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during the recent health crisis. Building on the extant literature that mainly uses monthly or quarterly macro 

proxies, we examine the daily economic impact on intra-daily financial volatility by applying the macro-
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and macro effects from credit and commodity markets on US and UK stock market realized volatility. Most 

interestingly, the Covid-19 outbreak is found to exert a considerable impact on financial volatilities through 

the uncertainty channel, given the prevalent worry about controversial policy interventions to support 
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and limited response in the very beginning of the pandemic. 
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1 Introduction 

Modeling and forecasting financial volatility are both of crucial importance to market practitioners for the 

purposes of derivatives pricing, portfolio management, firm valuation, and funding strategies, among 

others. Any business operation that includes asset valuation or risk assessment requires a volatility input. 

The behavior of volatility is also closely monitored by policymakers, given its potentially destabilizing 

effects on the financial system and the tight link of financial markets with the macroeconomic environment. 

In particular, the global financial crisis of 2007/08 led to a sharp increase in volatility and its persistence 

(with systemic risk externalities) and thus to a renewed interest in developing an appropriate modeling 

framework that, apart from the time series properties of the second moment of returns, also considers 

significant macro fundamentals. 

In this vein, our study investigates the macro-financial linkages in the high-frequency domain. In particular, 

we explore the daily macroeconomic effect on US and UK financial markets. We demonstrate that the stock 

market volatility receives the significant impact of daily macro fundamentals in all states of the economy 
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and the recent pandemic-induced turmoil as well, by applying a sophisticated macro-augmented 

econometric framework for volatility modeling. We intend to contribute to the extant literature on the macro 

forces driving financial markets, by incorporating high-frequency (daily) economic proxies (rather than 

quarterly or monthly variables most commonly used), and on the Covid-19 crisis effects on the volatility 

pattern, by using a broad sample which covers the initial shock of the virus outbreak on the financial system. 

The economic environment is rapidly evolving, especially during crises. The necessity to nowcast the 

macroeconomic developments has become a critical challenge nowadays for both market practitioners in 

trading and investments and policymakers in market interventions (Berger et al., 2023). Macro-informed 

volatility forecasts should rely on timely published high-frequency fundamentals rather than the traditional 

monthly or quarterly indicators often released with a significant time lag. 

Against this backdrop, we address this highly topical and policy-relevant issue by applying an extension of 

the HEAVY model of Shephard and Sheppard (2010)1 introduced by Karanasos and Yfanti (2020) for 

financial volatility modeling, which augments the bivariate system with asymmetries and power 

transformations through the APARCH (Asymmetric Power Autoregressive Conditional 

Heteroskedasticity) structure of Ding et al. (1993). The benchmark specification with leverage and power 

effects has already been shown to improve considerably on Bollerslev's (1986) standard GARCH 

(Generalized Autoregressive Conditional Heteroskedasticity) model (Brooks et al., 2000). The present 

study provides evidence that the augmented specification outperforms the benchmark one for the US and 

UK equity indices (see also Karanasos and Yfanti, 2020, for evidence on the European stock markets, and 

Karanasos et al., 2022, on emerging markets). Our first finding on US and UK equity data confirms the 

results of Karanasos and Yfanti (2020) for the European markets: namely, each of the two power 

transformed conditional variances is affected by the lags of both powered variables, the squared negative 

returns and the realized variance. 

Second, we estimate the extension of the asymmetric power specification with macro effects from daily US 

and UK economic policy uncertainty, global credit and commodity market benchmarks. This is the way to 

explore macro-financial linkages with higher- than monthly- or quarterly-frequency macro factors (used in 

most of the existing empirical literature) and provide a robust volatility modeling framework directly 

applicable to the well-established practice of financial trading and risk measuring relying on relevant 

fundamentals from the real economy. We apply the macro-augmented model to five US and UK stock index 

time series data covering the last two decades, with the first five months of the current pandemic included. 

We find that realized volatility is significantly affected by the macro variables and their inclusion improves 

the model's forecasting performance. In contrast with Karanasos and Yfanti (2020) and Karanasos et al. 

(2022), who explore the UK- and US-led uncertainty spillovers over the European and emerging markets, 

respectively, our motivation here is to investigate the crucial role of the local uncertainty effect (US and 

UK uncertainties on US and UK stock markets, respectively) and emphasize the need for daily news-based 

uncertainty indices covering more countries than only the UK and the US. 

Moreover, we estimate, apart from the direct destabilizing impact of uncertainty on volatility (by using it 

as a regressor), the uncertainty effect on each parameter of the realized volatility equation and demonstrate 

that higher uncertainty magnifies the leverage and macro effects from credit and commodity markets. 

Finally, we explore the daily macro-financial linkages separately during the world-wide Coronavirus 

outbreak. The Covid-19 effect on financial markets is significant and drives equity volatilities higher, 

mainly through the policy uncertainty channel, in line with the results of Baker et al. (2020a,b). The 

forecasting superiority of our approach is further illustrated through a Value-at-Risk (VaR) exercise focused 

particularly on the Covid period. In a nutshell, we answer three research questions. Which daily macro 

 
1 The acronym HEAVY stands for High-Frequency-Based Volatility (see Shephard and Sheppard, 2010). 
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fundamentals drive the US and UK stock market intra-daily volatility? Does the local uncertainty channel 

magnify the volatility drivers? How did the stock markets react to the initial pandemic wave? 

Our study contributes to the existing macro-finance literature in two important areas: i) in volatility 

modeling, by implementing a novel macro-augmented econometric approach and demonstrating its 

superiority over standard benchmark models, and ii) in the investigation of macro-financial linkages with 

the effects of domestic uncertainty levels on the stability of US and UK financial markets, using high-

frequency data and the Covid-induced impact. Hence, we demarcate our study from Karanasos and Yfanti 

(2020), who focus on European markets with the UK uncertainty level effects without the pandemic impact, 

and from Karanasos et al. (2022), who study the influence of the second moment (volatility) of the US 

uncertainty on emerging markets. The bivariate model of the two volatility series is suitable for equity 

market returns and several other financial assets, such as bonds, commodities or cryptocurrencies and 

business finance applications, such as investing and trading in bond and commodity markets, foreign 

exchange risk hedging and further important daily business operations of corporate treasuries. Specifically, 

it outperforms the benchmark specification in terms of both the short- and long-term forecasting properties 

(note that trading and risk management are mostly based on one- to ten-day forecasts while policymakers 

focus on longer-term predictions of financial volatility). This is shown through the VaR example that has 

both risk management and policy implications. Lastly, this paper is relevant to a crucial issue nowadays, 

the pandemic-induced crisis, and contributes to the burgeoning research on the Covid-19 socio-economic 

impact and policy interventions. 

The remainder of the paper is structured as follows. Section 2 presents the theoretical background and our 

research hypotheses. Section 3 describes the extended HEAVY specification, which allows for 

asymmetries, power transformations, and macro effects. Section 4 describes our dataset and Section 5 

presents the results for the benchmark and the macro-augmented asymmetric power models. Section 6 

analyzes the forecasting properties of the alternative models by comparing their multiple-step-ahead 

forecasts and by using the volatility predictions in a VaR example for the Covid period. Section 7 focuses 

on the uncertainty effects on the parameters of the HEAVY specifications and Section 8 explores the recent 

Covid-induced uncertainty impact on macro-financial linkages. Finally, Section 9 offers some concluding 

remarks. 

 

2 Theoretical Background and Research Hypotheses 

In this Section, firstly, we outline our theoretical underpinnings in the existing literature, and, secondly, we 

develop our research hypotheses. 

Theoretical Background 

The harsh economic reality driven by the Covid-19 pandemic and the speed of the crisis spread introduce 

uncertainty into econometric modeling for the assessment of the disastrous effects of the virus outbreak 

(Baker et al., 2020c). Baker et al. (2020b) have measured this Covid-induced economic uncertainty feelings 

considering three major sources: equity volatility, newspaper-based and business expectations survey-based 

uncertainties. Baker et al. (2020a) have examined the pandemic's devastating impact on stocks and find that 

the effects are by far more potent than those of other health crises (e.g., Spanish flu) due to the current 

disease's severity, the faster spread of Covid-19 news, and the more solid cross-country macro-financial 

interdependence in the current globalized economic environment. In a broader context, Sharif et al. (2020) 

have explored the dependence structure between the pandemic, oil and stock market volatility, US policy 

uncertainty, and geopolitical tensions. Making use of the wavelet approach, they have shown, among others, 

the shocking Covid impact on equities volatility, geopolitical and policy uncertainty. Focusing on the Covid 
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shock on equity volatility, Wang et al. (2020) have recently implemented an augmented HAR model 

(Heterogeneous Autoregressive) for stock market realized variance with two daily US uncertainties (the 

VIX index and the US Economic Policy Uncertainty) incorporated alternatively. Financial uncertainty, 

proxied by the VIX index, has been found more powerful at predicting worldwide equity index volatilities. 

This study has examined the cross-border spillovers of US uncertainty across various countries. In contrast, 

our work estimates the local uncertainty impact and further global macro effects on US and UK markets, 

employing the HEAVY model, a sophisticated econometric framework for both daily and intra-daily equity 

dispersion metrics. 

Furthermore, a wide variety of literature has already shown the counter-cyclical pattern of stock market 

volatility using lower than daily-frequency macro drivers (see, for example, Schwert, 1989, Hamilton and 

Lin, 1996, Engle and Rangel, 2008, Engle et al., 2013, Corradi et al., 2013, Conrad and Loch, 2015). 

Motivated by this empirical evidence, we investigate how daily business cycle dynamics affect financial 

market stability. We first focus on the potent role of uncertainty alongside further macro forces. Uncertainty 

disrupts the real economy directly (e.g., output, employment, consumption, investment) and the financial 

markets, as well (see, among others, Bernanke, 1983, Dixit and Pindyck, 1994, Pastor and Veronesi, 2012, 

2013, Bekaert et al., 2013, Bloom, 2014, Jurado et al., 2015, Han and Li, 2017, Carriero et al., 2018, 

Mumtaz and Theodoridis, 2018, Alessandri and Mumtaz, 2019, Jo and Sekkel, 2019, Bekiros et al., 2020). 

We choose the news-based index of Economic Policy Uncertainty (EPU), which is the only economic 

uncertainty metric available on a daily frequency by Baker et al. (2016) for two countries, namely, the 

United States and the United Kingdom (see also Karanasos and Yfanti, 2020, for the discussion on the 

relative merits of the EPU indices). We extend the studies of Karanasos and Yfanti (2020) and Karanasos 

et al. (2022), who first used the daily UK EPU index on European stock markets and the volatility of US 

EPU on emerging equities, by investigating the effect of both US and UK daily EPUs locally on US and 

UK equity volatility and their impact during the Covid-19 pandemic. Moreover, we incorporate daily global 

proxies for credit conditions and commodity markets to capture most aspects of the economic cycle. 

Research Hypotheses 

Our empirical analysis will respond to our three research questions about: i) the daily macro drivers of the 

US and UK stock market intra-daily volatility, ii) the impact of the local uncertainty channel on the 

volatility drivers, and iii) the initial pandemic shock on the stability of US and UK equity markets. Given 

the well-established literature on the counter-cyclicality of the volatility pattern, we test the following 

hypotheses: 

Hypothesis 1. Weak (strong) daily macro fundamentals exacerbate (reduce) stock market volatility. (H1) 

In our first Hypothesis, we expect that an economic slowdown captured by daily macro proxies destabilizes 

the US and UK stock markets. The volatility increases when economic uncertainty is higher, credit 

conditions are tighter, and commodities become more expensive. On the other hand, economic expansion 

is associated with markets ‘tranquility’ (see also, Section 4.2 for the discussion about the economic intuition 

supporting the selection of the macro variables which explain the volatility pattern).  

Hypothesis 2. The local uncertainty channel magnifies the macro impact on stock market volatility. (H2) 

In the second Hypothesis, we proceed with a sensitivity analysis by focusing on the EPU role. It is expected 

that an elevated local uncertainty level aggravates the impact of the volatility determinants (see, for 

example, Pastor and Veronesi, 2013). 

Hypothesis 3. The pandemic shock intensifies the counter-cyclical behavior of stock market volatility. (H3) 
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Our final Hypothesis delves deeper into the macro-relevance of financial volatilities by examining their 

crisis vulnerability. We expect that the health crisis shock magnifies the macro impact on volatilities, and 

we confirm this counter-cyclical trajectory in the high-frequency domain. 

