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Abstract

This thesis is concerned with the methodology of smooth emulators for computer experiments.

The work in this thesis is categorized into two parts. The first and the main part comprises

methods with smooth emulators for the analysis of computer experiments. The second part

is devoted to the extension of optimal designs for the smooth emulator. The methodology of

the first part is primarily focussed on the problem of less than full rank design model matrix,

and we combine the elements of ridge regression with a measure of smoothness to develop an

improved emulator. Our analytical results show that mean square error of the parameter of

smooth emulator improves over that for the standard regression parameter. We also extend the

smooth emulator with the Gaussian process and compare the performance with the Gaussian

emulator itself. We have applied our methods to model COVID transmission data as well

as to data from simulated climate models. We have concluded from the analytical results

and simulated studies that the smooth interpolator outperforms other emulators under certain

given conditions which are described in the work. We conclude from the results that smooth

emulator is useful particularly in rank deficient design model matrix. In addition, the smooth

emulator provides a simple and cheap alternative in situations where Gaussian emulator is not

a viable choice. In the second part of this work, we perform a detailed exploratory analysis to

find some of the optimal designs for smooth interpolator that provides valuable insights into

the properties of the optimal designs for smooth emulator. We also develop analytical results

for D- and A-optimal designs for ridge regression not found in literature before.
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Chapter 1

Introduction

Historically, Statistics has been the scientific discipline to create procedures and methods to

carry out empirical research. This covers a wide variety of areas from sampling methods of

data collection to estimation and analysis. Agricultural field experiments were the first to use

designed experiments after the breakthrough work of [26] in the field of design of experiments.

This section is motivated by the Introduction of Physical and Computer Experiments found in

[69] and a summary of the same is given here.

Over the time many other areas and fields have been developed in this subject matter. For

example, controlled clinical trials, which is a variant of designed experiments, have been exten-

sively used in medical field. Similarly, simulation experiments are widely employed in industry,

operations research, business studies, environment etc. to gain better understanding of physi-

cal phenomena under study. Unfortunately, the traditional techniques of physical experiments

are not valid in case of computer experiments owing to the fact that physical experiments

are accompanied by real life variations in variables and response. In order to increase the

validity of physical experiments, some well known techniques are developed by Statisticians.

The first among them is randomization which suggest to apply the experimental treatment

randomly so as to prevent the nuisance variables from systemically affecting the response. The

second method is the blocking which is the method of dividing the experimental material into

homogeneous groups so that it may not supersede the treatment effect on response. Lastly,

the phenomenon of replication is introduced which make the experiment to run on large scale.

This minimizes the measurement variation across treatments.

In contrast to physical experiments, computer experiments may be deterministic and for

a given set of input variables, the code run twice produces the same response. Moreover, the

codes involved in a computer experiment may be time-consuming. Also, modelling of physical
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processes is a complex activity owing to the fact that in any such process a large number of

variables may involve along with uncontrolled variations that need to be taken into account.

Therefore, efforts are being made to design efficient computer experiments that are aimed to

model Physical phenomena in order to obtain optimal outputs and efficient predictions. One

of the pioneer works in the domain of computer experiments dates back to 1955 with the pub-

lication of report [25]. In this work the first supercomputer MANIAC was used to develop

a problem solving tool to virtually zoom in on a system and observe atomistic interactions

at the molecular level, with a realism that was not possible before. It was a breakthrough

work with the use of computer simulations for the first time. Computer models are the mod-

els that attempt to simulate a physical phenomenon under study. Computer experiments are

preferred over physical experiments in following situations; large number of input variables,

economic constraints to gather information on a particular research question or the ethical

reasons. However, many complications arise in an effort to design an efficient model, partly

because of the deterministic nature of computer experiments, i.e. absence of random error

and partly because of the complexity of the underlying problem. In order to gain a better

understanding of computer experiments, it is inevitable to distinguish three types of variables

that can affect a computer code and hence the output, depending upon the phenomenon under

study. A detailed note on these variables can be found in [69], a brief introduction of which is

given here.

The first type of variable is called controlled variable. Control variables are those vari-

ables that are fixed by the experimenter e.g. by an engineer or scientist in order to control the

process. For example, amount of different chemicals in manufacturing of metal sheets.

The second type of variables are called environmental variables. These are the vari-

ables that affect the output and subject to change with specific users or conditions. e.g. in

production of metal sheets, the humidity, temperature, light intensity may be considered as

environmental variables that are subject to change at different points of time. These variables

are also called noise variables.

The third type of variables are called model variables and they are associated with the

uncertainty in mathematical modelling.

We provide a brief account of some of the examples details of which are provided in [69].

Examples of scientific and technological developments that have been made with the help

of computer experiments are vast and rapidly growing. They have been employed to predict

climate and weather, the performance of integrated circuits, the behaviour of controlled nuclear

processes, fire studies, stresses in prosthetic devices, clinical trials etc.

A mathematical model for the evolution of fire in a single room with closed doors and windows
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is developed by [16], where an object is ignited at some point below the ceiling. The input

variables to this model include, the room floor area, ceiling height, height of burning object

from the floor and heat release rate. The outputs are the temperature of the hot smoke layer

and its distance as a function of time above the fire source. Since those initial attempt to

model fire events, a vast amount of material on computer codes have been emerged to model

wildfire evolutions as well as fires in confined places.

In an auto-mobile industry, [48], designed a computer model to determine the failure depth of

the symmetrical rectangular blocks. This is an important application, since the sheet metal

formed in this manner is utilized in many parts of the automotive industry.

Another example of the significance of computer experiments in clinical trials can be found in

[14], that studied the design and analysis of total joint replacement with the aid of computer

experiments. In an attempt to find the alternatives of the existing design in which two of the

dimensions were allowed to vary, this model also had three patient specific variables, significant

for structural response. A project is described by[5], where engineering specification require 31

design variables to optimally design helicopter blade. The objective function was a measure of

the rotor vibration that combined the forces and moments on the rotor, each of these quantities

were calculated by the computer code.

One of the applications of computer code is found in [40], where the authors highlighted the

role of computer experiments in public policy. The model, they used, quantifies the state of the

future over a window of 100 years, using several measures, one of which is Human development

Index. There are 30 input variables and public policies are specified by some of the inputs.

1.0.1 Surrogate models for computer experiments

Computer simulations can serve to solve a wide range of problems including optimization, pre-

diction, exploration of design space, uncertainty analysis and sensitivity analysis. An attempt

to data handling and model building amid computer simulations often result in expensive com-

putations. Consequently, the need had risen to replace the expensive computer simulations

with alternative cheap surrogates. The surrogate modelling provides a framework to find an

approximate function that may mimic the behaviour of the original system under study. Sur-

rogates are constructed based on data driven bottom up approach. In other words, surrogates

can be constructed for any process without any prior knowledge on the data generating mecha-

nism. The problem of constructing the surrogates can be broadly classified into two categories

[65]

1. Analysis problem: How to make effective use of data to develop a surrogate model that
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results into accurate predictions at untried points.

2. Design problem: How to select design points to meet certain objectives of the study.

Many surrogate models have been developed and efficiently applied in lieu of simulation mod-

els. Some of the notable ones include: polynomial response surface models [6][50], Kriging in

computer experiments [65], Radial basis functions [56] [9], neural networks [44] and support

vector machines [18]. Surrogates may also be referred as meta-models, model emulation or

proxy models. A review of surrogate models is provided by [60], where a detailed account of

surrogate models is furnished.

Our prime focus in this thesis is to build a surrogate model that lays its foundations on

polynomials and Gaussian processes. The use of Gaussian process as a surrogate in computer

experiments is introduced in the seminal paper of Sacks [65]. The methodology of Gaussian

process to make predictions at untried locations has its roots in spatial statistics and known

as Kriging [37]. An excellent book in this reference is [76]. This book summarizes the previous

work on the prediction of the random field based on observations at some locations of the ran-

dom field and also introduce some new methods of kriging. A valuable resource to understand

Gaussian regression within machine learning framework is [57]. It is vital to define here the

terms simulator and emulator within the context of computer experiments that will be used

in this thesis. In order to simulate the behaviour of real world systems complex models are

developed that encompasses the detailed knowledge of the real world process. These models

are in the form of equations which are implemented in computer programs. Such mathematical

model and the computer program that implements it is referred as a simulator [53]. An emula-

tor is the statistical approximation to the simulator. In other words simulator is a true function

that maps the inputs to the output and emulator approximates this mapping. We say that the

Gaussian Process surrogate model is the Gaussian process emulator that attempts to emulate

the true model. Once an emulator is built for the computer model, different analysis can be

done one of which includes Sensitivity Analysis. Sensitivity analysis is defined as the study of

sensitivity of model outputs to variation in model inputs [53]. A good emulator is expected to

produce efficiently close approximations of Sensitivity Analysis to that of the simulator. An

emulator can also act as an efficient device to quantify uncertainty in the model output. Some

of the sources of uncertainty include, random or unknown input, model specification and code

uncertainty [53].

14



1.1 Motivation

The Gaussian surrogates assume the correlation structure among the observations which makes

such models computationally expensive. We want to build a model without the need of the

assumption of correlation among the observations. In other words we want to find methods

to build an emulator without the Gaussian process. In addition the Gaussian surrogates in

literature are developed for full rank design model matrix. We aim to build a flexible model

which produces predictions both for full rank and less than full rank design model matrix. One

of such motivation is provided by Smooth Supersaturated models [4]. This model is built with

the introduction of a measure of Smoothness, the matrix K and solving a constraint problem

details of which are given in Chapter (3). In order to give a flavour of this thesis we introduce a

simple example. The notations used here will be followed by the explanation in the forthcoming

chapters.

Consider a design D = {0, ±1} and the respective response vector y = {y−1, y0, y1}. We

discuss three cases which will built a foundation of this thesis.

1.1.1 Full rank design model matrix

Let M = {1, x} be the basis to construct model terms. Then the design model matrix F is full

rank and we can use simple linear regression to find the model parameters β0 and β1.

F =

1 −1

1 0

1 1

 and F TF =

(
3 0

0 2

)

The parameter vector β is straightforward to compute which gives β0 = ȳ and β1 = 1/2(y1 −
y−1).

1.1.2 Less than full rank design model matrix

Let M = {1, x, x2, x3} which is supersaturated basis. The design model matrix for given basis

is less than full rank.

F =

1 −1 1 −1

1 0 0 0

1 1 1 1

 and F TF =


3 0 2 0

0 2 0 2

2 0 2 0

0 2 0 2
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We present the matrix K introduced in [4] which is constructed from the measure of roughness

and given as,

K =


0 0 0 0

0 0 0 0

0 0 4 6

0 0 6 12


We introduce a model termed Smooth Ridge model which is formulated with the supersaturated

basis and the matrix K. The detailed methodology of the model construction is delineated

in Chapter (3). We present here the parameter vector of the proposed model which takes the

form β̃λ = (F TF + λK)−1F TY . With the given design, basis and design model matrix it is

straightforward to compute β̃λ. It is interesting to note that as λ increases the parameter

estimate associated to linear basis approaches to that of linear regression while the parameter

estimate of non-linear basis goes to zero. For the given example we can see that,

lim
λ→∞

β̃λ =


ȳ

1/2(y1 − y−1)

0

0


1.1.3 Objectives

The core objectives of the work in this thesis are to:

1. Develop a methodology to build a smooth emulator for computer experiments particularly

for rank deficient design model matrix.

2. Analyse and compare the proposed model with existing Gaussian Process emulators.

3. Identify the scope and limitations of the models under study.

4. Understanding the relationship among the response and the choice of design points.

5. Exploratory analysis of optimal designs for the smooth model.

1.2 Outline of the thesis

This thesis is composed of six chapters. Followed by the first chapter of Introduction, the second

chapter exhibits a detailed review of literature that encompasses Gaussian Process emulator
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in great depth. We begin with the introduction of notations in Section (2.1) to be used in the

rest of the thesis. A detailed analysis of computer model [65] is furnished in Section (2.2) with

the application of Markov Chain Mote Carlo to the same model in Section (2.3). An extension

of Gaussian Process to Convex combination of Gaussian processes [29] is discussed in Section

(2.4). The use of Gaussian Process to build an emulator for calibrated model was introduced

by [34], an overview of which is presented in Section (2.5). A brief introduction of Neural

networks, a widely adopted surrogate model, is given in Section (2.6).

In Chapter three we introduce the methodology to build Smooth Emulator. In Section

(3.1) we review the methodology that provides a framework of Smooth Emulator. In Section

(3.2) the Smooth Emulator named Smooth Ridge model is developed. The comparison of the

variance of Smooth ridge estimator with that of regression estimator is given in Section3.3).

Mean square error of Smooth Ridge estimator along with the Mean Square Error of model

predictions is explained in Section (3.4) and (3.5) respectively. Comparisons of Smooth Ridge

model with the existing models are carried out in Section (3.6) for simulated data and in Section

(3.7) for COVID-19 transmission data. Introduction of Splines and their comparison with the

proposed methodology is furnished in Section (3.8) and Section (3.9). The methodology of

Sensitive Analysis for Smooth Ridge model is explained in Section (3.10) and construction of

Sensitivity Indices is explained in Section (3.11). The Bayesian formulation of Smooth Ridge

model is introduced in Section (3.12) followed by the final conclusions in Section (3.13).

Chapter four narrates the detailed comparisons of Smooth Ridge model and contemporary

models for Bratley function and Levy function as simulators. Different choice of parameters,

design size and dimensions are considered to evaluate the performance of Smooth Emulator in

Sections (4.1-4.5). COVID data modelling is revisited in Section (4.6) and temperature data

is employed for comparisons in Section (4.7). Sensitivity indices are computed for the COVID

data and temperature data in Section (4.8).

Chapter five addresses the phenomenon of design selection for Smooth Ridge model. Section

(5.1) describes some of the space filling designs followed by the overview of some of the criterion

based designs in Section (5.2) and Section (5.3). The methodology to construct D- and A-

optimal designs with two design points and replications is explained in Section (5.4). The

analytical results for D- and A-optimal designs for Ridge regression are developed in Section

(5.5). An exploratory analysis of designs based on prediction variance is expounded in Section

(5.6).

The thesis is concluded with discussions and future recommendations in Chapter (6).
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Chapter 2

Models from Literature

A comprehensive literature review in the field of computer experiments along with the explo-

ration of related domains is provided in this chapter. The purpose is to get a better insight of

models pertaining to computer experiments and understand in detail the underlying method-

ology thereof. Most of the theoretical developments relevant to the reviewed literature are

reproduced along with the simulation results. One of the pioneer work in the realm of com-

puter experiments was [65]. This work builds an emulator by considering the deterministic

output as a realization of stochastic process. This leads to introduce a bias correction term

along with the trend in conventional regression problems. The emulator is build using elements

of kriging method introduced by[43] where a predictor is defined in terms of linear combination

of observed data. It is shown that predictions at untried points can be made with estimate

of uncertainty. The concept of obtaining surrogate model with a combination of two Gaus-

sian processes is explained by [29]. Their work addresses the situation when observations are

supposed to be realizations of mixture of two independent Gaussian processes. The results

are provided for one and two dimension data which suggest that convex combination of two

Gaussian processes can improve predictions, particularly when the input region shows non

homogeneous behaviour. The study of calibration parameters or context specific inputs for

computer experiments was carried out by [34], in which a framework is provided for the model

and analysis of data when true values of calibrated inputs are unknown. The approach used

towards estimating and tuning of parameters in this study is based on Bayesian analysis and

posterior distribution is obtained on calibration parameter to fit the model to the observed

data. This study on calibration parameter and underlying methodology is further investigated

by [78] in which the authors commented on unstable performance of [34] in calibration. They

presented two frameworks, the one where physical observations are assumed to be non random
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and a more realistic approach where they are considered random. Two computer models are

developed namely, cheap computer simulations and expensive computer simulations which, sup-

ported by theoretical studies, show that the predictions made are not dependent heavily on the

choice of priors contrary to Kennedy’O Hagan model [34]. Moreover, they provided asymptotic

convergence of predictive distribution given by Kennedy’O Hagan. One of the many variants

of calibration parameter is latent variable involved in generating the response. Deep Gaussian

processes had caught an appreciable attention in recent years owing to its flexibility to capture

latent structure present in the model. One of the work in the fast growing field is developed by

[19]. In this work, the response is considered to be a result of multivariate Gaussian process,

whereby, inputs are also governed by some Gaussian process. Therefore, there is structure

of hidden and visible layers with nodes in each layer. In order to marginalize out the latent

variables and obtain predictions, [19] explored the theory of variational inference and therefore

defined a lower bound on the marginal likelihood of the data. It is shown that marginalising

out the latent space with lower bound is very effective in learning the hierarchical features

and abstract information even for smaller data sets. A comprehensive review of Computer

experiments is accounted in [38]. Neural Networks have emerged as one of the most popular

surrogate to computer simulations in recent times introduced by [44] in 1943.

The chapter is structured as follows: A comprehensive introduction of notations to be used

in the rest of the document is given in Section (2.1). Detailed review of Sacks model [65] is

accounted in Section (2.2) with implementation of Bayesian approach to the same model in

Section (2.3). Convex combination of Gaussian process [29] is explicitly reviewed in Section

(2.4). The detailed methodology of Kennedy’O Hagan model [34] is furnished in Section (2.5)

followed by description of Neural Networks in Section (2.6).

2.1 Notation

The notation explained in this section will be followed in rest of the document. Consider a

study with d-dimensional vector of input variables x = (xj|j = 1, 2 . . .) ∈ Rd. consider a

design D be the set of n points taken from χ ⊂ Rd such that D = {si|i = 1, 2 . . . n} which

constitute the sample set of size n. While referring to the individual entries of each design

point, the first sub-index will refer to the design point and the rest of the sub-indices to the

entries, e.g. si = (sij|j = 1, 2 . . . d). A real valued response obtained by the simulator y(si)

is observed at every design point si ∈ χ and the column vector y = (y(si) : i = 1, 2 . . . n) be

the collection of all these observations at n design points. For any indeterminate point x, f(x)

is chosen so as to approximate the true function responsible to generate the response surface.
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f(x) = (f1(x) f2(x) . . . fk(x))
T is a vector of k functions on an indeterminate point x in χ. The

design model matrix is the n×k matrix, built by evaluating the vector f(x) at n design points

and denoted as F = {f(si)|i = 1, 2 . . . n}T .

2.2 Sacks Model

The pioneer work in the field of computer experiments was put forward by [65]. This model

gave rise to the concept of simulated designs, different from the conventional experimental

designs, owing to the fact that predictions in computer experiments are based on the emulator

which tries to capture the true observations of the complex physical process under study. To

this end different metamodels also termed surrogates have been developed as an interpolator

to the simulated data. One of the widely adopted surrogates include kriging introduced by [43]

in the domain of spatial statistics. In the context of computer experiments kriging assumes

the underlying process to be superposition of the linear model and departures from the linear

model. The most widely employed emulator in the realm of computer experiments are Gaussian

emulators which also borrow some elements of kriging. The model proposed by [65] takes

account of the Gaussian emulator. For any indeterminate point x, let y(x) be a deterministic

response which in kriging, is considered as a realization of a stochastic process, Y(x), where

Y(x) depends on x in a standard regression manner while residual variation follows Gaussian

Random Function (GRF). The resulting model has the form

Y (x) =
k∑

j=1

fj(x)βj + Z(x)

which equivalently can be written as

Y (x) = f(x)Tβ + Z(x) (2.1)

where f(x) is a vector composed of (f1(·), f2(·) . . . fk(·))T which are k known regression func-

tions, the vector of unknown regression coefficients is β = (β1, β2 . . . βk)
T . The term Z(x) is

assumed to be a zero mean Gaussian random process with covariance

Cov(Z(xi), Z(xj)) = σ2ϱ(xi − xj), where ϱ is the correlation function (2.2)
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Equivalently,

Cov(Z(xi), Z(xj)) = σ2ϱ(h) (2.3)

where, σ2 is the process variance and ϱ(h) is the correlation function between Z(xi) and Z(xj)

that depends on the lag distance h between xi and xj. Any choice of correlation function is

characterised by a parameter θ which is the length scale parameter and determines the speed of

decay of the correlation between any two points. A detailed account of the various covariance

kernels is dispensed in the Appendix (A.2).

2.2.1 MODEL ANALYSIS

The analysis requires that, at a design point si, we observe the response value y(si). The

following is the standard development from [65]. Let ys be the vector of n observations,

ys = (y(s1), y(s2) . . . y(sn))
T at design D = {si|i = 1, 2 . . . n} . For predictions at an untried

point x, the linear predictor ŷ(x) is defined as

ŷ(x) = c(x)Tys (2.4)

For the sake of simplicity, bold notation is omitted for the development of the results in rest

of the section. In order to find the best linear unbiased estimator (BLUE), the criterion of

minimizing Mean Square Error is adopted. The frequentist approach we adopt replaces ys and

y(x) by random quantities Ys and Y (x). Then the Mean Square Error is averaged over the

random process.

This can be done by choosing a vector c(x) of size n× 1 to minimize

MSE(Ŷ (x)) = E(c(x)TYs − Y (x))(c(x)TYs − Y (x))T (2.5)

MSE(Ŷ (x)) = E
(
c(x)TYsY

T
s c(x)− Y (x)Y T

s c(x)− c(x)TYsY (x) + Y (x)Y (x)T
)

subject to the constraint E(c(x)TYs) = E(Y (x))

It is important to provide expressions for some of the notation before derivation of MSE. The

following object

R =
(
ϱ(si − sj)

)
i,j

1 ≤ i ≤ n; 1 ≤ j ≤ n (2.6)
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is the n × n matrix of correlations between the process Z at the design sites. This matrix is

constructed by the elements of ϱ(si − sj) evaluated at the design points. Denote by

r(x) = (ϱ(s1 − x), . . . ϱ(sn − x))T (2.7)

is the correlation vector between the process Z at the design sites and at an untried input x.

In order to find the Mean Square Error of ŷ(x) , the expression given in Equation (2.5) is

expanded as follows:

MSE(Ŷ (x)) = E
(
c(x)TYsY

T
s c(x)− 2c(x)TYsY (x) + Y (x)Y (x)

)
, (2.8)

where

E(YsY
T
s ) =


E(Y (s1)Y (s1)) E(Y (s1)Y (s2)) . . . E(Y (s1)Y (sn))

E(Y (s2)Y (s1)) E(Y (s2)Y (s2)) . . . E(Y (s2)Y (sn))
...

E(Y (sn)Y (s1)) E(Y (sn)Y (s2)) . . . E(Y (sn)Y (sn))


To simplify this matrix we proceed as follows; let µs =

∑k
j=1 βjfj(s) so the expectation of every

diagonal entry is,

E(Y 2(si)) = V ar (Y (si)) + (E(Y (si)))
2

E(Y 2(si)) = σ2 + µ2(si) (2.9)

E(Y (si), Y (sj)) = E
(
µsi + Z(si))(µsj + Z(sj)

)
= E

(
µsiµsj + µsiZ(sj) + Z(si)µsj + Z(si)Z(sj)

)
E(Y (si), Y (sj)) = µsiµsj + σ2

(
ϱ(si − sj)

)
(2.10)

Arranging terms in vector form, E(YsY
T
s ) can be expressed as:

E(YsY
T
s ) = µsµ

T
s + σ2R. (2.11)

Similarly, the expectation of (YsY (x)) is,

E(YsY (x)) =


E(Y (s1)Y (x))

E(Y (s2)Y (x))
...

E(Y (sn)Y (x))

,
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where for an individual entry we have,

E (Y (si)Y (x)) = E(µsi + Z(si))(µx + Z(x))

= E (µsiµx + µsiZ(x) + µxZ(si) + Z(si)Z(x))

= µsiµx + E (Z(si), Z(x)) .

In summary,

E (Y (si)Y (x)) = µsiµx + ϱ(si − x)

which can be expressed in vector form,

E (Y (s), Y (x)) = µsµx + r(x) (2.12)

Here, recall that E(Z(si)) = E(Z(x)) = 0 and r(x) is the correlation vector between design

points and untried points, defined in Equation (2.7). The expectation of Y 2(x) in Equation

(2.8), gives the following result:

E
(
Y 2(x)

)
= V (Y (x)) + (E(Y (x))2 = σ2 + µ2

x (2.13)

Collecting results from Equations (2.8, 2.10, 2.12 and 2.13), MSE(Ŷ (x)) is given as:

MSE(Ŷ (x)) = c(x)Tσ2Rc(x)+ c(x)Tµsµ
T
s c(x)−2c(x)Tµsµx−2c(x)T r(x)+σ2

x+µ
2(x). (2.14)

Given the condition E
(
c(x)TYs

)
= E (Y (x)) = µx and c(x)Tµs = E

(
c(x)TYs

)
, the mean

square error can be written as,

MSE(Ŷx) = σ2
(
1 + c(x)TRc(x)− 2c(x)T r(x)

)
. (2.15)

Development of predictor

The development of mean square error continues by developing an expression for the predictor

ŷ(x) given in Equation(2.4). This is done by minimizing mean square error subject to the

constraint F T c(x) = f(x) in order to obtain the estimated value of c. This can be achieved by

introducing Lagrange Multiplier.
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Define Lagrangian function M as

M = σ2
(
1 + c(x)TRc(x)− 2c(x)T r(x)

)
+ 2σ2λ

(
F T c(x)− f(x)

)
. (2.16)

To minimize, differentiate Equation (2.16) with respect to c(x) and equating the result to zero

provide following equation 2σ2λF T + 2σ2c(x)TR− 2σ2r(x)T = 0, that is

λF T + c(x)TR = r(x)T (2.17)

Differentiating Equation (2.16) with respect to λ and equating the result to zero provides the

constraint,

F T c(x) = f(x) (2.18)

Combining Equations (2.17 and 2.18) provides following form(
0 F T

F R

)(
λ(x)

c(x)

)
=

(
f(x)

r(x)

)

Assuming that the matrix on the left is invertible, the rearrangement yields(
λ(x)

c(x)

)
=

(
0 F T

F R

)−1

×

(
f(x)

r(x)

)
(2.19)

Matrix inversion in Equation (2.19) is done by the Inverse rule given by [42], where a detailed

note is provided to find the inverses of 2× 2 block matrices. The supporting theorem is given

next.

Theorem 2.1. Let a non singular matrix E be partitioned into 2× 2 blocks as

E =

(
A B

C D

)
, with A and D square matrices not necessarily of the same size.

1. Assume A is non singular. Then the matrix E is invertible if and only if the Schur

complement D − CA−1B of A is invertible

2. Assume D is non-singular. Then the matrix E is invertible if and only if the Schur

complement A−BD−1C of D is invertible
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Corollary 2.1.1. Consider the matrix

E =

(
0 B

C D

)
, with D a square matrix.

For squared diagonal partition with D non singular, it is invertible if and only if BD−1C is

also invertible, and it has inverse(
−(BD−1C)−1 (BD−1C)−1BD−1

D−1C(BD−1C)−1 D−1 −D−1C(BD−1C)−1BD−1

)

Using Theorem (2.1) and Corollary (2.1.1), the inverse of matrix in Equation (2.19) can be

found. After substituting we have the estimate of c(x) as

c(x) = f(x)T (F TR−1F )−1F TR−1 + r(x)TR−1(I − F (F TR−1F )−1F T )

Then the expression c(x)Tys in Equation (2.4) can be evaluated to obtain the predictor ŷ(x):

ŷ(x) = f(x)T (F TR−1F )−1F TR−1ys + r(x)TR−1(ys − F (F TR−1F )−1F Tys). (2.20)

Maximum Likelihood Estimation:Profile Likelihood

In Sacks model (2.1), the vector of stochastic response variables Ys follows a multivariate normal

distribution with mean vector Fβ and covariance matrix σ2R, that is Ys ∼ N (Fβ, σ2R). Let

the model parameters be denoted by ϕ = (β, σ2, θ) which contains all the parameters associated

with the correlations in the matrix R. In order to estimate model parameters, we use method

of maximum likelihood. The likelihood can be written as

L(Ys|β, σ2, θ) =
1

(2π)
n
2 |σ2R| 12

e−
1
2((Ys−Fβ)T (σ2R)−1(Ys−Fβ)) (2.21)

Taking logarithm of the likelihood and simplifying terms, gives the following expression

l(β, σ2, θ) = −n
2
ln2π−nlogσ− 1

2
ln|R|− 1

2σ2
(Y TR−1Ys− 2βTF TR−1Ys+β

TF TR−1F ) (2.22)
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Differentiating the above log likelihood with respect to β and σ2 and equating the differential

to zero, provides the optimal values of β and σ2.

∂l(β, σ2, θ)

∂β
= − 1

2σ2
(−2F TR−1Ys + 2F TR−1Fβ)

Equating the above expression to zero, the usual weighted least squares estimate of β is obtained

β̂ = (F TR−1F )−1F TR−1Ys. (2.23)

Similarly, the estimator of

σ̂2 =
Y T
s R

−1(I − F (F TR−1F )−1F T )R−1Ys
n

(2.24)

Profile likelihood [75] is used for the the estimation of θ. This likelihood is obtained by sub-

stituting the estimated values of β and σ2 back in Equation (2.22). The profile likelihood

expression takes the following form after substituting estimated values of β and σ2 and taking

logarithm.

lp(θ) = −n
2
log(2π) +

n

2
log(n)− n

2
log(C)− 1

2
log|R| − 1

2
(2.25)

where, C = Y TR−1(I − F (F TR−1F )−1F T )R−1Y .

