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Abstract

Let r ≥ 1; the Følner sequences {Fn, 1}∞n=1, {Fn, 2}∞n=1, . . . , {Fn, r}∞n=1

satisfy the bounded intersection property if there is a constant p such
that for any n ∈ N and 1 ≤ i ≤ r each Fn, i can intersect no more
than p disjoint translates of Fn, 1, Fn, 2, . . . Fn, r. They have compara-

ble magnitudes if 0 < limn
|F n, i|
|F n, j |

< ∞ for 1 ≤ i, j ≤ r. Suppose G

is a countable, Abelian group with an element of infinite order and
let X be a mixing finite (or β-local, with β > 1/2) rank action of
G on a probability space. Suppose further that the Følner sequences
{Fn, 1}∞n=1, {Fn, 2}∞n=1, . . . , {Fn, r}∞n=1 indexing the r towers of the fi-
nite rank X (or the Følner sequence {Fn}∞n=1 indexing the tower of
the β-local rank X ) satisfy the bounded intersection property, and
have comparable heights. Then X is mixing of all orders. We follow
Ryzhikov’s joining technique in our proof: the main theorem follows
from showing that any pairwise independent joining of k copies of X
is necessarily product measure.

1 Introduction

A mixing group action (X ,B , µ ,G) is not generally multiply mixing ([?]); but
if any pairwise independent joining of (X ,B , µ ,G) is actually independent,
then multiple mixing follows. In this paper we discuss this problem for certain
mixing finite rank and local rank group actions. Kalikow [?] showed that rank
one mixing transformations were 3-mixing, and Host [?] proved that mixing
transformations with singular spectrum are mixing of all orders. Ryzhikov [?]

1



and [?] shows that finite rank and β-local (β > 1/2) mixing transformations are
mixing of all orders by showing that pairwise independent self-joinings of the
given system are necessarily product measure. Here we generalize Ryzhikov’s
result to certain finite rank and β-local rank group actions. The author would
like to thank J. Choksi and A. del Junco, and especially I. Klemes, for several
discussions.

2 Preliminaries

Throughout this paper G will denote a countable Abelian group. Let X =
( X, B , µ ,G ) and Y = ( Y, F , ν , G ) be finite measure-preserving G–actions.
To each element g ∈ G there corresponds a measure-preserving transformation
Tg : X → X; however we will mostly use g to denote both the element of the
group, the measure-preserving transformation it represents, and the unitary
operator induced by g on L2(X). A sequence {F n}∞n=1 of finite subsets of G
is Følner if ∀g ∈ G,

lim
n→∞

|gF n∆F n|
|F n| = 0 .

For i = 1, . . . , r, let {F n, i}∞n=1 = F 1, i, F 2, i, F 3, i, . . . be a Følner sequence; we
will write {F n, i} instead of {F n, i}∞n=1. We say that the r Følner sequences
{F n, 1}, {F n, 2}, . . . , {F n, r} have the bounded intersection property if there
exists p ∈ N such that for each n ∈ N and 1 ≤ j ≤ r, at most p disjoint
translates of F n, 1, F n, 2, . . . , F n, r can nontrivially intersect F n, j . We will as-
sume that the Følner sequence(s) defining our action (X ,B , µ ,G) have the
bounded intersection property. We will call such a p an intersection bound for
the Følner sequences {F n, 1}, {F n, 2}, . . . , {F n, r}. Examples of groups which
have natural Følner sequences satisfying this condition are Zn, countable direct
sums of finite cyclic groups and direct sums of these two cases.

Furthermore, we will have to assume that the Følner sequences have com-
parable magnitude: i.e. that

0 < lim
n

|F n, i|
|F n, j| < ∞ . (1)

for 1 ≤ i, j ≤ r. Henceforth we will assume that the Følner sequences we
are dealing with have the bounded intersection property, and also that (??) is
true.

The Følner sequence {F n} satisfies the Tempel’man condition if F n ⊂ F n+1

for each n and there exists K ∈ N such that |F n(F n)−1| ≤ K|F n| for all
n ∈ N. We mention the Tempel’man condition ([?]) only because it seems
to be closely related to the bounded intersection property, in that, in all the
standard examples we know of, they stand or fall together. However we do
not know if it is possible to derive one from the other.
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It is not difficult to find Følner sequences {F n} in Z which do not have the
bounded intersection property. We give an example of a sequence {F n} so that
n disjoint translates of F n, say F n + t1, . . . , F

n + tn, intersect F n nontrivially.
F n will consist of n + 1 intervals, all but the last having cardinality n. These
intervals will be separated by gaps of length βi where

β1 >> n2 (2)

and

βk >
k−1
∑

i=1

βi . (3)

Explicitly, we set β0 = 0 and define

F n :=
n−1
⋃

k=0

[

kn +
k
∑

i=0

βi, kn +
k
∑

i=0

βi + (n − 1)

]

⋃

[

n2 +
n
∑

i=0

βi, 2n2 +
n
∑

i=0

βi

]

.

Finally for k = 1, . . . , n define

tk := n2 +
n
∑

i=k

βi .

It can be verified that

(F n + tk) ∩ F n =

[

(n + k)n +
n
∑

i=0

βi, (n + k)n +
n
∑

i=0

βi + (n − 1)

]

.

Using (??) and (??), one can show that (F n + tj) ∩ (F n + tk) = ∅ for 1 ≤ j 6=
k ≤ n.

A group action (X ,B , µ ,G) is rank ≤ r if there exist r Følner sequences
{F n, i} where 1 ≤ i ≤ r, each indexing a measurable tower

Xn, i :=
⋃

g∈F n, i

Xn,i
g ,

– if g ∈ F n, i, then Xn,i
g is a level of the tower Xn, i – satisfying: for the

sequence of measurable partitions

Pn :=
{

Xn,i
g : g ∈ F n, i, i = 1, . . . , r; X\Xn

}

of X, where Xn :=
⋃r

i=1 Xn, i, we have

1. µ (Xn) → 1,
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2. hXn, i
g = Xn, i

hg whenever g ∈ F n, i ∩ h−1F n, i,

3. For each measurable set A, and each n ∈ N and 1 ≤ i ≤ r, there exists
a set An, i which is a union of elements of {Xn, i

g }g ∈F n, i and µ ((A ∩
Xn, i)∆An, i) →n 0 for each i = 1, 2, . . . , r.

We let an, i denote the (common) mass of a level in the i-th tower, i.e. µ (Xn, i
g ) =

an, i for all g ∈ F n, i.
Property 3 says that the partitions Pn converge to B and to denote this

we write Pn →n ǫ. We will call {F n, i}r
i=1 the Følner sequences associated with

the rank (at most) r group action X and write (X , {F n, i}r
i=1) for X when we

wish to specify {F n, i}r
i=1. We will say that (X , {F n, i}r

i=1) has the bounded
intersection property if {F n, i}r

i=1 have the bounded intersection property. For
a general scheme for constructing finite rank group actions, one can generalise
the method used in [?] to construct rank one group actions. When G = Z,
what we call a finite rank action is in fact a generalisation of the usual finite
rank transformation (which requires that the F n, i be intervals in Z). Ferenczi
[?] constructs a rank one Z action which is not loosely Bernoulli, and therefore
not of finite rank. He calls this a funny rank one transformation. Ferenczi’s
example in fact has the bounded intersection property with p = 4. We say
that the action (X ,B , µ ,G) is rank r if the action is rank ≤ r and the action
is not rank j for 1 ≤ j < r.

Let 0 < β ≤ 1. A group action (X ,B , µ ,G) has local rank β (or is β-local)
if there exists a Følner sequence {F n} and a sequence of measurable partitions

Pn := {Xn
g : g ∈ F n; X\Xn}

of X, (where Xn := ∪g∈F nXn
g ), such that

1. µ (Xn) → β,

2. hXn
g = Xn

hg whenever g ∈ F n ∩ h−1F n,

3. For each measurable set A, and each n ∈ N, there exists a set An

which is a union of elements of {Xn
g }g ∈F n and µ ((A ∩ Xn)∆An) → 0 .

In general, if {Xn} is a sequence of towers satisfying Property 3, we will say
it is an approximating sequence of towers. We will call the Følner sequence
used above in the definition of a β-local group action the Følner sequence
associated with the β-local group action X (and sometimes say that {F n}
generates Xn = ∪f ∈F nXn

f ) and write (X , {F n}) for the β-local group action.
The measure of a level in the n-th tower will be denoted by an. Ergodic finite
rank actions are examples of β-local actions - this can be seen by applying
Lemma ??.

4



If {gj} is a sequence in G we write gj → ∞, if whenever V ⊂ G is finite,
then only finitely many of the gj’s belong to V . A group action X is 2-mixing
if

lim
j→∞

µ (A1 ∩ gjA2) = µ (A1)µ (A2)

∀A1 , A2 ∈ B and for each sequence gj → ∞. X is k-mixing if

lim
j→∞

µ (A1 ∩ g1
j A1 ∩ g2

j A2 ∩ . . . ∩ gk−1
j Ak) = µ (A1) . . . µ (Ak)

where limj→∞ gi
j = ∞ for i = 1, 2 . . . , k − 1 and also limj→∞(gi

j)
−1gl

j = ∞
whenever i 6= l. X is mixing of all orders if it is k-mixing for each k ≥ 2.

Our main theorem is

Theorem 1 Suppose that G is Abelian, countable and has an element of infi-
nite order. Let (X ,B , µ ,G) be a mixing finite rank action, or a mixing β-local
action, with β > 1/2. In either case, assume that the Følner sequence(s) in-
dexing the tower(s) of the action have the bounded intersection property, and
have comparable magnitudes. Then (X ,B , µ ,G) is mixing of all orders.

To prove Theorem ??, we use the method of joinings, generalizing [?].

