchange between the agents.

• Consistently fusing heterogeneous information acquired from different types of

sources is not straightforward.

Due to these challenges, the research on the applications of action advising tech-

niques in MARL has not seen a great progression. At the time of conducting this

particular study, the most recent approaches were the ones that focus on having agents

autonomously learning to perform knowledge transfer between each other without

having fixed teacher-student roles (da Silva et al. 2017, Omidshafiei et al. 2018) in

non-Deep RL domains.

In this study, we aim to showcase the significance of peer-to-peer knowledge exchange

via action advising framework in a cooperative Deep MARL scenario for the first time

in literature. For this purpose, we extended the idea of multi-agent ad hoc peer-to-

peer action advising with no fixed roles (da Silva et al. 2017) to be compatible with

Deep RL agents. The problem setting we deal with does not hold any assumptions of

teacher-student roles for agents, is completely decentralised in training and execution

stages and assumes that the communication between agents is limited. We chose

these specifications to reflect real-world challenges as accurately as possible. The novel

technical contributions we have made in this work can be listed as follows:

1. We proposed a novel heuristic-based jointly-initiated action advising strategy

that is compatible with Deep RL agents and multi-agent setting of decentralised

independent learners.

2. We demonstrated the action advising framework’s efficiency for the first time in a

Deep RL/MARL problem.

3. We use RND technique as a state confidence measurement to drive jointly-initiated

advice exchanging decisions.

In Section 4.2 we describe the problem formulation and our approach in detail.

Then, in Section 4.3, the experimental setup is explained. The results and the related

64 CHAPTER 4. TEACHING ON A BUDGET IN MULTI-AGENT DEEP RL

discussion are then presented in Section 4.4. Finally, Section 4.5 concludes the study

with our final remarks.

4.2 The Approach

Our aim is to accelerate the learning of a cooperative team of agents in a multi-agent

environment via action advising. The problem setting we take into consideration is fully

observable, completely decentralised in every stage, and most importantly, assumes that

the environment is too complex for tabular methods and requires non-linear models to

be approximated/generalised across successfully, unlike the majority of previous work.

In this setting, every agent operates with a local observation; however, they are also

assumed to be able to observe each other and infer/communicate any other agent’s local

observations. Additionally, they can exchange action advice requests and responses. We

take the budget constraints in inter-agent interactions into consideration as introduced

in Torrey & Taylor (2013) and we want to achieve acceleration in learning while keeping

the agent interactions at minimum since we believe that such behaviour will be the

most useful in practical applications. Even though there are no such requirements in

our approach, we set every agent to be identical in terms of their learning specifications

for the sake of simplicity. The general structure of our proposal can be expressed in two

parts: the agents’ Deep RL policies and the teacher-student framework, which we explain

in the following sections. We follow the Dec-POMDP formalisation (Chapter 2.1.2) to

formulate the problem and our algorithm.

4.2.1 Agent Specifications

At task-level learning and decision-making, agents are designed to employ Deep RL

algorithms. Specifically, the agents are DQN learners along with its well-established

improvements of Double DQN, Prioritised Experience Replay, Dueling Networks and

NoisyNets. Maybe the most important of these in this particular study here is Prioritised

4.2. THE APPROACH 65

Experience Replay as it helps with sampling the transitions produced by teacher advice

since they are believed to yield larger temporal-difference errors more frequently by

intuition.

In terms of the multi-agent learning strategy, we follow the independent learners

approach in which each agent treats other agents as part of a non-stationary environment

and behaves by taking only its own actions into account. This is the simplest approach

in MARL without requiring the algorithm to have any specialisations to consider the

presence of multiple agents. Therefore, we keep DQN as it is without any further

modifications in this regard, which is also referred to as independent DQNs. Despite

having no theoretical convergence guarantees in multi-agent environments, independent

DQNs have been able to exhibit promising empirical results in previous studies and are

often used as a baseline for further improvements (Foerster et al. 2016, Tampuu et al.

2015).

4.2.2 Teaching on a Budget

We adopt action advising in the form of the teacher-student framework to perform inter-

agent knowledge transfer. This method requires only a common action set and minimal

similarity between agents. In addition, considering communication costs, exchanging

actions instead of episodes or policy parameters is preferable especially when task-level

policy employs a complex model like DQN. In our approach, agents can broadcast

requests for advice when they need it, and can also respond to requests for advice from

other agents when they think they are qualified enough. They have separate budgets of

asking bask and giving bgive advice, which determines the total number of times they

can perform these interactions.

Adapting the action advising framework to the Deep MARL domain have some prob-

lematic aspects to deal with. In our problem setting, every agent learns simultaneously,

and as result, they no longer have fixed policies. Consequently, they end up having

different levels of knowledge about the task and have no information on each other’s

66 CHAPTER 4. TEACHING ON A BUDGET IN MULTI-AGENT DEEP RL

expertise since they can not have any access to internals (decentralised). Therefore,

they hold no assumptions about being a teacher or a student. In order to overcome

this, we follow a jointly-initiated advising strategy (Amir et al. 2016). Every time an

agent requests advice from another agent, the agent in the position of teacher-to-be

has to confirm this interaction if it thinks that it will be appropriate to take the role.

Furthermore, as the agents have no fixed roles or knowledge levels that are defined

previously, they need to be capable of determining whether they need advice based on

the state they are in as well as determining whether they are experienced enough to give

advice. In da Silva et al. (2017) where they deal apply action advising in MARL, they

utilise the number of visits to measure an agent’s certainty in a given state. However,

this is not applicable when state space is large and nonlinear function approximation is

used to represent states. We propose to use the RND technique as a metric to measure

agents’ uncertainties as an alternative to tabular state counting. Every time an agent

uses a sample tuple consisting of a state observation o1 to train its Deep RL model,

this sample is also used to update (or distill) its predictor network Ĝ. Consequently, it

will be able to measure how uncertain it is in a state with observation o by measuring

the error ‖Ĝω(o)−G(o)‖2 when determining if it needs advice or is capable of giving it.

This method, which was originally proposed to serve as an exploration bonus through

state novelty, can be treated as a proxy of visit counts in the non-linear function

approximation domain.

At each timestep, each agent chooses its action in their state s with observation o

according to teacher-student augmented action selection procedure defined in Algorithm

11. If it has any asking budget bask available, it measures its proxy uncertainty U(o)

by using its own RND models G and Ĝ; if U(o) is higher than a predefined asking

threshold τask the agent broadcasts its advice requests to other agents as described in

Algorithm 12. As this hyperparameter goes smaller the students become more likely to

ask for advice. Agents who have any remaining advice-giving budget bgive then attempt

1We refer to the state s as state observation o in this chapter to emphasise the presence of partial
observability, as it is specified in Dec-POMDP formalisation.

4.3. EXPERIMENTAL SETUP 67

to respond to this request. If the agent receives any advice, it determines which action

to follow by using majority voting (ties broken at random) to then execute such action.

Otherwise, if no advice is received, it continues exploring by following its own policy.

Responding to an advice request happens as described in Algorithm 13. Upon getting

a request, the agent first checks if it has any remaining giving budget bgive. If so, it then

determines its expertise by using its internal G and Ĝ, computing ‖Ĝω(o)−G(o)‖2. It

then compares this value with threshold τgive to decide whether to proceed or not. As

this hyperparameter goes smaller the teachers limit their advice to the states they are

more certain about, hence resulting in a smaller number of advice exchange interactions.

Finally, if it is set to follow the Early Advising heuristic, it broadcasts action advice

according to its policy; otherwise, the specified underlying advice collection heuristic is

followed, e.g., Importance Advising (importance threshold is denoted by τimp in this

case.)

The general learning flow of an agent with DQN policy and action advising mecha-

nism is summarised in Algorithm 102. This is a slightly modified version of the baseline

DQN (Algorithm 8). The differences are highlighted in the lines enclosed with dots

(lines 4, 7 and 14). As it can be seen, the underlying RL algorithm can easily be

isolated from our enhancements except for its action selection policy3. Therefore, it

can be changed for any other policy as long as it satisfies the assumption of computing

state-action values for Importance Advising to be applicable.

4.3 Experimental Setup

The objective of the empirical evaluation is to understand if and how our novelty-based

action advising framework can enhance the agents’ learning performance compared to

the previous baselines. For this purpose, we conducted experiments through multiple

learning sessions, each one consisting of a set fixed number of different game episodes

2The code for our experiments can be found at https://github.com/ercumentilhan/teaching-on-a-budget
3This part corresponds to the line 1102 of dqn-ps.py file in the code repository.

https://github.com/ercumentilhan/teaching-on-a-budget

68 CHAPTER 4. TEACHING ON A BUDGET IN MULTI-AGENT DEEP RL

Algorithm 10 Deep Q-Learning with Teacher-Student Framework (Single Agent Per-
spective)

Input: Number of learning steps tmax, learning rate α, target network update

period Ttarget, training period Ttrain, replay memory capacity ND replay memory

size to start learning MD.

1: Initialise empty replay memory D with capacity ND to store state transition tuples

2: Initialise online deep Q-network with weights θ randomly

3: Initialise target deep Q-network with weights θ copied from θ

. .

4: Initialise the RND networks G and Ĝ

. .

5: for training steps t ∈ {1, 2, . . . tmax} do

6: Get observation ot from Environment if Environment is reset

. .

7: at ← SelectAction(ot) . Determine the action to take

. .

8: Execute at and obtain rt+1, ot+1 from Environment

9: Store transition 〈o = ot, a = at, r = rt+1, o
′ = ot+1〉 in D

10: Remove 〈ot−ND , at−ND , rt+1−ND , ot+1−ND〉 from D if |D| > ND
11: if D ≥MD and t mod Ttrain = 0 then

12: Draw a minibatch of transitions B from D
13: Perform a gradient descent step with B to minimise Equation 2.11 (at α rate)

. .

14: Update ω weights to minimise ‖Ĝω(o)−G(o)‖2 for every o in B
. .

15: end if

16: θ ← θ if it is target network updating period (t mod Ttarget = 0)

17: ot ← ot+1

18: end for

4.3. EXPERIMENTAL SETUP 69

Algorithm 11 Teacher-Student Augmented Action Selection (SelectAction)

Input: State observation o.

Locals: Agent’s policy π, RND model components Ĝω and G, advice-asking budget

bask, advice-asking threshold τask.

1: a← None . Set action as non-determined

2: if bask > 0 then . Check if there is enough budget to ask advice

3: U(o)← ‖Ĝω(o)−G(o)‖2 . Measure state uncertainty via RND

4: if U(o) > τask then . Check if state uncertainty high enough to seek advice for

5: a← AskForAdvice(o) . Request advice from other agents

6: end if

7: end if

8: if a is None then . No valid advice is received

9: Determine a via the RL algorithm π, i.e. DQN

10: else

11: bask ← bask − 1 . Decrease the available budget by 1

12: end if

13: return a

which are initialised with random, yet non-overlapping, agent and landmark positions.

The performance of the agents is assessed as a team through a learning session that

consists of multiple episodes. After the agents come to the end of an episode (due to

time limit, details are provided in Section 3.1), a new episode begins with a random level

structure (agent and landmark positions); this is repeated until the maximum timesteps

defined for the learning session is reached. The agents are evaluated every 100 episodes

in a predefined set of 50 evaluation levels. During the evaluation, learning process

and teaching procedures are disabled, and the levels used are fixed across all learning

sessions. This way, evaluation periods have no effect in the actual learning progression

and the agents can be evaluated in a way that results from different evaluation steps

are comparable (by having fixed level structures). Evaluation score is calculated by

normalising the average episode rewards obtained across 50 levels with the maximum

possible total reward (determined by a set of hand-crafted expert agents), giving a score

in [0, 1], where 1 indicates the optimal performance.

The performance of the proposed methods can be assessed by looking at the

70 CHAPTER 4. TEACHING ON A BUDGET IN MULTI-AGENT DEEP RL

Algorithm 12 Request Advice as Student (AskForAdvice)

Input: State observation o.

1: a← None . Set final action as None

2: Ar ← ∅ . Initialise empty set of received advice

3: for every other agent i do . Advice is to be requested from every other agent

4: aadvised ← i.Advise . Attempt to receive advice from agent i

5: if aadvised 6= None then . Check if agent i has generated a valid advice

6: Add aadvised to Ar . Keep the advice

7: end if

8: end for

9: if Ar 6= ∅ then . Check if there is at least 1 valid advice

10: a← perform majority voting in Ar . Decide which advice to follow by majority

voting

11: end if

12: return a

evaluation scores across a learning session, according to the following two metrics:

• Asymptotic performance: This is measured directly by looking at the evalua-

tion scores values and represents how good the agents are at solving the game.

• Learning speed: This is measured by looking at the area under the curve of

evaluation scores against the number of training episodes graph.

For agents to be able to benefit from knowledge transfer, there must be some form

of knowledge heterogeneity within the team. In MARL, such heterogeneity tends to

arise when the agents explore different parts of the state space, use different task-level

policies in terms of complexity and representation, or are in different stages of training.

Since our environment is fully observable and the agents are identical, only the latter is

applicable in our setting. One objective of this study is to determine how the proposed

methods work in different types of knowledge heterogeneity. Therefore, we designed

the following 2 scenarios:

• Scenario I: We train a team of agents in levels from a single distribution of levels;

then, we take agents from different stages of pre-training to form a team to be

4.3. EXPERIMENTAL SETUP 71

Algorithm 13 Respond to Advice Request as Teacher (Advise)

Locals: Agent’s policy π, advice-giving budget bgive, advice-giving threshold τgive,

importance threshold τimp, RND model components Ĝω and G.

1: a← None . Set the advice to be given as None initially

2: if bgive > 0 then . Check if there is enough budget provide advice

3: o← observe/communicate advice requesting student’s state.

4: U(o)← ‖Ĝω(o)−G(o)‖2 . Measure state uncertainty via RND

5: if U(o) < τgive then . Check if state certainty is enough to advise in o

6: switch teaching method

7: case Early Advising:

8: a← produce greedy action via π(o) . Generate action advice

9: bgive ← bgive − 1 . Decrease the available budget by 1

10: case Importance Advising:

11: I(o)← maxaQ(o, a)−minaQ(o, a) . Measure state importance of o

12: if I(o) > τimp then . Check if o is important enough to advise

13: a← produce greedy action via π(o) . Generate action advice

14: bgive ← bgive − 1 . Decrease the available budget by 1

15: end if

16: end switch

17: end if

18: end if

19: return a

evaluated.

• Scenario II: We train 3 sets of agents in 3 different level distributions, in which

landmarks and initial agents locations are strictly limited to predefined regions

(see Figures 4.1 and 4.2). Then, we take one agent with moderate performance

arbitrarily from each level type to form a team to evaluate. Note that the learning

sessions used to pre-train agents are generated with different seeds than the ones

where we run the final evaluation.

The following is a list of the different types of agents used in this study. These

agents are trained in the levels first to acquire some knowledge and then picked to form

teams of 3 agents as explained above. These agents are:

• A0: Agent with no prior knowledge.

72 CHAPTER 4. TEACHING ON A BUDGET IN MULTI-AGENT DEEP RL

Figure 4.1: Level structure types in terms of possible regions for initial positions of
agents (grey) and landmarks (red).

Figure 4.2: Some examples of initial states generated for different level structure types.
The two leftmost columns are generated with Type 1; the two columns in the middle
are generated with Type 2; the two rightmost columns are generated with Type 3.

• A10: Agent taken from a team of agents trained for 10k episodes. This agent ob-

tained an evaluation score of 0.45 in a level distribution identical to the evaluation

sessions.

• A20: Agent taken from a team of agents trained for 20k episodes. The evaluation

score is 0.91 in a level distribution identical to the learning evaluation sessions.

• A10-1: Agent taken from a team of agents trained for 10k episodes, with 0.51

evaluation score in a restricted level distribution of type 1.

• A10-2: Agent taken from a team of agents trained for 10k episodes, with 0.41

evaluation score in a restricted level distribution of type 2.

• A10-3: Agent taken from a team of agents trained for 10k episodes, with 0.43

evaluation score in a restricted level distribution of type 3.

Due to the way the state observation vector is constructed (described in Section 3.1),

it may be possible that agents learn to consider only a particular landmark in the

4.3. EXPERIMENTAL SETUP 73

Input
1× 10

1 × 256

Noisy
Dense

1× |A|, 1

Dueling
Noisy
Dense

+

1 × |A|

Output

Figure 4.3: Neural network architecture of DQN where |A| is the number of actions.
The dark-shaded slice denotes the presence of rectified linear unit activation function.
Output is the Q-values. The numbers of filters and units in the layers are indicated
below each layer.

observation. However, the training process involves many randomly generated levels

which create enough variety in the level structure to incentivise the agents to learn to

treat the landmarks equally at the end.

The methods we evaluate along with the agent teams used in them are as follows:

• XP: The team to be evaluated is formed by agents A0, A10, A20 and no advising

is used. This method serves as a baseline for the first scenario.

• XP-EA: The team to be evaluated is formed by agents A0, A10, A20, and Early

Advising is enabled.

• XP-IA: The team to be evaluated is formed by agents with different knowledge

levels A0, A10, A20, and Importance Advising is enabled.

• XP-L: The team to be evaluated is formed by agents A10-1, A10-2, A10-3 and

no advising is used. This method serves as a baseline for the second scenario.

• XP-L-EA: The team to be evaluated is formed by agents A10-1, A10-2, A10-3,

using Early Advising.

• XP-L-IA: The team to be evaluated is formed by agents with different knowledge

levels A10-1, A10-2, A10-3, using Importance Advising.

We run the tests for the methods with teaching enabled, namely XP-EA and XP-IA,

74 CHAPTER 4. TEACHING ON A BUDGET IN MULTI-AGENT DEEP RL

with different advice budgets of 1k, 2k, 5k, 10k, 20k and unlimited (∞). For Scenario I

(XP, XP-EA, XP-IA), learning is run for 10k episodes, while 20k episodes are run for

Scenario II (XP-L, XP-L-EA, XP-L-IA). The budgets are separate for each individual

agent and are set the same for asking and giving advice initially. Moreover, due to

the well-known learning inconsistency of Deep RL methods, especially in multi-agent

settings, every experiment is repeated 10 times with different random seeds.

The agents are identical independent learners that employ DQN with the improve-

ments of Double DQN, Dueling Networks, Noisy Networks and Prioritised Experience

Replay. The network structure (Figure 4.3) is a multilayer perceptron which is the

archetypal form of the deep learning models (Goodfellow et al. 2016) with a single

hidden layer formed by 256 units. The addition of NoisyNets removes the need to

follow an explicit exploration policy such as ε-greedy with the aid of perturbed weights

providing a learnable and state-specific exploration (see Chapter 2.3.1). NoisyNets

noise parameters are generated with factorised Gaussian noise. The hidden layer uses

rectified linear units as the activation functions.

In the RND models, we employ a very similar network architecture with a single

non-noisy hidden layer formed by 256 units and an output size of 1; the only difference

with the architecture shown in Figure 4.3 is the absence of Dueling Networks and the

output size being 1. The weights of these models are initialised via a normal distribution

with means 0.0, 0.0 and standard deviations of 1.0, 3.0 for the predictor and the target

networks, respectively. This is done to promote the difference in the outputs produced

by the RND networks by making them dissimilar at the beginning of training.

All the relevant hyperparameters are determined empirically and are given in

Table 4.1. They are kept the same across different scenarios and configurations.

4.4 Results and Discussion

Tables 4.2 and 4.3 show the results for the scenarios described in this study. These

results show the asymptotic performance (score) and the area under the curve (AUC)

4.4. RESULTS AND DISCUSSION 75

Table 4.1: Hyperparameters used in the experiments for the students’ DQN (top section),
RND (middle section) and the action advising module (bottom section). U denotes
uniform distribution.

Parameter name Value

Replay memory size to start learning MD 10k
Replay memory capacity ND 25k
Prioritisation type Proportional
Prioritisation exponent 0.6
Prioritisation importance sampling 0.5→ 1
Target network update period (steps) Ttarget 10k
Train period (steps) Ttrain 2
Minibatch size 64
Learning rate α 0.001
Discount factor γ 0.99
Adam epsilon 1.5× 10−4

Huber loss delta 1
Noisy layer Gaussian noise type Factorised
Noisy layer initial µ distribution for p inputs U [−1/

√
p,+1/

√
p]

Noisy layer initial σ for p inputs 0.4/
√
p

RND weight initialisation Random normal
RND predictor’s weight init. mean and std. dev. 0.0 and 1.0
RND target’s weight init. mean and std. dev. 0.0 and 3.0
RND learning rate 0.001
Adam epsilon 1.5× 10−4

Advice-asking budget bask 1k, 2k, 5k, 10k, 20k, ∞
Advice-giving budget bgive 1k, 2k, 5k, 10k, 20k, ∞
Advice-asking threshold τask 10
Advice-giving threshold τgive 3
Importance threshold τimp 1

values as indicators of the learning performance of the agents. Results are reported

for different moments of the evaluated training: after 2.5k, 5k, 7.5k, 10k, 15k and 20k

episodes, and they include the standard error of the measure (10 repetitions). Results

that are significantly different than the first row (baseline) of each table, according to

Welch’s t-test (p-value < 0.05) are denoted in bold. Additionally, evaluation scores of

the methods with the highest final AUC values from each of the scenarios are plotted

against their respective baseline as shown in Figures 4.4 and 4.5.