2.2.2 Example with synthetic data

In this section we provide an example of synthetic data where the experimental codes are

developed with the aid of R in order to obtain the profile likelihood estimate of the parameter

θ. A random data is generated from the Gaussian process for the input variable x in the range

[0, 10] with true θ = 0.8. A random sample of 10 design points is selected from 500 Gaussian

data points and the likelihood estimates of β and σ2 are found with the use of Equations (2.23,

2.24). A random search is made among a grid of 200 values of θ over the region [0.5 , 3] to

estimate the parameter θ. The profile likelihood estimate θ̂ = 0.83 is the one that minimizes

the profile likelihood in Equation (2.25). After estimating the parameter vector ϕ = (β, σ2, θ)

we want to study the behaviour of mean squared prediction error for different sample size. For

this purpose we chose random samples of size n = {5, 10, 15} from the Gaussian process. For

each of these samples we construct design model matrix F and correlation matrix R with the

estimated value of θ = 0.83. We compute the predictor ŷ(x) in Equation (2.20) and mean square

error of ŷ(x) in Equation (2.15) for 100 untried points. In addition, the confidence bounds are

also constructed given by the expression ŷ(x)±MSE(ŷ(x)). The results are displayed in the
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Figures (2.1).

(a) profile likelihood of θ for synthetic example (b) MSE plot for n = 5

(c) MSE plot for n = 10 (d) Emulator plot for n = 20

Figure 2.1: Plots for emulator and bounds for n={5,10,20}

It is evident from Figures (2.1) that adding more design points or increasing the sample size

n results in improved approximation of the underlying process by the emulator. For example

the emulator (red dots) becomes closer to the true process (black line) as training data points

increases from n = 5 to n = 20 in Figures (2.1 (a,b,c)). In addition, confidence bounds are wider

for smaller sample size and become narrower with increasing sample size. This is explained by
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the fact that adding more data points reduces the prediction error hence mean squared error

is small for large samples giving rise to small prediction bounds. In addition, we observe that

prediction bounds are wider for the region with no design point Figure (2.1 (a,b,c)).

2.2.3 Analysis of Circuit-Simulator Data

We revisit the circuit-simulator example studied by [65] and reproduce the results in this sec-

tion. The input data in this example is comprised of six transistor dimensions and the response

is measure of asynchronization of two clocks. The observed data consist of 32 realizations. The

correlation function used in [65] is the product exponential given as

ϱ(w, x) =
6∏

j=1

exp(−θj(wj − xj)
2)

The R package DiceKriging developed by [63] is employed to find maximum likelihood estima-

tor of the correlation parameters θ1, θ2, . . . , θ6. The first 16 data values are used for estimation

of parameters θi for i = 1, . . . 6, and Gauss is used as the covariance function among the avail-

able covariance functions in DiceKriging. The employment of Gauss function is justified by

the fact that it has the closest form to the one used in [65], which is not readily available in

the package. The estimated values thus obtained are transformed in order to obtain the closest

estimates of the correlation parameters. The transformation is done as follows

Gauss exponent : ϱ(xi, xj) = exp(−1

2
(|xi − xj|θ)2) (2.26)

Product Power exponent : ϱ(xi, xj) = exp(−θ∗(|xi − xj|)p) (2.27)

θ∗ =
1

2
θ2 for p = 2

Table 2.1: Estimation of parameters for transistor data

Sack’s estimates [65] Gauss estimates Transformed estimates

θ1 0.00 1.120 0.3985
θ2 0.39 0.565 1.56
θ3 0.42 0.489 2.08
θ4 0.53 0.710 0.99
θ5 1.97 0.477 2.19
θ6 0.46 0.669 1.12
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We observe from Table (2.1) that the estimated values obtained by DiceKriging analysis

are different from the ones obtained by [65].

2.2.4 Analysis of Temperature data

In order to study a practical application of the Sacks model in Section (2.2), we analyse

temperature data from Pakistan Meteorological Department. The data comprises 100 years

temperature forecasts spanning over 12 months for 5599 grid values of the input variables,

latitude and longitude giving rise the total data points equal to 6, 718, 804. A proportion of

data is analysed taking into account the year 2010 and the temperature records for the month

of January for the same year. There are 5599 data points for the chosen study and a random

sample of size 300 is selected as training points whereby the model is validated for randomly

selected 25 untried data points. The model employed for the estimation and prediction is Sacks

Model described in Section (2.2). The analysis is done both with the help of R code developed

for profile likelihood given in Equation(2.25) and with the use of package DiceKriging where

Matern(5/2) is used as a covariance function. The covariance parameter θ is estimated with

the package DiceKringing and the same is employed in evaluating likelihood profile (2.25).

Empirical mean square error of prediction using R code is 24.45 and the same is 5.414 for

DiceKriging. Since the input is 2-dimensional grid, therefore, 3-d plots are given along with

simple graphical presentation of the predictor and bounds for both the methodologies. It is

pertinent to mention that figures below on the left are the plots of estimated and predicted

temperature measures against the inputs latitude and longitude. Whereas the plots on the

right shows the estimated and predicted values along with the bounds against the number of

untried locations which is 25. The results are displayed in Figure (2.2)
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Figure 2.2: Plots for emulator and bounds of Temp data

2.3 Bayesian version of Sacks Model

In Section (2.2) Sacks model is evaluated in detail from frequentist point of view. This section is

devoted to analyse the same model within Bayesian framework. Bayesian models are often con-

venient to work with particularly in situations when the number of parameters to be estimated

or the number of dimensions increase so that it is no more feasible to employ classical frequen-

tist approach towards the optimal estimation of the unknown parameters. Since, it is observed
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from the analysis of data for Sacks model that analytical solution for correlation parameter

is cumbersome to obtain and numerical approximation becomes expensive when number of

dimensions increase. Therefore, we adopt Bayesian approach to analyse Sacks model. The

standard Bayesian technique for the Sacks model given in Equation (2.1) is described next.

In context of Bayesian framework, the unknown parameters are assumed to be the random

quantities. Therefore, it infers that the unknown parameter is modelled by the random variable

Θ which follows a probability distribution pΘ(.), known as the prior distribution. The prior

distribution elicits one’s beliefs about the unknown parameters before observing the data.

The observed data is assumed to have a distribution conditioned on the parameter Θ given by

pY |Θ(y|.). Therefore the joint distribution of observed data and the parameter can be expressed

as

pY,Θ(y, .) = pY |Θ(y|.)× pΘ(.)

From joint distribution above, it is straightforward to define conditional distribution

pΘ|Y (. | y) =
pY,Θ(y, .)

pY (y)

which can be simplified as,

pΘ|Y (. | y) ∝ pY |Θ(y|.)× pΘ(.) (2.28)

that is posterior ∝ likelihood × prior where, ∝ accounts for the proportionality factor pY (y)

which is independent of the parameter. The left hand side of the relation (2.28) is the posterior

distribution of parameters whereas the first term on right hand side is the likelihood of data

given parameters and the second term is the joint prior density of unknown parameters. The

posterior distribution represents the updated knowledge about parameters after observing the

data. Once the posterior distribution is obtained for priors, one can easily find the posterior

predictive distribution. Recall that the entire parameter vector for the model under study is

ϕ = (β, σ2, θ), and let Θ be the joint random variable associated with ϕ, then the predictive

distribution of the response ŷ(x) at untried points denoted by y0 is given by following expression:

p(y0 | y) =
∫
p(y0 | y)× p(ϕ | y), (2.29)

where y0 is the predicted response at an unobserved point and y is the observed response.The

31



expectation and covariance of the posterior predictive distribution is defined as

E(y0 | y) = EΘ|y (E(y0 | ϕ, y)) (2.30)

Cov(y0 | y) = EΘ|y (Cov(y0 | ϕ, y)) + CovΘ|y (E(y0 | ϕ, y)) (2.31)

In this Bayesian setting, analytical form of the predictive distribution can be obtained with

some effort, when number of parameters are not very large thus making the integral less

complicated. However, when the unknown parameters increase with increase in dimension,

the posterior distribution becomes hard to obtain in analytic form. Therefore, it is reasonable

to use approximation methods such as Markov Chain Monte Carlo (MCMC) which allows to

generate samples from posterior distribution without being perturbed by analytical form of the

distribution. Nevertheless, the method allows to compute predictive mean and variance for the

response at unknown tried points using Equation (2.30) and Equation (2.31).

2.3.1 Markov chain Monte Carlo (MCMC) and comparison with

Maximum Likelihood

A simple introduction of Monte Carlo Markov Chains is given in this section. MCMC en-

compasses a set of algorithms to draw samples from a probability distribution. It helps to

characterize the distribution even when the mathematical properties are not completely spec-

ified. MCMC is a combination of two properties namely, Monte-Carlo is the method to

approximate the properties of the distribution from large number of samples drawn from that

distribution. Markov chain borrows its name from Markov property which states that the

probability of observing any given state depends only on the state one before and not on any

other previous states. This leads to define the rule of sampling for approximating the target

distribution. It infers that, in Markov chain, each sample generated is a state on which the

very next sample selection depends on. In other words new samples do not depend on the

previous samples but only the last one. A detailed exposition of MCMC can be found in [27].

We use the synthetic data to compare maximum likelihood method and Bayesian methodology

using MCMC technique for making predictions for Sacks model expressed in Equation (2.1).

The data is randomly generated with the Gaussian process function in R for true value of the

scale parameter θ = 1.6 for only one input x. First, maximum likelihood is employed similar to

what is given in Equation (2.25) and θ is estimated in a similar fashion as described in Section

(2.2.1). A random search is made among 100 different values of θ in the grid [0.08 90]. For

each of these randomly selected values, likelihood is computed and we found θ̂mle = 2.8. The
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MCMC sampler was run with the following prior specifications:

β ∼ N (µ = 1, σ2 = 2), σ2 ∼ Γ(shape = 1, rate = 1) and θ ∼ β exp(shape = 3, rate = 6) The

stochastic response variable Y follows normal distribution (recall from section 2.2) such that

Y | ϕ ∼ N (Fβ, σ2R)

The posterior distribution defined in Equation(2.28) does not have a closed analytical form

for the given choice of priors. Therefore, one of the MCMC algorithms termed Metropolis

Hasting [31] is adopted to run the chain. The algorithm develop its roots by defining the

target distribution q(x) and proposal conditional distribution g(x∗ | x) where x∗ is the new

sample and x is the current sample from the Markov chain. The algorithm runs in the following

sequence

Algorithm 1 Metropolis Hasting

Initialize the chain at some value x0

Draw a uniform random number u ∼ U(0, 1)
Generate a new test sample x∗ ∼ g(x∗ | xi)

if u < min

(
1,
q(x∗)g(xi | x∗)
q(xi)g(x∗ | xi)

)
then

xi+1 = x∗

else xi+1 = xi

continue until desired number of runs
end if

The chain is run for 300000 iterations with the initial values of the parameters , β1 = 2,

β2 = 1, σ2 = 1 and θ = 2 respectively. The estimated value of θ is given by the expected value

of posterior distribution of θ, which is found to be 1.82. Moreover, predictions at untried and

design points are also computed along with mean square error using MCMC estimates of the

parameters. The following table and plots provide details of the results of MCMC estimation.
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Figure 2.3: MLE for θ

Parameters Mean SD SE

β0 -0.5247 0.7010 0.0012

β1 0.069 0.1188 0.0002

σ2 0.9564 0.7107 0.00129

θ 1.8186 0.6524 0.00119

Table 2.2: MCMC estimation of parameters from Posterior Distribution

Parameters 2.5% 25% 50% 75% 97.5%

β0 -1.8716 -0.9758 -0.50532 -0.0924 0.7673

β1 -0.1738 0.001529 0.07182 0.14807 0.3014

σ2 0.1325 0.42737 0.82268 1.23411 3.0167

θ 0.8765 1.3334 1.71405 2.2659 3.3608

Table 2.3: Quantiles for each parameter

34



−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8 beta 0

D
en

si
ty

●

−1.5 −0.5 0.0 0.5 1.0
0

1
2

3
4

beta 1

D
en

si
ty

●

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 sigma^2

D
en

si
ty

●

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

theta

D
en

si
ty

●

(a) MCMC density plots

0 2 4 6 8 10

−
3

−
2

−
1

0
1

2

MLE θ = 2.8 and MCMC est θ = 1.8

design points
re

sp
on

se

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●
●●
●●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●●●●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

true GP
LP emulator
LP MSE
MCMC predictor
MCMC MSE

(b) MSE and Emulator plots for MCMC and ML
estimation

Figure 2.4: comparison of MCMC and ML estimation

2.3.2 Comments

From comparison of maximum likelihood estimate and MCMC estimate of θ it is evident from

Table (2.2) that MCMC estimate of θ = 1.8186 is close to the true value of θ = 1.6 as compared

to MLE estimate of θ = 2.8. Moreover the density plots Figure (2.4a) fulfil the assumption of

normality, depicting MCMC random walk. Therefore, MCMC approach is convenient to employ

particularly in situations when number of parameters increase with the increase in dimensions.

However, implementation of MCMC needs careful consideration of the choice of priors and

proposal distribution. Once, an intelligent choice is made based on some past knowledge or

expert experience, one may use MCMC to obtain an approximate posterior distribution and

hence predictions can be made at untried design points. We can see from Figure (2.4b) that

response is predicted at untried points with small mean square error for both the methods. It

leads to the conclusion that although MCMC estimate is closer to the true value compared

to maximum likelihood method, however, no method outperforms the other in terms of mean

square error of predictions.
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2.4 Model 2 (Convex Combination of Gaussian Processes)

We review the second model in detail proposed by [29]. The prime difference of this model

from the Sacks Model lies in the fact that the response y(x) is assumed to be the realization

of a stochastic process, Y (x), which is a mixture of two independent Gaussian processes. The

combination of more than one Gaussian process is useful when one wishes to characterize both

global trends and finer details in the same model or when there is uncertainty regarding the

family of correlation functions [29]. The model takes the following form

Y (x) = f(x)Tβ + Z(x) + ϵ(x) (2.32)

where, f(x) is a vector of known regression functions and β is a vector of unknown regression

coefficients, ϵ(x) is random error, and Z(x) is a convex combination of two Gaussian processes

such that

Z(x) = pZ1(x) + (1− p)Z2(x), 0 ≤ p ≤ 1 (2.33)

where, Cov(Z1(x), Z1(w)) = σ2R1(|h|p; θ1) and Cov(Z2(x), Z2(w)) = σ2R2(|h|p; θ2) where h =

(x− w) is the lag difference between any two design points, Ri(h; θi) is the correlation matrix

constructed by the elements of ϱ(h) details of which are elucidated in Section (2.2.1) and

θ = (θ1, θ2) are correlation parameters associated with these two Gaussian processes.

The variance and covariance of Z(x) in equation (2.33) can be evaluated in a simple fashion

V ar(Z(x)) = p2V ar(Z1(x)) + (1− p)2V ar(Z2(x)) = (p2 + (1− p)2)σ2, (2.34)

and

Cov(Z(xi), Z(xj)) = p2Cov(Z1(xi), Z1(xj)) + (1− p)2Cov(Z2(xi), Z2(xj))

= σ2(p2ϱ1(xi − xj) + (1− p)2ϱ2(xi − xj). (2.35)

The correlation between Z(xi) and Z(xj) becomes

Corr(Z(xi), Z(xj)) =
p2ϱ1(xi − xj) + (1− p)2ϱ2(xi − xj)

(p2 + (1− p)2)
(2.36)
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From the above expressions

Cov(Z(x), Z(w)) = σ2R̃(|h|p; θ1, θ2) (2.37)

The matrix R̃(h; θ1, θ2), or simply R̃ is formed by the weighted combination of two correlation

matrices as explained

R̃p,θ1,θ2(h) =
p2R1(h; θ1) + (1− p)2R2(h; θ2)

(p2 + (1− p)2)
(2.38)

Simplifying

R1 = R1(h; θ1) = (ϱ1(xi − xj))i,j 1 ≤ i ≤ n; 1 ≤ j ≤ n

R2 = R1(h; θ2) = (ϱ2(xi − xj))i,j 1 ≤ i ≤ n; 1 ≤ j ≤ n (2.39)

The model analysis is done with the help of Bayesian approach and change of variables.

Posterior distribution and predictions are obtained with the use of Metropolis-Hasting algo-

rithm. We on the contrary try to follow the same developments explained in Section (2.2)

for Convex Combination of Gaussian processes. We assume from the model analogy that the

expressions developed for the predictor ŷ, mean square error of ŷ and the maximum likelihood

for β, σ2 and θ = (θ1, θ2) takes the same form as that for Sack’s model (2.1) with the only

difference in correlation matrix, R and R̃. In other words, we simply replace R with R̃ and

run some simulation studies.

2.4.1 Maximum Likelihood Estimator

Maximum likelihood estimator for the convex model is computed using the similar expression

given in Equation(2.25) by replacing R with R̃ defined in Equation (2.38)

l(β, σ2, θ) = −1

2

(
n ln(2π) + n ln(σ2) + ln |R̃|+ n ln C̃ + 1

)
(2.40)

where,

C̃ = Y T R̃−1(I − F (F T R̃−1F )−1F T )R̃−1Y (2.41)

and R̃ is given in Equation(2.38).

A data of size N = 600 is generated using two Gaussian processes, one with true value of

θ1 = 1.5 and the other having true value of θ2 = 5. A sample of size n = 10 and 25 over
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the region [0, 10] are selected at random from combination of two Gaussian processes. These

samples are used as design points si, 1 ≤ i ≤ n with realization of response y(si). Different

values of θ1 and θ2 are explored in order to search for the likelihood estimator for the true

parameters as:

1. A grid of 60 values of θ1 over [0.8, 4]

2. A grid of 60 values of θ2 over [3, 8]

3. p1 = 0.3 and p2 = 0.7

For every value of θ1, we compute relative profile likelihood Equation (2.40) for each value

of θ2. The estimates of θ1 and θ2 are the ones that maximize the relative profile likelihood.

The maximum likelihood estimates of θ1 and θ2 are found to be 1.7 and 4.7 respectively. The

contour plot of the relative profile likelihood is given in Figure (2.5).

Figure 2.5: Contour Plot MLE for CGP n = 10

For the estimated values of θ1 = 1.7 and θ2 = 4.7, emulator in Equation (2.20) with R̃ is fit

to the true data with n = 10 and n = 25 design points. The mean square error of predictions

is computed from Equation (2.15) and the relative prediction bounds are computed for 200

untried input data points. The plots of true Gaussian process, emulator and mean squared

prediction errors for n = 10 and n = 25 design points are presented in Figure (2.6).
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(a) Emulator and MSE plot for n=10 (b) Emultor and MSE plot for n=25

Figure 2.6: Plots for emulator and bounds CGP

We observe that increasing the design points plays an important role in improved interpola-

tion of true process and reducing the mean square error, as seen by confidence intervals. From

Fig (2.6), it can be seen that by increasing sample size from n = 10 to n = 25, the emulator

closely interpolates the true process and confidence bounds become narrower where new points

lie close to the design points. However, for the regions outside design points the emulator

performs poorly in terms of interpolation and prediction, resulting in wider confidence bounds.

2.4.2 Comparative study of Design Choices

We observed the emulator performance for random samples in Section (2.4.1). An important

feature of Sacks emulator Equation(2.20) is that it provides exact predictions at design points

and performs poorly if the unknown points do not lie close to the training data points. Therefore

we want to explore further different choices of design points in order to investigate the behaviour

of contour plots, maximum likelihood estimator of correlation parameters θ1 and θ2 and mean

squared prediction error. In order to study different design choices, the data of size N = 600

is generated for each of two Gaussian processes with true parameters θ1 = 1.5 and θ2 = 5

respectively. A sample of size n = 25 is selected from the data combination of two Gaussian

processes. Following are the different design choices considered for this study.

1. Even distribution of design points over entire data space
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2. sample selection from two extreme ends

3. sample selection from clusters in three regions

4. sample chosen by adding fixed constant to each sample point

The behaviour of the model at different design choices are evaluated and maximum likelihood

estimates of the parameters are obtained. In addition, the predictions are made at 300 untried

points for each of the design at estimated values of the parameters. The empirical errors are

also computed as the difference between the true and predicted values of the response for each

of these designs i.e.
∑

(yi − ŷi)
2. The true process with design points,their respective contour

plots along with the emulator predictions and bounds are given in Figures (2.7, 2.8, 2.9, 2.10

and 2.11).

(a) Contour Plot (b) emulator and prediction bounds

Figure 2.7: Plots for a random design of n = 25 data points
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Contour Plot for equally spaced data 
 
 
 

⚫ estimated theta 

 
 
 

 

0.1 

 
0.2 

 

0.3 

 
 
 

0.9 

⚫ 

 

0.5 

 

0.4 

 

0.6 

 
 
 
 
 
 

 

0.5 1.0 1.5 2.0 2.5 3.0 
 

𝜃1 

0.6 

0.7 

𝜃
2
 

2
 

4
 

6
 

8
 

(a) Contour Plot

0 2 4 6 8 10

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Emulator and bounds,evenly distributed sample

design points

re
sp

on
se

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●● trueGP
emulator
bounds

●●● trueGP
emulator
bounds

●●●
trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds●

●

●

trueGP
emulator
bounds●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●
●

● trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●
●

●

trueGP
emulator
bounds

●
●
●

trueGP
emulator
bounds

●●●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

●

●

●

trueGP
emulator
bounds

(b) emulator and prediction bounds

Figure 2.8: Plots for equally spaced design points
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Figure 2.9: Plots for design points at two extremes of design region
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Figure 2.10: Plots for design points in three clusters
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Figure 2.11: Plots for random design points with a constant (5) added to each point

In addition to the development of different plots, the empirical errors are also measured. A

summary of the mean square error along with the estimated values of the parameters for each

of the sample designs are presented in Table (2.4).
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design points MSE(×10) MLE(θ1) MLE(θ2)

Random sample 1.095 1.7 4.6

equally spaced 0.198 1.26 3.7

two ends 1.029 1.2 4.77

three ends 3.004 1.34 5.4

Sample+5 1.218 1.24 5.24

True value 1.5 5

Table 2.4: MSE and MLE for design choices in Convex Combination model

We also compared Sacks model (Equation (2.1)) with that of Convex combination model (Equa-

tion (2.32)) and obtained the following results in Table(2.5)

MLE and MSE for different designs (Sacks model)

design MLE(θ) MSE(×10)

random 2.8 0.210

equally spaced 0.85 0.004

two ends 0.98 0.237

three ends 1.17 0.866

sample+5 0.97 0.039

True value 0.8

Table 2.5: MSE and MLE for design choices in Sack’s model

2.4.3 Comments

For the Convex combination model, the closest approximation to the true value of θ1 is found

for the design with design points in three clusters and that of θ2 is more close for design where

a constant value 5 is added to each of the chosen sample. Also, the random sample design

provides the worst estimation of θ1 and θ2 . The mean square error is smallest for equally

spaced samples and highest for samples chosen at three clusters. For Sacks model, equally

spaced design provide closest approximation to the true value of θ and mean square error is

also minimum for the same design. Different design choices may provide different results for

different datasets, therefore, the results obtained for Convex Combination model and Sacks

model cannot be generalized. However, the design with equally spaced data points outperform

all other designs by providing minimum least squared prediction error for both the models as

evident from Tables (2.4) and (2.5).
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2.5 Calibration of Computer models: Linking computer

modelling with Reality

Kennedy and O Hagan [34] proposed a calibrated model within Bayesian framework whereby,

calibration refers to gain some understanding of the unknown inputs which are called calibration

parameter. These are the inputs whose true values are unknown yet they play important part

in defining the response. Consequently, the calibration model is characterized by two groups

of inputs that are to be distinguished for computer models. One of these inputs comprises

the fixed but unknown inputs, referred to as calibration inputs and are assumed to be fixed

for all the observations. The other group of inputs are known variables whose values may be

changed over the process. The proposed calibrated model is aimed to gain some knowledge

about the unknown inputs with the help of observations from a physical process, particularly,

when the underlying system being studied is approximated by complex mathematical models.

In order to estimate the calibrated parameters and to make predictions about the true value

of the real process based on physical observations, Bayesian approach has been adopted. Let

the observation zi be the realization of a random process Z at an indeterminate point xi and

can be modelled as

zi = ζ(xi) + ei, where ζ(xi) = ρη(xi, θ) + δ(xi) (2.42)

Here zi is an observation of true value of the real process ζ(xi) for the known value of input

variable xi and ei is the observation error. The output from the computer code is η(xi, θ) but

the true values of θ are unknown therefore θ is replaced with t for the computer output such that

η(x, t) = y denotes the output of the computer model for given values of x = (x1, x2 . . . xn) and

t = (t1 . . . tn). Here, t is the set of input to the computer model for true unknown calibration

parameter θ = (θ1, . . . θn) and δ(.) is a model inadequacy function, independent of the code

output η(x, t). Equation (2.42) is a link between reality and observation.The quantity ρ is the

scaling parameter that accounts for systematic discrepancy between the reality and computer

output and ei is the observational error for ith observation given as ei ∼ N (0, σ2). The further

developments of this work comprise of finding the priors associated with the functions η(x, θ)

and δ(x) followed by finding the posterior distribution of the calibrated parameter θ. Finally

the predictions can be made at unknown points with the use of posterior predictive distribution.

The unknown functions η(x, θ) and δ(x) in Equation (2.42) are assumed to have priors rep-

resented by Gaussian processes. To begin with posterior distribution, complete data is needed

that include the observed and the computer output and can be represented dT = (zT ,yT ). Af-
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ter evaluating the form of distribution of d , it is possible to write the the posterior distribution

as a product of likelihood d|θ, β, ϕ and prior distributions, where ϕ is vector of hyperparameters.

π(θ, β, ϕ|d) ∝ π(d|(md(θ), Vd(θ))π(θ)π(ϕ) (2.43)

The details of all the developments are given in Appendix (A). Once, hyper-parameters are

estimated, posterior distribution of calibrated parameter is established, conditioned on these

estimated parameters

π(θ|ϕ, d) ∝ p(d|ϕ, θ)p(ϕ)p(θ)

In order to make inference about z(x), the posterior distribution of z(.) is conditioned on esti-

mated parameters ϕ and the calibration parameter θ is acquired using numerical computation

methods.

2.5.1 SAVE PACKAGE Results for Transistor data analysis

In order to implement the calibration model for the predictions of observed data in presence

of calibration parameter, SAVE package developed by [54], is employed. The analysis is carried

out in three steps, at the first stage an object of the class SAVE is created that uses the package

DiceKriging which fit the emulator of the computer model and help specifying the prior of

calibration parameter. The second stage creates an object bayesfit which pertains to the

estimation of posterior distribution of field and bias precisions along with that of calibration

parameter using prior information from the object SAVE. As a last step, validation of the untried

configuration of controllable parameters is done, with the aid of object validate. It produces

bias corrected and pure model predictions along with the corresponding tolerance bounds.

The data used in this analysis is the Circuit-Simulator data explained in Section (2.2.3).

Among the six input variables of transistor data x ∈ R6, the input x6 is set as calibration

parameter in this setting in order to evaluate the effectiveness of the SAVE package. The data

is divided into field and model data, comprising first 20 data points as training set and the

rest of the 12 data points as the test data for validation. The field data doesn’t include the

calibration parameter x6 whereby the model data includes the calibration parameter. This is

because the calibration variable is considered to be unknown in the observed data and estimated

by the calibration model [34]. The results for the posterior distributions of the precisions and

the calibration parameter as well as the bias corrected predictions together with the tolerance

bounds are exhibited in Figures (2.12, 2.13, 2.14).
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Figure 2.12: Posterior distribution of the calibration parameter for input x6. The solid line
corresponds to the prior used

Figure 2.13: Posterior distribution of the bias and field precision. The dashed vertical line
indicates the estimates and solid line represent the priors used
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Figure 2.14: Bias corrected prediction plots. The solid lines represent 90% tolerance bounds
whereby circles and + represent the observed and predicted field data respectively

It is evident from Figure (2.14) that with SAV E package, the calibration model developed

by [34] is able to capture information pertaining to calibrated parameter hence making predic-

tions about the observed data with empirical mean square error to be 0.1387. The error may

tend to increase, if true values of the calibrated parameter are not available, but only some

expert guess.

2.6 NEURAL NETWORKS

In preceding sections we discussed in detail the DACE model and its variants for computer

experiments. All these models are also termed as surrogate models attributed to their feature of

providing an approximate to the true unknown function responsible to generate the response.

One of the most widely adopted methodology in the realm of surrogate models in recent

times is Neural networks. In this section we introduce neural networks and explain the simple

framework of how they work. In Chapter (5) we will present comparative study of different

models including neural networks for the choice of different designs. Although the accounts of
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study of human brain dates back to thousands of years, the first step towards the concept of

neural networks emerged in 1943 when [44] developed the first mathematical model of a neuron.

In this model a single cell of the neural system processes the inputs that results in returning

an output. An Artificial Neural Network (ANN) is a computational model and one of the most

powerful algorithm that is propelled by the manner in which neural system in the human body

processes data. Artificial Neural Networks are the new advancing avenues in the era of AI

and encompasses a wide scope of exploration in context of computer models. Artificial Neural

Networks have created a great deal of fervor in Machine Learning exploration and industry,

because of numerous leap forward outcomes in computer vision, speech recognition and text

processing. These artificial networks may be used for predictive modelling, adaptive control

and applications where they can be trained via a dataset. The simple Artificial Neural Network

called the Multi Layer Perceptron is explained with the help of simple neuron structure [87]

and given in Figure (2.15).

Figure 2.15: Neural Network Graphical presentation [87]
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Figure 2.16: Neural Network Computations

Each circle in the figure (2.15) is called the node. All nodes are connected across layers

but no two nodes of same layer are linked. Each node in the hidden layer is the computational

site for processing the inputs. The hidden layer computations are depicted in figure (2.16).