We say that (X,B) is regular if X is compact and B is the Borel σ-algebra.
This implies that C(X) = {f : X → R, f is continuous} is separable and
also that any probability measure on (X,B) is regular. In this section all
spaces are regular. A probability measure λ is a 2-joining of X and Y if
( X×Y, B⊗F , λ, G ) is a measure-preserving group action with the additional
condition that

λ( A × Y ) = µ ( A )

and
λ( X × B) = ν (B)

for A ∈ B , B ∈ F respectively. We will use the word coupling when the
measure λ projects onto µ and ν, without necessarily preserving the group
action. For a detailed account of joinings, see [?]. Note that by regularity, λ
is a joining if and only if λ(f ⊗ 1) = µ (f) and λ(1 ⊗ g) = ν(g) for f, g ∈
C(X), C(Y ) respectively (where f ⊗ g(x, y) := f(x)g(y)). If {(Xi, Bi , µi)}n

i=1

are probability spaces and λ is a probability measure on (Πn
i=1Xi ,⊗n

i=1Bi),
then we define πi1,i2,...,ikλ to be the projection of λ on (Πk

j=1Xij ,⊗k
j=1Bij) . λ

is an n-joining of {(Xi, Bi , µi , G)}n
i=1 if (Πn

i=1Xi, ⊗n
i=1Bi, G, λ) is a measure-

preserving action and πkλ = µk for k = 1, . . . , n. For n > 2 it is natural to
impose stronger conditions on λ : in particular, if λ is an n- joining of {Xi}n

i=1,
then we can require that

πi1,i2,...,ikλ = Πk
j=1µij
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whenever i1, i2, . . . ik are k distinct elements of {1, 2, . . . , n}. In this case we
write λ ∈ M(k, n) and say λ is k-fold independent.

For our purposes (Xi, Bi , µi) = (X, B , µ) for i = 1, 2 . . . n, and we use
the notation X(n) := X × X × . . . × X. Note that M(k, n) ⊂ M(1, n) ∀ k ≥
1, and that M(1, n) ⊂ M(X(n)) , the set of probability measures on X(n).
We will work with the weak-∗ topology on M(X(n)) . With this (metrisable)
topology, µk → µ iff µk(g) → µ (g) for g ∈ C(X(n)). As the linear span of
the family {⊗n

i=1fi : fi ∈ C(X)} is dense in C(X(n)), it is sufficient to check
convergence on this family. Therefore if {λk} ⊂ M(1, n), then λk → λ iff
λk(Π

n
i=1Ai) →k λ(Πn

i=1Ai) for all measurable rectangles (Πn
i=1Ai). For, suppose

that the latter is true; given ⊗n
i=1fi ∈ C(X(n)), let {φ1

j}, {φ2
j}, . . . , {φn

j } be
sequences of simple functions tending uniformly to f1, f2, . . . fn respectively.
Then |λk (

⊗n

i=1 fi) − λ (
⊗n

i=1 fi)| ≤
∣

∣λk (
⊗n

i=1 fi) − λk

(
⊗n

i=1 φi
j

)∣

∣ +
∣

∣λk

(
⊗n

i=1 φi
j

)

− λ
(
⊗n

i=1 φi
j

)∣

∣ +
∣

∣λ
(
⊗n

i=1 φi
j

)

− λ (
⊗n

i=1 fi)
∣

∣, and first
choosing j big enough so that the first and third summands are small, and
then k big enough so that the second summand is small, the result follows.
Conversely, suppose that λn → λ, and let (Πn

i=1Ai) be measurable. Note that
λ is a coupling. By regularity there exist compact Ki and open Ui where
Ki ⊂ Ai ⊂ Ui and µi(Ui\Ki) < ǫ/n for i = 1, . . . , n. We can then find a
continuous function f which is identically 1 on Πn

i=1Ki and 0 outside Πn
i=1Ui.

Thus for each k
|λk(Π

n
i=1Ai) − λk(f)| < ǫ,

and the same is true for λ. A triangle inequality gives the result.
It now follows that although the maps Tg are not continuous, the set

M(1, n) is a closed subset of M(X(n)) in the weak-∗ topology, and hence it is
compact.

Theorem ?? will follow from

Theorem 2 Suppose that G is Abelian, countable and has an element of infi-
nite order. Let (X ,B , µ ,G) be a regular mixing finite rank action, or a regular
mixing β-local action, with β > 1/2. In either case, assume that the Følner
sequence(s) indexing the tower(s) of the action have the bounded intersection
property, and have comparable magnitudes. Let ν ∈ M(2, k). Then ν = µk.

We will only prove that M(2, 3) = {µ3}, the proof for k > 3 follows by the
same method.

Note that regularity is required in the statement of Theorem ??, but not
Theorem ??. The proof of Theorem ?? clarifies this.

Proof of Theorem ??: The finite rank hypothesis on X ensures that
the measure algebra B̄ of µ-equivalence classes of sets is separable. Standard
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arguments then show that B̄ is isomorphic to the measure algebra of a regular
space and the action of G on B̄ transfers to an action on this regular measure
algebra, which can then be realized as a point action. This shows that there is
no harm in assuming that X itself is regular. (Like most dynamical notions, the
concepts of mixing and finite rank are obviously invariant under isomorphism
of actions at the level of measure algebras. The concept of a joining, however,
is not.)

We give the argument for k = 3, for simplicity. If X is not 3-mixing then
there exist measurable sets A, B, C and sequences {kj} and {lj} of group
elements, both tending to infinity, and ǫ > 0 such that k−1

j lj →j ∞ satisfying

|µ (A ∩ lj B ∩ kj C) − µ (A)µ (B)µ (C)| ≥ ǫ

for all j . Consider the joining ∆kj ,lj(E1×E2×E3) := µ (E1∩ lj E2 ∩kj E3) . If
∆∗ is a limit point of the sequence {∆kj ,lj} then ∆∗ 6= µ3. On the other hand
2-fold mixing implies that ∆∗ ∈ M(2, 3) . This contradicts Theorem ??.

In proving Theorem ?? we will restrict ourselves to the case k = 3. A
similar argument shows that M(k − 1, k) = {µk} for k > 2, so Theorem ??

follows by induction. Throughout the remainder of the paper we will assume
that the underlying measure space is regular and convergence of measures will
always mean weak-* convergence.

Let (X ,B , µ ,G) be mixing and finite rank, and let ν ∈ M(2, 3) be ergodic.
A sketch of the proof that ν = µ3 is as follows. It would be ideal if two things
were to occur simultaneously: first, there is a sequence of products of some
approximating towers

Rn = T n, 1 × T n, 2 × T n, 3 (4)

with limν(Rn) > 0; and second that the “cubes” in Rn do not individually
contain too much ν-mass. Ryzhikov would call such cubes ν-light. This ensures
that ν is to some extent “smeared out” over substantially many of the cubes
in Rn. The first property would mean that the measure νRn - “ the measure
ν conditioned on Rn”, would converge weak-* to ν (Lemma ??). The second
property is needed to show that νRn → µ3. In the rank one case, (see [?] or [?])
finding Rn is not so hard. The T n, i ’s will not be the actual rank one towers,
rather they will be subsets of the rank one towers. For example if G = Z, and
the Følner sequence is a sequence of intervals: F n = [0, hn), then Rn could be
some subset of

∪(1−δ)hn

i=0 Xn
i × ∪(1−δ)hn

i=0 Xn
i × ∪hn

(1−δ)hn
Xn

i ,

(or its image under T δhn). The fact that ν is pairwise independent, and that
the rank one tower Xn is most of the space, easily yields that

lim
n

ν(∪(1−δ)hn

i=0 Xn
i × ∪(1−δ)hn

i=0 Xn
i × ∪hn

(1−δ)hn
Xn

i ) > 0.
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Of course we then have to do a bit of work to show that our chosen Rn has
positive ν-mass. The fact that (X ,B , µ ,G) is mixing helps insure the second
requirement, (mixing means that no level in Xn can go “heavily” into any other
- Lemma ??), which in turn is needed to guarantee that a certain sequence of
probability weights we end up averaging against is uniformly small. Mixing is
used a second time to invoke the Blum-Hanson theorem ([?]) which is where
the uniform smallness of the afore-mentioned weights are needed.

If (X ,B , µ ,G) is finite rank, the difficulty is to get a sequence of Rn’s
which have both positive ν mass and whose “cubes” are ν-light at the same
time. If (X ,B , µ ,G) has local rank, with towers Xn it is not even clear that
limn ν(Xn ×Xn ×Xn) > 0. In [?], Ryzhikov finds two sequences of sets {Rn}
and {Sn} (as in the example above, Sn ≈ hnR

n, where hn → ∞ in G.) He then
finds a sequence of induced joinings ∈ M(1, 3) satisfying both of the required
properties for either Rn or Sn. These joinings are certain projections of relative
products built using the disintegration of ν over (X ,B , µ ,G). The sequence
of induced joinings {ηj} are chosen so that as j → ∞, ηj has an increasingly
large pairwise independent component and we show that this component is
mostly product measure; so that ηj = cjµ

3, where cj ↑ 1. Lemma ?? then
shows that ν = µ3.

The rest of the paper will go in the following order: first we define induced
joinings and show how an appropriate sequence of these joinings will give
information about ν (Lemma ??). Next we construct the sets {Rn} and {Sn},
and then find the sequence of induced joinings (Proposition ??) which give
{Rn} and {Sn} the “right amount” of mass (Propositions ?? and ??). Finally
we will show that this sequence of measures have a large pairwise independent
component (Lemma ??) , and work with these components, and show that
they are mostly product measure. This will allow us (Lemma ??) to conclude
that ν = µ3.

3 Auxiliary Results

If A is a measurable subset of X and µ is a probability measure on X, we
define the measure µA, the measure µ conditioned on the set A, as

µA(F ) =
µ (A ∩ F )

µ (A)
.

If µ, µ1 are probability measures and 0 < c ≤ 1, then the expression “ µ ≥
cµ1” means that µ = cµ1 + (1 − c)µ2 for some probability measure µ2.

The next simple lemma is used repeatedly in [?].

Lemma 1 Let (X,B, ν, G) be an ergodic measure-preserving group action, and
let In be a sequence of measurable sets such that
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1 limn ν(In) = c 6= 0,

2 limn ν(gIn∆In) = 0 for each g ∈ G.

Then limn νIn
= ν.

Proof: Let νn := νIn
. We know that (by passing to a subsequence if necessary)

that the sequence {νn} converges weak-∗ to some measure λ. Now νn = fn dν
where fn =

χIn

ν(In)
, and by property 1, there is a K such that |fn| ≤ K for all

large n. We claim that if νn = fn dν → λ and |fn| ≤ K, then λ = f dν for
some f .

