p-ADIC ASYMPTOTIC PROPERTIES OF
CONSTANT-RECURSIVE SEQUENCES

ERIC ROWLAND AND REEM YASSAWI

ABSTRACT. In this article we study p-adic properties of sequences of integers
(or p-adic integers) that satisfy a linear recurrence with constant coefficients.
For such a sequence, we give an explicit approximate twisted interpolation
to Zp. We then use this interpolation for two applications. The first is that
certain subsequences of constant-recursive sequences converge p-adically. The
second is that the density of the residues modulo p® attained by a constant-
recursive sequence converges, as a — 00, to the Haar measure of a certain
subset of Zp. To illustrate these results, we determine some particular limits
for the Fibonacci sequence.

1. INTRODUCTION

Many integer sequences s(n),>o that arise in combinatorial and number theo-
retic settings have the property that (s(n) mod p®),>¢ is a p-automatic sequence
for each o > 0 [9, [1]. As « varies, automata that produce these sequences have
natural relationships to each other; namely, an automaton for a sequence modulo
p“ necessarily contains all information about the sequence modulo smaller powers
of p. However, there has not been a satisfactory way of letting o — oo and cap-
turing information about all powers p® simultaneously. The inverse limit of these
automata is a profinite automaton [10]. In this paper we study properties of this
profinite automaton for a sequence s(n),>¢ satisfying a linear recurrence with con-
stant coefficients, by interpolating subsequences to the p-adic integers Z,. Namely,
we are interested in p-adic limits of certain subsequences of s(n),>¢, as well as the
limiting density of attained residues of s(n),>o modulo powers of p.

For example, let F'(n) be the nth Fibonacci number. Figure (1| shows the first
40 base-p digits of F(p™) for p € {2,5,11} and 0 < n < 10. The digits 0 through
p — 1 are rendered in grey levels ranging from white to black. The p = 2 array
suggests that lim,, ,., F(2") does not exist in Zo but that lim, ., F(22") and
lim,, oo F(22"T1) do. The p = 5 array suggests that lim, .., F(5") = 0 in Zs,
and the p = 11 array suggests that lim,_, ., F'(11™) exists in Z1; and is non-zero.
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FIGURE 1. Base-p digits of F(p™) for p = 2 (left), p = 5 (center),
and p = 11 (right), for n in the interval 0 < n < 10.
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Other limits of this nature appear elsewhere in the literature. For example, analo-
gous limits for binomial coefficients were shown to exist by Davis [4], and limits of
subsequences of the gyration sequence were used by Boyle, Lind, and Rudolph [2]
Section 8] to obtain information about the automorphism group of a symbolic dy-
namical system.

Regarding the Fibonacci sequence, Lenstra [7] showed that F'(n),>o can be in-
terpolated by an analytic function on the profinite integers. For p # 2, Bihani,
Sheppard, and Young [I] showed that (a"F(bn)),>o can be interpolated to Z, by
a hypergeometric function for some integers a, b.

A constant-recursive sequence cannot generally be interpolated to Z,. Namely,
since N is dense in Z, and Z, is compact, a sequence s(n),>o can be interpolated
to Z, if and only if (s(n) mod p*),>¢ is purely periodic with period length equal
to a power of p for every a. However, we show in Theorem [7| that every constant-
recursive sequence has an approzimate twisted interpolation to Zj, as defined in
Section 3] In Theorem we show that in general this is the best we can hope for.
We identify in Corollary [8|a large family of constant-recursive sequences that have
twisted interpolations to Z,,.

Interpolation of this kind has been used previously to study arithmetic properties
of constant-recursive sequences. For example, the Skolem—Mahler—Lech theorem [5]
Theorem 2.1] for integer-valued constant-recursive sequences can be proved using
interpolation. More recently, Shu and Yao [12] Theorem 3] implicitly used inter-
polation to characterize constant-recursive sequences of order 2 whose sequence of
p-adic valuations is p-regular. In this article we pay particular attention to the con-
stants one must introduce, which allows us to make explicit the number of functions
that comprise the twisted interpolation.