The subscripts i j and k represent the number of nodes in input layer, hidden layer and outer

layer respectively. At a node of the hidden layer j, each input value xi is multiplied by a

corresponding weight wij and added to a bias bj associated with jth hidden layer. The result

is then passed through an activation function f generating the node’s output. For the given

structure of Neural Networks in figure (2.15) the input xi will have one weight associated with

it for one node of the hidden layer. Similarly for more than one nodes there will be different

weight associated with each node. Between any two layers, weights will always form a matrix

whose rows are equal to input nodes and columns are the output nodes. The hidden layer

in matrix form can be expressed as X = f(W 1I + B1), where W 1 is the matrix of weights

from input nodes to hidden layer nodes, I is the vector of inputs and B is the vector of bias

associated with each hidden node and f is the activation function. Similarly the final output of

the network at the output node is obtained in a similar fashion. The most important question

in Neural Network is: How do the link weights in a Neural Network get updated. In order to

answer, one has to look into the difference between the target and the network output which

is termed as error. This provokes a need to artifice a mathematical relationship between the

errors and the weights which allow to minimize the errors and refine the network’s weights

thereof. One of the commonly used algorithms for this purpose is called Gradient Descent.

Mathematical computations for figure (2.16) are explained in ythe following paragraph.
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The input node comprises the inputs of the network represented as Xi , Z
hidden represent

the weighted sum of the inputs and bias and ahidden symbolizes the output of the hidden layer

after applying the activation function. Also,W 1 andW 2 are the weights associated from inputs

to hidden and from hidden to output layers respectively including the bias weights.

XW 1 = Z(hidden) (2.44)

ahidden = f(Zhidden)

The final output of the network is given

Zoutput = ahiddenW (2) (2.45)

Ŷ = f(Zoutput)

We want to investigate the change in errors by change in weights or specifically, the interest lies

in minimizing the error function. For the sake of brevity identity function is used as activation

function and the Zhidden is replaced by Z. The error function is defined as

L = (Y − Ŷ )T (Y − Ŷ )

L = (Y − ZW (2))T (Y − ZW (2)) (2.46)

The gradient of the error function with respect to the change in weights is the crux of the

Neural network that defines the updating of weights so as to minimize the errors which is also

called backpropagation. The first gradient is with respect to the change in weights W (2) and

the updated weights are given

∇L1 =
∂L

∂W (2)

W
(2)
upd = W (2) − α∇L1 (2.47)

W
(2)
upd is the updated weight matrix and α is the learning rate that monitors the amount to

which the network weights are adjusted with respect to the loss gradient or in other terms it

is the strength of change. Too low value of α leads to very slow gradient descent while a large

value may miss the minimum. Therefore, it is important to decide upon the value of learning

rate in order to obtain convergence. After updating weights for W (2) the gardient is needed to
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update the weights W (1)

∇L2 =
∂L

∂W (1)

W
(1)
upd = W (1) − α∇L2 (2.48)

2.6.1 Simple Example

The framework of neural networks explained above is elaborated with the help of a simple

example. For this study only one node is considered at input, hidden and output layer in order

to make the network as simple as possible. The neural network is employed using Neuralnet

package in R. In addition, the neural network is also build with the aid of R codes in order to get

a deeper understanding of the network functioning. The data assumed is given -2,-1.5,0,1.5,2

The graphical output of the Neuralnet package is given in Figure (2.17).

x y

-1 -2
-0.5 -1.5
0 0
0.5 1.5
1 -5

Table 2.6: Training data for Neural Networks

Figure 2.17: Neuralnet Results
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The black lines in Figure (2.17) show the connections between each layer and the the

numerical values on black lines are the weights associated with each neuron. The bias term

added to each layer is given by blue lines. The Steps in Figure (2.17) shows that the network

converged after 123 steps after achieving the minimum error of 3.02× 10−4.

2.6.2 TEMPERATURE DATAANALYSIS USINGNEURAL NET-

WORK

The temperature data described in Section (2.2.4) is analysed with the aid of neural network.

The analysis is done using package neuralnet in R. A random sample of 100 data points for

the year 2010 is used as a training set for neural network and a random sample of size 100

is used as test data. The temperature of January for the year 2010, is regressed on latitude

and longitude assuming linear relationship in Neural Network. The predictions thus obtained

are compared with the target observations and mean squared prediction error is computed as∑
(yi−ŷi)

2

100
. The resulting plot of Neural Network with associated weights and biases is given in

Figure (2.18).

Figure 2.18: Neural Network for Temperature data

2.6.3 Comments

The first two nodes in Figure (2.18) represent the inputs which are latitude and longitude

respectively. The next layer is the hidden layer with two nodes and the last layer with one

node is the network output. Each directed arrow represents the updated weight from one node
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of the layer to each node of the next layer. The blue arrows show the bias associated with

each node. We noticed that the empirical mean square error of predictions for temperature

data using neural network is 0.162 and 0.081 using DiceKriging. We train the neural network

with only one hidden layer in this example. The performance of neural network is expected to

improve if we increase the number of layers. The predictions at untried points using DACE

model and Neural networks against the observed temperature is presented in Figure (2.19).

Figure 2.19: MSE for Temp data using DACE model and Neural Network
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Chapter 3

Smooth Ridge Model

In Statistics, smoothness of a data set bears great importance when the purpose is to approx-

imate the underlying function in an attempt to capture the meaningful patterns in data while

removing noise and random phenomena. Smooth interpolation is a powerful concept in the

modern age of data science and machine learning. Several variants of smooth models are avail-

able in literature. A correspondence of Bayesian estimation and smoothing splines is accounted

in [36], while variational approach to splines can be found in [46]. A significant contribution in

the realm of smoothing splines is made in the recent times by [59], where different modelling

approaches to the identification of smoothing spline ANOVA models are discussed, namely:

Classical, State-Dependent Regression (SDR) which is a non parametric approach based on

recursive filtering and smoothing estimation and Adaptive Component Selection and Selection

Operator (ACOSSO); a new regularization method for simultaneous model fitting and variable

selection in non-parametric regression models in the framework of smoothing spline ANOVA.

These methods are compared among themselves and with Design and Analysis of Computer

Experiments (DACE) in terms of computational cost and out of samples prediction. It is con-

cluded with the help of different examples that no single method outperforms in all situations

but the performance is based on the underlying model. An advanced adaptation of this litera-

ture comprises Smooth supersaturated models introduced by [4]. The two subjects of interest

in this paper include: Algebraic theory that helps in choosing the extended basis and the ways

to construct statistical models based on smooth polynomial interpolators. It is also shown

that extended model basis followed by optimizing a measure of smoothness provides a mean to

construct optimal interpolators that outperforms the kriging-based method used in computer

experiments. The significance of such models is recognized in signal processing by [41].

This chapter is aimed at introducing the methodology to propose a new predictive model
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named Smooth Ridge (SR) model along with the review of underlying theory which provides

basis for such development. The chapter is comprised of following sections. Section (3.1)

provides a brief overview of simple regression model, ridge regression and supersaturated model

along with the notations employed. The methodology to construct Smooth Ridge model is

explained in Section (3.2). The variance comparison of Smooth Ridge estimator with that of

the regression estimate is given in Section(3.3). A detailed account of the theoretical results

for Mean Square Error of the parameter is presented in Section (3.4) followed by the emulator

development and mean square error of Smooth Ridge model furnished in Section (3.5). The

preliminary comparisons with simulations of synthetic data are dispensed in Section (3.6)

followed by real life application of COVID in Section (3.7). Sensitivity Analysis for Smooth

Ridge model is provided in Section (3.8) followed by the Sensitivity Indices in Section (3.9). A

Bayesian development of Smooth Ridge model is introduced in Section (3.10). The chapter is

concluded with conclusions in Section (3.11).

3.1 Review of models

Before stating the elements of proposed model it is important to recapitulate some models that

provide a framework to formulate the foundations of Smooth Ridge model. For a design model

matrix F and response variable Y , a linear relationship is commonly assumed between Y and

the covariates x given in matrix form Y = Fβ+ ϵ, where β = (β1, . . . βk) is vector of regression

parameter. The ϵ = (ϵ1, . . . ϵn) is the random error and attributed to unexplained part of

the response not explained by Fβ. The random error is assumed to follow ϵ ∼ N (0, σ2In).

The randomness of ϵ implies the randomness of Y which is distributed as multivariate normal

Y ∼ N (Fβ, σ2In).

The maximum likelihood estimator of the regression parameter is the standard formula

β̂ = (F TF )−1F TY (3.1)

The expectation and variance-covariance matrix of the estimator β̂ are

E(β̂) = β and V ar(β̂) = σ2(F TF )−1

The above computations are possible only if (F TF )−1 is well defined i.e. (F TF ) is invertible.

In other words there is no collinearity among the covariates. Here covariates are the columns of

F and collinearity implies that two or more covariates are linearly related. This is a common
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occurring problem in high dimensional data resulting in increased uncertainty that reflects

in the larger error of regression estimates attributed to the collinear covariates. In terms of

dimensions, collinearity associated with (n× k) design matrix such that n < k infers that the

(k×k) matrix F TF has rank less than k. This phenomenon leads to singularity problem, which

implies that the design model matrix has zero determinant hence non-invertible. Explicitly, if

k > n, the unknown regression coefficients β̂ of length k cannot be estimated uniquely with

system of n linear equations.

One of the solution to overcome the problem of singular matrix F TF and hence obtain

estimates of regression parameters β is ridge regression estimator introduced by [33]. The

ridge estimator is defined as

β̂λ = (F TF + λIk)
−1F TY (3.2)

where, λ ∈ [0,∞) is ridge parameter also known as regularization parameter. Equation (3.2)

provides a well defined estimator of β even in the presence of singularity problem of F TF . The

equation (3.2) suggests the dependence of β̂λ on λ. The set of all ridge estimates β̂λ is termed

the ridge trace. For limiting case of λ, we have:

lim
λ→∞

β̂λ = 0 and lim
λ→0

β̂λ = β̂

It is important to note that β̂λ is a biased estimator of β since E(β̂λ) = (F TF + λI)−1F TFβ,

however, it can be shown that there exist value of λ such that the mean square error of ridge

estimator β̂λ is less than that of standard regression estimator β̂ [24].

3.1.1 Smooth Supersaturated model (SSM)

The Smooth Ridge model borrows its elements from Ridge regression model that helps finding

the estimate of SR estimator. In addition, the methodology employed in development of Smooth

Ridge model is based on the theory of smooth supersaturated model explained by [4], that

provides a bases of smooth interpolation therefore a brief overview of smooth supersaturated

model is revisited.

For a set of factors x = (x1, x2, . . . xd) and a set of positive integers α = (α1, α2, . . . αd),

a monomial is defined as xα = xα1
1 , . . . x

αd
d wherein the linear combination of monomials form

a polynomial. The algebraic theory in [55] states that a saturated model is the one such

that, for an indeterminate point x in χ there exists a saturated non-singular monomial basis

BM = xα, α ∈M . Here, M is some set of distinct index vector α, such that the size of basis is

equal to the design size n i.e. |M | = n and the design model matrix F = (xα
x∈D ,α∈M) is non-
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singular. Such basis are called good saturated basis attributed to the fact that they provide

exact interpolation for a given set of observations y = (y(x1), . . . y(xn)). Supersaturated models

are built on supersaturated basis which is an extension of saturated basis where the design D

is fixed but the model takes a larger set of monomials i.e. |M | > n. The following definition

from [4] establishes basic objects for our development.

Definition 3.1. (1) A finite set of monomials B is called a hierarchical basis if, for any

monomial xα in B, all its divisors are in B

(2) Given a design D of size n, a good supersaturated basis is a basis BM = {xα, α ∈M} with

|M | = N > n such that there is a hierarchical non-singular sub-basis of size n.

A basis that satisfies the definition above is termed a good basis. Strictly speaking, a basis

has to be a hierarchical basis before it is inspected for identifiability. Consider the following

simple example for a clear understanding. The bold notation is avoided for the sake of simplicity

in the examples and the model development.

Example 3.1. Consider a single factor d = 1 and M = {1, 2, 3, 4}. We have |M | = 4 and

BM = {x, x2, x3, x4}. Let there be n = 3 design points, and an attempt is to find hierarchical

non-singular basis of size n. Evaluating the basis BM at design points results into:

design basis

x x2 x3 x4

-1 -1 1 -1 1

0 0 0 0 0

1 1 1 1 1

There are four possible sub-basis of size 3 from the set BM which needs to be checked to

fulfil the definition of good basis.

sub-basis identifiable

1 x x2 x3 No

2 x x2 x4 No

3 x x3 x4 No

4 x2 x3 x4 No

Table 3.1: Sub-basis for d = 1 at n = 3 points
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Since, none of the sub-basis for the given example is identifiable, therefore the given basis

does not provide any good sub-basis.

Now consider another example with d = 2 factors with n = 3 design points. Let M =

{(0, 0), (0, 1), (1, 0), (1, 1)} so that BM = {1, x1, x2, x1x2}. The evaluation of BM at design

points (−1,−1), (0, 1) and (1, 0) gives the following table:

design basis

1 x1 x2 x1x2

-1 -1 1 -1 -1 1

0 1 1 0 1 0

1 0 1 1 1 0

The four possible sub-basis of size 3 and the respective hierarchical as well as identifiable

conditions are given as follows

sub-basis hierarchical identifiable

1 x1 x2 Y Y

1 x1 x1x2 N Y

1 x2 x1x2 N N

x1 x2 x1x2 N Y

Table 3.2: sub-basis for d = 2 at n = 3 points

By definition (3.1), for a basis to be a good basis requires at least one hierarchical sub-basis.

It can be seen from the table above that there is one hierarchical sub-basis of size n = 3 when

|M | = 4 > n, that is also non-singular. Therefore the basis BM = {1, x1, x2, x1x2} is a good

basis

3.1.2 Comment

In the above example with d = 1 we have one factor, had M = {0, 1, 2, 3, 4}, there would be

good basis. Given the definition of supersaturated basis,the development of smooth interpo-

lator can be achieved in the following fashion. For an indeterminate point x and real valued

observations y let BM be a good supersaturated basis, then the polynomial model in the basis

is given by

y(x) =
∑
α∈M

βαx
α (3.3)
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In order to make computations numerically stable and efficient, orthogonal polynomials instead

of pure monomials are employed for the construction of basis and hence design model matrix.

For an integration region Ω = [−1, 1]d, Legendre polynomials serves as the suitable choice of

orthogonal polynomials with respect to uniform measure. The model in Equation (3.3) can

then be rewritten as

y(x) =
∑
α∈M

βαLα(x) (3.4)

where, Lα(x) =
∏k

i=1 Lαi
(xi). For one factor d = 1 and design D , considerM = (0, 1, 2, 3), then

the Legendre polynomials are L0(x) = 1, L1(x) = x, L2(x) = (3x2−1)/2, L3(x) = (5x3−3x)/2.

We next characterize the polynomial model in terms of its roughness,following [4]. For a

desired region χ ⊂ Rd and an indeterminate x ∈ χ the Hessian of y(x) is defined as

H(y(x)) =
{∂2y(x)
∂xi∂xj

}
and the average roughness measure is given

ψ(y(x)) =

∫
χ
||H(y(x))||2dx (3.5)

where, ||H(y(x))||2 = trace(H(y(x))2).

We propose smooth supersaturated model to be the one where the coefficients βα in Equa-

tion (3.3) are selected to minimize the measure of roughness, hence named smooth proposed

by [4]. The vector of model terms can be written as f(x) = (xα : α ∈ M)T so that Equation

(3.3) can be expressed in vector form y(x) = f(x)Tβ. For any indeterminate point x denote

f (ij) = ∂2f(x)
∂xi∂xj

from which it follows that the measure of roughness in Equation (3.5) is

ψ(y(x)) = βTKβ, (3.6)

where

K =

∫
χ

(
d∑

i,j=1

f (ij)f (ij)T

)
dx (3.7)

It is pertinent to mention here that the matrix K may not be have full rank. It is because

the constant and any non-linear model terms will have zero entries in K whereas the higher

order basis will give positive entries to the matrix. The supersaturated model introduced by

[4] is ŷ(x) =
∑

α∈M θ̂αx
α where the coefficients θ̂α are selected by minimizing the roughness

59



and solving the constrained minimization problem i.e.

min
θ
ψ(y(x)) such that yi = ŷ(xi) for i = 1 . . . n. (3.8)

The coefficient estimate thus obtained is θ̂ = (XTX + K(1 − P )K)−1XTY where P =

(XT (XTX)−1X).

Example 3.2. We give a simple example showing the construction of K. For d = 2 fac-

tors, M = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 3)} and BM = {1, x1, x2, x21, x32}. the vector of model

functions is

f(x)T =
(
1 x1 x21 x2 x32

)
The computations below follow from f (ij) = ∂2f(x)

∂xi∂xj
, i.e. f (12)(x) = ∂2f(x)

∂x1∂x2
. Therefore,

f (11)(x)T =
(
0 0 2 0 0

)
,

f (12)(x)T = f (21)(x) =
(
0 0 0 0 0

)
, and

f (22)(x)T =
(
0 0 0 0 6x

)
Consider the polynomial model y(x) = f(x)Tβ with β =

(
β(00), β(10), β(01), β(20), β(03)

)
. There-

fore, the Hessian becomes

H =

(
βTf (11) βTf (12)

βTf (21) βTf (22)

)

||H||2 =

(
4β2

(20) 0

0 36β(03)x
2
2

)

Therefore, ||H(y(x))||2 = trace(H(y(x)))2 = 4β2
(20) + 36β(03)x

2
2

Following the development above, one of the vector multiplication, f (11)(f (11))T for solving

summation
(∑d

i,j=1 f
(ij)f (ij)T

)
in Equation (3.7) is elaborated as

f 11(f 11)T =


0

0

2

0

0


(
0 0 2 0 0

)
=


0 0 0 0 0

0 0 0 0 0

0 0 4 0 0

0 0 0 0 0

0 0 0 0 0
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summing up all such matrices to find
(∑d

i,j=1 f
(ij)f (ij)T

)
results into following

( d∑
i,j=1

f (ij)f (ij)T
)
=


0 0 0 0 0

0 0 0 0 0

0 0 4 0 0

0 0 0 0 0

0 0 0 0 36x22


integrating the sum over the region [0 1] the matrix K in Equation (3.7) is

K =


0 0 0 0 0

0 0 0 0 0

0 0 4 0 0

0 0 0 0 0

0 0 0 0 12



3.2 Smooth Ridge Model (SRM)

We propose a flexible model based on ridge regression in Equation (3.2) and measure of rough-

ness K in Equation (3.7). The methodology pertaining to the new model is elaborated as

follows:

For a given design D , real valued observations y and good supersaturated basis BM the poly-

nomial regression model named Smooth Ridge (SR) Model in the basis is given in matrix form

Y = Fβ + e (3.9)

where, β is a vector of the coefficients associated with the supersaturated basis. An impor-

tant feature of supersaturated model is that the number of polynomials exceeds the number of

design points i.e. k > n. For f(x) = (xα : α ∈M)T , where M is a list of multi-indices such

that |M | = k, the resulting (n× k) design model matrix is of the form F = (f(x))T .

Consider a simple example where, d = 2, M = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)}, with
k = 6, then the vector of model terms can be expressed as f(x) = (1 x1 x2 x1x2 x21 x22)

T

where, f1(x) = 1, f2(x) = x1 . . . , f6(x) = x22 and the design model matrix is constructed

with the model terms evaluated at n design points such that F = (f1(x) f2(x) . . . fk(x)) The

error e of the model in Equation (3.9) is assumed to follow the usual multivariate normal

distribution in standard regression. Recall that for given data, least square estimation for
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standard regression model is based on minimizing error sum of squares denoted by SSE = eT e.

A smooth regularization version of SSE is proposed in the following manner

L = eT e+ λβTKβ

L = (Y − Fβ)T (Y − Fβ) + λβTKβ (3.10)

where λ is the regularization parameter and K is the matrix of size k × k given in Equation

(3.7). Since, K is the measure of average roughness based on second derivative therefore the

coefficients β are chosen to minimize L in Equation (3.10). This is done by expanding Equation

(3.10), taking the first derivative of L and equating to zero

L = Y TY − 2βTF TY + βTF TFβ + λβTKβ so that

∂L

∂β
= −2F TY + 2F TFβ + 2λKβ

and equating the derivative to zero

β̃λ = (F TF + λK)−1F TY (3.11)

The estimator β̃λ of β minimizes the linear combination of error sum of squares SSE and the

measure of roughness K, hence named Smooth Ridge(SR) estimator. The resulting model is

termed as Smooth Ridge (SR) model. The expectation and variance of the estimator β̃λ can be

computed as

E(β̃λ) = E
(
(F TF + λK)−1F TY

)
= (F TF + λK)−1F TE(Y )

As we know that E(Y ) = Fβ, therefore

E(β̃λ) = (F TF + λK)−1F TFβ (3.12)

Equation (3.11) can be simplified by writing A = (F TF + λK)−1F T hence, β̃λ can be written

as a linear combination of Y such that β̃λ = AY . The variance of β̃λ can then be evaluated as

V ar(β̃λ) = V ar(AY ) = Aσ2AT (3.13)

It can be observed from Equation (3.12) that E(β̃λ) ̸= β therefore β̃λ is a biased estimator of

model parameters β.

We now look into the limiting behaviour of the Smooth Ridge estimator β̃λ when λ = ∞
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with the help of simple example here. Let a design D = {−1, 0.5, 1} of size n = 3 with k = 5

Legendre terms to compute design model matrix F . We do not need the response y as we

compute the weights (F TF + λK)−1F T given in Equation (3.11) to examine the coefficients.

Recall that OLS estimation for the given example is possible for only two linear model terms

when n = 3. The plot of the weights for each of the five coefficients associated with the five

model terms are given in Figure (3.1) against different values of λ.

Figure 3.1: Coefficients for λ→ ∞

In Figure (3.1) there are five plots corresponding to five model terms which are rows of

the weight matrix (F TF + λK)−1F T and the three lines in each plot correspond to the three

observations in the data. The solid dot in the Figure (3.1) is the coefficient weight for Smooth

Ridge model and the star is the coefficient weight for OLS. We can see that the coefficients of

β2 and β3 shrink to zero as λ increases. Therefore we deduce from this example that Smooth

Ridge coefficients β̃λ converge to those of the OLS for linear model with intercept and linear

terms only when λ → ∞. We also observe an interesting feature of Smooth Ridge model

when λ = 0. For the design model matrix that is full rank, Smooth Ridge model reduces to

Regression model for λ = 0.

In the development of Smooth Ridge model we have a dual problem given in Equation

(3.10), the error sum of squares ||Y − Fβ||22 and the curvature βTKβ, where λ determines the

trade-off between these two. We want to look at the solutions to the Smooth Ridge regularized
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regression problem which can be achieved by looking at the optimal trade-off curve [7] given

in Figure (3.2). The coordinates of the plane X-Y are given by the two criteria ||Y − Fβ||22
and λβTKβ respectively. The shaded area is the set of achievable values (||Y − Fβ||22, βTKβ).

The blue dot is the coordinate referring to Smooth supersaturated model which minimizes the

curvature βTKβ given the constraint Y = Fβ. Therefore, the error sum of squares ||Y − Fβ||22
is zero. Similarly, the red dot is the point where curvature is zero and the dual criteria is

reduced to error sum of squares only. The border of this area is termed the Pareto front, and

the optimal trade-off curve is achieved by the solution of Equation (3.10).

Figure 3.2: Plot of error sum of squares against curvature

3.3 Variance comparison of Smooth Ridge estimator with

that of OLS estimator (Full rank design model ma-

trix)

We are interested to compare the mean square error of smooth ridge estimator with that of

linear regression estimator. A detailed theoretical comparison is provided with linear regres-

sion model and numerical results are given in the subsequent sections. To begin with, certain

assumptions are to be made in order to build the theoretical results which are computationally

feasible. First of which requires that F TF is invertible and the other demands K to be posi-

tive definite and invertible matrix. The explicit expression of Smooth ridge estimator is now

developed with the help of a linear operator introduced by [79] for the purpose of development
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of second moment of ridge regression estimator. The linear operator for smooth ridge model

is defined as Uλ = (F TF + λK)−1F TF such that Uλβ̂ simplifies to β̃λ, that is

Uλβ̂ = (F TF + λK)−1F TF (F TF )−1F TY = β̃λ (3.14)

The regression estimator β̂ is transformed to smooth ridge estimator β̃λ by using the linear

operator Uλ. It is straightforward now from Equation (3.14) to simplify the expression of

variance of β̃λ.

V (β̃λ) = UλV (β̂)UT
λ = σ2(F TF + λK)−1(F TF )−1

(
(F TF + λK)−1

)T
= σ2AAT (3.15)

The result is obtained by employing the variance expression of regression estimator V ar(β̂) =

σ2(F TF )−1. With an explicit expression of V ar(β̃λ), it is possible to compare it with V ar(β̂).

The following development provides such a comparison.

V ar(β̂)− V ar(β̃λ) = σ2[(F TF )−1)− Uλ(F
TF )−1UT

λ ]

= σ2[UλU
−1
λ (F TF )−1(U−1

λ )T (Uλ)
T − Uλ(F

TF )−1UT
λ ]

= σ2Uλ[U
−1
λ (F TF )−1(U−1

λ )T︸ ︷︷ ︸
Q1

−(F TF )−1]UT
λ

Since, U−1
λ = (F TF )−1(F TF + λK), thus solving for Q1 gives the following

V ar(β̂)− V ar(β̃λ) = σ2Uλ[2λ(F
TF )−1K(F TF )−1 + λ2(F TF )−1K(F TF )−1K(F TF )−1]UT

λ

Expanding Uλ, U
T
λ and simplifiying further provides the final expression for the difference

V ar(β̂)− V ar(β̃λ) = (F TF + λK)−1[2σ2λK + σ2λ2K(F TF )−1KT︸ ︷︷ ︸
Q2

][(F TF + λK)−1]T

(3.16)

We next define positive(semi-) definite matrix and the resulting sum and product of the

positive(semi-) definite matrices as follows

Definition 3.2.

1. A symmetric n×n real matrix M is said to be positive(semi-) definite if for any non-zero

column vector z of n real values, the scalar zTMz is strictly positive/ (positive or 0).

M positive definite ⇐⇒ zTMz > 0 for all z ∈ Rn \ 0

M positive(semi-)definite ⇐⇒ zTMz ≥ 0 for all z ∈ Rn
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2. The sum of two positive(semi-) definite matrices M and G is positive(semi-) definite ma-

trix i.e.

zT (M +G)z = zTMz + zTGz ≥ 0 ∀z ∈ Rn

3. For symmetric real positive(semi-) definite matrices M and G the product MTGM is

positive definite and can be verified by

ztM tGMz = btGb ≥ 0 with b =Mz ∀z ∈ Rn

4. If the difference of of two positive(semi-) definite matrices M and G is positive(semi-)

definite matrix, it is represented as M −G ≽ 0 or G ≼M

The definition of positive(semi-) definite matrix in (3.2) helps to make conclusion about the

variance difference evaluated in Equation(3.16). Since (F TF + λK)−1 is square, invertible and

positive(semi-) definite matrix and the sum (Q2) in Equation(3.16) is positive(semi-) definite,

therefore the difference of variances is positive(semi-) definite leading to the conclusion that

variance of regression estimator β̂ is greater than or equal to that of smooth ridge estimator

which we write as

V ar(β̂) ≽ V ar(β̃λ)

The variance comparison provides a good reason to look into the mean square errors of the

two estimators. For this purpose we first need to compute mean square error of β̃λ and β̂. It

can be readily observed that the mean square error of β̂ is equal to variance attributed to the

fact that bias(β̂) = 0. Mean Square Error (MSE) of β̃λ is defined as

MSE(β̃λ) = E
(
(Uλβ̂ − β)T (Uλβ̂ − β)

)
= E(β̂TUT

λ Uλβ̂)− E(βTUλβ̂)− E(β̂TUλβ) + E(βTβ)

adding and subtracting the terms (βTUT
λ Uλβ̂) and (β̂TUT

λ Uλβ) and applying expectation yields:

MSE(β̃λ) = E[(β̂ − β)TUT
λ Uλ(β̂ − β)] + βTUT

λ Uλβ − βTUλβ − βTUT
λ β + βTβ

= E[(β̂ − β)TUT
λ Uλ(β̂ − β)] + βT (Uλ − I)T (Uλ − I)β so that

MSE(β̃λ) = σ2tr(Uλ(F
TF )−1UT

λ ) + βT (Uλ − I)T (Uλ − I)β (3.17)

The above expression of MSE is obtained by using the results

β̂ ∼ N (β, σ2(XTX)−1) and E(eTAe) = tr(AΣe) + µT
e Aµe (3.18)

for quadratic form of multivariate normal distribution,where e is replaced by β̂.
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The foundation for MSE comparison is built on Theorem(2) of [77] which states that there

exists λ > 0 such that mean square error of ridge regression estimator β̂λ is less than the mean

square error of simple regression estimator β̂ or MSE(β̂λ) ≺MSE(β̂). The following theorem

is the smooth ridge version of the above statement, provided (F TF ) is invertible

Theorem 3.1. There exists λ > 0 such that MSE(β̃λ) ≺MSE(β̂)

Proof. Let M(λK) and MSE(λ=0) denote MSE(β̃λ) and MSE(β̂) respectively, where M(λK)

is given in Equation(3.17) and MSE(λ=0) = σ2(F TF )−1. Then

MSE(λ=0) −M(λK) = σ2(F TF )−1 − σ2(Uλ(F
TF )−1UT

λ )− βT (Uλ − I)T (Uλ − I)β

Using the simplification of Equation(3.16), the difference can be simplified to

MSE(λ=0) −M(λK) = (F TF + λK)−1
(
2σ2λK + σ2λ2K(F TF )−1KT

) (
(F TF + λK)−1

)T
− λ2(F TF + λK)−1KββTKT

(
(F TF + λK)−1

)T
which is simplified to

MSE(λ=0) −M(λK) = (F TF + λK)−1

2λσ2K + σ2λ2K(F TF )−1KT − λ2KββTKT︸ ︷︷ ︸
Q3

((F TF + λK)−1
)T

(3.19)

In summary mean square error of β̃λ is less than that of β̂ if the difference in Equation (3.19)

is positive(semi-) definite which is true if (Q3) is positive(semi-) definite or

2λσ2K + λ2K(F TF )−1KT − λ2KββTKT ≽ 0

It is straightforward to conclude that λ2K(F TF )−1KT is positive(semi-) definite. Consequently,

It is sufficient to demonstrate that the inequality holds for

2

λ
σ2K −KββTKT ≽ 0

. From Theorem 3.2 introduced by [24], we are able to find a condition on λ such that the
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inequality holds.

