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Abstract. Given a Bratteli diagram B, we study the set OB of all possible orderings

on B and its subset PB consisting of perfect orderings that produce Bratteli-Vershik

topological dynamical systems (Vershik maps). We give necessary and sufficient condi-

tions for the ordering ω to be perfect. On the other hand, a wide class of non-simple

Bratteli diagrams that do not admit Vershik maps is explicitly described. In the case

of finite rank Bratteli diagrams, we show that the existence of perfect orderings with a

prescribed number of extreme paths constrains significantly the values of the entries of

the incidence matrices and the structure of the diagram B. Our proofs are based on the

new notions of skeletons and associated graphs, defined and studied in the paper. For a

Bratteli diagram B of rank k, we endow the set OB with product measure µ and prove

that there is some 1 ≤ j ≤ k such that µ-almost all orderings on B have j maximal and

j minimal paths. If j is strictly greater than the number of minimal components that B

has, then µ-almost all orderings are imperfect.

1. Introduction

Bratteli diagrams (Definition ??) originally appeared in the theory of C∗-algebras, and

have turned out to be a very powerful and productive tool for the study of dynamical

systems in the measurable, Borel, and Cantor setting. The importance of Bratteli diagrams

in dynamics is based on the remarkable results obtained in the pioneering works by Vershik,

Herman, Giordano, Putnam, and Skau [?], [?], [?]. During the last two decades, diverse

aspects of Bratteli diagrams, and dynamical systems defined on their path spaces, have

been extensively studied, such as measures invariant under the tail equivalence relation,

measurable and continuous eigenvalues, entropy and orbit equivalence of these systems. We

refer to a recent survey by Durand [?] where the reader will find more references on this

subject.

A Bratteli diagram B can be thought of as a partial, recursive set of instructions for

building a family of symbolic dynamical systems on XB , the space of infinite paths on B.

The n-th level of the diagram defines a clopen partition ξn of XB , so that the diagram gives

us a sequence of refining partitions of XB . The information contained in B also allows us to

write ξn as a finite collection of unordered “towers”, indexed by the vertices of the n-th level

of B. At this point, however, we do not know the order of the elements in these towers. The

edge set at the (n+ 1)-st level tells us how the partition ξn+1 is built from the partition ξn,

using a ‘cutting’ method. In particular, if we see k edges from the n-th level vertex v′ to the

vertex v of (n+ 1)-st level, this tells us that there are exactly k copies of the v′-tower placed
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somewhere in the v-tower. The set of edges with range v, denoted by r−1(v), thus contains

all information about how many copies of towers from ξn we use to build the v-tower.

We can define a homeomorphism on XB by putting a linear order on the edges from

r−1(v), which describes how we stack our level n towers to get the level (n+ 1) towers. We

do this for each vertex v and each level n. The resulting partial order ω on B (Definition

??) admits a map ϕω on XB , where each point x moves up the tower to which it belongs.

But what if x lives at the top of a tower for each level? In this case x is called a maximal

path, and it is on this set of maximal paths that we may not be able to extend the definition

of ϕω so that it is continuous. We call an order ω perfect if it admits a homeomorphism ϕω

(called a Vershik or adic map) on XB . In this case each maximal path is sent to a minimal

path: one that lives at the bottom of a tower for each level. The model theorem (Thm 4.7,

[?]) tells us that every minimal1 dynamical system on a Cantor space can be represented as

a Bratteli-Vershik system (XB , ϕω), where B is a simple Bratteli diagram (Definition ??).

In [?] the model theorem is extended to aperiodic homeomorphisms of a Cantor set where

the corresponding Bratteli diagrams are aperiodic (Definition ??).

Different orderings on B generate different dynamical systems. In this article, we fix a

Bratteli diagram B and study the set OB of all orderings on B, and its subset PB of all

perfect orderings on B. We investigate the following questions: Do there exist simple criteria

that would allow us to distinguish perfect and non-perfect orderings? Given a diagram B,

and a natural number j, can one define a perfect order on B with j maximal paths? Which

diagrams B ‘support’ no perfect orders: i.e. when is PB empty? Given a Bratteli diagram

B, the set OB can be represented as a product space and the product topology turns it into a

Cantor set. It can also be endowed with a measure: since it is natural to assume that orders

on r−1(v) have equal probability, we consider the uniformly distributed product measure

µ on OB . In this context, the following questions are interesting to us. Given a Bratteli

diagram B, what can be said about the set OB and its subset PB from the topological and

measurable points of view? It is worth commenting here that we use in this paper the term

‘ordering’, instead of the more usual ‘order’, to stress the difference between the case of

ordered Bratteli diagrams, when an order comes with the diagram, and Bratteli diagrams

with variable orderings, which is our context.

In Section ??, we study general topological properties of OB . How ‘big’ is PB for a

Bratteli diagram B? An order on B is proper if it has a unique maximal path and a

unique minimal path in XB . For a simple Bratteli diagram, the set of proper orderings is a

nonempty subset of PB .2 The relation OB = PB holds only for diagrams with one vertex

at infinitely many levels (Proposition ??). With this exception, we show that in the case of

most3 simple diagrams, the set of perfect orderings PB and its complement are both dense

in OB (Proposition ??). The case of non-simple Bratteli diagrams is more complicated. An

example of a non-simple diagram B such that PB = ∅ was first found by Medynets in [?];

in the present work, we clarify the essence of Medynets’ example, and describe a wide class

of non-simple Bratteli diagrams which support no perfect ordering in Section ??.

1A minimal system (X,T ) is one which has no non-trivial proper subsystems: there is no closed, proper

Y ⊂ X such that T (Y ) ⊂ Y .
2The family of proper orderings corresponds to generate strongly orbit equivalent Vershik maps (Theorem

2.1, [?] and Proposition 5.1, [?]).
3We assume, without loss of generality, that all incidence matrix entries are positive (see Definition ??).
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Can one decide whether a given order is perfect? We are interested mainly in the case

when ω is not proper. Suppose that B has the same vertex set V at each level. When an

ordering ω is chosen on B, then we can consider the set of all words over the alphabet V ,

formed by sources of consecutive finite paths 4 in B which have the same range. This set

of words5 defines the language of the ordered diagram (B,ω) (Definition ??). We use the

language of (B,ω) to characterize whether or not ω is perfect (Proposition ??), in terms of

a permutation σ of a finite set. This permutation encodes the action of ϕω on the set of

maximal paths of ω, in this case a finite set. For finite rank Bratteli diagrams the number

of vertices at each level is bounded. If (B,ω) is an ordered finite rank diagram, it can be

telescoped (Definitions ?? and ??) to an ordered diagram (B′, ω′) where B′ has the same

vertex set at each level. Since (B,ω) is perfectly ordered if and only if (B′, ω′) is perfectly

ordered (Lemma ??), our described characterization of perfect orders in terms of a language

can be used to verify whether any order on a finite rank diagram is perfect. As an example of

how to apply these concepts, in Section ??, we find sufficient conditions for a Bratteli-Vershik

system (XB , ϕω) to be topologically conjugate to an odometer (Definition ??).

Next, we wish to study further the set PB . Let OB(j) denote the set of orders with j

maximal and j minimal paths. Given a finite rank diagram B, when is OB(j)∩PB 6= ∅? If

B has rank d (Definition ??), then j must be at most d. This problem is only interesting

when j > 1: if B is simple, or if B is aperiodic and generates dynamical systems with

one minimal component6, then OB(1) ⊂ PB , and it is simple to construct these orders.

On the other hand, if B generates dynamical systems with k minimal components, then

OB(j) ∩ PB = ∅ for j < k. We mention a result from [?], first proved in [?], where it is

shown that if PB ∩ OB(j) 6= ∅, then the dimension group of B contains a copy of Zj−1 in

its infinitesimal subgroup (see [?] for definitions of these terms). However the proof of this

result sheds little light on the structure of B. Given a finite rank diagram B, we attempt

to construct orders in PB ∩ OB(j) by constraining their languages to behave as we would

expect a perfect order’s language to. Thus we fix a diagram B with the same vertex set

at each level, and given an integer j between 2 and the rank of B, we fix a permutation σ

of {1, . . . , j}. We then create a framework to build perfect orderings ω such that ϕω acts

on the set of ω-maximal paths according to the instructions given by σ. We build such

orderings by first specifying the set of all maximal edges in a certain way. This is the idea

behind the notion of a skeleton F (Definition ??), which partially defines an order. Given a

skeleton and permutation, we define a (directed) associated graph H (Definition ??). The

graph H, whose paths will correspond to words in the language of the putative perfect order,

is used to take the partial instructions that we have been given by F , and extend them to a

perfect order on B. Whether a perfect order exists on B with a specified skeleton, depends

on whether the incidence matrices of B (Definition ??) are related according to Theorem

??. The simplest case is if B a simple, rank d diagram and OB(d) ∩ PB 6= ∅. Then B’s

incidence matrices (Fn) are almost completely determined, as is the dynamical behaviour of

the corresponding ϕω (Theorem ??). A consequence of Theorem ?? and Remark ??, along

4Consecutive finite paths are determined by the given order ω on B
5Rather, the subset of this set of words that are ‘seen’ infinitely often.
6We use the term ‘minimal component’ as a synonym to ‘minimal subset’. A dynamical system with k

minimal components has k proper nontrivial minimal subsystems.
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with the fact that aperiodic Cantor homeomorphisms can be represented as adic systems, is

that non-minimal aperiodic dynamical systems do not exist in abundance. We remark that

these notions can be generalized to non-finite rank diagrams; however the corresponding

definitions are more technical, especially notationally.

In Section ??, we endow the set OB with the uniform product measure, and study ques-

tions about the measure of specific subsets of OB . The results of this section are independent

of those in Sections ?? and ??. We show, in Theorem ?? that for a finite rank d diagram

there is some 1 ≤ j ≤ d such that almost all orderings have exactly j maximal and j minimal

paths. Whether for diagrams with isomorphic dimension groups the j is the same is an open

question. In particular, in this section we cannot freely telescope our diagram: if B′ is a

telescoping of B, then OB is a set of 0 measure in O′B . We give necessary and sufficient

conditions, in terms of the incidence matrices of B, for verifying the value of j, and show

that j = 1 for a large class of diagrams which include linearly recurrent diagrams. We show

in Theorem ?? that if B is simple and j > 1, then a random ordering is not perfect.

We end with some questions. If B′ is a telescoping of B, how do PB and P ′B compare? Do

Bratteli diagrams that support non-proper, perfect orders have special spectral properties?

Do their dimension groups have any additional structure? Can one identify any interesting

topological factors? Do these results generalize in some way to non-finite rank diagrams?

If B has finite rank and almost all orders on B have j maximal paths, is j invariant under

telescoping?

2. Bratteli diagrams and Vershik maps

2.1. Main definitions on Bratteli diagrams. In this section, we collect the notation

and basic definitions that are used throughout the paper. More information about Bratteli

diagrams can be found in the papers [?], [?], [?], [?], [?], [?], [?] and references therein.

Definition 2.1. A Bratteli diagram is an infinite graph B = (V ∗, E) such that the vertex

set V ∗ =
⋃
i≥0 Vi and the edge set E =

⋃
i≥1Ei are partitioned into disjoint subsets Vi and

Ei where

(i) V0 = {v0} is a single point;

(ii) Vi and Ei are finite sets;

(iii) there exists a range map r and a source map s, both from E to V ∗, such that

r(Ei) = Vi, s(Ei) = Vi−1, and s−1(v) 6= ∅, r−1(v′) 6= ∅ for all v ∈ V ∗ and v′ ∈ V ∗ \ V0.

The pair (Vi, Ei) or just Vi is called the i-th level of the diagram B. A finite or infinite

sequence of edges (ei : ei ∈ Ei) such that r(ei) = s(ei+1) is called a finite or infinite path,

respectively. For m < n, v ∈ Vm and w ∈ Vn, let E(v, w) denote the set of all paths

e = (e1, . . . , ep) with s(e1) = v and r(ep) = w. If m > n let E(n,m) denote all paths whose

source belongs to Vn and whose range belongs to Vm. For a Bratteli diagram B, let XB be the

set of infinite paths starting at the top vertex v0. We endow XB with the topology generated

by cylinder sets {U(ej , . . . , en) : j, n ∈ N, and (ej , . . . , en) ∈ E(v, w), v ∈ Vj−1, w ∈ Vn},
where U(ej , . . . , en) := {x ∈ XB : xi = ei, i = j, . . . , n, }. With this topology, XB is

a 0-dimensional compact metric space. We will consider such diagrams B for which the

path space XB has no isolated points. Letting |A| denote the cardinality of the set A, this

means that for every (x1, x2, . . .) ∈ XB and every n ≥ 1 there exists m > n such that

|s−1(r(xm))| > 1.
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Definition 2.2. Given a Bratteli diagram B, the n-th incidence matrix Fn = (f
(n)
v,w), n ≥ 0,

is a |Vn+1| × |Vn| matrix whose entries f
(n)
v,w are equal to the number of edges between the

vertices v ∈ Vn+1 and w ∈ Vn, i.e.

f (n)v,w = |{e ∈ En+1 : r(e) = v, s(e) = w}|.

Observe that every vertex v ∈ V ∗ is connected to v0 by a finite path and the set E(v0, v)

of all such paths is finite. Set h
(n)
v = |E(v0, v)| for v ∈ Vn. Then

h(n+1)
v =

∑
w∈Vn

f (n)v,wh
(n)
w or h(n+1) = Fnh

(n)

where h(n) = (h
(n)
w )w∈Vn .

Next we define some popular families of Bratteli diagrams that we work with in this

article.

Definition 2.3. Let B be a Bratteli diagram.

(1) We say B has finite rank if for some k, |Vn| ≤ k for all n ≥ 1.

(2) Let B have finite rank. We say B has rank d if d is the smallest integer such that

|Vn| = d infinitely often.

(3) We say that B is simple if for any level n there is m > n such that E(v, w) 6= ∅ for

all v ∈ Vn and w ∈ Vm.

(4) We say B is stationary if Fn = F1 for all n ≥ 2.

Definition 2.4. For a Bratteli diagram B, the tail (cofinal) equivalence relation E on the

path space XB is defined as xEy if xn = yn for all n sufficiently large, where x = (xn),

y = (yn).

Let Xper = {x ∈ XB : |[x]E | < ∞}. By definition, we have Xper = {x ∈ XB : ∃n >

0 such that (|r−1(r(xi))| = 1 ∀i ≥ n)}.

Definition 2.5. A Bratteli diagram B is called aperiodic if Xper = ∅, i.e., every E-orbit is

countably infinite.

We shall constantly use the telescoping procedure for a Bratteli diagram:

Definition 2.6. Let B be a Bratteli diagram, and n0 = 0 < n1 < n2 < . . . be a strictly

increasing sequence of integers. The telescoping of B to (nk) is the Bratteli diagram B′,

whose k-level vertex set V ′k = Vnk and whose incidence matrices (F ′k) are defined by

F ′k = Fnk+1−1 ◦ . . . ◦ Fnk ,

where (Fn) are the incidence matrices for B.

Roughly speaking, in order to telescope a Bratteli diagram, one takes a subsequence of

levels {nk} and considers the set E(nk, nk+1) of all finite paths between the levels {nk} and

{nk+1} as edges of the new diagram. In particular, a Bratteli diagram B has rank d if and

only if there is a telescoping B′ of B such that B′ has exactly d vertices at each level. When

telescoping diagrams, we often do not specify to which levels (nk) we telescope, because it

suffices to know that such a sequence of levels exists.

Lemma 2.7. Every aperiodic Bratteli diagram B can be telescoped to a diagram B′ with

the property: |r−1(v)| ≥ 2, v ∈ V ∗ \ V0 and |s−1(v)| ≥ 2, v ∈ V ∗ \ V0.
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In other words, we can state that, for any aperiodic Bratteli diagram, the properties

|r−1(v)| ≥ 2, v ∈ V ∗ \ V0, and |s−1(v)| ≥ 2, v ∈ V ∗ \ V0, hold for infinitely many levels n.