76 CHAPTER 4. TEACHING ON A BUDGET IN MULTI-AGENT DEEP RL

Table 4.2: Asymptotic performance (score) and area under the curve (AUC) values of
XP, XP-EA and XP-IA at learning episodes 2.5k, 5k, 7.5k and 10k with standard errors
in parentheses. Results of XP-EA and XP-IA that are significantly different than XP
algorithm according to Welch’s t-test with p-value < 0.05 are denoted in bold. Each
algorithm is run 10 times.

Algorithm
At 2500th At 5000th

AUC Score AUC Score

XP 13.94 (0.04) 0.58 (0.005) 28.72 (0.12) 0.62 (0.009)

XP-EA (1K) 13.9 (0.05) 0.58 (0.002) 28.81 (0.14) 0.63 (0.014)
XP-EA (2k) 13.85 (0.07) 0.57 (0.005) 28.58 (0.13) 0.61 (0.009)
XP-EA (5k) 13.88 (0.03) 0.58 (0.004) 28.75 (0.11) 0.63 (0.018)
XP-EA (10k) 13.85 (0.04) 0.57 (0.004) 28.57 (0.09) 0.61 (0.006)
XP-EA (20k) 13.76 (0.05) 0.57 (0.004) 28.56 (0.09) 0.64 (0.016)
XP-EA (∞) 13.76 (0.05) 0.57 (0.003) 28.53 (0.06) 0.64 (0.011)

XP-IA (1k) 13.94 (0.04) 0.58 (0.003) 29.0 (0.15) 0.66 (0.016)
XP-IA (2k) 13.91 (0.08) 0.58 (0.005) 28.86 (0.21) 0.64 (0.02)
XP-IA (5k) 13.92 (0.03) 0.57 (0.004) 28.84 (0.12) 0.65 (0.008)
XP-IA (10k) 13.97 (0.04) 0.58 (0.003) 29.22 (0.22) 0.68 (0.024)
XP-IA (20k) 13.96 (0.04) 0.58 (0.003) 29.19 (0.2) 0.67 (0.022)
XP-IA (∞) 13.96 (0.04) 0.58 (0.003) 29.19 (0.2) 0.67 (0.022)

Algorithm
At 7500th At 10000th

AUC Score AUC Score

XP 47.15 (0.44) 0.83 (0.013) 68.26 (0.6) 0.87 (0.006)

XP-EA (1k) 47.18 (0.54) 0.81 (0.013) 68.27 (0.73) 0.86 (0.01)
XP-EA (2k) 46.39 (0.59) 0.79 (0.024) 67.16 (0.87) 0.86 (0.009)
XP-EA (5k) 47.02 (0.56) 0.81 (0.024) 67.86 (0.86) 0.87 (0.007)
XP-EA (10k) 46.3 (0.47) 0.8 (0.021) 67.28 (0.68) 0.87 (0.008)
XP-EA (20k) 47.38 (0.37) 0.84 (0.005) 68.87 (0.45) 0.88 (0.003)
XP-EA (∞) 47.11 (0.24) 0.82 (0.006) 68.0 (0.31) 0.86 (0.003)

XP-IA (1k) 47.62 (0.59) 0.82 (0.012) 68.92 (0.71) 0.87 (0.006)
XP-IA (2k) 47.11 (0.61) 0.81 (0.015) 68.16 (0.84) 0.87 (0.009)
XP-IA (5k) 48.01 (0.38) 0.83 (0.006) 69.49 (0.41) 0.88 (0.004)
XP-IA (10k) 48.26 (0.72) 0.8 (0.019) 69.6 (0.98) 0.88 (0.006)
XP-IA (20k) 47.92 (0.58) 0.8 (0.012) 69.01 (0.75) 0.87 (0.004)
XP-IA (∞) 47.92 (0.58) 0.8 (0.012) 69.01 (0.75) 0.87 (0.004)

4.4. RESULTS AND DISCUSSION 77

Table 4.3: Asymptotic performance (score) and area under the curve (AUC) values of
XP-L, XP-L-EA and XP-L-IA at learning episodes 5k, 10k, 15k and 20k with standard
errors in parentheses. Results of XP-L-EA and XP-L-IA that are significantly different
than XP-L algorithm according to Welch’s t-test with p-value < 0.05 are denoted in
bold. Each algorithm is run 10 times.

Algorithm
At 5000th At 10000th

AUC Score AUC Score

XP-L 15.38 (0.12) 0.36 (0.005) 38.34 (0.43) 0.52 (0.006)

XP-L-EA (1k) 15.58 (0.1) 0.39 (0.008) 39.51 (0.33) 0.54 (0.005)
XP-L-EA (2k) 15.4 (0.12) 0.37 (0.009) 38.28 (0.66) 0.53 (0.012)
XP-L-EA (5k) 15.51 (0.14) 0.39 (0.007) 39.98 (0.37) 0.54 (0.006)
XP-L-EA (10k) 15.53 (0.1) 0.38 (0.008) 39.53 (0.35) 0.55 (0.005)
XP-L-EA (20k) 15.53 (0.1) 0.38 (0.008) 39.53 (0.35) 0.55 (0.005)
XP-L-EA (∞) 15.53 (0.1) 0.38 (0.008) 39.53 (0.35) 0.55 (0.005)

XP-L-IA (1k) 15.39 (0.13) 0.38 (0.006) 38.54 (0.5) 0.52 (0.008)
XP-L-IA (2k) 15.27 (0.14) 0.37 (0.008) 38.4 (0.43) 0.53 (0.007)
XP-L-IA (5k) 15.37 (0.09) 0.38 (0.009) 38.67 (0.32) 0.52 (0.005)
XP-L-IA (10k) 15.37 (0.1) 0.37 (0.009) 38.58 (0.34) 0.52 (0.006)
XP-L-IA (20k) 15.37 (0.09) 0.38 (0.009) 38.67 (0.32) 0.52 (0.005)
XP-L-IA (∞) 15.37 (0.09) 0.38 (0.009) 38.67 (0.32) 0.52 (0.005)

Algorithm
At 15000th At 20000th

AUC Score AUC Score

XP-L 66.97 (0.71) 0.66 (0.02) 105.46 (1.37) 0.86 (0.011)

XP-L-EA (1k) 69.85 (0.85) 0.73 (0.024) 110.8 (1.55) 0.88 (0.018)
XP-L-EA (2k) 68.55 (1.49) 0.7 (0.022) 108.4 (2.28) 0.86 (0.02)
XP-L-EA (5k) 71.18 (0.68) 0.75 (0.022) 112.69 (1.27) 0.89 (0.005)
XP-L-EA (10k) 71.3 (1.02) 0.74 (0.026) 112.14 (1.77) 0.87 (0.014)
XP-L-EA (20k) 71.3 (1.02) 0.74 (0.026) 112.14 (1.77) 0.87 (0.014)
XP-L-EA (∞) 71.3 (1.02) 0.74 (0.026) 112.14 (1.77) 0.87 (0.014)

XP-L-IA (1k) 67.95 (0.97) 0.68 (0.025) 107.6 (1.59) 0.87 (0.01)
XP-L-IA (2k) 67.73 (0.69) 0.67 (0.017) 106.47 (1.42) 0.85 (0.016)
XP-L-IA (5k) 68.13 (0.59) 0.69 (0.025) 107.32 (1.46) 0.86 (0.019)
XP-L-IA (10k) 68.06 (0.65) 0.68 (0.027) 107.04 (1.6) 0.85 (0.02)
XP-L-IA (20k) 68.13 (0.59) 0.69 (0.025) 107.32 (1.46) 0.86 (0.019)
XP-L-IA (∞) 68.13 (0.59) 0.69 (0.025) 107.32 (1.46) 0.86 (0.019)

78 CHAPTER 4. TEACHING ON A BUDGET IN MULTI-AGENT DEEP RL

Figure 4.4: Evaluation scores versus the number of learning episodes of XP, XP-EA
(5k) and XP-IA (20k). Shaded areas indicate 95% confidence intervals.

In the first scenario, both of the algorithms provided slight accelerations in learning

and achieved very similar final performances with the baseline method at 10kth episode.

The only significant difference from the baseline was seen in scores at 5kth episode, by

XP-IA (5k). The overall best-performing agent in this scenario is XP-IA (10k). This

can be seen as an indication that the importance metric was indeed a useful heuristic

to distribute advice over more important states in this scenario. The budget seems to

have more effect on XP-IA, achieving its best result at 10k, confirming the claim that

too much advice may have negative effects on performance (Torrey & Taylor 2013).

In the second scenario, XP-L-IA failed to show any significant advantage over the

baseline XP-L except for the score at 5kth episode with a budget of 1k. This can be a

result of the importance metric not being accurate at reflecting the actual relevance of

states in this kind of agent knowledge setting. On the other hand, XP-L-EA performed

4.4. RESULTS AND DISCUSSION 79

Figure 4.5: Evaluation scores versus the number of learning episodes of XP-L, XP-L-EA
(5k) and XP-L-IA (1k). Shaded areas indicate 95% confidence intervals.

very well with significant improvements in terms of asymptotic performance and learning

speed at multiple stages of learning. Moreover, it even managed to achieve a significantly

better final performance. This may be caused by the agents starting with a similar

(and moderate) amount of knowledge, so the early advice are likely to be useful for any

of them without having a need for additional importance assessment. The identical

results of XP-L with 10k or a higher budget are caused by not having the need to make

use of it beyond some point, once the agent is certain of the decision it is making on its

own (as controlled with the advice budgets). This can be considered as another benefit

of using this uncertainty measurement technique if it is tuned well.

80 CHAPTER 4. TEACHING ON A BUDGET IN MULTI-AGENT DEEP RL

4.5 Conclusions

This study described the application, for the first time, of action advising via a heuristic-

based teacher-student framework with Deep RL agents in a multi-agent setting. RND,

which is originally a bonus-based exploration method, was used as a state novelty

measurement as a replacement for tabular state counters to drive the advice exchange

interactions.

Our proposals provided improvements both in the speed and final performance

of the agents, particularly when the team is composed of agents with heterogeneous

knowledge. Clearly, action advising can present invaluable benefits when the system

consists of one or more knowledgeable peers to leverage. Moreover, RND was found to

be a reliable metric to be utilised as a proxy of state visit counter for the domains with

high state-space complexity. Another interesting finding is that the state importance

metric may be inefficient in some cases of knowledge distribution amongst agents, for

example, if they are all experts but on different state distributions. Additionally, it is

worthwhile highlighting that, even if it is possible to determine the experience of the

agents for their roles in knowledge exchange relationships, this experience is importantly

biased by the other agents that were present at the time they built their knowledge.

This is because the agents are considered to be independent learners which render other

agents as a part of the environment, which forms a non-stationary component.

Further investigation on how to adapt the state importance metric for agent advising

can be an interesting line of future work. Off-policy learning through replay memory may

be a slowing down factor in action advising, as it takes given advice into consideration

in a delayed way and reduces the rate at they influence the agent’s current policy,

especially for independent learners in a multi-agent system. Therefore, in addition to

the enhancements like PER, it may be useful to implement more specific techniques

like multi-step advice and continual monitoring of agents for fixed periods of time after

advice exchange. This is similar to previous work in the field (Amir et al. 2016, Kim

et al. 2020). Finally, another interesting line of future work would be to expand the

4.5. CONCLUSIONS 81

problem to have more than 3 agents, which brings interesting aspects to the discussion

such as defining a more accurate peer selection and advice fusing beyond majority

voting.

82 CHAPTER 4. TEACHING ON A BUDGET IN MULTI-AGENT DEEP RL

Chapter 5

Student-Initiated Action Advising

via Advice Novelty

This chapter is based on our second publication titled “Student-Initiated Action Advising

via Advice Novelty” (Ilhan et al. 2022). The targeted research questions in this piece of

study are the following:

• [RQ1] To what extent can we accelerate Deep RL via (budget-limited) action

advising with one or more knowledgeable peer(s)?

• [RQ3] What can be an efficient heuristic to perform student-initiated action

advising that is also robust to teacher absence conditions in Deep RL?

• [RQ4] Can imprecise usage of action advising budget hamper Deep RL perfor-

mance?

5.1 Introduction

In the previous chapter, we showed how action advising can be a promising option to be

incorporated in a Deep MARL task to accelerate agents’ learning. Yet, the underlying

multi-agent learning dynamics make it more difficult to study the dynamics of action

advising itself. Therefore, in further studies including this one, we change our scope to

83

84 CHAPTER 5. ACTION ADVISING VIA ADVICE NOVELTY

be restricted to the single-agent Deep RL domains to better understand and develop

more principled action advising strategies that can also be used in more complicated

problems later.

The initial problem setup of the action advising framework (Torrey & Taylor 2013)

used in the single-agent scenarios assumed the learning agent, namely, the student, to be

monitored constantly by a teacher who is responsible to manage the distribution of these

advice. However, this is considered to be impractical because of the possible limitations

in communication and the teacher’s attention span. Moreover, since the teacher has

no access to the student’s internal model, the advice decisions are determined solely

by the teacher’s initiative. Due to these, this framework has also been extended into

different versions such as student-initiated and jointly-initiated, letting the student

take an active role in initiating these interactions, as covered in Chapter 2. While the

student-initiated version seems to be the potentially most advantageous variant in Deep

RL, it has its own challenges to be dealt with to be successful as the limited number of

studies indicate.

In Deep RL, it is a challenging task to credit a transition for its long-term contribu-

tion to learning and to determine the actual importance of a state to obtain a piece

of advice for. Therefore, the student-initiated approaches in Deep RL has followed

heuristics as proxies, such as state novelty (Ilhan et al. 2019) (Chapter 4) and state

uncertainty (Chen et al. 2018, da Silva, Hernandez-Leal, Kartal & Taylor 2020) estima-

tions. Even though these techniques demonstrate promising performance by simplifying

the challenging characteristics of Deep RL, they assume the teacher(s) to be in the loop

from the beginning and consider the convergence of the estimations (state novelty, state

uncertainty) to be an indicator of student’s task performance improvement. Moreover,

if the student’s learning algorithm incorporates mechanisms like experience replay as in

off-policy learning, e.g., DQN, these estimations are likely to be subject to delays of

varying severity depending on the model specifications.

In this study, we first highlight and demonstrate some drawbacks of the existing

student-initiated action advising methods. Then, we propose an advice novelty method

5.2. THE APPROACH 85

based on RND, which, unlike our previous work, is exclusively updated for the states

that are advised (hence the name advice novelty rather than state novelty). By doing

so, it is ensured that the student always make use of the teacher’s knowledge, regardless

of how late the teacher becomes accessible or how converged the student’s task-level

model is then. Furthermore, RND updates are performed with single samples instead

of batches to prevent the RND model from converging to a global optima, which gives

the states a chance to be asked for advice again periodically. This is similar to the idea

of keeping expert demonstrations in the replay memory over the course of learning to

be revisited occasionally, as in Hester et al. (2018). Our technical contributions can be

summaries as follows:

1. We propose a novel student-initiated advice collection strategy via RND, namely,

advice novelty-based action advising.

2. We show how the existing action advising approaches can be ineffective if the

teacher happens to be absent especially early on during the training.

3. We show evidence that excessive amounts of action advising can hamper the

student’s learning in Deep RL.

Following the algorithm details given in Section 5.2, we describe the experimental

setup in Section 5.3. Afterwards, the results are discussed in Section 5.4. And finally,

the study is concluded in Section 5.5.

5.2 The Approach

In the problem formulation, we follow the standard RL framework and the MDP

formalisation given in Chapter 2. Our setup considers a situation where a student agent

that employs an off-policy Deep RL algorithm, e.g., DQN, with policy πS is learning to

excel in a given task. There is also a peer who is competent in this task to be treated as

a teacher with a fixed task-level policy πT . The student can access this peer and sample

86 CHAPTER 5. ACTION ADVISING VIA ADVICE NOVELTY

actions from πT for a limited number of times determined by the action advising budget

b. The objective of the agent is to utilise an action advising procedure to distribute the

available advice requesting budget b in the best possible way to maximise its learning

performance.

The samples obtained in Deep RL are not only used for discovering the environment

as in classical RL, but are also responsible for driving the learning of the agent’s

approximator model. Additionally, every single step of environment interaction and

model update influences the sample collection process right after. These make it very

difficult for Deep RL agents to predict what kind of long-term effects a transition, or

a single piece of advice in this case, will have on their learning progress. Therefore,

student-initiated action advising techniques rely on simple heuristics and proxies of the

expected usefulness of samples in terms of learning contribution. These, however, are

prone to fail in several ways.

Early Advising is a strong baseline due to the fact that the samples obtained early

on have more influence on Deep RL algorithms’ learning progress. However, it lacks

the ability to distribute the available advising budget in more critical states. This is

likely to result in the budget being wasted and make the agent miss important advice

opportunities especially when the budget is small. Additionally, having no stopping

condition in making advice requests may cause the agent to get over-advised, which can

deteriorate the learning performance as we show in Section 5.4 later. Employing another

common heuristic, uniformly random advising, can alleviate this drawback. Nonetheless,

not being able to follow the teacher’s policy consistently causes this method to be

unsuccessful in the tasks with sparse rewards that require deep exploration, as also

shown in Section 5.4.

The more advanced techniques that rely on state importance surrogates such as

state novelty (Ilhan et al. 2019) (Chapter 4) and model uncertainty (Chen et al. 2018,

da Silva, Hernandez-Leal, Kartal & Taylor 2020) perform better in general. Though,

they still have drawbacks that can be problematic in some cases.

First of all, updates of these estimations are driven by the student’s task-level

5.2. THE APPROACH 87

learning progression, regardless of having teacher interactions. If the teacher is present

from the beginning, the student’s task-level convergence can be assumed to have

sufficient amount of teacher contribution. Otherwise, if the teacher joins the session at

a later time, the student would already have its state novelty and uncertainty below

a level, and end up ignoring the teacher without benefiting from its knowledge at all.

However, the student’s convergence does not necessarily mean a competent task-level

performance, and ensuring to learn from what the teacher has to offer at any time can

be vital. As we show in Section 5.4, it is possible for the student to under-explore and

converge into a poor task-level policy yet become certain in the states it acts.

Secondly, based on the student’s deep RL model’s properties, there may be some

delays between the advice collection and its actual value to be taken effect in the model,

e.g., off-policy updates with replay memory where the collected samples are held in

a buffer and are employed periodically to update model weights. Even though we

do not demonstrate this behaviour, we ensure in our approach that there can be no

model-induced delays in estimations.

Finally, these approaches require several restrictions on the student’s task-level

algorithm. State novelty-based approach needs to have access to the batches of samples

the task-level algorithm uses, preventing the student from being a blackbox. Uncertainty-

based methods require the agent’s model to be capable of providing a notion of

uncertainty.

In order to address these shortcomings, we propose action advising via advice novelty,

a method that employs state novelty measurements to time the advice requests. In our

technique, the student agent employs an RND module that consists of two randomly

initialised neural networks G and Ĝ with identical structures. At each step with available

advice requesting budget, the agent measures novelty ns of the state s it encounters

as the RND loss U(s) = ‖Ĝω(s)−G(s)‖2. This value is then converted into a linearly

decreasing advice requesting probability as follows:

pask(s) = U(s)/λ, (5.1)

88 CHAPTER 5. ACTION ADVISING VIA ADVICE NOVELTY

where λ is a predefined threshold that is used as a proportion term to determine the

probability. To ensure obtaining a valid probability, the result of this function is also

clipped to be in [0, 1]. If the advice request takes place, then Ĝω is updated via changing

its weights ω to minimise the loss term ‖Ĝω(s)−G(s)‖2. Thus, U(s) becomes smaller

as the agent receives advice for s. This can then be seen as a novelty metric for a piece

of advice to be obtained in a particular state, considering the assumption of teacher

policy πT being fixed, and ignoring the environment’s stochasticity. By performing

updates only when advised, it is ensured that the student always attempts to learn from

the teacher, no matter how far into convergence its task-level model is. Furthermore,

the RND updates occur right after the student is advised with only a single piece of

observation rather than a batch of them. This prevents the RND module to minimise

its loss globally and causes it to have relatively high novelty for the states it has not

encountered in a while, giving these states a chance to be re-advised. Finally, since

RND employs neural networks with non-linear function approximation, our method can

function in complex domains and is capable of generalising between unseen states. A

full description of our method can be seen in Algorithm 141. It can be seen clearly that

the proposed modification (lines 5-15 in Algorithm 14)2 can easily be separated from

the underlying RL algorithm and a DQN algorithm (Algorithm 8) can be integrated as

the RL algorithm to this loop as we did in this particular study.