2

λ
σ2K −KββTKT ≽ 0

λ ⪯ (βTKT (2σ2K)−1Kβ) (3.20)

which completes the proof

3.4 MSE of smooth ridge estimator

Our prime interest is to perform MSE comparisons for Smooth Ridge model in the case where

F TF is less than full rank. This is the case when number of model terms k exceed the number

of design points n. Such a generalization of comparison for ridge and regression estimator is

brought into light by [24], where n < k results into condition when F TF becomes non-invertible.

The following theorem by [24] provides a basis to derive condition where mean square error of

Smooth Ridge estimator is less than that of Regression estimator.

Theorem 3.2 (Farebrother Theorem). For n×n positive definite matrix A; let b be n× 1 non

zero matrix and let d be a positive scalar. Then dA− bbT is (semi-) positive definite if and only

if bTA−1b ≤ d. We have a series of implications

Proof. dA− bbT ≻ 0

dcTAc > cT bbT c for an n× 1 non-zero column vector c

d
bTA−1b

> (cT b)2

cTAc×bTA−1b
(dividing bTA−1b on both sides and rearranging)

d
bTA−1b

> corr2(A− 1
2 b, A

1
2 c)

d
bTA−1b

> 1 since, correlation is maximum at ±1.

d > bTA−1b

The result is attributed to the fact that the inequality holds true in general if it is true at the

maximum which concludes our proof. All the implications are reversible.

We consider a simple example to examine the results given in Theorem(3.2).
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Example 3.3. Let A =

(
2 3

3 2

)
and b =

(
1

2

)
. Then,

bTA−1b =
(
1 2

)(−1 3
2

3
2

−1

)(
1

2

)
= 1 (3.21)

which will be used in further comparisons. We consider two cases; d > bTA−1b and d < bTA−1b.

� case 1: d = 1
2
which is less than 1. In this case

dA− bbT =

(
0 1

2

−1
2

−3

)

In order to check if dA− bbT ≺ 0 let c be the vector of non-zero values c =

(
3

4

)
. It can

be seen that cT (dA− bbT )c = −56 which is not positive. Hence, (dA− bbT ) is not positive

definite for d < bTA−1b.

� case 2: d = 2 which is greater than 1. In this case

dA− bbT =

(
3 4

4 0

)

and for c =

(
3

4

)
It can be seen that cT (dA− bbT )c is positive supporting the result that

(dA− bbT ) is positive definite for d > bTA−1b.

The Farebrother theorem helps in development of Smooth Ridge version of the mean square

error comparison and given in the following theorem.

Theorem 3.3. For an n × k design matrix F where, n < k, there exists a constant λ satis-

fying the inequality λ < ((Kβ)T (UUTKT )−1Kβ)−1 such that MSE(β̃λ) ≼ MSE(β̂) given the

condition that
(
2UUTKT +KUΛ−1UTKT

)
−KββTKT is positive(semi-)definite.

Proof. Let F TF be less than full rank matrix and K be the matrix defined in Equation (3.7),

then mean square error of smooth ridge estimator β̃λ is

MSE(β̃λ) = V (β̃λ) + (bias(β̃λ))
2

where

V (β̃λ) = σ2(F TF + λK)−1(F TF )[(F TF + λK)−1]T
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and

bias(β̃λ) = E(β̃λ)− β = (F TF + λK)−1(F TF )β − β = −λ(F TF + λK)−1Kβ

Therefore, the MSE(β̃λ) can be expressed as

MSE(β̃λ) = (F TF + λK)−1
[
σ2(F TF ) + λ2KββTKT

]
[(F TF + λK)−1]T (3.22)

Recall from Equation (3.11) that β̃λ = (F TF + λK)−1F TY . The design matrix F is n × k

matrix of polynomial functions, Y is n× 1 vector of observations, and F has rank m < k. We

consider singular value decomposition of matrix F such that F = UΣV T where U and V are

the matrices containing left and right singular vectors of F respectively with Σ being matrix

containing non-zero singular values. Then the matrix F TF can be decomposed as

F TF =
[
U V

] [Λ 0

0 0

][
UT

V T

]
= UmΛU

T
m (3.23)

which is the result of Karhunen-Loeve decomposition [30] where Um and Vm are k × m and

m × k sub matrices associated with non-zero singular values and Λ is an m × m diagonal

matrix and [Um Vm] is a k×k orthonormal matrix. The smooth ridge estimator and regression

estimators can therefore be represented using Karhunen-Loeve decomposition. For simplicity,

U is substituted for Um for development of following results.

β̃λ = (F TF + λK)−1F TY

= (UΛUT + λK)−1F TY

β̂ = (F TF )−F TY

β̂ = (UΛ−1UT )F TY (3.24)

where, (F TF )−1 = UΛ−1UT is Moore-Penrose generalized inverse of F TF . Let MSE(λ=0) and

MSEλ be the mean square errors of β̂ and mean square error of β̃λ in Equation (3.22). We

re-write the mean square errors using the decomposition in (3.23).

MSE(λ=0) = σ2UΛ−1UT

MSEλ = (UΛUT + λK)−1[σ2UΛUT + λ2KββTKT ](UΛUT + λK)−1 (3.25)

Multiplying both sides of MSE(λ=0) in Equation (3.25), (UΛUT + λK)−1(UΛUT + λK) and
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using the fact that UTU = I, simplifies to following

MSE(λ=0) = (UΛUT + λK)−1(UΛUT + λK)(σ2UΛ−1UT )(UΛUT + λK)T ((UΛUT + λK)T )−1

MSE(λ=0) = (UΛUT + λK)−1σ2
(
UΛUT + 2λUUTKT + λ2KUΛ−1UTKT

)
(UΛUT + λK)−1

(3.26)

An expression for the difference between two mean square errors be developed as

MSE(λ=0) −MSEλ = λ2(UΛUT + λK)−1

σ2

2

λ
UUTKT +KUΛ−1UTKT︸ ︷︷ ︸

A

−KββTKT︸ ︷︷ ︸
B


× (UΛUT + λK)−1 (3.27)

Given that the difference A−B ≽ 0,we use Theorem (3.2) to prove our result. For the sake

of simplicity it is sufficient to show that

2

λ
UUTKT −KββTKT ≽ 0

We use Farebrother theorem (3.2) to show that the above condition is satisfied if and only if

1

λ
> (Kβ)T (UUTKT )−1Kβ

equivalently,

λ < ((Kβ)T (UUTKT )−1Kβ)−1

which concludes the proof. Therefore, the result implies that for the constant λ which

satisfies the inequality λ < ((Kβ)T (UUTKT )−1Kβ)−1, we infer that MSE(β̃λ) ≼MSE(β̂).

The following theorem by [15] helps to conclude that A is positive (semi-) definite.

Theorem 3.4 (Courant Fischer min-max Theorem). For an n × n symmetric matrix A with

eigenvalues λ1(X) ≤ λ2(X) ≤ · · · ≤ λk(X) · · · ≤ λn(X)

λ1 ≤
xTAx

xTx
≤ λn ∀x ∈ Cn\{0}

One of the properties of this theorem is described in [23] which shows that eigen values of

the sum of two positive(semi-) definite (PSD) matrices is PSD. Explicitly,

71



Lemma 1. Let A and B be two symmetric matrices. Then

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B)

Theorem (3.4) and definitions (3.2), provide sufficient evidence to conclude that A is PSD.

However, there are unknown quantities β and σ2 in the expression of mean square error differ-

ence in Equation(3.27), therefore some simple numerical examples are studied to find if λ can

be identified such that the difference of mean square error of two estimators is Positive (semi-)

definite.

Example 3.4. Upto this point we have used monomial bases. However we are interested in

using Legendre polynomials which are linear combinations of monomials. Legendre basis are

orthogonal basis and obeys the properties of good basis given in Def (3.1). For one dimension

d = 1 design D , an example as simple as with only n = 2 design points (−1, 1) and ML =

(0, 1, 2) is considered, then the Legendre polynomials are L0(x) = 1, L1(x) = x and L2(x) =

(3x2 − 1)/2 to build design model matrix F. The vector of unknown coefficient parameters of

the model is β = (β0 β1 β2)
T . We compute the difference of mean square error as follows: The

matrix K for this example is

K =

0 0 0

0 0 0

0 0 18

 so that

KββTKT =

0 0 0

0 0 0

0 0 182β2
2


The matrix U from kerhunen-Loeve decomposition is

U =

−1 0

0 1

−1 0

 and KUUT =

 0 0 0

0 0 0

18 0 18


Recall from Equation (3.23) that U is the sub-matrix associated with non-singular values of the

singular value decomposition of F TF . The difference 2
λ
UUTKT −KββTKT is

2

λ
KUUT −KββTKT =

2

λ

 0 0 0

0 0 0

18 0 18

−

0 0 0

0 0 0

0 0 182β2
2

 =
2

λ

 0 0 0

0 0 0

18 0 18(1− 18β2
2)
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For the difference to be positive(semi-) definite, the condition on λ is

2(18)

λ
− 182β2

2 > 0

which follows that mean square error difference is positive(semi-) definite for λ < 1
9β2

2
. Explic-

itly, this example is the numerical application of Theorm (3.3). The condition on λ helps us

to infer that MSE(β̃λ) ≼MSE(β̂) when inequality holds true.

Example 3.5. The above example is extended by adding one more model term such that k = 4

with n = 2 design points (x1 = −1, x2 = 1) and ML = (0, 1, 2, 3) is considered, then the

Legendre polynomials are L0(x) = 1, L1(x) = x , L2(x) = (3x2−1)/2 and L3(x) = (5x3−3x)/2

to build design model matrix F. Then, β = (β0 β1 β2, β3)
T is a vector of unknown coefficient

parameters of the model. The computations for difference of mean square error are given in a

similar fashion as above: The matrix K for this example is

K =


0 0 0 0

0 0 0 0

0 0 18 0

0 0 0 150

 so that

KββTKT =


0 0 0 0

0 0 0 0

0 0 324β2
2 2700β2β3

0 0 2700β2β3 22500β2
3


The matrix U from kerhunen-Loeve decomposition is

U =


−1 0

0 1

−1 0

0 1

 and KUUT =


0 0 0 0

0 0 0 0

18 0 18 0

0 150 0 150


The difference 2

λ
UUTKT −KββTKT is computed as

2

λ
KUUT −KββTKT =


0 0 0 0

0 0 0 0
36
λ

0 36
λ
− 324β2

2 −2700β2β3

0 300
λ

−2700β2β3 −22500β32
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In order to see if the matrix of difference is SPD, eigen values need to be evaluated for this

matrix. Therefore the eigen values of the difference matrix above are µ1 = µ2 = 0,

µ3 =
−162β2

2λ− 11250β2
3λ+ 168 + 6

√
729β4

2λ
2 + 101250β2

2β
2
3λ

2 + 3515625λ43λ
2 + 1188β2

2λ− 82500β2
3λ+ 484

λ

and

µ4 =
−162β2

2λ− 11250β2
3λ+ 168− 6

√
729β4

2λ
2 + 101250β2

2β
2
3λ

2 + 3515625β4
3λ

2 + 1188β2
2λ− 82500β32λ+ 484

λ

Let, β2 = 1, β3 = 1 then straightforward calculations lead to conclude that µ3 and µ4 are non

zero and positive for λ ≥ 84. Therefore, for this example with n = 2, k = 4, β2 = 1, β3 = 1

and λ = 84, the eigenvalues are µ1 = µ2 = µ4 = 0 and µ3 = 5400. We notice that in the given

example eigenvalues of the difference between mean square error matrix are not all positive for

λ < 84, the non-zero eigenvalues are positive for λ > 84 and non-zero eigenvalues are either

positive or zero at λ = 84. Therefore, a value of λ can be found such that the mean square

error of ridge estimator is less than or equal to that of smooth regression estimator.

Example 3.6. We study one more example to observe how increasing the number of data points

may effect the computation of eigenvalues of the difference matrix. We use k = 4 model terms

and n = 3 design points x = (−1, 0, 1). Let M = (0, 1, 2, 3) , then the Legendre polynomials

are L0(x) = 1, L1(x) = x , L2(x) = (3x2 − 1)/2 and L3(x) = (5x3 − 3x)/2 to build design

model matrix F and β = (β0 β1 β2, β3)
T is a vector of unknown coefficient parameters of the

model. The computations for difference of mean square error are given in a similar fashion as

above: The matrix K for this example is the same as in previous example because k = 4 in

both examples.

K =


0 0 0 0

0 0 0 0

0 0 18 0

0 0 0 150

 so that

KββTKT =


0 0 0 0

0 0 0 0

0 0 324β2
2 2700β2β3

0 0 2700β2β3 22500β2
3
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The matrix U from kerhunen-Loeve decomposition is

U =


−1 0 1

0 1 0

−1 0 −1

0 1 0

 and KUUT =


0 0 0 0

0 0 0 0

0 0 36 0

0 150 0 150


The difference 2

λ
UUTKT −KββTKT is computed as

2

λ
KUUT −KββTKT =


0 0 0 0

0 0 0 0

0 0 72
λ
− 324β2

2 −2700β2β3

0 300
λ

−2700β2β3 −22500β32


In order to see if the matrix of difference is SPD, eigen values need to be evaluated for this

matrix. Therefore the eigen values are µ1 = µ2 = 0,

µ3 =
−162β2

2λ− 11250β2
3λ+ 168 + 6

√
729β4

2λ
2 + 101250β2

2β
2
3λ

2 + 3515625λ43λ
2 + 1026β2

2λ− 82500β2
3λ+ 484

λ

and

−162β2
2λ− 11250β2

3λ+ 168− 6
√

729β4
2λ

2 + 101250β2
2β

2
3λ

2 + 3515625β4
3λ

2 + 1026β2
2λ− 82500β32λ+ 484

λ

Let, β2 = 1, β3 = 1 then it is simple to evaluate that eigen values of the difference matrix above

are all non-negative for λ ≥ 80. Therefore, in this example for n = 3, k = 4, β2 = 1, β3 = 1

and λ = 80 the non-zero eigenvalues are positive, µ1 = µ2 = 0, µ3 = 6809.11 and µ4 = 126.88.

We observe that the eigenvalues of the difference between mean square error matrix are not all

positive for λ < 80, the non-zero eigenvalues are positive for λ ≥ 80. Therefore, value of λ can

be found such that the mean square error of smooth ridge estimator is less than or equal to that

of regression estimator.

The example given above, however, cannot be generalized to any number of design points

and polynomials. We observe that increasing the regression parameters yield redundant equa-

tions for which reason a unique condition on λ cannot be obtained in general. However, the

comparisons of models along with prediction mean square computation are provided in Section

(3.5), where unknown regression parameters are replaced by their respective estimates using

Smooth Ridge model.
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3.5 Emulator and MSE results for smooth ridge model

Sections (3.2) and (3.4) provide a good reason to believe that the Smooth ridge estimator is

efficient in terms of smaller variance and mean square error. This can further be examined in

terms of prediction capabilities of the proposed model which requires to develop a predictive

model and the associated prediction error. The polynomial model given in Equation (3.9)

based on the estimator in Equation (3.11) at a new point x takes the form

ŷβ̃λ
= f(x)T β̃λ (3.28)

Recall from Equation (3.11) that β̃λ = (F TF+λK)−1F TY which can be simplified as β̃λ = AY ,

where, A = (F TF + λK)−1F T which follows that we can write Equation (3.28) as ŷβ̃λ
=

f(x)TAY or simply ŷ(x) = WY where W = f(x)TA. Then we have the following theorem

about the prediction mean square error for Smooth Ridge model.

Theorem 3.5. The mean square error of the prediction ŷβ̃λ
at a new point x is given as

MSE(ŷβ̃λ
) = W

(
FββTF T + σ2

)
W T − σ2 (2W1− I)−

(
2WF − f(x)T

)
ββTf(x)

where

1 =

1, if ϵi = e

0, otherwise

Proof. The mean square error of ŷβ̃λ
by definition is

MSE(ŷβ̃λ
) = E

(
WY − Y (x))2

MSE(ŷβ̃λ
) = E

(
WY Y TW T − 2WY Y (x) + Y (x)2

)
(3.29)

The expectations in Equation (3.29) are evaluated as

E(WY Y TW T ) = W (FββTF T + σ2)W T (3.30)

E(Y Y (x)) = E(Fβ + ϵ)(f(x)Tβ + e)

E(Y Y (x)) = FββTf(x) + E(ϵe)
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ϵ is a vector of order n×1 where e is a scalar. E(ϵe) = σ2 for ϵi = e and 0 otherwise. Therefore,

E(Y Y (x)) = FββTf(x) + σ2
1 (3.31)

and finally expectation of Y (x)2 is

E(Y (x))2 = σ2 + f(x)TββTf(x) (3.32)

Equations (3.30, 3.31 and 3.32), completes the proof for mean square error of ŷ(x) i.e.

MSE(ŷβ̃λ
) = WFββTF TW T + σ2WW T − 2σ2W1− 2WFββTf(x) + σ2 + f(x)TββTf(x)

(3.33)

3.5.1 Smooth Ridge predictor with Gaussian Emulator

Revisit the emulator in Equation (2.20), for sacks model (2.1)

ŷ(x) = f(x)T β̂ + r(x)TR−1(Y − Fβ̂) (3.34)

An attempt here is to build an emulator for the Smooth Ridge model to make predictions

at untried data points. This is done by introducing a modification in Equation (3.34) that

suggests to replace β̂ given in Equation (3.34) with β̃λ given in Equation (3.11). The resulting

smooth predictor takes the form

ŷλ(x) = f(x)T β̃λ + r(x)TR−1(Y − Fβ̃λ) (3.35)

where r(x) and R represent the quantities explained in section 2.2.1. Expanding β̃λ given in

Equation(3.11), the emulator ŷλ(x) is expressed as

ŷλ(x) = f(x)T (F TF + λK)−1F TY + r(x)TR−1(Y − F (F TF + λK)−1F TY )

ŷ(x) can be written as a linear combination of Y

ŷλ(x) = f(x)TAY + r(x)TR−1(Y − FAY ) =
(
f(x)TA+ r(x)TR−1(I − FA)

)
Y

ŷλ(x) =
(
f(x)TA+ r(x)TR−1(I − FA)

)
Y = CY (3.36)
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where A = (F TF +λK)−1F T as defined in Section (3.2) and C = f(x)TA+ r(x)TR−1(I−FA)

. We replace ŷλ(x) to the random Gaussian variable Ŷλ, therefore Ŷλ ∼ N (CFβ, σ2CRCT ) as

Y ∼ N (Fβ, σ2R).

3.5.2 Mean Square Error of predictions for Smooth Ridge emulator

In this section we aim to develop an expression for mean square error of ŷλ(x) following the

development of Smooth Ridge emulator Equation (3.36) in Section (3.5.1). The following

theorem elucidates the construction of mean square prediction error of Smooth Ridge emulator

Theorem 3.6. Mean square error of the emulator ŷλ(x) is

MSE(ŷλ(x)) = CFββTF TCT + σ2CRCT − 2σ2Cr(x)− 2CFββTf(x) + σ2 + f(x)TββTf(x)

Proof. We begin with the definition of mean square error which is the expectation of the

squared deviations

MSE(ŷλ(x)) = E
(
CY − Y (x))2 = E

(
CY Y TCT − 2CY Y (x) + Y (x)2

)
(3.37)

The expectations in Equation(3.37) are evaluated in the following manner

E(CY Y TCT ) = CE(Y Y T )CT = C(FββTF T + σ2R)CT (3.38)

Recall that Y = Fβ + Z with E(Y ) = Fβ and cov(Y ) = σ2R. Similarly,

E(CY Y (x)) = Cov(CY, Y (x)) + E(CY )E(Y (x)) = σ2Cr(x) + CFββTf(x) (3.39)

and finally for the last term of Equation (3.38)

E(Y (x))2 = σ2 + f(x)TββTf(x) (3.40)

From Equations (3.38, 3.39 and 3.40),the mean square error of ŷ(x) in Equation (3.37) is

MSE(ŷλ(x)) = CFββTF TCT + σ2CRCT − 2σ2Cr(x)− 2CFββTf(x) + σ2 + f(x)TββTf(x)

(3.41)

which completes the proof.

It is pertinent to mention here that MSE(ŷλ(x)) is zero at design points which leads to the

result, ŷλ(x) = y(x) at a design point sj. This can be supported by taking into account that
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r(x)TR−1F reduces to f(sj) at design point sj, since r(sj)
TR−1 becomes an indicator vector and

chooses the row corresponding to sj in the matrix F . Therefore, C in Equation(3.41)simplifies

to identity I. Applying these results, MSE in Equation (3.41) becomes,

MSE(ŷ(sj)) = f(sj)
TββTf(sj) + σ2 − 2σ2 − 2f(sj)ββ

Tf(sj)
T + σ2 + f(sj)

TββTf(sj)
T

whose terms cancel to 0

.

3.6 Comparisons

In this section a brief account of comparisons of Smooth Ridge model with that of Sacks model

in Section (2.1) is furnished with the aid of simulated data for one, two and three dimensions.

A simple comparison is also evaluated under the assumption that true function generating

the response is not Gaussian, therefore, the kriging estimation is not expected to perform well.

Finally, a real life application of COVID data is employed to compare the predictive capabilities

of models under study, where response variable is the probability of being infected by aerosole

transmission of the virus. In order to make computations numerically stable and efficient,

orthogonal polynomials instead of pure monomials are employed.

3.6.1 One dimension Example: comparison with Sacks model

In order to evaluate the performance of proposed model in terms of emulator given in Equation

(3.35) and mean square error in Equation (3.41), we proceed in the following manner. For one

dimension study, data is uniformly generated to build design model matrix F, using k = 8

Legendre Polynomial terms with M = (0, 1, 2, 3, 4, 5, 6, 7). The following simulator is used to

compute the response values y(x) which is well known sinc function [85].

y(x) =
sin(15π

2
x− 10π

2
)

15π
2
x− 10π

2

The six design points n = 6 for estimation of β̃ and six additional data points for validation

are generated using uniform distribution. All 12 data points are then used for the computation

of bias correction factor in Equation (3.35). The first step in the estimation of β̃ is to estimate

λ which is done by employing the criterion of minimizing empirical mean square error, λ =

argmin
∑

(Y −Fβ̃)2 for a grid of 10, 000 values for λ in the region of [10−5, 10]. For estimated

value of regularization parameter λ, the coefficient vector β̃ is computed thereof. For given
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choice of design points, Legendre polynomial terms and minimization criterion the estimated

value of λ is found to be λ̂ = 0.0093. For the corresponding coefficient vector β̃ the emulator

given in Equation 3.35 and bounds for mean square error in Equation (3.41) are computed for

1500 untried points. The plots of emulator and bounds for Smooth Ridge model and Sacks

model using Equations (2.20, 2.8) for comparison purpose are displayed in Figure (3.3)

(a) SR model Emulator and bounds (b) Sacks Emulator with bounds

Figure 3.3: Emulation and bounds Plots for SR and Sacks model

Figure 3.4: Squared prediction error for SR and Sacks model

It is noticeable from Figure (3.3) that prediction bounds for sacks model are wider at

some points and the argument is supported by investigating into the mean square error plots.
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In order to further verify the results a simulation study with 100 iterations for the same

example is carried out by randomly generating design points and validation data using uniform

distribution. Given below are the box plots for mean square error of both the models under

study along with the average mean square errors.

Average Mean Square Error

SR model 0.5774505

Sacks model 302.18

Figure 3.5: Box Plots of MSE for 1-D Table 3.3: Average MSE for two models

3.6.2 Bi- dimension Example: comparison with Sacks model

We now investigate further the performance of proposed model, is made by taking into account

2-dimension data. The comparison of SR model is made with Sacks model using bi-dimensional

function. The design D is composed of uniformly generated 15 data points over the design

region [−1, 1]2. The data generated is divide into training and testing parts in 2 : 1 with the

aid of cross validation folds. The design model matrix F is n × k matrix constructed with

k = 12 Legendre polynomial terms and n = 10 design points. The simulator is the bivariate

function responsible to generate the response [4].

y(x1, x2) = sin((x1 − 0.5)2 + (x2 − 0.5)2 + 7x1(x2 − 0.5))

Mean square prediction errors for the given example is computed for 5 untried points for each

of

� 200 random data set using uniform distribution

� 200 random data set with Latin Hypercube Sampling (LHS)
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The graphical presentation of box plots for mean square error of the models under study along

with the average mean square error for Uniform and Latin Hypercube samples are given in

Figures (3.6, 3.7) and Tables (3.4, 3.5) respectively.

Average Mean Square Error

SR model 1.506× 10−1

Sacks model 1.02× 109

Figure 3.6: Box Plots of MSE 2D Uniform Table 3.4: Average MSE 2D Uniform

Average Mean Square Error

SR model 6.548× 10−2

Sacks model 1.064× 109

Figure 3.7: Box Plots of MSE 2D LHS Table 3.5: Average MSE 2D LHS

It is evident from the Figures (3.6, 3.7) and Tables (3.4, 3.5) displayed above that average

prediction error of emulator built on β̃λ is significantly less than that of Sacks model emulator
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for given choice of design points and design model matrix. Also, the mean square error of

Sacks model are skewed to the right indicating an increasing trend in the prediction errors.

The results are consistent for both uniform and Latin hypercube samples.

3.6.3 Three dimension Example

In order to explore the performance of proposed model in higher dimension a known 3 − d

simulator is interpolated with the following details. A random Latin hypercube sample of

size 45 is generated for d = 3 over the design region [0, 1]3 which constitute design points

for this example. The data generated is divided into training and testing parts in the ratio

of 2 : 1 with the aid of cross validation folds. The design model matrix is constructed with

n = 30 design points and k = 35 polynomial terms with full basis of degree 4. Followed the

examples in 1− d and 2− d, the design points are used to build emulator for the models given

in Equations (2.20) and (3.35) whereas the 15 testing data points serve to chose λ such that

λ̂ = argmin
∑

(Y − Fβ̃). The 3 − d function [22] chosen as simulator from Bingham library

is a function for comparison of computer experiments and fit well in to the current study.

y(x) = 100(e
−2

x1.751 + e
−2

x1.52 + e
−2

x1.253 ).

Mean square error for predictions at 15 new points is simulated 200 times for design points

of size n = 30. The box plots for the two compared models are exhibited in Figure (3.8) and

mean squared prediction error is given in Table (3.6).

Average Mean Square Error

SR model 9.95× 10−2

Sacks model 5.199× 108

Figure 3.8: Box Plots of MSE for 3-D Table 3.6: Average MSE for SR and Sacks
model
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3.6.4 Non Gaussian function

The examples presented in the preceding subsections pertain to the cases where the response

Y (x) follows Gaussian process, hence the random variable Z(x) in model (2.1) plays an impor-

tant part in the emulation resulting in improved predictions at untried inputs by taking into

account the correlation matrix R given in Equation (2.6). We are interested to look into the

performance of proposed model in such a scenario where the function generating the response

Y (x) does not follow Gaussian process. It is expected that predictive model in Equation (3.28)

will outperform the estimators developed in Equations (2.20) and (3.35) respectively. The

study is carried out as follows. A random sample of size n = 34 for d = 1 is generated with

uniform distribution over the region [−1, 1]. These n = 34 data points serve as design points

for the emulator based on Smooth Ridge model with Gaussian emulator given in Equation

(3.35) and Sacks model emulator given in Equation (2.20). However, for the computation of

β̃λ to estimate trend in Equation (3.28), n = 34 sample points are divided into two halves. 17

design points are employed to construct design model matrix F with 18 Legendre polynomial

terms while the remaining 17 sample points act as validation data for computing validation

error in order to choose λ such that λ̂ = argmin
∑

(Y − Fβ̃)2. The estimated value of λ

by minimizing the validation error for this given example is found to be 4.866 × 10−6. The

simulator to act as a response function for the purpose of this study is chosen such that it

doesn’t satisfy the properties of Gaussian process which is given

y(x) = −0.5 ∗ (sin(40 ∗ (x− 0.85)4) ∗ cos(2.5 ∗ (x− 0.95)) + 0.5 ∗ (x− 0.9) + 1)

The Figures (3.9) present a detailed graphical account of true function, design points, validation

data points, trend based on β̃λ , Smooth Ridge emulator and Sacks emulator along with the

corresponding bounds based on the mean square error developed in Equations (3.33), (3.41)

and (2.8) for 1500 new points.
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(a) SR Trend with bounds (b) SR emulator with bounds

(c) Sacks emulator with bounds (d) emulator and bounds for three models

Figure 3.9: emulator plots for three models

It is apparent from Fig (3.9) that Smooth Ridge emulator and Sacks emulator exhibit wider

prediction bounds than those of the Smooth Ridge trend, attributed to larger mean square

errors. In order to verify further the validation of results presented in Fig (3.9), we simulated

the given example 100 times with random generation of data using uniform distribution. The

box plots of 100 mean square errors of predictions at 1500 new points for each of the three

models is given in Figure (3.10). The average of mean square errors for the models to be

compared are presented in the Table (3.7).
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Average Mean Square Error

SR model trend 6.67× 10−3

SR with Gaus-

sian

1.722× 10−2

Sacks model 3.76× 106

Figure 3.10: Box Plots of MSE for non Gaus-
sian Function

Table 3.7: Average MSE for three models

It is evident from the box plots and average mean square errors table that the minimum least

square error is accounted for the predictive model (3.28) followed by the emulators given in

Equation (3.35) and (2.20) respectively. These results allow us to conclude that the proposed

model is simplified compared to the use of Kriging model particularly, when the underlying

function does not satisfy the conditions of gaussian process in terms of correlation. Moreover,

Kriging model is known to be computationally expensive with the increase in the number of

observations. The proposed model on the contrary is relatively less expensive where we can

avoid computing correlation matrix R.