Proof. We shall show that any periodic diagram B can be telescoped so that |r−1(v)| ≥
2, v ∈ V ∗ \ V0; the proof of the other statement is similar. We need to show that for every

n ∈ N there exists m > n such that for each vertex v ∈ Vm there are at least two finite paths

e, f ∈ E(n,m) with r(e) = r(f) = v. Assume that the converse is true. Then there exists n

such that for all m > n the set Um = {x = (xi) ∈ XB : |r−1(r(xi))| = 1, i = n + 1, ...,m}
is not empty. Clearly, Um is a clopen subset of XB and Um ⊃ Um+1. It follows that

Xper ⊃ U =
⋂
m>n Um 6= ∅. This contradicts the aperiodicity of the diagram. �

We will assume that the following convention always holds: our diagrams are not disjoint

unions of two subdiagrams. Here B = (V ∗, E) is a disjoint union of B1 = (V ∗,1, E1) and

B2 = (V ∗,2, E2) if V ∗ = V ∗,1 ∪ V ∗,2, V ∗,1 ∩ V ∗,2 = {v0} and E = E1 t E2.

Throughout the paper, we only consider aperiodic Bratteli diagrams B. For these diagrams

XB is a Cantor set and E is a Borel equivalence relation on XB with countably infinitely

many equivalence classes.

Remark 2.8. Given an aperiodic dynamical system (X,T ), a Bratteli diagram is con-

structed by a sequence of Kakutani-Rokhlin partitions generated by (X,T ) (see [?] and [?]).

The n-th level of the diagram corresponds to the n-th Kakutani-Rokhlin partition and the

number h
(n)
w is the height of the T -tower labeled by the symbol w from that partition.

2.2. Orderings on a Bratteli diagram. Let B be a Bratteli diagram whose path space

XB is a Cantor set.

Definition 2.9. A Bratteli diagram B = (V ∗, E) is called ordered if a linear order ‘>’ is

defined on every set r−1(v), v ∈
⋃
n≥1 Vn. We use ω to denote the corresponding partial

order on E and write (B,ω) when we consider B with the ordering ω. Denote by OB the

set of all orderings on B.

Every ω ∈ OB defines the lexicographic ordering on the set E(k, l) of finite paths between

vertices of levels Vk and Vl: (ek+1, ..., el) > (fk+1, ..., fl) if and only if there is i with

k + 1 ≤ i ≤ l, ej = fj for i < j ≤ l and ei > fi. It follows that, given ω ∈ OB , any two

paths from E(v0, v) are comparable with respect to the lexicographic ordering generated by

ω. If two infinite paths are tail equivalent, and agree from the vertex v onwards, then we

can compare them by comparing their initial segments in E(v0, v). Thus ω defines a partial

order on XB , where two infinite paths are comparable if and only if they are tail equivalent.

Definition 2.10. We call a finite or infinite path e = (ei) maximal (minimal) if every ei

is maximal (minimal) amongst the edges from r−1(r(ei)).

Notice that, for v ∈ Vi, i ≥ 1, the minimal and maximal (finite) paths in E(v0, v) are

unique. Denote by Xmax(ω) and Xmin(ω) the sets of all maximal and minimal infinite paths

in XB , respectively. It is not hard to show that Xmax(ω) and Xmin(ω) are non-empty closed

subsets of XB ; in general, Xmax(ω) and Xmin(ω) may have interior points. For a finite rank

Bratteli diagram B, the sets Xmax(ω) and Xmin(ω) are always finite for any ω, and if B has

rank d, then each of them have at most d elements (Proposition 6.2 in [?]).
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Definition 2.11. An ordered Bratteli diagram (B,ω) is called properly ordered if the sets

Xmax(ω) and Xmin(ω) are singletons.

We denote by OB(j) the set of all orders on B which have j maximal and j minimal

paths. Thus OB(1) is the set of proper orders.

Definition 2.12. Let (B,ω) be an ordered Bratteli diagram, and suppose that B′ = (V ′, E′)

is the telescoping of B to levels (nk). Let v′ ∈ V ′ and suppose that the two edges e′1, e
′
2,

both with range v′, correspond to the finite paths e1, e2 in B, both with range v. Define the

order ω′ on B′ by e′1 < e′2 if and only if e1 < e2. Then ω′ is called the lexicographic order

generated by ω and is denoted by ω′ = L(ω).

It is not hard to see that if ω′ = L(ω), then

|Xmax(ω)| = |Xmax(ω′)|, |Xmin(ω)| = |Xmin(ω′)|.

Let (B,ω) be an ordered Bratteli diagram. Then x ∈ Xmax(ω) ∩Xmin(ω) if and only if

|E(x)| = 1. Thus, if B is an aperiodic Bratteli diagram, then Xmax(ω) ∩Xmin(ω) = ∅.

Definition 2.13. Let B be a stationary diagram. We say an ordering ω ∈ OB is stationary

if the partial linear order defined by ω on the set En of all edges between levels Vn−1 and

Vn, does not depend on n for n > 1.

It is well known that for every stationary ordered Bratteli diagram (B,ω) one can define

a ‘substitution τ read on B’ by the following rule. For each vertex i ∈ V = {1, 2, ..., d},
we write r−1(i) = {e1, ..., et} where e1 < e2 < ... < et with respect to ω. Then we

set τ(i) = j1j2 · · · jt where jk = s(ek), k = 1, ..., t; this defines the substitution read on

B. Conversely, such a substitution τ describes completely the stationary ordered Bratteli

diagram (B,ω) whose vertex set Vn coincides with the alphabet of τ for all n ≥ 1.

Now we give a useful description of infinite paths in an ordered Bratteli diagram (B,ω)

(see also [?]). Take v ∈ Vn and consider the finite set E(v0, v), whose cardinality is h
(n)
v .

The lexicographic ordering on E(v0, v) gives us an enumeration of its elements from 0 to

h
(n)
v − 1, where 0 is assigned to the minimal path and h

(n)
v − 1 is assigned to the maximal

path in E(v0, v). Note that h
(1)
v = f

(0)
vv0 for v ∈ V1, and we have by induction for n > 1

h(n)v =
∑

w∈s(r−1(v))

|E(w, v)|h(n−1)w , v ∈ Vn.

Let y = (e1, e2, ...) be an infinite path from XB . Consider a sequence (Pn) of enlarging

finite paths defined by y where Pn = (e1, ..., en) ∈ E(v0, r(en)), n ∈ N. Then every Pn

can be identified with a pair (in, vn) where vn = r(en) and in ∈ [0, h
(n)
vn − 1] is the number

assigned to Pn in E(v0, vn). Thus, every y = (en) ∈ XB is uniquely represented as the

infinite sequence (in, vn) with vn = r(en) and 0 ≤ in ≤ h
(n)
vn − 1. We refer to the sequence

(in, vn) as the associated sequence.

Proposition 2.14. Two infinite paths e = (e1, e2, ...) and e′ = (e′1, e
′
2, ...) from the path

space XB are cofinal with respect to E if and only if the sequences (in, vn) and (i′n, v
′
n)

associated to e and e′ satisfy the condition: there exists m ∈ N such that vn = v′n and

in − i′n = im − i′m for all n ≥ m.
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Proof. Suppose e and e′ are cofinal. Take m such that en = e′n for all n ≥ m. Consider

the associated sequences (in, vn) and (i′n, v
′
n). Then we see that vn = v′n for all n ≥ m.

Without loss of generality, we can assume that cm = im − i′m ≥ 0. This means that the

finite path Pm = P (e1, ..., em) is the cm-th successor of the finite path P ′m = P (e′1, ..., e
′
m).

Let cm+1 = im+1 − i′m+1. By definition of the lexicographic ordering on E(v0, vm+1), we

obtain that cm+1 = cm. Thus, by induction, cn = cm for all n ≥ m.

Conversely, suppose that two associated sequences (in, vn) and (i′n, v
′
n) possess the prop-

erty: there exists m ∈ N such that vn = v′n and in − i′n = im − i′m for all n ≥ m. To see

that e and e′ are cofinal, notice that em+1 and e′m+1 are in E(vm, vm+1). By definition of

the lexicographic ordering on E(v0, vm+1), we conclude that em+1 = e′m+1. �

Proposition 2.15. A Bratteli diagram B admits an ordering ω ∈ OB on B with

Int(Xmax(ω)) 6= ∅ if and only if there exist x = (xi) ∈ XB and n > 0 such that

U(x1, . . . , xn) = {y ∈ XB : yi = xi, i = 1, . . . , n} has no cofinal paths, i.e. U(x1, . . . , xn)

meets each E-orbit at most once. A similar result holds for Int(Xmin(ω)).

Proof. Let x be an interior point of Xmax(ω). Then there is an n > 0 such that

U(x1, . . . , xn) ⊂ Xmax(ω); thus, U(x1, . . . , xn) contains no distinct cofinal paths.

Now, suppose that there exist x = (xi) ∈ XB and n > 0 such that U = U(x1, . . . , xn)

meets each E-orbit at most once. Define a linear order ωv on r−1(v), v ∈ V ∗ \V0, as follows.

If there exists an e ∈ r−1(v) which is an edge in an infinite path y ∈ U , then we order

r−1(v) such that e is maximal in r−1(v). If such an e does not exist, we order r−1(v) in an

arbitrary way. It follows that for this ordering U ⊂ Xmax(ω). �

Definition 2.16. A Bratteli diagram B is called regular if for any ordering ω ∈ OB the

sets Xmax(ω) and Xmin(ω) have empty interior.

In particular, finite rank Bratteli diagrams are regular.

Given a Bratteli diagram B, we can describe the set of all orderings OB in the following

way. Given a vertex v ∈ V ∗\V0, let Pv denote the set of all orders on r−1(v); an element in

Pv is denoted by ωv. Then OB can be represented as

(2.1) OB =
∏

v∈V ∗\V0

Pv.

Giving each set Pv the discrete topology, it follows from (??) that OB is a Cantor set with

respect to the product topology. In other words, two orderings ω = (ωv) and ω′ = (ω′v) from

OB are close if and only if they agree on a sufficiently long initial segment: ωv = ω′v, v ∈⋃k
i=0 Vi.

It is worth noticing that the order space OB is sensitive with respect to a telescoping.

Indeed, let B be a Bratteli diagram and B′ denote the diagram obtained by telescoping

of B with respect to a subsequence (nk) of levels. We see that any ordering ω on B can

be extended to the (lexicographic) ordering ω′ on B′. Hence the map L : ω → ω′ = L(ω)

defines a closed proper subset L(OB) of OB′ .
The set of all orderings OB on a Bratteli diagram B can be considered also as a measure

space whose Borel structure is generated by cylinder sets. On the set OB we take the product

measure µ =
∏
v∈V ∗\V0

µv where µv is a measure on the set Pv. The case where each µv

is the uniformly distributed measure on Pv is of particular interest: µv({i}) = (|r−1(v)|!)−1
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for every i ∈ Pv and v ∈ V ∗\V0. Unless |Vn| = 1 for almost all n, if B′ is a telescoping of

B, then in OB′ , L(OB) is a set of zero measure.

2.3. Vershik maps.

Definition 2.17. Let (B,ω) be an ordered Bratteli diagram. We say that ϕ = ϕω : XB →
XB is a (continuous) Vershik map if it satisfies the following conditions:

(i) ϕ is a homeomorphism of the Cantor set XB ;

(ii) ϕ(Xmax(ω)) = Xmin(ω);

(iii) if an infinite path x = (x1, x2, . . .) is not in Xmax(ω), then ϕ(x1, x2, . . .) =

(x01, . . . , x
0
k−1, xk, xk+1, xk+2, . . .), where k = min{n ≥ 1 : xn is not maximal}, xk is the

successor of xk in r−1(r(xk)), and (x01, . . . , x
0
k−1) is the minimal path in E(v0, s(xk)).

If ω is an ordering on B, then one can always define the map ϕ0 that maps XB \Xmax(ω)

onto XB\Xmin(ω) according to (iii) of Definition ??. The question about the existence of the

Vershik map is equivalent to that of an extension of ϕ0 : XB \Xmax(ω)→ XB \Xmin(ω) to a

homeomorphism of the entire setXB . If ω is a proper ordering, then ϕω is a homeomorphism.

For a finite rank Bratteli diagram B, the situation is simpler than for a general Bratteli

diagram because the sets Xmax(ω) and Xmin(ω) are finite.

Definition 2.18. Let B be a Bratteli diagram B. We say that an ordering ω ∈ OB is

perfect if ω admits a Vershik map ϕω on XB . Denote by PB the set of all perfect orderings

on B. We call an ordering belonging to P c
B (the complement of PB in OB) imperfect.

We observe that for a regular Bratteli diagram with an ordering ω, the Vershik map ϕω,

if it exists, is defined in a unique way. More precisely, if B is a regular Bratteli diagram such

that the set PB is not empty, then the map Φ : ω 7→ ϕω : PB → Homeo(XB) is injective.

Also, a necessary condition for ω ∈ PB is that |Xmax(ω)| = |Xmin(ω)|. If B has rank d, then

then OB ∩ PB ⊂
⋃d
j=1OB(j).

Remark 2.19. We note that if B is a simple Bratteli diagram, with positive entries in all

its incidence matrices, then the set PB 6= ∅. Indeed, it is not hard to see that if x and y are

two paths in XB going through disjoint edges at each level, then one can find an ordering

ω on B such that Xmax(ω) = {x} and Xmin(ω) = {y}: simply choose all maximal edges in

En to go through the same vertex that x goes through at level n− 1, and all minimal edges

in En to go through the same vertex that y goes through at level n− 1, for each n. Then ω

is properly ordered, and so ω ∈ PB .

Another example of a family of perfect (indeed proper) orders for a simple Bratteli dia-

gram, all of whose incidence matrices are positive, is the following. For each n, fix a labeling

Vn = {v(n, 1), . . . v(n, kn)} of Vn. Take v ∈ Vn+1, and enumerate the edges from E(v(n, 1), v)

in an arbitrary order from 0 to |E(v(n, 1), v)| − 1. Similarly, for 2 ≤ i ≤ kn, we enumerate

edges from E(v(n, i), v) by numbers from
∑i−1
j=1 |E(v(n, j), v)| to

∑i
j=1 |E(v(n, j), v)| − 1.

Repeating this procedure for each vertex v ∈ V ∗\V0 and each level n, we define an order

ω0 on B, called a natural order. This is a variation of the well known ‘left-to-right’ order.

For ω0, the unique minimal path runs through v(n, 1), and the unique maximal path runs

through v(n, kn).
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In the next section, we will describe a class of non-simple Bratteli diagrams that do not

admit a perfect ordering.

Proposition 2.20. Let B be a simple Bratteli diagram, where the entries of the incidence

matrices (Fn) are positive. Then PB = OB holds if and only if B is rank 1.

Proof. The part ‘if’ is obvious because the condition |Vn| = 1 for infinitely many levels n

implies any ordering is proper.

Conversely, suppose that the rank of B is at least 2. Then, for some N , |Vn| ≥ 2 when

n > N . We need to show that, in this case, there are imperfect orderings.

First, assume that infinitely often, |Vn| ≥ 3. Call three distinct vertices at these levels

un, vn and wn. For the other levels n >, there are at least two distinct vertices un and vn.

For levels n such that |Vn| ≥ 3, choose all maximal edges in En+1 to have source wn. Let

the minimal edge with range un+1, vn+1 have source un, vn respectively. For levels n such

that |Vn| = 2, let the minimal edge with range un+1, vn+1 have source un, vn respectively.

Any order which satisfies these constraints has only one maximal path, and at least two

minimal paths, so cannot be perfect.

Next suppose that B has rank 2, and suppose two sequences of vertices (vn) and (wn) can

be found such that vn 6= wn for each n > N , vn, wn ∈ Vn and |E(wn, wn+1)| > 1 infinitely

often. Let the minimal edge with range vn+1 have source vn. Similarly, let the minimal edge

with range wn+1 have source wn. Whenever |E(wn, wn+1)| > 1, choose all maximal edges

in En+1 to have source wn. The resulting order has one maximal and two minimal paths.

Finally suppose that B does not satisfy the above conditions. Then, for all large n, the

matrices Fn =

(
1 1

1 1

)
, and there are orders on B with two maximal and two minimal

paths. To see this we just ensure that for all large n, the two minimal edges have distinct

sources, as do the two maximal edges. Now Example ?? shows that no such ordering is

perfect.

�

In contrast, one can find aperiodic diagrams for which any ordering is perfect. Indeed, it

suffices to take a rooted tree and turn it into a non-simple Bratteli diagram B by replacing

every single edge with a strictly larger number of edges. Then every ordering on B produces

a continuous Vershik map.