 

3 The Econometric Framework 

The financial econometrics literature has proposed a wide variety of volatility models. Andersen et al. 

(2001) and Barndorff-Nielsen et al. (2008) were the first to formalize realized volatility measures, while 

long memory models (ARFIMA and HAR-RV) are established for predicting the future volatility pattern 

(Andersen et al., 2001, Corsi, 2009). GARCH-X, HEAVY, and Realized GARCH are among the more 

sophisticated variance models which combine daily with intra-daily returns (Engle, 2002, Shephard and 

Sheppard, 2010, Hansen et al., 2012, Barunik et al., 2016). Based on the benchmark HEAVY bivariate 

specification of Shephard and Sheppard (2010), we implement the HEAVY extension introduced by 

Karanasos and Yfanti (2020), which considers asymmetries (downside risk), power transformations, and 

macro effects. We estimate the macro-augmented model incorporating these features in order to improve 

the performance of volatility forecasting (see also Karanasos et al., 2021, for a long memory HEAVY 

extension without macro effects, Yfanti et al., 2022, for a trivariate asymmetric power HEAVY system 

without macro effects, and Yfanti and Karanasos, 2022, for a tetravariate asymmetric HEAVY system 

without power transformations). 

3.1 The HEAVY Model 

Following the econometric representation of Karanasos and Yfanti (2020) and Karanasos et al. (2022), the 

HEAVY system of equations involves two variables: the close-to-close returns (𝑟𝑡) and the realized measure 

based on high-frequency observations 𝑅𝑀𝑡. Firstly, we calculate the signed square rooted (SSR) realized 

measure: 𝑅�̃�𝑡 = 𝑠𝑖𝑔𝑛(𝑟𝑡)√𝑅𝑀𝑡, where 𝑠𝑖𝑔𝑛(𝑟𝑡) = 1, if 𝑟𝑡 ≥ 0 and 𝑠𝑖𝑔𝑛(𝑟𝑡) = −1, if 𝑟𝑡 < 0.  

Next, we make the following assumption for both returns and the SSR realized measure: 

𝑟𝑡 = 𝑒𝑟𝑡𝜎𝑟𝑡, 𝑅�̃�𝑡 = 𝑒𝑅𝑡𝜎𝑅𝑡, 

where the stochastic term 𝑒𝑖𝑡 is considered independent and identically distributed (𝑖. 𝑖. 𝑑), 𝑖 =  𝑟, 𝑅; 𝜎𝑖𝑡 is 

positive with probability one for all t and it is a measurable function of Ƒ𝑡−1
(𝑋𝐹)

, that is the filtration generated 

by all available information through time 𝑡 − 1. We will use Ƒ𝑡−1
(𝐻𝐹)

 (𝑋 = 𝐻) for the high-frequency past 

data, i.e., for the case of the realized measure, or Ƒ𝑡−1
(𝐿𝑜𝐹)

 (𝑋 = 𝐿𝑜) for the low-frequency past data, i.e., for 

the case of the close-to-close returns. Hereafter, we will drop the superscript 𝑋𝐹 for notational convenience. 

In the HEAVY/GARCH specification 𝑒𝑖𝑡 has zero mean and unit variance. Thus, the two time series have 

zero conditional means and their conditional variances are given by 

𝔼(𝑟𝑡
2|Ƒ𝑡−1) = 𝜎𝑟𝑡

2   𝑎𝑛𝑑 𝔼(𝑅�̃�𝑡
2|Ƒ𝑡−1) = 𝔼(𝑅𝑀𝑡 |Ƒ𝑡−1) = 𝜎𝑅𝑡

2 , 

where 𝔼(⋅) denotes the expectation operator. The returns equation is called HEAVY-r and, similarly, the 

realized measure equation is denoted as HEAVY-R. 

3.2 The Macro-augmented Asymmetric Power Specification 

The asymmetric power (AP) model for the HEAVY(1,1) system consists of the following equations (in 

what follows, we drop the order of the model if it is (1,1) for notational simplicity): 

                      (1 − 𝛽𝑖𝐿)(𝜎𝑖𝑡
2)

𝛿𝑖
2 = 𝜔𝑖 + (𝛼𝑖𝑟 + 𝛾𝑖𝑟𝑠𝑡−1)𝐿(𝑟𝑡

2)
𝛿𝑟
2 + (𝛼𝑖𝑅 + 𝛾𝑖𝑅𝑠𝑡−1)𝐿(𝑅𝑀𝑡 )

𝛿𝑅
2 ,           (1) 
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where 𝐿 is the lag operator, 𝛿𝑖 ∈ ℝ>0 (the set of the positive real numbers), for 𝑖 =  𝑟, 𝑅, are the power 

parameters and 𝑠𝑡 = 0.5[1 − 𝑠𝑖𝑔𝑛(𝑟𝑡)], that is, 𝑠𝑡 = 1 if 𝑟𝑡 < 0 and 0 otherwise; 𝛾𝑖𝑖, 𝛾𝑖𝑗 (𝑖 ≠ 𝑗) are the own 

and cross leverage parameters, respectively2; positive 𝛾𝑖𝑖, 𝛾𝑖𝑗 means a larger contribution of negative 

‘shocks’ in the volatility process. In this specification, the powered conditional variance, (𝜎𝑖𝑡
2 )

𝛿𝑖
2 , is a linear 

function of the lagged values of the powered transformed squared returns and realized measure. 

We consider three different asymmetric cases: the double one (DA: 𝛾𝑖𝑗 ≠ 0 for all i and j), the own 

asymmetry (OA: 𝛾𝑖𝑗 = 0 for 𝑖 ≠ 𝑗 only), and the cross asymmetry (CA: 𝛾𝑖𝑖 = 0). 

The 𝛼𝑖𝑅  and 𝛾𝑖𝑅 are the (four) Heavy parameters (own when 𝑖 = 𝑅 and cross when 𝑖 ≠ 𝑅). The Heavy 

parameters estimate the impact of the realized measure on the two conditional variances. The 𝛼𝑖𝑟  and 𝛾𝑖𝑟  

(four in total) are the Arch parameters (own when 𝑖 = 𝑟 and cross for 𝑖 ≠ 𝑟), which capture the effect of 

the squared returns on the two conditional variances. 

The asymmetric power specification is equivalent to a bivariate AP-GARCH system (Conrad and 

Karanasos, 2010) for the returns and the SSR realized measure. If all Arch parameters are zero, we have 

the AP version of the benchmark HEAVY, where the only unconditional regressor is the lagged powered 

𝑅𝑀𝑡. 

Moreover, all the parameters in this bivariate model should take non-negative values (see, for example, 

Conrad and Karanasos, 2010). We augment the realized measure equation with non-negative macro factors: 

the Economic Policy Uncertainty, 𝐸𝑃𝑈𝑡, the Credit conditions (the Merrill Lynch MOVE treasury bonds 

implied volatility index or the Moody's AAA corporate bonds yields), 𝐶𝑅𝑡, and the Commodities (the S&P 

GSCI index or the Crude oil WTI prices), 𝐶𝑂𝑡, market benchmark indices. The macro-augmented (m) AP-

HEAVY system is given by the following equation for the realized variation measure: 

(1 − 𝛽𝑅𝐿)(𝜎𝑅𝑡
2 )

𝛿𝑅
2 = 𝜔𝑅 + (𝛼𝑅𝑟 + 𝛾𝑅𝑟𝑠𝑡−1)𝐿(𝑟𝑡

2)
𝛿𝑟
2 + (𝛼𝑅𝑅 + 𝛾𝑅𝑅𝑠𝑡−1)𝐿(𝑅𝑀𝑡 )

𝛿𝑅
2 + 

  +𝜑𝑅𝐸𝑃𝑈𝑡−1+𝜁𝑅𝐶𝑅𝑡−1+𝜗𝑅𝐶𝑂𝑡−1.                                               (2) 

Eq. (2) incorporates three Macro parameters, 𝜑𝑅, 𝜁𝑅 and 𝜗𝑅, which capture the macro effects on the power 

transformed realized variation. The returns equation is the same as in the non-augmented model without 

the direct macro effects ( 𝜑𝑟, 𝜁𝑟, 𝜗𝑟=0). 

In summary, the benchmark system consists of two conditional variance equations, the GARCH(1,0)-X for 

returns and the GARCH(1,1) for the SSR realized measure: 

HEAVY-r : (1 − 𝛽𝑟𝐿)𝜎𝑟𝑡
2 = 𝜔𝑟 + 𝛼𝑟𝑅𝐿(𝑅𝑀𝑡), 

HEAVY-R : (1 − 𝛽𝑅𝐿)𝜎𝑅𝑡
2 = 𝜔𝑅 + 𝛼𝑅𝑅𝐿(𝑅𝑀𝑡). 

Eq. (2) is the general formulation of the macro-augmented extension (𝑅𝑀𝑡), which incorporates leverage 

and power transformations to the benchmark specification (see Yfanti et al., 2022, for the relevant 

theoretical considerations). We also apply the Gaussian quasi-maximum likelihood estimators (QMLE) and 

multistep-ahead predictors already used (see Ding et al., 1993) in the APARCH framework (see, among 

others, He and Teräsvirta 1999, Laurent, 2004, Karanasos and Kim, 2006). We first estimate the two 

conditional variance equations in the general form with all the Arch, Heavy, and Asymmetry terms of eq. 

(2). When a parameter is insignificant, we exclude it and this results in a reduced form, statistically preferred 

for each volatility process. For example, in the returns and realized measure estimations, the own and cross 

Arch parameters (𝛼𝑟𝑟  and 𝛼𝑅𝑟, respectively) are found insignificant and, are, therefore, excluded (see 

 
2Glosten et. al. (1993) have introduced this type of asymmetry.  
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Section 5, Table 3, Panels A and B) to obtain our preferred specification for both returns and realized 

measures. 

 

4 Data Description 

    We estimate the HEAVY framework for five stock indices returns and realized volatilities. We enrich 

the benchmark HEAVY model of daily returns and intra-daily realized measure with power 

transformations, asymmetries and macro effects as established by Karanasos and Yfanti (2020). 

4.1 Volatility Measures 

    We source the time series data for four US and one UK stock indices from the Oxford-Man Institute's 

(OMI) realized library (Heber et al., 2009): S&P 500 (SP), Dow Jones Industrial Average (DJ), Nasdaq 100 

(NASDAQ) and Russell 2000 (RUSSELL) from the US and FTSE 100 (FTSE) from the UK. Our sample 

covers the period from 02/01/2001 until 20/05/2020. We calculate the daily returns using the daily close 

prices, 𝑃𝑡
𝐶  (𝑟𝑡 = 𝑙𝑛(𝑃𝑡

𝐶) − 𝑙𝑛(𝑃𝑡−1
𝐶 )). We also download the realized variance computed from the 5-minute 

returns, that is 𝑅𝑉𝑡 = ∑𝑥𝑗,𝑡
2  (𝑥𝑗,𝑡

2  is the squared 5-minute return of the j-th trade of the t-th day). 

    Table 1 presents the dispersion metrics for the squared returns and realized variances time series of each 

index over the sample period. We calculate the annualized volatility and the standard deviation of the time 

series. The annualized volatilities are always higher than the standard deviations. The open-to-close 

variation (realized variance) exhibits lower dispersion than the close-to-close yield (squared returns), as 

expected given that realized variance excludes the overnight noise. The annualized volatility of the realized 

variance is between 14% and 18%, while the squared returns range from 19% to 24%. 

[Table 1 here] 

We further investigate the sample autocorrelations of the power transformed absolute returns |𝑟𝑡|𝛿𝑟 and 

signed square rooted realized variance |𝑆𝑆𝑅_𝑅𝑀𝑡|𝛿𝑅  for various values of the power term, 𝛿𝑖. Figures 1 and 

2 present the autocorrelograms of the S&P 500 index from lag 1 to 120 for 𝛿𝑟 = 1.4, 1.7, 2.0 and 𝛿𝑅 = 1.3,

1.6, 2.0. The autocorrelations for |𝑟𝑡|1.4 are higher than those of |𝑟𝑡|𝛿𝑟 for 𝛿𝑟 = 1.7, 2.0  at every lag up to 

at least 120 lags. Thus, |𝑟𝑡|𝛿𝑟 has the strongest and slowest decaying autocorrelation when 𝛿𝑟 = 1.4. 