If not, then there is some L with λ(L) ≥ ǫ and ν(L) = 0. Find U open
containing L such that ν(U) < ǫ/2K. Then νn(U) < ǫ/2 for all large n, and
this is a contradiction since lim infn νn(U) ≥ λ(U) for U open.

Thus νn = fn dν → f dν. Note that this implies that ||fn − f ||1 → 0. Next
we claim that λ ◦ g−1 = λ for g ∈ G. To see this, note that

∣

∣

∣

∣

∫

A

f dν −
∫

g−1A

f dν

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

A

(f − f ◦ g) dν

∣

∣

∣

∣

≤ 2

∫

|f−fn| dν+

∫

A

|fn−fn◦g| dν .

The first summand is small for large n. The second summand is also small
since

∣

∣

∣

∣

∫

A

(fn − fn ◦ g) dν

∣

∣

∣

∣

≤
∫

|fn − fn ◦ g| dν = ν(In∆g−1In) → 0

as n → ∞. Thus λ << ν and is G-invariant, and ν ≥ cλ. The ergodicity of ν
forces λ = ν.

We will also need a version of the Blum-Hanson Theorem for group actions.
([?]).

Theorem 3 Let X be a mixing action of a countable Abelian group G. Sup-
pose that {an}n∈N is a sequence of functions an : G → [0,∞) satisfying

1
∑

g∈G an(g) = 1, ∀n ∈ N

2 limn→∞ supg∈G an(g) = 0 .

Then for any φ ∈ L2(µ) ,

‖ An(φ) − 〈φ, 1〉 ‖2→ 0

where An(φ) :=
∑

g∈Gan(g)(φ ◦ g) .

9



Proof: We may assume that φ ∈ L2(X) has 0 mean and unit norm. Since X
is mixing, then given ǫ > 0 , we may choose a finite subset Oǫ ⊂ G such that
| 〈φ ◦ g, φ〉 | < ǫ/2 whenever g ∈ G\Oǫ. Next choose N large enough such
that

sup
g∈G

an(g) <
ǫ

2|Oǫ|

for all n > N . Then
〈

∑

g∈G an(g)(φ ◦ g),
∑

g∈G an(g) (φ ◦ g)
〉

can be split up

into two summands,

∑

g∈G

an(g)
∑

{h:gh−1∈Oǫ}

an(h)
〈

φ ◦ (gh−1), φ
〉

and
∑

g∈G

an(g)
∑

{h:gh−1∈G\Oǫ}

an(h)
〈

φ ◦ (gh−1), φ
〉

.

The first summand can be bounded by ǫ/2|Oǫ|
∑

g∈G an(g)|Oǫ| and the second

by ǫ/2
∑

g∈G an(g)
∑

h∈G an(h), and using the fact that
∑

g∈G an(g) = 1 , the
result follows.

3.1 Induced Joinings

Let ν ∈ M(2, 3) be ergodic for (Y ,F , G) := (X3,B ⊗ B ⊗ B, G). Using the
disintegration

ν(A × B × C) =

∫

C

∫

B

νx,y(A) dµ (y) dµ (x) (5)

of ν with respect to the factor (X2, µ2) (see [?]), we can define the family of
operators {Jx}x∈X , where Jx : L2(X) → L2(X) is defined as Jxf (y) := νx,y(f)
so that equation (??) can also be written as

ν(A × B × C) =

∫

C

〈JxχA, χB〉 dµ (x) (6)

Note that
Jx(χX) = J∗

x(χX) = 1 (7)

and
Jx(f) ≥ 0 and J∗

x(f) ≥ 0 whenever f ≥ 0 . (8)
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We have

ν (gA × gB × gC) =

∫

gC

〈JxχgA, χgB〉 dµ (x)

=

∫

gC

〈

JxχA ◦ g−1, χB ◦ g−1
〉

dµ (x) =

∫

gC

〈

gJxg
−1χA, χB

〉

dµ (x)

=

∫

C

〈

gJg−1xg
−1χA, χB

〉

dµ (x) (where g and g−1 act unitarily on L2(X))

and since ν is preserved by the action of G, then
∫

C

〈

gJg−1xg
−1χA, χB

〉

dµ (x) =

∫

C

〈JxχA, χB〉 dµ (x)

and this is true for all measurable sets A, B, C ∈ B. Hence

gJg−1xg
−1 ≡ Jx (9)

or
gJxg

−1 ≡ Jgx , (10)

and this relation is clearly equivalent to the G-invariance of ν. Since ν ∈
M(2, 3), in particular π1,2ν = µ so

∫

X

〈JxχA, χB〉 dµ (x) = ν(A × B × X) = µ (A)µ (B) =

〈∫

χA, χB

〉

,

or, in the language of operators,
∫

X

Jxdµ (x) ≡
∫

dµ2. (11)

Conversely, if {Jx}x∈X is a measurable family of operators that satisfies (??),
(??), (??) and (??) then the measure ν defined by (??) is a pairwise inde-
pendent joining. If equation (??) is not satisfied then (??) still gives π1,3ν =
π2,3ν = µ2.

Given ν ∈ M(2, 3), let {Jx}x∈X be the family of operators defined by (??).
If k, l ∈ G, then the induced joining ηk,l is the measure defined by

ηk,l(A × B × C) :=

∫

C

〈JkxχA, JlxχB〉 dµ (x)

=

∫

C

∫

X

ν(kx,y)(A)ν(lx,y)(B)dµ (y) dµ (x) . (12)

ηk,l is the projection of a relative product: we will describe this when l = e,
i.e. for the induced joinings ηk := ηk,e. If we label the i-th copy of X in Y

11



as Xi for i = 1, 2, 3, then we have two factors of Y , namely π2,3Y and π1,3Y ,
and we identify these two factors using the transformation φ : π2,3Y → π1,3Y
which is defined as:

φ(x, y) := (kx, y) .

φ induces a joining η
′

k on X4, the relative product over φ:

η
′

k(A × B × C × D) :=

∫

C

∫

D

ν(kx,y)(A)ν(x,y)(B)dµ (y) d µ (x)

and from this we see that ηk = π1,2,3η
′

k .
Note that ηk,l is G invariant; this follows using (??). Thus (Y, F , ηk,l, G)

is a measure preserving group action. We will only be using induced joinings
ηk,g where k−1g has infinite order.

As an example, we can look at the (well known) case when ν is a nontrivial

3-fold joining of the topological group X = {0, 1}Z, with the Borel σ-algebra
and Haar measure, µ. Let φ : X2 → X3 be the map defined by φ((x, y)) =
(x + y, x, y) and let ν := µ2 ◦ φ−1. Then ν is supported on the shift invariant
set

E = {(x + y, y, x) : x, y ∈ X} .

Here
Jxf(y) = νx,y(f) = f(x + y) .

Then ηk,l is the measure

ηk,l(A × B × C) =

∫

C

∫

X

χA(τ l(x) + y) χB(τ k(x) + y) dµ (y) dµ (x) ,

where τ is the shift. ηk,l is supported on the set

{(τ l(x) + y, τ k(x) + y, x, y) : x, y ∈ X} .

In this case ηk,l is ergodic, but not pairwise independent. So we cannot assume
that ηk,l ∈ M(2, 3) (π1,3ηk,l and π2,3ηk,l are product measure, but it is not clear
that (??) holds); nor in general can we assume that ηk,l is ergodic.

Let {cj} be a sequence of real numbers increasing to 1. While it is not
clear that we can find an appropriate sequence of pairs of towers {Rn, Sn}
which are given positive mass by ν, we will be able to do this for a sequence
of induced joinings {ηj}. Next we will show that this sequence has a large
component which is pairwise independent, and this will set the stage to prove
that ηj ≥ cjµ

3. This will imply that ν = µ3: we prove this in the next lemma.

12



Lemma 2 Let cj ↑j 1. Let (X ,B , µ ,G) be a mixing group action, and ν be a
pairwise independent 3-joining of this action. Suppose that for some sequences
{gj} and {kj} of group elements where gjk

−1
j → ∞, we have that

ηgj ,kj
≥ cjµ

3

for each j ∈ N, where ηgj ,kj
are the induced joinings defined by (??). Then

ν = µ3.

Proof: Let {Jx}x∈X be the family of operators defined by ν. Note that if
f, g, h, are bounded measurable functions of (X, B, µ), then

µ3(f ⊗ g ⊗ h) =

∫

f

〈∫

g, h

〉

dµ .

To show that ν = µ3, it is then sufficient to show that Jx =
∫

for µ-almost all
x.

Let F be a countable basis of (real valued) bounded functions for L0
2(X, µ)

such that ||f ||2 = 1 for each f ∈ F . Fix an f in F , we shall show that Jxf = 0
for µ-almost all x ∈ X. For ǫ > 0 and g ∈ L∞(X), define

Eǫ,g :=

{

x ∈ X : ||Jxf − g||2 <
ǫ

1 + ||f ||∞ + ||g||∞

}

.

We claim that if µ (Eǫ,g) > 0, then ||g||2 <
√

ǫ. By assumption on ηgj ,kj
,

ηgj ,kj
− cjµ

3 = (1 − cj)ρ,

where ρ ∈ M(1, 3). Hence for each h ∈ L∞(X)
∣

∣ηkj ,gj
(f ⊗ f ⊗ h) − cj µ3(f ⊗ f ⊗ h)

∣

∣ ≤ (1 − cj)||f ||2∞||h||∞ .

Therefore
∣

∣

∣

∣

∫

h(x)〈J∗
gjxJkjxf, f〉 dµ (x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

h(x)

(

〈J∗
gjxJkjxf, f〉 − cj〈

∫

f, f〉
)

dµ (x)

∣

∣

∣

∣

≤ (1 − cj)||f ||2∞||h||∞.