Remark 2.21. Let (B,ω) be an ordered Bratteli diagram and let ω′ be an ordering on B

such that ω and ω′ are different on r−1(v) only for a finite number of vertices v. Then ω is

perfect if and only if ω′ is perfect.

Proposition 2.22. Let B be a regular Bratteli diagram such that the set PB is not empty.

Let PB be equipped with the topology induced from OB and let the set Φ(PB) be equipped

with the topology of uniform convergence induced from the group Homeo(XB) where the map

Φ : ω 7→ ϕω has been defined above. Then Φ : PB → Φ(PB) is a homeomorphism.

Proof. We need only to show that Φ and Φ−1 are continuous because injectivity of Φ is

obvious.

Fix an ordering ω0 ∈ PB and let ϕω0
be the corresponding Vershik map. Consider a

neighborhood W = W (ϕω0 ;E1, ..., Ek) = {f ∈ Homeo(XB) : f(Ei) = ϕω0(Ei), i = 1, ..., k}
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of ϕω0
defined by clopen sets E1, ..., Ek. It is well know that the uniform topology is

generated by the base of neighborhoods {W}. Take m ∈ N such that all clopen sets E1, ..., Ek

‘can be seen’ at the first m levels of the diagram B. This means that every set Ei is a finite

union of the cylinder sets defined by finite paths of length m.

Suppose ωn → ω0 where ωn ∈ PB . By (??), the ordering ω0 is an infinite sequence in the

product
∏
v∈V ∗\V0

Pv. Let Q be the neighborhood of ω0 in OB which is defined by the finite

part of ω0 from v0 to Vm+1. Find N such that ωn ∈ Q for all n ≥ N . This means that the

ordering ωn (n ≥ N) agrees with ω0 on the first m+ 1 levels of the diagram B. Therefore,

ϕωn acts as ϕω0
on all finite paths from v0 to Vm. Hence, ϕωn(Ei) = ϕω0

(Ei) and ϕωn ∈W .

Conversely, let ϕωn → ϕω in the topology of uniform convergence; we prove that ωn → ω.

Take the neighborhood Q(ω) of ω consisting of all orderings ω′ such that ω′ agrees with

ω on the sets r−1(v), where v ∈
⋃N
i=1 Vi. Let F1, ..., Fp denote all cylinder subsets of XB

corresponding to the finite paths between v0 and the vertices from
⋃N+1
i=1 Vi. Consider the

neighborhood W = W (ϕω;F1, ..., Fp). Then there exists an m ∈ N such that ϕωi ∈ W for

i ≥ m. This means that ϕωi(Fj) = ϕω(Fj) for all j = 1, ..., p. Let us check that ωi ∈ Q(ω)

for i ≥ m. Indeed, if one assumes that ω′ /∈ Q(ω) then there exists a least k and a vertex

v ∈ Vk such that ω and ω′ define different linear orders on r−1(v), but ω and ω′ agree for

all v ∈
⋃k−1
i=1 Vi. Let e be an edge from r−1(v) such that the ω-successor and ω′-successor

of e are different edges. Then take the cylinder set F which corresponds to the finite path

(f, e), where f is the maximal path from v0 to s(e) for both the orders. It follows from the

above construction that ϕω(F ) 6= ϕω′(F ), a contradiction. �

Theorem 2.23. Let B be a simple rank d Bratteli diagram where d ≥ 2, and all incidence

matrix entries are positive. Then both sets PB and P c
B are dense in OB.

Proof. By Proposition ??, P c
B 6= ∅. Take an ordering ω ∈ OB and consider its neighborhood

UN (ω) = {ω′ ∈ OB : ω and ω′ coincide on r−1(v) for all v ∈
⋃N
i=1 Vi}. We have assumed

that N is large enough such that |Vn| ≥ 2 for n > N .

Then there exists a perfect ordering ω1 belonging to UN (ω). To see this, choose (un)n>N ,

(vn)n>N where un 6= vn and un, vn ∈ Vn. Choose an ordering all of whose maximal edges

in En+1 have source un and all of whose minimal edges in En+1 have source vn, for n > N .

Let this ordering agree with ω up to level N . This ordering is proper, hence perfect.

Conversely, if ω is perfect, we can construct ωN by letting ωN agree with ω on the first

N levels. Beyond level N , we work as in the proof of Proposition ?? to define ωN so that it

is imperfect.

�

3. Finite rank ordered Bratteli diagrams

In this section, we focus on the study of orderings on a finite rank Bratteli diagram B.

To do this, we define new notions related to an unordered finite rank Bratteli diagram that

will be used in our considerations. If (B,ω) is ordered, and Vn = V for each n, in Section

?? we first define the language generated by ω, and characterize whether (B,ω) is perfect

in terms of the language of ω. Our notions of skeleton and associated graph are defined

in Section ?? for non-ordered diagrams. We note that on one diagram, there exist several

skeletons. By telescoping a perfectly ordered diagram in a particular way, we will obtain

the (unique, up to labeling) skeleton associated to the lexicographical image of ω under the
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telescoping. In the associated graph H, paths will correspond to (families of) words in ω’s

language. Given a skeleton F on a diagram, we describe how H constrains us when trying

to extend F to a perfect order.

In Section ?? we describe a class of non-simple diagrams that do not admit any perfect

ordering, using the poor connectivity properties of any skeleton’s associated graph. In

Section ?? we give descriptions of perfect orderings that yield odometers, in terms of their

language, and explicitly describe, in terms of an associated skeleton and associated graph,

the class of rank d diagrams that can have a perfect ordering with exactly k ≤ d maximal

and minimal paths.

3.1. Language of a finite rank diagram. Let ω be an ordering on a Bratteli diagram

B, where Vn = V for each n ≥ 1, and |V | = d. For each vertex v ∈ Vn and each m such

that 1 ≤ m < n, consider
⋃
w∈Vm E(w, v) as the ω-ordered set {e1, . . . ep} where ei < ei+1

for 1 ≤ i ≤ p − 1. Define the word w(v,m, n) := s(e1)s(e2) . . . s(ep) over the alphabet V .

We use the notation w′ ⊆ w to indicate that w′ is a subword of w, and, if w and w′ are two

words, by ww′ we mean the word which is the concatenation of w and w′.

Definition 3.1. The set

LB,ω = {w : w ⊆ w(vn,mn, n), for infinitely many n where vn ∈ Vn, 1 ≤ mn < n}

is called the language of B with respect to the ordering ω.

We remark that the notion of the language LB,ω is not always robust under telescoping:

let (B′, ω′) be a telescoping of an ordered Bratteli diagram (B,ω) where ω′ = L(ω). Then

LB′,ω′ ⊂ LB,ω where the inclusion can be strict. For example, consider B where

(3.1) F2n =

(
1 2

2 2

)
, F2n−1 =

(
2 1

3 1

)
, n ≥ 1.

Let ω be defined by the substitution τ1(a) = aba, τ1(b) = aaba on E2n, and by the substitu-

tion τ2(a) = bab, τ2(b) = abba on E2n−1 for n ≥ 1. Thus the order of letters in a word τ(v)

determines the order on the sets of edges with range v. Then {aa, ab, ba, bb} ⊂ LB,ω. Now

telescope B to the levels (2n+ 1) to get the stationary Bratteli diagram B′ whose incidence

matrix is

(3.2) F ′n =

(
1 2

2 2

)
·

(
2 1

3 1

)
=

(
8 3

10 4

)

for each n ≥ 1, so that ω′ := L(ω) is defined by the substitution τ := τ1 ◦ τ2 where

τ(a) = aaba aba aaba and τ(b) = aba aaba aaba aba, then bb 6∈ LB′,ω′ . Note however that

both ω and ω′ are perfect (in fact proper).

Also, in the special case where B is stationary and ω is defined by a substitution τ (so

that ω is also stationary), we see that LB,ω is precisely the language Lτ defined by the

substitution τ , and in this case, if B′ is a telescoping of B to levels (nk) with ω′ = L(ω),

then LB,ω = LB′,ω′ . Indeed, any word w ∈ LB,ω is a subword of τ j(a) for some j ∈ N and

letter a. Now the order on the k-th level of B′ is generated by τnk−nk−1 , and as long as

nk − nk−1 > j, we will see w as a subword of w(a, nk−1, nk) ⊂ LB′,ω′ . The relationship
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between LB,ω and the continuity of the Vershik map has been studied in [?] in the case

where ω is stationary, i.e., generated by a substitution, and also in [?]7.

Definition 3.2. Suppose B is such that Vn = V for each n ≥ 1. If ω is an order on B,

where a maximal (minimal) path M (m) goes through the same vertex vM (vm) for each

level n ≥ 1 of B, we will call this path vertical.

We note that for any order ω on a finite rank Bratteli diagram B there exists a telescoping

B′ of B such that the extremal (maximal and minimal) paths with respect to ω′ = L(ω) are

vertical.

The following proposition characterizes when ω is a perfect ordering on such a finite rank

Bratteli diagram.

Proposition 3.3. Let (B,ω) be a finite rank ordered Bratteli diagram, where Vn = V for

each n ≥ 1 Suppose that the ω-maximal and ω-minimal paths M1, ...,Mk and m1, ...,mk′ are

vertical passing through the vertices vM1
, . . . , vMk

and vm1
, . . . , vmk′ respectively. Then ω is

perfect if and only if

(1) k = k′ and

(2) there is a permutation σ of {1, . . . k} such that for each i ∈ {1, ..., k}, vMivmj ∈ LB,ω
if and only if j = σ(i).

Proof. We first assume that the Vershik map ϕω exists. Then ϕω defines a bijection between

the finite sets Xmax(ω) and Xmin(ω) by sending each Mi to some mj : let σ(i) = j. Clearly,

k = k′. We need to check that vMi
vmj is in the language LB,ω if and only if j = σ(i).

It follows from continuity of ϕω and the relation ϕω(Mi) = mj that if xn → Mi then

ϕω(xn) = yn → mj as n → ∞. We see that, for every n, the condition ϕω(xn) = yn

implies that vMivmj ∈ w(v,m,N) for some v ∈ VN and some m < N , because xn and

yn are taken from neighborhoods generated by finite paths going through vMi
and vmj

respectively. Furthermore, as n → ∞, so does N and also m. Hence vMi
vmj ∈ LB,ω when

j = σ(i). By the same argument, if vMi
vmk ∈ LB,ω for some k 6= σ(i), then one can find

xn →Mi such that ϕω(xn) = yn → mk, a contradiction.

Conversely, assuming that (1) and (2) hold, extend ϕω to Xmax(ω) by defining ϕ(Mi) :=

mσ(i). It is obvious that ϕω is one-to-one. Fix a pair (Mi,mj) where j = σ(i), and let

xn → Mi as n → ∞; we show that yn = ϕω(xn) → mj . We can assume that the first

n edges of xn coincide with those of Mi, i.e. xn = e
(n)
max(v0, vMi

)en+1en+2 · · · where en+1

is not maximal in r−1(r(en+1)). Then yn = f
(n)

min(v0, s(e
′
n+1))e′n+1en+2 · · · where e′n+1 is

the successor of en+1. Take a subsequence (y′n) of (yn) convergent to a point z ∈ XB . By

construction, z must be a minimal path. It follows from the uniqueness of j in condition (2)

that z = mj ; this proves the continuity of ϕω.

�

Example 3.4. Let (B,ω) be a stationary ordered Bratteli diagram whose vertex set Vn =

{a, b, c, d} for each n ≥ 1, and where the ordering is defined by the substitution a →
acbda, b → bdcbdacb, c → acdcb, d → bdacda. There are two pairs of vertical maximal and

minimal paths going through vertices a and b. The words of length two that appear in LB,ω

7The relevant formula on Page 5 is incorrect in the final version: the correct version is in the preprint

which can be found at http://combinatorics.cis.strath.ac.uk/papers/lucaz.
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are {aa, ac, bb, bd, cb, cd, da, dc} and using Proposition ??, we conclude that ω ∈ PB and

ϕω(Ma) = ma, and ϕω(Mb) = mb.

Example 3.5. Let B be the stationary ordered Bratteli diagram whose vertex set Vn =

{a, b} for each n ≥ 1, and whose incidence matrices Fn =

(
1 1

1 1

)
for each n. We claim

that any ordering on B with two maximal and two minimal paths cannot be perfect. The

only possible choices to ensure that ω has this many extremal paths is, for all large n, to

either choose the ordering w(a, n, n + 1) = ab and w(b, n, n + 1) = ba, or to choose the

ordering w(a, n, n + 1) = ba and w(b, n, n + 1) = ab. Whatever choice one makes at level

n and level n + 1, all four words {aa, ab, ba, bb} occur somewhere in one of the two words

w(a, n, n+ 2) or w(b, n, n+ 2). Thus, ω cannot be perfect.

Remark 3.6. Suppose that (B,ω) satisfies the conditions of Proposition ??. This means

that there exists an N such that if we see vMivmj appearing in some word w(v,m, n) with

m ≥ N , then j = σ(i). We can telescope B to levels N,N + 1, N + 2, . . . so that if we

see vMi
vmj appearing in some word w(v,m, n) with m ≥ 1, then j = σ(i). Thus, unless

otherwise indicated, for the remainder of Section ??, when we have an ordered diagram

(B,ω) that satisfies the conditions of Proposition ??, we shall assume that if vMi
vmj ⊂

w(v,m, n) with m ≥ 1, then j = σ(i).

We now generalize Proposition ?? to arbitrary finite rank diagrams, where the extremal

paths are not necessarily vertical. Although the notion of language is not defined for these

diagrams, we can still define, and use words w(v,m, n) for v ∈ Vn and m < n. The proof of

this lemma is elementary, so we omit it, although Figure ?? is explanatory.

Lemma 3.7. Let B be a finite rank diagram. Then the following statements are equivalent:

(1) ω 6∈ PB;

(2) For some ω maximal path M , and two ω minimal paths m and m∗, there exist strictly

increasing sequences of levels (nk), (n∗k), (Nk) and (N∗k ), vertices {wk, vk} ⊂ Vnk ,

{w∗k, v∗k} ⊂ Vn∗k , vertices uk ∈ VNk , u∗k ∈ VN∗k such that M passes through wk

and w∗k, m and m∗ pass through vk and v∗k respectively, and wkvk ⊂ w(uk, nk, Nk),

w∗kv
∗
k ⊂ w(u∗k, n

∗
k, N

∗
k ).

continuity-eps-converted-to.pdf

Figure 1. A discontinuous ϕω.

Lemma 3.8. Let B be a Bratteli diagram of finite rank and B′ a telescoping of B. Then an

ordering ω ∈ PB if and only if the corresponding lexicographic ordering ω′ = L(ω) ∈ PB′ .

Proof. If ω does not determine a Vershik map, then by Lemma ??, there is a maximal path

M , two distinct minimal paths m and m∗, infinite sequences of levels (nk) and (n∗k), (Nk) and
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(N∗k ), vertices {wk, vk} ⊂ Vnk , {w∗k, v∗k} ⊂ Vn∗k and vertices uk ∈ VNk , u∗k ∈ VN∗k such that

M passes through wk and w∗k, m (m∗) pass through vk (v∗k), and wkvk ⊂ w(uk, nk, Nk),

w∗kv
∗
k ⊂ w(u∗k, n

∗
k, N

∗
k ) (see Figure ??). Note that in B, it cannot be the case that for

infinitely many levels, the minimal paths go through the same vertex - otherwise they are

not distinct. Thus, there is some N such that if n ≥ N , the level n edge in m has a different

source and range from the level n edge in m∗.

Let B′ be a telescoping of B to levels (mk). If the images of M , m and m∗ in B′ are

denoted by M ′, m′ and (m∗)′ respectively, then by the comment above, apart from an initial

segment, the paths m′ and (m∗)′ pass through distinct vertices in B′.

Find the levels mj and mJ in (mk) such that mj−1 < nk ≤ mj , mJ−1 < Nk ≤ mJ ,

and let E′j denote the edge set in B′ obtained by telescoping between mj−1-st and mj-th

levels of B, and let E′J denote the edge set obtained by telescoping between the mJ−1-st

and mJ -th levels of B. Let the path M go through w′j ∈ Vmj , and m through v′j ∈ Vmj .
Let u′J ∈ VmJ be any vertex such that there is a path from uk ∈ VNk to u′J . Then for

the corresponding vertices w′j−1, v
′
j−1 ∈ V ′j−1 and u′J ∈ V ′J respectively it is the case that

w′j−1v
′
j−1 ∈ w(u′J , j − 1, J), with M ′ passing through w′j−1, and m′ passing through v′j−1.