Similarly, for the realized measure, the power with the strongest autocorrelation function is 𝛿𝑅 = 1.3. 

Furthermore, Figures 3 and 4 present the sample autocorrelations of |𝑟𝑡|𝛿𝑟 and |𝑆𝑆𝑅_𝑅𝑀𝑡|𝛿𝑅  as a function 

of 𝛿𝑖 for lags 1, 12, 36, 72 and 96. For example, for lag 12, the highest autocorrelation values of power 

transformed absolute returns and signed square rooted realized variance are calculated closer to the power 

of 1.5 and 1.0, respectively. We, hereby, support our motivation for enriching the Benchmark HEAVY 

through the APARCH framework of Ding et al. (1993) and confirm the power estimated by our econometric 

models, which is 𝛿𝑟 = 1.4 for returns and 𝛿𝑅 = 1.3 for the realized measure (see Section 5). 

[Figure 1 here] 

[Figure 2 here] 

[Figure 3 here] 

[Figure 4 here] 

 

4.2 Macroeconomic Variables 
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We further study the high-frequency macro-financial linkages by adding non-negative daily macro 

variables to the HEAVY specification and test our research hypotheses on the economic forces driving 

financial volatility. We enrich the model of daily and intra-daily volatility with daily indicators of the 

macroeconomic conditions similar to the proxies used in the existing studies of low-frequency 

(monthly/quarterly) volatility determinants. Since most activity, monetary, and sentiment indices are not 

available at a daily frequency, we turn to other daily variables informative about the economic outlook. The 

EPU index is a catalytic driver of the business cycle dynamics, given its contractive impact on employment 

and investment (Baker et al., 2016). EPU is used here instead of the activity factors considered in the extant 

literature and is expected to exert the opposite effect on volatility compared to that estimated when activity 

variables are included. Uncertainty decreases the level of activity and high uncertainty is associated with 

recessions impeding subsequent recoveries. EPU also replaces macroeconomic variation and confidence 

indicators (Conrad and Loch, 2015). Next, we consider the daily influence from the credit channel to 

substitute the business and monetary conditions' effect on volatility, based on Schwert (1989), who 

suggested leverage, bond and interest rate volatility. Finally, given the link between commodity prices and 

the macroeconomy introduced by Barsky and Kilian (2004), who connected elevated oil prices with 

economic slowdowns, we incorporate daily commodity market indices and expect an upward response of 

stock volatility time series to an increase in commodity prices with distorting impact on the real economy. 

In this vein, firstly, we investigate the role of uncertainty in financial volatility using the news-based EPU 

index (log-transformed), which incorporates both economic and policy-relevant elements of uncertainty. 

Secondly, for the credit conditions, we include two alternative global benchmarks of the bond market: the 

one-month Merrill Lynch MOVE Index (MOVE) and the Moody's triple-A Corporate Bonds Yields 

(M.AAA). The MOVE is the option implied volatility index of US government bonds. It is the Treasury 

counterpart of the VIX index for the S&P 500 and captures the sovereign credit market stance. Increased 

sovereign bond volatility means increased turbulence in the credit channel for governments with direct 

spillover (pass-through) effects on the corporate credit conditions. The M.AAA index consists of daily 

averages of global triple-A corporate bond yields (higher yields denote higher cost of financing for 

corporations) and is used as an alternative to the MOVE index for the credit channel. Thirdly, the 

commodity market conditions are incorporated here with either of the two alternative global factors: the 

S&P Goldman Sachs Commodity Index (GSCI) and the crude oil dollar prices per barrel (West Texas 

Intermediate crude stream - WTI). GSCI and WTI capture the firms' production costs. Higher commodity 

prices lead to production and investment deterioration due to higher cost effects on corporations. The GSCI 

is a widely-watched global commodity markets benchmark, where most liquid commodities are included, 

while oil is the most important energy source across all economies. The oil is incorporated in the GSCI 

computation and used here as the alternative commodity regressor to the GSCI. The four credit conditions 

and commodities data series are retrieved from Refinitiv Workspace. 

The daily macro regressors are log-transformed and included in the realized variance equation, where they 

are estimated to be jointly significant. Given the GARCH positivity constraints, we impose sign restrictions 

(positive) on the coefficients estimated for our non-negative regressors. Hence, our analysis of the macro-

financial linkages is conducted on economic forces that exacerbate volatility. Figures 5-8 clearly show the 

comovement of realized volatility with the macro proxies. Rising uncertainty, financing costs, and 

commodity prices, all lead to higher volatility levels, a characteristic feature of a weaker economic stance, 

portrayed in the figures below, where we observe the concurrent peaks in the time series graphs around 

crisis episodes (see, for example, the graph peaks around the 2008 global financial crash and at the end of 

the sample with the pandemic crisis). 

[Figure 5 here]  [Figure 6 here] 

[Figure 7 here]  [Figure 8 here] 
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5 In-sample Estimation Results 

Starting from Engle (2002), who proposed the GARCH-X model by adding regressors in the conditional 

variance equation, a large body of literature worked on the asymptotic properties of this specification with 

a fractionally integrated covariate (see, among others, Han and Kristensen, 2014, Han, 2015, Francq and 

Thieu, 2019, for the univariate case, and Ling and McAleer, 2003, Nakatani and Terasvirta, 2009, Pedersen, 

2017, for the multivariate GARCH processes). For the asymmetric power HEAVY extensions, we use the 

Gaussian QMLE and multistep-ahead predictors of the APARCH specification (He and Teräsvirta, 1999, 

Laurent, 2004, Karanasos and Kim, 2006). Following Pedersen and Rahbek (2019), first, we test for 

conditional heteroscedasticity. Since we reject the homoscedasticity hypothesis, we perform the one-sided 

tests for the significance of the regressors in the GARCH equations. 

    We initially report the results of the benchmark HEAVY (Shephard and Sheppard, 2010), that is, the 

bivariate returns-realized measure system without asymmetries, power transformations, and macro effects 

(Table 2). The chosen equation of returns is a GARCH(1,0)-X model without the lagged squared close-to-

close returns. The own Arch effect, 𝛼𝑟𝑟, is insignificant when we add the lagged realized variance cross 

effect, 𝛼𝑟𝑅. In the SSR realized variance equation, we prefer a GARCH(1,1) without the impact of returns. 

The preferred benchmark HEAVY formulations (after testing all alternative GARCH models of order (1,1), 

(1,1)-X, and (1,0)-X) are the same as in Shephard and Sheppard (2010) with similar parameter values and 

an identical finding that the intra-daily realized measure does all the work at moving around both 

conditional variances. However, this benchmark's finding, as we demonstrate below, does not apply to the 

macro-augmented asymmetric power system. The SBT-Sign Bias test (Engle and Ng, 1993) shows that the 

asymmetric effect of the returns is ignored and omitted by the benchmark estimations (p-values lower than 

0.10). 

[Table 2 here] 

Table 3 reports the results of the macro-augmented asymmetric power specifications. Wald and t-tests are 

carried out to test the significance of the Heavy and Arch parameters and they reject the null hypothesis at 

the 10% level in all cases. We apply one-sided tests because all the coefficients take non-negative values 

(see Pedersen and Rahbek, 2019). 

In the two equations of returns and realized variance, the selected model is the double asymmetric power 

(DAP) one. Both power transformed variances receive the significant impact from own and cross 

asymmetries. We estimate the powers separately with a two-step procedure. First, we run the univariate 

asymmetric power models for the returns and the realized measure; the Wald tests for the power terms 

reject the hypotheses of 𝛿𝑖 = 1 and 𝛿𝑖 = 2 in most cases (available upon request). In the second step, we 

use the estimated powers, 𝛿𝑟 and 𝛿𝑅, from the first step to power transform the conditional variances of 

both series and include them in the bivariate system. Our sequential procedure results in the fixed values of 

the power term, which are the same for both specifications (𝛿𝑟 and 𝛿𝑅 are common for Panels A and B). 

For the returns (see Panel A), the estimated power, 𝛿𝑟, is either 1.40 or 1.50. The Heavy cross effect and 

asymmetry parameters, 𝛼𝑟𝑅 and 𝛾𝑟𝑅, are highly significant in most cases, apart from the Russell index 

returns, for which the Heavy cross effect, 𝛼𝑟𝑅, is insignificant and not included. The significance of both 

Heavy effects in the returns equation extends the specification preferred by Karanasos and Yfanti (2020), 

where the joint significance of 𝛼𝑟𝑅 and 𝛾𝑟𝑅 is not included in the chosen models reported. Although 𝛼𝑟𝑟 is 

insignificant and excluded in all cases, the own asymmetry parameter (𝛾𝑟𝑟) is significant with 𝛾𝑟𝑟 ∈

[0.05,0.11]. Therefore, we conclude that the lagged values of both powered variables drive the process of 

the returns' power transformed variance. The momentum, 𝛽𝑟, is around 0.73 to 0.90. All five indices 
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generated very similar DAP specifications without macro effects since our realized measure equation 

includes the macro variables. 

For the realized measure, the preferred specification is the m-DAP one. The estimated power, 𝛿𝑅, is 1.30 

in all cases and consistently lower than the returns power term (see Panel B). Both Heavy parameters, 𝛼𝑅𝑅 

and 𝛾𝑅𝑅, are significant: 𝛼𝑅𝑅 is around 0.13 (min. value) to 0.33 (max. value), while the own asymmetry, 

𝛾𝑅𝑅, is between 0.03 and 0.08. The cross asymmetry Arch term is always significant with 𝛾𝑅𝑟 ∈

[0.03,0.10]. This denotes that the powered conditional variance of 𝑅�̃�𝑡 is significantly influenced by the 

lagged values of both powered variables: the squared negative returns and the realized measure. The 

momentum, 𝛽𝑅, is estimated to be around 0.54 to 0.77. 

Finally, we test our first Hypothesis (H1) and find that the macro effects are significant (see Panel B). Their 

positive sign, as expected, confirms H1, that is, weak (strong) fundamentals increase (decrease) volatilities. 

The power transformed realized variance receives a boosting impact from higher EPU levels,  𝜑𝑅 ∈

[0.01,0.03], in line with the results of Pastor and Veronesi (2013), who were the first to associate stock 

market volatilities with EPU. The uncertainty results also confirm Conrad and Loch (2015), among others, 

on the negative impact of confidence. Consumer confidence is the opposite sentiment to uncertainty, which 

is found here with the expected opposite sign. For the US indices, we use the daily US EPU index and for 

FTSE 100, the UK EPU instead. Regarding the credit and commodity markets, we prefer to use common 

global proxies for both the US and UK stock markets. Credit market conditions are better captured by the 

MOVE index in all cases compared to the M.AAA yields alternative. As expected, increased US treasury 

implied volatility raises realized volatility in stock markets (𝜁𝑅 ∈ [0.02,0.06]) since the turbulence in the 

credit markets always generates significant volatility spillover effects to stock markets. This is consistent 

with Engle and Rangel (2008), who conclude on a positive impact of government bond interest rate 

volatility on stock volatility through the Spline-GARCH model. Moving to commodities, the GSCI index 

(𝜗𝑅 ∈ [0.01,0.03]) is the chosen commodity regressor across all five indices according to the information 

criteria minimization rule compared to the WTI alternative proxy. Crude oil coefficients are estimated 

positive and significant, but the commodity effect is better captured by the GSCI index (reported in Table 

3), whose major component is the crude oil price. Lower commodity values depress the cost of supplies for 

firms. Hence, they boost productivity, investment, and, more generally, economic activity and, at the same 

time, reduce financial volatilities. Given that higher oil prices mostly coincide with recessions (Barsky and 

Kilian, 2004), the positive link between variance and commodity prices, captured by 𝜗𝑅, confirms the 

negative relationship between economic activity and stock market volatility. 