By taking now h = . . .,
where

A+...
j (δ) :=

{

x :
〈

J∗
gjxJkjxf, f

〉

≥ . . . δ
}

we obtain that for δ > 0

µ
({

x :
∣

∣

∣

〈

J∗
gjxJkjxf, f

〉∣

∣

∣ > δ
})

<
2(1 − cj)||f ||2∞

δ
.
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Let δ = 1+||f ||∞+||g||∞. Assuming that µ (Eǫ,g) > 0, and that (X ,B , µ ,G)
is mixing, we can find a j large enough such that µ (g−1

j Eǫ,g ∩ k−1
j Eǫ,g) =

µ (kjg
−1
j Eǫ,g ∩ Eǫ,g) > 0, and also so that

{

x :
∣

∣

∣

〈

J∗
gjxJkjxf, f

〉∣

∣

∣ < δ
}

∩ g−1
j Eǫ,g ∩ k−1

j Eǫ,g 6= ∅ .

Thus for an x in this non-empty intersection, and for large j,

〈g, g〉 =
〈

g, g − Jgjxf
〉

+
〈

g − Jkjxf, Jgjxf
〉

+
〈

Jkjxf, Jgjxf
〉

≤ ||g||∞||g − Jkjxf ||2 + ||Jkjxf ||2||g − Jgjxf ||2 +
∣

∣

〈

Jkjxf, Jgjxf
〉∣

∣

≤ (||g||∞ + ||f ||∞ + 1)
ǫ

(1 + ||f ||∞ + ||g||∞)
= ǫ ,

or ||g||2 <
√

ǫ. This proves our claim. Now let G be a countable subset of
bounded functions dense in {g ∈ L2(X, µ) : ||g||2 >

√
ǫ}. What we’ve proved

above implies that if g ∈ G, then µ (Eǫ,g) = 0. Let

Fǫ = {x : ||Jxf ||2 >
√

ǫ} ,

By density of G, ∃g ∈ G such that ||Jxf − g||2 < ǫ
(1+||f ||∞+||g||∞)

, so that

Fǫ ⊂
⋃

g ∈G

Eǫ,g ,

which means that µ (Fǫ) ≤
∑

g ∈G µ (Eǫ,g) = 0.

4 D-approximations.

If (X ,B , µ ,G) is a rank one mixing group action, then any level of the nth
tower Xn cannot get mapped “heavily” into itself by increasing elements of G.
In other words, the situation

lim
n

µ (hnX
n
in
∩ Xn

in
)

µ (Xn
in

)
> 0

is not possible, for any sequence in ∈ F n, and hn → ∞. This is not necessarily
true for rank r actions; what is true though is that one can find two nontrivial
(in measure) “sub”-towers, Y n and Y n,2, such that the levels of Y n do not get
mapped heavily into the levels of Y n,2. This is one of the things that we show
in this section.
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We first generalise Ryzhikov’s definition of a D-approximation (see [?]). We
say that the group action (X ,B , µ ,G) has a D-approximation if there exist
2 Følner sequences {F n} and {Gn} which generate the approximating towers
Xn, 1 := ∪f∈F nXn,1

f and Xn, 2 := ∪g∈GnXn,2
g respectively, a sequence of group

elements hn → ∞, and sequences of subsets of group elements {An}, {Bn},
satisfying:

1. {An} is Følner, An ⊂ F n , Bn ⊂ F n and |An| ≥ α1|F n|, |Bn| ≥
α2|F n|, for some positive constants α1, α2;

2. hn An ⊂ F n, and hnB
n ∩ F n = ∅;

3. For some δ > 0, for each f ∈ Bn there exists Y n
f ⊂ Xn,1

f such that

µ
(

Y n
f

)

≥ δ µ
(

Xn,1
f

)

, hn

(

∪f ∈BnY n
f

)

⊂ Xn, 2, and

lim
n

µ
(

hnY
n
fn
|Xn,2

gn

)

= 0

whenever fn ∈ Bn and gn ∈ Gn.

(Note that the two Følner sequences {F n} and {Gn} need not necessarily be
distinct.)

If (X ,B , µ ,G) is a local rank ergodic action (so the following remark also
applies for finite rank actions) with local tower Xn = ∪f ∈F nXn

f and (passing to
a subsequence if necessary) limn µ (Xn) = c > 0 then as Xn is approximately
invariant, by Lemma ??, we have for any A ∈ B,

µ (A|Xn) →n µ (A) .

We use this in:

Lemma 3 Let (X ,B , µ ,G) be a local rank mixing G-action, with associated
Følner sequence {F n}. Then

lim
n→∞

sup
g 6=e

µ
(

gXn
fn

∩ Xn
fn

)

µ
(

Xn
fn

) = 0 (13)

whenever fn ∈ F n.

Proof: We’ll assume that e ∈ F n for each n and show that equation (??)
is true for fn = e; the case for an arbitrary sequence {fn} is similar. Suppose
the lemma is false, i.e. there exist sequences {nk} ⊂ N and {gk} ⊂ G such
that gk 6= e and

µ (gkX
nk
e ∩ Xnk

e )

µ (Xnk
e )

→ c 6= 0 .
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Passing to a subsequence if necessary, we can assume that gk → ∞.
(For otherwise we can pass to a subsequence along which gk = g with g 6= 0.
But since {F nk} is Følner, for large k there exist distinct f and f ′, both in
F nk such that fg = f ′. Therefore, µ (gXnk

e ∩ Xnk
e ) = µ (f−1f ′Xnk

e ∩ Xnk
e ) =

µ
(

Xnk

f ′ ∩ Xnk

f

)

= 0, a contradiction.)
Let β = limn µ (Xn). Choose a set A with 0 < µ (A) < c β, and for each k
choose a set F nk(A) ⊂ F nk so that the sets

Ank =
⋃

f ∈F nk (A)

Xnk

f

satisfy µ ((A ∩ Xnk)△Ank) → 0.
We have

µ (gkA
nk ∩ Ank) ≥ |F nk(A)|µ (gkX

nk
e ∩ Xnk

e ) (14)

= µ (Xnk
e ) |F nk(A)| µ (gXnk

e ∩ Xnk
e )

µ (Xnk
e )

(15)

= µ (Ank)
µ (gXnk

e ∩ Xnk
e )

µ (Xnk
e )

→ β µ (A) c . (16)

On the other hand,

lim
k→∞

µ (gkA
nk ∩ Ank) ≤ lim

k→∞
µ (gkA ∩ A) = (µ (A))2

which together with (??) leads to a contradiction.

We use Lemma ?? to prove Proposition ?? below. We remark first that
given ǫ > 0, we can always find a sequence of group elements hn → ∞ such
that

ǫ ≤ |h−1
n F n ∩ F n|

|F n| ≤ 2ǫ .

For, if l is an element of infinite order, choose N so that

|l−1F n ∩ F n|
|F n| =

|lF n ∩ F n|
|F n| > 1 − ǫ/2

for n > N . Letting

ak :=
|lkF n ∩ F n|

|F n| ,

we have, for n > N :

a0 = 1, |ak+1 − ak| < ǫ and ak 6= 0 iff lk ∈ F n F n−1, a finite set. (17)

Choosing hn to be the appropriate sequence of powers of l establishes the
remark.
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Proposition 1 If (X ,B , µ ,G) is β-local with β > 1/2, then (X ,B , µ ,G)
has a D-approximation.

Proof: Let α > 0 be chosen so that β(1−2α) > 1/2. By the remark above
we can find a sequence {h−1

n } of group elements such that h−1
n → ∞ and

α ≤ |h−1
n F n ∩ F n|

|F n| ≤ 2α .

Define An := h−1
n F n ∩F n, Bn := F n\An. Then An, Bn are Følner sequences,

hnA
n ⊂ F n, and hnB

n ∩ F n = ∅. For g ∈ Bn, let Y n
g := Xn

g . Recalling that
an is the measure of any level of the local tower, we have:

lim
n

µ
(

∪g ∈BnXn
g

)

= lim
n

an|Bn| > lim
n

an|F n|(1 − 2α) = β(1 − 2α) >
1

2

by choice of α. It follows that

lim
n

µ
(

hn ∪g ∈Bn Xn
g ∩ ∪f ∈F nXn

f

)

> 0 .

Suppose now that there exist sequences {fn} and {gn} in Bn and F n re-
spectively such that

lim
n

µ
(

hnX
n
fn
|Xn

gn

)

= c > 0 . (18)

Then

lim
n

µ
(

fng−1
n hnX

n
fn

∩ Xn
fn

)

µ (Xfn
)

= c > 0 ,

and since fn ∈ Bn = F n\h−1
n F n and gn ∈ F n, then fng

−1
n hn 6= e. This would

contradict Lemma ??. Thus equation (??) is false, and Property 3 of the
definition of D-approximation is also satisfied.

Let (X ,B , µ ,G) be a rank r group action, generated by {F n, i}, for i =
1, 2, . . . , r. Let h be an element of infinite order in G, and let α > 0 be

small and fixed. Choose sequences of powers of h, say h
(i)
n := hkn(i), for

i = 1, 2, . . . , r such that

α

2r−1
<

|(h(i)
n )−1F n, i ∩ F n, i|

|F n, i| <
2α

2r−1
. (19)

If f ∈ F n, i, define

Xn, i→j
f = {x ∈ Xn,i

f : h(i)
n x ∈ Xn, j} .
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Also define
Xn, i→j = ∪

{f ∈F n, i\(h
(i)
n )−1F n, i}

Xn, i→j
f .

If
lim

n
µ
(

Xn, i→i
)

> 0

for some i ∈ {1, 2, . . . , r}, then a D-approximation exists much in the same
way that it existed for local rank actions: namely for this i, we let An :=

(h
(i)
n )−1F n, i ∩ F n, i, Bn := F n, i\An, these sequences will do the trick (letting

F n = Gn = F n, i).
Thus we will make the assumption that

lim
n

µ
(

Xn, i→i
)

= 0

for i = 1, 2, . . . , r, since this is the only case that remains. In this case we will

need some extra restrictions on our choices of h
(i)
n . We can choose the elements

h
(i)
n to satisfy both equation (??), and also

|
(

h
(i)
n ·∏j∈J h

(j)
n

)−1

F n, i ∩ F n, i|
|F n, i| <

2α

2r−1
(20)

where J ⊂ {1, . . . , r} and i 6∈ J . To see this, when choosing the h
(i)
n ’s, simply

let them be the highest power of l (the element of infinite order) such that

α

2r−1
≤ |(h(i)

n )−1F n, i ∩ F n, i|
|F n, i| ≤ 2α

2r−1
.