Repeat this procedure for m∗. By Lemma ??, the ordering ω′ on B′, obtained from ω by

telescoping, does not determine a Vershik map.

The converse is proved similarly. �

Lemma ?? and the compactness of XB imply the following corollary.

Corollary 3.9. Suppose that B has rank d. Then ω ∈ PB if and only if there exists a

telescoping (B′, ω′) of (B,ω) such that V ′n = V ′ for each n ≥ 1, the ω′-maximal and ω′-

minimal paths M1, ...,Mk and m1, ...,mk′ are vertical, and ω′ satisfies the conditions of

Proposition ??.

Now we give another criterion which guarantees the existence of Vershik map on an

ordered Bratteli diagram (B,ω) (not necessarily of finite rank). Let ω = (ωv)v∈V ∗\V0
be

an ordering on a regular Bratteli diagram B. For every xmax = (xn) ∈ Xmax(ω), we define

the set Succ(xmax) ⊂ Xmin(ω) as follows: ymin = (yn) belongs to the set Succ(xmax) if

for infinitely many n there exist edges y′ ∈ s−1(r(xn)) and y′′ ∈ s−1(r(yn)) such that

r(y′) = r(y′′) = vn+1 and y′′ is the successor of y′ in the set r−1(vn+1). Given a path

ymin ∈ Xmin(ω), we define the set Pred(ymin) ⊂ Xmax(ω) in a similar way. It is not hard to

prove that the sets Succ(xmax) and Pred(ymin) are non-empty and closed for any xmax and

ymin.

Proposition 3.10. An ordering ω = (ωv)v∈V ∗\V0
on a regular Bratteli diagram B is perfect

if and only if for every xmax ∈ Xmax(ω) and ymin ∈ Xmin(ω) the sets Succ(xmax) and

Pred(ymin) are singletons.

Proof. Let xmax be any path from Xmax(ω). If Succ(xmax) = {ymin}, then one can define

ϕω : xmax → ymin. Since Pred(ymin) is also a singleton, we obtain a one-to-one correspon-

dence between the sets of maximal and minimal paths. The fact that ϕω is continuous can

be checked directly.

Conversely, if ω is perfect, then it follows from the existence of the Vershik map ϕω that

either of the sets Succ(xmax) and Pred(ymin) must be singletons. �
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3.2. Skeletons and associated graphs. Let B be a finite rank Bratteli diagram. We do

not need to assume here that B is simple unless we state this explicitly. If ω is an order

on B, and v ∈ V ∗\V0, we denote the minimal edge with range v by ev , and we denote the

maximal edge with range v by ẽv.

Lemma 3.11. Let (B′, ω′) be a rank d ordered diagram. Then there exists a telescoping

(B,ω) of (B′, ω′) such that

(1) |r−1(v)| ≥ 2 for each v ∈ V ∗\V0,

(2) Vn = V for each n ≥ 1 and |V | = d,

(3) all ω-extremal paths are vertical, with Ṽ , V denoting the sets of vertices through

which maximal and minimal paths run respectively, and

(4) s(ẽv) ∈ Ṽ and s(ev) ∈ V for each v ∈ V ∗\(V0 ∪ V1), and this is independent of n.

In addition, if ω ∈ PB, we can further telescope so that

(5) if ṽv appears as a subword of some w(v,m, n) with m ≥ 1, then , then σ(ṽ) = v

defines a one-to-one correspondence between the sets Ṽ and V .

Proof. Property (1) is guaranteed by Lemma ??. To obtain property (2), we telescope

through the levels (nk) such that |Vnk | = d, where d is the rank of B′. To obtain (3),

note that each maximal path M ′ passes through one vertex ṽM infinitely often. Telescope

B to the levels where this occurs; the image M of M ′ is then a maximal vertical path

passing though ṽM at each level. Repeat this procedure for each maximal path M ′ and

each minimal path m′. To see (4), we assume we have telescoped so that properties (1) -

(3) hold. We denote the vertical maximal path passing through ṽ ∈ Ṽ by Mṽ, similarly the

vertical minimal path mv passes through v. We claim the following: for any level n there

exist ln > n such that for every l ≥ ln and every vertex u ∈ Vl , the maximal and minimal

finite paths in E(v0, u) agree with some Mṽ, mv respectively on the first n entries, where the

vertices ṽ ∈ Ṽ and v ∈ V depend on u and l. Indeed, if we assumed that the contrary holds,

then we would have additional maximal (or minimal) paths not belonging to {Mṽ : ṽ ∈ Ṽ }
(or {mv : v ∈ V }). Thus, after an appropriate telescoping, we can assume that if v is any

vertex in Vn, n ≥ 2, and ẽv and ev are the maximal and minimal edges in the set r−1(v)

with respect to ω, then ẽv 6= ev and s(ẽv) ∈ Ṽn−1, s(ev) ∈ V n−1. By further telescoping we

can assume that the sources of ẽv and ev do not depend on the level in which v lies. If ω is

perfect, Remark ?? explains why it is possible to telescope (B,ω) so that (5) is true. �

Definition 3.12. Let B be a finite rank d Bratteli diagram.

(1) If B satisfies the conditions (1) - (2) of Lemma ??, we say that B is strictly rank d.

(2) If (B,ω) satisfies conditions (1) - (4) of Lemma ??, or if (B,ω) is a finite rank

perfectly ordered diagram satisfying conditions (1) - (5) of Lemma ??,we say that

(B,ω) is well-telescoped.

For the remainder of Section ??, we assume that unordered finite rank d Bratteli diagrams

are strictly rank d. We assume that finite rank ordered Bratteli diagrams are well-telescoped.

Thus, any ordering ω determines a collection {Mṽ,mv, ẽw, ew : w ∈ V ∗\V0, ṽ ∈
Ṽ and v ∈ V }. This collection of paths and edges contains all information about the ex-

tremal edges of ω, though only partial information about ω itself. We now extend this notion

to an unordered diagram B.
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Let B be a strictly rank d Bratteli diagram. We denote by V the set of vertices of B

at each level n ≥ 1, but if we need to point out that this set is considered at level n,

then we write Vn instead of V . For some k ≤ d, take two subsets Ṽ and V of V such

that |Ṽ | = |V | = k. Given any ṽ ∈ Ṽ , v ∈ V choose Mṽ = (Mṽ(1), ...,Mṽ(n), ...) and

mv = (mv(1), ...,mv(n),, two vertical paths in B going downwards through the vertices

ṽ ∈ Ṽ and v ∈ V . If v ∈ V ∩ Ṽ , then the paths Mv and mv are taken such that they do not

share common edges. Next, for each vertex w ∈ Vn, n ≥ 2, we choose two vertices ṽ and v

in Ṽ and V respectively, and for each n ≥ 2 and each w ∈ Vn, distinct edges ẽw and ew with

range w such that s(ẽw) = ṽ and s(ew) = v . If w ∈ Ṽ or w ∈ V , then the edges ẽw and ew

in En are chosen such that ẽw = Mw(n) and ew = mw(n), respectively. We introduce the

concept of a skeleton to create a framework for defining a perfect ordering with precisely

this extremal edge structure.

Definition 3.13. Given a strict rank d diagram B and two subsets Ṽ , V of V of the

same cardinality k ≤ d, a skeleton F = F(B) of B is a collection {Mṽ,mv, ẽw, ew : w ∈
V ∗\(V0 ∪ V1), ṽ ∈ Ṽ and v ∈ V } of paths and edges with the properties described above.

The vertices from Ṽ will be called maximal and those from V minimal.

In other words, while not an ordering, a skeleton is a constrained choice of all extremal

edges. As an example, when Ṽ = V = V , the skeleton is simply the set {Mṽ,mv : ṽ, v ∈ V }.
As discussed in Lemma ??, any well telescoped ordered finite rank Bratteli diagram (B,ω)

has a natural skeleton Fω (recall that the extremal paths are vertical). Conversely, it is

obvious that there are several skeletons that one can define on B, and for any skeleton F of

a Bratteli diagram B there is at least one ordering ω on B such that F = Fω. A skeleton

Fω contains no information about whether ω ∈ PB . Note that a skeleton does not contain

information about which are the maximal edges in E1; this will not impact our work.

Next we define a directed graph H = (T, P ) associated to a Bratteli diagram B of strict

finite rank and having skeleton F . Implicit in the definition of this directed graph is the

assumption that we are working towards constructing perfect orderings ω whose skeleton

Fω = F . Thus we suppose that we also have a bijection σ : Ṽ → V that, in the case

when F = Fω with ω ∈ PB , will be the bijection described in Proposition ??, so that

ϕω(Mṽ) = mσ(ṽ).

Definition 3.14. For any vertices ṽ ∈ Ṽ and v ∈ V , we set

(3.3) Wṽ = {w ∈ V : s(ẽw) = ṽ}, W ′v = {w ∈ V : s(ew) = v}.

Then W = {Wṽ : ṽ ∈ Ṽ } and W ′ = {W ′ṽ : v ∈ V } are both partitions of V . We call W and

W ′ the partitions generated by F .

Let [v, ṽ] := W ′v ∩Wṽ, and define the partition

W ∩W ′ := {[v, ṽ] : v ∈ V , ṽ ∈ Ṽ }.

Definition 3.15. Let B be a strict finite rank diagram,

F = {Mṽ,mv, ẽw, ew : w ∈ V ∗\(V0 ∪ V1), ṽ ∈ Ṽ and v ∈ V }

be a skeleton on B, and suppose σ : Ṽ → V is a bijection. Let the graph H = H(T, P ),

have vertex set

T = {[v, ṽ] ∈ V × Ṽ : [v, ṽ] 6= ∅},
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and edge set P , where there is an edge from [v, ṽ] to [v1, ṽ1] if and only if σ(ṽ) = v1. The

directed graph H is called the graph associated to (B,F , σ).

Note that for a fixed skeleton, different bijections σ will define different graphs H.

Remark 3.16. Suppose (B,ω) is a perfectly ordered, well telescoped finite rank Bratteli

diagram, Fω is the skeleton on B defined by ω and σ is the bijection given by Proposition

??. Let H = (T, P ) be the graph associated to (B,F , σ). Let w = v1 · · · vp be a word in the

language LB,ω and suppose vi ∈ ti where ti ∈ T . Then there exists a path in H starting at

t1 and ending at tp. Moreover, the following is also true; the proof is straightforward and is

omitted.

Lemma 3.17. Let B be an aperiodic, strict finite rank Bratteli diagram, let F be a skeleton

on B, σ : Ṽ → V be a bijection, and let H = (T, P ) be the associated graph to (B,F , σ).

Suppose there exists an ordering ω on B with skeleton F , and there is an M such that

whenever N > n ≥M , if a word w = v1 . . . vp ⊂ w(v, n,N) for v ∈ VN , then w corresponds

to a path in H going through vertices t1, . . . tp, where vi ∈ Vn belong to ti ∈ T . Then ω is

perfect and ϕω(Mṽ) = mσ(ṽ) for each ṽ ∈ Ṽ .

Definition 3.18. We define the family A of Bratteli diagrams, all of whose incidence

matrices are of the form

Fn :=



A
(1)
n 0 . . . 0 0

0 A
(2)
n . . . 0 0

...
...

. . .
...

...

0 0 . . . A
(k)
n 0

B
(1)
n B

(2)
n . . . B

(k)
n Cn


, n ≥ 1,

where

(1) for 1 ≤ i ≤ k there is some di such that for each n ≥ 1, A
(i)
n is a di × di matrix,

(2) all matrices A
(i)
n , B

(i)
n and Cn are strictly positive,

(3) Cn is a d× d matrix,

(4) there exists j ∈ {
∑k
i=1 di+ 1, . . .

∑k
i=1 di+d} such that for each n ≥ 1, the j-th row

of Fn is strictly positive.

If a Bratteli diagram’s incidence matrices are of the form above, we shall say that it has k

minimal components.

As shown in [?], the family A of diagrams corresponds to aperiodic homeomorphisms of

a Cantor set that have exactly k minimal components with respect to the tail equivalence

relation E .

Recall that a directed graph is strongly connected if for any two vertices v, v′, there is a

path from v to v′, and also a path from v′ to v. If at least one of these paths exist, then G

is weakly connected, or just connected. We notice that, given (B,F , σ), an associated graph

H = (T, P ) is not connected, in general.

Proposition 3.19. Let (B,ω) be a finite rank, perfectly ordered and well telescoped Bratteli

diagram, and suppose ω has skeleton Fω and permutation σ.

(1) If B is simple, then the associated graph H is strongly connected.
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(2) If B ∈ A, then the associated graph H is weakly connected.

Proof. We prove (1); the proof of (2) is similar, if we focus on w(v, n− 1, n) where v is the

vertex which indexes the strictly positive row in Fn. Recall that in addition to assuming

that (B,ω) is well telescoped, since ω is perfect, we assume we have telescoped so that all

entries of Fn are positive for each n, and also so that if ṽv is a subword of w(v,m, n) for

1 ≤ m < n, then σ(ṽ) = v. We need to show that for any two vertices t = [v, ṽ] and

t′ = [v′, ṽ′] from the vertex set T of H, there exists a path from t to t′.

Claim 1. Let n > 2 and w(u, n−1, n) = v1 · · · vk be a word where vi ∈ [vi, ṽi], i = 1, ..., k.

Then there is a path from [v1, ṽ1] to [vk, ṽk] going through the vertices [vi, ṽi], i = 1, ..., k,

in that order.

For, given 1 ≤ i ≤ k−1, since vivi+1 is a subword of w(u, n−1, n), then the concatenation

of the two words w(vi, n − 2, n − 1)w(vi+1, n − 2, n − 1) is a subword of w(u, n − 2, n), so

that ṽivi+1 is a subword of w(u, n− 2, n). By our telescoping assumptions, σ(ṽi) = vi+1.

Now, let T ∗ be the subset of T of vertices of the form [v, s(ẽv)] where v ∈ V . (Note

that [v, s(ẽv)] 6= ∅ since v ∈ [v, s(ẽv)].) It is obvious that there is an edge from t = [v, ṽ] to

t∗ = [σ(ṽ), s(ẽσ(ṽ))] in H.

Claim 2. For any t∗ ∈ T ∗ and t′ = [v′, ṽ′] ∈ T , there is a path from t∗ to t′.

To see that this, we will use Claim 1. Let t∗ = [v∗, ṽ∗] where ṽ∗ = s(ẽv∗). Let v ∈ Vn−1
belong to t′ in H. By the simplicity of B, there exists an edge e ∈ E(v, v∗) where v∗ ∈ Vn.

Thus w(v∗, n− 1, n) = v∗ . . . v . . . ṽ∗. If n > 2, then by Claim 1 that there is a path from t∗

to t′.

To complete the proof of the proposition, we concatenate the paths from t to t∗ and from

t∗ to t′ in H. �

Remark 3.20. It is not hard to see that the converse statement to Proposition ?? is not

true. There are examples of non-simple perfectly ordered diagrams of finite rank whose

associated graph is strongly connected.

Note also that the assumption that ω is perfect is crucial. Moreover, there are examples

of simple finite rank Bratteli diagrams and skeletons whose associated graph is not strongly

connected. Indeed, let B be a simple stationary diagram with V = {a, b, c} with the skeleton

F = {Ma,Mb,ma,mb; ẽc, ec} where s(ẽc) = b, s(ec) = a. Let σ(a) = a, σ(b) = b. Construct-

ing the associated graph H, we see that there is no path from [b, b] to [a, a]. It can be also

shown that there is no perfect ordering ω such that F = Fω. This observation comple-

ments Proposition ?? by stressing the importance of the strong connectedness of H for the

existence of perfect orderings.

We illustrate the definitions of skeletons and associated graphs with several examples

that will be also used later.

Example 3.21. Let (B,ω) be an ordered Bratteli diagram of strict rank d, where V =

{1, . . . , d}, and where ω has d vertical maximal and d vertical minimal paths. Then the

skeleton Fω is formed by pairs of vertical paths (Mi,mi) going downward through the

vertex i ∈ {1, ..., d}.