5.3 Experimental Setup

We are interested in investigating the shortcomings of the existing student-initiated

action advising approaches, and evaluating how our approach compares with them in

different scenarios. For this purpose, we choose Reach the Goal game from a GridWorld

domain (Chapter 3.2) and 5 MinAtar (Chapter 3.3) games to conduct experiments in

two stages involving different challenges. We compare the following modes of student

1Code for our experiments can be found athttps://github.com/ercumentilhan/advice-novelty
2The implementation of this part can be found in lines 319-368 of action advising/executor.py

file in the code repository.

https://github.com/ercumentilhan/advice-novelty

5.3. EXPERIMENTAL SETUP 89

Algorithm 14 Action Advising via Advice Novelty

1: Input: Number of learning steps tmax, RL algorithm-related parameters, e.g. DQN,

teacher policy πT , advice-requesting budget bask, advice-requesting probability

proportion term λANA.

2: Initialise RL algorithm-related variables, e.g. DQN

3: for training steps t ∈ {1, 2, . . . tmax} do

4: Get observation st from Environment if Environment is reset

. .

5: at ← None

6: if bask > 0 then

7: U(st)← ‖Ĝ(st)−G(st)‖2 . Compute novelty

8: pask(st)← U(st)/λANA . Compute probability (clipped to be in [0, 1])

9: if pask(st) > u ∼ U(0, 1) then

10: at ← πT (st) . Obtain advice from the teacher

11: Update ω to minimise ‖Ĝω(st)−G(st)‖2 . Update RND

12: bask ← bask − 1

13: end if

14: end if

. .

15: if at is None then

16: Determine at via the RL algorithm, e.g. DQN

17: end if

18: Execute at and obtain rt+1, st+1 from Environment

19: Update the RL algorithm, e.g. DQN

20: st ← st+1

21: end for

agents with different action advising approaches:

• No Advising (None): The agent does not employ any form of action advising;

it follows its own policy at all times.

• Early Advising (EA): The agent follows early advising heuristic to distribute

its action advising budget by requesting advice until it runs out of its action

advising budget.

• Random Advising (RA): The agent follows random advising heuristic and

90 CHAPTER 5. ACTION ADVISING VIA ADVICE NOVELTY

determines whether to request advice uniformly at random at each step until it

runs out of its action advising budget.

• Uncertainty-Based Advising (UA): Advice requests are made according

to the task-level model uncertainty, similarly to Chen et al. (2018), da Silva,

Hernandez-Leal, Kartal & Taylor (2020). Specifically, at each step, the student’s

NoisyNets uncertainty is obtained for the current state and then is divided by

a threshold λUA to determine advice requesting probability (as in Equation 5.1

where U(s) is state uncertainty and λ is λUA).

• State Novelty-Based Advising (SNA): Advice requests are driven by state

novelty measurements, similarly to Ilhan et al. (2019) (Chapter 4). For each state

the student encounters, its novelty is measured by a separate RND module. Then,

this value is divided by a predefined threshold λSNA to obtain advice requesting

probability (as in Equation 5.1 where U(s) is state novelty and λ is λSNA). The

RND module is updated simultaneously with the student’s task-level model, by

the same batches of samples.

• Advice Novelty-Based Advising (ANA): The agent that follows our proposed

approach.

The student agent’s RL algorithm is set to be DQN, including the prominent

extensions of Double DQN, Dueling Networks and NoisyNets exploration strategy. The

neural network structure is comprised of a single convolutional layer consisting 16 3× 3

filters with a stride of 1, followed by a fully connected noisy layer with 128 hidden units.

This network architecture is visualised in Figure 5.1.

We use a similar structure for the RND components of predictor and target networks.

Input is fed to a single convolutional layer that has 16 3× 3 filters with a stride of 1

which is followed by a fully connected dense layer with 128 hidden units. It should be

noted that we don’t use Dueling Networks or NoisyNets in this component. Finally,

an arbitrary sized (6 in this study) output is generated in the end. This network

5.3. EXPERIMENTAL SETUP 91

Table 5.1: Hyperparameters used in the experiments for the student’s DQN (top section),
RND module of SNA and ANA (bottom section) for Reach the Goal (RtG) and MinAtar
domains, on the left and right columns, respectively. U denotes uniform distribution.

Value
Hyperparameter name RtG MinAtar

Replay memory size to start learning MD 1k 10k
Replay memory capacity ND 10k 100k
Target network update period (steps) Ttarget 250 1000
Train period (steps) Ttrain 2 2
Minibatch size 32 32
Learning rate α 0.0001 0.0001
Discount factor γ 0.99 0.99
Adam epsilon 1.5× 10−4 1.5× 10−4

Huber loss delta 1 1
Noisy layer Gaussian noise type Factorised Factorised
Noisy layer initial µ distribution for p inputs U [−1/

√
p,+1/

√
p] U [−1/

√
p,+1/

√
p]

Noisy layer initial σ for p inputs 0.4/
√
p 0.4/

√
p

RND weight initialisation Random normal Random normal
RND predictor’s weight init. mean and std. dev. 0.0 and 1.0 0.0 and 1.0
RND target’s weight init. mean and std. dev. 0.0 and 3.0 0.0 and 3.0
RND learning rate 0.001 0.001

Advice-asking budget bask 5k, 50k 50k, 250k
Advice-requesting probability scaling term of UA λUA 0.001 Varies
Advice-requesting probability scaling term of SNA λSNA 0.0001 Varies
Advice-requesting probability scaling term of ANA λANA 0.001 Varies

visualisation can be seen in Figure 5.2.

As described in the problem setup, there needs to be a teacher for the student agent

to be able to get advice from. In Reach the Goal, we set our teacher policy as following

the shortest path from the current position to the goal tile. In MinAtar, we generated

competent teachers by training separate DQN agents for each of the games for 3M steps,

who achieve final evaluation scores (as defined later on) of 29.28, 81.15, 5.77, 146.64,

146.06 in Asterix, Breakout, Freeway, Seaquest, Space Invaders, respectively. The

teachers are made to employ ε-greedy exploration instead of NoisyNets, to have them

as dissimilar as possible from the student in order to eliminate any possible advantages

that may arise in the knowledge exchange process due to them being identical.

Every student variant (e.g., None, EA, etc.) is trained for a fixed number of steps

which we define as a learning session. During a learning session, the agent is evaluated

92 CHAPTER 5. ACTION ADVISING VIA ADVICE NOVELTY

Input
10× 10× n

3×3×16
Stride: 1

Convolution

Flatten

1 × 128

Noisy
Dense

1× |A|, 1

Dueling
Noisy
Dense

+

1 × |A|

Output

Figure 5.1: Neural network architecture of DQN where |A| is the number of actions.
The dark shaded slices denote the presence of rectified linear unit activation function.
Output is the Q-values. The number of filters and units in the layers are indicated
below each layer.

Input
10× 10× n

3×3×16
Stride: 1

Convolution

Flatten

1 × 128

Dense

1 × 6

Output

Figure 5.2: Neural network architecture used in the RND component (identical for the
predictor and the target) in SNA and ANA. The dark shaded slices denote the presence
of rectified linear unit activation function. Output is an arbitrary output with a fixed
size of 6. The number of filters and units in the layers are indicated below each layer.

periodically in a separate sequence of episodes with any form of exploration and teaching

disabled; then, the scores obtained in these episodes are averaged to determine the

5.3. EXPERIMENTAL SETUP 93

evaluation score for this evaluation step. These scores reflect the agent’s actual expertise

in the corresponding step in the learning session. In Reach the Goal, since the actual

cumulative reward at the end of an episode is either 0 or 1, a more informative evaluation

score is defined to be in [0, 1] by taking the number of remaining timesteps and distance

to the goal tile into calculations. In MinAtar, the original game scores in the framework

are used as evaluation scores. In addition to the evaluation scores, we also plot the

number of advice taken in every 100 steps as well as cumulatively, to observe the trends

in budget spending.

In the first stage of experiments, we use Reach the Goal as a simple and interpretable

task to highlight the aforementioned drawbacks, as well as perform a preliminary

benchmark on the methods to validate their suitability for tasks with more complex

mechanics. The learning session lengths are set as 100k steps, and evaluations are

performed at every 100th step in a sequence of 5 episodes. We set two different scenarios,

namely, Scenario I and Scenario II, with small and large budget options of 5k and

50k each, resulting in 4 cases in total. In Scenario I, the teacher is present from the

beginning of learning sessions, which is the common experimental setting used in the

previous action advising studies. In Scenario II, the teacher joins the loop at the 25kth

step. By having such a scenario, we test the ability of the student in dealing with the

belated teacher. UA, SNA, ANA hyperparameters λUA, λSNA, λANA are determined

empirically in the 5k budget setting to be 0.001, 0.0001, 0.001, and are kept the same

for all 4 cases.

In the second stage, we evaluate the approaches in a set of tasks with more complex

dynamics presented via 5 different games in MinAtar environment. Learning sessions

are set to have a length of 1.5M steps and evaluations are performed at every 1000th

step in a sequence of 5 episodes. Since the Scenario II experiments in Reach the Goal

are sufficient to demonstrate the weakness regarding the extensive unavailability of

the teacher, experiments in MinAtar are only conducted for Scenario I to evaluate the

general performance of the methods, again with two different budget options of 50k and

250k. UA, SNA, ANA hyperparameters λUA, λSNA, λANA are determined empirically

94 CHAPTER 5. ACTION ADVISING VIA ADVICE NOVELTY

on game by game basis for 50k budget, to be 0.0001, 0.0025, 0.001 for Asterix; 0.001,

0.025, 0.025 for Breakout; 0.0001, 0.1, 0.05 for Freeway; 0.001, 0.05, 0.05 for Seaquest;

0.0025, 0.01, 0.0025 for Space Invaders, respectively.

Experiment results are aggregated over 9 different seeds for Reach the Goal, and

over 5 different seeds for MinAtar games. Training and evaluation episode sequences

(random game events) are fixed via random seeds and kept the same across different

experiment seeds. Therefore, these experiment seeds only affect the agents’ internal

computations. Finally, we perform RND observation normalisation as in Burda et al.

(2018) by using the mean and standard deviation calculated over the first 1000 and 5000

observations, in Reach the Goal and MinAtar, respectively. All the hyperparameters

are tuned separately for each environment prior to the experiments which can be seen

in Table 5.1 for the student’s DQN and RND components.

5.4 Results and Discussion

The results of our experiments are presented in Figures 5.3 (Reach the Goal); and in

Figures 5.4, 5.5, 5.6 and 5.7; Tables 5.2 and 5.3 (MinAtar). In Figure 5.3, the leftmost

column contains two plots for the number of advice taken in total and in every 100 steps,

in Scenario I with the budget amount of 50k; the middle column displays the evaluation

scores in Scenario I, and the rightmost column displays the evaluation scores in Scenario

II (with the budgets of 5k on top and 50k on bottom). Figures 5.4 and 5.5 include the

plots of the number of advice taken in total and in every 100 steps, in Scenario I with

the budget amount of 250k for all five MinAtar games. In Figures 5.6 and 5.7, plots of

evaluation scores obtained in MinAtar games with two different budget settings of 50k

(top row) and 250k (bottom row) are displayed. These results are presented numerically

in Tables 5.2 and 5.3 with the area under the curve and final values. The table also

shows whether the results are significantly different from ANA’s results according to

Welch’s t-test with p-value < 0.05. (+) sign on the left-hand side of a result indicates

that ANA is significantly better than the corresponding method. Similarly, (−) indicates

5.4. RESULTS AND DISCUSSION 95

that ANA is significantly worse than it. We also denoted the best results in their own

brackets in bold. The plots in Figure 5.3 and Figures 5.4 and 5.5 that display the

number of advice taken are only generated for Scenario I with the maximum budget

settings since the budget distribution is identical in the cases with smaller budgets

with only the difference of being cut off early. The curves are plotted with appropriate

moving average smoothing for the sake of comprehensibility, and the standard deviation

across the runs is shown with the shaded areas.

5.4.1 Reach the Goal

In Scenario I with a small budget of 5k, all of the action advising methods performed

reasonably well, with the exception of RA which fails to be any better than None as seen

in Figure 5.3 (b) on the left. The poor performance of None indicates how challenging it

can be to conduct exploration successfully even with an advanced method like NoisyNets

when the time constraints are tight as in this Reach the Goal game. Despite taking

plenty of expert advice, RA also fails due to its inability to consistently follow the

teacher, which is especially essential in tasks requiring deep exploration like this one.

This makes RA an unreliable action advising heuristic. Another noticeable trend here

is how EA saturates below other approaches, which is caused by the inconsistent and

highly variable learning dynamics of deep RL which became apparent mostly for EA in

this case, as it can also be seen from the width of the error band. This indicates that

EA was stuck with suboptimal policies in some of the runs.

When the budget is increased to 50k, we see how the performances collapse due to

taking too much advice hence not executing their own policies adequately to collect

integral samples. This is most obvious in EA since it employs the most greedy way of

spending the budget among all methods, which makes it dangerously susceptible to

such high-budget settings. With the addition of more budget, RA finally manages to

benefit from expert advice, however still very inadequately. The advanced methods

of UA, SNA, and our ANA do a good job of not overusing all the budget given to

96 CHAPTER 5. ACTION ADVISING VIA ADVICE NOVELTY

them even though they are not tuned to handle 50k. While UA performs slightly worse,

ANA does better with the addition of an extra budget. As it can be seen, ANA does

this while using more budget in the end than UA; this shows that it is not just about

cutting off the advice requests but is also about distributing them in the appropriate

states and across the learning session. In terms of budget efficiency, SNA seems to

be doing the best in this case; however, it also has worse task performance. Finally,

differently than UA and SNA, ANA is observed to follow a trend with occasional peaks

in the number of advice taken per 100 steps. This is very likely to be caused by its

RND update rule that uses single samples rather than batches that are also non-i.i.d.

when the advice requests are made consecutively. As a result, RND model does not

achieve global optimum and remains to yield significantly higher loss for the sample(s)

that are not encountered recently. This is a unique characteristic of ANA which can be

advantageous as it makes the teacher advice to be re-acquired occasionally.

In Scenario II (right column of Figure 5.3 (b) and (c)), where the teacher joins the

learning session at the 25kth step, both UA and SNA fail to learn from the teacher as

expected which aligns with poor performance caused by the exploration challenge as

it is highlighted in Scenario I. This is due to their teacher-independent convergence

in estimations of uncertainty and novelty, respectively. Our method ANA, however,

manages to leverage the teacher’s knowledge in both budget options, despite of the

student being converged to suboptimal Q-value targets due to under-exploration. Clearly,

if there is such a possibility as depicted in this scenario, methods like UA and SNA are

not going to be suitable action advising methods to be employed.

5.4.2 MinAtar

Results in MinAtar games present us a more general performance evaluation of the

action advising techniques in a variety of tasks. The final evaluation scores are what we

mainly consider when comparing the algorithms. Yet, we also analyse the AUC values

to assess their performance in terms of learning speed.

5.4. RESULTS AND DISCUSSION 97

(a) Distribution of 50k budget in Scenario I

(b) Evaluation performance in Scenario I with 5k (left) and 50k (right) budgets

(c) Evaluation performance in Scenario II with 5k (left) and 50k (right) budgets

Figure 5.3: Number of advice taken cumulatively and in every 100 steps period in
Scenario I with 50k budget (a); evaluation scores in Scenario I (b) and Scenario II (c)
with 5k (left column) and 50k (right column) budgets, obtained in Reach the Goal game
with no action advising (None) and action advising methods EA, RA, UA, SNA, ANA.

98 CHAPTER 5. ACTION ADVISING VIA ADVICE NOVELTY

We first discuss the results obtained in the 50k budget setting as the primary

comparison case, since the algorithms are tuned particularly for this setup. In Asterix,

ANA is the best performing method with SNA and EA being very close to it, and

they are followed by UA and RA. Considering the inefficacy of RA and the successful

budget spending patterns of EA, SNA and ANA; it can be speculated that it is critical

in this particular game to follow the teacher over many consecutive steps, similarly

to Reach the Goal. In Breakout, ANA outperforms other advanced methods which

already do well compared to None and EA. This in comparison to the case in Asterix

shows how EA and RA can be unreliable choices as a trade-off for being very simple

heuristics. Unlike Reach the Goal and Asterix, the successful methods in Breakout are

the ones that ask for advice less frequently; this may be due to Breakout not requiring

expert advice over many steps since the game events unfold on their own once the

ball is hit with the paddle, and the different random moves taken in the meantime

may be much more valuable sources to reduce RL model error, rather than taking the

same expert advised actions such as just waiting stationarily until the ball traverses

back down. Seaquest has very interesting results where every method achieves different

standings in different stages of the learning session. In terms of the final performance,

however, ANA manages to come on top again with SNA and RA following it after. UA

performs rather poorly here, despite its rapid progression earlier in the learning. As a

result of the Seaquest’s in-game dynamics being the most complicated amongst all, it

is not very clear what causes the learning fluctuations in these plots. In Freeway and

Space Invaders, despite all the different advice requesting patterns followed by different

methods, they are very similar when it comes to the evaluation scores. Even though

it may be surprising at first considering that Freeway is a game with sparse rewards,

its action space and the possible positions the agent can traverse in the game grid

spatially are rather small. Therefore, the need for the expert advice to be distributed

strategically across the game episode is rather negligible.

5.4. RESULTS AND DISCUSSION 99

(a) Asterix

(b) Breakout

Figure 5.4: Number of advice taken cumulatively and in every 100 steps period in
Scenario I with 250k budget, obtained in MinAtar games (Asterix, Breakout) with no
action advising (None) and the action advising methods EA, RA, UA, SNA, ANA.

When the budget is increased to 250k, we observe a fair amount of performance

deterioration in almost every advising mode, especially in the learning speeds. In

Asterix, Freeway, and Space Invaders, even though the final performance is not affected

greatly, there is a sharp drop in the learning progression caused by the over-advising

induced delay in the collection of useful samples. This is closely linked to them behaving

more similarly to EA in these cases as it can be seen in the budget plots. These results

emphasise the importance of handling the redundant advice budgets. Currently, none

of these action advising methods have an awareness of how many times they will get to

100 CHAPTER 5. ACTION ADVISING VIA ADVICE NOVELTY

(a) Freeway

(b) Seaquest

(c) Space Invaders

Figure 5.5: Number of advice taken cumulatively and in every 100 steps period in
Scenario I with 250k budget, obtained in MinAtar games (Freeway, Seaquest, Space
Invaders) with no action advising (None) and the action advising methods EA, RA,
UA, SNA, ANA.

5.4. RESULTS AND DISCUSSION 101

ask for advice. Instead, they are designed to make the most out of some supposedly

small budget they are given, without any notion of long-term planning of its utilisation.

Overall, as the performance superiority of the advising methods over None suggests,

action advising provides substantial advantages to accelerate learning. By looking at

the standings of the algorithms in every game, we can see that our ANA is the winner

in terms of the final performance both in the 50k and 250k budget options; it either

achieves the top scores or remain very close to them. This is also visible in the overall

percentages of final score improvements over EA, in which ANA achieved 18.7% and

19.8% while its closest followers got 13.8% (SNA) and 15.3% (RA), respectively in 50k

and 250k budget settings. The significance analyses also support ANA’s superiority

by showing that it significantly outperformed its competitors in 23 out of 60 cases.

Depending on the budget, ANA’s performance is followed by the other methods in a

different order. For instance, while SNA is far ahead of others and is behind ANA in

50k budget, RA takes its place in the 250k budget scenario. The decline in performance

with higher budgets and RA’s robustness to this by spacing out the advice requests

to allow the student to execute its self policy more often points out the importance of

collecting on-policy samples adequately even when the agent itself employs an off-policy

RL algorithm, as highlighted in Fujimoto et al. (2019) and Kumar et al. (2019) as well.

Clearly, different games require different strategies to distribute the action advising

budget, and there is no straightforward way to determine a way that applies to all

cases successfully. Furthermore, the ways these methods behave are also dependent

on the underlying task, since the uncertainty and novelty estimations may be affected

differently even with the identical streams of observations. For instance, while UA

tends to spend its budget more slowly than others in most cases, in Breakout it behaves

differently to output its best possible performance. Finally, it is worth it to mention

that ANA is also observed to stand out in terms of computational efficiency compared

to the runner-up SNA; while ANA updates its RND model with a single sample only

when it successfully receives advice, SNA updates it for a batch of samples every time

it performs learning until its budget reaches zero.

102 CHAPTER 5. ACTION ADVISING VIA ADVICE NOVELTY

(a) Asterix

(b) Breakout

Figure 5.6: Evaluation scores of Scenario I with 50k (left) and 250k (right) budgets,
obtained in MinAtar games (Asterix, Breakout) with no action advising (None) and
action advising methods EA, RA, UA, SNA, ANA.

5.4. RESULTS AND DISCUSSION 103

(a) Freeway

(b) Seaquest

(c) Space Invaders

Figure 5.7: Evaluation scores of Scenario I with 50k (left) and 250k (right) budgets,
obtained in MinAtar games (Freeway, Seaquest, Space Invaders) with no action advising
(None) and action advising methods EA, RA, UA, SNA, ANA.