Then using the properties listed in (??), with ǫ = α
2r−1 , it can be seen that

(??) will hold. We will also have

|F n,i
0 | < 2α (21)

where

F n,i
0 = F n, i ∩

⋃

J ⊂{1...r}
i6∈J

(

h(i)
n ·
∏

j∈J

h(j)
n

)−1

F n, i.

For f ∈ F n, i, g ∈ F n, j, define

Xn,i→j
f→g := {x ∈ Xn, i

f : h(i)
n x ∈ Xn, j

g } ;

so Xn,i→j
f→g ⊂ Xn,i

f for all g ∈ F n, j. We say that Xn,i
f goes ǫ-heavily into Xn,j

g

under h
(i)
n if

µ
(

Xn,i→j
f→g |Xn,i

f

)

≥ ǫ ,
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and if µ
(

Xn,i→j
f→g |Xn,i

f

)

< ǫ, then we say that Xn,i
f goes ǫ-lightly into Xn,j

g under

h
(
ni). For ǫ > 0 and f ∈ F n, i, define

Xn, i→j
f (ǫ) :=

⋃

{g ∈F n, j : µ (X
n,i→j
f→g

|Xn,i
f )<ǫ}

Xn,i→j
f→g

for j = 1, . . . r. Thus Xn, i→j
f (ǫ) is the part of Xn,i

f which moves lightly into

Xn,j.

Proposition 2 Let (X,G) be a rank r mixing action, generated by the Følner

sequences {F n, i}, i = 1, 2, . . . , r, and let h
(i)
n be as in formula (??). If

lim
n

µ (Xn, i→i) = 0

for i = 1, 2, . . . , r, then there exist i0 6= j0 ∈ {1, . . . , r}, and ∃ δ > 0 ∀ ǫ >
0 ∃n = n(ǫ) such that for n ≥ n (ǫ), for all f ∈ Bn ⊂ F n, i0\F n, i0

0 where
|Bn| ≥ δ |F n, i0 |, we have

µ (Xn, i0→j0
f (ǫ)|Xn,i0

f ) ≥ δ . (22)

Setting An := (h
(i0)
n )−1F n, i0 ∩ F n, i0 , and Bn as above, we obtain a D-approx-

imation.

Proof: Suppose not. Then for all δ > 0, there exists some ǫ and a sequence
nk → ∞ such that equation (??) with n = nk is true for less than δ |F nk, i|
values of f in F nk, i, for all i ∈ {1, . . . , r}.

In Figure ??, in the leftmost tower, region C represents the levels which are
indexed by elements in F n,1

0 . Region C is fixed but small (it depends on the
choice of α in formula (??)). Region B represents the levels in Xnk,1 which do
satisfy inequality (??), for some i0, and region A represents the part of Xnk, 1

which moves ǫ-lightly into other towers. Both regions A and B can be made
small by chosing δ small; and regions A, B and C are present and small in all
towers.

We choose an f ∈ F nk, 1 such that

• f is not indexing a level in regions B or C;

• ∃j1,∃f1 ∈ F nk,j1 with f1 not indexing a level in regions B or C, and
such that µ

(

Xnk, 1→j1
f→f1

|Xn,1
f

)

≥ ǫ,

• h
(1)
nk Xnk, 1

f ∩Xnk, j1
f1

is in the part of Xnk,j1
f1

which moves ǫ-heavily out of

Xnk, j1 under h
(j1)
nk , into Xnk, j2

f2
where f2 ∈ F nk,j2\F nk,j2

0 , so that

µ
(

h(j1)
nk

h(1)
nk

(Xnk,1
f ) ∩ Xnk,j2

f2
|Xnk,1

f

)

≥ ǫ2 .
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Figure 1: How one level moves heavily into following towers

• Repeating this process at most r times, until we see the same tower
twice in our picture, we will find a jp ∈ {1, . . . , r}, and fp ∈ F nk, jp\F nk, jp

0 ,
and f ∗ ∈ F n,jp such that

µ
(

h(jq)
nk

. . . h(jp)
nk

X
nk, jp

fp
∩ X

nk, jp

f∗ |Xnk, jp

fp

)

≥ ǫr .

Since fp ∈ F nk, jp\F nk, jp

0 , then

h(jq)
nk

. . . h(jp)
nk

(f ∗)−1fp 6= e .

Now it is possible to obtain a contradiction to mixing, using Lemma ??.
We now construct the D-approximation. Let ǫn → 0, and, by passing to

a subsequence if necessary, find a sequence {Bn} such that elements in Bn

satisfy equation (??) for ǫ = ǫn. Suppose wlog that we found i0 = 1, j0 = 2 in

Proposition ??. Then let hn := (h
(1)
n )−1, An := h

(1)
n F n, 1 ∩ F n, 1. Furthermore,

for g ∈ Bn, let

Y n
g := Xn, 1→2

g (ǫn) =
⋃

{f ∈F n, 2: µ (Xn, 1→2
g→f

|Xn, 1
g ) <ǫ}

Xn, 1→2
g→f .

Then

lim
n

µ

(

⋃

g ∈Bn

Y n
g

)

≥ lim
n

δ |F n, 1|δan, 1 = δ2/2 .

Also,

hn

(

⋃

g ∈Bn

Y n
g

)

⊂
⋃

f ∈F n, 2

Xn, 2
f ,
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so that

lim
n

µ



hn

(

⋃

g ∈Bn

Y n
g

)

⋂





⋃

f ∈F n, 2

Xn, 2
f







 = δ2/2 .

Finally, note that by construction, for any g ∈ Bn, f ∈ F n, 2, we have

µ
(

hnY
n
g |Xn, 2

f

)

< ǫn →n 0 ,

i.e. condition 3 of the definition of D-approximation is also satisfied.
We have therefore shown that a D-approximation exists for all rank r mix-

ing group actions (X,G) where G is countable, Abelian, and with an element
of infinite order.

Henceforth we will assume that An, Bn ⊂ F n, 1 and that

hn

(

⋃

g ∈Bn

Y n
g

)

⊂ Xn, 2

- the other cases are similar. If (k, l,m) ∈ An × An × Bn, where An, Bn are
the sets coming out of the D-approximation, then we will denote the cube (or
rather cuboid) Xn, 1

k × Xn, 1
l × Y n

m by Y n
k,l,m. We can then form the sets

Rn :=
⋃

(k,l,m)∈An×An×Bn

Y n
k,l,m (23)

and
Sn :=

⋃

(k,l,m)∈hnAn×hnAn×F n, 2

Xn
k,l,m . (24)

If a pairwise independent ergodic measure gave these sets nontrivial measure,
then we would be set to prove the mixing theorem for finite rank actions.
This need not be the case, but Proposition ?? shows that we can find induced
joinings which give the towers Rn (and therefore Sn) measure almost as large
as the product measure of these towers; and furthermore these same induced

joinings will also give the set
(

⋃

(k,l)∈An×An Xn
k,l

)

×X measure comparable to

its product mass. The latter will insure that the induced joinings have a large
pairwise independent component, as we shall see in Lemma ??.

In what follows, the sequence of sets {Un} is the sequence {∪f ∈AnXn, 1
f }

and {U ′

n} is the sequence {∪g ∈BnY n
g } . We recall Ramsey’s theorem (see for

example [?]): given l ∈ N, there exists r(l) such that if A is any subset of
a countable set H of cardinality r(l), with ∗ a 2-colouring (a binary relation)
of A, then A contains a set B of cardinality l such that either b ∗ b ′ for all
b, b ′ ∈ B or ¬ (b ∗ b ′) for all b, b ′ ∈ B.

The following Lemma will be used in the proof of Proposition ??.
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Lemma 4 Suppose F1, F2, . . . , Fl ∈ L2 (µ), 0 ≤ Fi ≤ 1 and
∫

Fi dµ = u for
i = 1, 2, . . . , l. Then there exist distinct i, k such that

〈Fi, Fk〉 ≥ u2 − l−1u

1 − l−1
≥ u2 − 1

l − 1
.

Proof: Note that since 0 ≤ Fi ≤ 1, then

〈Fi, Fi〉 ≤ 〈Fi, 1〉 .

If φ :=
∑l

i=1 Fi, then by the Cauchy-Schwarz inequality,

< φ, φ > ≥ < φ, 1 >2= (lu)2 .

Hence

max
i6=k

〈Fi, Fk〉

≥ < φ, φ > −∑l

i=1 〈Fi, Fi〉
l2 − l

≥ l2u2 − l u

l2 − l
=

u2 − l−1u

1 − l−1
≥ u2 − 1

l − 1
.

Proposition 3 Let (X, B, G, µ) be a group action, ν be pairwise independent
and {ηg,k}g,k∈G the family of induced measures generated by ν. Let cj ↑ 1. If
{Un}, {U ′

n} are sequences of measurable sets such that

lim
n

µ (Un) = d > 0 , lim
n

µ (U
′

n) = d ′ > 0,

then there exist sequences {gj}, {kj} of group elements of infinite order such
that

lim
n

gjk
−1
j = ∞,

and
lim

n
ηgj ,kj

(Un × Un × X) ≥ cjd
2 (25)

and
lim

n
ηgj ,kj

(Un × Un × U
′

n) ≥ cjd
2d ′ (26)

for each j ∈ N.

Proof:

Fix n ∈ N for the time being. Choose a natural number l large enough so
that

µ (Un)2 − l−1µ (Un)

1 − l−1
> µ (Un)2c1 .
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Note that l can be chosen independently of large n. Let

H := {h ∈ G : h is of infinite order} .

Choose and fix a set A ⊂ H such that |A| = r(l), where r(l) is given by
Ramsey’s Theorem. Let g ∈ G. Define Fg : X2 → [0, 1] as

Fg(x, y) = ν(gx,y)(Un) .

Then if g, k ∈ G, and µn := µU
′
n
, we have

ηg,k(Un × Un × U
′

n) = µ (U
′

n)

∫

X

∫

X

Fg(x, y)Fk(x, y)dµ (y)dµn(x)

= µ (U
′

n) 〈Fg, Fk〉µ×µn
.