20 S. BEZUGLYI, J. KWIATKOWSKI AND R. YASSAWI

Let σ be a permutation of the set {1, 2, . . . , d}. The graph H is represented as a disjoint

union of connected subgraphs generated by cycles of σ. If ω is perfect, then by Proposition

??, σ is cyclic. In this case, [i, i] = {i}, so vertices of H are {[i, i] : 1 ≤ i ≤ d}, and there is

an edge from [i, i] to [j, j] if and only if j = σ(i). Thus, the structure of H is represented by

the cyclic permutation σ.

Example 3.22. Let F be a skeleton on a simple strict rank d diagram B such that V =

{1, . . . , d− 1, d} and Ṽ = V = {1, . . . , d− 1}. Depending on σ, the associated graph H that

can be associated to F is one of two kinds.

(1) Suppose s(ẽd) = s(ed) = j where 1 ≤ j ≤ d− 1. Then [i, i] = {i} for 1 ≤ i ≤ d− 1,

i 6= j, and [j, j] = {j, d}. In H then the vertex set is T = {[i, i] : 1 ≤ i ≤ d− 1}. For

H to be strongly connected, σ must be a cyclic permutation of {1, . . . , d − 1}, and

in this case there is an edge from [i, i] to [i′, i′] if and only if i′ = σ(i).

(2) Suppose s(ẽd) = j 6= s(ed) = i where 1 ≤ i, j ≤ d − 1; we can assume that i < j.

Here [l, l] = {l} for 1 ≤ l ≤ d − 1 and [i, j] = {d}, so that T = {[l, l] : 1 ≤ l ≤
d − 1} ∪ {[i, j]}. Here also, for H to be strongly connected, σ must be a cyclic

permutation of {1, . . . , d− 1}, and the edges described in (1) form a subset of P . In

addition there is an edge from [σ−1(i), σ−1(i)] to [i, j], and also an edge from [i, j]

to [σ(j), σ(j)]. If σ(j) = i, then there is also a loop at [i, j].

Example 3.23. We continue with Example ??. Since ϕω(Ma) = ma, ϕω(Mb) = mb, this

means that σ(a) = a, σ(b) = b. Noting that s(ẽc) = b, s(ẽd) = a, s(ec) = a, s(ed) = b, we

have the completely determined skeleton Fω. Note that the vertices T of H are [a, a] =

{a}, [a, b] = {c}, [b, a] = {d} and [b, b] = {b}. The associated graph H is shown in Figure ??.

Example 3.24. Let V = {v1, v2, v∗1 , v∗2 , w1, w2} and Ṽ = V = {v1, v∗1}; let σ(v1) = v1

and σ(v∗1) = v∗1 . Suppose that W ′v1 = {v1, v2, w1}, Wv1 = {v1, v2, w2}, W ′v∗1 = {v∗1 , v∗2 , w2}
and Wv∗1

= {v∗1 , v∗2 , w1}. Then the associated graph H is strongly connected. We remark

that this can be the skeleton of an aperiodic diagram with two minimal components living

through the vertices {v1, v2} and {v∗1 , v∗2} respectively.

stationary_associated_graph-eps-converted-to.pdf

Figure 2. The graph associated to Fω in Example ??

We illustrate the utility of the notions of skeleton and accompanying directed graphs in

the following results, which give sufficient conditions for an ordering ω to belong to P c
B . Even

though these are conditions on ω, some diagrams B force this condition on all orderings in

OB - this is the content of Proposition ??.

Proposition 3.25. Let (B,ω) be a perfectly ordered, well telescoped rank d Bratteli diagram.

Suppose that ω has k maximal and k minimal paths, where 1 < k ≤ d. Then for some v ∈ V ,

vv 6∈ LB,ω.
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Proof. Let ω have skeleton Fω = {Mṽ,mv, ẽw, ew : w ∈ V ∗\(V0 ∪ V1), ṽ ∈ Ṽ and v ∈ V },
and suppose that ω is perfect. Then there exists a bijection σ of {1, . . . , k} such that σ(i) = j

if and only if vMi
vmj ∈ LB,ω. Suppose that for each v, there is some some v∗ such that

vv ∈ w(v∗, n, n + 1) for infinitely many n. We claim that V =
⋃k
i=1[vmσ(i) , vMi

]. For if

s(ev) = vmj and s(ẽv) = vMi , then if vv ∈ w(v∗, n, n + 1), this implies that vMivmj ∈
w(v∗, n− 1, n+ 1). Since this occurs for infinitely many n, then Proposition ?? tells us that

j = σ(i).

Since W and W ′ are both partitions of V , the relation V =
⋃k
i=1[vmσ(i) , vMi

] actually

means that WvMi
= W

′

vmσ(i)
for every i. It follows that the associated graph H has the

following simple form: the vertices of H are [vmσ(i) , vMi
], i = 1, ..., k, and the edges are

given by k loops, one around each vertex. Since k > 1, this means H is not connected,

contradicting Proposition ??.

�

3.3. Bratteli diagrams that support no perfect orders. The next proposition de-

scribes how for some aperiodic diagrams B that belong to the special class A (see Definition

??), there are structural obstacles to the existence of perfect orders on B. This is a gener-

alization of an example in [?].

Proposition 3.26. Let B ∈ A have k minimal components, and such that for each n ≥ 1,

Cn is an s× s matrix where 1 ≤ s ≤ k − 1. If k = 2, there are perfect orderings on B only

if Cn = (1) for all but finitely many n. If k > 2, then there is no perfect ordering on B.

Proof. We use the notation of Definition ?? in this proof. Let V i be the subset of vertices

corresponding to the subdiagram defined by the matrices A
(i)
n for i = 1, . . . k, and let V k+1 be

the subset of vertices corresponding to the subdiagram defined by the matrices Cn. Suppose

that ω is a perfect ordering on B, and we assume that (B,ω) is well telescoped and has

skeleton Fω. (Otherwise we work with the diagram B′ on which L(ω) is well telescoped:

Note that if B has incidence matrices of the given form, then so does any telescoping.)

Note that |V | = |Ṽ | ≥ k since each minimal component has at least one maximal and one

minimal path. Also, if ṽ ∈ V i, then σ(ṽ) ∈ V i. There are k connected components of

vertices T1, . . . Tk, such that there are no edges from vertices in Ti to vertices in Tj if i 6= j.

To see this, if 1 ≤ i ≤ k, let Ti = {[v, ṽ] : v ∈ V i, ṽ ∈ V i}.
If k = 2, there are no extremal paths going through c, the unique vertex in V 3 - otherwise

there would be disjoint components in H, and since ω is perfect, this would contradict

Proposition ??. So c ∈ [v, ṽ] where v ∈ V i and ṽ ∈ V j for some i 6= j. Thus in H there are

paths from vertices in Ti to vertices in Tj through c, but not back again. The only way this

can occur validly is if Cn = (1) for all large n.

If k > 2, then there are at most k− 1 vertices remaining in H, outside of the components

T1, . . . , Tk. We shall argue that even in the extreme case, where there are k−1 such vertices,

there would not be sufficient connectivity inH to support an ω ∈ PB . Call these k−1 vertices

t1, . . . tk−1, where ti = [vi, ṽi]. If V k+1 = {v1, . . . , vk−1}, we have labeled so that vi ∈ ti.

For each one of these vertices ti there are incoming edges from vertices in at most one of

the components Tj , for 1 ≤ j ≤ k, and also outgoing edges to vertices in at most one of the

components Tj′ , for 1 ≤ j′ ≤ k. So at least one of the components, say T1, has no incoming

edges with source outside T1.
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Suppose first that each ti = [vi, ṽi] satisfy vi ∈ V 1, in which case all other T ′is have no

outgoing edges. But then for Ti 6= Tj , i 6= j, i, j 6= 1, there is neither a path from Ti to Tj ,

nor from Tj to Ti. This contradicts the second part of Proposition ??.

Suppose next that for some i, ti = [vi, ṽi] and vi 6∈ V 1. Since ṽi 6∈ V 1, there is no edge

between ti and V1. Since B
(1)
n has strictly positive entries, w(vi, n, n + 1) must contain

occurrences from vertices in V 1; and these occurrences have to occur somewhere in the

interior of the word. But this contradicts the fact that T1 has no incoming edges from

outside T1.

�

In the above proposition, the extreme case - when there are k extremal pairs, and the

vertex set of H has size 2k−1 - still does not produce perfect orderings, but only just, as the

next proposition demonstrates. First we define the family M of matrices whose relevance

will become apparent in Theorem ??.

Definition 3.27. Let M be the family of matrices whose entries take values in N, and

which are of the form

(3.4) F =


f1 + 1 f1 · · · f1

f2 f2 + 1 · · · f2
...

...
. . .

...

fd fd · · · fd + 1


for some d ∈ N.

Proposition 3.28. Let B ∈ A be a Bratteli diagram with k minimal subcomponents, and

where for each n ≥ 1, Cn is a k × k matrix. If (B,ω) is a perfectly ordered, well telescoped

Bratteli diagram with skeleton Fω, then Cn ∈M for all n.

Proof. We use the notation of Proposition ??. The proof of this last proposition showed us

that for a perfect order to be supported by B, each component Ti has to have an incoming

edge from outside Ti. Similarly, each component Ti has to have an outgoing edge with

range outside of Ti. Label V k+1 = {v1, . . . vk} so that vi ∈ [vi, ṽh(i)] where vi ∈ Ti and

h : {1, . . . , k} → {1, . . . , k} is a bijection. Thus in H, from each Ti there is an edge from Ti

to [vi, ṽh(i)], and there is an edge from [vh−2(i), ṽh−1(i)] to Ti. In addition for each i, there

is (possibly) an edge from [vi, ṽh(i)] to [vh(i), ṽh2(i)]. See Figure ?? for an example of such a

graph.

last_pic-eps-converted-to.pdf

Figure 3. An example of H when B has 3 minimal subcomponents and

h = (123).

If h is not a cyclic permutation, then the graph H is disconnected, in which case there are

no perfect orders on B which have the skeleton Fω. Thus h must be cyclic, and inspection
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of the graph H tells us that for each vi ∈ V k+1, and for each n, vi ∈ [vi, ṽh(i)] and

w(vi, n− 1, n) =

 kn∏
j=1

W
(j)
i viW

(j)
h(i)vh(i) . . .W

(j)
h−1(i)vh−1(i)

WiviWh(i)

where
∏

refers to concatenation of words, each W
(j)
i is a (possibly empty) word with letters

in V i, and Wi, Wh(i) are non-empty words. The result follows. �

3.4. Perfect orderings that generate odometers.

Definition 3.29. If a minimal Cantor dynamical system (Y, T ) admits an adic representa-

tion by a Bratteli diagram B with |Vn| = 1 for all levels n, then T is called an odometer.

Let L ⊂ AN. A word W ∈ L is periodic if it can be written as a concatenation W = Uk

of k copies of a word U where k > 1. Given a word W = w1 . . . wp, we define σi(W ) :=

wi+1wi+2 . . . wpw1 . . . wi. We say that L is periodic if there is some word V ∈ L such that

any word W ∈ L is of the form SV kP for some suffix (prefix) S = S(W ) (P = P (W )) of V .

Finally if Q = {q1, q2, . . . qn} is a partition of a set X and T : X → X is a bijection, then

we say that Q is periodic for T if T (qi) = qi+1 for 1 ≤ i < n and T (qn) = q1.

Next we state and prove a result which Fabien Durand has communicated to us as a known

result; the proof below is a direct generalisation of the proof of Part (ii) of Proposition 16

in [?].

Proposition 3.30. Let ω be a perfect ordering on the simple, strict finite rank diagram B.

If LB,ω is periodic, then (XB , ϕω) is topologically conjugate to an odometer.

Proof. Suppose LB,ω is periodic. Let V denote the vertex set of B at each level. Fix

v such that there is a vertical minimal path going through the vertex v. Then for all

k, limn→∞ w(v, k, n) exists. In particular limn→∞ w(v, 1, n) = WWW . . . where W =

w1w2 . . . wp is of length p and is not periodic.

We define a sequence of partitions (Qn) that will be refining, clopen, generating periodic

partitions of (XB , ϕω), and such that |Qn+1| is a multiple of |Qn|. The existence of this

sequence implies that (XB , ϕω) is an odometer. For x = x1x2 . . . ∈ XB (where s(x1) = v0),

j ∈ N, and 0 ≤ i ≤ p− 1, let

[i]j = {x : s(xj+1) s((ϕω(x))j+1) . . . s((ϕp−1ω (x))j+1 = σi(W )}.

Let

Q1 := {[i]1 : 0 ≤ i ≤ p− 1}.

Since W is not periodic each x lives in only one [i]1, and Q1 is of period p for ϕω.

Given a vertex v ∈ Vn, recall that h
(n)
v = |E(v0, v)| for v ∈ Vn. Define for n > 1

Qn := {[i1, i2] : 0 ≤ i2 ≤ p− 1, 0 ≤ i1 ≤ h(n)wi2+1
− 1}

where

[i1, i2] := [i2]n ∩ {x : x1x2 . . . xn ∈ E(v0, wi2+1) and has ω-label i1 }.

Then for each n ≥ 1, Qn is a clopen partition, Qn+1 refines Qn, and it is clear that (Qn) is a

generating sequence of partitions. We claim that Qn is ϕω periodic. For, if i1 < h
(n)
wi2+1 − 1,

ϕω([i1, i2]) = ([i1 + 1, i2]). If i1 = h
(n)
wi2+1 − 1 and i2 < p− 1 then ϕω([i1, i2]) = [(0, i2 + 1)].

Finally ϕω([h
(n)
wi2+1 − 1, p− 1]) = [0, 0].
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It remains to show that |Qn+1| is a multiple of |Qn|. Note that for each v ∈ V and each

n ≥ 2, w(v, n− 1, n) = S
(n)
v Wα(n)

v P
(n)
v with S

(n)
v a proper suffix of W , P

(n)
v a proper prefix

of W , and, whenever vu ∈ L(B,ω), then P
(n)
v S

(n)
u is either empty or equal to W . Note that

wpw1 ∈ L(B,ω), so that for each n, P
(n)
wp S

(n)
w1 = W or is the empty word. We assume that

P
(n)
wp S

(n)
w1 = W in the computation below, otherwise simply remove the ‘1’. If W ′ ⊂ W , let

#W ′(W ) denote the distinct number of occurrences of W ′ in W. Then

|Qn+1| = p
∑
v∈W

#v(W )h(n+1)
v

= p
∑
v∈W

#v(W )

α(n+1)
v +

∑
v1w1:P

(n+1)
v1

S
(n+1)
w1

=W

#v1w1
(W ) + 1

 |Qn|.
�

We will now consider in detail the class of finite rank diagrams described in Example

??. Let the Bratteli diagram B have strink rank d > 1. We show that if B is to support a

perfect ordering with d maximal and d minimal paths, then a certain structure is imposed

on the incidence matrices of B.

Definition 3.31. Denote by D the set of rank d simple Bratteli diagrams B where Vn =

{v1, . . . vd} for each n ≥ 1, and whose incidence matrices (Fn) eventually belong to the class

M (see Definition ??), and where all entries are non-zero.

It is not hard to check that the set D is invariant under telescoping of diagrams.

Proposition 3.32. Let B be a simple, strict rank d Bratteli diagram.

(1) Suppose B ∈ D, and σ is a cyclic permutation of the set {1, 2, ..., d}. Then there

exists an ordering ω ∈ PB ∩ OB(d) on B such that

Xmax(ω) = {M1, ...,Md}, Xmin(ω) = {m1, ...,md}

where Mi (mj) is an eventually vertical path through the vertex vi (vj, respectively),

i, j = 1, ..., d. Moreover, the corresponding Vershik map ϕω satisfies the condition

(3.5) ϕω(Mi) = mσ(i).

(2) Suppose there exists an ordering ω ∈ PB ∩ OB(d) such that all maximal and min-

imal paths are eventually vertical. Then the Vershik map ϕω determines a cyclic

permutation on the set {1, ..., d} and B belongs to D.

Proof. (1) We need to construct a perfect ordering ω on B such that (??) holds. For every

vj ∈ {v1, ..., vd} = Vn and every n large enough, we take d subsets E(vi, vj) of r−1(vj)

where vi ∈ Vn−1. Then |E(vi, vj)| = f
(n)
j if i 6= j and |E(vj , vj)| = f

(n)
j + 1. Hence

|r−1(vj)| = df
(n)
j + 1. for each n ≥ 1 and each vj ∈ Vn define the order on r−1(vj) as

follows:

(3.6) w(vj , n− 1, n) = (vj vσ(j) vσ2(j) . . . vσd−1(j))
f
(n)
j vj .