All in all, our estimation results show significant Heavy effects (𝛼𝑟𝑅, 𝛾𝑟𝑅, 𝛼𝑅𝑅 and 𝛾𝑅𝑅), Arch asymmetries 

(𝛾𝑟𝑟 and 𝛾𝑅𝑟) and macro influences ( 𝜑𝑅, 𝜁𝑅 and 𝜗𝑅). The log-likelihood (lnL) values are higher for the m-

DAP model than the lnL values of the benchmark one, showing the in-sample performance superiority of 

our model (Appendix A.3, Figure A.1 provides the S&P 500 standardized residuals graphs for the two 

models). The SBT results demonstrate that the leverage effect is not omitted since the sign coefficients are 

estimated insignificant, with p-values higher than 0.11. Table A.1 (Appendix A.1) provides additional 

results for the realized measure equation step-by-step estimation, firstly, with the DAP extension (Panel A) 

and, secondly, the m-DAP with the EPU regressor only (Panel B). We follow the particular stepwise 

procedure before deciding on our final chosen model extending the HEAVY-R with powers, asymmetries, 

and all three macro factors. Table A.2 (Appendix A.1) presents the benchmark equation for the realized 

measure with macro effects for all five stock indices. Finally, Tables A.3 and A.4 (Appendix A.1) report 

the stepwise estimation results for our preferred benchmark and m-DAP realized variance equations of SP, 

where we choose MOVE and GSCI for the credit and commodity proxies (compared to Moody's AAA 

yields and WTI crude oil, respectively) according to the information criterion minimization rule. 
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Our results on macro-financial linkages are informative about the high-frequency macro drivers of the 

counter-cyclical financial volatility process. In line with previous studies focusing instead on the low-

frequency volatility drivers or macro transmission channels (Schwert, 1989, Engle and Rangel, 2008, Pastor 

and Veronesi, 2013, Conrad and Loch, 2015), we identify three main transmission channels of the high-

frequency macro impact on volatility in financial markets, namely: 

(i) The economic sentiment channel, through which daily macro expectations, perceptions, and the 

subsequent feelings of economic agents are incorporated into equities. In particular, the daily 

loss of confidence, as proxied by economic uncertainty, exacerbates equity risk. 

(ii) The credit channel, thorugh which credit conditions influence the volatility pattern. Tighter 

credit, proxied by the volatility of Treasury securitoe or corporate funding costs, drives the daily 

stock realized variance higher.  

(iii) The real activity channel, through which economic recessions increase financial turbulence. In 

particular, higher commodity prices typically associated with activity slowdowns tend to 

magnify financial volatility. 

[Table 3 here] 

 

6 Out-of-sample Performance 

Following our in-sample estimation of the m-DAP model, which is found superior to the benchmark 

specification, we examine its out-of-sample performance. We compute the multistep-ahead out-of-sample 

forecasts and compare the predictive accuracy of our proposed formulation with the benchmark HEAVY 

for the returns and the realized measure and three more standard volatility models: the GARCH(1,1) for the 

daily returns and the ARFIMA(1,d,1) and HAR-RV for the intra-daily realized variance. 

We calculate the 1-, 5-, 10- and 22-step-ahead variance forecasts for the benchmark HEAVY, the DAP, its 

macro-augmented extension, and the three standard models. We choose the rolling window in-sample 

estimation method using 2500 observations (the initial in-sample estimation period for SP spans from 

2/1/2001 until 22/12/2010) and re-estimate each model daily based on the 2500-day rolling sample. The 

calculated out-of-sample forecasts of each model for SP are as follows: 2362 one-step-ahead, 2358 five-

step-ahead, 2353 ten-step-ahead, and 2341 twenty-two-step-ahead predicted variances. Next, we use the 

time series of the forecasted values and compute for each point forecast the Mean Square Error and the 

QLIKE loss function in comparison with the respective actual value. For each specification and forecast 

horizon, we calculate the average Mean Square Error (MSE) and QLIKE to create the ratio of the forecast 

losses for each extended HEAVY formulation (DAP and m-DAP) to the loss of the benchmark one (see 

also, Appendix A.2, Table A.5 for the forecast losses of all HEAVY, standard GARCH and HAR models). 

When the ratio is lower than one, the proposed model's forecasting performance is superior to the 

benchmark. The lowest ratio signifies the lowest forecast losses, that is, the model with the best predictions. 

Using the MSE calculations, we apply the test for the pairwise comparison of nested models (here the 

benchmark specification vs. the DAP extensions) introduced by Harvey, Leybourne, and Newbold (1998), 

HLN thereafter. The HLN forecast encompassing test is a modified version of the Diebold-Mariano test 

(Diebold and Mariano, 1995), which considers that the models can be nested (the DAP nests the benchmark 

specification). It examines whether the differences between the competing specifications' forecasts are 

statistically significant and whether the more general model's forecast losses are smaller than the nested 

model's losses (Clark and McCracken, 2001). 

We implement the optimal predictor |𝑟𝑡|𝛿 (as formalized in Yfanti et al., 2022, Section 3.2.3, Proposition 

3) and compute the out-of-sample forecasts. The results, reported in Tables 4 and 5 for the SP index (similar 



12 
 

results for the other four stock indices are available upon request), demonstrate the preference for our 

extensions compared to the benchmark specifications in all time horizons (results reported in Table A.5 

also show the extended models' forecast superiority over the standard models with higher losses for 

GARCH, ARFIMA and HAR specifications). The m-DAP model dominates the benchmark one with the 

lowest MSE and QLIKE (Table 4). The HLN test shows that the AP extensions perform significantly better 

than the benchmarks. It rejects the null hypothesis of equal predictions in favor of the DAP's lower losses 

at a significance level of 5% (Table 5). Overall, the extended models perform better than the benchmarks 

in the short- and long-term predictions. The forecasted values are significantly closer to the actuals for the 

enriched specifications. The advanced in-sample estimations with asymmetries, power, and macro effects 

transfer their forecasting superiority to the out-of-sample computations. Our macro-informed volatility 

modeling framework provides reliable short-term predictions for traders, investors, portfolio and risk 

managers. Policymakers can further utilize our superior longer-term forecasts in scenarios of future 

financial volatility paths for their interventions in the financial system. 

[Table 4 here] 

[Table 5 here] 

 

Market and Policy Implications 

We further illustrate the equity market volatility response to the Covid-19 pandemic shock and the 

forecasting superiority of the HEAVY extensions during the pandemic-induced market turbulence with a 

real-world risk management exercise. The widely-used daily market risk metric, Value-at-Risk (VaR), 

denotes the potential loss of a portfolio's value, over a specific holding period, with a given confidence 

level (see also Karanasos et al., 2021). The VaR calculation's primary input is the one-day volatility forecast 

of the portfolio's risk factors. We apply the conditional variance forecasts in a long portfolio position to one 

S&P 500 index contract starting from 24/12/2019. We compute 100 daily VaR values from 26/12/2019 to 

20/5/2020 (which mainly consists of the Coronavirus outbreak period) using the one-day variance forecasts 

of each returns and realized measure model. We first calculate the one-day VaR with 95% and 99% 

confidence levels, given the zero mean and normality assumption for the returns. Following the parametric 

approach to VaR calculations, we multiply the daily portfolio value with the one-day-ahead conditional 

volatility forecasted value (the square root of the conditional variance) and the left quantile at the confidence 

level of the normal distribution (the z-scores for 95% and 99% confidence levels are 1.645 and 2.326). 

Secondly, we compute the daily realized return of the portfolio (profit and loss). Thirdly, we conduct the 

backtesting exercise, comparing the realized payoff with the respective one-day VaR for the 95% and 99% 

confidence levels. If the realized losses exceed the respective day's VaR, we consider it an exception in 

backtesting, denoting that the VaR value fails to cover the losses of the particular day's portfolio valuation. 

The backtesting results (Table 6: Backtesting results) show that the number of exceptions across all models 

is according to the selected confidence level (the 95% and 99% confidence levels allow for 5 and 1 

exceptions, respectively, every 100 days) and low enough to avoid increased capital charges imposed by 

supervisors (in the case of the trading portfolio of a commercial bank). All exceptions are identified in 

March 2020, around 16/3/2020, immediately after the World Health Organization (WHO) announced that 

the Coronavirus outbreak is spreading at a pandemic growth rate and stock market volatilities reached their 

highest peak after the markets crash during the global financial crisis of 2008. More exceptions in 

backtesting lead to higher market risk capital requirements for banks because regulators penalize financial 

institutions' internal models, which fail to cover trading losses through the VaR estimates. According to the 

Basel traffic light approach, the capital charge for market risk rises if the backtesting exceptions are more 

than four in 250 daily observations and a 99% confidence level. Given that all models provide adequate 
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coverage of the actual (realized) losses, we further scrutinize the mean and minimum VaR estimates based 

on the forecasts of each model (Table 6: Descriptive statistics). The VaR measure that ensures the highest 

loss coverage with the lowest capital charges is the VaR with the lowest minimum and highest mean values. 

This is provided by the realized variance formulations, for which we prefer the macro-augmented 

asymmetric power models. Since the capital requirement for market risk is calculated on the total trading 

99% VaR (absolute value, 60-day average) and any penalty from the backtesting exercise (more than four 

exceptions in the 250-day period), the bank seeks the lowest possible VaR average with the highest 

minimum estimate in absolute terms. The macro-augmented models clearly satisfy both criteria, 

contributing to the risk manager's VaR calculation of the volatility forecasts that better capture the loss 

distribution (highest extreme loss coverage with highest absolute minimum value) without inflating the 

capital charges (lowest absolute mean). 

[Table 6 here] 

Besides the risk management practice, our volatility forecasts are useful for a wide range of business 

operations. Portfolio managers can use the macro-informed specification to predict subsequent volatility in 

the minimum-variance framework of asset allocation, respecting the risk appetite of their clients. Risk-

averse investors impose low volatility thresholds on their investments, while risk lovers' mandates allow 

higher volatilities on their portfolio positions. Future volatility predictions can also be employed in the 

context of a forward-looking performance evaluation through the risk-adjusted return metrics, i.e., the 

Treynor or the Sharpe ratios. Traders and risk practitioners focus on the volatility pattern for macro-

informed trading strategies, derivatives pricing, and almost any risk and valuation task in business analytics. 

Investing and hedging in financial markets rely on risk factors whose forecasted volatility is the main 

parameter of the pricing solutions applied. Moreover, financial managers and accountants consider 

volatility predictions when they decide on investment projects or funding sources (the variation of expected 

future cash flows) and measure the fair value of financial instruments or estimate expected credit losses for 

financial reporting purposes. Finally, policymakers and supervisors of the financial system should use 

reliable volatility forecasts in designing their prudential policy responses. Regulators can rely on the macro-

informed volatility forecasts of the m-DAP-HEAVY system for the proactive risk assessment of the 

financial system and the oversight policies for maintaining financial stability, such as the macro stress tests 

on financial institutions, the bank capital and risk frameworks, and the early warning systems. 

 

7 The Uncertainty Effect on Realized Volatility 

Following the extension of the benchmark HEAVY system with leverage, power, and macro effects, we 

delve into the impact of uncertainty on financial volatility and test our second Hypothesis (H2). Over the 

decade after the global turmoil that created new interest in the role of uncertainty, the most widely used 

metrics or proxies have all been based on macroeconomic, financial, and policy uncertainty, which have 

been found to have a detrimental impact on the economy and financial markets, which is stage-contingent 

(with more dampening effects in shakier times). The present study fills a remarkable gap in the extant EPU 

literature by documenting its role within the extended HEAVY volatility modeling framework. Our analysis 

differs from earlier ones in the use of both daily US and UK EPU index as a determinant of daily realized 

volatility, with major implications for macro-informed financial investments and the actions of 

policymakers overseeing financial stability and managing systemic risk. 

We have already observed the direct positive effect, in line with Antonakakis et al. (2013) and Pastor and 

Veronesi (2013), and the predictive power of daily EPU on volatility within the m-DAP framework in 

Sections 5 and 6. In this part of our study, we extend our empirical analysis by focusing more specifically 

on the main macro determinant of volatility in the realized measure equation, that is, the significant EPU 
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effect on the realized variance. We first estimate the EPU effect in the context of the benchmark realized 

volatility equation augmented with the credit and commodity proxies. Table 7 reports the results of the 

benchmark realized volatility specification with credit (MOVE) and commodities (GSCI) for SP (similar 

results for the other four stock indices are available upon request). We estimate five restricted forms to 

observe each EPU effect separately via three interaction terms as follows: 𝛼𝑅𝑅
𝑒𝑝𝑢

 is the coefficient of the 

EPU multiplied by the realized variance, measuring the EPU impact on the Heavy parameter (𝛼𝑅𝑅), 𝜁𝑅
𝑒𝑝𝑢

 

and 𝜗𝑅
𝑒𝑝𝑢

 capture the EPU effect on the credit and commodity regressors, respectively. The interaction 

terms are all significant and with a positive sign. We show that elevated uncertainty leads to a stronger 

volatility impact from credit and commodity market conditions, confirming H2. Given that higher 

uncertainty appears in economic downturns, we further elicit the connection of credit turbulence and 

increased commodity values during economic worsening with higher equity market volatility, a connection 

critically depending on the uncertainty channel. Furthermore, the arch effect of the realized variance 

equation, that is, the Heavy coefficient (𝛼𝑅𝑅), is partly attributed to EPU with 𝛼𝑅𝑅
𝑒𝑝𝑢

 estimated at 0.05. EPU 

also exerts significant influence on the macro factors, with the credit interaction term 𝜁𝑅
𝑒𝑝𝑢 ∈

[0.01,0.02] and the commodity interaction term 𝜗𝑅
𝑒𝑝𝑢

 equal to 0.01. 