3.7 COVID-19 transmission model data

This study is about the random generation and analysis of COVID transmission data. This

work is motivated by the estimator named COVID19-Aerosol transmission estimator developed

by Prof. Jose L Jimenez, Dept. of Chem. and CIRES, Univ. of Colorado-Boulder. It is well

known that COVID-19 disease is caused by the SARS-CoV-2 virus, which spreads among

people in several ways. According to research studies, World Health Organization (WHO) has

summarised the causes of spread of the virus [52].

The virus can spread from an infected person’s mouth or nose in small liquid par-

ticles when they cough, sneeze, speak, sing or breathe. These particles range from
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larger respiratory droplets to smaller aerosols. Current evidence suggests that the

virus spreads mainly between people who are in close contact with each other,

typically within 1 metre (short-range). A person can be infected when aerosols or

droplets containing the virus are inhaled or come directly into contact with the eyes,

nose, or mouth. The virus can also spread in poorly ventilated and/or crowded in-

door settings, where people tend to spend longer periods of time. This is because

aerosols remain suspended in the air or travel farther than 1 metre (long-range).

People may also become infected by touching surfaces that have been contaminated

by the virus when touching their eyes, nose or mouth without cleaning their hands.

For similar reasons, COVID19-Aerosol Transmission Estimator is developed by Prof.Jose L

Jimenez to estimate the propagation of COVID-19 by aerosol transmission. The study is

comprised of several variables, all kept fixed to find estimate of probability of being infected

due to aerosol transmission of COVID virus. The proposed model, estimates the propagation

of COVID-19 by aerosol transmission only. The model is based on a standard model of aerosol

disease transmission proposed by [62]. The parameters and different factors are included as

per recent literature on COVID-19. In the development of estimator, different scenarios are

discussed and probability of infection is estimated based on a fixed value of each factor involved,

thus the model employed is deterministic model and no randomization is incorporated. For

this reason, the propagation of COVID-19 by aerosol transmission is chosen as an application

of Smooth Ridge model. The objectives include

� generate data set for model fitting

� Fit models to the given set of data

� comparison of models in terms of predictive capabilities

For the purpose of data generation a fixed scenario(classroom) is considered with the fixed

and variable inputs and presented in the following table. The four variable inputs namely

vantilation, decayrate, deposition and quanta rate take a grid of values, references of which are

borrowed from the COVID19-Aerosol Transmission Estimator and [47]. The tabular description

of both type of inputs are enacted below:
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Fixed inputs

Length 7.6 m

Width 6.1 m

Area 47 m2

Volume 142 m3

Temperature 20 C

pressure 0.95 atm

Duration 1 h

Repitition 20

Number 10

infected 1

immune 0

susceptible 9

Variable input

vantilation 0.4-5

Decayrate(h1) 0- 0.63

Deposition(h1) 0.24 -1.5

Qunta rate 4 - 134

BR 0.65-1.38

Table 3.8: Fixed and variable Inputs for Aerosol Transmission Estimation

In addition, few important inputs for computing the response include: Death rate, Hospital

rate and Probability of infective. Among, variable inputs, breathing rate is chosen to have

fixed value 0.8 estimated from Miller et al.(2020) [47], for someone occasionally talking. Some

important quantities computed from the input given in Tables (3.8) are; First order loss (FOL),

Net Emission Rate (NER), Average Quanta Concentration (AQC) and Quanta Inhaled per

person (QIP).Explicitly;

FOL = V antilation+ decayrateofthevirus+ depositiontosurfaces

NER = Quantarate×maskefficiency ×Numberofinfectedpersons

AQC = 1− exp(−FOL× durationofevent)×
(
1− 1

FOL× duration

)
× NER

FOL× V olume

QIP = AQC ×Breathingrate× duration× (1−maskefficiency × peoplewearingmask)

(3.42)

Response variable y is Probability of infection given as y = 1 − e−QIP developed from Wells-

Riley infection model [62].

88



3.7.1 Data set up and simulation

The following set up is employed for simulation study. A random sample of 100 values for

each of the parameters: ventilation, Decay-rate, Deposition to surfaces and Quanta rate is

generated using Latin hypercube sampling. The vector of response Probability of infection is

obtained with the help of model defined above. The data set with 100 values of four inputs and

respective response vector is then divided into two equal halves as training and validation data.

The training data set is further divided into two halves, wherein 25 points serve to construct

design model matrix for Smooth Ridge model and to estimate the model parameter β̃λ while,

all of 50 training data points are used to construct design model matrix for Sacks model. We

use a model M with |M | = 25 terms and employ Legendre polynomials Lα(x) =
∏4

i=1 Lαi
(xi)

where α ∈ M . The simulation study is carried out with random generation of 200 Latin

hypercube samples of size 100. Four different models namely; SR model, SR model with

Gaussian emulator, Sacks model, Ridge model and Ridge model with Gaussian emulator are

compared in terms of prediction mean square error. Box plots of mean square prediction errors

for four models are given in Figure (3.11)

Figure 3.11: Boxplots of mean square prediction error for COVID data

3.7.2 Comments

The data for aerosol transmission of COVID-19 is randomly generated after identifying the

input variables. The existing model including emulator used for computer experiments, are fit
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to the data which are then compared with the proposed smooth ridge model. The first boxplot

labelled SR(T) is for mean square error of trend part Fβ of the proposed model without the

Gaussian emulator. The second box plot is for SR model with Gaussian involved. Same is for

the last two plots that are for ridge regression with and without Gaussian random variable.

The boxplot coloured “red” presents the results for Sacks model emulator.

� It is apparent from the boxplots in Figure (3.11) that Smooth Ridge model with trend

only exhibit least mean square prediction error followed by ridge regression trend.

� Moreover, the comparative modelling approach to COVID data for the estimation of

infection probability provides a statistical framework to predict probability of hospital-

ization, probability of death and eventually the number of new COVID cases arising for

a given scenario.

3.8 Comparison with Splines

The splines are functions widely employed in data smoothing and interpolation. A spline is a

piecewise polynomial function of a specified degree that usually satisfies boundary conditions.[82].

In what follows a spline f(x) is a univariate function defined over a closed interval [u, v] that

we will describe. The spline f is defined piecewise when the interval [u, v] is partitioned into

m disjoint sub-intervals [? ] so that [u, v] = [t0, t1) ∪ . . . [tm−2, tm−1] ∪ [tm−1, tm], i.e. t0 = u

and tk = v. A polynomial Pi can be defined for each of the subintervals Pi : [ti, ti+1]. The

points t0, t1 . . . tm are called knots and the vector comprising knots (t0, . . . , tm) is called knot

vector. The spline is said to be of a given degree v if the polynomials P1, P2 . . . have all the

same degree. We briefly discuss and compare two types of spline functions called cubic splines

and penalized splines.

The function f can be represented as basis splines for fixed knots m and degree v

f(x) =
m+v+1∑
i=1

βiBi(x)

where, βi are spline coefficients and Bi are the basis functions. The basis function adds smooth-

ness to the spline fitting. There are many variants of basis splines [20], for example, splines

characterized by the choice of basis function, the choice of extended knots and the special

conditions imposed on splines. One of the most commonly used splines is cubic splines which

is a piecewise cubic polynomials having continuous first and second derivative [13].
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3.8.1 Comparison of SR,SSM and Spline with R example

In this section we compare two of smooth methodologies namely Smooth Ridge and Smooth

Supersaturated model with Splines. In both cases we want to evaluate the convergence of two

methods namely splines and SR as a function of λ and design model term. From the theoretical

view point, the convergence of minimal roughness of SSM to that of splines has been studied

in [4] and we contribute with a numerical simulation.

We consider a univariate setting in which a sample of size n is randomly selected from

equally spaced data points over the domain [−1, 1]. For the construction of design model

matrix F , we consider six different size of model basis (see Table 3.9). The true function

for the response vector chosen is y(x) = (6x − 2)2sin(12x − 4) [71]. For the Smooth Ridge

model eight different values of λ are selected; λ = {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 5, 10}, to
investigate the behaviour of SR model relative to Splines. For each combination of number of

model terms k and λ, we computed the absolute difference of predictions between SSM-Splines

and SR-splines. We then plot the average difference against for all the values of λ that we

considered. For univariate case, SSM has limitation oevr the choice of design terms therefore

for n = {40, 50}, we only plot the difference of Smooth Ridge and Splines.

relationship between design points and basis

n model basis k

10 {15,21,27,33,39}
25 {35,41,47,53,59}
40 {45,49, 53, 57, 61}
50 {55, 57, 59, 61, 63}

Table 3.9: Choice of design points and model basis
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Figure 3.12: Difference of prediction mean (Smooth-Supersaturated model,Cubic Spline)

Figure 3.13: Difference of prediction mean (Smooth-Ridge model,Cubic Spline)

92



Figure 3.14: Difference of prediction mean (Smooth-Ridge model,Cubic Spline, n = {40, 50})

3.8.2 Comments

From Figure (3.12), we can identify the change in difference between SSM and cubic splines

as the model terms increase. It is to emphasise here that λ does not play any role in this

comparison. It is apparent from the figure that for smalll sample size n = 10, there is a sharp

decrease in the difference when model terms increases from k = 15 to k = 20. There is a

gradual decrease of the difference with closer agreement between the methodolgies for n > 20.

For larger sample size n = 25, the difference between SSM and Splines remain steady for

model terms upto k = 55 with a drastic increase for n > 55. Figure (3.13) shows the difference

between Smooth Ridge and Spline for n = 10 and n = 25. It is apparent from the difference

plots that they are independent of the choice of model terms and depend. This can be seen from

the fact that the for each value of λ the difference is constant across different choice of model

terms. We identify a value of lambda λ = 0.01 such that the absolute difefrence of predictions

between SSR and Splines is minimum. For a lrager sample size n = 25, we witness a similar

behaviour of the differences as for n = 10 when k < 55. A sharp increase is evident for k > 55

and λ < 1. On the contrary it is interesting to observe that for λ = {5, 10}, the difference

steadily decreases for k > 55. For n = {40, 50}, we can observe the similar behaviour as that

of n = 25 with the most steep slope when λ = {0.01, 0.1} and k > 55, k > 58 respectively. In
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summary, for each of the chosen sample size n, the difference of predictions between Smooth

Ridge and Splines remain steady upto certain choice of model term k but changes with the

change in λ. the difference takes a sudden jump for certain λ and choice of model terms.

3.9 comparison of Smooth Splines with Smooth Ridge

Choosing the right number of knots in splines has been an active area of research in splines

literature to avoid under or over fitting. Much of the research in this domain is motivated

by the pioneer work of smoothing splines by [61] where a penalty is introduced to control the

amount of smoothing. In smoothing splines the function f(x) can be written in vector form as

as f(x) = B(x)βp, and the coefficient vector is selected by minimizing

min
βp

||y −Bβp||2 + λp(β
p)THβp (3.43)

where B(x) is a vector of spline basis, βp is the parameter vector and H is the penalized matrix

built with the derivatives of the splines bases. The Equation (3.43) is prone to n × n matrix

inversion problem since the spline basis B grows with the order of the size of the sample [28].

To this end a reformulation of basis function is made, where B(x) is high dimensional fixed

basis function in contrast to smoothing splines referred as Penalized spline [64]. In this section

we compare the Smooth Ridge model to that of penalized splines owing to the similarity of

the penalty employed in both methodologies. It is relevant to mention here that the penalty

λp and λ for smooth splines and Smooth Ridge model respectively are not similar. λp is the

smoothing parameter that serves as trade-off between the data fitting and having linear model

with the splines basis as basis function. λ represents the penalty parameter which is trade-off

between the linear model and the curvature with supersaturated basis as basis function. With

the help of simple univariate example, we are interested to investigate if for given estimated λp

we can find a value of λ such that the prediction behaviour of the two methodologies become

closer.

A univariate random sample of size n is selected with equally spaced data points over the

design region [0, 1] which constitute design points for this example. The design model matrix F

is constructed with n design points and different choice of model terms k given in Table (3.10).

The true function for the response is y(x) = (6x − 2)2sin(12x − 4) [71]. Different values of λ

for Smooth Ridge model are λ = {10−12, 10−10, 10−8, 10−6, 10−4, 0.02, 0.04, 0.06, 0.08, 0.1} when

n = {10, 25} and λ = {10−6, 10−5, 10−4, 10−3, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1} for n = {40, 50}
. For each combination of design model term k and λ absolute difference of predictions is
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computed pairwise between SR and penalized splines at equally spaced 1000 new data points.

The average absolute difference against each of the model terms is plotted for each of the values

of λ. It is relevant to mention here that the choice of penalty parameter λp for penalized splines

is fixed at the estimated value 8.7 × 10−18. For model fitting with penalized splines, smooth

splines function ss is employed in R and predictions at new points are obtained from predict

function.

relationship between design points and basis

n model basis k

10 {12, 17, 22, 27, 32, 37}
25 {27, 32, 37, 42, 47, 52}
40 {42 ,46, 50, 54, 58, 62}
50 {52,54,56,58,60,62}

Table 3.10: Choice of design points and model basis

Figure 3.15: Difference of prediction mean (Smooth-Ridge model,Smooth-Spline n = {10, 25})
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Figure 3.16: Difference of prediction mean (Smooth-Ridge model,Smooth-Spline)

3.9.1 Comments

We can readily infer from Figure (3.15) that the average absolute prediction difference for

n = 10 is constant for any choice of model terms across all values of λ except λ = {10−8, 10−6}
where the difference is constant for k > 17. The minimum difference is observed at λ = 0.1.

The similar constant pattern is noticeable for n = 25 across all model terms for every value

of λ except λ = 10−4 where we can see a sudden increase in difference for k > 47 and λ =

{10−8, 10−6} where a gradual upward trend appears for k > 47.

The absolute average difference for n = 40 and n = 50 is plotted in Figure (3.16). For n = 40

we can observe that the difference (absolute average) between Smooth ridge and Splines remain

constant for k = 42 to k = 54 model terms and all values of λ with the minimum difference

observed at λ = 0.1. The difference starts drifting upwards for k ≥ 55 with the highest spike

at λ = 10−4 and 10−3. For n = 50 there is constant trend in difference for λ > 0.001 with

steady increase at 60 ≤ k ≤ 65. For λ < 0.001 the curve keeps wiggling until a sharp jump at

k = 60. The minimum difference is achieved at λ = 0.1.

In summary, for a given choice of supersaturated and spline basis, a vlaue of λ can be

found such that the prediction behaviour of the two approaches converge. This domain has a

potential to be explored as a future research.
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3.10 Sensitivity Analysis

Sensitivity Analysis (SA) provides a significant tool to address the exploration of computer

experiments, the fundamental goal of which is to explore computer code. Sensitivity Analysis

investigates how uncertainty in a model’s output can be attributed to various sources of uncer-

tainty in the model input [67]. In other words, Sensitivity Analysis is used to identify the input

variables that contribute the most to an output behaviour, the less or non-influential inputs, or

to ascertain some interaction effects within the model. In general, output values from complex

computer models can depend on a high number of input parameters and physical variables. In

practical situations, not all of the input variables may always be known with high precision.

Some of these input parameters and variables may be unknown, unspecified, or defined with

a large imprecision range. For example, variables that describe field conditions, and variables

that cannot be directly measured and include unknown or partially known model parameters.

Moreover, the relationship between output and input is not always fully understood. There-

fore, investigating computer code experiments remains a significant challenge in this context.

A good model is characterized by the confidence evaluation which necessitates, first, quantify-

ing the uncertainty in any model results (uncertainty analysis) and second, evaluation of each

input’s contribution to the output uncertainty (sensitivity analysis). The Sensitivity analysis

process entails the computation and analysis of the importance indices of the input variables

with respect to a given quantity of interest in the model output. Importance measures of

each uncertain input variable on the response variability provide a deeper understanding of the

modelling in order to reduce the response uncertainties in the most effective way. For instance,

putting more efforts on knowledge of influential inputs will reduce their uncertainties. The

underlying goals for SA are model calibration, model validation and assisting with the decision

making process.

The initial approach to Sensitivity Analysis is known as the local approach which allows to

study the impact of small input perturbations on the model output. This is the deterministic

approach that consists of calculating the partial derivatives of the model at a specific point

of the input variable space [66], [10], [2]. Local approaches find their applications to tackling

uncertainty analysis and Sensitivity analysis in problems related to environmental systems such

as climatology, oceanography and hydrology some of which can be found in [11], [58] , [49] and

[84]. In contrast to local SA, which emphasises the change in model output with the small

variations around a specific value of model inputs, Global sensitivity analysis takes into account

the entire domain of input parameter variations [81]. A detailed account of global sensitivity

is given in [68].
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One of the variant of global sensitivity analysis is variance-based sensitivity analysis is

known as Sobol’ method or Sobol’ indices [73]. In this framework the variation in model

output is decomposed into fractions which are attributed to the model inputs. The variation is

expressed in terms of percentages which are direct measure of uncertainty. Sobol’ indices are

appealing because:(1) this is global method that explores entire input domain for sensitivity

measures,(2) they perform well for non-linear response and no assumption of linearity is needed

and (3) can account for interaction effects in non-additive systems. In this section, the method

to compute Sobol’ indices is detailed which will then be employed within the framework of

Legendre polynomials for the construction of Smooth Ridge model, in Chapter (4).

We now review the basic material following [73]. For the computation of sensitivity indices,

any model may be viewed as a blackbox function defined as y = f(x), where x is a vector of d

model inputs (x1, x2, . . . xd), and y is a univariate model output. Furthermore, the inputs are

assumed to be independently and uniformly distributed within the unit hypercube, xi ∈ [0, 1]

for i = 1, 2, . . . , d. Since, any input space can be transformed onto the unit hypercube, therefore

no loss of generality is incurred. The function f defined as f : [0, 1]d → Rd can be decomposed

as,

f(x) = f0 +
d∑

i=1

fi(xi) +
d∑

i<j

fij(xi, xj) + . . .+ f1,2,...,d(x1, x2, . . . , xd) (3.44)

where f0 is a constant, fi(xi) and fij(xi, xj) are functions of xi and xi, xj respectively, same

goes for the higher order interactions. The quantity f0 is the average of f(x) over the unit

cube i.e.

f0 =

∫ 1

0

f(x)dx (3.45)

=

∫ 1

0

. . .

∫ 1

0

f(x1, x2, . . . , xd)dx1, . . . , dxd

The ith main effect is defined as

fi(xi) =

∫ 1

0

. . .

∫ 1

0

f(x1, x2, . . . , xd)dx1, . . . , dxi−1dxi+1, . . . , dxd − f0 (3.46)

The two way interaction effect is computed as

fi,j(xi, xj) =

∫ 1

0

. . .

∫ 1

0

f(x)
∏
k ̸=i,j

dxk − f(xi)− f(xj)− f0 (3.47)
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The three way interaction effect is computed in a similar fashion

fi,j,k(xi, xj, xk) =

∫ 1

0

. . .

∫ 1

0

f(x)
∏

l ̸=i,j,k

dxl − fi(xi)− fj(xj)− fk(xk)− fi,j(xi, xj)

− fj,k(xj, xk)− fi,k(xi, xk)− f0

From the above equations, it can be seen that fi(xi) is the effect of xi only, while integrating

out the rest of the effects termed as main effect of xi. Similarly, the interaction fi,j(xi, xj) is

the effect of varying both xi and xj simultaneously. The higher order interaction effects follow

the same analogy. It is vital to mention here that the definition of main and interaction effects

are driven by the condition of orthogonality [74] which states that.∫ 1

0

fi1,i2,...is(xi1
,xi2
, . . . , xis)dxk = 0 for k = i1, . . . , is (3.48)

In order to decompose the total variation into fractions, the variance of y is defined as:

D =

∫ 1

0

f(x)2dx− f 2
0 (3.49)

which can be decomposed into its constituent fractions followed by the function decomposition

above such that,

D =
d∑

i=1

Di +
d∑

i<j

Dij + . . .+D1,2,...,d (3.50)

where, Di =

∫ 1

0

fi(xi)
2dxi and Dij =

∫∫ 1

0

fi,j(xi, xj)
2dxidxj. (3.51)

The rest of the variance decomposition follows the same formulation.

3.11 Sensitivity Indices

The sensitivity indices indicate the percentage contribution of the effects (indicated by the

decomposition of variance or percentage of variation proportional to total variation. Therefore,

the first order sensitivity index or main effect index is the direct variance based measure of

sensitivity denoted by Si. In the same manner, Sij are second order interaction indices and so
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on. The sensitivity indices are computed as

Si =
Di

D
and Sij =

Dij

D
(3.52)

The higher order interaction indices can be computed analogously by dividing the relevant

terms in variance decomposition by the total variance.

3.11.1 Example with Legendre Polynomials

The examples used for the comparison of models in preceding sections of Chapter(3) were

constructed on Legendre polynomials which provided the formulation of f(x). In this example,

sensitivity indices are computed with the use of Legendre polynomials denoted by Pn(x) and

defined over the unit cube [0, 1]. It is pertinent to mention that Legendre polynomials employed

in the preceding sections had the domain over [−1, 1] denoted by Lα(x), therefore, in order to

perform sensitivity analysis for the similar examples, Legendre polynomials will be transformed

to [0, 1] as follows

Pn(x) = Ln(2x− 1)

Let x = (x1, x2) be the input vector with two input variables. In order to construct Legendre

polynomials, the set of basis indices chosen is M = {(0, 0), (1, 0), (0, 1), (1, 1)}. The general

form of the model y(x) = f(x) can be expressed as

f(x) = θ00P0(x1)P0(x2) + θ10P1(x1)P0(x2) + θ01P0(x1)P1(x2) + θ11P1(x1)P1(x2) (3.53)

The function f(x) is decomposed similar to what is given in Equation (3.44). Therefore,the

constant f0, main effects f(xi) and interaction f(xi, xj) are computed using the expressions

given in Equations (3.45, 3.46 and 3.47).

f0 = θ00

f1(x1) =

∫ 1

0

f(x)dx2 − f0 = θ00 + θ10L1(2x1 − 1) + 0 + 0− θ00

f1(x1) = θ10L1(2x1 − 1) (3.54)

Similarly, f2(x2) = θ01L1(2x2 − 1) (3.55)

and, f12(x1, x2) = θ11L1(2x1 − 1)L1(2x2 − 1) (3.56)
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The variances for this example can be decomposed similar to what is explained in Equation

(3.50). Therefore, the contribution of marginal variations and variation due to interaction to

the total variations is computed in the equations below.

D1 =

∫ 1

0

f1(x1)
2 =

∫ 1

0

(θ10L1(2x1 − 1))2 dx1

applying substitution and simplifying, the variance of the main effect x1 and x2 is given as,

D1 =
θ210
3

(3.57)

D2 =
θ201
3

(3.58)

The interaction terms variation can be computed as

D12 =

∫ 1

0

∫ 1

0

f12(x1, x2)
2dx1dx2

= θ211

∫ 1

0

L2
1(2x1 − 1)dx1

∫ 1

0

L2
1(2x2 − 1)dx2

D12 =
θ211
9

(3.59)

From Equations (3.57),(3.58) and (3.59), the total variance is straightforward to obtain

D = D1 +D2 +D3 (3.60)

D =
3θ210 + 3θ201 + θ211

9
(3.61)

The sensitivity indices are now easy to compute with the aid of expressions given in Equation

(3.52). The computations above provide a mechanism to formulate the general form of the

variances to avoid solving integrals for a new problem or choice of basis function. For some set

of distinct index vector α, let α
(i)
k represent the (kth) index for (ith) input xi such that αk ∈ α.

Then, the variances associated with main effects and interactions can be expressed in general

notation as

Di =
∑
k ̸=0

θ2
α
(i)
k

2α
(i)
k + 1

and Dij =
∑
k ̸=0

θ2
(α

(i)
k α

(j)
k )

(2α
(i)
k + 1)(2α

(j)
k + 1)

(3.62)
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3.12 A gentle introduction of Bayesian formulation for

Smooth Ridge model

An introduction of Bayesian methodology is described in Section (2.3). In this section we

provide a gentle introduction of Bayesian regression in the context of Smooth Ridge model. A

sharp distinction between the frequentist and Bayesian is that the former treats the parameters

as platonic quantities which assume some fixed value and needs to be estimated from the data.

On the other hand the Bayesian treats the parameters as random quantities and formalizes

one’s believes about the parameters in the form of probability distribution. The schism between

the frequentist and Bayesian centres on the concept of probability [79]. A detailed account of

the Bayesian formulation for Ridge regression is accounted in [79] which provides a direction

to develop Bayesian version of Smooth Ridge model.

Recall that the Smooth ridge model has two parameters β and σ2. The commonly chosen

priors of β, and σ2 within the context of ridge regression are β|σ2 ∼ N (0, σ2λ−1I) and σ2 ∼
IG(α0, γ0) [79]. We formulate the priors for Smooth Ridge model similar to that of Ridge

regression. We assume that the smoothness matrix K is invertible, for example for a non-

hierarchical model. Then the priors for β, and σ2 are β|σ2 ∼ N (0, σ2λ−1K−1) and σ2 ∼
IG(α0 γ0). The joint posterior distribution of β, and σ2 for the given choice of priors and

likelihood of the Smooth ridge model is given as:

Πβ,σ2(β, σ2|y, x) ∝ fy(y|x, β, σ2)× fβ(β|σ2)× fσ2(σ2)

∝ σ−nexp

[
−1

2
σ−2(Y − Fβ)T (Y − Fβ)

]
× σ−kexp

[
−1

2
σ−2λβTKβ

]
× (σ2)−α0−1exp

[
−1

2
σ−2γ0

]
(3.63)

The terms inside the exponent containing β can be solved and simplify to the following:

(Y − Fβ)T (Y − Fβ) + λβTKβ = Y TY − βT (F TF + λK)β̃λ − β̃T
λ (F

TF + λK)β + βT (F TF + λK)β

adding and subtracting β̃T
λ (F

TF + λK)β̃λ we get,

(Y − Fβ)T (Y − Fβ) + λβTKβ = Y TY − Y TF (F TF + λK)−1F TY

+ (β − β̃λ)
T (F TF + λK)(β − β̃λ) (3.64)

substituting the result from Equation (3.64) in Equation (3.63) we can write the posterior
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distribution as

Πβ,σ2(β, σ2|y, x) ∝ Πβ(β|σ2, y, x)× Π(σ2|y, x)

∝ σ−kexp

[
−1

2
σ−2(β − β̃λ)

T (F TF + λK)(β − β̃λ)

]
× σ−nexp

[
−1

2
σ−2(Y TY − Y TF (F TF + λK)−1XTY )

]
× (σ2)−α0−1exp

[
−1

2
σ−2γ0

]
(3.65)

It is straightforward to see that the posterior distribution of β is

Πβ(β|σ2, y, x) ∝ exp

[
−1

2
σ−2(β − β̃λ)

T (F TF + λK)(β − β̃λ)

]
(3.66)

The closed form of the posterior distribution of σ2 can be obtained with little effort which is

inverse gamma distribution with parameters α′
0 and γ′0 where, α′

0 = α0 + 1 and γ′0 = γ0 +
1
2

[
Y TY − Y TF (F TF + λK)−1XTY

]
respectively.

3.12.1 Empirical Bayes estimate of λ

Empirical Bayes is branch of Bayesian Statistics in which the prior distribution is not fully

specified and hyper-parameters are found empirically from data in hand [79]. We illustrate the

method of empirical Bayes to find the estimate of hyper-parameter λ which suggest to obtain

marginal posterior by integrating out the model parameters from the distribution. Our interest
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here lies in the estimation of λ which can be obtained as:

λ̂em = argmax
λ

∫ ∞

0

∫
R
Πβ,σ2(β, σ2|y, x)dβdσ2

=

∫ ∞

0

∫
R
σ−kexp

[
−1

2
σ−2(β − β̃λ)

T (XTX + λK)(β − β̃λ)

]
× σ−nexp

[
−1

2
σ−2(Y TY − Y TX(XTX + λK)−1XTY )

]
× (σ2)−α0−1exp

[
−1

2
σ−2γ0

]
dβdσ2

λ̂em = argmax
λ

∫ ∞

0

σ−nexp

[
−1

2
σ−2(Y TY − Y TX(XTX + λK)−1XTY )

]
× |F TF + λK|−

1
2 (σ2)−α0−1exp

[
−1

2
σ−2γ0

]
dσ2

λ̂em = argmax
λ

|F TF + λK|−
1
2 (γ′0)

−(α0+n/2) (3.67)

where, γ′0 = γ0 +
1
2
[Y TY − Y TF (XTF + λK)−1F TY ]. For the empirical estimate of λ we can

find empirical estimate of β.