Clearly, relation (??) defines explicitly a linear order on r−1(vj). To see that ϕω is continu-

ous, it suffices to note that for each j there is a unique i := σ(j) such that vjvi ∈ LB,ω. By

Proposition ?? we are done.
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(2) Conversely, suppose that ω is a perfect ordering on B with d maximal and d minimal

eventually vertical paths, so that each vertex has to support both a maximal and a minimal

path Mi and mi; thus for each i and each n large enough, the word ω(vi, n − 1, n) starts

and ends with vi. Since ω is perfect then by Proposition ?? there is a permutation σ such

that for each j ∈ {1, . . . d} only vjvσ(j) ∈ LB,ω. So, for each j and all but finitely many n,

there is a f
(n)
j such that

(3.7) w(vj , n− 1, n) = (vj vσ(j) vσ2(j) . . . vσd−1(j))
f
(n)
j vj .

Since B is simple, σ has to be cyclic so that all vertices occur in the right hand side of

(??). From (??) it also follows that all but finitely many of the incidence matrices of B are

of the form (??). �

Corollary 3.33. Let B be a simple Bratteli diagram of rank d ≥ 2 and let ω ∈ PB ∩OB(d).

Then (XB , ϕω) is conjugate to an odometer.

Proof. We can assume that (B,ω) is well telescoped (conjugacy of two adic systems is

invariant under telescoping of either of them). Note that the proof of Proposition ?? tells

us that L(B,ω) is periodic. Lemma ?? tells us that (XB , ϕω) is conjugate to an odometer;

however in this specific case there is a simpler sequence of periodic, refining, generating

partitions (Qn): let Qn be the clopen partition defined by the first n levels of B, and write

Qn =
∐d
i=1Qn(vi), where Qn(vi) is the set of all paths from v0 to vi ∈ Vn. Each non-

maximal path in Qn(vi) is mapped by ϕω to its successor in Qn(vi). For i ∈ {1, . . . , d}, let

Mn
i denote the maximal path in Qn(vi). Since the ordering ω is perfect, ϕω(Mn

i ) = mn
σ(i),

where mn
σ(i) is the minimal path in Qn(vσ(i)). Thus the partition Qn is ϕω-periodic. We

will also compute the sequence (kn) such that |Qn+1| = kn|Qn|. By Proposition ??, the

incidence matrices of B are of the form (??): all columns of Fn sum to the same constant

kn = (1 +
∑d
i=1 f

(n)
i ). Let Fn = (f

(n)
i,j ) and h

(n)
i := |Qn(vi)|, then h

(n+1)
i =

∑d
j=1 f

(n)
i,j h

(n)
j

and

|Qn+1| =

d∑
i=1

h
(n+1)
i =

d∑
i=1

h(n)i +

d∑
j=1

h
(n)
j f

(n)
i


= |Qn|+

d∑
i=1

f
(n)
i

d∑
j=1

h
(n)
j = |Qn|(1 +

d∑
i=1

f
(n)
i ).

�

Next we consider conditions for a Bratteli diagram B of strict rank d to support a perfect

ordering ω such that (XB , ϕω) is an odometer. Suppose that we are given a skeleton F on

B: we have subsets Ṽ and V of V , both of cardinality k ≤ d, a bijection σ : Ṽ → V , and

partitions W ′ = {W ′v : v ∈ V } and W = {Wṽ : ṽ ∈ Ṽ } of V . Let H = (T, P ) be the directed

graph associated to F . We assume that H is strongly connected. Let p be a finite path in

H. Then p can correspond to several words in V + = {v1, . . . vd}+: for example if p starts at

vertex [v, ṽ], then it corresponds to words starting with v whenever v ∈ [v, ṽ]. If w is a word

in V + then we write w = . . . v to mean that w ends with v, and w = v . . . to mean that w

starts with v. It is not difficult to find words w ∈ V + corresponding to a path in H such

that
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(1) w contains all vi’s,

(2) w2 corresponds to a legitimate path in H, and

(3) for each ṽ ∈ Ṽ , if σ(ṽ) = v, there exist words p(ṽ) = . . . ṽ and s(v) = v . . . such that

w = p(ṽ) s(v).

Call a word which satisfies (1) - (3) σ-decomposable. If w is a word, let −→w be the d-

dimensional vector whose i-th entry is the number of occurrences of vi ∈ V .

The following result generalizes Proposition ??, and gives the constraints on the sequence

(Fn) of transition matrices that a diagram B has in order for B to support an odometer

with a periodic language.

Proposition 3.34. Let B be a simple, strict rank d Bratteli diagram. Suppose that F is a

skeleton such that the associated graph H is strongly connected, and let w be a σ-decomposable

word which corresponds to a path in H. Let {p(n)v }v∈V,n≥1 be a set of nonnegative integers.

If the incidence matrices (Fn) of B are such that the v-th row of Fn is

(3.8)
−−→
s(v) + p(n)v

−→w +
−−→
p(ṽ)

whenever v ∈ [v, ṽ]; then (XB , ϕω) is topologically conjugate to an odometer.

Proof. Define, for v ∈ [v, ṽ], w(v, n− 1, n) := s(v)wp
(n)
v p(ṽ). Note that the v-th row of F (n)

is (??), and (B,ω) has skeleton F . Now H tells us what words of length 2 are allowed in

LB,ω: vv′ ∈ LB,ω only if v ∈ [v, ṽ], v′ ∈ [v′, ṽ′], and σ(ṽ) = v′. Thus

w(v, n− 1, n)w(v′, n− 1, n) = s(v)wp
(n)
v p(ṽ) s(v′)wp

(n)

v′ p(ṽ′) = s(v)wp
(n)
v wwp

(n)

v′ Pṽ′

by property (3) of a σ-decomposable word. Since w(v, n − 1, n + 1) (and more generally,

w(v, n− 1, N)) is a concatenation of words w(v, n− 1, n), this implies that LB,ω is periodic.

Proposition ?? implies the desired result.

�

There is a converse to this result: namely that if a perfect order ω on a simple diagram B

has a periodic language, then there is some σ-decomposable word which generates L(B,ω),

so that by Lemma ??, (XB , ϕω) is an odometer.

If V = {v1, v2, . . . vd} and a perfect ω is to have d maximal paths, then Proposition ??

tells us that v1v2 . . . vd is, up to rotation, the only σ-decomposable word. The next example

shows that in general σ-decomposable words are easy to find.

Example 3.35. Let V = {a1, a2, . . . an+1}, V = Ṽ = {a1, a2, . . . an}, σ(ai) = ai+1 for i < n

and σ(an) = a1, where [ai, ai] = {ai} for each i and an+1 ∈ [ai, aj ] for some j 6= i. Then

any word starting with ai (for 1 ≤ i ≤ n), ending with σ−1(ai), and containing all ai’s is

σ-decomposable.

4. A characterization of finite rank diagrams that support perfect,

non-proper orders

In this section, which is built on the results of Section ??, we discuss the question of

under what conditions a simple rank d Bratteli diagram B can have a perfect ordering ω

belonging to OB(k) for 1 < k ≤ d. It turns out that the incidence matrices must satisfy

certain conditions, which in turn depend on the skeleton that one is considering.
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Let (B,ω) be a perfectly ordered simple Bratteli diagram. We continue to assume that

(B,ω) is well telescoped. Let F = Fω be the skeleton generated by ω and let ϕ = ϕω be the

corresponding Vershik map. We have |Ṽ | = |V | and ϕω defines a one-to-one map σ : Ṽ → V

such that ϕω(Mv) = mσ(v) for v ∈ Ṽ . Recall also the two partitions W = {Wṽ : v ∈ Ṽ } and

W ′ = {W ′v : v ∈ V } of V generated by F .

We need some new notation. Recall that we write Ṽn (V n) instead of just Ṽ (V ) if we need

to specify in which level Ṽ (V ) lies. Let E(Vn, u) be the set of all finite paths between vertices

of level n and a vertex u ∈ Vm where m > n. The symbols ẽ(Vn, u) and e(Vn, u) are used to

denote the maximal and minimal finite paths in E(Vn, u), respectively. By Ṽn we mean that

we are looking at the set Ṽ of vertices at level n. Fix maximal and minimal vertices ṽ and

v in Ṽn−1 and V n−1 respectively. Denote E(Wṽ, u) = {e ∈ E(Vn, u) : s(e) ∈ Wṽ, r(e) = u}
and Ẽ(Wṽ, u) = E(Wṽ, u)\{ẽ(Vn, u)}. Similarly, E(W ′v, u) = E(W ′v, u)\{e(Vn, u)}. Clearly,

the sets {E(Wṽ, u) : ṽ ∈ Ṽ } form a partition of E(Vn, u). Let e be a non-maximal finite

path, with r(e) = v and s(e) ∈ Vm, which determines the cylinder set U(e). By ϕω(e) we

mean ϕω(U(e)), the image, under ϕω(e), of the cylinder set U(e), which also has range v,

and source in Vm.

Lemma 4.1. Let (B,ω) be a perfectly ordered, well telescoped finite rank simple diagram,

where ω has skeleton Fω and permutation σ : Ṽ → V . If n > 1, ṽ ∈ Ṽn−1 and u ∈ Vm (m >

n), then for any finite path e ∈ Ẽ(Wṽ, u) we have ϕω(e) ∈ E(W ′σ(ṽ), u).

Proof. Note that s(e)s(ϕω(e)) is a subword of w(u, n,m). Now s(e) ∈ Wṽ by assumption

and s(ϕω(e)) ∈Wv for some v. This implies that ṽv is a sub word of w(u, n−1,m). Recalling

that (B,ω) is telescoped, the result follows.

�

We immediately deduce from the previous lemma that the following result on entries of

incidence matrices is true.

Corollary 4.2. In the notation of Lemma ??, the following condition holds for the perfectly

ordered, well telescoped finite rank simple diagram (B,ω): for any n ≥ 2, any vertex ṽ ∈
Ṽn−1, m > n, and any u ∈ Vm one has

|Ẽ(Wṽ, u)| = |E(W ′σ(ṽ), u)|.

In particular, if B is as above, and (Fn) = ((f
(n)
v,w)) denotes the sequence of positive

incidence matrices for B, then we can apply Corollary ?? to obtain the following property

on Fn. Define two sequences of matrices F̃n = (f̃
(n)
w,v) and Fn = (f

(n)

w,v) by the following rule

(here w ∈ Vn+1, v ∈ Vn and n ≥ 1):

(4.1) f̃ (n)w,v =

{
f
(n)
w,v − 1, if ẽw ∈ E(v, w);

f
(n)
w,v, otherwise,

(4.2) f
(n)

w,v =

{
f
(n)
w,v − 1, if ew ∈ E(v, w);

f
(n)
w,v, otherwise.
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Then for any u ∈ Vn+1 and ṽ ∈ Ṽn−1, we obtain that under the conditions of Corollary ??

the entries of incidence matrices have the property:

(4.3)
∑
w∈Wṽ

f̃ (n)u,w =
∑

w′∈W ′
σ(ṽ)

f
(n)

u,w′ , n ≥ 2.

We call relations (??) the balance relations.

Given (F , σ) on B, is it sufficient for B to satisfy the balance relations so that there is a

perfect order on B with associated skeleton and permutation (F , σ)? Almost. We need one

extra condition on B. First we need finer notation for H: we replace it with a sequence (Hn)

where each Hn looks exactly the same as H, except that the vertices Tn of Hn are labeled

[v, ṽ, n]. Paths in Hn will correspond to words from Vn, in particular, the word w(u, n, n+1)

will correspond to a path in Hn. (In the case where B is a stationary diagram, there is no

need to replace H with (Hn).)

Definition 4.3. Fix n ∈ N and u ∈ Vn+1. If [v, ṽ, n] ∈ Hn, we define the crossing number

Pu([v, ṽ, n]) for the vertex [v, ṽ, n] as

Pu([v, ṽ, n]) :=
∑

w∈[v,ṽ,n]

f̃ (n)uw .

This crossing number represents the number of times that we will have to pass through

the vertex [v, ṽ, n] when we define an order on r−1(u), for u ∈ Vn+1, and here we emphasize

that if we terminate at [v, ṽ, n] , we do not consider this final visit as contributing to the

crossing number - this is why we use the terms f̃
(n)
u,w, and not f

(n)
u,w.

Definition 4.4. We say that Hn is positively strongly connected if for each u ∈ Vn+1, the

set of vertices {[v, ṽ, n] : Pu([v, ṽ, n]) > 0}, along with all the relevant edges of Hn, form a

strongly connected subgraph of Hn.

If s(ẽu) ∈ [v, ṽ, n] we shall call this vertex in Hn the terminal vertex (for u), as when

defining the order on r−1(u), we need a path that ends at this vertex (although it can

previously go through this vertex several times - in fact precisely Pu([v, ṽ, n]) times).

Example 4.5. In this example we have a stationary diagram so we drop the dependance

on n. Suppose that V = {a, b, c, d}, V = Ṽ = {a, b, c}, with a ∈ [a, a], b ∈ [b, b], c ∈ [c, c] and

d ∈ [b, a]. Let σ(a) = b, σ(b) = c and σ(c) = a. Suppose that for each n ≥ 1 the incidence

matrix F = Fn is

F :=


2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2


Then if u = d, Pd([a, a]) = 0, and the remaining three vertices [b, b], [c, c] and [b, a] do not

form a strongly connected subgraph of H: there is no path from [c, c] to [b, a].

Note also that although the rows of this incidence matrix satisfy the balance relations

(??), there is no way to define an order on r−1(d) so that the resulting global order is perfect.

The lack of positive strong connectivity of the graph H is precisely the impediment.

The following result shows that, given a skeleton F on B, as long as the associated graphs

(Hn) are eventually positively strongly connected, the balance relations are sufficient to

define a perfect ordering ω on a simple Bratteli diagram.
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Theorem 4.6. Let B be a simple strict rank d Bratteli diagram, let F = {Mṽ,mv, ẽw, ew :

w ∈ V ∗\V0, ṽ ∈ Ṽ and v ∈ V } be a skeleton on B, and let σ : Ṽ → V be a bijection. Suppose

that eventually all associated graphs Hn are positively strongly connected, and suppose that

the entries of incidence matrices (Fn) eventually satisfy the balance relations (??). Then

there is a perfect ordering ω on B such that F = Fω and the Vershik map ϕω satisfies the

relation ϕω(Mṽ) = mσ(ṽ).

Proof. Fix n large enough so that Hn is positively strongly connected and the balance

relations hold. Our goal is to define a linear order ωu on r−1(u) for each u ∈ Vn+1. Once

this is done for all n large, the corresponding partial ordering ω on B will be perfect. Recall

that each set r−1(u) contains two pre-selected edges ẽu, eu and they should be the maximal

and minimal edges after defining ωu.

Fix u ∈ Vn+1. The proof is based on an recursive procedure that is applied to the u-th

row of the incidence matrix Fn. We describe in detail the first step of the algorithm that

will be applied repeatedly. At the end of each step in the algorithm, one entry in the u-th

row of Fn will have been reduced by one, and a path in Hn will have been extended by one

edge. At the end of the algorithm, the u-th row will have been reduced to the zero row,

and a path will have been constructed in Hn, starting at the vertex in Hn to which s(eu)

belongs, and ending at the vertex in Hn to which s(ẽu) belongs. This path will determine

the word w(u, n, n + 1), i.e. the order ωu on r−1(u). It will be seen from the proof of the

theorem that for given F and σ, the order ωu that is defined is not unique.

We will first consider the particular case when the associated graph Hn defined by (F , σ)

does not have any loops. After that, we will modify the construction to include possible

loops in the algorithm. We also include Examples ?? and ?? to illustrate why it is necessary

to consider these cases.

Case I: there is no loop in Hn. Consider the u-th rows of matrices Fn and F̃n. They

coincide with the row (f
(n)
u,v1 , . . . , f

(n)
u,vd) of the matrix Fn except only one entry corresponding

to |E(s(eu), u)| and one entry corresponding to |E(s(ẽu), u)|. To simplify our notation, since

n is fixed we omit it as an index, so that F = Fn, fu,w = f
(n)
u,w, [v, ṽ] = [v, ṽ, n], H = Hn,

etc.