In Section [2| we give the necessary background in p-adic analysis. In Section
we discuss twisted interpolations to Z, of a sequence satisfying a linear recurrence
with constant coefficients. In Section [d we apply interpolations to the computation
of p-adic limits and limiting densities of attained residues. In particular, we show
in Theorem [13| that the limiting density of attained residues is the Haar measure
of a certain set. In Section [5| we give a twisted interpolation for the Fibonacci
sequence to Z,, we establish the limits suggested by Figure[I} and, in Theorem
we determine the limiting density of residues attained by the Fibonacci sequence
modulo powers of 11.

2. ROOTS OF UNITY IN EXTENSIONS OF @,

We use several results about finite extensions of the field Q, of p-adic numbers.
A complete exposition of the following results can be found in [6, Chapter 5].

If a; € {0,1,...,p— 1} for all ¢ > k and aj, # 0, recall that the p-adic absolute
value is defined on Q, by | > 2, a;p'l, = p~F.

Theorem 1. Let K/Q, be a finite extension of degree d. For x € K, let M, be the
matriz that corresponds to multiplication by x in K, and define the multiplicative
function Nk q, : K — Qp as Nk g, () := det M,.

(1) [6, Corollary 5.3.2 and Theorem 5.3.5] There is exactly one non-Archimedean

absolute value | |, on K extending the p-adic absolute value | |, on Qp, de-
fined as

[zlp = {/ Nk /g, (@)]p-
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(2) [6l Proposition 5.4.2] Define the p-adic valuation v, : K \ {0} — Q as the
unique number satisfying

ol = p .
Then the image of v, is %Z, where e is a divisor of d.

The value e in Part (2) of Theorem [l| is called the ramification indezx of the
extension K/Q,. Akin to the special role of p in Z,, we say m € K is a uniformizer
if v, (m) =1/e.

Given an extension K/Q, with absolute value | |,, let

Og ={zreK:|z|[, <1}
denote the unit ball in K, and let

Uk ={z e K : x|, <1}
denote its interior. Let f :=d/e.

Proposition 2 ([6, Propositions 5.4.5 and 5.4.6]). Let K/Q, be a finite extension
of degree d, with ramification index e, and f = d/e. Let 1 € K be a uniformizer.
Then the following hold.
(1) Uk is a principal ideal of Ok, and Ux = 1Ok .
(2) The residue field Ok JUx is a finite field with p’ elements.
(3) If B € K is a root of a monic polynomial with coefficients in Z,, then
B e Ok.
(4) Let D ={0,c1,...,cpr_1} be a fived set of representatives for the cosets of
Uk in Ok. Then any x € K has a unique expansion r = Z;’;_k aj7rj with
each a; € D.

Part of Proposition indicates that elements of K have a structure analogous
to those of Q,, with 7 playing the role of p.
Given an extension K/Q,, the p-adic logarithm

log, z := Z (—1)m+17(x -

m
m>1

converges for x € 1+ Uk, i.e. for x belonging to {x € Ok : |z — 1|, < 1}. The

p-adic exponential function
m

>
exp, T = p—
Py m!

m>0
converges for = belonging to {z € Ok : |z|, < p~"/®= VY If [z — 1|, < p~ /(=1
then
x = exp, log, z.
For details, see [0, Section 5.5].

The next proposition guarantees the existence of certain roots of unity in Og.