3.13 Conclusion

In this chapter, Smooth Ridge model is proposed which is a fine blend of smooth supersaturated

model and ridge model where former provides a method of smooth interpolation and later takes

care of the singularity problem in design model matrix. The prime purpose of the model is

to provide improved predictions for out-of-sample unknown points along with quantification

of prediction errors. Theoretical results are provided to derive the condition for which mean

square error of SR emulator is less than that of mean square error of Sacks model. The results

are supported with the help of examples using simulated data where SR model is compared

with Sacks model for Design and Analysis of Computer Experiments (DACE). The comparison

study is carried out for 1 − d, 2 − d and 3 − d data. It is apparent from the respective plots

and tables that proposed model outperforms sacks model in all the examples studied. The

performance of proposed model is also evaluated for the case when kriging is not supported by

the observed data in which case the SR model with trend only provides efficient predictions at

unknown points with least mean square error compared to SR model with kriging and Sacks

model for DACE. Moreover, the real life example is studied for aerosol transmission of COVID-

19 and Smooth Ridge model is fit to the data generated and comparative study is carried out
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with ridge model and DACE models.The Smooth Ridge model outperformed well known and

widely employed DACE emulator. These results highlight two features of the model:

1. Simple model

2. Computationally less expensive

The proposed SR model provides a new direction in the realm of smooth interpolation for

computer experiments. It is shown that Ridge regression and standard regression models are

special cases of SR model which makes it more flexible. Moreover, the model bears inherent

features of smoothness along with efficient interpolation irrespective of the singularity problem

of design matrix. In addition, the development of Bayesian methodology for Smooth Ridge

model is introduced that provides a framework for future research direction.
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Chapter 4

Comparisons

The methodology developed in chapter (3) needs to be evaluated scrupulously before making

final conclusions. For this reason, detailed comparisons are carried out, in order to assess

the performance of proposed Smooth Ridge (SR) model against the contemporary models in

literature, namely: Ridge regression, Smooth Supersaturated (SSM) model and DACE model.

A brief account of each of these models is delineated in the preceding chapters (2,3). It is

pertinent to mention here that development of Smooth Ridge model is built primarily on two

key factors: supersaturated basis and K matrix which is constructed by defining a measure of

roughness. For low dimension data, it is easy to increase the number of basis that give rise

to a model with higher order polynomials resulting into smoother models. However, as the

dimensions of input data increase, the number of basis to be included in the model becomes

cumbersome. One of the reasons is the increase in the sparsity of K matrix corresponding

to linear model terms, the other being computational expense. Therefore, it is pivotal to

explore the proposed model flexibility and performance evaluation for different number of

dimensions and basis. The rest of the chapter is composed as follows. Section (4.1) introduces

the overview of simulations and methodology underlying the comparisons. The methodology to

build Smooth Ridge model for fix number of design points n against different choices of model

terms k is described in Section (4.2). For fixed number of model terms k and different choices of

design points n, the simulation methodology is explained in Section (4.3). The comparisons for

fixed design points and fixed model terms are repeated for a simulator which is not supported by

polynomials and are accounted in Section (4.4) and (4.5). COVID Data study as an application

of Smooth Ridge (SR) model elucidated in chapter (3) is re-accounted for different choices of

model terms k in Section (4.6). The comparison study with temperature data is furnished in

Section (4.7). The chapter is concluded with the introduction and methodology of Sensitivity
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analysis for Smooth Ridge model in Section (4.8).

4.1 An overview of the simulations

In this section a comprehensive detail is provided in order to build the computer simulations

for the comparisons of Smooth Ridge model with other models under study against each of the

number of input dimensions d chosen. The building blocks for these comparisons encompass

the following:

1. dimensions of input data (d)

2. simulator for computer simulation y

3. number of model terms (basis) k

4. number of design points n

5. number of computer runs

Five different dimensions, d = {2, 5, 10, 15, 20}, are chosen for this study. For each of the

dimension, simulations are run for two scenarios:

1. fix number of design points n

2. fix number of model terms k

For the fixed number of design points different choices of basis are explored to decide upon the

model terms, subsequently evaluating the model performance. Similarly, for the fixed number

of model terms k, various choices of design points n are considered in order to adopt an holistic

approach for reaching the conclusions. The data comprising both the design points (training

data) and validation (test data) are first generated with Latin hypercube sampling. The data

obtained is then converted to [−1, 1]d for the purpose of employing Legendre polynomials to

construct the model terms giving rise to the design model matrix F . The data is divided in the

ratio of 2 : 1 to serve as training and testing data. The cross validation method is implemented

to create data folds whereby two CV folds are randomly chosen to set out the design points

n and the remaining CV fold to act as test data. The method is repeated iteratively over all

possible choices of CV folds in such a way that each of three CV folds act as training data.

Different dimensions of input data for the comparsions are chosen therefore the true function

or the simulator y(x) responsible for generating the response is to be the one that can be
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employed for any number of dimensions. For this purpose two of such functions are chosen to

run the computer simulations and making conclusions based on the comparison results namely

Bratley et al.(1992) and Levy function. Further details on these functions are enacted in the

forthcoming sections. Following the choice of number of dimensions, simulator and scenarios for

models’ comparisons, the predictors for the Smooth Ridge, Ridge, Smooth Supersaturated and

Design and Analysis of Computer Experiments (DACE) models are devised and the predictions

for the test data are obtained. The predictions are compared in the following manner:

1. with trend part of the model Fβ∗ only

2. with the Gaussian emulator ŷ(x) = f(x)Tβ∗ + r(x)TR−1(y − Fβ∗)

where β∗ is generic notation to denote the estimated β vector of parameters for the respec-

tive model employed. The different form of β∗ for each model attributes to difference in the

estimation method. A recount of the estimated β∗ for each of the model is summarized as:

1. Smooth Ridge

β̃λ = (F TF + λK)−1F TY

2. Ridge model

β̂λ = (F TF + λI)−1F TY

3. DACE model

β̂ = (F TR−1F )−1F TR−1Y

The DACE model referred as Sacks model in the rest of the chapter is implemented in two

ways: one in its original form named Sacks Linear while the other version is obtained by the

use of Legendre basis and termed as Sacks Polynomial. For estimation of covariance parameter

θ in Sacks linear and polynomial model, the package DiceKriging is used. The regularization

parameter λ of Ridge and Smooth Ridge model is estimated by choosing the value of λ that

minimizes the empirical mean square error i.e. λ = argmin
∑

(y(x) − f(x)Tβ∗)2 for a grid of

10, 000 values for λ over the range of [10−5, 10]. For the estimated value of λ parameter vector

β is then estimated for Ridge and Smooth Ridge models. Relative efficiencies are computed in

terms of empirical mean square error of predictions.

MSE =
∑

(y(xi)− ŷ(xi))
2 (4.1)

RE =
MSE(model)

MSE(SR)
(4.2)
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where, y(xi) and ŷ(xi) are true and predicted response and model symbolizes the models to be

compared with Smooth Ridge model. It is relevant to mention that supersaturated model(SSM)

cannot be implemented for the case when n ≥ k owing to the fact that the methodology is valid

only for supersaturated basis or when n < k. The methodology to run the computer simulations

for the aforementioned models is delineated for each of the functions in the following sections.

It is pertinent to mention here that SSM methodology is limited to the condition n < k,

therefore no graphical presentation is obtained for n ≥ k. A summary of different cases to be

employed is given in the following table for a quick reference.

dimension fixed n fixed k test data points
2 10 50 5
5 20 56 10
10 30 66 15
15 40 136 20
20 50 231 25

Table 4.1: Summary of different scenarios for computer simulations

4.2 Simulation Results for Bratley function: Fixed n

This section is devoted to elaborate the simulation results for the two cases given in Table

(4.1) when the simulator chosen is Bratley et al.(1992) function from Derek Bingham library

[8]. The function takes the form

y(x) =
d∑

i=1

(−1)i
i∏

j=1

xj (4.3)

The input domain of the function for each variable xi is [0, 1] for i = 1, . . . d. For the fixed

size of design points n against each of the input dimensions d (Table(4.1)) different choices of

basis to construct model terms and hence the design model matrix are given in Table (4.2).
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relationship between design points and basis

dimension supersaturated basis n < k saturated basis n = k n > k

2 {21,36,55,66,70,80,90,100} 10 6

5 {21,30,45,56,70,80,90,126} 20 15

10 {40,50,66,80,90,100,286} 30 25

15 {50,60,80,90,100,136} 40 {25,30}
20 {60,80,90,100,231} 50 {30,40}

Table 4.2: Choice of basis for n fixed

In Table (4.2) k = {6, 10, 21, 55, 66} are full basis of order 2, 3, 7, 9 and 10 for d = 2. For

d = 5, {k = 21, 56, 126} are full basis of order 2, 3 and 4. For d = 10 , k = 66, 286 are full

basis of order 2 and 3 whereas k = 136 and 231 are full basis of order 2 for d = 15 and d = 20

respectively. The computer simulations are run for 300 iterations. A detailed graphical account

of relative efficiencies with Gaussian emulator is elicited for d = 5 and d = 20 in Figures (4.1,

4.2). The plots for d = {2, 10, 15} are given in Appendix (A.4).
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4.2.1 Comments

For comparison of relative efficiency of Smooth Ridge model with the contemporary models

when Bratley function is employed, we obtained RE plots for d = {2, 5, 10, 15, 20}. We discuss

two of the cases here, one with less dimension d = 5 and the other with large number of

dimension d = 20. We observe from Figure (4.1) that for n > k Ridge regression performs

equally well to that of Smooth ridge model whereas Sacks model with polynomial terms exhibit

a close efficiency to that of Smooth ridge model. For n = k Smooth ridge outperforms all

models. For the case where n < k we can infer that as k increases or in other words the larger
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the k is from n the Smooth supersaturated model coincides with the Smooth ridge model in

terms of the relative efficiency of prediction mean squared error. On the contrary all other

models show less efficiency relative to Smooth ridge model.

We now look into the performance of Smooth ridge model when d = 20 Figure (4.2). The

boxplots show the similar pattern as for d = 5 i.e. Ridge regression performs closely to that

of Smooth ridge model when n ≥ k. In contrast when k becomes large, the relative efficiency

of Smooth supersaturated model to that of Smooth ridge model becomes equal to 1. It is

interesting to note that Ridge model and Supersaturated models performs well relative to

other models in different cases however none of these models outperforms Smooth Ridge model

significantly.

4.3 Bratley Function: Fixed basis k

In this section a compendious study is carried out in order to build the computer simulations

for the comparisons of Smooth Ridge model with contemporary models for a fixed number of

model terms k against each of the input dimensions d chosen. These comparisons are done

for the true function given in Equation (4.3). The choice of design points for fixed number

of basis is made according to the input dimension of the underlying problem. The estimation

of parameters are underpinned by the same details explained in Section (4.1). An exposition

to build computer simulations for fixed k is provided for each of the dimensions (details in

Table(4.1)). For fixed number of basis k, the choice of design points for each dimension are

summarized in the Table (4.3).

relationship between design points and basis

dimension supersaturated basis n < k saturated basis n = k n > k

2 n = {10, 20, 30, 40} 50 n = {60, 70, 80, 90, 100}
5 n = {20, 30, 40, 50} 56 n = {60, 70, 80, 90, 100}
10 n = {20, 30, 40, 50, 60} 66 n = {70, 80, 90, 100}
15 n = {20, 30, 40, 50, 60, 70, 80, 90, 100} 136 140

20 n = {20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200} 231 251

Table 4.3: Choice of design points for k fixed

The graphical account of the relative efficiencies computed from Equation (4.2) are given

for d = 2 and d = 15 in Figures (4.3, 4.4). The plots for d = {5, 10, 20} are dispensed in

Appendix (A.4.1).
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4.3.1 Comments

We discuss two of the results here for d = 2 and d = 15 when k is fixed and n is varying.

From Figure(4.3) we can readily observe that for less number of dimensions Sacks model with

polynomial terms outperforms Smooth Ridge model when n ≥ k. In contrast Smooth super-

saturated model performs similar to that of Smooth ridge model when n < k. It is important

to recall here that Sacks with polynomial terms is different from Sacks model of DACE where

linear terms are considered. Also the construction of trend in Sacks (polynomial) is based on

Legendre polynomials similar to what is employed in Smooth Ridge model.

We now look at the plot for high dimension d = 15 in Figure (4.4) to draw some conclusions.

For n < k where k = 136 it is apparent that relative efficiency of Smooth supersaturated model
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is similar to that of Smooth ridge model. Furthermore, ridge regression exhibits a better

performance relative to all other models when n < k. It is important to mention here that

Smooth Ridge model has an advantage over Super saturated model attributed to the fact that

Smooth Ridge can be implemented for any choice of n and k.

4.4 LEVY Function: Fixed n

The comparative study for fixed design points n and fixed basis size k explicated in Sections

(4.2) and (4.3) respectively is developed utilizing the Bratley function (4.3) as true function for

the response variable. However, the Bratley function is supported by the polynomials which

may cause the Smooth Ridge model to exhibit an improved performance when compared with

other models. Nevertheless, the same model terms are used for all models under study, which

should not cause any significant difference in performance measures solely on the choice of

simulator. In order to further evaluate the performance of Smooth Ridge model relative to

Ridge, SSM and Sacks models, an effort is made to use a function that is supported for all

dimensions yet not favoured by the polynomials. One of the functions chosen to replace Bratley

function is Levy function [39]. The function takes the form

f(x) = sin2(πw1) +
d−1∑
i=1

(wi − 1)2[1 + 10sin2(πwi + 1)] + (wd − 1)2[1 + sin2(2πwd)] (4.4)

where,

wi = 1 +
xi − 1

4
, for all i =1,. . . ,d.

The function is evaluated for each variable xi over the hypercube [−10, 10] for all i = 1, . . . d.

In order to obtain predictions for untried data points for all models, comparison study is carried

out in a similar fashion explained in preceding sections i.e.

� fix number of design points n

� fix number of basis k

This section narrates the details of computer simulations for fixed number of design points n.

The simulation details follow from Section (4.1). The only difference is that the response vector

y is computed by transforming the input variables over the hypercube [−10 10]d in order to

use Levy simulator. The fixed number of design points n considered against each dimension
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is appended in Table(4.1).The choice of basis against fixed design points for each dimension

is explicated in Table (4.2) and the same is followed for Levy function. Number of simulation

runs are 300 and prediction mean square error and relative efficiency are computed in a similar

fashion given in Equation (4.1). The graphical description of relative efficiency for each of the

model and model terms for d = 2 and d = 15 are depicted in Figures (4.5, 4.6) respectively.

The plots for d = {5, 10, 20} are appended in Appendix (A.5).
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4.4.1 Comments

We highlight two cases for d = 2 and d = 15 respectively. For d = 2 we can infer from Figure

(4.5) that ridge model performs slightly better than smooth ridge when n > k. The Smooth

Ridge model outperforms the rest of the models as k becomes greater than n.

For d = 15, when n ≥ k for example k = (6, 10) in Figure (4.6) the relative efficiency

of Smooth ridge and Ridge model is close to 1 and outperforms Sacks model with linear and

polynomial terms. For n < k Smooth ridge outperforms other models with Ridge model as a

close competitor. We also observe that Sacks model (polynomial) and Smooth supersaturated

model perform very similar to each other relative to Smooth ridge model. Also, ridge model

remains very close to Smooth ridge model in terms of prediction performance. Explicitly, Ridge

model outperforms Smooth ridge model for n > k which remains the case for k = 40 when

there are 4 more terms than the design points. For k = 60 Ridge model and Smooth ridge

model perform relatively similar to each other. For k = (80, 100, 136) Smooth ridge model
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outperforms all other models though the Smooth saturated model becomes closer to Smooth

ridge model when difference between the number of terms k and the design points n increases.

4.5 LEVY Function: Fixed k

Section (4.4) is devoted to illustrate the comparison study of Smooth Ridge model with the

contemporary models for fixed design size n when Levy function is employed. In this section,

the comparisons are done for fixed number of basis k against different choices of design points

n using the Levy function. The number of basis are selected taking into account the number of

dimensions undertaken (Table 4.1) and the suitable choice of design points is made according

to the details furnished in Table(4.3). The details on the computer simulation are followed

from Section (4.1) which are not re-accounted for the sake of brevity. The relative efficiency

(RE) in Equation (4.2) is evaluated for each of the model against Smooth Ridge model and

resulting graphical description for d = 2 and d = 15 is furnished in Figures (4.7, 4.8). The

plots for d = {5, 10} are given in Appendix (A.5.1).
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4.5.1 Comments

We now interpret the relative efficiency plots for 2 − d and 15 − d comparisons presented in

Figures (4.7, 4.8). It is apparent from figure (4.7) that smooth ridge model beats all other

models when n < k. As n increases the relative efficiency of ridge regression becomes closer to

1. It is noticeable that Sacks model (linear) performance is very close to that of ridge model

relative to smooth ridge model and the agreement gets closer as n increases.

For d = 15 in Figure (A.14) we observe that the instances where difference between the

number of design points and model terms is large, smooth supersaturated model performance

coincides with that of Smooth Ridge model which outperforms all other models. In contrast,

when n increases for example n ≥ 60 ridge model and smooth ridge model becomes closer in

terms of relative efficiency leading the other models.
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4.5.2 Summary of the conclusions

We summarise the conclusions drawn from the comparisons for Bratley and Levy functions. In

summary when d = 2, relative efficiency of Sacks model (polynomial) and smooth ridge model

is close to 1 for n > k and n < k respectively. For d = 15 relative efficiency of Ridge regression

model and smooth saturated model is close to 1 for n > k and n < k respectively. We infer

from these comparisons that Smooth ridge model remains the most efficient model in all cases.

4.6 COVID data modelling: Comparisons

An application of Smooth Ridge model is sketched in Chapter (3) for the estimation of aerosol

transmission of COVID-19 virus. In this section, detailed comparisons are performed for the

same application to get insights into the predictive capabilities of all models under study in a

real life application.

In Chapter (3), the inputs for Aerosol Transmission Estimator are categorised as fixed and

variables respectively. In this section, the comparisons are done with the same set of fixed

inputs where a classroom scenario is considered. The four variable input take a grid of values,

references of which are borrowed from the COVID19-Aerosol Transmission Estimator and [47].

The tabular description of both type of inputs are given in Table (3.8). The simulator is the

response variable i.e. probability of infection given as y = 1− e−QIP [62].

4.6.1 Data setup for comparisons

In this section the methodology underlying the development of computer simulations for

COVID data is elucidated. These simulations are formulated to compare the performance of

Smooth Ridge model with Ridge, Smooth Supersaturated model, DACE model (Sacks(linear))

and Sacks(polynomial). For a given set of input x ∈ R4, design model matrix F , response vec-

tor y and regression parameters β, the comparisons are done for predictions at untried points,

taking into account the following as predicted response

� trend part (estimator) of the model Fβ∗ only

� the Gaussian emulator ŷ(x) = f(x)Tβ∗ + r(x)TR−1(y − Fβ∗)

where β∗ symbolizes the estimated vector of regression parameters pertaining to the model

employed enlisted in Section (4.1). The four variable inputs variables namely: ventilation,

decay rate of virus, deposition to surfaces and quanta rate are randomly generated with Latin
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hypercube sampling. These data are transformed into the respective grid of reference values

for each of the inputs, presented in Table(3.8). Legendre polynomials are evaluated on the

input data over the hypercube [−1 1]4 giving rise to design model matrix F .The models are

fit to training data and predictions are made on the test data with the parameter estimates

obtained from training data. The allocation of data into training and test sets is accomplished

with the help of cross validation method in the ratio of 2 : 1 as described in earlier sections of

this chapter. The comparisons for the above explained details, are done for two cases

� fixed design size n

� fixed basis size k

The number of basis for the composition of Legendre Polynomials for fixed design points and

various choices of basis for a fixed design are given in the table below

relationship between design points and basis

supersaturated

basis n < k

saturated basis

n = k
n > k

fixed design size

n = 30

k = {35, 45, 56, 70
, 85, 95, 126}

30 20

fixed basis k = 70
n = {20, 30, 40, 50

, 60}
70 n = {90, 100}

Table 4.4: Choice of design points and basis for COVID data study

4.6.2 Computer Simulations for fixed n

There are four input for this study so that x ∈ R4. The design size fixed at n = 30, is used as

training data, whereas 15 data points are taken as test data. The data generated is iterated

100 times and at each iteration the split of data into test and training sets is repeated three

times for 3 cross validation folds. Figure 4.9 depicts the graphical narration of the relative

efficiency of prediction mean square error for the models under study relative to Smooth Ridge

model.
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Figure 4.9: RE for COVID data (n = 30)

4.6.3 Computer simulations for fixed k

Contrary to the comparisons for fixed design size, different sizes of design n are considered for

fixed number of basis k. Full basis of order 4 is considered giving k = 70. A random data of a

given size n and n
3
is divided into training and test sets with CV folds.The process is repeated

over 100 iterations and in each iteration, the data split is repeated for all three possible CV

folds, whereby 2 folds act as training and 1 fold as test data.Various choices of design size are

provided in Table (4.4). The graphical presentation of the relative efficiency of prediction mean

square error for the models under study relative to Smooth Ridge model are given in Figure

(4.10).
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Figure 4.10: RE for COVID data (k = 70)

4.6.4 Comments

From Figures (4.9, 4.10) we can see the similar pattern in both the plots. For the cases n < k

when difference between n and k increases, the agreement between smooth supersaturated

model and smooth ridge model becomes closer. Also, the two models supersedes the other

models in terms of predictive performance. On the other hand when n ≥ k ridge regression

leads in predictive performance as n is further away form k yet close to smooth ridge model.

For small difference between n and k smooth ridge and ridge models perform equally well as

compared to other models.
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4.7 Comparisons for Temperature data

In Section (2.2.4), a comprehensive introduction of temperature data is accounted which is

recapitulated in this section in order to assess the comparative performance of the models

under study. The data comprises of 100 year temperature forecasts segmented for each of

the 12-months. The input variable is 2 − d grid of latitude and longitude making a total

of 503910 data points. Among the enormous data set, the small part of data is considered

for the study similar to that given in Section (2.2.4). In order to examine the predictive

capabilities of models under study, one month temperature data is considered for one year over

the entire grid of input variables, latitude and longitude. The resulting data contains 5599

data points. It is relevant to mention here that Smooth supersaturated model requires n < k,

which explicitly states that number of design points should be less than the model terms k,

which is cumbersome to fulfil in presence of large data set. Partly because, a small sample

do not capture the true behaviour of the large data in an effective manner and partly due to

the computational limitations of ssm package in R. The comparison details follow the ones set

out in the preceding sections. Consequently, the results of relative efficiencies with Gaussian

emulator are graphically extended here and can be found in Figures (4.11, 4.12).

4.7.1 Computer simulations for n fixed and k fixed

For temperature data the two input variables are latitude and longitude.Therefore, for x ∈ R2,

the design points are fixed at n = 56. Since, the size of temperature data 5599 is very large

therefore, It is of interest to delve into the models’ behaviour when number of design points

are increased while keeping the model terms fixed.The model terms are fixed to be k = 100 so

as to allow more number of design points to be chosen for the comparisons.The following table

presents the details on the relationship between design points and model terms.

relationship between design points and basis

supersaturated

basis n < k

saturated basis

n = k
n > k

fixed design size

n = 56
k = {21, 36, 45, 50} 56 k = {66, 78, 91, 100}

fixed basis k = 100 n = {28, 37, 45, 62} 100
n = {150, 200, 250, 3

00, 400, 500}

Table 4.5: Choice of design points and basis for Temperature data
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where, k = {36, 45, 66, 78, 91} are full basis of order 7, 8, 10, 11 and 12. Box-plots of relative

efficiency for fixed design and fixed model terms are furnished in Figures (4.11, 4.12).
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Figure 4.11: RE for Temp data: fixed n
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Figure 4.12: RE for Temp data: fixed k

4.7.2 Comments

For temperature data it is pertinent to mention that there are only two input variables therefore

d = 2. From Figures (4.11, 4.12) it can be readily observed that for n > k, the relative efficiency

of Sacks model (linear) and Ridge model is relatively close to each other and as n becomes large

Figure(4.12) the relative efficiency of both the models is equal to 1. This suggest that Smooth

ridge model, Ridge model and Sacks(linear) model exhibit similar predictive outcomes for large

number of data points and less model terms k. The relative efficiency of ridge regression is

close to 1 when n < k.

127



4.8 Senistivity Indices: Comparisons of Smooth Ridge

and SSM

A comprehensive introduction of sensitivity analysis is catered in Section (3.10). Following

the methodological development of Sobol’ sensitivity indices in Section (3.10), this section

is devoted to the computation of sensitivity indices for comparison purposes by employing

Smooth Ridge model and Smooth Supersaturated model. Two aforementioned real-life prob-

lems namely COVID data study and Temperature data are revisited for the computation of

sensitivity indices. The details pertaining to COVID data and Temperature data study are

furnished in Sections (4.6) and (4.7) respectively and therefore not re-accounted for the com-

parison of sensitivity analysis.

4.8.1 Sensitivity Analysis for COVID data

The probability of catching the disease through aerosol transmission of SARS-CoV-2 virus is

modelled in Section (4.6). In order to study and compare sensitivity indices, that quantifies

the relative contribution of each of the four variables and their interactions, sensitivity analysis

enacted in Section (3.10) is carried out. The choice of design points n and number of model

terms k are kept fixed for the study. Consequently, 45 data points are generated with Latin

Hypercube Sampling whereby 30 data points are fixed as design points and remaining 15 points

serve as test data. The model terms are constructed with 35 Legendre basis. Sensitivity indices

are computed for Smooth Ridge model and Smooth Supersaturated model with respect to the

Equation(3.52) in Chapter (3). The difference in the variance computation for both models lies

in the estimated parameter vector β. For COVID data, there are four variables resulting into

14 sensitivity indices, 4 corresponding to main effects, 6 double interaction effects and 4 three

order interactions. The plots and tables of the sensitivity indices for Smooth Ridge model and

Supersaturated models are given in Figure (4.13) and Tables (4.6, 4.7).
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(a) Sobol’ Indices for main effects: SR (b) Sobol’ Indices for main effects: SSM

Figure 4.13: Sobol’ Indices for main effects

Sobol’ Indices for main effects: SR (%)

x1 5.94

x2 0.13

x3 0.18

x4 92.58

Table 4.6: main effects (SR)

Sobol’ Indices for main effects: SSM(%)

x1 7.21

x2 1.08

x3 0.71

x4 85.25

Table 4.7: main effects (SSM)

Figure 4.14: order 2 interactions for SR and SSM
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Sobol’ Indices for interaction effects: SR(%)

x1x2 0.0058

x1x3 0.334

x1x4 0.29

x2x3 0.0174

x2x4 0.037

x3x4 0.1196

Table 4.8: order 2 interaction effects (SR)

Sobol’ Indices for interaction effects: SSM(%)

x1x2 0.0072

x1x3 0.14

x1x4 0.073

x2x3 0.032

x2x4 0.0069

x3x4 0.021

Table 4.9: main effects (SSM)

Figure 4.15: order 2 interactions for SR and SSM

Sobol’ Indices for order-3 interactions: SR(%)

x1x2x3 0.0256

x1x2x4 0.042

x1x3x4 0.315

x2x3x4 0.0026

Table 4.10: order 2 interaction effects (SR)

Sobol’ Indices for order-3 interactions: SSM(%)

x1x2x3 0.0038

x1x2x4 0.0019

x1x3x4 0.0809

x2x3x4 0.00137

Table 4.11: main effects (SSM)

4.8.2 Comments

From Figures (4.13a, 4.13b), we observe that x4 or quanta rate is the most influential variable.

The main effect quanta rate contributes 92% to the total variation in Smooth Ridge model

and 85% in Smooth supersaturated model. The sensitivity index for two order interactions is
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highest for x1x3 or ventilation × decayrate in Figures (4.14) for Smooth Ridge and Smooth Su-

persaturated models respectively. Similarly for three order interactions, the most contribution

to total variation is attributed to x1x3x4 or ventilation×decayrate×quanta rate from Figure

(4.15) for both models.

4.8.3 Sensitivity Analysis for Temperature Data

The comparison study of Smooth Ridge model with the other models for temperature data, is

expounded in Section (4.7). The similar data set is considered for employing sensitivity analysis

for Smooth Ridge model and Supersaturated model. However, unlike in Section (4.7), both

the number of design points n and model terms k are kept fixed in order to evaluate sensitivity

indices. For a fixed design of 63 grid values of input variables, latitude and longitude, k = 100

model terms are chosen. The unknown parameter vector β is estimated with the respective

methodologies of Smooth Ridge and Supersaturated models, accounted in chapter(3). Since,the

temperature data comprises two inputs therefore there are two main indices and one interaction

effect. The resulting plots are given in Figure (4.16) and Table (4.12) for both the models.

(a) Main effects: SSR (b) Main effects: SSM

Figure 4.16: main effects for temperature data
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Sobol’ Indices for Temperature data (%)

SR SSM

lat 89.34 19.80

long 2.60 13.65

lat*long 8.064 66.56

Table 4.12: Sobol’ Indices for Temperature data

4.8.4 Comments

From Figure (4.16) and Table (4.12) we infer that latitude has highest contribution (89%)

to total variation in Smooth ridge model and 19% in Smooth supersaturated model. There

are only two inputs for this data therefore we have only one 2-order interaction effect which

contributes 8% and 66% to the total variation for Smooth ridge and Smooth supersaturated

models.
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Chapter 5

Designs for computer models

Computer experiments have been gaining a paramount attention for last few decades and an

intensive amount of research effort has been dedicated to select inputs at which to compute

the output of a computer experiment. The experimental region is the region corresponding to

the values of the inputs over which one wishes to study or model the response. A specific set

of values of the inputs is said to be a point in the region. Hence, an experimental design is the

selection of points in the experimental region at which the response is to be computed. Typi-

cally the computer experiments differ from physical ones in that the given set of inputs yield

equal response in different runs. In computer experiments the functional form that describes

the relationship between the inputs and the response is unknown. Therefore, uncertainty is

attributed to the approximation of the exact relationship. The discrepancy between the re-

sponse from computer code and model prediction is referred as error or model bias. Taking

into account the problem of model bias, following are the principles of design selection [69].