Assumption: Suppose that there is no pair of group elements g, k in A such
that both

µ (U
′

n) 〈Fg, Fk〉µ×µn
= ηg,k(Un × Un × U

′

n) ≥ c1 µ (Un)2µ (U
′

n) (27)

and
〈Fg, Fk〉 = ηg,k(Un × Un × X) ≥ c1(µ (Un))2 . (28)

hold. Define the 2-colouring ∗ (∗ depends on n) on A as: g∗k iff equation (??)
does hold for the pair g, k. If g ∗ k, then because of our assumption, equation
(??) does not hold for the pair g, k.

By Ramsey’s Theorem, A contains a set B of cardinality l where either
g ∗k for all g, k ∈ B, or ¬ (g ∗k) for all g, k ∈ B. (B is really Bn and ∗ = ∗n.)
If g ∗ k for all g, k ∈ B, then equation (??) does not hold for all g, k ∈ B, i.e.

〈Fg, Fk〉µ×µn
< c1 (µ (Un))2.

Similarly if ¬ (g ∗ k) for g, k ∈ B, then

〈Fg, Fk〉 < c1 (µ (Un))2

for g, k ∈ B. Lemma ?? tells us that neither possibility can happen. So our
initial assumption was false, i.e. there exist elements g, k ∈ A such that both
equations (??) and (??) hold. Repeating this argument for all large n, (with
the same set A) there exists a sequence of pairs of elements g1(n), k1(n) in
A such that both equations (??) and (??) hold. As A is finite, then there
exists a pair g1, k1 which work for infinitely many n’s, i.e. such that both
equations (??) and (??) hold for j = 1. The proof can be repeated for any
j ∈ N, except that we vary the set A = A(j), taking it to consist of sufficiently
spaced integers so that gjk

−1
j → ∞; and only working with the subsequence of

n’s that one obtained at stage j − 1. Taking a diagonal subsequence, we have
equations (??) and (??) for all j ∈ N.
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5 Long Orbits and Almost Pairwise Indepen-

dence

In this section (X , G) is a rank r or local rank ( β > 1/2) mixing G-action as
in Theorem ??, and η ∈ M(1, 3). For (f, g, h) ∈ F n, i × F n, j × F n, k where

1 ≤ i, j, k ≤ r, we denote Xn,i
f ×Xn,j

g ×Xn, k
h by Xn, i,j,k

f,g,h and call this object
a cube. For 1 ≤ i, j, k ≤ r, we let

Xn, i,j,k := Xn, i × Xn, j × Xn, k ;

i.e. Xn, i,j,k stands for the product of the towers i, j, and k at the n-th stage.
By an orbit in G3 we mean any

G3
g0,g1

:= {(l, lg0, lg1) : l ∈ G},

that is, an orbit of the diagonal action of G on G3 by translation. By an
n-orbit in Xn, i,j,k we mean

On, i,j,k
g0,g1

:=
⋃

{l∈F n, i∩F n, jg−1
0 ∩F n, kg−1

1 }

Xn, i,j,k

(l,lg0,lg1)

Thus each Xn, i,j,k is partitioned into n-orbits and each n-orbit is a union
of cubes of equal η-measure. The length of an n-orbit is the number of cubes
in it. For (f, g, h) ∈ F n, i × F n, j × F n, k, O(Xn, i,j,k

f,g,h ) will denote the n-orbit

containing the cube Xn, i,j,k
f,g,h .

Let us say an n-orbit in Xn, i,j,k is δ-long if its length is at least δ min1≤i≤r |F n, i|
(otherwise we call it δ-short) and let On(δc) denote the union of the δ-short
orbits, and On, i,j,k(δc) the union of the δ-short orbits in Xn, i,j,k. Similarly, we
call F n, i ∩ gF n, j ∩ g∗F n, k a δ-short intersection if |F n, i ∩ gF n, j ∩ g∗F n, k| ≤
δ min1≤i≤r |F n, i|. In the next lemma we will show that the η-mass of On, 1,1,1(δc)
is small in the limit. The argument can be copied to give the smallness of
η(On, i,j,k(δc)) for any 1 ≤ i, j, k ≤ r. Summing over these r3 possibilities
will give that limn η(On(δc)) ≤ r3p2 δ.

Lemma 5 If p is an intersection bound for {F n, 1, F n, 2, . . . , F n, r} then

lim
n

η(On, 1,1,1(δc) ≤ p2δ .

Proof: We fix n; to ease notation, we assume that e ∈ F n, 1, so that Xn, 1
e

will be considered as the “base” of the tower Xn, 1. We will consider all finite
subsets γ = {g1, g2, . . . , gq} of G with the properties that the {gkF

n, 1}q
k=1 are

pairwise disjoint and all intersect F n, 1 non-trivially , so |γ| ≤ p. We call such
a γ a configuration and let Γ denote the space of all configurations. Clearly Γ
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is finite. If γ = {g1, g2, . . . , gq} is a configuration and k ∈ G, then k γ is the
set {kg1, kg2, . . . kgq}.

For x ∈ X we let Rn, 1(x) = {g ∈ G : gx ∈ Xn, 1
e }, the set of “return times”

to the base of the n-th tower Xn, 1. By an n-block in x we mean any gF n, 1

with g ∈ Rn, 1(x), and g is called the base time of this n-block. The n-blocks
in x are disjoint translates of F n, 1. For x ∈ Xn, 1 we denote by Bn(x) the
n-block in x containing e ∈ G, namely Bn(x) = k−1F n, 1 if x ∈ Xn,1

k .

For (x, y) ∈ Xn, 1
k ×X we create a configuration γ(x, y) by letting g1, . . . , gq

denote the base times of the n-blocks in y which intersect Bn(x) and defining

γ(x, y) = k {g1, g2, . . . , gq} = {kg1, . . . , kgq} . (29)

For (x, y, z) ∈ Xn, 1
k × X2, if

γ(x, z) = k{h1, h2, . . . , hs}, (30)

then let
γ1(x, y, z) := γ(x, y) and γ2(x, y, z) := γ(x, z).

We view the map Q : (x, y, z) → (γ1(x, y, z), γ2(x, y, z)) as a partition of
Xn, 1 × X2 indexed by Γ2, so we will write Q(γ1,γ2) = Q−1((γ1, γ2)). Thus we
are partitioning Xn, 1 × X2 according to the pattern, up to a shift, formed by
Bn(x) and the F n, 1-blocks in y and z which intersect Bn(x).

For (γ1, γ2) ∈ Γ2, and k ∈ F n, 1 let

Q(γ1,γ2),k := {(x, y, z) ∈ Q(γ1,γ2) : x ∈ Xn, 1
k } ⊂ Xn, 1

k × X2 .

We call Q(γ1,γ2),k a cell of Q(γ1,γ2),. We claim that

η (Q(γ1,γ2),k) = η(Q(γ1,γ2),e)

for each k ∈ F n, 1. This is true as Q(γ1,γ2),e is mapped to Q(γ1,γ2),k by the
transformation k.

Define

S((γ1, γ2), 1, 1, 1) :=
⋃

{(g,h):g ∈γ1, h∈γ2}

F n, 1 ∩ gF n, 1 ∩ hF n, 1 .

It can be verified that k∗ ∈ S((γ1, γ2), 1, 1, 1) iff Q(γ1,γ2),k∗ ⊂ Xn, 1,1,1.

Now suppose that k ∈ F n, 1∩gF n, 1∩hF n, 1, and suppose that O(Xn, 1,1,1
k,l,m )∩

Q(γ1,γ2),k is nontrivial. Then O(Xn, 1,1,1
k,l,m ) intersects Q(γ1,γ2),k∗ nontrivially, when-

ever k∗ ∈ F n, 1 ∩ gF n, 1 ∩ hF n, 1. Thus δ- short orbits can only intersect cells
which belong to a δ-short intersection. There are at most p2 intersections.
Noting that the cells of Q(γ1,γ2) all have the same η-mass, we have

η(On, 1,1,1(δc)) ≤
∑

γ1, γ2

p2 δ|F n, 1|η(Q(γ1,γ2),e) ≤ p2δ|F n, 1|µ (Xn, 1
e )
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since the Q(γ1,γ2),k form a partition of Xn, 1
k × X2 and η ∈ M(1, 3). Letting

n → ∞, we get the result.

Note that as long as we have this bounded intersection property for Følner
sequences, the proof of Lemma ?? can be copied to give that the δ-short orbits
in Xn, i × Xn, j are of small η-mass, for any joining η ∈ M(1, 2) (ergodic or
not) which preserves the action of G. This is used in Lemma ??. The same is
true when looking at a local rank transformation - that the δ-short orbits in
Xn × Xn × Xn are of small η-mass, whenever η ∈ M(1, 3).

Lemma 6 Suppose (X, B, µ,G, {An}) is a β-local mixing action. Let η be a
(not necessarily ergodic) 2-joining of (X ,B , µ ,G) with itself and suppose that

lim
n

η





⋃

(k,l)∈An×An

Xn
k,l



 = c > 0 . (31)

Then η either has an off-diagonal measure as a (nontrivial) component, or
µ2 as a nontrivial component. In the case when η = π1,2ηg,k is the projection
of an induced joining, then ηg,k ≥ cβ−2µ2, where

β = lim
n

µ

(

⋃

k∈An

Xn
k

)

.

Proof:

Let
On(δ) :=

⋃

{(k,l)∈An×An:|Ank−1∩Anl−1|≥δ|An|}

O (Xn
k,l) .

Fix some small δ, such that

lim
n

η (On(δ)) > 0 ,

By passing to a subsequence if necessary, assume that this liminf is a limit. A
limit point of the measures ηn will be a nontrivial component of η, by Lemma
??. We can write ηn as

ηn =
∑

{(k,l):|Ank−1∩Anl−1|≥δ|An|}

an
k,lη

n
k,l

where ηn
k,l := ηO(Xn

k,l
) and an

k,l :=
η(O (Xn

k,l
))

η(On(δ))
. Define

λn :=
∑

{(k,l):|Ank−1∩Anl−1|≥δ|An|}

an
k,l∆

n
k,l
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where ∆n
k,l is the measure ∆k,l conditioned on the set O(Xn

k,l). (Recall that

∆k,l is the graph joining: ∆k,l(A × B) := µ (lk−1A ∩ B)). Since (X,G, {An})
is β-local, then {λn} and {ηn} have the same limit points. To see this, note
that λn (A1 × A2) = ηn (A1 × A2) whenever A1, A2 are unions of levels in Xj,
for n ≥ j. If A1, A2 are arbitrary measurable, find sequences {Aj

i}j ∈N for

i = 1, 2 such that Aj
i is a union of levels in Xj and

µ
(

(Ai ∩ Xj)∆Aj
i

)

→j 0 .