104 CHAPTER 5. ACTION ADVISING VIA ADVICE NOVELTY

5.5 Conclusions

In this work, we evaluated the prominent student-initiated action advising methods

that are compatible with off-policy Deep RL agents. We highlighted their shortcomings

such as not being able to handle the belated availability of the teacher, or requiring

very specific Deep RL models to function. To address these, we proposed an alternative

student-initiated action advising algorithm that utilises state novelty computed via

RND to determine when to request a piece of advice. Differently from our previous

work, RND is updated only with the states that are involved in the advice exchanges.

Thus, it is ensured that the student will take advantage of the teacher as soon as it

becomes available regardless of its own Deep RL model’s convergence.

Empirical results in Reach the Goal and MinAtar games validate our speculations of

the aforementioned drawbacks and show that the state-of-the-art methods that utilise

state novelty or model uncertainty can be ineffective if the teacher is not present from

the beginning. Furthermore, our advice novelty approach manages to be the strongest

among its competitors by yielding the best overall standings in the majority of the

experiments, as well as being able to handle belated teachers, not requiring Deep RL

model uncertainty estimations, and also not interfering with the student’s RL algorithm.

It is also seen that there is no trivial way to define a general action advising strategy to

distribute the budget efficiently across many different cases. Finally, it is found to be

challenging for even the most complicated methods to handle excessive budgets without

encountering a significant performance deterioration. Accordingly, the hyperparameters

that are responsible to manage budget distribution require careful tuning considering

both the task characteristics and the total available budget.

An interesting extension of this study would be further investigating the components

of our approach to precisely determine how they behave and how their variants affect the

performance. For instance, training RND incrementally with batches drawn from the

complete set of collected advice instead of only the latest samples can provide valuable

insights for comparison. Another direction for future work could involve devising a form

5.5. CONCLUSIONS 105

of threshold adaptation to make the action advising techniques more robust against the

changes in task and budget specifications. Additionally, further analyses in the dynamics

of different RL algorithms operating with action advising would be imperative to invent

more general action advising methods. Our study employs a student agent with DQN

and NoisyNets exploration; it will be worthwhile to investigate the performance of the

action advising algorithms with different RL algorithms and exploration methods to

see how their standings vary. Finally, there is still a significant research gap in action

advising with multiple teachers which requires further attention, and we believe that

our approach is likely to be useful in such a problem setting.

106 CHAPTER 5. ACTION ADVISING VIA ADVICE NOVELTY

Table 5.2: The mean of last 50 values (Final Score) of the evaluation score plots of None,
EA, RA, UA, SNA, ANA agent modes obtained in five MinAtar games averaged over 5
runs. The numbers denoted by ± represent standard deviation. The percentage values
in parentheses indicate the relative difference to the values obtained by EA. Overall
section in bottom presents these percentages averaged over these 5 games. (+) and
(−) on the left-hand side of the results indicate whether ANA’s results are significantly
better or worse than them, respectively (according to Welch’s t-test with p-value < 0.05).
The best results in their own brackets are denoted in bold.

Final Score

Game Mode 50k 250k

Asterix

None (+) 9.91± 2.4 (−57.2%) (+) 9.91± 2.4 (−55.7%)
EA 23.16± 2.0 22.37± 2.4
RA (+) 15.83± 2.9 (−31.7%) (+) 17.16± 3.0 (−23.3%)
UA (+) 21.57± 1.4 (−6.9%) 22.79± 2.3 (+1.9%)
SNA 23.00± 2.2 (−0.7%) 23.04± 1.9 (+3.0%)
ANA 24.24± 1.6(+4.7%) 23.36± 2.3(+4.4%)

Breakout

None (+) 45.30± 25.5 (−25.1%) (+) 45.30± 25.5 (−28.9%)
EA (+) 60.48± 15.7 (+) 63.73± 18.1
RA (+) 86.06± 12.2 (+42.3%) 100.65± 3.6(+57.9%)
UA (+) 90.45± 7.1 (+49.6%) 98.84± 11.5 (+55.1%)
SNA (+) 91.50± 11.6 (+51.3%) (+) 89.32± 7.4 (+40.1%)
ANA 97.78± 4.0(+61.7%) 99.12± 3.7 (+55.5%)

Freeway

None (+) 7.36± 1.6 (−19.3%) (+) 7.36± 1.6 (−7.3%)
EA 9.12± 0.8 (+) 7.94± 0.9
RA 9.30± 0.9 (+2.0%) 9.09± 1.1(+14.4%)
UA 9.60± 1.0(+5.2%) 8.59± 1.2 (+8.2%)
SNA 9.29± 1.2 (+1.9%) 8.61± 1.0 (+8.4%)
ANA 9.33± 1.0 (+2.2%) 8.82± 0.9 (+11.1%)

Seaquest

None (+) 7.06± 4.6 (−79.1%) (+) 7.06± 4.6 (−76.7%)
EA (+) 33.76± 8.8 (+) 30.36± 7.3
RA 39.38± 8.2 (+16.6%) 39.37± 7.4(+29.7%)
UA (+) 35.98± 9.6 (+6.6%) 33.83± 9.8 (+11.4%)
SNA 39.29± 6.3 (+16.4%) 35.19± 8.0 (+15.9%)
ANA 42.21± 6.0(+25.0%) 38.57± 9.6 (+27.1%)

Space
Invaders

None 122.62± 9.4 (−3.8%) (+) 122.62± 9.4 (−3.8%)
EA 127.45± 6.8 127.40± 6.2
RA 125.95± 3.9 (−1.2%) 124.91± 5.2 (−2.0%)
UA 126.56± 6.0 (−0.7%) (+) 115.38± 8.7 (−9.4%)
SNA 127.40± 5.4 (−0.04%) 124.95± 6.6 (−1.9%)
ANA 127.23± 5.5 (−0.2%) 128.26± 6.6(+0.7%)

Overall

None −36.9% −34.5%
RA +5.6% +15.3%
UA +10.8% +13.4%
SNA +13.8% +13.1%
ANA +18.7% +19.8%

5.5. CONCLUSIONS 107

Table 5.3: Area under the curve (AUC) of the evaluation score plots of None, EA, RA,
UA, SNA, ANA agent modes obtained in five MinAtar games averaged over 5 runs.
The numbers denoted by ± represent standard deviation. The percentage values in
parentheses indicate the relative difference to the values obtained by EA. Overall section
in bottom presents these percentages averaged over these 5 games. (+) and (−) on the
left-hand side of the results indicate whether ANA’s results are significantly better or
worse than them, respectively (according to Welch’s t-test with p-value < 0.05). The
best results in their own brackets are denoted in bold.

AUC (×103)

Game Mode 50k 250k

Asterix

None (+) 10.01± 2.2 (−57.1%) (+) 10.01± 2.2 (−45.2%)
EA 23.33± 2.1 18.28± 2.1
RA (+) 15.67± 1.5 (−32.9%) (+) 12.62± 1.4 (−31.0%)
UA (+) 20.77± 1.7 (−11.0%) (+) 16.83± 1.4 (−7.9%)
SNA 23.25± 2.6 (−0.3%) 18.29± 1.9 (+0.02%)
ANA 24.19± 1.6(+3.7%) 19.02± 1.6(+4.0%)

Breakout

None (+) 35.94± 22.2 (−32.2%) (+) 35.94± 22.2 (−24.1%)
EA (+) 52.98± 12.0 (+) 47.34± 10.6
RA (+) 83.73± 9.7 (+58.1%) (−) 97.32± 3.4(+105.6%)
UA (+) 86.81± 7.0 (+63.9%) 88.02± 9.8 (+86.0%)
SNA (+) 90.67± 10.3 (+71.2%) (+) 80.58± 6.2 (+70.2%)
ANA 97.38± 5.9(+83.8%) 89.83± 4.3 (+89.8%)

Freeway

None (+) 6.25± 2.2 (−31.1%) (+) 6.25± 2.2 (−10.0%)
EA 9.08± 0.6 (+) 6.95± 0.6
RA 9.03± 0.7 (−0.5%) (−) 8.37± 0.7(+20.5%)
UA 9.28± 0.7 (+2.2%) 7.97± 0.7 (+14.7%)
SNA 9.38± 0.8(+3.4%) 7.98± 0.7 (+14.8%)
ANA 9.06± 0.6 (−0.2%) 7.58± 0.6 (+9.1%)

Seaquest

None (+) 5.33± 3.1 (−79.4%) (+) 5.33± 3.1 (−68.4%)
EA (+) 25.84± 6.2 (+) 16.85± 3.6
RA (−) 37.10± 5.4(+43.6%) (−) 35.33± 3.6 (+109.6%)
UA (−) 36.60± 5.2 (+41.6%) (−) 36.82± 4.0(+118.5%)
SNA 33.46± 4.0 (+29.5%) (+) 28.07± 2.7 (+66.6%)
ANA 32.77± 4.6 (+26.8%) 31.72± 3.0 (+88.2%)

Space
Invaders

None (+) 123.41± 13.2 (−17.3%) 123.41± 13.2 (−0.4%)
EA 149.19± 5.2 123.86± 4.7
RA 146.72± 5.9 (−1.7%) (−) 137.96± 4.7(+11.4%)
UA 150.67± 5.8 (+1.0%) (−) 135.39± 7.4 (+9.3%)
SNA 150.82± 5.2(+1.1%) (+) 120.99± 6.3 (−2.3%)
ANA 150.14± 6.4 (+0.6%) 125.05± 4.8 (+1.0%)

Overall

None −43.4% −29.6%
RA +13.3% +43.2%
UA +19.5% +44.1%
SNA +21.0% +29.9%
ANA +22.9% +38.4%

108 CHAPTER 5. ACTION ADVISING VIA ADVICE NOVELTY

Chapter 6

Action Advising with Advice

Imitation in Deep Reinforcement

Learning

The contents of this chapter are based on our third publication titled “Action Advising

with Advice Imitation in Deep Reinforcement Learning” (Ilhan et al. 2021a) which

tackles the following research questions:

• [RQ1] To what extent can we accelerate Deep RL via (budget-limited) action

advising with one or more knowledgeable peer(s)?

• [RQ5] How can we further utilise the collected advice by memorising and reusing

them in Deep RL domains?

6.1 Introduction

The scope of the action advising problem is generally limited to answering “when to

ask for advice?”. In the previous chapters, we attempted to answer this same question

with two alternative approaches. It is commonly not of any interest how the collected

advice is utilised by the student agent’s RL algorithm, e.g., how it is stored, replayed,

109

110 CHAPTER 6. ACTION ADVISING WITH ADVICE IMITATION

or discarded; especially since these are dealt with by the studies that focus on off-policy

experience replay dynamics in general (Schaul et al. 2016, De Bruin et al. 2015) or

the specific case of having a demonstration dataset as in LfD. However, even without

interfering with the student’s RL mechanism, it is still possible to make more of the

collected advice by storing and reusing them.

The present action advising algorithms in Deep RL at the time this study has

taken place have no way of telling if they have asked for advice in a very similar or

even identical state already in the learning session. Thus, they do not record these

in any way and usually end up requesting redundant advice from the teacher. In

order to address this, we incorporate a separate neural network to do Behavioural

Cloning (BC) (Pomerleau 1991) on the samples (state-action pairs which are equal

to the state-advice pairs in the context of action advising) collected from the teacher.

This network then will be able to serve as a state-conditional generative model that

will let us sample advice for any given observation. However, since this model should

also have a notion of distinguishing the recorded states from the unrecorded ones to

avoid producing false advice for unfamiliar states, we also propose incorporating a

well-known regularisation mechanism called Dropout (Srivastava et al. 2014) within

this network to serve as an epistemic uncertainty estimator (Gal & Ghahramani 2016)

which will allow the student to determine whether the state is recorded by comparing

this estimation with a threshold. A key difference in this study from our work presented

in the previous chapters is that we also scale up the complexity of the target Deep RL

domain. Specifically, instead of experimenting in discrete state space (e.g., Reach the

Goal, MinAtar), this time we target domains with more complex, continuous state space.

This way, state-advice memorisation and advice reusing becomes an actual challenge,

and the methods we develop can be applied to the majority of Deep RL domains that

holds the assumption that a state is never encountered more than once. In parallel to

this change, since we deal with a different aspect of action advising now, we decided to

keep the baseline algorithm to be Early Advising. Our contributions in this study can

be listed as follows:

6.2. THE APPROACH 111

1. We show that it is possible to generalise teacher advice across similar states in

Deep RL with high accuracy.

2. We present an RL algorithm-agnostic approach to memorise and imitate the

collected advice that is suitable for the Deep RL settings.

3. We demonstrate that advice reuse via imitation provides significant boosts in the

learning performance in Deep RL even when it is paired with a simple baseline

like Early Advising.

In Section 6.2, we present our approach in detail. Then, in Section 6.3, we describe

our experiment procedure along with the algorithm specifications. Afterwards, we

discuss the results in Section 6.4 and finalise this chapter of the study with concluding

remarks in Section 6.5

6.2 The Approach

In this setting, a student agent that employs an off-policy Deep RL algorithm performs

learning in an episodic single-agent environment through trial-and-error interactions. It

receives an observation st and then executes an action at generated by its policy πS to

receive a reward rt+1 at each timestep t, in order to maximise its cumulative discounted

rewards in any episode. According to the teacher-student paradigm (Chapter 2.4.3) we

adopt, there is also an isolated peer that is competent in this same task and is referred

to as the teacher. For a limited number of times defined by the action advising budget

b, the student is allowed to acquire action advice from the teacher for the particular

state s it is in. While the teacher can have its own teaching strategies to generate

actions to advise, in our setting, we determine the action to be advised greedily from

the teacher’s behaviour policy as πT (s). This is a commonly followed approach with the

assumption of the teacher and the student’s optimal task-level strategies are equivalent.

The student considers this advice as a part of a high-reward strategy and follows them

upon collection. In this final form of the problem, the student’s objective is to spend

112 CHAPTER 6. ACTION ADVISING WITH ADVICE IMITATION

its budget at the most appropriate times to maximise its learning performance.

We aim to devise a method that will enable the student to memorise the collected

advice to be able to re-execute them in similar states; therefore, avoiding wasting its

budget in redundant states and potentially being able to follow the teacher’s advice

many more times than its budget. In tabular RL, this is trivial to achieve simply by

storing the advised actions paired with the states in a look-up table. When it comes to

deep RL where any particular observation is not expected to be encountered more than

once, however, there needs to be a generalisable approach. For this purpose, we propose

the student agent to employ a separate behavioural cloning module, which consists of a

neural network as the state-conditional generative model Hη : S×A → [0, 1]. By training

Hη in a supervised fashion with the obtained state-advice pairs (stored in a buffer C)

to minimise the negative log-likelihood loss L(η) =
∑
〈s,a〉∈C − logHη(a | s), the student

can imitate the teacher’s advice to reuse them accordingly. However, this method does

not have any mechanisms to prevent the student from generating incorrect advice from

the states it has not collected. Therefore, we also employ Dropout regularisation in

Hη in order to grant this behavioural cloning module a notion of epistemic uncertainty

through measuring the variance in the outputs obtained from multiple forward passes

for a particular input state. We denote this uncertainty estimation by Hu
η (s). The

states Hη is trained on will be less susceptible to the variance caused by the dropout

and yield smaller uncertainty values. By this means, the student can determine how

likely a state is to be already recorded as advised when it comes to reusing them, and

can make a decision according to a threshold.

An obvious question regarding the feasibility of reusing advice in deep RL arises

here: can the teacher’s advice be generalised over similar states accurately? As we

investigate in the experiments in Section 6.4, actions generated by the teacher policy

usually span over similar states. Clearly, the uncertainty threshold to consider a state as

recorded is responsible for the trade-off between the reusing amount and the accuracy

of the self-generated teacher advice. A small threshold value makes the student reuse

its budget in fewer states with higher accuracy, whereas a larger value results in more

6.2. THE APPROACH 113

frequent reusing with lower accuracy.

The detailed breakdown of our approach is summarised with an emphasis on the

proposed modifications as follows (shown in detail in Algorithm 151): The student starts

with a randomly initialised Hη and empty C. At each timestep t with the (observed)

state st and an undecided action at, the student first checks if C has any new samples.

As soon as C reaches the size defined by NC, Hη is trained with mini-batch gradient

descent over the samples in C for KBC iterations2. Afterwards, if the environment was

reset (a new episode started), the student determines whether to enable advice reuse

via imitation for this particular episode with a probability of εreuse, which is combined

with other conditions too later on in the algorithm. The idea behind employing this

condition is to ensure that the student can also execute its own exploration policy in

order to increase the data diversity in its replay memory, which is crucial to improve

the quality of learning. Furthermore, determining this variable on an episodic basis

lets the agent follow consistent policies in the exploration steps, rather than dithering

between two policies. In the next phase, the student deals with the advice collection.

We adopt the simple yet strong baseline of early advising here. According to this, the

agent just collects advice without any conditions until its budget runs out3. In the

next phase, the student decides whether to reuse advice generated by its Hη. There

are several conditions to be satisfied for this to occur in addition to the advice reuse

being allowed for this particular episode. Firstly, at must be non-determined, which

implies the agent has not collected any advice from the teacher already. Secondly, Hη

must be already trained so that it can generate meaningful actions. Then, the student

also checks if its own action at determined via πS is explorative. This condition limits

the action advising actions to the exploration steps only in order to prevent overriding

the student’s actual policy which may result in a lack of Q-value corrections and cause

1Code for our experiments can be found at https://github.com/ercumentilhan/naive-advice-imitation
2The implementation of this part can be found in lines 188-198 of code/executor.py file in the

code repository.
3The implementation of this part can be found in lines 218-225 of code/executor.py file in the

code repository.

https://github.com/ercumentilhan/naive-advice-imitation

114 CHAPTER 6. ACTION ADVISING WITH ADVICE IMITATION

Algorithm 15 Action Advising with Advice Imitation

1: Input: Number of training iterations tmax, RL algorithm-related parameters, e.g.

DQN, teacher policy πT , advice-requesting budget bask, advice reuse uncertainty

threshold τreuse, advice reuse probability (episodic) εreuse, number of samples needed

in C to trigger initial BC training NC, number of BC training iterations KBC .

2: Initialise RL algorithm-related variables, e.g. DQN

3: Initialise BC network Hη

4: Initialise empty buffer C to store state-action tuples

5: reuse enabled← False . Disable advice reuse by default

6: for training steps t ∈ {1, 2, . . . tmax} do

7: Get state observation st from Environment if Environment is reset

. .

8: if |C| = NC then

9: Train Hη for KBC iterations . Behavioural cloning training

10: end if

11: at ← None . Set action as non-determined

12: Set reuse enabled True with εreuse probability

13: if bask > 0 then

14: at ← πT (st) . Obtain advice from the teacher

15: C ← C ∪ 〈st, at〉 . Add the state-advice pair to the BC dataset

16: bask ← bask − 1 . Decrease budget by 1

17: end if

18: if at is None and at ← πS(st) is explorative and

19: Hη is trained and Hu
η (st) < τreuse and

20: reuse enabled then

21: at ← arg maxaHη(a | st) . Generate imitated advice to reuse

22: end if

. .

23: if at is None then

24: Determine at via the RL algorithm, e.g. DQN (denoted as πS)

25: end if

26: Execute at and obtain rt+1, st+1 from Environment

27: Update the RL algorithm, e.g. DQN

28: st ← st+1

29: end for

6.3. EXPERIMENTAL SETUP 115

deteriorative effects when too much advising occurs. Finally, it is checked whether

Hu
η (st) is smaller than the reuse threshold τreuse

4. Incorporating such a threshold is

important to limit the imitated advice to the states that have low uncertainty according

to Hη to achieve higher accuracy of generating correct teacher actions. On one hand,

having this threshold too high would make the student consistently follow Hη which

would result in a dataset with lower diversity. On the other hand, if τreuse is set too

small, then Hη would be ignored in most of the cases and the student would be following

its own exploration policy. After all these steps, if at is still non-determined, the student

follows its own policy and decide at via πS. Clearly, our proposal can be isolated from

the student’s underlying RL algorithm (which is DQN in this particular study) as it

can be seen in Algorithm 15 which encloses our approach by dots in lines 8-28.

6.3 Experimental Setup

The goal of our experiments is to demonstrate that it is possible to generalise the

teacher advice to the unseen yet similar states with our method, and that it is an

effective way of improving the performance of action advising, in complex domains

especially. Therefore we choose the ALE games Enduro, Freeway and Pong, described

in Section 3.4 as our test-beds. The set of the student agent variants we compare are

listed as follows:

• No Advising (None): No action advising procedure is followed; the student

learns as normal.

• Early Advising (EA): The student follows the early advising heuristic to

distribute its advising budget. Specifically, the teacher is queried for a piece of

advice at every step until the budget runs out.

• Early Advising with Advice Reuse via Imitation (AR): The student fol-

4The implementation of this part can be found in lines 228-241 of code/executor.py file in the
code repository.

116 CHAPTER 6. ACTION ADVISING WITH ADVICE IMITATION

lows our proposed strategy (Section 6.2) combined with the early advising heuristic.

It starts off by greedily asking for advice until its budget runs out; then, it acti-

vates its behavioural cloning module to imitate and reuse the previously collected

advice in the remaining exploration steps.