[Table 7 here] 

The m-DAP-HEAVY-R equation is further estimated using eight restricted forms alternatively with four 

EPU interaction terms: 𝛾𝑅𝑅
𝑒𝑝𝑢

  for the own Heavy asymmetry, 𝛾𝑅𝑟
𝑒𝑝𝑢

 for the cross Arch asymmetry, 𝜁𝑅
𝑒𝑝𝑢

 for 

credit and 𝜗𝑅
𝑒𝑝𝑢

 for commodities. Table 8 reports the restricted forms for SP (see also, in Table 9, Panels B 

and C, the EPU interaction terms estimated for all indices in the whole sample and the Covid period 

separately). All EPU interaction terms are positive, similar to the macro-augmented benchmark 

specification's results, confirming once more the amplifying EPU effect on each variable (H2). The own 

Heavy and cross Arch asymmetries are significantly and positively affected by higher uncertainty, which 

also magnifies the macro effects. On the one hand, within the empirical research on uncertainty, the link 

between uncertainty and credit conditions tightening has been explored by Alessandri and Mumtaz (2019), 

who relate the rising funding costs for corporations with credit market uncertainty. On the other hand, the 

uncertainty-commodities association has been widely investigated by Antonakakis et al. (2014) and Fang 

et al. (2018), among others. In particular, Antonakakis et al. (2017) analyze the oil price-equity volatility 

link. However, all these studies have not covered the EPU, credit, and commodities macro impact on intra-

daily volatility and the EPU magnifying role through credit and production cost channels. 

[Table 8 here] 

To sum up, our main contribution to the EPU research consists of the novel evidence we provide on the 

positive association between EPU and realized volatility for both the US and the UK markets, in line with 

Karanasos and Yfanti (2020), who focused on European markets and the UK EPU effect only. We first 

demonstrate the daily EPU destabilizing impact on stock markets. Secondly, the asymmetric and Heavy 

effects are state-dependent, being affected by higher uncertainty. Thirdly and most interestingly, the 

economic interpretation of our results points out that credit market turbulence and rising commodity prices, 

both of which are associated with weak economic conditions, exacerbate financial volatility, and those 

effects are intensified by a higher EPU index. 

From an economic perspective, the macro factors of stock market volatility in the m-DAP framework verify 

previous studies suggesting an upward volatility pattern during economic worsening. This counter-cyclical 

trajectory has been shown by the negative impact of economic activity indicators with quarterly or monthly 

frequency (Engle and Rangel, 2008). In order to explore the high-frequency domain of the macro-financial 

linkages, the quarterly/monthly activity proxies are replaced by daily variables of economic activity as 
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regressors of the realized variance specification. Restricted by the non-negativity constraints, we cannot 

apply, among others, the daily yield curve slope (or term spread), a predictor of future GDP (Estrella and 

Hardouvelis, 1991) estimated significant by Conrad and Loch (2015) in the monthly context. Relying on 

the ample evidence of the adverse effects of uncertainty on activity (Jones and Olson, 2013, Colombo, 

2013, Caggiano et al., 2017), we chose the daily EPU index to connect stock market volatility with a proxy 

associated with the contractive forces of economic activity. The positive sign of the EPU variable is in line 

with prior findings on the macroeconomic uncertainty's (Schwert, 1989) and unemployment's positive 

effects and the negative effect of production, GDP, and sentiment growth (Conrad and Loch, 2015). 

Similarly, the credit and commodities proxies linked with macro turbulence destabilize equity markets as 

expected by the extant empirical evidence (see, for example, Engle and Rangel, 2008, Asgharian et al., 

2013, Barsky and Kilian, 2004). 

Hence, in addition to contributing to the literature on realized variance modeling through the asymmetric, 

power, and macro-augmentation of the benchmark model applied in a broad sample with the Covid period 

included, we also shed light on the economic sources of financial volatility by studying the high-frequency 

domain of the macro-financial linkages with daily macro regressors. All three daily economic proxies that 

exacerbate equity volatility (higher economic uncertainty, tighter credit conditions, and increased 

commodity prices) are associated with economic downturns. In what follows, we focus on the macro effects 

during the unprecedented pandemic crisis by conducting a sensitivity analysis of the realized variance 

equation's parameters to quantify the Covid effect on each Heavy, Arch, and Macro coefficient. 

 

8 The Covid-19 Effect on Macro-financial Linkages 

After investigating the significant macro-financial linkages in the US and UK markets and the important 

role of both daily EPU indices, confirming our first two Hypotheses (H1 and H2), we further explore the 

Covid-induced effect on equity markets and test the last Hypothesis (H3). The first pandemic wave 

immediately led to market turbulence with soaring volatilities close to the 2008 crisis peak (see the 2008 

crisis structural break effect on realized variance in Karanasos and Yfanti, 2020). Markets are destabilized 

by the widespread worries about delayed and deficient socio-economic policies to support societies, 

economies, and the financial system in the US and the UK. The meteoric threat of the contagious disease 

has inflamed the uncertainty feelings about future economic policy choices and their potential macro 

impact. The ubiquitous Covid-driven uncertainty is captured by a significant increase in the level of the US 

and UK EPU indices. 

[Figure 9 here] 

[Figure 10 here] 

Stock market volatility climbed to a record peak around mid-March when the World Health Organization 

(WHO) gave the pandemic definition to the Covid-19 spread while daily EPU levels rose sharply (see 

Figures 9 and 10). Against this backdrop, we estimate the Covid impact on the high-frequency macro-

financial linkages by adding to the m-DAP-HEAVY-R equation three interaction terms on all Heavy, Arch, 

and Macro parameters (eq. (3)). The interaction terms capture the Covid-19 impact, the EPU effect in the 

whole sample, and, separately, in the Covid era starting from 9/1/2020 when China reported the first virus-

linked death in Wuhan. 

(1 − 𝛽𝑅𝐿)(𝜎𝑅𝑡
2 )

𝛿𝑅
2 = 𝜔𝑅 + 

[𝛼𝑅𝑅 + 𝛼𝑅𝑅
𝑐𝑜𝑣𝐷𝑐𝑜𝑣,𝑡−1 + 𝛼𝑅𝑅

𝑒𝑝𝑢𝐸𝑃𝑈𝑡−1 + 𝛼𝑅𝑅
𝑐𝑜𝑣_𝑒𝑝𝑢𝐷𝑐𝑜𝑣,𝑡−1𝐸𝑃𝑈𝑡−1 + 
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+(𝛾𝑅𝑅 + 𝛾𝑅𝑅
𝑐𝑜𝑣𝐷𝑐𝑜𝑣,𝑡−1 + 𝛾𝑅𝑅

𝑒𝑝𝑢𝐸𝑃𝑈𝑡−1 + 𝛾𝑅𝑅
𝑐𝑜𝑣_𝑒𝑝𝑢𝐷𝑐𝑜𝑣,𝑡−1𝐸𝑃𝑈𝑡−1)𝑠𝑡−1]𝐿(𝑅𝑀𝑡 )

𝛿𝑅
2 + 

+(𝛾𝑅𝑟 + 𝛾𝑅𝑟
𝑐𝑜𝑣𝐷𝑐𝑜𝑣,𝑡−1 + 𝛾𝑅𝑟

𝑒𝑝𝑢𝐸𝑃𝑈𝑡−1 + 𝛾𝑅𝑟
𝑐𝑜𝑣_𝑒𝑝𝑢𝐷𝑐𝑜𝑣,𝑡−1𝐸𝑃𝑈𝑡−1)𝑠𝑡−1𝐿(𝑟𝑡

2)
𝛿𝑟
2 + 

+(𝜑𝑅 + 𝜑𝑅
𝑐𝑜𝑣𝐷𝑐𝑜𝑣,𝑡−1)𝐸𝑃𝑈𝑡−1 + 

+(𝜁𝑅 + 𝜁𝑅
𝑐𝑜𝑣𝐷𝑐𝑜𝑣,𝑡−1 + 𝜁𝑅

𝑒𝑝𝑢𝐸𝑃𝑈𝑡−1 + 𝜁𝑅
𝑐𝑜𝑣_𝑒𝑝𝑢𝐷𝑐𝑜𝑣,𝑡−1𝐸𝑃𝑈𝑡−1)𝐶𝑅𝑡−1 + 

                              +(𝜗𝑅 + 𝜗𝑅
𝑐𝑜𝑣𝐷𝑐𝑜𝑣,𝑡−1 + 𝜗𝑅

𝑒𝑝𝑢𝐸𝑃𝑈𝑡−1 + 𝜗𝑅
𝑐𝑜𝑣_𝑒𝑝𝑢𝐷𝑐𝑜𝑣,𝑡−1𝐸𝑃𝑈𝑡−1)𝐶𝑂𝑡−1            (3) 

 

Eq. (3) incorporates the pandemic effect on realized volatility with the dummy variable, 𝐷𝑐𝑜𝑣,𝑡, defined as 

follows: 𝐷𝑐𝑜𝑣,𝑡 = 0, if 𝑡 < 𝑐𝑜𝑣 and 𝐷𝑐𝑜𝑣,𝑡 = 1, if 𝑡 ≥ 𝑐𝑜𝑣, 𝑐𝑜𝑣 = 9/1/2020, the date of the first reported 

death due to Covid-19. We further measure the EPU effect with the EPU interaction terms constructed by 

the multiplication of the EPU variable with the respective parameter of the volatility equation, similarly to 

Section 7 estimations (here, we report the interaction terms of the m-DAP-HEAVY-R equation for all 

indices). Lastly, we consider the distinct EPU effect in the Covid-era by multiplying the EPU interaction 

term with the Covid time dummy, 𝐷𝑐𝑜𝑣,𝑡. Table 9 summarizes the Covid and EPU effects, which are 

estimated by restricted forms of eq. (3) by including each Covid, EPU, and EPU under Covid effect 

separately for each Heavy, Arch, and Macro parameter. The Covid-crisis (Table 9, Panel A) magnifies the 

Arch asymmetric and all three macro effects on realized volatility (𝛾𝑅𝑟
𝑐𝑜𝑣, 𝜑𝑅

𝑐𝑜𝑣, 𝜁𝑅
𝑐𝑜𝑣, 𝜗𝑅

𝑐𝑜𝑣) while the distinct 

Heavy effects during the pandemic are mostly insignificant (𝛼𝑅𝑅
𝑐𝑜𝑣, 𝛾𝑅𝑅

𝑐𝑜𝑣). Similarly to the analysis in Section 

7, the EPU effect, reported for all five indices here, is always positive and highly significant in all cases 

(𝛾𝑅𝑅
𝑒𝑝𝑢

, 𝛾𝑅𝑟
𝑒𝑝𝑢

, 𝜁𝑅
𝑒𝑝𝑢

, 𝜗𝑅
𝑒𝑝𝑢

), apart from the Heavy parameter, 𝛼𝑅𝑅
𝑒𝑝𝑢

, where in three out of the five indices the 

uncertainty impact is insignificant (Table 9, Panel B). Furthermore, rising EPU levels during the pandemic 

remarkably increase the effect of negative squared returns, credit and commodity proxies on realized 

variance (𝛾𝑅𝑟
𝑐𝑜𝑣_𝑒𝑝𝑢

, 𝜁𝑅
𝑐𝑜𝑣_𝑒𝑝𝑢

, 𝜗𝑅
𝑐𝑜𝑣_𝑒𝑝𝑢

) while the Heavy coefficients (𝛼𝑅𝑅
𝑐𝑜𝑣_𝑒𝑝𝑢

, 𝛾𝑅𝑅
𝑐𝑜𝑣_𝑒𝑝𝑢

) are mostly 

unaffected (Table 9, Panel C). Our results show that the market turbulence caused by Covid-19 is striking. 