Take eu and assign the number 0 to it, i.e., eu is the minimal edge in ωu. Let [v0, ṽ0]

be the vertex8 of H such that s(eu) ∈ [v0, ṽ0]. Consider the set {ṽ ∈ Ṽ : [σ(ṽ0), ṽ] ∈ H}
(this set is formed by ranges of arrows in H coming out from [v0, ṽ0]). Find w′ such that

f̃u,w′ ≥ f̃u,w for all entries fu,w, w ∈W ′σ(ṽ0). If there are several entries that are the maximal

value, then fu,w′ is chosen arbitrarily amongst them. Take any edge e1 ∈ E(w′, u). In the

case where ẽu ∈ E(w′, u), we choose e1 6= ẽu. Assign the number 1 to e1 so that e1 becomes

the successor of e0 = eu. We note also that the choice of w′ from W ′σ(v0) actually means

that we take some ṽ1 ∈ Ṽ such that s(e1) ∈ [σ(ṽ0), ṽ1]. In other words, we take the edge

from [v0, ṽ0] to [σ(ṽ0), ṽ1] in the associated graph H.

We note that in the collection of relations (??), numerated by vertices from Ṽ , we have

worked with the equation defined by u and ṽ0. Two edges were labeled in the above proce-

dure, e0 and e1. We may think of this step as if these edges were ‘removed’ from the set of

8The same word ‘vertex’ is used in two meanings: for elements of the set T of the graph H and for

elements of the set V of the Bratteli diagram B. To avoid any possible confusion, we point out explicitly

what vertex is meant in that context.
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all edges in r−1(u). We claim that the remaining non-enumerated edges satisfy the equation

(4.4) (
∑

w∈Wṽ0

f̃u,w)− 1 = (
∑

w∈W ′
σ(ṽ0)

fu,w)− 1.

To see this, note that ṽ1 6= ṽ0: for if not, then σ(ṽ1) = σ(ṽ0), but this implies that there

would be a loop at [σ(ṽ0), ṽ1], a contradiction to our assumption. Thus ṽ1 6= ṽ0 and this

is why there is exactly one edge removed from each side of (??). Note that we now have a

‘new’, reduced u-th row of F . Namely, the entry fu,v0 has been reduced by one. Thus the

crossing numbers of the vertices of H change (one crossing number is reduced by one). Also

note that in H, we have arrived at the vertex [σ(ṽ0), ṽ1] to which w′ belongs. Thus for this

reduced u-th row, fu,w′ = fu,w′−1. In other words, with each step of this algorithm the row

we are working with changes, and the vertex w such that fu,w = fu,w − 1 changes (in fact,

has to change, because there are no loops in H). For, the vertex such that fu,w = fu,w − 1

belongs to the vertex in H where we are currently, and this changes at every step of the

algorithm. Thus the new reduced u-th row of F still satisfies the balance relations (??) as

ṽ ∈ Ṽ varies. This completes the first step of the construction.

We apply the described procedure again to show how we should proceed to complete the

next step. Let us assume that all crossing numbers ares still positive for the time being to

describe the second step of the algorithm.

Consider the set {fu,w : w ∈ W ′σ(ṽ1)} and find some w′′ such that f̃u,w′′ ≥ f̃u,w for any

w ∈ W ′σ(ṽ1). In the corresponding set of edges E(w′′, u) we choose e2 6= ẽu, and assign the

number 2 to the edge e2, so that e2 is the successor of e1.

Observe that now we are dealing with the relation of (??) that is determined by ṽ1 ∈ Ṽ .

If we again ‘remove’ the enumerated edges e1 and e2 from it, then this relation remains true

with both sides reduced by 1 as we saw the same in (??).

We remark also that the choice that we made of w′′ (or e2) allows us to continue the

existing path (in fact, the edge) in H from [v0, ṽ0] to [σ(ṽ0), ṽ1] with the edge from [σ(ṽ0), ṽ1]

to [σ(ṽ1), ṽ2], where ṽ2 is defined by the property that s(e2) ∈ [σ(ṽ1), ṽ2].

This process can be continued. At each step we apply the following rules:

(1) the edge ei, that must be chosen next after ei−1, is taken from the set E(w∗, u) where

w∗ corresponds to a maximal entry amongst f̃u,w as w runs over W ′σ(ṽi−1)
;

(2) the edge ei is always taken not equal to ẽu unless no more edges except ẽu are left.

After every step of the construction, we see that the following statements hold.

(i) Relations (??) remain true when we treat them as the number of non-enumerated

edges left in r−1(u). In other words, when a pair of vertices ṽ and σ(ṽ) is considered, we

reduce by 1 each side of the equation defined by ṽ.

(ii) The used procedure allows us to build a path p from the starting vertex [v0, ṽ0] going

through other vertices of the graph H according to the choice we make at each step. We need

to guarantee that at each step, we are able to move to a vertex in H whose crossing number

is still positive (unless we are at the terminal stage). As long as the crossing numbers of

vertices in H are positive, there is no concern. Suppose thought that we land at a (non-

terminal) vertex [v, ṽ] in H whose crossing number is one (and this is the first time this

happens). When we leave this vertex, to go to [σ(ṽ), ṽ′], the crossing number for [v, ṽ] will

become 0 and therefore it will no longer be a vertex of H that we can ‘cross’ through, maybe

only arriving at it terminally. Thus at this point, with each step, the graph H is also changing
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(being reduced). We need to ensure that there is a way to continue the path out of [σ(ṽ), ṽ′].

Since
∑
w∈Wṽ

f̃u,w ≥ Pu[σ(ṽ), ṽ] = 1, then by the balance relations,
∑
w′∈Wσ(ṽ′)

fu,w′ ≥ 1.

If the crossing number of all the vertices [σ(ṽ′), ∗] have been reduced to 0, then this means

that for a unique w′, fu,w′ = 1 (the rest of the summands in
∑
w′∈Wσ(ṽ′)

fu,w′ equal 0), and

f̃u,w′ = 1: this tells us that we have to move into this terminal vertex for the last time.

Then the balance equations, which continue to be respected, ensure we are done. Otherwise,

the balance equations guarantee that
∑
w′∈Wσ(ṽ′)

fu,w′ > 1, which means there is a valid

continuation of our path out of [σ(ṽ), ṽ′] and to a new vertex in H, and we are not at the

end of the path. It is these balance equations which always ensure that the path can be

continued until it reaches its terminal vertex.

(iii) In accordance with (i), the u-th row of F is transformed by a sequence of steps in

such a way that entries of the obtained rows form decreasing sequences. These entries show

the number of non-enumerated edges remaining after the completed steps. It is clear that,

by the rule used above, we decrease the largest entries first. It follows from the simplicity of

the diagram that, for sufficiently many steps, the set {s(ei)} will contain all vertices v1, ..., vd

from V . This means that the transformed u-th row consists of entries which are strictly less

than those of the very initial u-th row F . After a number of steps the u-th row will have

a form where the difference between any two entries is ±1. After that, this property will

remain true.

(iv) It follows from (iii) that we finally obtain that all entries of the resulting u-th row

are zeros or ones. We apply the same procedure to enumerate the remaining edges from

r−1(u) such that the number |r−1(u)| − 1 is assigned to the edge ẽu. This means that we

have constructed the word Wu = s(eu)s(e1) · · · s(ẽu), i.e. we have ordered r−1(u).

Looking at the path p that is simultaneously built in H, we see that the number of times

this path comes into and leaves a vertex [v, ṽ] of the graph is precisely the crossing number

of [v, ṽ] . In other words, p is an Eulerian path of H that finally arrives to the vertex of H
defined by s(ẽu).

Case II: there is a loop in H = Hn. To deal with this case, we have to refine the described

procedure to avoid a possible situation when the algorithm cannot be finished properly.

We start as in Case (I), and continue until we have arrived to a vertex [v1, ṽ], where, for

the first time, [σ(ṽ), ṽ] ∈ H. In other words, this is the first time that our path reaches

a vertex which has a successor with a loop. If [σ(ṽ), ṽ] has crossing number zero, - i.e.

it is the terminal vertex - and we are not at the terminal stage of defining the order, we

ignore this vertex and continue as in Case (I). If [σ(ṽ), ṽ] has a positive crossing number,

i.e. Pu([σ(ṽ), ṽ]) > 0, then at this point, we continue the path to [σ(ṽ), ṽ], and then traverse

this loop Pu([σ(ṽ), ṽ]) − 1 times. If Pu([σ(ṽ), ṽ]) =
∑
w∈[σ(ṽ),ṽ] f̃u,w =

∑
w∈[σ(ṽ),ṽ] fu,w

this means we are traversing this vertex enough times that it is no longer part of the

resulting H that we have at the end of this step - we are removing the looped vertex. If

Pu([σ(ṽ), ṽ]) =
∑
w∈[σ(ṽ),ṽ] f̃u,w = (

∑
w∈[σ(ṽ),ṽ] fu,w) − 1, then we are reducing this vertex

to a vertex whose crossing number is 0 and we will only return to this vertex at the very

end of our path. Looking at the relation

(4.5)
∑
w∈Wṽ

f̃u,w =
∑

w′∈W ′
σ(ṽ)

fu,w′ ,
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we see that we have removed all the values f̃u,w, where w ∈ [σ(ṽ), ṽ] on the left hand side,

and also this same amount of values from the right hand side. We consequently enumerate

all edges whose source lies in [σ(ṽ), ṽ] in arbitrary order.

We also need to ensure that once we have traversed this loop the required number of

times, we can actually leave this vertex [σ(ṽ), ṽ]. To see this, we first make a remark about

the graph H. Suppose that there is a loop in H at [v, ṽ], whose crossing number is positive.

If [v1, ṽ] is a (non-looped) vertex with a positive crossing number, which has [v, ṽ] (the

vertex with the loop) as a successor, then for some ṽ′ 6= ṽ, the vertex [v, ṽ′] will satisfy∑
w′∈[v,ṽ′] fu,w′ > 0. This is because of our discussion above concerning (??): the crossing

number at the looped vertex appears on both sides, and cancel. So if [v1, ṽ] has a positive

crossing number, this contributes positive values to the left hand side of (??); thus there

is some vertex [v, ṽ′] with a positive value
∑
w′∈[v,ṽ′] fu,w′ contributing to the right hand

side of (??). All this means that we are able to continue our path out of the looped vertex

[σ(ṽ), ṽ].

Then we return to the procedure from (I), until we reach a vertex with a looped vertex as

a successor, and revert to the procedure from (I) when we have removed the looped vertex.

To summarize Cases I and II, we notice that, constructing the Eulerian path p, the

following rule is used: as soon as p arrives before a loop around a vertex t in H, p traverses

this vertex Pu(t) − 1 times. Then p leaves t and goes to the vertex t′ according to the

procedure in Case I.

As noticed above, the fact that all edges e from r−1(u) are enumerated is equivalent

to defining a word formed by the sources of e. In our construction, we obtain the word

w(u, n, n+ 1) = s(eu)s(e1) · · · s(ej) · · · s(ẽu).

Applying these arguments to every vertex u at every sufficiently advanced level of the

diagram, we define an ordering ω on B. That ω is perfect follows from Lemma ??: we chose

ω to have skeleton F , and for each n ≥ 1, constructed all words w(v, n, n+ 1) to correspond

to paths in Hn. The result follows.

�

Remark 4.7. We observe that the assumption about simplicity of the Bratteli diagram in

the above theorem is redundant. It was used only when we worked with strictly positive

rows of incidence matrices. But for a non-simple finite rank diagram B we can use the

following result proved in [?].

Any Bratteli diagram of finite rank is isomorphic to a diagram whose incidence matrices

(Fn) are of the form

(4.6) Fn =



F
(n)
1 0 · · · 0 0 · · · 0

0 F
(n)
2 · · · 0 0 · · · 0

...
...

. . .
...

... · · ·
...

0 0 · · · F
(n)
s 0 · · · 0

X
(n)
s+1,1 X

(n)
s+1,2 · · · X

(n)
s+1,s F

(n)
s+1 · · · 0

...
... · · ·

...
...

. . .
...

X
(n)
m,1 X

(n)
m,2 · · · X

(n)
m,s X

(n)
m,s+1 · · · F

(n)
m


.
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For every n ≥ 1, the matrices F
(n)
i , i = 1, ..., s, have strictly positive entries and matrices

F
(n)
i , i = s + 1, ...,m, have either strictly positive or zero entries. For every fixed j =

s+ 1, ...,m, there is at least one non-zero matrix X
(n)
j,k .

It follows from (??) that, for u ∈ Vn+1, the u-th row of Fn consists of several parts such

that the proof of Theorem ?? can be applied to each of these parts independently. Indeed,

it is obvious that if u belongs to any subdiagram defined by (F
(n)
i ), i = 1, ..., s, then we

have a simple subdiagram. If u is taken from (F
(n)
i ), i = s+ 1, ...,m, then by (??) we may

have some zeros in a row but they do not affect the procedure in the proof of Theorem ??.

We illustrate the proof of Theorem ?? with the following examples.

Example 4.8. SupposeB is a rank 6 Bratteli diagram defined on the vertices {a, b, c, d, e, f}.
Let V = Ṽ = {a, b, c} and σ(a) = b, σ(b) = c, σ(c) = a. Take the skeleton F =

{Ma,Mb,Mc,ma,mb,mc; ed, ẽd, ee, ẽe, ef , ẽf} where s(ed) = b, s(ee) = b, s(ef ) = c and

s(ẽd) = a, s(ẽe) = a, s(ẽf ) = c. For simplicity of notation, we suppose that B is stationary.

For such a choice of the data, we see that non-empty intersections of partitions W and W ′

give the following sets: [a, a] = {a}, [b, a] = {d, e}, [b, b] = {b}, [c, c] = {c, f}. The graph

H is illustrated in Figure ??.

third_pic-eps-converted-to.pdf

Figure 4. The graph associated to Fω in Example ??

We see that H has four vertices and one loop around the vertex [b, a]. The directed edges

are shown on the figure and defined by σ.

We consider, for definiteness, the case u = a only and construct an order on r−1(a)

according to Theorem ??. In this case, the balance relations have the form: fa,a − 1 =

fa,b = fa,c + fa,f and the entries fa,d, fa,e can be taken arbitrarily because they correspond

to the loop in H. For instance, the following row (3, 2, 1, 3, 2, 1) satisfies the above condition.

Applying the algorithm in the proof of Theorem ??, we can order the edges from r−1(a)

such that their sources form the word w(a, n − 1, n) = addeedbfabca. To define an order

on r−1(v), v = b, c, d, e, f , we apply similar arguments (details are left to the reader). By

Theorem ??, we conclude that if the entries of incidence matrices satisfy (??), then B admits

a perfect ordering ω such that F = Fω and the Vershik map agrees with σ.

In the next example, we will show how one can describe the structure of Bratteli diagrams

of rank d for which there exists a perfect ordering with exactly d− 1 maximal and minimal

paths. The following example deals with a finite rank 3 diagram.

Example 4.9. Suppose B is a rank 3 diagram defined on the vertices {a, b, c} with V =

Ṽ = {a, b} and σ(a) = b, σ(b) = a. Take the skeleton F = {Ma,Mb,ma,mb; ed, ẽc, ec} where

s(ec) = b, s(ẽc) = a. For such a choice of the data, we see that [a, a] = {a}, [a, b] = ∅, [b, a] =

{c}, [b, b] = {b} and H is illutrated in Figure ??.
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ordering_construction-eps-converted-to.pdf

Figure 5. The graph associated to F in Example ??

To satisfy the condition of Theorem ??, we have to take the incidence matrix

F =

 f + 1 f p

g g + 1 q

t t s


where the entries f , g, p, q and t are any positive integers. We note that the form of F

depends on the given skeleton. In order to see how Theorem ?? works, one can choose some

specific values for the entries of F and repeat the proof of the theorem. For example, if the

incidence matrix is of the form

F =

 3 2 1

2 3 1

4 4 2

 ,

then one possibility for a valid ordering is w(a, n−1, n) = acbaba, w(b, n−1, n) = bacbab and

w(c, n − 1, n) = baccbababa. Note that there are other valid orderings that do not comply

with our algorithm, for example w(a, n− 1, n) = abacba.

Finally we show how looped vertices can cause trouble. Take the vector (f + 1, f, p) =

(2, 1, 1) for the a-th row of F . Note that the only possible way to order r−1(a) is r−1(a) =

acba. In other words, the initial letter a must be followed by the letter c: in our graph H,

we must go from the vertex [a, a] to the looped vertex [b, a], otherwise we cannot complete

the ordering on r−1(a).