All student agent variants employ the identical Deep RL algorithm which is DQN

with Double DQN and Dueling Networks enhancements and ε-greedy policy as the

exploration strategy. The convolutional neural network structure within the DQN in

input-to-output order is as follows: 32 8×8 filters with a stride of 4, 64 4×4 filters with

a stride of 2, 64 3× 3 filters with a stride of 1, followed by a fully-connected layer with

512 hidden units and multiple streams that add up in the end (dueling). Additionally,

the student agent variant AR also incorporates a behaviour cloning module, which is

a neural network with an identical structure minus the dueling stream. All the layer

activations are set to be rectified linear units. This network architecture can seen in

Figure 6.1.

AR student variant employs an extra neural network for BC. This is a very similar

convolutional network to the DQN one. It consists of 3 convolutional layers with 32

8× 8 filters with a stride of 4, 64 4× 4 filters with a stride of 2, 64 3× 3 filters with

a stride of 1, followed by a fully-connected layer with 512 hidden units with a final

Softmax output layer that has |A| values. Differently from DQN, this network also

employs Dropout in its fully-connected layers. The network architecture can be seen in

Figure 6.2.

Both of these networks use rectified linear units (ReLU) in every layer but the final

ones. Linked to this, the weight initialised techniques are set to be He initialisation (He

et al. 2015) due to its stronger empirical results with ReLU than the other initialised

methods at hand.

In this teacher-student setup, we also need a teacher from which the student can

get good quality action advice. For this purpose, we trained a DQN agent for each of

these games for 10M steps (40M actual game frames) to achieve a competent level of

6.4. RESULTS AND DISCUSSION 117

performance in each.

The experiments are conducted by executing every student variant through a learning

session 3M steps (12M actual game frames) for every game. The learning steps are kept

relatively small compared to the teacher training since it is expected for the students

to achieve high performance much quicker with the aid of advice. Through the learning

sessions, the agents are also evaluated at every 25kth step in a separate instance of

the environment for 10 episodes. During the evaluation, any form of exploration and

teaching is disabled in order to assess the actual proficiency of the students.

In terms of action advising setup, we set the action advising budget as 10k steps

which correspond to only approximately 0.3% of the interactions in a learning session

and also to almost one-third of a full game episode (27k steps). Besides the budget,

our proposed method AR also uses some additional hyperparameters which were tuned

prior to the full-length experiments and are kept the same across every game. The

dataset size NC to train Hη is set as 10k which is the action advising budget as we

employ early advising prior to behavioural cloning training. The number iterations to

train Hη is set as 50k. Episodic advice reuse probability εreuse is set as 0.5 meaning

that the student will follow Hη in half the episodes (in the appropriate states). Finally,

the advice reuse uncertainty threshold τreuse is set as 0.01 (determined empirically) and

kept the same across all games. In the experiments with AR, we also record the actual

advice actions generated by the teacher at every step (not seen by the student) to have

access to the ground-truth values to measure the accuracy of the behavioural cloning

module. Every particular experiment case is repeated and aggregated over 3 different

random seeds. The hyperparameters are tuned prior to experiments and kept the same

across all experiments can be seen in Table 6.1.

6.4 Results and Discussion

The results of our experiments are presented in Figures 6.3, 6.4 and Tables 6.2, 6.3.

The left-hand side of the Figures 6.3 and 6.4 contains the plots for the evaluation scores

118 CHAPTER 6. ACTION ADVISING WITH ADVICE IMITATION

Table 6.1: Hyperparameters used in the student’s DQN (top section), imitation and
action advising modules (bottom sections).

Hyperparameter name Value

Replay memory size to start learning MD 50k
Replay memory capacity ND 500k
Target network update period (steps) Ttarget 7500
Train period (steps) Ttrain 4
Minibatch size 32
Learning rate α 625× 10−7

Discount factor γ 0.99
Adam epsilon 1.5× 10−4

Huber loss delta 1
ε initial 1.0
ε final 0.01
ε decay steps 500k

Buffer size to trigger BC training NC 10k
Number of BC training iterations KBC 50k
Minibatch size 32
Learning rate 0.0001
Adam epsilon 1.5× 10−4

Dropout rate χ 0.2
Number of forward passes to assess uncertainty 100

Advice-asking budget bask 10k
Advice-reusing threshold τreuse 0.01
Advice-reusing probability εreuse 0.5

obtained by None, EA and AR modes of the student in the games Enduro, Freeway,

Pong. On the right-hand side of the Figures 6.3 and 6.4, the plots of the advice reuse

trends of AR in this set of games are displayed cumulatively (top row) and in every 100

steps windows (bottom row). These plots are limited to the first 500k steps to only

consider the exploration stage determined by the agent’s ε-greedy schedule. Purple

lines here represent all advice reuses combined, while the green lines indicate only

the correctly imitated (in terms of being equal to the ground-truth teacher advice)

advice pieces. These results are also reported in Tables 6.2 and 6.3 in the numerical

form where the evaluation scores are broken down into two parts of the final value and

area-under-the-curve, which represent the final agent performance and the learning

6.4. RESULTS AND DISCUSSION 119

Input
84× 84× 4

8 × 8 × 32
Stride: 4

Convolution

4 × 4 × 64
Stride: 2

Convolution

3 × 3 × 64
Stride: 1

Convolution Flatten

1 × 512

Dense

1× |A|, 1

Dueling
Dense

+

1 × |A|

Output

Figure 6.1: Neural network architecture of DQN where |A| is the number of actions.
The dark shaded slices denote the presence of rectified linear unit activation function.
Output is the Q-values. The number of filters and units in the layers are indicated
below each layer.

Input
84× 84× 4

8 × 8 × 32
Stride: 4

Convolution

4 × 4 × 64
Stride: 2

Convolution

3 × 3 × 64
Stride: 1

Convolution

Flatten
and

Dropout

1 × 512

Dense
and

Dropout

1 × |A|

Output
with

Softmax

Figure 6.2: The architecture of the Behavioural Cloning neural network where |A| is
the number of actions. The dark shaded slices denote the presence of rectified linear
unit activation function, and the thin teal-coloured layers indicate Dropout. Output
is the action probabilities. The number of filters and units in the layers are indicated
below each layer.

120 CHAPTER 6. ACTION ADVISING WITH ADVICE IMITATION

(a) Enduro

(b) Freeway

Figure 6.3: Evaluation scores of the student variants None, EA, AR (left) and number
of advice reuses performed by the student with AR mode plotted cumulatively (upper
right) and in every 100 steps (lower right), obtained in the Atari games of Enduro
(a) and Freeway (b), aggregated over 3 runs. Purple lines represent the number of all
advice reuses while the green lines represent the number of correctly imitated ones
among these. Shaded areas show the standard deviation across the runs.

speed, respectively. Furthermore, the table also contains the total number of exploration

steps taken, as well as the percentage of the number of reused advice in the exploration

steps and the percentage of correctly imitated advice in the total number of reused

6.4. RESULTS AND DISCUSSION 121

(a) Pong

Figure 6.4: Evaluation scores of the student variants None, EA, AR (left) and the
number of advice reuses performed by the student with AR mode plotted cumulatively
(upper right) and in every 100 steps (lower right), obtained in the Atari game of Pong
(a), aggregated over 3 runs. Purple lines represent the number of all advice reuses while
the green lines represent the number of correctly imitated ones among these. Shaded
areas show the standard deviation across the runs.

advice (denoted in parentheses).

In the evaluation scores, we see different outcomes in each of these games. In Enduro,

we see that AR provides a significant amount of jump start and performs the best in

terms of learning speed while being far ahead of EA and None which are quite similar.

When it comes to the final performance, however, while EA and AR both outperform

None, they do not differ much from each other. In Freeway, EA and AR perform very

similarly in terms of learning speed and final performance with AR being slightly ahead

of EA. However, they outperform None significantly. This shows that it matters to be

advised initially, though their repetitions may not always yield much acceleration in

learning. Finally, in Pong, we see a great difference between the performances in every

aspect. Our AR comes out far ahead of its closest follower EA both in terms of the final

score and learning speed. This is an example of how getting very little advice in the

beginning as well as repeating them across further explorative actions can cause a great

impact on learning. Overall, AR manages to be the best in every game and suffers no

122 CHAPTER 6. ACTION ADVISING WITH ADVICE IMITATION

Table 6.2: Final and area-under-the-curve (AUC) values of evaluation score plots
(Figures 6.3 and 6.4) of None, EA, AR student modes obtained in the Atari games of
Enduro, Freeway, Pong aggregated over 3 runs. The numbers denoted by ± indicate
standard deviation.

Evaluation Score

Game Mode Final AUC (×102)

Enduro
None 1021.54± 79.5 570.61± 38.4
EA 1095.55± 45.9 616.29± 58.1
AR 1112.79± 16.6 782.98± 8.4

Freeway
None 26.87± 2.3 15.73± 1.7
EA 30.44± 0.2 20.31± 0.4
AR 31.28± 0.2 21.52± 1.0

Pong
None −2.78± 4.3 −16.24± 2.6
EA 6.66± 1.6 −8.83± 0.4
AR 13.35± 1.7 −1.36± 1.0

performance loss even with high advice utilisation (as high as 104k in Freeway) which

was shown to be harmful to learning in previous studies. Even though its performance

boost over None seems to be not huge in every scenario, it should be noted that this

is the case of it being combined with EA baseline. With more complicated methods,

AR can be capable of training its imitation learning module with a more diverse set of

experience and therefore, have a larger coverage which can potentially yield superior

performance.

The task-level performance of our approach is affected primarily by two factors: the

accuracy of advice imitation and its coverage/usage in the remainder of the exploration

steps (the process of reusing). Therefore, we also analyse the advice reuse statistics

of AR to form links between these outcomes. First of all, it should be noted that

the decreasing trend in these plots is caused by the ε-greedy annealing. Enduro is

the game with the smallest advice reuse rate as well as the lowest imitation accuracy.

This is possibly because of the game episodes lasting long regardless of the agent’s

performance, which is likely to reduce the proportion of the familiar states according

to the behavioural cloner. In Freeway, we observe a fairly high advice reuse rate

6.4. RESULTS AND DISCUSSION 123

Table 6.3: The number of exploration steps and the number of advice reuses (all and
correctly imitated) of None, EA, AR student modes obtained in the Atari games of
Enduro, Freeway, Pong aggregated over 3 runs. The numbers denoted by ± indicate
standard deviation. The numbers in the parentheses show the percentage of reused
advice in the exploration steps (in the column titled “All”) and the percentage
of correctly imitated advice in total number of reused advice (in the column titled
“Correctly Imitated”).

of Exp. Steps
of Advice Reuses

Game Mode All Correctly Imitated

Enduro
None 326939± 92.1 — —
EA 326753± 220.9 — —
AR 326889± 230.5 67198± 3061.0 (20.55%) 36534± 1210.9 (54.44%)

Freeway
None 326872± 199.9 — —
EA 327158± 6.2 — —
AR 326778± 494.4 104770± 12522.2 (32.05%) 88829± 10950.5 (84.74%)

Pong
None 326744± 25.2 — —
EA 326872± 199.9 — —
AR 326933± 371.2 72581± 7615.7 (22.20%) 49538± 4853.8 (68.32%)

with high accuracy of imitation. However, this is not reflected in the performance

difference obtained versus EA, unlike in Enduro and Pong. Finally, in Pong, where the

performance improvement is the most significant, the advice reuse ratio seems to be

similar to Enduro, but with far higher imitation accuracy.

Clearly, as we see from all these results combined, we can say that it is definitely a

viable idea to extend the teacher advice over future states through imitation since this

can be achieved with relatively high accuracy. However, even when we have access to

these imitated competent policies, it is still non-trivial to construct a good exploration

policy. While a higher advice reuse rate produces a more consistent exploration policy

with less random dithering, it also has the risk of limiting the sample diversity in the

replay memory, which can be problematic especially if the imitation quality is also poor.

As long as the reuse amount does not get excessively high, it is safe to have imitation

learning accuracy around these reported levels, which makes tuning the uncertainty

threshold straightforward. This is especially important for realistic applications where

it is not possible to access the tasks to tune such hyperparameters beforehand.

124 CHAPTER 6. ACTION ADVISING WITH ADVICE IMITATION

Finally, we also analyse our approach’s computational burden, which may be the

primary concern when adopting it. Specifically, it involves two extra operations:

behavioural cloning network training and uncertainty estimations. The former happens

only once in the beginning and therefore is negligible. The uncertainty estimations

that require multiple forward passes (which is 100 in our experiments) happen in

every exploration step and were found to cause a maximum of 2× slowdown in our

experiments. Considering that the exploration steps only span approximately 10% of a

learning session, we can expect the runs to be taking at most 10% longer in total when

AR is employed in a similar setting to ours; and, this becomes even smaller when the

learning sessions last longer in terms of the total number of environment steps. Clearly,

this is a small setback considering the sample efficiency benefits our method brings.

6.5 Conclusions

In this study, we developed an approach for the student to imitate and reuse advice

previously collected from the teacher. This is the first time such an approach has been

proposed in Deep RL. In order to do so, we followed an idea similar to behavioural

cloning, employing a separate neural network that is trained with the advised state-

action pairs via supervised learning. Thus, this module can imitate the teacher’s policy

in a generalisable way that lets us apply it to the unseen states. We also incorporated

a notion of epistemic uncertainty via dropout in this neural network to be able to limit

the imitations to the states that are similar to the advice collected states.

The results of the experiments in 3 Atari games have shown that it is a feasible

idea to accurately generalise a small set of teacher advice over unseen yet similar states

in future. Furthermore, our approach of employing behavioural cloning was found to

be a successful way of achieving this, as it yielded a considerably high accuracy of

imitation in multiple games. Additionally, reusing these self-generated advice across

the exploration steps provided significant improvements in the learning speeds and

the final performances without any over-advising-induced performance deterioration.

6.5. CONCLUSIONS 125

Therefore, our method can be considered as a promising enhancement to the existing

action advising methods, especially since it is also very straightforward to implement

and tune, with only a small computational burden. Finally, it was also seen that

utilisation of such imitated advice policies to construct good quality exploration is

non-trivial and requires further investigation.

This study lies at the intersection of action advising and exploration in RL and can

be extended in various interesting ways. It is unclear how far the different qualities of

imitation and reuse rates can affect performance in one particular game; it will be a

worthwhile study to analyse these. Furthermore, evaluating the advice in terms of its

contribution to learning progress is a promising direction to take as well.

126 CHAPTER 6. ACTION ADVISING WITH ADVICE IMITATION

Chapter 7

Learning on a Budget via Teacher

Imitation

The contents of this final technical chapter are based on our publication titled “Learning

on a Budget via Teacher Imitation” (Ilhan et al. 2021b). In this chapter, we provide

answers to the following research questions:

• [RQ1] To what extent can we accelerate Deep RL via (budget-limited) action

advising with one or more knowledgeable peer(s)?

• [RQ6] How can we use the advice memorisation techniques to build more efficient

advice collection strategies?

7.1 Introduction

The previous studies we covered in earlier chapters demonstrated the remarkable ability

of student-initiated action advising algorithms in speeding up Deep RL. While the

majority of these focus on addressing when to ask for advice question, we have also

investigated the ways to further utilise the collected advice by imitating and reusing the

teacher policy in Chapter 6. Despite these developments, there are still several significant

shortcomings present. These techniques often employ some threshold hyperparameters

127

128 CHAPTER 7. LEARNING ON A BUDGET VIA TEACHER IMITATION

to control the decisions to initiate advice exchange interactions which play a key role

in their efficiencies. However, these parameters are sensitive to the learning state of

the models as well as the domain properties. Therefore, they need to be tuned very

carefully prior to execution, which involves unrealistically accessing the target tasks

for trial runs. Furthermore, the studies to further leverage the teacher advice beyond

collection are currently in their early stages and do not provide a complete solution to

the problem besides addressing the advice reusing aspect.

In this work, we present an all-in-one student-initiated approach that is capable of

collecting and reusing advice in a budget-efficient manner, by extending Ilhan et al.

(2021a) (Chapter 6) in multiple ways. First, we propose a method for automatically

determining the threshold parameters responsible for the decisions to request and

reuse advice. This greatly alleviates the burden of task-specific hyperparameter tuning

procedures. Secondly, we follow a decaying advice reuse schedule that is not tied to

the student’s exploration strategy. Finally, instead of using the imitated policy only

for reusing advice as in Ilhan et al. (2021a) (Chapter 6), we incorporate this policy

to determine and collect more diverse advice to construct a more universal imitation

policy. The technical contributions we made in this work are as follows:

1. We propose an all-in-one student-initiated advice collection and utilisation algo-

rithm for Deep RL.

2. We present a method to automatically tune the relevant hyperparameters of our

algorithm, i.e. advice collection and advice reuse thresholds, on the fly.

3. We use an imitated teacher model to drive the completely student-initiated advice

collection process.

Section 7.2 describes the problem formulation and our approach in detail. In

Section 7.3, we explain the experimental setup. Then, the results and the related

discussion are presented in Section 7.4. Finally, the study is concluded in Section 7.5

with some final remarks.

7.2. THE APPROACH 129

7.2 The Approach

We adopt the MDP formalisation presented in Chapter 2 in our problem definition.

The setup in this study includes an off-policy Deep RL agent (student) with policy

πS learning to perform some task in an environment with continuous state space

and discrete actions. There is also another agent with policy πT (teacher) that is

knowledgeable in this particular task. The teacher is isolated from the environment

itself but is reachable by the student via a communication channel for a limited number

of times defined by the advising budget b. By using this mechanism, the student can

request action advice a = πT (s) for its current state s. The objective of the student

in this problem is to maximise its learning performance in this task by timing these

interactions to make the most efficient use of πT .

Our approach provides a unified solution for addressing when to ask for advice and

how to leverage the advice questions. In addition to the RL algorithm, the student

is equipped with a neural network Hη with weights η that are not shared with the

RL model in any way. The student also has a transitions buffer C with no capacity

limit that holds the collected state-advice pairs. By using the samples in C, Hη is

trained periodically to provide the student an up-to-date imitation model of πT to

make it possible to reuse the previously provided advice. Moreover, Hη is also used to

determine what advice to collect by being regarded as a representation of C’s contents.

Obviously, making these decisions require Hη to have a form of awareness of what it

is trained on (in terms of samples). Therefore, Hη employs Dropout regularisation in

the fully-connected layers to have an estimation of epistemic uncertainty denoted by

Hu
η (s) for any state s as it is done in Gal & Ghahramani (2016) and Ilhan et al. (2021a)

(Chapter 6). None of these components shares anything with or requires access to the

student’s RL algorithm. This is especially advantageous when it comes to pairing up

our approach with different RL methods.

At the beginning of the student’s learning process, η is initialised randomly and

C = ∅. Then, at every timestep t in state st, the student goes through 3 stages of

130 CHAPTER 7. LEARNING ON A BUDGET VIA TEACHER IMITATION

our algorithm: Collection, Imitation, Reuse. The remainder of this section describes

these stages with the line number references to the complete flow of our algorithm

summarised in Algorithm 161.

The collection stage (lines 13-19 in Algorithm 16)2 remains active from the beginning

until the student runs out of its advising budget bask. At this step, the student attempts

to collect advice if its current state has not been advised before. This is determined by

the value of Hu
η (st). If it is higher than the uncertainty threshold τreuse (which is set

automatically in the imitation stage), it is decided that st has not been advised before;

thus, the student proceeds with requesting advice. However, if τreuse is undetermined,

this request is carried out without performing any uncertainty check.

The imitation module is responsible for training Hη and tuning τreuse accordingly.

This stage (lines 20-25 in Algorithm 16)3 is always active, but it is only triggered when

these conditions that are checked at every timestep t are met: the student has collected

NC new samples in C (since the last imitation) or the student has taken timitation steps

(since the last imitation) with at least NC/2 new samples in C. Here, NC and Timitation

are hyperparameters. These are set in order to keep the number of imitation processes

within a reasonable number while also ensuring Hη remains up-to-date with the collected

advice. On one hand, if Hη was updated for every new state-advice pair, it would be a

very accurate model of C’s contents, but the total training times would be a significant

computational burden. On the other hand, if Hη was updated infrequently, it would

not cause any computational setbacks; however, it would not be a good representation

of the collected advice either.

Once the imitation is triggered, Hη is trained for KBC iterations (if it is the first-ever

training; else, for KBCP iterations) with the minibatches of samples drawn randomly

from C. This process resembles the simplest form of behavioural cloning where the

supervised negative log-likelihood loss L(η) =
∑
〈s,a〉∈C − logHη(a | s) is minimised.

1The code for our experiments can be found athttps://github.com/ercumentilhan/advice-imitation-reuse
2The implementation can be found in lines 228-259 of code/executor.py file in the code repository.
3The implementation can be found in lines 264-303 of code/executor.py file in the code repository.

https://github.com/ercumentilhan/advice-imitation-reuse

7.2. THE APPROACH 131

Algorithm 16 Learning on a Budget via Teacher Imitation

1: Input: Number of training iterations tmax, RL algorithm-related parameters, e.g. DQN, teacher

policy πT , action advising budget bask, initial reuse probability εreuse−init, final reuse probability

εreuse−final, number of reuse probability decaying steps Tε, number of imitation training iterations

KBC (initial) and KBCP (periodic), number of new samples and steps to trigger imitation NC and

Timitation.