We find a significant inflating effect on the exacerbating impact of the Arch asymmetry and Macro 

parameters, confirming H3. We also provide sound evidence of the pandemic's destabilizing impact through 

the uncertainty channel on financial volatilities, given the significant EPU effect during the disease spread. 

[Table 9 here] 

 

9 Conclusions 

We have applied the HEAVY framework in US and UK equity market volatility modeling enriched with 

asymmetric, power, and macro features for a sample covering the Covid-induced crisis in financial markets. 

Our in-sample estimation results favor the most general double asymmetric power specification for the 

variance of returns and realized measure, where both powered transformed variables and leverage effects 

are significant in both equations of the bivariate system, in line with Karanasos and Yfanti (2020). The 

macro-extension of the asymmetric power process produces a specification that clearly outperforms its 

rivals, and that can be used for the purposes of portfolio and risk management. In particular, we show that 

it has a better out-of-sample forecasting performance over both short- and long-term horizons during the 

pandemic crash. Finally, our macro-analysis reveals that distinct features of economic worsening, such as 

higher macro uncertainty, commodity prices, and credit conditions tightening, raise equity volatilities, while 
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EPU further intensifies the Heavy, Arch and, macro effects on the realized measure, particularly during the 

recent period of the Covid-19 outbreak. 

Our insights on the link between high- and low-frequency volatility measures and daily macro factors 

during the current health crisis project important implications for policy and market practitioners and 

suggest possible avenues for future research to extend the HEAVY model further. Our framework can be 

used by both policymakers and market experts to analyze and predict financial volatility trajectories even 

in crisis periods with the aim of designing policies to preserve financial stability and deciding on asset 

allocation, hedging strategies, investment projects, funding sources, and capital risk buffers (for bank 

managers, in particular). The research potential of the macro-augmented HEAVY system for financial 

volatility is still large. Therefore, future research could extend the analysis to commodities and other asset 

classes (e.g., foreign exchange rates, bonds, cryptocurrencies) using, in each case, appropriate macro 

proxies for volatility. Finally, it would also be interesting to construct daily EPU indices for other countries, 

in addition to the US and the UK, to obtain wider evidence on the uncertainty channel repercussions. 
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A APPENDIX 

A.1 Realized Measure Equation Analysis 

[Table A.1 here] 

[Table A.2 here] 

[Table A.3 here] 

[Table A.4 here] 

 

A.2 Forecast Losses 

[Table A.5 here] 

 

A.3 S&P 500 Residuals Graphs 

[Figure A.1 here] 
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Table 1: Dispersion measures for squared returns and realized variance. 

 Sample period 𝑟𝑡
2 𝑅𝑉𝑡 

Index Start date End date Obs. Avol sd Avol sd 

SP 02/01/2001 20/05/2020 4862 0.197 0.057 0.167 0.027 

DJ 02/01/2001 20/05/2020 4859 0.189 0.057 0.169 0.029 

NASDAQ 02/01/2001 20/05/2020 4861 0.235 0.068 0.166 0.022 

RUSSELL 02/01/2001 20/05/2020 4859 0.244 0.076 0.141 0.018 

FTSE 02/01/2001 20/05/2020 4887 0.186 0.043 0.176 0.031 

Notes:  

The table reports the dispersion measures of the squared returns and realized variance time series data in 

the whole sample period. Avol and sd denote the annualized volatility and standard deviation, respectively. 

 

  



24 
 

Table 2: The Benchmark HEAVY model. 

 SP DJ NASDAQ RUSSELL FTSE 

Panel A. Stock Returns: HEAVY- r 

(1 − 𝛽𝑟𝐿)𝜎𝑟𝑡
2 = 𝜔𝑟 + 𝛼𝑟𝑅𝐿(𝑅𝑀𝑡) 

𝛽𝑟 0.59 0.62 0.63 0.67 0.63 

 (11.69)*** (14.22)*** (11.45)*** (15.93)*** (13.71)*** 

𝛼𝑟𝑅 0.55 0.45 0.70 0.78 0.40 

 (7.49)*** (7.85)*** (6.67)*** (7.49)*** (7.43)*** 

𝑄12 17.29 13.05 10.91 15.25 4.60 

 [0.14] [0.37] [0.54] [0.23] [0.97] 

SBT 2.81 1.73 1.97 1.69 2.26 

 [0.01] [0.08] [0.05] [0.09] [0.02] 

lnL -6357.31 -6208.70 -7464.03 -7979.69 -6497.69 

Panel B. Realized Measure: HEAVY- R 

(1 − 𝛽𝑅𝐿)𝜎𝑅𝑡
2 = 𝜔𝑅 + 𝛼𝑅𝑅𝐿(𝑅𝑀𝑡) 

𝛽𝑅 0.52 0.56 0.44 0.53 0.62 

 (14.21)*** (14.73)*** (13.25)*** (15.87)*** (16.79)*** 

𝛼𝑅𝑅 0.49 0.44 0.53 0.42 0.38 

 (11.97)*** (9.08)*** (15.40)*** (13.48)*** (9.52)*** 

𝑄12 10.79 13.76 6.65 14.96 10.23 

 [0.55] [0.32] [0.88] [0.24] [0.60] 

SBT 4.82 3.61 3.76 3.10 2.64 

 [0.00] [0.00] [0.00] [0.00] [0.01] 

lnL -6026.19 -5754.72 -5981.74 -5197.18 -6257.32 

Notes: 

The table presents the bivariate benchmark HEAVY system. The numbers in 

square brackets are p-values. The numbers in parentheses are t-statistics. ***, 

**, * denote significance at the 0.01, 0.05, 0.10 level, respectively. Q₁₂ is the 

Box-Pierce Q-statistics on the standardized residuals with 12 lags. SBT 

denotes the Sign Bias test of Engle and Ng (1993). lnL denotes the log-

likelihood value for each specification. Bold (underlined) numbers indicate 

minimum (maximum) values across the five indices. 
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Table 3: The m-DAP-HEAVY model. 

 SP DJ NASDAQ RUSSELL FTSE 

Panel A. Stock Returns: m-DAP-HEAVY- r 

(1 − 𝛽𝑟𝐿)(𝜎𝑟𝑡
2 )

𝛿𝑟
2 = 𝜔𝑟 + (𝛼𝑟𝑟 + 𝛾𝑟𝑟𝑠𝑡−1)𝐿(𝑟𝑡

2)
𝛿𝑟
2 + (𝛼𝑟𝑅 + 𝛾𝑟𝑅𝑠𝑡−1)𝐿(𝑅𝑀𝑡 )

𝛿𝑅
2  

𝛽𝑟 0.75 0.78 0.73 0.90 0.82 

 (26.64)*** (36.42)*** (19.60)*** (82.14)*** (31.93)*** 

𝛼𝑟𝑅 0.14 0.09 0.27  0.07 

 (4.34)*** (3.87)*** (4.62)***  (2.67)*** 

𝛾𝑟𝑟 0.05 0.09 0.05 0.11 0.11 

 (2.50)*** (5.28)*** (2.57)*** (11.11)*** (6.77)*** 

𝛾𝑟𝑅 0.19 0.12 0.18 0.08 0.09 

 (6.18)*** (4.92)*** (4.45)*** (3.32)*** (4.20)*** 

𝑄12 12.20 14.50 8.99 14.17 5.51 

 [0.27] [0.27] [0.70] [0.17] [0.94] 

SBT 1.51 1.06 1.13 0.23 1.56 

 [0.13] [0.29] [0.26] [0.82] [0.12] 

lnL -5980.38 -5865.44 -6888.80 -7121.48 -6142.30 

Panel B. Realized Measure: m-DAP-HEAVY- R 

(1 − 𝛽𝑅𝐿)(𝜎𝑅𝑡
2 )

𝛿𝑅
2 = 𝜔𝑖 + (𝛼𝑅𝑟 + 𝛾𝑅𝑟𝑠𝑡−1)𝐿(𝑟𝑡

2)
𝛿𝑟
2 + (𝛼𝑅𝑅 + 𝛾𝑅𝑅𝑠𝑡−1)𝐿(𝑅𝑀𝑡 )

𝛿𝑅
2 + 

  +𝜑𝑅𝐸𝑃𝑈𝑡−1+𝜁𝑅𝐶𝑅𝑡−1+𝜗𝑅𝐶𝑂𝑡−1 

𝛽𝑅 0.64 0.69 0.54 0.64 0.77 

 (27.86)*** (33.89)*** (22.00)*** (27.18)*** (38.15)*** 

𝛼𝑅𝑅 0.22 0.18 0.33 0.23 0.13 

 (10.82)*** (10.40)*** (15.41)*** (11.77)*** (5.97)*** 

𝛾𝑅𝑅 0.07 0.07 0.03 0.08 0.05 

 (6.05)*** (5.91)*** (2.38)** (0.08)*** (3.30)*** 

𝛾𝑅𝑟 0.09 0.10 0.07 0.03 0.09 

 (9.57)*** (8.60)*** (11.35)*** (8.22)*** (11.14)*** 

 𝜑𝑅 0.03 0.02 0.02 0.02 0.01 

 (4.13)*** (3.11)*** (2.19)** (2.73)*** (3.16)*** 

 𝜁𝑅 0.06 0.05 0.05 0.02 0.05 

 (4.14)*** (4.26)*** (3.30)*** (2.58)*** (4.81)*** 

 MOVE MOVE MOVE MOVE MOVE 

 𝜗𝑅 0.03 0.03 0.01 0.02 0.01 

 (4.78)*** (4.50)*** (2.30)** (2.92)*** (2.08)** 

 GSCI GSCI GSCI GSCI GSCI 

𝑄12 14.04 14.57 6.50 15.46 11.52 

 [0.30] [0.27] [0.89] [0.22] [0.49] 

SBT 0.44 0.26 0.12 1.21 0.82 

 [0.66] [0.79] [0.91] [0.23] [0.41] 

lnL -5934.08 -5670.01 -5879.11 -5039.12 -5800.00 

Panel C. Powers 𝛿𝑖 

𝛿𝑟 1.40 1.40 1.50 1.40 1.50 

𝛿𝑅 1.30 1.30 1.30 1.30 1.30 

Notes:  

The table reports the estimation of the m-DAP-HEAVY model. The numbers in square brackets are p-values. The numbers 

in parentheses are t-statistics. ***, **, * denote significance at the 0.01, 0.05, 0.10 level, respectively. Q₁₂ is the Box-Pierce 

Q-statistics on the standardized residuals with 12 lags. SBT denotes the Sign Bias test of Engle and Ng (1993). lnL denotes 

the log-likelihood value for each specification. Bold (underlined) numbers indicate minimum (maximum) values across the 

five indices. 
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Table 4: Mean Square Error (MSE) and QLIKE of m-step-ahead out-of-sample forecasts for SP             

              as a Ratio of the benchmark model. 

 MSE QLIKE 

Specifications↓ m-steps → 1 5 10 22 1 5 10 22 

Panel A: Stock Returns (HEAVY-r) 

Benchmark 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

m-DAP 0.789 0.816 0.867 0.933 0.741 0.782 0.854 0.890 

Panel B: Realized Measure (HEAVY-R) 

Benchmark  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

DAP 0.761 0.819 0.873 0.879 0.770 0.761 0.831 0.922 

m-DAP with EPU only 0.743 0.802 0.851 0.881 0.724 0.740 0.806 0.866 

m-DAP 0.656 0.781 0.844 0.863 0.691 0.738 0.795 0.859 

Notes: 

The table reports the MSE and QLIKE ratios of the SP conditional variance forecasts from the extended compared 

to the benchmark models. Bold numbers indicate minimum values across the different specifications. 
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Table 5: HLN Forecast encompassing test results for SP (p-values). 

Specifications↓                m-steps → 1 5 10 22 

Panel A: Stock Returns (HEAVY-r) 

Benchmark vs m-DAP 0.005 0.023 0.036 0.052 

Panel B: Realized Measure (HEAVY-R) 

Benchmark vs DAP 0.027 0.029 0.041 0.040 

Benchmark vs m-DAP with EPU only 0.025 0.028 0.040 0.044 

Benchmark vs m-DAP 0.003 0.022 0.030 0.050 

Notes: 

The numbers reported are p-values of the HLN (1998) test of the null hypothesis for 

equal forecasting performance against the one-sided alternative that the extended 

outperforms the nested specification for SP. 
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Table 6: VaR Backtesting results and Descriptive statistics for the SP portfolio. 