1. For a given set of inputs, designs should not take more than one observation with the

assumption that computer code remains unchanged over time. In other words, the repli-

cations do not allow to estimate variability because the response remains unchanged.

2. Because the true relation between the response and the inputs is unknown, designs should

be flexible to allow fit different models. Explicitly, when one wants to explore different

models for the underlying problem they are interested to look for, the the designs should

be flexible to be employed in all models. In addition, design should exhibit information

about entire experimental region.
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5.1 Space-filling designs

Suppose that the key features of true model are equally likely in all parts of experimental region

then it is reasonable to use designs that spread the points evenly across the region. Different

ways of defining the evenly spread points lead to different types of designs, all of which are

referred as space-filling designs [69]. The space-filling designs are likely to be employed when

interest lies in the prediction accuracy because interpolators are used as predictors. Since, the

prediction error at any input is a function of its distance relative to the design points, therefore

the designs which are not space filling may yield poor predictions. It is shown in [80] that no

design will outperform certain space-filling designs in terms of the rate at which the maximum

of the mean-squared prediction error decreases as sample size increases. There are different

strategies to chose designs which spread evenly throughout the experimental region. Some of

the design methods are given below.

5.1.1 Simple random sample design

One of the method is to superimpose a regular grid on the experimental region. For example,

consider the experimental region as a unit square [0, 1]×[0, 1]. In order to observe response at 25

evenly spaced points the following grid of points {0.1, 0.3, 0.5, 0.7, 0.9}×{0.1, 0.3, 0.5, 0.7, 0.9} is
considered. One of the possibilities to achieve such a design is to use simple random sampling.

However, the numbers need to be recorded to finite decimal places so as to regard the number

of points between 0 and 1 as finite. Also, the simple random sample may not be appropriate

to use for small sample size because in high-dimensional experimental regions the sample is

prone to clustering and unable to capture entire portions of the region.

5.1.2 Stratified sample designs

In high-dimensional experimental regions with small samples, the sample is prone to exhibit

some clustering and fail to distribute points evenly across the experimental region [69]. An

alternative approach is to use Stratified random sampling which suggests to divide the exper-

imental region to n equally spaced strata and selecting one point from each stratum. The

stratified sampling allows flexibility in selecting a design by varying the size and position of the

strata and specifying different distributions for sampling. This can be useful if some portions

of the experimental region are of greater interest than others. On the other hand if the interest

lies in the even spread of sample points, equal spacing of strata and sampling according to a

uniform distribution appears to be a viable choice.
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5.1.3 Uniform designs

Uniform designs have been widely adopted for computer experiments. These designs are con-

structed by assuming a uniform distribution over the design region. Uniform designs draw

observations at a set of points that minimize some discrepancy measure. One of the most

well known measure of discrepancy is the Kolmogorov-Smirnov statistic. Now suppose that

output is expected to depend on few of the inputs or factors, then the interest lies in that the

points are evenly spread onto these factors across the projection of experimental region. It is

cumbersome to guarantee such a design with simple random sampling and Stratified sampling.

5.1.4 Latin Hypercube Design

Latin Hypercube Design introduced by [45] is the solution to the problem described above. This

method chooses the samples to ensure that the points are evenly spread over the values of each

variable and not only over the entire unit square. For the unit square [0, 1]2 experimental region,

each axis [0, 1] is divided into n equally spaced intervals [0, 1
n
, . . . , (n−1)

n
, 1] which partition the

unit square into n2 cells of equal size. These cells are filled with integers 1, 2, . . . n in such a way

that each integer appears exactly once in each row and column giving rise to Latin Hypercube

Square arrangement. Then one integer is selected followed by selecting a point at random from

the cells containing that integer. Thus the sample of n points selected is Latin Hypercube

Design of size n. Latin Hypercube Designs are used greatly in computer experiments most

recently by [34].

5.1.5 Sobol’ Sequences and low discrepency

Another class of space filling designs are the ones that are employed in numerical integration.

One of such designs is Sobol’ Sequence designs [72]. These are sequential designs which are

easy to generate. In terms of even spread Latin Hypercube designs always surpasses Sobol’

Sequences. The Sobol’ designs on the other hand exhibit a great variety of distances between

pairs of points (inter-point distances). Therefore, in situations where inter-point distances

provide information to improve prediction errors, Sobol’ sequences are preferred over Latin

Hypercube Designs. Another useful property of Sobol’ sequence is the computation of sequen-

tial designs, for example, a longer design can be obtained by adding more points to a short

design in Sobol’. On the contrary, Latin Hypercube Design needs to be recomputed if more

points to be added. However the properties of designs for numerical integration are derived

for large numbers of observations hence their application for computer experiments with small
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number of observations are not very clear. In order to get better insights of the design features

that are important for parameter estimations in computer experiments, analytical methods are

very difficult to apply. Consequently, substantial amount of numerical studies are useful for

understanding the design performance for different models. Sobol’ sequences are generated by

binary digits. Use of other bases lead to generalizations such as digital nets. These sequences

are studied because they are believed to have low discrepancy values see [51] and [32].

5.2 Prediction capabilities of models and designs

In this section, a comparative study is carried out where different design strategies introduced

above in Subsections (5.1.3, 5.1.4, 5.1.5) are employed to the models explicated in Chapter(2)

namely Sacks model in Section (2.2), Neural Networks in Section (2.6), and Linear regression.

The choice of sampling design to select design points depends primarily on the objective of

the experiment and other phenomena discussed in the paragraphs above. This study exhibits

a general behaviour of the models performance under different design strategies. The aim is

to evaluate which design is appropriate for which model. In other words models’ prediction

capabilities are evaluated against different designs. Recall the notations where d-dimensional

vector of input variables is x = (xj|j = 1, 2 . . . d) ∈ Rd. Let χ be the experimental region

scaled to the unit hypercube [0, 1]d and consider a design D be the set of n points taken from

χ such that each point xi ∈ [0, 1]d. The 2-Dimension and 3-Dimension input data is considered

for this study.

The simulator y(x) to obtain the response vector is the function from [88] and given as:

y(x) =
10d

2
(2π

−d
2 e−0.5||10(x−1/3)||22 + 2π

−d
2 e−0.5||10(x−2/3)||22 .

For the purpose of emulation/prediction, the function is evaluated on xi ∈ [0, 1], for all i =

1, . . . , d which makes it flexible to be used for any number of dimensions for the input variable.

Ten design points are generated for each of three sampling designs: Uniform, Sobol’ and Latin

Hypercube. Five of the design points are chosen as training data whereas the rest of the five

design points serve as test data. Each of the three models are evaluated for each of the three

designs are employed. A detailed account of box plots for the mean square prediction error is

presented in Table(5.1) both for 2-dimension and 3-dimension data. For 2-dimension inputs,

the box plots for each design against all the three models are depicted in the Figure (5.1). The

graphical results for 3-dimension study are given in Appendix (A.3).
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Figure 5.1: Box plots of mean square error of each design against different models (2-d)

models
designs

Uniform Sobol” Latin Hypercube

Regression 9.25 9.13 9.25

DACE 3.29 5.28 3.22

NN (non-Lin) 0.41 0.45 0.36

NN(Lin) 1.40 4.98 1.37

Table 5.1: MSE of all models against all designs chosen (2-d)
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5.2.1 Results for the design plots

We observe from Table (5.1) that mean square error is highest with the use of all three designs

for regression model. For Sacks model (DACE) Latin Hypercube design gives minimum mean

square error followed by Uniform which gives mean square error close to that of LHS. The

highest mean square error is obtained by the use of Sobol’ in DACE model. The similar pattern

can be seen for Neural Network when a non linear activation function is used. Among all the

models, Neural Network provides minimum mean square error for all the designs employed.

5.3 Criterion-based Optimal Designs

Optimal designs are a class of experimental designs that are optimal with respect to some

statistical criterion. The development of the concept of optimal designs dates back to 1916

and credited to [70] who introduced optimal designs for polynomial regressions. The idea was

further extended by [35] who introduced the concept of probability measure on design space.

An optimal design primarily requires specification of an appropriate statistical model and a

suitable criterion. The choice of an optimal criterion relies on the objective of the experimental

study. Most of the optimality criteria in literature for the optimal designs are developed based

on some functions of the information matrix. Therefore, optimality is highly dependent on the

model employed, hence it is vital to benchmark the design performance for different models.

Cornell [17] comments that “A design that is optimal for a given model using one of the

criteria is usually near-optimal for the same model with respect to other criteria”. Some of the

widely adopted optimality criteria are accounted in this section. As mentioned above almost

all optimality criteria depend on the model employed, therefore, it is reasonable to define a

general model prior to explain designs. Recall from Chapter (2) that for an n × 1 response

vector y, an n×k design model matrix F and a vector of regression coefficients β of order k×1,

the linear regression model in matrix notation can be written as y = Fβ+ϵ. For the regression

model, the estimate of regression parameters β, variance of the estimator β̂, predictor ŷ(x) and

variance of the prediction V (ŷ(x)) are discussed in Section (3.1). The design problem consist

of selecting D from design space χ ⊂ Rd such that the points [xi]i∈1...n satisfy some optimal

criterion, giving rise to an optimal design. A brief account of some of the optimal criteria are

delineated in this section. We use optimal criteria in Sections (5.3.1, 5.3.2, 5.3.3) as basis to

explore designs for Smooth Ridge model in the later part of this chapter.

138



5.3.1 G-optimality

The first ever criterion based design approach was introduced by Smith [70]. The methodology

was based on selecting a design that minimizes the maximum prediction variance

min
x1,...,xn

max
x∈χ

V ar(ŷx) (5.1)

For every choice of design we compute maximum prediction variance for unknown points.

Among all designs the G-optimal is the one for which the maximum prediction variance is

minimum. The same design was given the name G-optimality few decades later by Kiefer and

Wolfowitz [35], who showed the equivalence of G- and D- optimality in their celebrated theorem

that we survey in Section (5.4).

5.3.2 D-optimality

A criterion for design that focusses on the variance of the parameter estimates is proposed

by Wald [83] which was later named D-optimality by [35]. For statistical models for example

regression model, the Fisher Information matrix is the inverse of the variance-Covariance matrix

of the estimator. D-optimality criterion is to maximize the determinant of Information matrix

|XTX] or equivalently minimizing the variance |XTX|−1. By definition,

min
x1,...,xn

|XTX|−1

D-optimality has attracted a lot of research interest, such as the sequential Wynn-Fedorov

approach [86], Locally D-optimal designs for exponential regression [21] and notable work in

the book [1].

5.3.3 A-optimality

The criterion seeks the design to minimize the trace of the inverse of the information matrix

which results in minimizing the average variance of regression coefficients’ estimates. Explicitly,

min
x1,...,xn

trace(XTX)−1
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5.3.4 C-Optimality

C-optimality is a special case of A-optimality, when the interest lies in estimating a linear

function of the parameters of interest cT θ. Therefore, the aim is to minimize var(cT θ̂) and the

optimal design is the one such that

min
x1,...,xn

trace(cT (XTX)−1c)

5.3.5 E-optimality

A special case of C optimality is E-optimality where the objective is to minimize the maximum

variance of cT θ̂ for all c conditioned on ∥c∥ = 1. Hence, an E-optimal design is the one that

min
x1,...,xn

max
∥c∥=1

cT (XTX)−1c

which is equivalent to minimize the maximum eigen value

min
x1,...,xn

λmax(X
TX)−1

A detailed account of optimal designs within the bayesian context and the bayes counterparts

of above mentioned designs can be found in [12]. D-optimal and G-optimal designs received

the most attention in the literature one of the reasons attributed to the General Equivalence

Theorem provided by [35] which established the equivalence of G and D optimality under

certain conditions. A brief overview of General Equivalence Theorem is given in Section (5.4).

5.4 General Equivalence Theorem

We provide a gentle introduction of General Equivalence Theorem because we believe that

there is a scope of developing it for the Smooth Ridge model. It is important to mention here

that the notations used in this section is different from the rest of the material in this thesis.

Before stating the General Equivalence Theorem it is necessary to distinguish between exact

theory and approximate theory. For a problem of maximizing function that involves integers,

calculus rules cannot be applied. A standard approach is to extend the function definition

to real numbers and find the maximum using calculus techniques. It can then be argued

that the maximum over integers occurs at an adjacent integer. The analogous design problem

differentiates the exact (integers in this example) from the approximate theory (real numbers).
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The following property holds for all the design criteria described above

φ(aXTX) = constant× φ(XTX)

which implies that a design that maximizes φ(aXTX) also maximizes φ(XTX). For an n-point

design with ni observations at xi such that
∑
ni = n, let ξ be the probability measure on the

design space χ defined such that

ξ(xi) =

0 if there are no observations at xi
ni

n
if there are ni observations at xi

In context of the measure ξ, an exact design on χ refers to discrete n-point design such that ξ

takes on values as multiple of 1
n
. The idea can be extended to an approximate design so that

the design measure ξ satisfies ∫
χ
ξ(dx) = 1

Let M(ξ) = 1
n
XTX be the moment matrix for an exact design. Then for an approximate

design, (ij) element of matrix M(ξ) can be expressed as

mij(ξ) =

∫
χ
xixjξ(dx)

Similarly, a normalized generalization of V (ŷx) is

d(x, ξ) = x(M(ξ))−1xT

which for the exact design becomes

d(x, ξ) = nx(XTX)xT

Following the notations and description above for exact and approximate designs, D-optimality

and G-optimality can be re-defined as

� The design ξ∗ is D-optimal if and only if M(ξ∗) is nonsingular and

max
ξ

|M(ξ)| = |M(ξ∗)| (5.2)
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� The design ξ∗ is G-optimal if and only if

min
ξ

max
x∈χ

d(x, ξ) = max
x∈χ

d(x, ξ∗) (5.3)

Note that D-optimality is essentially a parameter estimation criterion whereas G-optimality is

a response estimation criterion.

Theorem 5.1. The Equivalence Theorem states that D- and G- design criteria are identical

when the design is expressed as a measure on χ . It can be shown that a sufficient condition

for the design ξ∗ to satisfy the G-optimality criterion is

max
x∈χ

d(x, ξ∗) = k

where k is the number of parameters in regression model. The equivalence of D- and G-

optimality established in the General Equivalence Theorem [35] is given as: If φ is concave

on the space of design information matrices, and differentiable at M(ξ∗), then the following

are equivalent

1. The measure ξ∗ is φ-optimal

2. The Frechet derivative

Fφ(M(ξ∗), xTx) ≤ 0 for all x ∈ χ

3. The following equality holds

max
x∈χ

Fφ(M(ξ∗), xTx) = min
ξ

max
x∈χ

Fφ(M(ξ), xTx)

The sufficient condition for G-optimality can be used to verify whether or not a specific

design is D-optimal.

5.5 D- and A-optimal designs for Smooth Ridge Model

In this section, criterion based designs are explored for Smooth Ridge model introduced in

Chapter (3) within the classical framework of optimal designs. First, the expressions for D-

optimality and A-optimality are developed for Smooth Ridge model. Then, a simple numerical

study is done to find the optimal designs followed by the analytical results. One of the reasons
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for choosing the D-optimality and A-optimality criteria is that it does not depend on the

response y(x) hence independent of the function generating the response. Nevertheless, the

criteria depend on the model and the nature of the estimator thereof. Re-visit the Smooth

Ridge estimator β̃λ given in Equation (3.11) and the variance of the estimator in Equation

(3.13).

β̃λ = (F TF + λK)−1F TY, V ar(β̃λ) = Aσ2AT where A = (F TF + λK)−1F T .

The D-optimality criterion for Smooth Ridge model is the maximization of the determinant of

(AAT )−1 or equivalently minimizing the determinant of (AAT ) i.e. minimizing the variance of

β̃λ. Following the notations from Section (5.4) and Section (2.1) and defining M = AAT , we

can now define D-optimal design for Smooth Ridge model.

Definition 5.1. A design D∗ is D-optimal if and only if M(D) is nonsingular and

min
D

|M(D)| = |M(D∗)| (5.4)

5.5.1 D-optimal design with two design points

To begin with, a simple example is considered with two design points x1 and x2 and following

analytical results are established.

Theorem 5.2. Consider Smooth Ridge model with k Legendre terms and design D ∈ [−1, 1]

of size n such that k > n. The design D is constructed with two design points x1 and x2 such

that for a design of size n each design point is replicated r1 and r2 times respectively so that

n = r1 + r2. Define the D-optimality as the product of the non-zero eigen values of the matrix

M = AAT , then the D-optimal design is given by ±1.

Proof. The D-optimality criterion is

1

(r1r2)(x1 − x2)2

which is minimized when the distance between the points is maximal. Let ∆ = x1 − x2, then

it is straightforward to conclude that the minimum of 1/∆2 can be obtained at ±1, at which

∆ = 2 and the D-optimal criterion is 1
4r1r2

Corollary 5.2.1. For a symmetrical design with coordinates {x1,−x1} and replicates r1 and

r2, the D-optimality criterion simplifies to 1
4r1r2x2

1
. The minimum is achieved at ±1 giving the

criterion to be 1
4r1r2

.
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The following are some of the properties deduced from the analytical results:

1. The D-optimal design is independent of the choice of model terms k.

2. The D-optimal design is independent of the the choice of λ.

3. The D-optimal design favours the linear model which is not a desired property beacause

the Smooth Ridge Model attempts to capture the non-linear relationship.

5.5.2 Numerical Results for D-optimality: Two design points with

replications

The analytical results in Theorem (5.2) are investigated with the help of following numerical

study. A design region χ over the unit hypercube [−1, 1] is explored by selecting two design

points x1, x2, with replications r1 = 3 and r2 = 2 respectively resulting into a design of size

n = 5. The simulations are designed to chose 90% designs of the form D = {x1, x1, x1, x2, x2}
and 10% of the symmetrical design D = {−x1,−x1,−x1, x1, x1} to evaluate the results explicit

in Theorem(5.2) and Corollary(5.2.1) respectively. The simulations are run for 50, 000 designs

over [−1, 1] against each of the 3 values of λ = {0.001, 0.1, 5}. The D-optimality criterion for

Smooth Ridge model given in Equation(5.4) is evaluated for each design against each value of

λ. It is cruicial to notice here that M = AAT is less than full rank because of the condition

n < k, therefore D-optimality is computed as the product of non-zero eigen values of the matrix

M.

The graphical representation of the designs and the resulting D-optimality measures are

given in Figure (5.2). For every value of λ, one of the 50, 000 designs that meets the minimumD-

optimality criterion is chosen and the value of the D-optimal measure is recorded. This results

into 3 optimal designs against each of the 3 different values of the regularization parameter λ

and are furnished in the Table (5.2). In each plot we can see the footprint of 50, 000 designs

against the D-optimality criterion for a given value of λ.

144



Figure 5.2: Designs against D-optimality criterion n = 5

D-optimal designs n = 5

λ x1 x2 x3 x4 x5 D-opt

0.001 -0.9999218 -0.9999218 -0.9999218 0.9999218 0.9999218 0. 04167319

0.1 -0.9999218 -0.9999218 -0.9999218 0.9999218 0.9999218 0.04167319

5 -0.9999218 -0.9999218 -0.9999218 0.9999218 0.9999218 0.04167319

Table 5.2: D-optimal designs and min D-optimality n = 5

It can be observed from Table (5.2) that for every value of λ, the optimal design is ±1 for

each value of λ and the minimum measure of D-optimality is constant approximately equal to

0.042. The results are consistent with Theorem (5.2) and Corollary (5.2.1).

5.5.3 A-optimality for two design points

The A-optimality criterion for Smooth Ridge model is the minimization of the trace of deter-

minant of (AAT ). A-optimality can be defined as

Definition 5.2. A design D∗ is A-optimal if and only if M(D) is nonsingular and

min
D

|M(D)| = tr |M(D∗)| (5.5)

Analytical results for A-optimality are established similar to that of D-optimality when two

design points x1 and x2 are replicated to get a sample of size n which are explicated in the

following theorem.
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Theorem 5.3. Consider Smooth Ridge model with k Legendre terms and design D ∈ [−1, 1]

of size n such that k > n. The design D is constructed with two design points x1 and x2, where

each design point is replicated r1 and r2 times respectively giving rise to a design of size n.

Define the A-optimality as the sum of eigen values of the matrix M = AAT , then the optimal

design is achieved at ±1.

Proof. The A-optimality criterion is

r1x
2
1 + r2x

2
2 + n

r1r2(x1 − x2)2

which is minimized when the distance between the points in the denominator is maximal. Let

∆ = x1 − x2 then for given r1 and r2 the minimum of
r1x2

1+r2x2
2+n

r1r2∆2 is obtained when x1 = −1,

x2 = 1 at which ∆ = 2 and the criterion is r1+r2+n
4r1r2

. Note that the choice of x1 = 1, x2 = −1

is equivalent. Also note that x1 = x2 leads to a single design point which is not considered

here.

Corollary 5.3.1. For a symmetrical design D = {−x1, x1} the A-optimality criterion becomes
n(x2

1+1)

4r1r2x2
1
which is minimized at ±1 and the minimum value of the criterion is reached at n

2r1r2
.

5.5.4 Numerical Results: A-optimality with two design points and

replication

The numerical study in Section (5.5.2) is revisited to search A-optimal designs. Note that

the search of optimal design in this section is performed over the same candidate set of de-

signs as in Section (5.5.2). Each of the 50000 designs are evaluated against every value of

λ = {0.001, 0.1, 5} where 90% of the designs comprise two design points {x1,x2} and 10% of

the designs are composed of the design points {−x1, x1} that are replicated r1 = 3 and r2 = 2

respectively. The plots of the designs against the A-optimality criterion and tabular represen-

tation of optimal designs along with the minimum measure of the criterion itself are displayed

in Figure (5.3) and Table (5.3) respectively.
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Figure 5.3: Designs against A-optimality criterion n = 5

A-optimal designs n = 5
λ x1 x2 x3 x4 x5 D-opt

0.001 –0.9999218 -0.9999218 -0.9999218 0.9999218 0.9999218 0.4166993
0.1 -0.9999218 -0.9999218 -0.9999218 0.9999218 0.9999218 0.4166993
5 -0.9999218 -0.9999218 -0.9999218 0.9999218 0.9999218 0.4166993

Table 5.3: D-optimal designs and min D-optimality n = 5

It can be readily observed from Table (5.3) that optimal designs are independent of the

choice of λ and are close to ±1 which verify the results in Theorem (5.3) and corollary(5.3.1).

The Tables(5.2,5.3) provide an intution that A-optimal designs coincide with that of D-optimal

designs for the given choice of design points. In addition minimum A-optimality measure is

equal to 0.42 for all values of λ.

5.6 D- and A-optimal designs with distinct design points

for Ridge regression: SVD approach

The numerical results followed by the analytical conclusions in Section (5.5) are developed

for two design points with replications. It is observed that two design points lead to a linear

model which is not a desired property for Smooth Ridge model for the reason that the model

is developed in an attempt to capture non-linear relationship. Also, it is not useful in practical

applications where we have more design points. As a result, it is inevitable to explore other

sampling options with more than two distinct design points. The analytical results are very
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cumbersome to develop for the optimal design of Smooth Ridge model for any choice of design

points. This is attributed to the complex nature of the Smooth Ridge model. Therefore, in

order to build an intuition of the optimal designs of Smooth Ridge model, we first attempt

to develop some results of optimal designs for ridge regression model when K = I in Smooth

Ridge model. We aim to obtain this objective with the help of singular value decomposition

of the design model matrix F . Let the singular value decomposition of (n × k)-dimensional

design model matrix F be

F = UDV T

where, U is (n × n)-dimensional matrix with columns of left singular vectors, D is (n × n)

diagonal matrix with singular values and V is (k×n) dimensional matrix with columns of right

singular vectors. U and V are orthogonal such that UUT = I = V V T . The ridge estimator can

be expressed in terms of singular value decomposition of F .

β̂λ = (F TF + λI)−1F TY = V (D2 + λI)−1DUTY (5.6)

It is straightforward to extend the singular value decomposition and find the variance of ridge

estimator.

V (β̂λ) = σ2
(
(F TF + λI)−1F TF (F TF + λI)−1

)
= σ2

(
V (D2 + λI)−1D2(D2 + λI)−1V T

)
If we ignore σ2 and simplify the variance of ridge estimator, we have

V (β̂λ) =

p∑
i=1

d2i
(d2i + λ)2

viv
T
i , (5.7)

which is the result obtained after [30].

For a given λ and a design model matrix F , we inspect the singular values di for high-

dimensionality. When n < k, di = 0 for j = n + 1, . . . , k which implies that V (D2 +

λI)−1D2(D2 + λI)−1V T = 0 and hence the variance is determined by the first n columns of V .

This fact provides a motivation to find an analytical result for D-optimality and A-optimality.

The eigen values of the variance of β̂λ in Equation (5.7) are computed by Karhunen-Loeve

decomposition and can be written as:

(D2 + λI)−1D2(D2 + λI)−1 = diag

(
d21

(d1 + λ)2
, . . . ,

d2n
(dn + λ)2

)
. (5.8)

Using equation (5.8) M can now be written as M = V (D2+λI)−1D2(D2+λI)−1V T and |M|
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becomes the product of the eigen values of M given as
n∏

i=1

(
d2i

(d2i+λ)2

)
. It is vital to mention

here that for rank deficient matrix AAT , |M| can be written as the product of non-zero eigen

values of M hence, we name the optimal design as pseudo D-optimal design. However, for the

sake of simplicity we refer the pseudo D-optimal design as D-optimal design for the rest of the

chapter. Therefore the D-optimal design for singular value decomposition of ridge regression

model is defined as

Definition 5.3. A design D∗ is D-optimal if

min
D

|M(D)| = min
D

(
n∏

i=1

(
d2i

(d2i + λ)2

))
= |M(D∗)| (5.9)

Therefore an optimal design for ridge regression is the one that minimizes the product of non-

zero singular values of M.

Pseudo A-optimal design or simply A-optimal design for singular value decomposition of

ridge regression model can be defined in a similar way.

Definition 5.4. A design D∗ is A-optimal if it minimizes the trace |M(D)| which is equivalent

to minimize the sum of eigen values of M given by
n∑

i=1

(
d2i

(d2i+λ)2

)
.

min
D

|M(D)| = minD

(
n∑

i=1

(
d2i

(d2i + λ)2

))
= tr |M(D∗)| (5.10)

The D and A optimality criteria for ridge regression reveal some important properties.

1. For a fixed design the product
n∏

i=1

(
d2i

(d2i+λ)2

)
is minimized for large values of λ. This

implies that no bounds can be specified for λ which is strictly monotone in a way that

for λi < λj, |M(λi)| > |M(λj)|.

2. For λ→ ∞, |M(D)| → 0 therefore the product is asymptotic i.e. the minimum value of

objective criterion is acheived when λ→ ∞.

3. For a given λ the product
n∏

i=1

(
1

(di+
λ
di

)2

)
is minimum when the denominator term (di+

λ
d2i
)

is maximum. Therefore, for a given λ the design with large singular values di will be the

D-optimal one.

Similar properties hold for A-optimality criterion.
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5.7 SVD Optimal Designs for Smooth ridge model

The results developed for D and A- optimal designs for ridge model provides an intuition and

framework to find optimal designs for Smooth ridge model. The analytical results are difficult

to obtain because of the matrix K. We refer to singular value decomposition of design model

matrix F defined in Equation 5.6. The smooth ridge parameter β̃λ and variance of smooth

ridge parameter is given as

β̃λ = (F TF + λK)−1F TY = (V D2V T + λK)−1V DUTY (5.11)

The variance of smooth ridge estimator after singular value decomposition can be presented as

V (β̂λ)

σ2
= (F TF + λK)−1F TF (F TF + λK)−1 = (V D2V T + λK)−1V D2V T (V D2V T + λK)−1

(5.12)

It is observed that Equation(5.12) cannot be simplified further. Hence, analytical form of the

product and sum of the eigen values of the V (β̂λ) is not possible to achieve. In other words D

and A optimal criteria are hard to derive analytically in the form of singular values of design

model matrix F . However, we believe that for a given matrix K in smooth ridge model, the D

and A-optimality criteria bear the same properties as that of ridge regression model explained

in Section (5.6).

5.7.1 Numerical Results: D- and A- optimality for Smooth Ridge

model

We adopt numerical approach to find D and A- optimal designs in a similar fashion i.e. the de-

signs that minimize |M(D)| and tr |M(D)| respectively whereM(D) =
(
V D2V T + λK)−1V D2V T (V D2V T + λK)−1

)
.

In order to run the simulations two sampling designs namely symmetric and uniform are cho-

sen and evaluated to find D-optimal and A-optimal designs. Symmetric and uniform designs

of size n = {5, 6, 7, 8, 10} are selected from design region χ over the hypercube [−1, 1] with

model terms k = {6, 7, 8, 9, 11} respectively. Therefore a symmetric and uniform design of size

n = 5 is D = {−x1,−x2, 0, x2, x1} and D = {x1, x2, x3, x4, x5} respectively. The simulations

are designed so that 5% of the designs are symmetric and the remaining 95% of designs, are in

general position. For each sample size n, 50, 000 designs over [−1, 1] are obtained for each of the

3 values of λ = {0.001, 0.1, 5}. Among 50, 000 designs the D-optimal and A-optimal designs are
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the ones which satisfy the respective criteria. This results into three D and A-optimal designs

against each of the three values of the regularization parameter λ. The graphical description

of all the 50, 000 designs against the D-optimality criteria for the given λ is displayed for n = 5

and n = 6 in Figures (5.4, 5.5). The rest of the plots are given in Appendix (A.6). The design

that satisfies the D-optimality criteria for each of three values of λ are given in Tables (5.4,

5.5) respectively.