2: Initialise RL algorithm-related variables, e.g. DQN

3: Initialise BC network Hη

4: Initialise empty BC buffer C to store state-action tuples

5: reuse enabled ← False . Disable advice reuse by default

6: τreuse ← None . Start with no valid reuse threshold

7: εreuse ← εreuse−init . Set reuse probability with the initial value

8: nlast ← 0, tlast ← 0 . Set last imitation sample count and timestep as 0

9: for training steps t ∈ {1, 2, . . . tmax} do
10: Get state observation st from Environment if it is reset

11: Set reuse enabled True with εreuse probability

12: at ← None . Set action as non-determined

. .

. Collection

13: if reuse enabled is True and bask > 0 then

14: if Hη is not trained or Hu
η (st) > τreuse then

15: at ← πT (st) . Obtain advice from the teacher

16: C ← C ∪ 〈st, at〉 . Add the state-advice pair to the BC dataset

17: bask ← bask − 1 . Decrease the budget

18: end if

19: end if

. .

. Imitation

20: if |C| − nlast > NC or

21: (|C| − nlast > NC/2 and t− tlast > Timitation) then

22: Train Hη with C for KBC (if its the first training) or KBCP (otherwise) iterations

23: nlast ← |C|, tlast ← t

24: Determine τreuse as described in Section 7.2 (Algorithm 17)

25: end if

. .

. Reuse

26: if reuse enabled is True and at is None and

27: Hη is trained and Hu
η (st) < τ then

28: at ← arg maxaHη(a | st) . Generate imitated advice to reuse

29: end if

30: Decay εreuse w.r.t. pre-defined schedule over Tε if εreuse > εreuse−final
. .

31: if at is None then

32: Determine at via the RL algorithm, e.g. DQN . This is denoted as πS
33: end if

34: Execute at and obtain rt+1, st+1 from Environment

35: Update the RL algorithm, e.g. DQN

36: st ← st+1

37: end for

132 CHAPTER 7. LEARNING ON A BUDGET VIA TEACHER IMITATION

Algorithm 17 Automatic Threshold Tuning

1: Input: BC buffer C, BC model Hη, percentile cutoff proportion ρH.

Initialise empty set H
2: for every 〈s, a〉 ∈ C do

3: if a = argmaxa′ Hη(a′ | s) then

4: H ← H∪ {Hu
η (s)} . Add uncertainty value of state s to H

5: end if

6: end for

7: Sort elements of H in ascending order

8: i← round(ρH|H|) . Find index that corresponds to ρHth proportion

9: return Hi

Afterwards, τreuse is updated automatically to be compatible with the new state of this

imitation network. This is done by measuring Hu
η (s) and storing them in a set H for

each ∀〈s, a〉 ∈ C that satisfies a = argmaxa′ Hη(a
′ | s), in other words, considering the

uncertainty value only for the correctly learned state-action pairs. Then, the uncertainty

value that corresponds to the ρH proportion (hyperparameter) in the ascending-order

sorted H is assigned to τreuse. We do this to pick a threshold τreuse such that Hη

can consider these samples it classifies correctly as “known” while leaving a small

portion that is likely to be outliers out when Hu
η is compared with τreuse. The process

is shown in Algorithm 17. We believe that determining the ρH value to set does not

hold much importance given that it is a reasonable number, e.g. 0.9, just to leave the

outliers (the samples Hη has learnt correctly but still holds a high uncertainty value

for). This approach could be further developed by also considering the true-positive

and false-positive rates, however, we opted for a simpler approach in this study.

Finally, the reuse stage (lines 26-30 in Algorithm 16)4 handles the execution of the

imitated advice whenever appropriate, to aid the student in efficient exploration. It

becomes active as soon as the imitation model Hη is trained for the first time. Then,

whenever Hu
η (st) < τreuse (i.e. Hη is familiar with st), no advice collection is occurred

at t and reusing is enabled for this particular episode, the student executes the imitated

advice argmaxaHη(a | st). Unlike Chapter 6, we do not limit advice reusing to the

exploration stage of learning, e.g. the period ε is annealed to its final value in ε-greedy.

4The implementation can be found in lines 307-333 of code/executor.py file in the code repository.

7.3. EXPERIMENTAL SETUP 133

Instead, we define a reuse schedule that is independent of the underlying RL algorithm’s

exploration strategy. At the beginning of each episode, the agent either enables reuse

module with a probability of εreuse (set as εreuse−init initially). This value is decayed

until it reaches its final value εreuse−final over Tε steps, similarly to ε-greedy annealing.

This approach further eliminates the dependency of our algorithm on the RL algorithm’s

exploration strategy. Setting εreuse−init and εreuse−final is non-trivial and can be done

in a similar way it is done for ε-greedy. We ideally want the agent to perform enough

reusing to boost its exploration in an informed way to collect useful transitions at the

beginning, but we also do not want the agent to rely on reusing in the later stages

of learning to have its underlying RL model to be independent of it eventually. The

annealing time-span Tε needs to be set in a way that it gives the agent enough time

to incorporate the knowledge the teacher imitation model has to offer. While this

is a domain-dependent hyperparameter, setting it as half of the maximum learning

timesteps can be a reasonable starting point.

7.3 Experimental Setup

We designed our experiments to answer the following questions about our proposal:

• How does our automatic threshold tuning perform against the manually-set ones

in terms of reuse accuracy and learning performance?

• How much does using the advice imitation model to drive the advice collection

process help with collecting a more diverse state-advice dataset?

• Does collecting a dataset with more diverse samples make any significant impact

on the learning performance?

• How much does every particular modification contribute to the final performance?

In the remainder of this section, we first describe our evaluation domain. Then, we

provide the details of our experimental process along with the substantial implementation

134 CHAPTER 7. LEARNING ON A BUDGET VIA TEACHER IMITATION

details.

We experiment with an extensive set of agents to be able to determine the most

beneficial enhancements included in our algorithm. The student agent variants we

compare in our experiments are as follows:

• No Advising (NA): No form of action advising is employed, the agent relies on

its RL algorithm only.

• Early Advising (EA): The student asks for advice greedily until its budget

runs out. There is no further utilisation of advice beyond their execution at the

time of collection. This is a simple yet well-performing heuristic.

• Random Advising (RA): The student asks for advice randomly with 0.5

probability. This heuristic uses the intuition that spacing out requests may yield

more diverse and information-rich advice.

• EA+Advice Reuse (AR): The agent employs our previously proposed advice

reuse approach (Ilhan et al. 2021a) (Chapter 6). Advice is collected with early

advising strategy, and the teacher is imitated via these advice. Then, advice are

reused in place of the random exploration actions in approximately 0.5 of the

episodes.

• AR+Automatic Threshold Tuning (AR+A): AR is combined with our

automatic threshold tuning technique.

• AR+A+Extended Reuse (AR+A+E): AR is combined with both our auto-

matic threshold tuning technique and the extended reusing scheme.

• Advice Imitation & Reuse (AIR): This agent mode incorporates all of our

proposed enhancements (as detailed in Section 7.2). On top of AR+A+E, this

mode also uses the imitation module’s uncertainty to drive the advice collection

process instead of relying on early advising.

7.3. EXPERIMENTAL SETUP 135

We test the agents in learning sessions with a length of 5M steps (equals to 20M

game frames due to frame skipping) with an advising budget of 25k that corresponds to

only 0.5% of the total number of steps in a session. At every 50kth step, the agents are

evaluated in a separate set of 10 episodes by having their action advising and exploration

mechanisms disabled. The cumulative rewards obtained in these episodes are averaged

and recorded as evaluation scores for that corresponding learning session step. This lets

us measure the actual learning progress of the agents as the main performance metric.

The Deep RL algorithm of the student agent is identical to the one from Chapter 6:

Double DQN with a neural network structure comprised of 3 convolutional layers (32

8× 8 filters with a stride of 4 followed by 64 4× 4 filters with a stride of 2 followed by

64 3× 3 filters with a stride of 1) and fully-connected layers with a single hidden layer

(512 units) and dueling stream output which can be seen in Figure 6.1. We use the

rectified linear unit (ReLU) as the activation function in every layer except for the final

one. Weights are initialised with He initialisation (He et al. 2015) which was found to

be working better with ReLU.

The imitation module consists of a convolution neural network that is similar to

the DQN one and is identical to the one used in Chapter 6. There are 3 convolutional

layers with 32 8× 8 filters with a stride of 4, 64 4× 4 filters with a stride of 2, 64 3× 3

filters with a stride of 1, which are followed by a fully-connected layer with 512 hidden

units and a final |A| sized Softmax output layer. The choice of layer activations is also

ReLU accompanied with He initialisation for the weight initialisation. There are also

Dropout layers in the fully-connected layers to enable uncertainty estimations. This

network architecture is visualised in Figure 6.2.

For exploration, ε-greedy strategy with linearly decaying ε is adopted. The teacher

agents are generated separately for each of the games prior to the experiments, by

using the identical DQN algorithm and structure with the student. Even though the

resulting agents are not necessarily at super-human levels achievable by DQN, they

have competent policies that can achieve the evaluation scores of 1556, 28.8, 12, 3705,

8178 for Enduro, Freeway, Pong, Q*bert, Seaquest, respectively.

136 CHAPTER 7. LEARNING ON A BUDGET VIA TEACHER IMITATION

As we described in Section 7.2, our approach requires the student to be equipped

with an additional behavioural cloning module that includes a neural network. We

used the identical neural network structure to the student’s DQN model except for the

dueling streams. Fully-connected layers of this network are enhanced with Dropout

regularisation with a dropout rate of 0.35 and the number of forward passes to measure

the epistemic uncertainty via variance is set at 100.

The uncertainty threshold for AR is set as 0.01 for every game. Determining a

reasonable value for this parameter requires accessing the tasks briefly, which we have

performed prior to the experiments; even though this will not be reflected in the

numerical results, it should be noted that this is a critical disadvantage of AR. The

automatic threshold tuning proportion used in AR+A, AR+A+E, AIR is set as 0.9.

This is a very straightforward hyperparameter to adjust compared to the (manual)

uncertainty threshold itself and can potentially be valid in a wide variety of tasks. For

the extensive reuse scheme in AR+A+E and AIR, we set εreuse−init and εreuse−final as

0.5 and 0.1, respectively. We defined the annealing schedule to begin at 500kth step

and last until 2Mth step. For the imitation triggering conditions in AIR, NC is set as

2.5k (samples) and Timitation is set as 50k (timesteps). Finally, the number of imitation

network training iterations is set as 200k for the initial one (applies to all modes but

NA, EA and RA) and 50k for the periodic ones (only applies to AIR).

Every experiment is repeated 3 times with different random number generation seeds

in order to produce more meaningful aggregated results. All of the hyperparameters

reported in this section are set empirically prior to the experiments and are kept the same

across every game. The most significant ones among the unmentioned hyperparameters

of the student’s DQN and imitation components are presented in Table 7.1.

7.4 Results and Discussion

The results of our experiments in Enduro, Freeway, Pong, Q*bert and Seaquest are

presented in several plots to let us analyse the performance of the student modes

7.4. RESULTS AND DISCUSSION 137

Table 7.1: Hyperparameters of the student’s DQN (top section) and its imitation
module for AR, AR+A, AR+A+E, AIR as well as the general action advising process
(bottom section).

Hyperparameter name Value

Replay memory size to start learning MD 50k
Replay memory capacity ND 500k
Target network update period (steps) Ttarget 7500
Train period (steps) Ttrain 4
Minibatch size 32
Learning rate α 625× 10−7

Discount factor γ 0.99
Adam epsilon 1.5× 10−4

Huber delta 1
ε initial 1.0
ε final 0.01
ε decay steps 500k

Buffer size to trigger BC training NC 2.5k
Timesteps needed to trigger periodic BC training Timitation 50k
Number of initial BC training iterations KBC 200k
Number of initial BC training iterations KBCP 50k
Minibatch size 32
Learning rate 0.0001
Dropout rate χ 0.35
Number of forward passes to assess uncertainty 100
Action-advising budget bask 25k
Proportion cutoff point ρH 0.9
Initial advice-reusing probability εreuse−init 0.5
Final advice-reusing probability εreuse−final 0.1
Timesteps to anneal advice-reusing probability Tε 1.5M (500k → 2M)

NA, EA, RA, AR, AR+A, AR+A+E, AIR in different aspects. Left-hand side of the

Figures 7.1, 7.2 and 7.3 contains the evaluation scores plots. On the right-hand side

of the Figures 7.1, 7.2 and 7.3, plots for the number of advice reuses per 100 steps

(top row) performed by AR, AR+A, AR+A+E, AIR; plots for the number of advice

collections per 100 steps performed by NA, RA, AR, AR+A, AR+A+E, AIR (middle

row); plots for the values of the τreuse hyperparameter (uncertainty threshold) used by

AR, AR+A, AR+A+E, AIR (bottom row) in a single run are shown. The shaded areas

138 CHAPTER 7. LEARNING ON A BUDGET VIA TEACHER IMITATION

(a) Enduro

(b) Freeway

Figure 7.1: Evaluation scores of the student variants None, EA, AR (left) and the
number of advice reuses performed by the student with AR mode plotted cumulatively
(upper right) and in every 100 steps (lower right), obtained in the Atari games of Enduro
(a) and Freeway (b), aggregated over 3 runs. Purple lines represent the number of all
advice reuses while the green lines represent the number of correctly imitated ones
among these. Shaded areas show the standard deviation across the runs.

in these plots show the standard deviation across 3 runs. The final evaluation scores,

percentage of advice reuses in the total number of environment steps as well as their

accuracies are presented in Table 7.2. Finally, in order to highlight the differences in

7.4. RESULTS AND DISCUSSION 139

(a) Pong

(b) Q*bert

Figure 7.2: Evaluation scores of the student variants None, EA, AR (left) and the
number of advice reuses performed by the student with AR mode plotted cumulatively
(upper right) and in every 100 steps (lower right), obtained in the Atari games of Pong
(a) and Q*bert (b), aggregated over 3 runs. Purple lines represent the number of all
advice reuses while the green lines represent the number of correctly imitated ones
among these. Shaded areas show the standard deviation across the runs.

the advice-collected state diversity of EA (identical collection strategy to AR, AR+A,

AR+A+E), RA and AIR, these states from a single Pong run are visualised with the

aid of Uniform Manifold Approximation and Projection (UMAP) (McInnes & Healy

140 CHAPTER 7. LEARNING ON A BUDGET VIA TEACHER IMITATION

(a) Seaquest

Figure 7.3: Evaluation scores of the student variants None, EA, AR (left) and the
number of advice reuses performed by the student with AR mode plotted cumulatively
(upper right) and in every 100 steps (lower right), obtained in the Atari game of Seaquest
(a), aggregated over 3 runs. Purple lines represent the number of all advice reuses while
the green lines represent the number of correctly imitated ones among these. Shaded
areas show the standard deviation across the runs.

2018) dimensionality reduction technique in Figure 7.4. Here, the scatter plot on the

left compares AIR (blue) vs. EA (red) and the one on the right compares AIR (blue)

vs. RA (pink), and the samples collected in common are shown in grey.

We first analyse the learning performances via evaluation scores. In Enduro, all

methods but NA have a very similar learning speed and final scores, with AIR being

slightly ahead of the rest. In Freeway, they all achieve nearly the same final scores, but

they are distinguishable with small differences in learning speed where AR+A+E is

on the top followed by other advanced student modes AIR, AR, AR+A. The initial

peak followed by a drop that is apparent for every method is caused by the mechanics

specific to this game. Specifically, repeatedly executing the action of moving upward

always gets the agent to the reward position at the top. As the DQN policy executed

during the evaluation stage is deterministic, it exhibits a consistent behaviour defined

by the way it is initialised until it gets any model updates. In this particular case, it

7.4. RESULTS AND DISCUSSION 141

(a) AIR vs. EA (b) AIR vs. RA

Figure 7.4: UMAP embeddings of the advice collected states in Seaquest by AIR (blue)
vs. EA (red) in (a) and AIR (blue) vs. RA (pink) in (b), where the samples in common
are shown in grey. Areas denoted with larger circles are the outliers covered only by
either AIR (blue), EA (red) or RA (pink).

is seen to be executing the goal-leading action for every observation it gets until the

model updates begin which causes the dip; then, as the learning progresses, a much

better strategy is devised than this to yield higher results. The size of action space

and similarity of state observations of this game make this situation very likely to be

encountered. When we move to Pong, Q*bert and Seaquest, we finally see the student

mode performances to be more distinctive. Even though the basic heuristics (RA and

EA) show that a little number of advice from a competent policy can make a substantial

boost in learning, these modes fall behind those that employ advice reuse and fail to

be a reliable choice, i.e. performing worse than NA in Freeway and Q*bert. Another

interesting result here is seen in the plots of Q*bert where NA performs significantly

better than other approaches and even beats them all but AR+A+E and AIR at the

final score. One reason behind this may be the fact that regardless of the complex

visuals of ALE, Q*bert in reality has a very small number of states due to the limited

number of positions the agent can navigate to. Linked to this, the number of advice

required to learn the game is also much smaller than the given budget. As result, greedy

142 CHAPTER 7. LEARNING ON A BUDGET VIA TEACHER IMITATION

advice collection strategies like NA suffer from the negative effects of receiving too

much advice, e.g. learning with transitions coming from a different fixed policy that

results in bootstrapped error terms due to the unseen actions (one of the main problems

tackled in Offline RL) concentrated on a limited set of states, unlike RA. Overall, the

best mode AIR and the runner-up AR+A+E are clearly ahead of all, with AR and

AR+A following them.

Among the advice reuse approaches, we see that the most beneficial modification

is the extended reuse schedule (+E) as it is highlighted by the difference between

AR+A and AR+A+E. Defining such a schedule independently from the student’s RL

exploration strategy involves using some extra hyperparameters, nevertheless, they are

rather trivial to set arbitrarily. The trends in the advice reuse plots (Figures 7.1, 7.2, 7.3,

right-hand side, top rows) show how these schedules differ. The versions with +E (AIR

and AR+A+E) yield around 10× more reusing, which apparently plays an important

role in performance improvement. However, it is still not clear how to define the optimal

reuse schedules.

Automatic threshold tuning (+A) also performs comparably, if not better, with the

manual tuning approach (AR) as we can observe in the evaluation scores. Additionally,

AR+A managed to achieve very similar reuse accuracies to AR; this also supports its

success. When we examine the τreuse values, we see AR+A determined values that are

close to the hand-tuned ones, except for the case in Pong where the difference is more

significant. This is reflected in reuse trend and evaluation performance, giving AR+A a

very advantageous head start. These results support the idea that +A is a far more

preferable approach considering how problematic it can be to tune the sensitive τreuse

threshold manually. For instance, if they were to be deployed in some significantly

different domains as they are, then we could potentially see AR+A coming far ahead

of AR with a poorly tuned τreuse. Furthermore, the periodic imitation model updates

incorporated in AIR make +A an essential component. In the right-hand side bottom

rows of Figures 7.1, 7.2, 7.3, we also show how AIR changes its τreuse values over time

as it collects more advice samples and updates its imitation model accordingly. Clearly,

7.4. RESULTS AND DISCUSSION 143

it is very difficult to manage these changes manually.

Finally, we also see that collecting advice by utilising the imitation model’s uncer-

tainty (as it is done by AIR) contributes to the agent’s learning. When we look at the

advice collection plots, we see 3 different types of behaviours: early collection (EA, AR,

AR+A, AR+A+E), random collection (RA), and AIR. Even though they seem to be

occurring mostly in the same time windows, AIR does this in an uncertainty-aware

fashion; hence the decreasing collection rate over time. Freeway is the case in which

AIR is very selective. This is possibly due to the fact that in Freeway, the agent can

traverse only a limited space which consequently reduces the diversity of the acquired

observations. Nonetheless, this is not reflected in the evaluation scores as dramatically

due to this game being rather trivial to solve. Another interesting observation is made

by analysing the advice collected states in Seaquest by AIR, EA (which is identical to

AR, AR+A, AR+A+E in terms of collection strategy), RA in a reduced dimensionality

as seen in Figure 7.4. We chose Seaquest since it is the game where AIR is significantly

ahead of AR+A+E, which can be credited to AIR’s only difference from it (collection

strategy). We also include RA here mainly because it can potentially do better in

acquiring different samples than EA. Here, the large circles denote the outliers (diverse

samples) that are only covered only by either AIR, EA or RA. These are the important

bits to pay attention to and compare. As it can be seen, AIR yields larger coverage, i.e.

more diverse dataset of advice, in both cases against EA and RA collection strategies.