Since

λn
(

(A1 × A2 ∩ Xj × Xj)∆(Aj
1 × Aj

2

)

≤
2
∑

i=1

λn
(

((Ai ∩ Xj)∆Aj
i ) × X

)

, (32)

then as j → ∞, this quantity tends to 0 for each n. Inequality (??) also holds
for ηn, so for a fixed j, the quantity on the right hand side of equation (??)
will also be small, Thus λn, ηn have the same limit points.

There may exist a pair of group elements (k, l), and a subsequence of n’s
such that limn an

(k,l) > 0, in which case by ergodicity of µ, and therefore of ∆k,l,

η ≥ lim
n

η (On(δ)) lim
n

ηn = lim
n

η (On(δ)) lim
n

λn

≥ lim
n

η (On(δ)) lim
n

an
(k,l) lim

n
∆n

k,l = lim
n

η (On(δ)) lim
n

an
(k,l)∆k,l,

so that η has an off-diagonal measure as a component. If no such (k, l) exists
then limn an

k,l = 0 for each pair (k, l), in which case by mixing,

∑

{(k,l):|Ank−1∩Anl−1|≥δ|An|}

an
k,l∆k,l →n µ2 ,

and by the ergodicity of µ2 and the fact that λn is a nontrivial component of
the above measure, it follows that the only limit point of λn is µ2. Thus µ2 is
a component of η.

We now look at what happens when η = π1,2ηg,k is the projection of an
induced joining. In this case we discuss why the first possibility, that π1,2ηg,k

has a diagonal measure as a nontrivial component, leads to a contradiction.
Suppose that

π1,2ηg,k ≥ a∆(p,q)

for some p, q, in G. Thus if A, B are measurable sets, we have

∫

X

< J∗
gxJkxχq−1pA, χB > dµ (x) ≥ a∆ (A × B) ,
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where ∆ is diagonal measure. Let D(X) := {(x, x) : x ∈ X}. Expanding the
measure on the left hand side, we have

∫

X

∫

X

νkx,y ◦ q−1p × νgx,y dµ (y) dµ (x) ≥ a∆

so that
µ2
(

{(x, y) : νkx,y ◦ q−1p × νgx,y(D(X)) > 0}
)

> 0 .

Now the only way that the measure νkx,y ◦ q−1p× νgx,y can give positive mass
to D(X) is if νkx,y ◦ q−1p and νgx,y have common discrete components: say

νgx,y ≥ a(x,y) δt(x,y)

and
νkx,y ◦ q−1p ≥ a(x,y) δt(x,y)

where δt(x,y) is the point mass at t(x, y) ∈ X and 0 < a(x,y) ≤ 1. Thus if
ν ′ := ν ◦ (q−1p × e × k−1) and ν ′′ := ν ◦ (e × e × g−1), i.e.

ν ′′ (A × B × C) =

∫

g−1C

νx (A × B) dµ (x) =

∫

C

∫

B

νgx,y(A)dµ (y)dµ (x) ,

and

ν ′ (A × B × C) =

∫

C

∫

B

νkx,y ◦ q−1p(A)dµ (y)dµ (x)

then ν ′, ν ′′ have a common nontrivial component. By assumption, ν is ergodic,
and hence so are ν ′, ν ′′, both being isomorphic to (X3, B × B × B, G, ν).
Hence ν ′ = ν ′′. Thus ν ′ is a (ergodic) joining of the ergodic system (X2, B ×
B, q−1p × k−1g, µ2) with (X, B, e, µ). Recall that k−1g was chosen to have
infinite order, and if q−1p has infinite order, then (X2, B×B, q−1p×k−1g, µ2)
is ergodic and so ν ′ must be product measure, which is only possible if ν itself
were. If q−1p has finite order, then ν ′ joins a mixing system ((X, B, µ, k−1g))
with a periodic one, and this is also not possible (since then ν ′ joins the power
of a mixing system, which is ergodic, with the identity) unless ν ′ (and hence
ν) were product measure.

It remains to be shown that the “size” of this component is cβ−2 when
η = π1,2ηg,k. Let

η = kd µ2 + θ

be the Radon-Nikodym decomposition of η with respect to µ2, where θ is a
measure which is singular with respect to µ2 and k > 0. Now

lim
n

θ





⋃

(p,q)∈An×An

Xn
p,q



 = 0 ;
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or else we could repeat the whole above argument to conclude that θ has µ2

as a component (by the above argument, η, and therefore θ can’t have an off
diagonal as a component), and this contradicts the fact that θ ⊥ µ2. Hence

c = lim
n

η





⋃

(p,q)∈An×An

Xn
p,q



 = k lim
n

µ2





⋃

(p,q)∈An×An

Xn
p,q



 = kβ2

or k = cβ−2.
We have shown therefore that if ηg,k is an induced joining satisfying equa-

tion (??), then
π1,2ηg,k = κµ2 + θ , (33)

where κ ≥ cβ−2, and θ ⊥ µ2. Note that (??) implies that there exists η∗
g,k

pairwise independent with

η∗
g,k ≥ κηg,k ≥ c β−2 ηg,k .

6 Proof of the Main Theorem

Recall (formulas (??) and (??)) that

Rn :=
⋃

(k,l,m)∈An×An×Bn

Y n
k,l,m

and
Sn :=

⋃

(k,l,m)∈hnAn×hnAn×F n, 2

Xn
k,l,m

were the products of towers constructed using the sets An and Bn coming
from the D-approximation. Rn and Sn were constructed so that the third
component of Rn moved µ-lightly into the third component of Sn. In the next
lemma we move this up to the level of joinings. Namely we shall show that if
η is pairwise independent such that

lim
n

η(hnR
n ∩ Sn) > 0

then “one of Rn or Sn will have substantially many η−light cubes.” This is
made rigorous in Lemma ??.

Let cj ↑ 1. Proposition ?? gives us a sequence of induced joinings ηgj ,kj

which satisfy
lim

n
ηgj ,kj

(Rn) ≥ cjd
2d′ ,

and

lim
n

ηgj ,kj

((

⋃

k,l∈An×An

Xn
k,l

)

× X

)

≥ cjd
2 ,
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where limn µ (∪k∈AnXn
k ) = d > 0, and limn µ (∪k∈BnY n

k ) = d ′ > 0,
Lemma ?? tells us that

ηgj ,kj
≥ cjη

∗
gj ,kj

where η∗
gj ,kj

is pairwise independent. Thus for a large enough j,

lim
n

η∗
gj ,kj

(Rn) > c∗jd
2d

′

,

where c∗j →j 1. We will fix such a large enough j, and for ease of notation

write this measure η∗
gj ,kj

= ηj. We define a cube Y n
k,l,m ∈ Rn to be ǫ-light (for

η) if η(Y n
k,l,m) ≤ ǫ(an,1)2; similarly for a cube in Sn. Let

Ln
ǫ =

⋃

{Y n
k,l,m : (k, l,m) ∈ An × An × Bn and Y n

k,l,m is ǫ − light} ,

and

Ln
ǫ =

⋃

{Xn
k,l,m : (k, l,m) ∈ hnA

n × hnA
n × F n, 2 and Xn

k,l,m is ǫ − light} .

Let Di(η) = limǫ→0 limn η(Ln
ǫ ), and Di(η) = limǫ→0 limn η(Ln

ǫ ).

Lemma 7 Let η ∈ M(2, 3) where (X ,B , µ ,G) is finite rank or β-local rank,
β > 1/2, and G is countable, Abelian, and has an element of infinite order. If

lim
n

η(Rn) > 0 ,

then Di(η) > 0 or Di(η) > 0.

Proof: Suppose that both Di(η) = 0 and Di(η) = 0. Given any ι small,
there exists a (fixed) ǫ such that limn η (Ln

ǫ ) < ι and limn η (Ln
ǫ ) < ι. If

Cn
k,l := ∪m∈BnY n

k,l,m, then hnC
n
k,l ⊂ Cn

hnk,hnl := ∪m∈F n, 2Xn
hnk,hnl,m . Since η is

pairwise independent, then

η (Cn
k,l) ≤ η (Xn

k,l × X) = (an,1)2 ;

so there exist at most 1/ǫ ǫ-heavy cubes in Cn
k,l, and similarly for Cn

hnk,hnl.
If Hn

ǫ , Hn
ǫ are the complements of Ln

ǫ , Ln
ǫ in Rn, Sn respectively, then if we

have chosen ι small enough, we can state that

lim
n

η(hnH
n
ǫ ∩ Hn

ǫ ) > 0 . (34)

Since η is pairwise independent then for any m ∈ Bn, m ′ ∈ F n, 2,

η
(

hn(Y n
k,l,m) ∩ Xn

hnk,hnl,m ′

)

≤ an,1an,2µ (hnY
n
m|Xn

m ′) .
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Now the image of an ǫ-heavy cube in Cn
k,l under hn can intersect at most 1/ǫ

heavy cubes in Cn
hnk,hnl. Thus

µ (hnH
n
ǫ ∩ Hn

ǫ ) =
∑

k,l∈An

µ
(

hn(Cn
k,l ∩ Hn

ǫ ) ∩ (Cn
hnk,hnl ∩ Hn

ǫ )
)

≤
∑

k,l∈An

1

ǫ2
an,1an,2 sup

{m∈Bn, m ′∈F n, 2}

µ (hnY
n
m|Xn

m ′)

≤ |F n, 1|2 1

ǫ2
an,1an,2 sup

{m∈Bn, m ′∈F n, 2}

µ (hnY
n
m|Xn

m ′)

The sets Rn and Sn were built in such a way (Property 3 in the definition of
D-approximation) that

lim
n

sup
{m∈Bn, m ′∈F n, 2}

µ (hnY
n
m|Xn

m ′) = 0 .