Figure 5.4: Designs against D-optimality criterion n = 5

D-optimal designs n = 5
λ x1 x2 x3 x4 x5 D-opt (× 1044)

0.001 -0.0131647 -0.000000347 0 0.000000347 0.01316467 8.292517
0.1 -0.0131647 -0.000000347 0 0.000000347 0.01316467 7.88 × 10−12

5 -0.0131647 -0.000000347 0 0.000000347 0.01316467 4.797 × 10−22

Table 5.4: D-optimal designs and min-optimality n = 5
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Figure 5.5: Designs against D-optimality criterion n = 6

D-optimal designs n = 6
λ x1 x2 x3 x4 x5 x6 D-opt (× 1027)

0.001 -0.2188916 -0.2180156 -0.213669648 0.213669648 0.2180156 0.2188916 6.815
0.1 -0.3083092 -0.3061263 -0.297516100 0.297516100 0.3061263 0.3083092 2.3166×10−9

5 -0.9774893 -0.9703251 -0.967225006 0.967225006 0.9703251 0.9774893 2.033×10−18

Table 5.5: D-optimal designs and min-optimality n = 6

5.7.2 Results of D-optimal design

In Figures (5.4, 5.5) all 50, 000 designs are plotted against the D-optimality measures for each

of the three values of λ = {0.001, 0.1, 5}. For n = 5, 0 is included as an inherent design point

in the symmetric design and it is evident from Figure(5.4) that D-optimal designs are lying

close to 0 and the optimal designs remain same for all values of λ. For n = 6 in Figure (5.5) 0

is not inherent to the symmetric design and the optimal design points lie on top of each other.

Also,the optimal designs move away from 0 towards the design points −1 and 1 with increasing

λ. It is noticeable from Tables (5.4, 5.5) that D-optimality decreases as values of λ increases

which is one of the conclusion deduced from optimality results obtained for Ridge regression

in Section (5.6).
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Figure 5.6: Designs against A-optimality criterion n = 5

A-optimal designs n = 5
λ x1 x2 x3 x4 x5 A-opt

0.001 -0.99721622 -0.00007477 0 0.00007477 0.99721622 1.101637
0.1 -0.76376333 -0.7559421 -0.7331361 0.8205765 0.94029286 0.5409493
5 -0.99768684 -0.9947400 0 -0.9947400 0.99768684 0.4524402

Table 5.6: A-optimal designs and min A-optimality n = 5

For A-optimality the designs for n = 5 and n = 6 are plotted in Figures (5.6, 5.7). The

design that satisfies the A- optimality criteria for each of three values of λ are given in Tables

(5.6, 5.7) respectively.

Figure 5.7: Designs against A-optimality criterion n = 6
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A-optimal designs n = 6
λ x1 x2 x3 x4 x5 x6 A-opt

0.001 -0.9567726 -0.9495472 -0.003632956 0. 003632956 0.9495472 0.9567726 1.085739
0.1 -0.9998098 -0.9932017 -0.984863805 0.984863805 0.9932017 0.9998098 0.3370789
5 0.9998098 -0.9932017 -0.984863805 0.984863805 0.9932017 0.9998098 0.3358132

Table 5.7: A-optimal designs and min A-optimality n = 6

5.7.3 Results of A-optimal design

Figures (5.6,5.7) depict all design plots against the respective A-optimal criterion for n = 5 and

n = 6. The A-optimal design among 50, 000 designs for each value of λ = {0.001, 0.1, 5} are

presented in Tables (5.6,5.7) for n = 5 and n = 6 respectively. It is apparent that the optimal

design is such that the two design points are chosen very close to 0 when 0 is inherent design

point for n = 5 and the remaining two points are at the boundary of [−1, 1] for λ = 0.001.

The optimal design moves away from zero for large values of λ. From Table (5.7) it is obvious

that for n = 6 the optimal design points lie very close to each other in pairs for example the

first two design points lie close to −1 followed by the next two points close to 0 and the last

two points are close to 1 for λ = 0.001 whereas half of the design points lie close to −1 and

the rest of the design points are close to 1 for large λ. It is noticeable that D-optimality and

A-optimality measures tend to be smaller with large values of λ for all n which is consistent

with the result obtained for ridge regression.

5.8 Designs based on prediction variance: An exploratory

analysis

In Chapter 4 we studied a detailed comparison of different models in the context of their

prediction capabilities relative to that of Smooth ridge model. Therefore, it seems viable to

search for the designs that minimize the prediction variance for Smooth ridge model V (ỹλ) in

Equation (3.13). We aim to explore two of the optimal designs that address the prediction

variance namely G-optimal design defined in Equation (5.1) and an I optimal design which is

defined as,

Definition 5.5. A design D is I-optimal if it minimizes the average prediction variance∫
V (ŷ(x)) over the design region χ.

In order to find I- and G-optimal designs for Smooth Ridge model we carry out an ex-

154



ploratory analysis with the help of simulation study in R. In order to run the simulations two

sampling designs namely symmetric and uniform are selected from design region χ over the

hypercube [−1, 1]. Designs of size n = {4, 5} are chosen with model terms k = {5, 6} respec-

tively. Therefore a symmetric and uniform design is of the form D = {−x1,−x2, 0, x2, x1}
and D = {x1, x2, x3, x4, x5} for n = 5. Similarly, D = {−x1,−x2,−x3, x3, x2, x1} and D =

{x1, x2, x3, x4, x5, x6} are the symmetric and uniform designs of size 6. The simulations are

designed so that 95% of the designs are symmetric and the remaining 5% of designs, are in

general position. For each sample size n, 5000 designs over [−1, 1] are obtained for each of the

3 values of λ = {0.001, 0.1, 1}. Among 5000 designs the G- and I-optimal designs are the ones

which satisfy the criteria given in Equation (5.1) and Def (5.5). This gives us three G- and

I-optimal designs against each of the three values of the regularization parameter λ for a given

design size. The graphical description of the designs against average prediction variance and

a given λ is given in Figures (5.8, 5.9) for n = 5 and n = 6 respectively. Among 5000 designs,

the I-optimal design for each value of λ can be found in Tables (5.8, 5.9).

Designs for average prediction variance and I-optimality n = 5

Figure 5.8: Designs for average prediction error n=5
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I-optimal designs n = 5

λ I-optimality x1 x2 x3 x4 x5

0.001 0.44044248 -0.9287 -0.0038 0 0.0038 0.9287

0.1 0.3530070 -0.8441 -0.7342 0 0.7342 0.844

1 0.2743626 -0.9765 -0.9642 0 0.9642 0.9765

Table 5.8: I-optimal designs and I-optimality n = 5

Figure 5.9: Designs for average prediction variance n=6

I-optimal designs n = 6

λ I-optimality x1 x2 x3 x4 x5

0.001 0.4495441 -0.9291 -0.9184 -0.0019 0.0019 0.9184 0.9291

0.1 0.223206 -0.9909 -0.9767 -0.9587 0.9587 0.9767 0.9909

1 0.2155392 -0.9766 -0.9643 -0.8621 0.8621 0.9643 0.9766

Table 5.9: I-optimal designs and I-optimality n = 6

The plots for 5000 designs are given in Figures (5.10, 5.11) for given values of λ and design

size n = {5, 6} respectively. The respective G-optimal designs along with the G-optimality

measures for n = 5 and n = 6 are displayed in Tables (5.10, 5.11).
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Figure 5.10: Designs for maximum prediction variance n=5

G-optimal designs n = 5

λ G-optimality x1 x2 x3 x4 x5

0.001 0.8362186 -0.999 -0.6116 0 0.6116 0.999

0.1 0.4597038 -0.994 -0.9844 0 0.9844 0.994

1 0.4464979 -0.994 -0.9844 0 0.9844 0.994

Table 5.10: G-optimal designs and G-optimality n = 5

Figure 5.11: Designs for maximum prediction variance n=6
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G-optimal designs n = 6

λ G-optimality x1 x2 x3 x4 x5 x6

0.001 0.6263141 -0.9291 -0.9184 -0.0019 0.0019 0.9184 0.9291

0.1 0.3363496 -0.9982 -0.9937 -0.9440 0.9440 0.9937 0.9982

1 0.3363428 -0.9982 -0.9937 -0.9440 0.9440 0.99379 0.9982

Table 5.11: G-optimal designs and G-optimality n = 6

5.8.1 Results of I- and G-optimal designs

We can see from Figures (5.8, 5.10, 5.9, 5.11) that the minimum of the average prediction

variance and minimum of the maximum prediction variance is at the extreme left of the x-

axis. Therefore the I-optimal design is the one that gives minimum prediction variance for 100

untried points over all the 5000 designs. Similarly, the G-optimal design is the one for which

maximum variance is minimum over all 5000 designs. The I-optimal designs for three values

of λ along with minimum prediction variance and the G-optimal designs along with minimum

of the maximum prediction variance is given in Tables (5.8, 5.10, 5.9, 5.11). We observe a

very interesting feature in G-optimal designs (Tables (5.10, 5.11)) that the optimal designs do

not depend on λ whenλ ≥ 0.1 in the given example. Also, the I-optimality and G-optimality

decreases with the increase in λ.

5.9 Analytical results for I-optimal design for a fixed

design

In order to get some more insight into the I-optimal designs in terms of its dependence on λ,

we develop the analytical form of the prediction variance of smooth ridge estimator given in

Equation (3.13) with the use of Maple. It is important to mention that prediction variance is a

function of unknown input x and λ. In order to find average prediction error, we integrate the

prediction variance with respect to x over [−1, 1] i.e.
∫ 1

−1
V ar(β̃λ)dx for each of the optimal

designs in Tables (5.8, 5.9) which are labelled design2-design4 in the Figure (5.12). We add

one more design in addition to the optimal designs which is x = {−1,−0.5, 0, 0.5, 1} and

x = {−1,−0.6,−0.2, 0.2, 0.6, 1.0} for n = 5 and n = 6 respectively and is labelled as design1.

We then plot the average prediction error for the optimal designs against different values of λ.

The plots for n = 5 and n = 6 are exhibited in Figure (5.12).
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(a) n = 5 (b) n = 6

Figure 5.12: Average prediction variance for optimal designs against λ

5.9.1 Maple results for I-optimal design

We can see from Figure (5.12) that for each of the four designs average prediction vari-

ance is asymptotic in λ. We observe that for λ < 0.1 the average prediction variance de-

creases with the increase in λ and the change is stable at λ > 0.1. Also, the average pre-

diction variance is minimum for the designs x = {−0.8441,−0.7342, 0, 0.7342, 0.8441} and

x = {−0.9909,−0.9767,−0.9587, 0.9587, 0.9767, 0.9909} for n = 5 and n = 6 respectively

shown by green lines.
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Chapter 6

Discussions and Recommendations

In this thesis we developed a methodology to build a smooth emulator for computer experi-

ments. The framework of the model developed can be divided into two categories, a classical

setting with the trend only and the Gaussian emulator. We investigated the predictive perfor-

mance of the model in both frameworks. Explicitly, the estimator of the model is built on the

foundations of a measure of smoothness, hence a cheaper alternative to exepensive emulators

is proposed where Gaussian process is not employed. On the other hand, the standard Gaus-

sian process is incorporated in the model to look into any improvement over existing Gaussian

based emulators. In chapter 3 we devised analytical results to show that mean square error

of the Smooth Ridge estimator improves over that of the standard regression estimator both

for full rank and less than full rank design model matrix. We noticed that for less than full

rank design model matrix, the mean square error of the model estimator is improved under

certain conditions on the parameter λ. We verify our analytical results with the help of initial

simulated studies for 1-D adn 2-D. In addition we chose a simulator that does not obey the

Gaussian process in which case the Smooth Ridge model without Gaussian process performs

the best among all the emulators. In order to explore the application of Smooth Ridge model

to real life applications, we included two real life studies, one encompassing the transmission of

COVID virus and other includes the simulated temperature data. In both the problems, our

methodology outperformed the existing emulators.

In chapter 4 we carried out an extensive simulated study to compare the Smooth emulator

with contemporary models. We first used Bratley function as a simulator to evaluate the

performance of our proposed model for different choice of design points and for different choice

of model terms. The comparisons are focussed on rank deficient design model matrix. We

considered input variables from 2-dimensions to 20-dimensions. Since, the Smooth emulator
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is constructed with Legendre polynomials and Bratley function is favourable to polynoimals

therefore we searched for a simluator that is not supported by polynomials. For this reason

we used Levy function as simulator and repeated all the comparisons. We concluded from our

results that Smooth emulator outperforms DACE model (Gaussian emuator) in all cases.

In chapter 5 we developed a methodology to find analytical results for D- and A- optimality

for two design points with replications. Though the replication is of no use in computer

experiments, we explored the design choices in classical setting to develop a framework which

can be extended to computer emulation. We incorporated Singular Value Decomposition to

produce analytical results of D- and A- optimailty for Ridge regression. A detailed explorarory

analysis is done for the optimal designs of Smooth emulator that provides some useful insights.

6.1 Limitations of Smooth Ridge model

We discuss here some of the limitations of the Smooth Ridge model.

1. For the matrix that is less than full rank design model matrix MSE(β̃λ) < MSE(β̂)

under a condition on λ. In other words the inequality cannot be generalized for all values

of λ but for a sufficient condition on λ.

2. It is difficult to employ the model when number of dimensions are increased. We employed

up-to D = 20 dimensions for the comparisons so far. It is because the dimensions of the

matrix K and design model matrix are increased which make them computationally

expensive.

3. It is difficult to find analytical formulation of optimal designs due to numerical complex-

ities. We achieved optimal designs for univariate and symmetric designs only.

6.2 Advantages of Smooth Ridge emulator

1. Smooth Ridge model provides a framework for computer model when number of design

points are less than the model parameters. In other words design model matrix is less

than full rank and usual Gaussian emulators cannot be used to model the computer

experiments.

2. The model does not require the assumption of correlation structure among the response

unlike most of the Gaussian emulators. Therefore, Smooth Ridge model can also be

employed to the data which does not obey the properties of the Gaussian process.
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3. Cheap alternative to expensive simulations

4. For the design model matrix that is full rank, simple Regression model becomes a special

case of Smooth Ridge model when λ = 0.

5. For non-hierarchical models, there exist cases for which the proposed model becomes

Ridge regression model for example, for the choice of basis for which the smoothness

matrix becomes identity i.e. K = I.

6.3 Future recommendation

The methodology of smooth emulators proposed in this thesis opens new avenues to the mod-

elling for computer experiments. In many real life applications with less number of observations

and large number of potential input variables, this methodology is a stepping stone to build

computer model. We have employed Legendre polynomials, smoothness measure and also com-

bine the elements of Gaussian process. We also provide some insightful results from exploratory

design study. Based on the current work we recommend some future research directions.

1. Search methodology to decide on the number of model terms for more than one factor.

The number of supersaturated basis for one factor to be included in the model is given

by [3]. This is achieved by the convergence of smoothness measure to that of splines.

Therefore, a methodology can be built for more than one factor using convergence to

spline as a starting point.

2. We achieved some optimal designs for the univariate and symmetric design points. This

work provides a motivation to explore multivariate optimal designs but the search is

limited to regular structures for example symmetric designs.

3. The Smooth Ridge model provides a good reason to employ LASSO methodology within

the framework of smooth emulators. As an initial proposal we can write the smoothness

matrix as K = LU where L and U are lower and upper triangular respectively. The

curvature βTKβ can then be written as βTLUβ. We may use only one part of the matrix

say L to construct Manhattan norm i.e. ||Lβ||1. The rest of the methodology needs to

be developed that may produce some useful results.

4. The Bayesian methodology introduced in Chapter (3), Section (3.12) is not examined in

detail to evaluate the model performance. Therefore, there is a potential to explore the
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methodology with the use of methods like MCMC to evaluate the model performance

against frequentist approach and contemorary emulators in future.
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Appendix A

Appendices

A.1 Developments for Kennedy O Hagan model

A.1.1 Priors for unknown functions

The unknown functions η(x, θ) and δ(x) in equation(29) are assumed to have priors represented

by Gaussian processes i.e.

η(x, t) ∼ N (m1(x, θ), c1((x, θ), (x
′, θ′)) .

δ(x) ∼ N (m2(x), c2(x, x
′) .

where, m1(x, θ) = h1(x, θ)
Tβ1 and m2(x) = h2(x)

Tβ2. The covariance functions c1 and c2 takes

any of the forms given in appendix. Also, (β1, β2) ∝ 1

The covariance hyper-parameters for c1 and c2 denoted given by ψ and ρ, σ2 are collectively

denoted by ϕ. Therefore the complete parametric space include ϕ, β = (βT
1 , β

T
2 ) and calibrated

parameters θ i.e. (θ, β, ϕ)

A.1.2 Posterior Distribution

To begin with posterior distribution, we need the complete data that include the observed and

the computer output and can be represented dT = (zT , yT ), where

d|θ, β, ϕ ∼ N (mθ
d, V

θ
d ) .
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In order to find the mean vector and variance matrix of the likelihood of complete data,

following are some notations to be explained. D1 = (x∗1, t1) . . . (x
∗
N , tN) is the set of points

where the code outputs y are available, D2 = (x1 . . . xn) is the set of points for the observations

z of the real process and D2(θ) = (x1, θ) . . . (xn, θ) is the set of variables augmented by the

calibration parameters. In order to find the distribution of d we need to find the expressions

for mean vector and variance matrix of joint distribution of y and z The expectation of y and

z is given by

E(y) = E(η(x, t)) = H1(D1)β1 (A.1)

E(z) = E(ρη(xi, θ) + δ(xi) + ei) = ρH1D2(θ)β1 +H2(D2)β2 (A.2)

In order to find the variance matrix of z recall from 5.1, that

η(x, t) ∼ N (m1(x, θ), c1((x, θ), (x
′, θ′)) .

δ(x) ∼ N (m2(x), c2(x, x
′) .

Hence, the variance matrix of z can be derived as

V ar(z) = E(zT z)− [E(z)]T [E(z)] (A.3)

E(zT z) = E[(ρη(x, θ) + δ(x) + e(x))T (ρη(x, θ) + δ(x) + e(x)]

= E[ρ2η(x, θ)Tη(x, θ) + δ(x)T δ(x) + e(x)T e(x) + η(x, θ)T δ(x)

+ ρη(x, θ)T e(x) + ρη(x, θ)δ(x)T + δ(x)T e(x)] (A.4)

(E(z))TE(z) = [E(ρη(x, θ) + δ(x) + e(x))]T [E(ρη(x, θ) + δ(x) + e(x))]

= ρ2E[η(x, θ)Tη(x, θ)]− E(η(x, θ))TE(η(x, θ)) + E[δ(x)T δ(x)]

− [E(δ(x))]TE(δ(x)) (A.5)

Replacing the terms in Equation (36), using Equation (37) and (38), the variance of z is found

as

V ar(z) = ρ2(D2(θ)) + V2(D2) + σ2I (A.6)

Once, the expressions for mean and variance for y and z are obtained, the distribution of d

can be derived utilising the theory of joint Gaussian distribution and explicit expressions of its

mean vector and variance matrix are as

md(θ) = H(θ)β (A.7)
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where,

H(θ) =

(
H1(D1) 0

ρH1(D2(θ)) H2(D2)

)
and

var(d) = Vd(θ) =

(
V1(D1) ρC1(D1, D2(θ))

T

ρC1(D1, D2(θ)) λIn + ρ2V1(D2(θ)) + V2(D2)

)
After evaluating the form of distribution of d , it is possible to write the posterior distribution

as a product of likelihood d|θ, β, ϕ and prior distributions

π(θ, β, ϕ|d) ∝ π(d|(md(θ), Vd(θ))π(θ)π(ϕ) (A.8)

In Equation (41) β can be integrated out by completing square in the following manner

f(d) ∝ (d−H(θ)β)TVd(θ)
−1(d−H(θ)β)

∝ dTVd(θ)
−1d− 2dTVd(θ)

−1Hβ + βTHTVd(θ)
−1Hβ (A.9)

differentiating Equation (42) with respect to β, yields β̂

β̂ = (HTV −1H)−1HT (Vd(θ))
−1d

β̂ = W (θ)HT (Vd(θ))
−1d (A.10)

where, W (θ) = (HTV −1H)−1. In order to integrate out β from Equation (42), pdf of β can be

expanded to complete square as follows

f(β) ∝ (β − β̂)TW−1(β − β̂)

∝ βTW−1β − 2β̂TW−1β + β̂TW−1β̂ (A.11)

adding and subtracting 2β̂TW−1β + β̂TW−1β̂ in equation (51) gives the following result

f(d) ∝ dTVd(θ)
−1d− 2dTVd(θ)

−1Hβ + 2β̂TW−1β − β̂TW−1β̂

+ βTHTVd(θ)
−1Hβ − 2β̂TW−1β + β̂TW−1β̂ (A.12)

After integrating out β the posterior distribution can be defined and simplified as follows

p(θ, ϕ|d) ∝ p(θ)p(ϕ)p(d|θ, ϕ)

p(θ, ϕ|d) ∝ p(θ)p(ϕ)|Vd(θ)|−
1
2 |W (θ)|

1
2 × exp− 1

2 [(d−H(θ)β̂(θ))TVd(θ)
−1(d−H(θ)β̂)](A.13)
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A.1.3 Estimation of hyper-parameters

In order to evaluate the posterior distribution, it is imperative to find estimates of hyper-

parameters,ϕ ,described in Section (6.2). The set of hyper-parameters ϕ are estimated in two

steps. In first stage the code output y is used to estimate ψ1 of c1((., .), (., .)) i.e.

y|β1, ψ1 ∝ N(H1(D1)β1, V1(D1))

p(β1, ψ1|y) ∝ p(ψ1)p(β1)p(y|β1, ψ1) (A.14)

Integrating out β1 from Equation (47), the resulting posterior distribution of ψ1 takes the form

p(ψ1|y) ∝ p(ψ1)|V1(D1)|−
1
2 |W1(D1)|

1
2

× exp− 1
2 [(y −H1(D1)β̂1(θ)

TV1(D1)
−1(y −H1(D1)β̂1)] (A.15)

Once the stage 1 hyper-parameters are estimated, in stage two the observed data z is used to

estimate ρ,λ and ψ2 of c2(., .) while keeping estimated ψ1 fixed. The remaining set of estimated

parameters can be estimated by maximizing p(ρ, σ2, ψ2|d, ψ1)

p(β2, ρ, σ
2, ψ2|d, ψ1) ∝ p(β2, ρ, λ, ψ2)× p(z|y, β2, ϕ) (A.16)

The distribution of z|y, β2, ϕ cannot be analytically obtained, however, the mean vector and

variance matrix can be obtained using z|y, β2, ϕ, θ whereby z|y, β2, ϕ can be approximated by

a normal distribution with these moments. Using the approximation and integrating out β2

from Equation (50), the posterior distribution takes the form

p(ρ, σ2, ψ2|d, ψ1) ∝ p(ρ, λ, ψ2)|V |−
1
2 |W2|

1
2 × exp− 1

2 [(z −H2(D2)β̂2

− ρη̂(D2))
TV −1(z −H2(D2)β̂2 − ρη̂(D2))] (A.17)

where, β̂2 = W2H2(D2)V−1(z − ρη̂(D2)) and W2 = (H2(D2)
TV −1H2(D2))

−1

A.2 Covariance Functions for kriging models

The kriging metamodels depend heavily on the choice of the covariance functions K explained

in Section (3). A crucial condition on K is to be chosen among the set of positive definite ker-

nels in order to be admissible. Therefore, it is good practice to chose beforehand, a family of

positive definite kernel for the covariance function and estimate the corresponding parameters
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depending on the given data. In higher dimensions, one feasible way to get admissible covari-

ance is by taking tensor products of 1-d admissible kernels. These kernels, termed separable,

are used extensively in computer experiments literature. The current version of DiceKrig-

ing put forward by [63] provides covariance kernels that are built upon this model, up to a

multiplicative constant σ > 0:

K(w, u) = σ2

d∏
j=1

k(hj, θj) (A.18)

where, h = (h1, . . . , hd) := (w − u), θg is the covariance parameter called length scale and k is

a 1-dimensional covariance kernel. Different formulas widely used for k are given in table(9)

Gaussian: k(h) = exp
(
− h2

2θ2

)
Matern ν = 5

2
: k(h) =

(
1 +

√
5|h|
θ

+ 5h2

3θ2

)
exp
(
−

√
5|h|
θ

)
Matern ν = 3

2
: k(h) =

(
1 +

√
3|h|
θ
exp
(
−

√
3|h|
θ

)
Exponential: k(h) = exp

(
− |h|

θ

)
Power-Exponential: k(h) = exp

(
−
( |h|

θ

))
Table A.1: covariance kernels used in DiceKriging
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A.3 Box plots for Design study (d = 3) in Section (5.2)

(a) Box plots for Dicekriging (b) Box plots for Neural network (Non-Lin)

(c) Box Plots for Neural network (Lin) (d) Box Plots for linear regression

Figure A.1: Box plots of mean square error for different models (3-D)
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(a) uniform samples (b) Sobol’ samples

(c) Latin hypercube sampling

Figure A.2: Box plots of mean square error for different designs (3-D)

designs
models

Regression DACE NN (non-Lin) NN(Lin)

Latin hypercube 8.9470 4.2265 0.3930 0.6924

Sobol’ 1.0206 5.0497 0.4275 0.7653

Uniform 9.2455 3.2877 0.4061 1.4035

Table A.2: MSE for different models against different designs
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A.4 Relative efficiency plots for BRATLEY function (fixed

n)
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Figure A.3: RE for d=2, n=10
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d=15
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Figure A.5: RE for d=15, n=40
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A.4.1 Relative efficiency plots for BRATLEY function (fixed k)
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Figure A.6: RE for d=5, k=56
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Figure A.7: RE for d=10, k=66
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Figure A.8: RE for d=15, k= 136
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A.5 Relative efficiency plots for Levy function (fixed n)
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Figure A.9: RE for d=5, n= 20 (Levy)
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Figure A.10: RE for d=10, n= 30 (Levy)
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A.5.1 Relative Efficiency plots for Levy function (fixed k)

Figure A.11: RE for d=2, k=55 (Levy)
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Figure A.12: RE for d=5, k=56 (Levy)

180



80 90 100

50 60 70

20 30 40

0.5

1.0

3.0

5.0

1

3

10

30

1

3

5

1

3

10

1

3

10

0.5

1.0

3.0

5.0

1

3

10

30

1

3

10

0.5

1.0

3.0

5.0

design_points

lo
g
(R

E
)

models ridge Sacks_L Sacks_P SSM

Relative efficiency with Emulator: d=10, K=66

Figure A.13: RE for d=10, k=66 (Levy)
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Figure A.14: RE for d=15, k=136 (Levy)
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A.6 Plots for D- and A-optimality designs in Section

(5.6)

Figure A.15: Designs against D-optimality criterion n = 8

D-optimal designs n = 8

λ x1 x2 x3 x4 x5 x6 x7 x8 D-opt (×1038)

0.001 -0.6723 -0.65758 -0.6551 -0.6543 0.6543 0.6551 0.6575 0.6723 1.2652

0.1 -0.9327 -0.9322 -0. 8775 -0. 8767 0. 8767 0. 8775 0.9322 0.9327 4.7149× 10−15

1 0.9418 -0.9257 -0.9101 -0. 8786 0. 8786 0.9101 0.9257 0.9418 2.8595 ×10−26

Table A.3: A-optimal designs and min-optimality n = 8
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Figure A.16: Designs against A-optimality criterion n = 8

A-optimal designs n = 8

λ x1 x2 x3 x4 x5 x6 x7 x8 A-opt

0.001 –0.9968 -0.4187 -0.4149 -0.4110 0.4110 0.4149 0.4187 0.9968 1.349

0.1 -0.9928 -0.9825 -0.9663 -0.9259 0.9259 0.9663 0.9825 0.9928 0.2845

1 -0.9928 -0.9825 -0.9663 -0.9259 0.92599 0.9663 0.9825 0.9928 0.2586

Table A.4: A-optimal designs and min-optimality n = 8

Figure A.17: Designs against D-optimality criterion n = 10
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D-optimal designs n = 10

λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 D-opt (×1045)

0.001 -0.948 -0.932 -0.930 -0.896 -0.894 0.894 0.896 0.930 0.932 0.948 2.40

0.1 -0.948 -0.932 -0.930 -0. 896 -0.894 0.894 0.896 0.930 0.932 0.948 4.9 ×10−30

1 -0.95 -0.94 -0.92 -0. 85 -0.84 0.84 0.85 0.92 0.94 0.95 1.8×10−41

Table A.5: D-optimal designs and min-optimality n = 10

Figure A.18: Designs against A-optimality criterion n = 10

A-optimal designs n = 10

λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 A-opt)

0.001 -0.945 -0.939 -0.450 -0.450 -0.441 0.441 0.450 0.450 0.939 0.945 1.19

0.1 -0.912 -0.882 -0.868 -0.858 -0.858 0.858 0.858 0. 868 0. 882 0.9129 0.246

1 -0.967 -0.967 -0.9515 -0.929 -0.878 0.878 0.929 0.951 0.967 0.967 0.213

Table A.6: A-optimal designs and min-optimality n = 10
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