5. The measurable space of orderings on a diagram

In this section we study OB as a measure space. Recall that µ =
∏
v∈V ∗\V0

µv has

been defined as the product measure on the set OB =
∏
v∈V ∗\V0

Pv, where each µv is the

uniformly distributed measure on Pv. Also recall that OB(j) is the set of orders on B with

j maximal and j minimal paths. Let O∗B(j) be the set of orders on B with j maximal paths.

Theorem 5.1. Let B be a finite rank d aperiodic Bratteli diagram. Then there exists

j ∈ {1, ..., d} such that µ-almost all orderings have j maximal and j minimal elements.

Proof. We shall first show that there exist j such that µ-almost all orderings have j maximal

elements. Similarly, there will exist j′ such that µ-almost all orderings have j′ minimal

elements. To see that j = j′, note that the automorphism on OB that takes an order ω to

its reverse ω (if |r−1(v)| = k, r(e) = v and ω gives the edge e label j, then ω gives e the

label k − 1− j) is an automorphism that preserves µ, and maps O∗B(j) to the set of orders

with j minimal paths.9

9We thank the referee for this simplifying remark.
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If B has rank d, then for k ∈ N, 1 ≤ i ≤ d and n > k, define the event

Gn,ik = {ω : the maximal paths from level k to level n have exactly i distinct sources },

and

Hi
k :=

⋃
n>k

Gn,ik .

We claim that O∗B(1) = lim supH1
k . For if ω ∈ lim supH1

k , then for some subsequence (nk),

ω ∈ H1
nk

=
⋃
n>nk

Gn,1nk for each k. For each nk, there is some n > nk such that the maximal

paths from level nk to level n have only one source. This means there is only one maximal

path from level 1 to level nk that is extended to an infinite maximal path. Letting nk →∞,

we have that ω ∈ O∗B(1). Conversely, suppose that ω 6∈ lim supH1
k . Then for some K, and

all k > K,

ω ∈ (
⋃
n>k

Gn,1k )c =
⋂
n>k

d⋃
i=2

Gn,ik .

Fix k > K. For some j, and some {v1 . . . vj} ⊂ Vk, we have ω ∈ Gnp,jk for infinitely many

np > k, where the sources of the maximal paths from level k to level np are {v1 . . . vj} for

each of these np’s. Fix n1; for some set {v11 , . . . v1j } ⊂ Vn1
, and for some subsequence (np(1))

of (np), there are j maximal paths from level k to level np(1) whose sources are {v1 . . . vj}
and which pass through {v11 , . . . v1j } ⊂ Vn1 , for any np(1) . Let {M (i)

1 : 1 ≤ i ≤ d} be the

maximal paths from level k to level n1 with r(M
(i)
1 ) = v1i for 1 ≤ i ≤ j. Fix one n2 from

(np(1)). There exist {v21 , . . . v2j } ⊂ Vn2 and (np(2)), a subsequence of (np(1)), such that for

each np(2) , there are j maximal paths from level k to level np(2) with range {v21 , . . . v2j } ⊂ Vn2
.

Let {M (i)
2 : 1 ≤ i ≤ d} be the set of these maximal paths. Each M

(i)
2 is a refinement of M

(i)
1 .

Continue in this fashion to get, for each 1 ≤ i ≤ j, a sequence (M
(i)
j ) of paths converging

to j distinct maximal paths, so that ω 6∈ O∗B(1).

Similarly we can show that for 1 < j ≤ d,

O∗B(j) =

(
lim sup
k→∞

Hj
k

)
\
j−1⋃
i=1

O∗B(i) .

Now order the vertices in V =
⋃
n≥1 Vn as {v1, v2, . . .} starting from level 2 and moving

to levels Vn, n = 3, 4, . . .. for each n ≥ 1 define the random variable Xn on OB where

Xn(w) = i if the source of the maximal edge with range vn is the vertex i. The sequence

(Xn) is a sequence of mutually independent variables and if Σn is the σ-field generated by

{Xn, Xn+1, . . .} and Σ :=
⋂
n Σn, then for each 1 ≤ i ≤ d, O∗B(j) ∈ Σ and by Kolmogorov’s

zero-one law, for each 1 ≤ j ≤ d, µ(O∗B(j)) is either 0 or 1. Note now that one can repeat

the definitions of all the above sets replacing the word ‘maximal’ with ‘minimal’. The result

follows. �

In the next result we use our notation from the proof of Theorem ??.

Theorem 5.2. Let B be an aperiodic Bratteli diagram of rank d.

(1) µ(OB(1)) = 1 if and only if there exists a sequence (nk)∞k=1 such that∑∞
k=1 µ(G

nk+1,1
nk ) =∞.

(2) Let 1 < j ≤ d. Then µ(OB(j)) = 1 if and only if there exists a sequence (nk)

where
∑
k µ(G

nk+1,j
nk ) = ∞, and for each 1 ≤ i < j, and all sequences (mk),∑

k µ(G
mk+1,i
mk ) <∞.
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Proof. (1) Note that for each j and n with n > j,

(5.1) Gn,1j ⊂ Gn+1,1
j

and similarly for each j, n with n > j + 1, Gn,1j+1 ⊂ G
n,1
j . This implies that

(5.2) H1
j+1 =

⋃
n>j+1

Gn,1j+1 ⊂
⋃

n>j+1

Gn,1j ⊂
⋃
n>j

Gn,1j = H1
j .

If µ(OB(1)) = 1, then since from the proof of Theorem ?? OB(1) = lim supH1
k , we have

1 = µ(OB(1)) = µ(

∞⋂
k=1

⋃
j≥k

H1
j )

(??)
= µ(

∞⋂
k=1

H1
k),

which implies that for each k, µ(H1
k) = 1, and now inclusion (??) implies that for each k,

(5.3) 1 = µ(H1
k) = µ(

⋃
n>k

Gn,1k ) = lim
n→∞

µ(Gn,1k ),

and this implies the existence of a sequence (nk) such that
∑∞
k=0 µ(G

nk+1,1
nk ) =∞.

Conversely, suppose there is some (nk) such that
∑
k µ(G

nk+1,1
nk ) = ∞. The converse of

the Borel-Cantelli lemma implies that for µ-almost all orderings, there is a subsequence (jk)

such that all maximal edges in Ejk′ have the same source. This implies that for almost all

ω there is at most one, and thus exactly one maximal path in XB .

(2) We prove Statement (2) for j = 2, other cases follow similarly. If µ(OB(2)) = 1, then

µ(OB(1)) = 0, and by the proof of Theorem ??, this means that µ(lim supH2
k) = 1 and

µ(lim supH1
k) = 0. Using (1), we conclude that for all sequences (mk),

∑
k µ(G

mk+1,1
mk ) <∞.

Also, as in the proof of (1), we will have that for each k,

lim
n→∞

µ(Gn,1k ) = 0.

Note that for all n > j,

(5.4) Gn,2j ⊂ Gn+1,2
j ∪Gn+1,1

j

and for all n > j + 1, Gn,2j+1 ⊂ G
n,2
j ∪Gn,1j . This implies that

(5.5) H2
j+1 =

⋃
n>j+1

Gn,2j+1 ⊂
⋃

n>j+1

(Gn,2j ∪Gn,1j ) ⊂
⋃
n>j

(Gn,2j ∪Gn,1j ) = H2
j ∪H1

j .

It follows that H2
n ⊂ H2

j ∪H1
j whenever n > j. As in Part (1) we have

1 = µ(lim supH2
k)

(??)

≤ µ(

∞⋂
k=1

(H2
k ∪H1

k)),

so that for all k, µ(H2
k∩H1

k) = 1, and using Inclusion (??), this implies that limn→∞ µ(Gn,2k ∪
Gn,1k ) = 1, so that limn→∞ µ(Gn,2k ) = 1. Now one can construct a suitable sequence (nk) as

was done in (1).

Conversely, if for some (nk),
∑
k µ(G

nk+1,2
nk ) diverges, then the converse of the Borel-

Cantelli lemma implies that almost all orders ω have at most 2 maximal paths. Since for

each sequence (mk),
∑
k µ(G

mk+1,1
mk ) < ∞, Part (1) tells us that µ(OB(1)) = 0. The result

follows. �
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If (Fn), where Fn = (f
(n)
v,w), is the sequence of incidence matrices for B, consider the

Markov matrices Mn := (m
(n)
v,w) where m

(n)
v,w :=

f(n)
v,w∑
w f

(n)
v,w

. Here m
(n)
v,w represents the propor-

tion of edges with range v ∈ Vn+1 that have source w ∈ Vn. Similarly, if (nk) is a given

sequence, consider for j ≥ 1

(5.6) F ′j := Fnj+1−1 · Fnj+1−2 · . . . · Fnj+1

and define the Markov matrices M ′j = (m
′(j)
v,w) as before. Proposition ?? tells us that the

integer j such that µ(OB(j)) = 1 depends only on the masses of the sets G
nk+1,j
nk , as j and

(nk) vary. In turn, µ(G
nk+1,j
nk ) depends only on the matrices M ′k where F ′k is defined as in

(??).

The following corollary gives a sufficient condition for diagrams B where µ(OB(1)) = 1.

Note that this case includes all simple B with a bounded number of edges at each level. We

use the notation of relation (??).

Corollary 5.3. Let B be a Bratteli diagram with incidence matrices (Mn). Suppose there

is some ε > 0, sequences (nk) of levels and (wk) of vertices (where wk ∈ Vnk), such that

m′
(k)
v,wk ≥ ε for all k ∈ N and v ∈ Vnk+1

. Then µ(OB(1)) = 1.

Proof. The satisfied condition implies that µ(G
nk+1,1
nk ) ≥ εd. Now apply Proposition ??. �

Thus while in general there is no algorithm, which, given a simple diagram B, finds the

number of maximal paths that µ almost all orderings on B have; nevertheless Theorem

?? and Corollary ?? tell us that one can in principle find this number for a large class of

diagrams.

Next we want to make measure theoretic statements about perfect subsets in (OB , µ):

recall that if B′ is a nontrivial telescoping of B, the set L(PB) is a set of measure 0 in PB′ ;
for this reason we cannot telescope, and we will use the characterization of perfect orders

given by Lemma ??. Theorem ?? implies the following observation for simple diagrams. If

B is a diagram for which µ(OB(j)) = 1 with j > 1, then there is a meagreness of perfect

orderings on B and hence dynamical systems defined on XB . Part (2) of Theorem ?? implies

an analogous statement for aperiodic diagrams.

Theorem 5.4. Let B be a finite rank Bratteli diagram.

(1) Suppose B is simple. If µ(OB(1)) = 1, then µ(PB) = 1. If µ(OB(j)) = 1 for some

j > 1, then µ(PB) = 0.

(2) Suppose that B is aperiodic with q minimal components, and that its incidence ma-

trices (Fn) have a strictly positive row Rn for each n, and where at least one entry

in Rn tends to ∞ as n → ∞. If µ(OB(q)) = 1, then µ(PB) = 1. If µ(OB(j)) = 1

for some j > q, then µ(PB) = 0.

Proof. We remark that if j = 1, then clearly µ-almost all orderings are perfect.

Suppose that B is simple, where there are at most d vertices at each level, and µ(OB(j)) =

1 for some j > 1. Fix 0 < δ < 1/d. Define, for w ∈ Vn−1,

Pn(w) := {v ∈ Vn : m(n)
v,w ≥ δ} ;

then Vn =
⋃
w:Pn(w) 6=∅ Pn(w), and, if for infinitely many n, less than j of the Pn(w)’s are

non-empty, then, for some j′ < j, and some (nk), there is some ε such that µ(G
nk+1,j

′

nk ) ≥ ε,
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and Theorem ?? implies µ(OB(j′′)) = 1 for j′′ ≤ j′ < j, a contradiction. There is no harm

in assuming that for fixed n, the sets {Pn(w) : Pn(w) 6= ∅} are disjoint - if not we put

v ∈ Pn(w), for some w where m
(n)
v,w is maximal - and that there is some set {w1, . . . wj} of

vertices such that Pn(wi) 6= ∅ for each natural n and each i = 1, . . . , j. If all but finitely

many vertices of the diagram are the range of a bounded number of edges, then Lemma ??

implies that µ(OB(1)) = 1, a contradiction. So we can pick v∗n ∈ Vn which has a maximal

number of incoming edges. For ease of notation v∗n = v∗. By the comment just made, we

can assume that as n increases, v∗ is the range of increasingly many edges.

Let En be the event that

(1) For each v ∈ Vn, the maximal and minimal edge with range v has source wi whenever

v ∈ Pn(wi);

(2) for each n ≥ 2, there is a pair of consecutive edges with range v∗ ∈ Vn, both having

source wi when v∗ ∈ Pn(wi);

(3) For each n ≥ 2, there is a pair of consecutive edges with range v∗ ∈ Vn, the first

having source wi when v∗ ∈ Pn(wi); the second having source wi′ for for some i′ 6= i.

Then there is some δ∗ such that µ(En) ≥ δ∗ for all large n. So for a set OB(j)′ ⊂ OB(j)

of full measure, infinitely many of the events En occur. For ω ∈ OB(j)′, if ω ∈ En for such

n, then the extremal paths go through the vertices w1, . . . wj at level n. Now an application

of Lemma ?? implies that OB(j)′ ⊂ OB\PB .

To prove Part 2, first note that if B has q minimal components, then any ordering has at

least q extremal pairs of paths. We assume that extremal paths come in pairs - otherwise

the ordering is not perfect. If µ-almost all orderings have q maximal paths then necessarily

each pair of extremal paths lives in a distinct minimal component of B, and µ almost all

orderings belong to PB . Suppose that µ(OB(j)) = 1 where j > q. Write

OB(j) =
⋃

{(k1,...kq):
∑q
i=1 ki≤j}

OB(j, {(k1, . . . kq)})

where OB(j, {(k1, . . . , kq)}) is the set of orderings with ki extremal pairs in the i-

th minimal component. If for some i, ki > 1, then by the argument in Part (1),

µ(OB(j, {(k1, . . . , kq)})) = 0. If (k1, . . . , kq) = (1, . . . , 1) this means that there is at least

one extremal pair of paths which lives outside the minimal components of B. Repeat the

argument in Part 1, except that v∗ must be chosen outside the union of the minimal com-

ponents of B, and also such that at least one of the entries in {m(n)
v∗,v : v ∈ Vn} gets large as

n→∞.

�

Example 5.5. It is not difficult to find a simple Bratteli diagram B where almost all

orderings are not perfect. Let Vn = V = {v1, v2} for n ≥ 1, and let
∑∞
n=1m

(n)
vi,vj < ∞ for

i 6= j. Then for µ-almost all orderings, there is some K such that for k > K, the sources of

the two maximal/minimal edges at level n are distinct - i.e. µ(OB(2)) = 1. Note that here

µ(OB(2)) = 1 if and only if there are two probability measures on XB which are invariant

with respect to the tail equivalence relation. This is not in general true as the next example

shows.
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Example 5.6. This example appears in Section 4 of [?]. Let

Fk :=

 mk nk 1

0 nk − 1 1

mk − 1 nk 1

 .

where the sequences (mk) and (nk) satisfy 3nk + 1 ≤ 2mk ≤ nk+1, which implies that they

get large. The corresponding stochastic matrix satisfies

Mk ≈


mk

mk+nk
nk

mk+nk
0

0 1 0
mk

mk+nk
nk

mk+nk
0

 ,

and if we further require that nk+1 ≤ Cnk for some C ≥ 4, then nk
mk+nk

≥ 2
2+C , so that

by Corollary ??, µ(OB(1)) = 1, while in [?], it is shown that (a telescoping of) B has 2

probability measures which are invariant under the tail equivalence relation.

Example 5.7. Let

Fn :=



1 1 0 0 0 0 0

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 1 1 0

1 1 1 1 1 1 1


for n non-prime and

Fn :=



1 1 1 1 0 0 0

1 1 1 1 0 0 0

1 1 1 1 0 0 0

1 1 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 1 1 0

1 1 1 1 1 1 1


if n is prime. Then if n is prime, given any vertex w, m

(n)
v,w ≥ 1/7 either for v = v1 or v = v5.

So µ(Gn+1,2
n ) ≥ (1/7)7. Also µ(Gn+1,1

n ) = 0 for each n ≥ 1. Theorem ?? implies that j = 2.
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