Since ǫ is fixed, and we are assuming that 0 < lim |F n, 1|/|F n, 2| < ∞, then

µ (hnH
n
ǫ ∩ Hn

ǫ ) → 0 .

This contradicts equation (??) .

Now we can proceed to show that

Theorem 4 If η ∈ M(2, 3) is ergodic and Di(η) > 0 or Di(η) > 0, then
η = µ3.

Proof: Assume that Di(η) > 0 (the case where Di(η) > 0 is similar).
Let ǫn → 0, by passing to a subsequence if necessary, we can assume that
limn η (Ln

ǫn
) > 0. Using Lemma ??, we choose a δ small enough so that if

Ln := Ln
ǫn
∩ On(δ),

then limη(Ln) > 0. We will now start slicing Ln into “2-dimensional” slices
and then “1-dimensional” fibres. If for m ∈ Bn we let

Ln(m) :=
⋃

{(k,l)∈An×An:Y n
k,l,m

⊂Ln}

Y n
k,l,m

and
Ln(m, δ) :=

⋃

{(k,l)∈An×An:Y n
k,l,m

⊂Ln}

O(Y n
k,l,m) ;

then

η(Ln) =
∑

m∈Bn

η(Ln(m)) ≤ 1

δ |F n, 1|
∑

m∈Bn

η (Ln(m, δ)) ,
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and since |Bn| ≥ δ |F n, 1|, then taking limits, there exists a sequence {mn}
such that (passing to a subsequence if necessary)

lim
n

η (Ln(mn, δ)) > 0 .

Now
Ln(mn, δ) =

⋃

l∈An

Ln(l,mn, δ);

- here Ln(l,mn, δ) is the fibre
⋃

{k:Y n
k,l,mn

∈Ln(mn,δ)} O(Y n
k,l,mn

). Thus we can find

a d small enough so that we can pass down to a subset of these fibres indexed
by An, ∗ ⊂ An each satisfying η(Ln(l,mn, δ)) > dan,1 and also so that

lim
n

η

(

⋃

l∈An, ∗

Ln(l,mn, δ)

)

> 0.

Let Ln(mn, δ) := ∪l∈An, ∗Ln(l,mn, δ) be the union of these suitable fibres. This
will ensure later on that the Blum-Hanson coefficients are uniformly small.

Note that Ln(mn, δ) is approximately invariant: If g ∈ G and K ∈ N is
given, choose n so large that |g−1F n, 1∩F n, 1| > (1−δ/K)|F n, 1|. If (k, l,mn) ∈
Ln(mn), then O(Y n

k,l,mn
) is at least δ-long, so at least δ(1 − 3/K)|F n, 1| of the

cubes in O(Y n
k,l,mn

) stay in O(Y n
k,l,mn

) after g acts on them. This is true for
the orbit of any Y n

k,l,m in Ln(mn). By letting K → ∞, Ln(mn, δ) becomes
increasingly invariant. Thus by Lemma ??,

ηLn(mn, δ) →n η .

We can write
ηLn(mn, δ) =

∑

l∈An, ∗

an
l η

n
l,mn

where
ηn

l,mn
:= ηLn(l,mn,δ)

and

an
l :=

η (Ln(l,mn, δ))

η (Ln(mn, δ))
.

We can write ηn
l,mn

as
∑

k∈An bn
kηn

k,l,mn
where

ηn
k,l,mn

:= ηO(Y n
k,l,mn

)

and bn
k := η

(

O(Y n
k,l,mn

)
)

/η (Ln(l,mn, δ)) . Note that

bn
k ≤ ǫn(an,1)2 δ|F n, 1|

dan,1
< constant · ǫn → 0
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uniformly for k as n → ∞. This will justify the use of the Blum-Hanson
Theorem shortly.

Now define the measures τn
k,l,m := (µ3)O(Y n

k,l,m
), and also

λn :=
∑

l∈An, ∗

an
l

∑

k∈An

bn
kτ

n
k,ln,mn

.

We can show, in a way similar to what we did in Lemma ?? (by comparing λn

to ηLn(mn, δ) on A × B × C where A, B, C are unions of levels of the towers,
and then using approximation arguments), that

λn → η .

Let

Õ(Xn
k,l,m) :=

⋃

{g ∈F n, 1k−1∩F n, 1l−1}

gXn
k,l,m =

⋃

{g ∈F n, 1k−1∩F n, 1l−1}

Xn
gk × Xn

gl × gXn
m

and
θn

k,l,m := µ3
Õ(Xn

k,l,m
)
.

Note that θn
k,l,m ◦ (k−1e1 × i × i) = θn

e1,l,m and

µ3
(

O (Xn
e1,l,m)

)

µ3
(

O(Xn
k,l,m)

) ≤ |F n|
δ|F n| =

1

δ
;

hence fn
m :=

d τn
k,l,m

d θn
l,l,m

≤ 1/δ . We have

τn( A × B × C )

=
∑

l

an
l

∑

m

bn
l,m

(∫

χA×B×C(x, y, z) dτn
e,l,m (x, y, z)

)

=
∑

l

an
l

∑

m

bn
l,m

(∫

χA×B×C(x, y, z)fm,n(x, y, z) dθn
e,l,m (x, y, z)

)

≤ 1

δ

∑

l

an
l

∑

m

bn
l,m

(∫

χA×B×C(x, y, z) dθn
e,l,m (x, y, z)

)

=
1

δ

∑

l

an
l

∑

m

bn
l,m

∫

χA×B(x, y)(χC(z) − µ (C)) dθn
e,l,m (x, y, z)

+
1

δ

∑

l

an
l

∑

m

bn
l,m

∫

µ (C)χA×B(x, y) dθn
e,l,m (x, y, z)

≤ 1

δ

∑

l

an
l

∣

∣

∣

∣

∣

∑

m

bn
l,m

∫

χA×B(x, y)(χC(z) − µ (C)) dθn
e,l,m (x, y, z)

∣

∣

∣

∣

∣

+
1

δ

∑

l

an
l

∑

m

bn
l,m

∫

µ (C)χA×B(x, y) dθn
e,l,m(x, y, z).
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Now the second term

1

δ

∑

l

an
l

∑

m

bn
l,m

∫

µ (C)χA×B(x, y) dθn
e,l,m(x, y, z)

is just 1
δ
µ (C)

∑

l a
n
l

∑

m bn
l,mθn

e,l,m(A × B × X) →n
1
δ
µ (C)µ2(A × B). To see

this, note that the probability measures

θn(A × B) :=
∑

l

an
l

∑

m

bn
l,mθn

e,l,m(A × B × X)

=
∑

l

an
l µ

2

(
S

g ∈Fn, 1∩Fn, 1 l−1 Xn
ge,gl)

(A × B)

=
∑

l

an
l

|F n a ∩ F n al−1|f 2
n

µ2



A × B
⋂





⋃

g ∈F n, 1∩F n, 1 l−1

Xn
ge,gl









and

an
l

|F n, 1 ∩ F n, 1 l−1|f 2
n

≤ an
l

δ|F n, 1|f 2
n

≤ |F n, 1|f 2
n

ν(On, ∗(e, δ)) δ |F n, 1|f 2
n

≤ K

for all n, l. Thus a weak star limit of the measures θn has to be absolutely
continuous with respect to µ2, as well as being invariant. By ergodicity of µ2,
the limit in fact is µ2.

As for the first term, we have

1

δ

∑

l

an
l

∣

∣

∣

∣

∣

∑

m

bn
l,m

∫

χA×B(x, y)(χC(z) − µ (C)) dθn
e,l,m (x, y, z)

∣

∣

∣

∣

∣

=
1

δ

∑

l

an
l

∣

∣

∣

∣

∣

∑

m

bn
l,m

∫

χA×B(x, y)(χC(m−1z) − µ (C)) dθn
e,l,e (x, y, z)

∣

∣

∣

∣

∣

≤ 1

δ

∑

l

an
l

∫

∣

∣

∣

∣

∣

∑

m

bn
l,m(χmC(z) − µ (C))χA×B(x, y)

∣

∣

∣

∣

∣

dθn
e,l,e (x, y, z)

≤ 1

δ

∑

l

an
l

∫

∣

∣

∣

∣

∣

∑

m

bn
l,m(χmC(z) − µ (C)) dπ3θ

n
e,l,e (x, y, z)

∣

∣

∣

∣

∣

≤ 1

δ2

∑

l

an
l

∫

∣

∣

∣

∣

∣

∑

m

bn
l,mχmC(z) − µ (C)

∣

∣

∣

∣

∣

dµ

≤ 1

δ2

∑

l

an
l

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

m

bn
l,mχmC − µ (C)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2,µ
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and by the Blum Hanson Theorem, this last term tends to 0 as n → ∞. This
completes the proof when η is ergodic.

We apply Theorem ?? to the pairwise independent components η
′

gj ,kj
,

(which we agreed to call ηj) of the chosen induced joinings ηgj ,kj
. If ηj is

not necessarily ergodic, we only have a component of ηj being product mea-
sure. For, suppose that Di(ηj) > 0, we proceed as in the proof of Theorem
??, but this time we can only say that

ηj ≥ ηj(Ln) (ηj)Ln .

Theorem ?? shows that limn(ηj)Ln = µ3. But now suppose that

ηj = kjµ
3 + θj

is the Radon-Nikodym decomposition of ηj with respect to product measure.
As we argued in Lemma ??, θj satisfies

lim
n

θj(Ln) = 0

or else we could repeat the procedure above to show that Di(θj) > 0, and
then that θj has a component which is product measure, a contradiction, since
µ3 ⊥ θj. Hence

kj = lim
n

ηj(Ln)

µ3(Ln)
≥ c

′

j,

since the induced joinings were chosen so that limn ηj(Ln) ≥ c
′

j limn µ3(Ln);

and so ηj ≥ c
′

jµ
3. Thus

ηgj ,kj
≥ cjη

′

gj ,kj
≥ cj c

′

jµ
3 .

Now we can apply Lemma ?? to get the long awaited fact that ν = µ3.
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