 Backtesting results Descriptive statistics 

 No. of Exceptions 99% VaR 95% VaR 

Specifications 99% VaR 95% VaR Mean Min. Mean Min. 

Panel A: Stock Returns (HEAVY-r) 

GARCH(1,1) 1 2 -93.23 -157.88 -65.67 -112.89 

Benchmark 1 2 -80.12 -149.76 -57.68 -102.39 

m-DAP 1 2 -76.34 -133.54 -51.55 -95.41 

Panel B: Realized Measure (HEAVY-R) 

ARFIMA(1,d,1) 1 2 -85.26 -134.98 -60.71 -93.77 

HAR-RV 1 2 -89.51 -131.75 -63.62 -90.11 

Benchmark 1 2 -70.34 -120.32 -50.19 -83.26 

DAP 1 2 -76.23 -122.83 -53.88 -84.34 

m-DAP with EPU 1 2 -75.66 -129.31 -53.67 -89.46 

m-DAP with EPU, Credit & Commodities 1 2 -72.14 -136.69 -50.16 -94.99 

Notes: 

The table reports the VaR backtesting exercise and the descriptive statistics of the portfolio VaR for SP. Mean and Min. denote 

the average and minimum VaR estimate, respectively. Bold numbers indicate the preferred specifications for the lower market 

risk capital charge with the higher loss coverage. 
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Table 7: The Benchmark HEAVY-R equation for SP with  

              the EPU effect on Heavy and Macro parameters. 

1 − 𝛽𝑅𝐿)𝜎𝑅𝑡
2 = 𝜔𝑅 + (𝛼𝑅𝑅 + 𝛼𝑅𝑅

𝑒𝑝𝑢
𝐸𝑃𝑈𝑡−1)𝐿(𝑅𝑀𝑡) + 

+(𝜁𝑅 + 𝜁𝑅
𝑒𝑝𝑢

𝐸𝑃𝑈𝑡−1)𝐶𝑅𝑡−1+(𝜗𝑅+𝜗𝑅
𝑒𝑝𝑢

𝐸𝑃𝑈𝑡−1)𝐶𝑂𝑡−1 

 (1) (2) (3) (4) (5) 

𝛽𝑅 0.47 0.48 0.48 0.49 0.48 

 (12.91)*** (13.03)*** (12.86)*** (13.54)*** (12.87)*** 

𝛼𝑅𝑅 0.42 0.50 0.49 0.49 0.49 

 (9.26)*** (12.64)*** (12.51)*** (12.15)*** (12.49)*** 

𝛼𝑅𝑅
𝑒𝑝𝑢

 0.05     

 (2.89)***     

𝜁𝑅 0.06 0.07 0.04  0.07 

 (2.88)*** (3.40)*** (1.83)*  (3.31)*** 

 MOVE MOVE MOVE  MOVE 

𝜁𝑅
𝑒𝑝𝑢

  0.01 0.02   

  (2.64)*** (3.20)***   

  MOVE MOVE   

𝜗𝑅 0.02  0.03 0.03 0.02 

 (1.72)*  (2.84)*** (2.97)*** (1.70)* 

 GSCI  GSCI GSCI GSCI 

𝜗𝑅
𝑒𝑝𝑢

    0.01 0.01 

    (3.30)*** (3.27)*** 

    GSCI GSCI 

Notes: 

The table reports the benchmark HEAVY-R equation for SP extended with 

the indirect EPU effect. Superscripts indicate the EPU effect on the 

respective parameter. The numbers in parentheses are t-statistics. ***, **, 

* denote significance at the 0.01, 0.05, 0.10 level, respectively. 

 

  



30 
 

Table 8: The m-DAP-HEAVY-R equation for SP with the EPU effect on  

              Heavy, Arch and Macro parameters. 

(1 − 𝛽𝑅𝐿)(𝜎𝑅𝑡
2 )

𝛿𝑅
2 = 𝜔𝑅 + [𝛼𝑅𝑅 + (𝛾𝑅𝑅 + 𝛾𝑅𝑅

𝑒𝑝𝑢
𝐸𝑃𝑈𝑡−1)𝑠𝑡−1]𝐿(𝑅𝑀𝑡 )

𝛿𝑅
2 + 

+(𝛾𝑅𝑟 + 𝛾𝑅𝑟
𝑒𝑝𝑢

𝐸𝑃𝑈𝑡−1)𝑠𝑡−1𝐿(𝑟𝑡
2)

𝛿𝑟
2 +(𝜁𝑅 + 𝜁𝑅

𝑒𝑝𝑢
𝐸𝑃𝑈𝑡−1)𝐶𝑅𝑡−1+ 

+(𝜗𝑅+𝜗𝑅
𝑒𝑝𝑢

𝐸𝑃𝑈𝑡−1)𝐶𝑂𝑡−1 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝛽𝑅 0.63 0.62 0.62 0.64 0.63 0.64 0.65 0.64 

 (28.33)*** (27.19)*** (27.24)*** (28.20)*** (28.16)*** (27.79)*** (29.23)*** (27.83)*** 

𝛼𝑅𝑅 0.23 0.23 0.23 0.15 0.23 0.22 0.22 0.22 

 (11.39)*** (11.51)*** (11.50)*** (6.15)*** (11.64)*** (10.80)*** (11.16)*** (10.80)*** 

𝛾𝑅𝑅    0.06 0.07 0.07 0.07 0.07 

    (6.40)*** (5.84)*** (6.06)*** (5.86)*** (6.04)*** 

𝛾𝑅𝑅
𝑒𝑝𝑢

 0.04 0.04 0.04 0.04     

 (6.04)*** (5.69)*** (5.69)*** (5.86)***     

𝛾𝑅𝑟    0.09 0.09 0.09 0.09 0.09 

    (9.33)*** (9.30)*** (9.57)*** (9.48)*** (9.56)*** 

𝛾𝑅𝑟
𝑒𝑝𝑢

 0.05 0.05 0.05      

 (9.06)*** (9.13)*** (9.13)***      

𝜁𝑅 0.06 0.05 0.06 0.06 0.06 0.03  0.06 

 (4.50)*** (3.15)*** (4.42)*** (4.39)*** (4.10)*** (1.90)**  (4.13)*** 

 MOVE MOVE MOVE MOVE MOVE MOVE  MOVE 

𝜁𝑅
𝑒𝑝𝑢

  0.01   0.02 0.02   

  (2.24)**   (3.04)*** (4.21)***   

  MOVE   MOVE MOVE   

𝜗𝑅 0.03 0.03 0.03 0.03  0.03 0.03 0.02 

 (4.13)*** (4.66)*** (3.78)*** (3.98)***  (4.81)*** (4.46)*** (2.99)*** 

 GSCI GSCI GSCI GSCI  GSCI GSCI GSCI 

𝜗𝑅
𝑒𝑝𝑢

   0.004    0.02 0.02 

   (2.24)**    (4.34)*** (4.19)*** 

   GSCI    GSCI GSCI 

𝛿𝑟 1.40 

𝛿𝑅 1.30 

Notes:  

The table reports the m-DAP-HEAVY-R equation for SP extended with the indirect EPU effect. Superscripts 

indicate the EPU effect on the respective parameter. The numbers in parentheses are t-statistics. ***, **, * denote 

significance at the 0.01, 0.05, 0.10 level, respectively. 
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Table 9: The Covid-19 and EPU effect on Heavy, Arch and Macro 

              parameters in the m-DAP-HEAVY-R equation (eq. (3)) 

 SP DJ NASDAQ RUSSELL FTSE 

Panel A: The Covid-19 effect 

𝛼𝑅𝑅
𝑐𝑜𝑣 0.02 0.01 0.04 0.03 0.02 

 (0.77) (0.61) (1.66)* (1.85)* (1.01) 

𝛾𝑅𝑅
𝑐𝑜𝑣 0.03 0.03 0.04 0.07 0.05 

 (0.72) (0.99) (0.88) (1.82)* (1.21) 

𝛾𝑅𝑟
𝑐𝑜𝑣 0.05 0.05 0.06 0.03 0.07 

 (2.24)** (2.26)** (2.37)** (2.50)*** (2.09)** 

𝜑𝑅
𝑐𝑜𝑣 0.01 0.01 0.02 0.01 0.01 

 (1.65)* (1.63)* (1.78)* (1.73)* (1.62)* 

𝜁𝑅
𝑐𝑜𝑣 0.01 0.01 0.02 0.01 0.02 

 (1.66)* (1.71)* (1.79)* (1.66)* (1.69)* 

 MOVE MOVE MOVE MOVE MOVE 

𝜗𝑅
𝑐𝑜𝑣 0.01 0.01 0.01 0.01 0.01 

 (1.69)* (1.76)* (1.74)* (1.63)* (1.69)* 

 GSCI GSCI GSCI GSCI GSCI 

Panel B: The EPU effect in the whole sample 

𝛼𝑅𝑅
𝑒𝑝𝑢

 0.02 0.01 0.04 0.05 0.02 

 (0.88) (0.51) (1.78)* (2.42)** (0.77) 

𝛾𝑅𝑅
𝑒𝑝𝑢

 0.04 0.04 0.02 0.04 0.02 

 (5.86)*** (5.71)*** (2.59)*** (6.88)*** (3.03)*** 

𝛾𝑅𝑟
𝑒𝑝𝑢

 0.05 0.05 0.03 0.02 0.04 

 (9.22)*** (8.12)*** (10.90)*** (8.35)*** (10.98)*** 

𝜁𝑅
𝑒𝑝𝑢

 0.02 0.03 0.03 0.01 0.02 

 (3.04)*** (4.37)*** (3.43)*** (2.39)** (5.17)*** 

 MOVE MOVE MOVE MOVE MOVE 

𝜗𝑅
𝑒𝑝𝑢

 0.02 0.02 0.01 0.01 0.001 

 (4.34)*** (4.46)*** (1.64)* (2.85)*** (1.63)* 

 GSCI GSCI GSCI GSCI GSCI 

Panel C: The EPU effect in the Covid-19 period 

𝛼𝑅𝑅
𝑐𝑜𝑣_𝑒𝑝𝑢

 0.004 0.002 0.01 0.01 0.004 

 (0.47) (0.33) (1.63)* (1.77)* (0.62)*** 

𝛾𝑅𝑅
𝑐𝑜𝑣_𝑒𝑝𝑢

 0.01 0.01 0.01 0.03 0.01 

 (0.42) (0.66) (0.67) (1.71)* (1.02) 

𝛾𝑅𝑟
𝑐𝑜𝑣_𝑒𝑝𝑢

 0.01 0.02 0.02 0.02 0.03 

 (1.66)* (2.05)** (2.20)** (3.62)*** (2.01)** 

𝜁𝑅
𝑐𝑜𝑣_𝑒𝑝𝑢

 0.01 0.004 0.01 0.01 0.01 

 (1.66)* (1.69)* (1.82)* (1.71)* (1.67)* 

 MOVE MOVE MOVE MOVE MOVE 

𝜗𝑅
𝑐𝑜𝑣_𝑒𝑝𝑢

 0.003 0.002 0.01 0.003 0.004 

 (1.70)* (1.69)* (1.81)* (1.66)* (1.64)* 

 GSCI GSCI GSCI GSCI GSCI 

Notes: 

The table reports the pandemic and EPU effect estimated in the m-DAP-HEAVY-

R equation. The numbers in parentheses are t-statistics. ***, **, * denote 

significance at the 0.01, 0.05, 0.10 level, respectively. Superscripts indicate the 

Covid-19 effect (cov), the EPU effect in the whole sample (epu), and the EPU effect 

in the Covid-19 period (cov_epu). 
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Table A.1: The (m-)DAP-HEAVY-R equation. 