The sample (advice) efficiency our modifications provide comes with a computational

cost trade-off. Therefore, in addition to the empirical agent performance analyses, we

also measured the wall time it took different modifications to complete an experiment

on identical machines. We have seen that the first modification AR takes 1.01 to 1.15

times (depending on the game) longer on average than NA (which is a default DQN

agent). This is very reasonable and is also aligned with the computational cost analysis

we did for this particular modification in our previous study (Section 6.3). Our second

modification AR+A also achieved very similar times as expected since the only extra

step it has on top of AR is the automatic threshold tuning. When we extend the advice

144 CHAPTER 7. LEARNING ON A BUDGET VIA TEACHER IMITATION

reuse beyond exploration steps (AR+A+E) the experiments took 1.18 to 1.35 times

longer on average compared to NA. This significant slow-down comes from executing

the uncertainty estimator over whole training sessions. AIR similarly took 1.2 to 1.4

times longer for the experiments, which is due to the periodic model training burden it

comes with. Overall, the computational costs of adopting our techniques seem to be

very reasonable and acceptable considering the sample efficiency and agent performance

boost they bring.

7.5 Conclusions

In this study, we proposed an automatic threshold tuning technique, an extended advice

reusing schedule and an imitation model uncertainty-based advice collection procedure

by extending the previously proposed advice reusing algorithm. We also developed

a combined approach by incorporating these components, which is able to collect a

diverse set of advice to build a more widely applicable advice imitation model for advice

reuse.

The experiments in 5 different Atari games from the ALE domain have shown

that our enhancements provide significant improvements over the baseline advice reuse

method as well as the basic action advising heuristics. First, being able to tune the

uncertainty thresholds on-the-fly was observed to yield the learning performance of the

carefully tuned threshold, which require unrealistic access to the tasks and extra effort

to be adjusted. Secondly, we found that having the advice reusing process span across

a larger portion of the learning session rather than just the steps that involve random

exploration can yield superior performance. However, defining the best schedule for the

maximum advice utilisation efficiency remains to be an open question. Thirdly, the

uncertainty-driven advice collection method was found to be a successful way to improve

the imitation module’s dataset diversity. Nevertheless, the periodic training process

can be improved with better incremental learning techniques to make better use of this

simultaneous collection-imitation idea. Finally, our unified algorithm demonstrated

7.5. CONCLUSIONS 145

top-level performance across 5 Atari games by performing either on par or better than

its closest competitors.

The future extensions of this work can involve experimenting with more principled

approaches in the literature to further improve the advice reuse strategy beyond this

randomly executed version. Furthermore, it will be a worthwhile study to make the

teacher imitation better at learning online from the new samples it acquires. Finally,

even though it is in the core motivations of our approach not to access and modify the

agent’s RL components, it will be beneficial to investigate LfD techniques and their

potential contributions to our framework.

146 CHAPTER 7. LEARNING ON A BUDGET VIA TEACHER IMITATION

Table 7.2: Final evaluation scores, percentages of advice reuses in the total environment
steps, percentages of advice reuse accuracies achieved by NA, EA, RA, AR, AR+A,
AR+A+E, AIR (+ signs are omitted) in 5 ALE games aggregated over 3 runs. The
standard deviations across runs are indicated with ±. The best scores/accuracies are
denoted in bold.

Evaluation Score Advice Reuse

Game Mode Final Ratio (%) Accuracy (%)

Enduro

NA 1066.34± 37.3 — —
EA 1131.13± 69.0 — —
RA 1170.60± 19.0 — —
AR 1127.72± 26.9 0.49± 0.03 70.06± 0.6

ARA 1117.93± 59.0 0.45± 0.04 72.36± 0.3
ARAE 1102.44± 62.4 4.97± 0.44 75.24± 0.5
AIR 1184.02± 19.6 4.79± 0.44 73.63± 0.2

Freeway

NA 31.98± 0.1 — —
EA 32.09± 0.1 — —
RA 32.02± 0.2 — —
AR 32.06± 0.1 1.60± 0.11 93.02± 0.3

ARA 32.26± 0.1 1.53± 0.10 93.48± 0.1
ARAE 32.14± 0.0 15.76± 0.08 95.43± 0.1
AIR 32.14± 0.1 17.89± 0.47 95.39± 0.2

Pong

NA 0.95± 2.4 — —
EA 3.73± 4.9 — —
RA 11.48± 0.2 — —
AR 9.41± 3.5 0.52± 0.02 79.80± 0.5

ARA 10.48± 0.4 0.93± 0.01 75.07± 0.7
ARAE 11.21± 1.2 10.4± 0.59 79.00± 0.1
AIR 11.81± 1.2 9.98± 0.36 80.46± 0.8

Q*bert

NA 3154.91± 408.9 — —
EA 2277.98± 300.5 — —
RA 2528.70± 505.4 — —
AR 2434.70± 54.8 0.93± 0.04 80.37± 0.6

ARA 2359.39± 371.9 0.93± 0.02 78.86± 0.7
ARAE 3763.72± 340.3 14.57± 0.25 92.87± 0.7
AIR 3814.34± 134.6 15.16± 0.21 92.83± 0.2

Seaquest

NA 4496.41± 1101.0 — —
EA 6538.18± 1445.1 — —
RA 5033.04± 1413.3 — —
AR 8053.93± 935.9 0.61± 0.03 72.96± 0.8

ARA 7851.03± 556.7 0.56± 0.03 76.29± 0.7
ARAE 8082.69± 1105.2 5.93± 0.49 74.18± 1.5
AIR 8614.04± 268.7 4.79± 0.20 74.87± 0.5

Chapter 8

Conclusions and Future Work

This thesis presented a set of action advising approaches to accelerate Deep RL through

leveraging the knowledge available within the peers accessible by the learning agent.

Our methods tackled various Deep RL problem variants and different shortcomings of

the action advising framework itself by addressing the following questions:

[RQ1] To what extent can we accelerate Deep RL via (budget-limited) action advising

with one or more knowledgeable peer(s)?

[RQ2] How can we scale the state-of-the-art action advising approaches from classical

RL to Deep RL/MARL domains?

[RQ3] What can be an efficient heuristic to perform student-initiated action advising

that is also robust to teacher absence conditions in Deep RL?

[RQ4] Can imprecise usage of action advising budget hamper Deep RL performance?

[RQ5] How can we further utilise the collected advice by memorising and reusing them

in Deep RL domains?

[RQ6] How can we use the advice memorisation techniques to build more efficient advice

collection strategies?

In Chapter 4, we dealt with [RQ1] and [RQ2]. We demonstrated the first-ever

application of action advising in Deep RL/MARL domain. Specifically, we made

multiple simultaneously learning agents perform jointly-initiated peer-to-peer knowledge

147

148 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

exchange in the form of actions with no predefined teacher-student roles in the process.

To do so, the Deep RL agents employ an additional RND module to be able to assess the

novelty of the states they encounter. This way, they can decide when it is appropriate

to take the teacher role to give advice or when they are not knowledgeable about a

state and need advice for it by taking the student role. RND technique helps with

generalisation between similar and unseen states which is mandatory for Deep RL where

typical state counting techniques are rendered useless. The results we obtained in this

study showed that action advising can indeed be a promising technique to accelerate

Deep RL and motivated us to study them further. We have also seen that RND can be

an efficient proxy for the tabular state counters and can be used as an action advising

heuristic.

In Chapter 5, we addressed the questions [RQ1], [RQ3] and [RQ4]. To do so,

we shifted our attention to single-agent Deep RL setting to develop useful action

advising strategies in less complicated learning dynamics that can later be extended

for full-scale multi-agent domains. We proposed a completely student-initiated action

advising algorithm that is robust to the situations of teacher absence and does not

require specific Deep RL models that enable uncertainty estimations. Similarly to

Chapter 4, we incorporate RND to measure the state novelty. But this time, we update

RND only for the teacher-advised states and call it advice novelty to emphasise the

distinction. This key difference ensures that the student will consider the teacher’s

advice regardless of the training state it is in. Our experiments in a grid-like environment

and MinAtar games showed that our approach performs on par with the state-of-the-art

and demonstrates significant advantages in scenarios where the existing methods are

prone to fail.

In Chapter 6, we aimed to answer [RQ1] and [RQ5]. We investigated a different

aspect in the action advising framework, which is further utilisation of the advice beyond

their collecting. We propose memorising and reusing the collected advice in order to

make more efficient use of the limited budget by spending it in dissimilar states to get

advice. Furthermore, the student gets to repeat previous advice later in the training to

149

learn more efficiently. To accomplish these in Deep RL domains, we use BC to imitate

the teacher’s advice decision by training a model with the state-advice samples. We

also employ dropout regularisation in the BC model to give it a notion of uncertainty,

so the student is able to tell which of the states have actually received advice via the

BC model’s uncertainty. The experiments we conducted in the continuous state-space

ALE domain made it evident that our approach is can boost the learning performance

even when it is paired with the simplest advice collection method, e.g., Early Advising.

In Chapter 7, the main questions in target are [RQ1] and [RQ6]. We built upon our

previous advice imitation study (Chapter 6) and proposed our final unified student-

initiated action advising algorithm for advice collection and utilisation. Specifically,

we make the student agent imitate the teacher’s advice by using BC. Additionally, the

student also uses this imitation model to drive its advice collection decisions differently

from Chapter 6. Thus, the budget is spent on more diverse samples to construct a more

efficient advice imitation model which contributes to much better learning performance

overall. Moreover, we also alleviated another critical setback in the previous methods

about having critical yet difficult-to-tune hyperparameters. By using the state-advice

sample buffer we make the agent self-adjust its relevant hyperparameters on the fly.

This grants a huge advantage when it comes to applying these techniques in real-world

tasks where it is usually not realistic to pre-tune the algorithm for the task. The

experiment results we obtained in ALE verified that our modifications bring significant

improvements to the learning performance and our final approach achieves top-level

performance in student-initiated action advising for Deep RL.

Overall, we have developed multiple action advising techniques suitable for the Deep

RL domains either as standalone solutions or as add-ons to enhance the existing action

advising algorithms. We have seen that action advising can be a promising framework

to accelerate Deep RL through leveraging knowledge present within different peers. Our

findings made it evident that state novelty and advice novelty-based advice collection

strategies can be strong alternatives to the uncertainty-based ones, especially when the

student agent’s model has no such capability of estimating uncertainty. That being said,

150 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

further advice utilisation by memorisation and reuse was the key enhancement that

made the actual performance breakthrough. Therefore, we built our final algorithm

around this idea, which significantly outperformed the simple yet powerful baselines of

EA and RA. Even though the previously investigated advice collection techniques (UA,

SNA, ANA) appeared to be promising, they were not experimented with in the final

chapters of the study since they are only about handling the advice collection which

plays a little role in the learning performance; not to mention that they also require

to be tuned carefully prior to training due to lacking the automatic threshold tuning

functionality present in our final algorithm. Nevertheless, it may still be insightful to

analyse them in the more complex domains like ALE as well as have them modified

with advice imitation and reuse. Besides progressively creating better action advising

methods, we observed that it is critical to not overuse an external policy, e.g., the

teacher, even when the Deep RL method is off-policy; this aligns with the findings

and the core motivation of Offline RL that claims the agent must ensure to be some

state-action combinations itself to avoid extrapolation of errors. Finally, it is far

from trivial to devise a principled idea to time the advice execution moments (at the

time of collection or by reusing) to maximise the learning performance without taking

advantage of multiple learning sessions, e.g., Meta RL. Therefore, linking this work

with the exploration in RL literature is pivotal to discovering useful approaches. We

believe that the contributions made in this Ph.D. study will enable more applications

of action advising to be made in Deep RL, which will eventually be extended to solve

practical problems in real-world scenarios.

8.1 Future Work

This section describes some of the future work we have identified to be significant

extensions to our study.

8.1. FUTURE WORK 151

8.1.1 Action Advising for Safe Exploration

We have shown that exchanging advice can significantly accelerate Deep RL. Additionally,

action advising can be even more valuable in some scenarios where other knowledge

reuse paradigms, e.g. LfD, Imitation Learning, are rendered inapplicable. A good

example of this is the RL exploration processes with safety requirements, which are

tackled in Safe RL line of research (Garcia & Fernández 2015). In these cases, having a

teacher to be accessible at the time of learning (as in action advising) is the only truly

safe option. Thus, applying the action advising techniques in the Safe RL problem

domain can make a good opportunity to showcase their practical relevance.

When we apply Deep RL in real-world scenarios, the setback of needing a vast

number of samples to learn competent policies worsens due to the fact that most of

these cases also involve costly and catastrophic interactions. Even though the agents

can learn to avoid these situations via trial-and-error learning, they do so only after

actually experiencing these many times, which is obviously not affordable. Therefore,

achieving safer exploration is considered to be of the utmost importance in these cases.

A promising way to minimise the number of unsafe transitions throughout the learning

can be to employ a safety-aware teacher, be it a human or another agent, to supervise

the agent’s exploration process. This teacher can distinguish the critical moments to be

able to interfere with the learning agent’s exploration whenever it is necessary. Despite

ensuring safety, such approaches require the teacher’s presence for very long periods

of time (Saunders et al. 2018, Goecks et al. 2019), which may be infeasible in some

domains where the teacher’s attention span or communication budget is limited to cover

the exhaustive exploration process.

We believe that an action advising algorithm to minimise the number of unsafe

interactions throughout the learning by leveraging a safety-aware yet incompetent

teacher with limited availability can be a promising idea to study. Specifically, imitating

the teacher’s decisions with multiple models to assess the safety of the states and to

execute safe actions whenever it is appropriate could be the goal. This way, the need for

152 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

the teacher itself can be substantially decreased at the expense of only a small number

of costly interactions. Having a way to control this trade-off can be especially valuable

in the domains where the cost of accessing a teacher is also one of the concerns.

8.1.2 Learning from Incompetent Peers

The potentially best teachers are obviously those with the most amount of relevant

knowledge due to the fact that this lets the student benefit in a multitude of situations.

Nonetheless, peers with only a little expertise in the tasks may also possess some useful

knowledge to be leveraged. For instance, the teacher may have knowledge only about a

little portion of the domain or be incompetent yet have a better policy than a random

policy that can be useful to augment the student’s exploration process early on.

The significance of this idea has already been acknowledged by the research commu-

nities focusing on different learning from past knowledge paradigms such as Imitation

Learning (Wu et al. 2019) and LfD (Gao et al. 2018, Brown et al. 2019, Zhu, Lin, Dai

& Zhou 2020). Nevertheless, it is still to be studied in the area of action advising in the

Deep RL domain to devise methods for the student agents to identify the states and

time periods the teacher’s policy is worth learning from. Due to the aforementioned

motivations and gaps in the research, we believe that investigating the concept of

learning from incompetent teachers in Deep RL domains via action advising will be a

very valuable development.

8.1.3 Learning from Multiple Peers

Scaled-up decision-making systems with a network of multiple agents in them can offer

the student agents a wide range of peers to learn from. These peers may happen to be

learning different aspects of the domain and the tasks, which causes them to offer a

rich set of knowledge. Due to this, the importance of being able to take advantage of

these opportunities can not be ignored.

To this date, learning from multiple agents via action advising is investigated in

8.1. FUTURE WORK 153

some other studies (da Silva et al. 2017, Omidshafiei et al. 2018, Kim et al. 2020) as

well as in our approach presented in Chapter 4. However, these studies kept the number

of agents very limited and incorporated a simple majority voting approach to fuse the

collected advice. Furthermore, the concept of teacher peer selection by the student was

not considered in any of them. Clearly, there is lots of room for improvement in this

aspect of action advising. Such an ability not only would make the student to use its

communication budget more efficiently, but also would help it construct a curriculum

to learn more efficiently. A similar idea has already been studied for DQfD (Seita

et al. 2019) and Policy Reuse (Kurenkov et al. 2019) with promising results. For these

reasons, it will surely be a worthwhile direction to explore the scenarios with multiple

teachers for action advising in Deep RL.

154 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Bibliography

Allis, L. V. et al. (1994), Searching for solutions in games and artificial intelligence,

Rijksuniversiteit Limburg.

Amir, O., Kamar, E., Kolobov, A. & Grosz, B. J. (2016), Interactive teaching strate-

gies for agent training, in S. Kambhampati, ed., ‘Proceedings of the Twenty-Fifth

International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY,

USA, 9-15 July 2016’, IJCAI/AAAI Press, pp. 804–811.

Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A. (2017), ‘A brief

survey of deep reinforcement learning’, CoRR abs/1708.05866.

Bansal, T., Pachocki, J., Sidor, S., Sutskever, I. & Mordatch, I. (2017), ‘Emergent

complexity via multi-agent competition’, CoRR abs/1710.03748.

Bellemare, M., Candido, S., Castro, P., Gong, J., Machado, M., Moitra, S., Ponda,

S. & Wang, Z. (2020), ‘Autonomous navigation of stratospheric balloons using

reinforcement learning’, Nature 588, 77–82.

Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. (2013), ‘The arcade learning

environment: An evaluation platform for general agents’, J. Artif. Intell. Res. 47, 253–

279.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, D.,

Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pachocki,

J., Petrov, M., de Oliveira Pinto, H. P., Raiman, J., Salimans, T., Schlatter, J.,

155

156 BIBLIOGRAPHY

Schneider, J., Sidor, S., Sutskever, I., Tang, J., Wolski, F. & Zhang, S. (2019), ‘Dota

2 with large scale deep reinforcement learning’, CoRR abs/1912.06680.

Bloembergen, D., Tuyls, K., Hennes, D. & Kaisers, M. (2015), ‘Evolutionary dynamics

of multi-agent learning: A survey’, J. Artif. Intell. Res. 53, 659–697.

Boutsioukis, G., Partalas, I. & Vlahavas, I. P. (2011), Transfer learning in multi-agent

reinforcement learning domains, in ‘Recent Advances in Reinforcement Learning - 9th

European Workshop, EWRL 2011, Athens, Greece, September 9-11, 2011, Revised

Selected Papers’, pp. 249–260.

Brown, D. S., Goo, W., Nagarajan, P. & Niekum, S. (2019), Extrapolating beyond

suboptimal demonstrations via inverse reinforcement learning from observations,

in K. Chaudhuri & R. Salakhutdinov, eds, ‘Proceedings of the 36th International

Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,

USA’, Vol. 97 of Proceedings of Machine Learning Research, PMLR, pp. 783–792.

Burda, Y., Edwards, H., Storkey, A. J. & Klimov, O. (2018), ‘Exploration by random

network distillation’, CoRR abs/1810.12894.

Busoniu, L., Babuska, R. & Schutter, B. D. (2008), ‘A comprehensive survey of

multiagent reinforcement learning’, IEEE Trans. Systems, Man, and Cybernetics,

Part C 38(2), 156–172.

Castro, P. S., Moitra, S., Gelada, C., Kumar, S. & Bellemare, M. G. (2018), ‘Dopamine:

A research framework for deep reinforcement learning’, CoRR abs/1812.06110.

Chen, S., Tangkaratt, V., Lin, H. & Sugiyama, M. (2018), ‘Active deep q-learning with

demonstration’, CoRR abs/1812.02632.

Clouse, J. A. (1996), On Integrating Apprentice Learning and Reinforcement Learning,

University of Massachusetts Amherst.

BIBLIOGRAPHY 157

Da Silva, F. L. & Costa, A. H. R. (2019), ‘A survey on transfer learning for multiagent

reinforcement learning systems’, Journal of Artificial Intelligence Research 64, 645–

703.

da Silva, F. L., Glatt, R. & Costa, A. H. R. (2017), Simultaneously learning and

advising in multiagent reinforcement learning, in ‘Proceedings of the 16th Conference

on Autonomous Agents and Multi-Agent Systems, AAMAS 2017, São Paulo, Brazil,

May 8-12, 2017’, ACM, pp. 1100–1108.

da Silva, F. L., Hernandez-Leal, P., Kartal, B. & Taylor, M. E. (2020), Uncertainty-aware

action advising for deep reinforcement learning agents, in ‘The Thirty-Fourth AAAI

Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative

Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI

Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York,

NY, USA, February 7-12, 2020’, AAAI Press, pp. 5792–5799.

da Silva, F. L., Taylor, M. E. & Costa, A. H. R. (2018), Autonomously reusing

knowledge in multiagent reinforcement learning, in ‘Proceedings of the Twenty-

Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July

13-19, 2018, Stockholm, Sweden.’, pp. 5487–5493.

da Silva, F. L., Warnell, G., Costa, A. H. R. & Stone, P. (2020), ‘Agents teaching

agents: a survey on inter-agent transfer learning’, Auton. Agents Multi Agent Syst.

34(1), 9.

De Bruin, T., Kober, J., Tuyls, K. & Babuška, R. (2015), The importance of experience

replay database composition in deep reinforcement learning, in ‘Deep reinforcement

learning workshop, NIPS’.

Dubey, R., Agrawal, P., Pathak, D., Griffiths, T. & Efros, A. A. (2018), Investigating

human priors for playing video games, in ‘Proceedings of the 35th International

158 BIBLIOGRAPHY

Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,

July 10-15, 2018’, pp. 1348–1356.

Fachantidis, A., Taylor, M. E. & Vlahavas, I. P. (2019), ‘Learning to teach reinforcement

learning agents’, Machine Learning and Knowledge Extraction 1(1), 21–42.

Finn, C., Abbeel, P. & Levine, S. (2017), Model-agnostic meta-learning for fast adap-

tation of deep networks, in D. Precup & Y. W. Teh, eds, ‘Proceedings of the 34th

International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,

6-11 August 2017’, Vol. 70 of Proceedings of Machine Learning Research, PMLR,

pp. 1126–1135.

Foerster, J., Assael, I. A., de Freitas, N. & Whiteson, S. (2016), Learning to communicate

with deep multi-agent reinforcement learning, in ‘Neural Information Processing

Systems’, pp. 2137–2145.

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N. & Whiteson, S. (2017), ‘Coun-

terfactual multi-agent policy gradients’, CoRR abs/1705.08926.

Foerster, J. N., Nardelli, N., Farquhar, G., Torr, P. H. S., Kohli, P. & Whiteson, S.

(2017), ‘Stabilising experience replay for deep multi-agent reinforcement learning’,

CoRR abs/1702.08887.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M., Osband, I., Graves,

A., Mnih, V., Munos, R., Hassabis, D., Pietquin, O., Blundell, C. & Legg, S.

(2018), Noisy networks for exploration, in ‘6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,

Conference Track Proceedings’, OpenReview.net.

Fujimoto, S., Meger, D. & Precup, D. (2019), Off-policy deep reinforcement learning

without exploration, in K. Chaudhuri & R. Salakhutdinov, eds, ‘Proceedings of the

36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019,

BIBLIOGRAPHY 159

Long Beach, California, USA’, Vol. 97 of Proceedings of Machine Learning Research,

PMLR, pp. 2052–2062.

Fulda, N. & Ventura, D. (2007), Predicting and preventing coordination problems in

cooperative q-learning systems., in ‘IJCAI’, Vol. 2007, pp. 780–785.

Gal, Y. & Ghahramani, Z. (2016), Dropout as a bayesian approximation: Representing

model uncertainty in deep learning, in M. Balcan & K. Q. Weinberger, eds, ‘Proceed-

ings of the 33nd International Conference on Machine Learning, ICML 2016, New

York City, NY, USA, June 19-24, 2016’, Vol. 48 of JMLR Workshop and Conference

Proceedings, JMLR.org, pp. 1050–1059.

Gao, Y., Xu, H., Lin, J., Yu, F., Levine, S. & Darrell, T. (2018), Reinforcement

learning from imperfect demonstrations, in ‘6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,

Workshop Track Proceedings’, OpenReview.net.

Garcia, J. & Fernández, F. (2015), ‘A comprehensive survey on safe reinforcement

learning’, J. Mach. Learn. Res. 16, 1437–1480.

Goecks, V. G., Gremillion, G. M., Lawhern, V. J., Valasek, J. & Waytowich, N. R.

(2019), Efficiently combining human demonstrations and interventions for safe train-

ing of autonomous systems in real-time, in ‘The Thirty-Third AAAI Conference on

Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artifi-

cial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational

Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -

February 1, 2019’, AAAI Press, pp. 2462–2470.

Goodfellow, I. J., Bengio, Y. & Courville, A. C. (2016), Deep Learning, Adaptive

Computation and Machine Learning, MIT Press.

Hafner, D., Lillicrap, T. P., Ba, J. & Norouzi, M. (2020), Dream to control: Learn-

160 BIBLIOGRAPHY

ing behaviors by latent imagination, in ‘8th International Conference on Learning

Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020’.

Hausknecht, M., Mupparaju, P., Subramanian, S., Kalyanakrishnan, S. & Stone,

P. (2016), Half field offense: An environment for multiagent learning and ad hoc

teamwork, in ‘AAMAS Adaptive Learning Agents (ALA) Workshop’.

He, K., Zhang, X., Ren, S. & Sun, J. (2015), Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification, in ‘2015 IEEE International

Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015’,

IEEE Computer Society, pp. 1026–1034.

Hernandez-Leal, P., Kaisers, M., Baarslag, T. & de Cote, E. M. (2017), ‘A sur-

vey of learning in multiagent environments: Dealing with non-stationarity’, CoRR

abs/1707.09183.

Hernandez-Leal, P., Kartal, B. & Taylor, M. E. (2018), ‘Is multiagent deep reinforcement

learning the answer or the question? A brief survey’, CoRR abs/1810.05587.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan,

D., Piot, B., Azar, M. G. & Silver, D. (2018), Rainbow: Combining improvements in

deep reinforcement learning, in S. A. McIlraith & K. Q. Weinberger, eds, ‘Proceedings

of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the

30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI

Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New

Orleans, Louisiana, USA, February 2-7, 2018’, AAAI Press, pp. 3215–3222.

Hester, T., Veceŕık, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D.,

Quan, J., Sendonaris, A., Osband, I., Dulac-Arnold, G., Agapiou, J. P., Leibo, J. Z. &

Gruslys, A. (2018), Deep q-learning from demonstrations, in S. A. McIlraith & K. Q.

Weinberger, eds, ‘Proceedings of the Thirty-Second AAAI Conference on Artificial

Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence

BIBLIOGRAPHY 161

(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial

Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018’, AAAI

Press, pp. 3223–3230.

Ho, J. & Ermon, S. (2016), Generative adversarial imitation learning, in D. D. Lee,

M. Sugiyama, U. von Luxburg, I. Guyon & R. Garnett, eds, ‘Advances in Neural

Information Processing Systems 29: Annual Conference on Neural Information

Processing Systems 2016, December 5-10, 2016, Barcelona, Spain’, pp. 4565–4573.

Ilhan, E., Gow, J. & Perez, D. (2022), ‘Student-initiated action advising via advice

novelty’, IEEE Transactions on Games 14(3), 522–532.

Ilhan, E., Gow, J. & Pérez-Liébana, D. (2019), Teaching on a budget in multi-agent

deep reinforcement learning, in ‘IEEE Conference on Games, CoG 2019, London,

United Kingdom, August 20-23, 2019’, IEEE, pp. 1–8.

Ilhan, E., Gow, J. & Perez-Liebana, D. (2021a), Action advising with advice imitation in

deep reinforcement learning, in ‘Proceedings of the 20th Conference on Autonomous

Agents and Multi-Agent Systems, AAMAS 2021, May 3-7, 2021’, IFAAMAS, pp. 1100–

1108.

Ilhan, E., Gow, J. & Pérez-Liébana, D. (2021b), Learning on a budget via teacher

imitation, in ‘2021 IEEE Conference on Games (CoG), Copenhagen, Denmark, August

17-20, 2021’, IEEE, pp. 1–8.

Kim, D., Liu, M., Omidshafiei, S., Lopez-Cot, S., Riemer, M., Habibi, G., Tesauro,

G., Mourad, S., Campbell, M. & How, J. P. (2020), Learning hierarchical teaching

policies for cooperative agents, in ‘Proceedings of the 19th International Conference on

Autonomous Agents and Multiagent Systems, AAMAS ’20, Auckland, New Zealand,

May 9-13, 2020’, International Foundation for Autonomous Agents and Multiagent

Systems, pp. 620–628.

162 BIBLIOGRAPHY

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012), Imagenet classification with deep

convolutional neural networks, in P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges,

L. Bottou & K. Q. Weinberger, eds, ‘Advances in Neural Information Processing

Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012.

Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United

States’, pp. 1106–1114.

Kumar, A., Fu, J., Soh, M., Tucker, G. & Levine, S. (2019), Stabilizing off-policy

q-learning via bootstrapping error reduction, in H. M. Wallach, H. Larochelle,

A. Beygelzimer, F. d’Alché-Buc, E. B. Fox & R. Garnett, eds, ‘Advances in Neural

Information Processing Systems 32: Annual Conference on Neural Information Pro-

cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada’,

pp. 11761–11771.

Kurenkov, A., Mandlekar, A., Martin, R. M., Savarese, S. & Garg, A. (2019), AC-Teach:

A bayesian actor-critic method for policy learning with an ensemble of suboptimal

teachers, in L. P. Kaelbling, D. Kragic & K. Sugiura, eds, ‘3rd Annual Conference

on Robot Learning, CoRL 2019, Osaka, Japan, October 30 - November 1, 2019,

Proceedings’, Vol. 100 of Proceedings of Machine Learning Research, PMLR, pp. 717–

734.

Leibo, J. Z., Zambaldi, V. F., Lanctot, M., Marecki, J. & Graepel, T. (2017), ‘Multi-

agent reinforcement learning in sequential social dilemmas’, CoRR abs/1702.03037.

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J. & Quillen, D. (2018), ‘Learning hand-eye

coordination for robotic grasping with deep learning and large-scale data collection’,

Int. J. Robotics Res. 37(4-5), 421–436.

Lipton, Z. C., Li, X., Gao, J., Li, L., Ahmed, F. & Deng, L. (2018), BBQ-Networks:

Efficient exploration in deep reinforcement learning for task-oriented dialogue systems,

in S. A. McIlraith & K. Q. Weinberger, eds, ‘Proceedings of the Thirty-Second AAAI

Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications

BIBLIOGRAPHY 163

of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational

Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February

2-7, 2018’, AAAI Press, pp. 5237–5244.

Littman, M. L. (1994), Markov games as a framework for multi-agent reinforcement

learning, in ‘Machine Learning, Proceedings of the Eleventh International Conference,

Rutgers University, New Brunswick, NJ, USA, July 10-13, 1994’, pp. 157–163.

Liu, Z., Li, X., Kang, B. & Darrell, T. (2021), Regularization matters in policy opti-

mization - an empirical study on continuous control, in ‘9th International Conference

on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021’.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P. & Mordatch, I. (2017), Multi-

agent actor-critic for mixed cooperative-competitive environments, in ‘Advances in

Neural Information Processing Systems 30: Annual Conference on Neural Information

Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA’, pp. 6382–6393.

McInnes, L. & Healy, J. (2018), ‘UMAP: uniform manifold approximation and projection

for dimension reduction’, CoRR abs/1802.03426.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. &

Riedmiller, M. A. (2013), ‘Playing atari with deep reinforcement learning’, CoRR

abs/1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie,

C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. &

Hassabis, D. (2015), ‘Human-level control through deep reinforcement learning’, Nat.

518(7540), 529–533.

Nachum, O., Gu, S., Lee, H. & Levine, S. (2018), Data-efficient hierarchical reinforce-

ment learning, in ‘Advances in Neural Information Processing Systems 31: Annual

164 BIBLIOGRAPHY

Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8

December 2018, Montréal, Canada.’, pp. 3307–3317.

Oliehoek, F. A. & Amato, C. (2016), A Concise Introduction to Decentralized POMDPs,

Springer Briefs in Intelligent Systems, Springer.

Omidshafiei, S., Kim, D., Liu, M., Tesauro, G., Riemer, M., Amato, C., Campbell,

M. & How, J. P. (2018), ‘Learning to teach in cooperative multiagent reinforcement

learning’, CoRR abs/1805.07830.

Omidshafiei, S., Pazis, J., Amato, C., How, J. P. & Vian, J. (2017), ‘Deep decentralized

multi-task multi-agent reinforcement learning under partial observability’, CoRR

abs/1703.06182.

Piot, B., Geist, M. & Pietquin, O. (2014), Boosted bellman residual minimization

handling expert demonstrations, in T. Calders, F. Esposito, E. Hüllermeier & R. Meo,

eds, ‘Machine Learning and Knowledge Discovery in Databases - European Conference,

ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part II’,

Vol. 8725 of Lecture Notes in Computer Science, Springer, pp. 549–564.

Pomerleau, D. (1991), ‘Efficient training of artificial neural networks for autonomous

navigation’, Neural Comput. 3(1), 88–97.

Popova, M., Isayev, O. & Tropsha, A. (2018), ‘Deep reinforcement learning for de novo

drug design’, Science Advances 4(7), eaap7885.

Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G., Foerster, J. N. & White-

son, S. (2018), ‘QMIX: monotonic value function factorisation for deep multi-agent

reinforcement learning’, CoRR abs/1803.11485.

Ross, S., Gordon, G. J. & Bagnell, D. (2011), A reduction of imitation learning and

structured prediction to no-regret online learning, in G. J. Gordon, D. B. Dunson &

M. Dud́ık, eds, ‘Proceedings of the Fourteenth International Conference on Artificial

BIBLIOGRAPHY 165

Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011’,

Vol. 15 of JMLR Proceedings, JMLR.org, pp. 627–635.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu,

K., Pascanu, R. & Hadsell, R. (2016), ‘Progressive neural networks’, CoRR

abs/1606.04671.

Saunders, W., Sastry, G., Stuhlmüller, A. & Evans, O. (2018), Trial without error:

Towards safe reinforcement learning via human intervention, in E. André, S. Koenig,

M. Dastani & G. Sukthankar, eds, ‘Proceedings of the 17th International Conference

on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden,

July 10-15, 2018’, International Foundation for Autonomous Agents and Multiagent

Systems Richland, SC, USA / ACM, pp. 2067–2069.

Schaal, S. (1996), Learning from demonstration, in M. Mozer, M. I. Jordan & T. Petsche,

eds, ‘Advances in Neural Information Processing Systems 9, NIPS, Denver, CO, USA,

December 2-5, 1996’, MIT Press, pp. 1040–1046.

Schaul, T., Quan, J., Antonoglou, I. & Silver, D. (2016), Prioritized experience replay,

in ‘4th International Conference on Learning Representations, ICLR 2016, San Juan,

Puerto Rico, May 2-4, 2016, Conference Track Proceedings’.

Seita, D., Chan, D. M., Rao, R., Tang, C., Zhao, M. & Canny, J. F. (2019), ‘ZPD

teaching strategies for deep reinforcement learning from demonstrations’, CoRR

abs/1910.12154.

Shao, K., Zhu, Y. & Zhao, D. (2018), ‘StarCraft micromanagement with reinforcement

learning and curriculum transfer learning’, CoRR abs/1804.00810.

Shoham, Y., Powers, R. & Grenager, T. (2003), Multi-agent reinforcement learning: a

critical survey, Technical report, Technical report, Stanford University.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,

166 BIBLIOGRAPHY

Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T. P., Leach, M.,

Kavukcuoglu, K., Graepel, T. & Hassabis, D. (2016), ‘Mastering the game of go with

deep neural networks and tree search’, Nat. 529(7587), 484–489.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. (2014),

‘Dropout: a simple way to prevent neural networks from overfitting’, J. Mach. Learn.

Res. 15(1), 1929–1958.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg, M.,

Lanctot, M., Sonnerat, N., Leibo, J. Z., Tuyls, K. et al. (2017), ‘Value-decomposition

networks for cooperative multi-agent learning’, arXiv preprint arXiv:1706.05296 .

Sutton, R. S. & Barto, A. G. (2018), Reinforcement learning: An introduction, MIT

press.

Täıga, A. A., Fedus, W., Machado, M. C., Courville, A. C. & Bellemare, M. G. (2019),

‘Benchmarking bonus-based exploration methods on the arcade learning environment’,

CoRR abs/1908.02388.

Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., Aru, J. &

Vicente, R. (2015), ‘Multiagent cooperation and competition with deep reinforcement

learning’, CoRR abs/1511.08779.

Taylor, A., Duparic, I., Galván-López, E., Clarke, S. & Cahill, V. (2013), ‘Transfer

learning in multi-agent systems through parallel transfer’.

Taylor, M. E., Carboni, N., Fachantidis, A., Vlahavas, I. P. & Torrey, L. (2014),

‘Reinforcement learning agents providing advice in complex video games’, Connect.

Sci. 26(1), 45–63.

Taylor, M. E. & Stone, P. (2009), ‘Transfer learning for reinforcement learning domains:

A survey’, Journal of Machine Learning Research 10, 1633–1685.

BIBLIOGRAPHY 167

Teh, Y. W., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R., Heess,

N. & Pascanu, R. (2017), ‘Distral: Robust multitask reinforcement learning’, CoRR

abs/1707.04175.

Torrey, L. & Taylor, M. E. (2013), Teaching on a budget: agents advising agents in

reinforcement learning, in ‘International conference on Autonomous Agents and Multi-

Agent Systems, AAMAS ’13, Saint Paul, MN, USA, May 6-10, 2013’, pp. 1053–1060.

van Hasselt, H., Guez, A. & Silver, D. (2016), Deep reinforcement learning with double

q-learning, in D. Schuurmans & M. P. Wellman, eds, ‘Proceedings of the Thirtieth

AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,

USA’, AAAI Press, pp. 2094–2100.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J.,

Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M.,

Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M., Vezhnevets,

A. S., Leblond, R., Pohlen, T., Dalibard, V., Budden, D., Sulsky, Y., Molloy, J.,

Paine, T. L., Gülçehre, Ç., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama, D.,

Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lillicrap, T. P., Kavukcuoglu, K.,

Hassabis, D., Apps, C. & Silver, D. (2019), ‘Grandmaster level in StarCraft II using

multi-agent reinforcement learning’, Nature 575(7782), 350–354.

Vrancx, P., Hauwere, Y. D. & Nowé, A. (2011), Transfer learning for multi-agent

coordination, in ‘ICAART 2011 - Proceedings of the 3rd International Conference on

Agents and Artificial Intelligence, Volume 2 - Agents, Rome, Italy, January 28-30,

2011’, pp. 263–272.

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M. & de Freitas, N. (2016),

Dueling network architectures for deep reinforcement learning, in M. Balcan & K. Q.

Weinberger, eds, ‘Proceedings of the 33nd International Conference on Machine

Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016’, Vol. 48 of JMLR

Workshop and Conference Proceedings, JMLR.org, pp. 1995–2003.

168 BIBLIOGRAPHY

Watkins, C. J. C. H. (1989), ‘Learning from delayed rewards’.

Wilson, A., Fern, A., Ray, S. & Tadepalli, P. (2008), Learning and transferring roles in

multi-agent reinforcement, in ‘Proc. AAAI-08 Workshop on Transfer Learning for

Complex Tasks’.

Wu, Y., Charoenphakdee, N., Bao, H., Tangkaratt, V. & Sugiyama, M. (2019), Imitation

learning from imperfect demonstration, in K. Chaudhuri & R. Salakhutdinov, eds,

‘Proceedings of the 36th International Conference on Machine Learning, ICML 2019,

9-15 June 2019, Long Beach, California, USA’, Vol. 97 of Proceedings of Machine

Learning Research, PMLR, pp. 6818–6827.

Young, K. & Tian, T. (2019), ‘Minatar: An atari-inspired testbed for more efficient

reinforcement learning experiments’, CoRR abs/1903.03176.

Zhan, Y., Bou-Ammar, H. & Taylor, M. E. (2016), ‘Theoretically-grounded policy

advice from multiple teachers in reinforcement learning settings with applications to

negative transfer’, CoRR abs/1604.03986.

Zhu, C., Cai, Y., Leung, H. & Hu, S. (2020), Learning by reusing previous advice in

teacher-student paradigm, in A. E. F. Seghrouchni, G. Sukthankar, B. An & N. Yorke-

Smith, eds, ‘Proceedings of the 19th International Conference on Autonomous Agents

and Multiagent Systems, AAMAS ’20, Auckland, New Zealand, May 9-13, 2020’,

International Foundation for Autonomous Agents and Multiagent Systems, pp. 1674–

1682.

Zhu, Z., Lin, K., Dai, B. & Zhou, J. (2020), ‘Learning sparse rewarded tasks from

sub-optimal demonstrations’, CoRR abs/2004.00530.

Zhu, Z., Lin, K. & Zhou, J. (2020), ‘Transfer learning in deep reinforcement learning:

A survey’, CoRR abs/2009.07888.

BIBLIOGRAPHY 169

Zimmer, M., Viappiani, P. & Weng, P. (2014), Teacher-student framework: A reinforce-

ment learning approach, in ‘AAMAS Workshop Autonomous Robots and Multirobot

Systems’.

	Introduction
	Problem Statement
	Contributions
	Organisation of the Thesis

	Background
	Markov Decision Processes
	Markov Games
	Decentralised Partially Observable Markov Decision Processes

	Reinforcement Learning
	Multi-Agent Reinforcement Learning

	Deep Reinforcement Learning
	Deep Q-Network
	Random Network Distillation
	Dropout

	Learning from Prior Knowledge
	Imitation Learning
	Learning from Demonstrations
	Action Advising

	Action Advising in Classical RL
	Action Advising in Deep RL

	Games in this Thesis
	Cover the Landmarks
	Reach the Goal
	MinAtar
	Arcade Learning Environment

	Teaching on a Budget in Multi-Agent Deep Reinforcement Learning
	Introduction
	The Approach
	Agent Specifications
	Teaching on a Budget

	Experimental Setup
	Results and Discussion
	Conclusions

	Student-Initiated Action Advising via Advice Novelty
	Introduction
	The Approach
	Experimental Setup
	Results and Discussion
	Reach the Goal
	MinAtar

	Conclusions

	Action Advising with Advice Imitation in Deep Reinforcement Learning
	Introduction
	The Approach
	Experimental Setup
	Results and Discussion
	Conclusions

	Learning on a Budget via Teacher Imitation
	Introduction
	The Approach
	Experimental Setup
	Results and Discussion
	Conclusions

	Conclusions and Future Work
	Future Work
	Action Advising for Safe Exploration
	Learning from Incompetent Peers
	Learning from Multiple Peers