 SP DJ NASDAQ RUSSELL FTSE 

Panel A. Realized Measure: DAP-HEAVY- R 

(1 − 𝛽𝑅𝐿)(𝜎𝑅𝑡
2 )

𝛿𝑅
2 = 𝜔𝑅 + (𝛼𝑅𝑅 + 𝛾𝑅𝑅𝑠𝑡−1)𝐿(𝑅𝑀𝑡 )

𝛿𝑅
2 + 

+𝛾𝑅𝑟𝑠𝑡−1𝐿(𝑟𝑡
2)

𝛿𝑟
2  

𝛽𝑅 0.65 0.70 0.56 0.64 0.77 
 (30.82)*** (38.01)*** (23.61)*** (27.72)*** (40.95)*** 

𝛼𝑅𝑅 0.24 0.20 0.33 0.24 0.14 
 (12.34)*** (12.00)*** (15.79)*** (11.91)*** (6.71)*** 

𝛾𝑅𝑅 0.07 0.07 0.02 0.08 0.05 
 (5.46)*** (5.86)*** (2.17)** (7.00)*** (3.22)*** 

𝛾𝑅𝑟 0.08 0.09 0.07 0.03 0.08 
 (9.01)*** (7.93)*** (11.19)*** (7.81)*** (10.62)*** 

lnL -5947.31 -5723.10 -5927.50 -5061.56 -5839.15 

Panel B. Realized Measure: m-DAP-HEAVY- R with EPU only 

(1 − 𝛽𝑅𝐿)(𝜎𝑅𝑡
2 )

𝛿𝑅
2 = 𝜔𝑅 + (𝛼𝑅𝑅 + 𝛾𝑅𝑅𝑠𝑡−1)𝐿(𝑅𝑀𝑡 )

𝛿𝑅
2 + 

  +𝛾𝑅𝑟𝑠𝑡−1𝐿(𝑟𝑡
2)

𝛿𝑟
2  +𝜑𝑅𝐸𝑃𝑈𝑡−1 

𝛽𝑅 0.65 0.69 0.55 0.63 0.77 
 (30.28)*** (37.10)*** (22.98)*** (26.95)*** (40.29)*** 

𝛼𝑅𝑅 0.24 0.20 0.34 0.24 0.14 
 (12.44)*** (12.03)*** (15.84)*** (11.96)*** (6.78)*** 

𝛾𝑅𝑅 0.07 0.07 0.02 0.08 0.04 
 (5.45)*** (5.85)*** (2.19)** (7.05)*** (3.32)*** 

𝛾𝑅𝑟 0.09 0.09 0.07 0.03 0.08 
 (9.10)*** (7.96)*** (11.24)*** (7.75)*** (10.63)*** 

 𝜑𝑅 0.02 0.01 0.01 0.01 0.01 
 (4.02)*** (2.04)** (1.97)** (2.00)** (2.26)** 

lnL -5937.55 -5700.21 -5920.07 -5055.11 -5831.88 

Powers 𝛿𝑖 

𝛿𝑟 1.40 1.40 1.50 1.40 1.50 

𝛿𝑅 1.30 1.30 1.30 1.30 1.30 

Notes:  

The table reports the estimation of the (m-)DAP-HEAVY-R equation without 

and with the direct EPU effect. The numbers in parentheses are t-statistics. 

***, **, * denote significance at the 0.01, 0.05, 0.10 level, respectively. lnL 

denotes the log-likelihood value for each specification. Bold (underlined) 

numbers indicate minimum (maximum) values across the five indices. 
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Table A.2: The Benchmark HEAVY-R equation  

                  with EPU, Credit & Commodities. 

(1 − 𝛽𝑅𝐿)(𝜎𝑅𝑡
2 )

𝛿𝑅
2 = 𝜔𝑅 + 𝛼𝑅𝑅𝐿(𝑅𝑀𝑡) + 

 +𝜑𝑅𝐸𝑃𝑈𝑡−1+𝜁𝑅𝐶𝑅𝑡−1+𝜗𝑅𝐶𝑂𝑡−1 

 SP DJ NASDAQ RUSSELL FTSE 

𝛽𝑅 0.48 0.52 0.42 0.52 0.60 
 (12.89)*** (12.94)*** (12.24)*** (15.32)*** (14.88)*** 

𝛼𝑅𝑅 0.49 0.45 0.54 0.43 0.38 
 (12.49)*** (10.01)*** (15.56)*** (13.64)*** (9.42)*** 

 𝜑𝑅 0.03 0.02 0.02 0.02 0.02 
 (3.14)*** (2.46)*** (1.73)* (2.15)** (1.66)* 

 𝜁𝑅 0.07 0.07 0.06 0.05 0.07 
 (3.32)*** (3.09)*** (2.24)** (2.96)*** (2.32)** 

 MOVE MOVE MOVE MOVE MOVE 

 𝜗𝑅 0.03 0.04 0.02 0.03  

 (2.80)*** (2.75)*** (1.65)* (2.24)**  

 GSCI GSCI GSCI GSCI  

lnL -6010.34 -5746.31 -5973.71 -5176.34 -6219.94 
Notes:  

The table reports the Benchmark HEAVY-R equation with Macro effects. The 

numbers in parentheses are t-statistics. ***, **, * denote significance at the 

0.01, 0.05, 0.10 level, respectively. lnL denotes the log-likelihood value for 

each specification. Bold (underlined) numbers indicate minimum (maximum) 

values across the five indices. 
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Table A.3: The Benchmark HEAVY-R equation for SP with EPU, Credit & Commodities 

(stepwise procedure). 

(1 − 𝛽𝑅𝐿)(𝜎𝑅𝑡
2 )

𝛿𝑅
2 = 𝜔𝑅 + 𝛼𝑅𝑅𝐿(𝑅𝑀𝑡) +𝜑𝑅𝐸𝑃𝑈𝑡−1+𝜁𝑅𝐶𝑅𝑡−1+𝜗𝑅𝐶𝑂𝑡−1 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

𝛽𝑅 0.51 0.48 0.50 0.50 0.51 0.48 0.48 0.50 0.50 
 (14.07)*** (13.06)*** (13.56)*** (13.45)*** (14.12)*** (12.89)*** (13.04)*** (13.54)*** (13.49)*** 

𝛼𝑅𝑅 0.49 0.50 0.49 0.49 0.49 0.49 0.50 0.49 0.49 
 (12.10)*** (12.63)*** (12.15)*** (12.01)*** (12.13)*** (12.49)*** (12.69)*** (12.14)*** (12.04)*** 

 𝜑𝑅 0.02 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.03 
 (2.28)** (2.59)*** (3.18)*** (2.97)*** (1.99)** (3.14)*** (2.35)** (3.19)*** (2.72)*** 

 𝜁𝑅  0.10  0.07  0.07 0.10 0.02 0.07 
  (4.41)***  (2.77)***  (3.32)*** (4.63)*** (1.80)* (2.69)*** 

  MOVE  AAA  MOVE MOVE AAA AAA 

 𝜗𝑅   0.05  0.02 0.03 0.03 0.05 0.02 

   (4.15)***  (1.88)* (2.80)*** (2.53)*** (4.08)*** (1.68)* 

   GSCI  WTI GSCI WTI GSCI WTI 

AIC 2.31610 2.31502 2.31532 2.31587 2.31610 2.31496 2.31506 2.31573 2.31612 
Notes: 

The table reports the stepwise estimation of the Benchmark HEAVY-R equation with Macro effects for SP. The numbers in 

parentheses are t-statistics. ***, **, * denote significance at the 0.01, 0.05, 0.10 level, respectively. AIC denotes the Akaike 

Information criterion.  
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Table A.4: The m-DAP-HEAVY-R equation for SP with EPU, Credit & Commodities  

(stepwise procedure). 

(1 − 𝛽𝑅𝐿)(𝜎𝑅𝑡
2 )

𝛿𝑅
2 = 𝜔𝑅 + (𝛼𝑅𝑅 + 𝛾𝑅𝑅𝑠𝑡−1)𝐿(𝑅𝑀𝑡 )

𝛿𝑅
2 + 

+𝛾𝑅𝑟𝑠𝑡−1𝐿(𝑟𝑡
2)

𝛿𝑟
2  +𝜑𝑅𝐸𝑃𝑈𝑡−1+𝜁𝑅𝐶𝑅𝑡−1+𝜗𝑅𝐶𝑂𝑡−1 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

𝛽𝑅 0.65 0.63 0.65 0.65 0.65 0.64 0.64 0.65 0.65 

 (30.28)*** (28.19)*** (29.26)*** (29.13)*** (30.07)*** (27.86)*** (27.95)*** (28.91)*** (28.95)*** 

𝛼𝑅𝑅 0.24 0.23 0.22 0.22 0.24 0.22 0.23 0.22 0.22 

 (12.44)*** (11.64)*** (11.18)*** (11.31)*** (12.30)*** (10.82)*** (11.31)*** (10.97)*** (11.14)*** 

𝛾𝑅𝑅 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

 (5.45)*** (5.83)*** (5.87)*** (5.85)*** (5.43)*** (6.05)*** (5.84)*** (5.94)*** (5.85)*** 

𝛾𝑅𝑟 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 

 (9.10)*** (9.29)*** (9.48)*** (9.36)*** (9.17)*** (9.57)*** (9.44)*** (9.49)*** (9.45)*** 

 𝜑𝑅 0.02 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.03 

 (4.02)*** (2.95)*** (4.26)*** (4.39)*** (2.37)** (4.13)*** (2.57)*** (4.57)*** (4.10)*** 

 𝜁𝑅  0.07  0.08  0.06 0.08 0.04 0.08 

  (5.49)***  (5.38)***  (4.14)*** (5.84)*** (2.28)** (5.45)*** 

  MOVE  AAA  MOVE MOVE AAA AAA 

 𝜗𝑅   0.04  0.01 0.03 0.02 0.03 0.02 

   (6.14)***  (1.89)* (4.78)*** (3.13)*** (3.33)*** (2.17)** 

   GSCI  WTI GSCI WTI GSCI WTI 

𝛿𝑟 1.40 

𝛿𝑅 1.30 

AIC 2.30564 2.30531 2.30527 2.30537 2.30599 2.30521 2.30553 2.30558 2.30570 

Notes:  

The table reports the stepwise estimation of the m-DAP-HEAVY-R equation for SP. The numbers in parentheses are t-

statistics. ***, **, * denote significance at the 0.01, 0.05, 0.10 level, respectively. AIC denotes the Akaike Information 

criterion. 
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Table A.5: Mean Square Error (MSE) of m-step-ahead out-of-sample forecasts for SP 

Specifications↓                                           m-steps → 1 5 10 22 

Panel A: Stock Returns 

GARCH(1,1) 1.99177 2.83313 3.22341 6.35942 

Benchmark HEAVY-r 1.86670 2.42979 2.62279 5.75513 

m-DAP-HEAVY-r 1.47283 1.98270 2.27396 5.36954 

Panel B: Realized Measure 

ARFIMA(1,d,1) 1.27116 2.01750 1.44358 1.30326 

HAR-RV  1.26015 1.99137 1.41074 1.38670 

Benchmark HEAVY-R 1.22345 1.86633 1.26297 1.09794 

DAP-HEAVY-R 0.93105 1.52852 1.10257 0.96509 

m-DAP-HEAVY-R with EPU only 0.90902 1.49680 1.07479 0.96729 

m-DAP-HEAVY-R 0.80258 1.45760 1.06595 0.94752 

Notes: 

The table reports the Mean Square Error of the SP conditional variance forecasts. Bold numbers indicate 

minimum values across the different specifications. 
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Figure 1. Autocorrelation of S&P 500 |𝒓𝒕|𝜹𝒓 for 𝜹𝒓 = 𝟏. 𝟒, 𝟏. 𝟕, 𝟐. 𝟎 
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Figure 2. Autocorrelation of S&P 500 |𝑺𝑺𝑹_𝑹𝑴𝒕|𝜹𝑹 for 𝜹𝑹 = 𝟏. 𝟑, 𝟏. 𝟔, 𝟐. 𝟎 
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Figure 3. Autocorrelation of S&P 500 |𝒓𝒕|𝜹𝒓 at lags 1, 12, 36, 72, 96 
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Figure 4. Autocorrelation of S&P 500 |𝑺𝑺𝑹_𝑹𝑴𝒕|𝜹𝑹 at lags 1, 12, 36, 72, 96 

  



41 
 

 

 Figure 5. US EPU and S&P 500 Realized Variance    
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Figure 6. UK EPU and FTSE 100 Realized Variance 
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Figure 7. US EPU and the Credit market proxies 

  



44 
 

  

Figure 8. US EPU and the Commodity market proxies 
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Figure 9. US EPU and S&P 500 Realized Variance (January - May 2020) 
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Figure 10. UK EPU and FTSE 100 Realized Variance (January - May 2020) 
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Figure A.1. S&P 500 Standardized Residuals (Benchmark HEAVY and m-DAP-HEAVY models) 

 

 