Proposition 3 ([6, Corollary 5.4.9]). Let K/Q, be a finite extension of degree d,
with ramification index e, and f = d/e. Then O contains the cyclic group of
(p? — 1)-st roots of unity.
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The proof of Proposition [3] involves the appropriate version of Hensel’s lemma,
and in particular it implies that each (p/ — 1)-st root of unity belongs to a distinct
residue class modulo 7. Since there are precisely pf residue classes modulo 7, it
follows that, for each z € Ok such that z Z 0 mod 7, there is a unique (p/ — 1)-st
root of unity congruent to x modulo 7; we define w(z) to be this root of unity.
Note that w(x) is independent of the choice of uniformizer. For p # 2 and a p-adic
integer z € Zy, \ pZ,, w(zx) coincides with the Teichmiiller representative of x, the
(p — 1)-st root of unity congruent to x modulo p.

3. INTERPOLATION OF A CONSTANT-RECURSIVE SEQUENCE

Let N = {0,1,...} be the set of natural numbers. Let s(n),>0 be a sequence of
p-adic integers satisfying a linear recurrence

(1) s(n+£€)+ap—1s(n+€—1)+---+ais(n+1)+aps(n) =0

with constant coeflicients a; € Z,. As discussed in Section in general s(n) cannot
be interpolated to Z,.

Definition 4. Let p be a prime, and let ¢ > 1 be a power of p. Let s(n),>o be a
sequence of p-adic integers. Suppose N = U]EJ A; is a finite partition of N, with
each A; dense in r 4 ¢Z, for some 0 < r < ¢ — 1. Let K be a finite extension of
Qp, and for each j € J let s; : Z, — K be a continuous function.
o If s(n) = sj(n) for all n € A; and j € J, then we say that the family
{(s;,A;) : j € J} is a twisted interpolation of s(n),>¢ to Z,.
o If there are non-negative constants C, D, with D < 1, such that |s(n) —
sj(n)], < CD™for alln € Aj and j € J, then we say that {(s;,A4;) : j € J}
is an approzimate twisted interpolation of s(n)n>o to Z,.

In the case of a twisted interpolation, since A; is dense in r + ¢Z,, the function
sj(x) is the unique continuous function which agrees with s(n) on A;. Note that
some authors refer to each of the functions s; as a twisted interpolation. If all the
functions s; are the same then we have an interpolation. In this section we identify
conditions that guarantee the existence of a twisted interpolation of s(n),>o to
Zy. If s(n),>o does not satisfy these conditions, we show that it can only be
approximately interpolated. The sets A; we will obtain are all of the form

(2) Aipi={m>0:m=i modp’ —1and m=r mod ¢}

for some fixed f. The proof of the following lemma follows directly from the Chinese
remainder theorem.

Lemma 5. Let p be a prime, let ¢ > 1 be a power of p, and let f > 1. For each
0<i<p/—2and0<r<gq-—1, the set A; , is dense in r + qZy.

We recall the classical interpolation of the Fibonacci numbers to R. Let ¢ =
1+T\/5 and ¢ = 1’2‘/5. Using the generating function of the Fibonacci sequence, the
nth Fibonacci number F(n) can be written using Binet’s formula

(bn _ (lgn
F(n)=—F——.
="

Thus to obtain an interpolation of F(n),>o to R, it suffices to interpret

¢w_(5x

V5
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for z € R. We can write ¢ = (exp log ¢)"™ = exp(n log ¢) since ¢ is positive, and it
follows that ¢™ is interpolated by exp(z log ¢).
Because ¢ is negative, we write

¢" = (=1)"(=¢)" = (=1)"(explog(—¢))" = (=1)" exp(nlog(-9)),
and it remains to interpolate (—1)™ to R. A common, but not unique, choice is
cos(mz). Therefore F(n),>¢ is interpolated to R by the analytic function

exp(z log ¢) — cos(mx) exp(x log(—¢))
¥ .

The main idea of this section is to carry out such an interpolation to Q, instead
of R. The nth term of the constant-recursive sequence s(n),>o can be written as
a linear combination of terms of the form n/ 8™ in a suitable field extension, where
8 runs over the roots of the characteristic polynomial g(z) = x + --- + ayz + ao,
and j runs over the integers from 0 to mg — 1, where mg is the multiplicity of S.
In other words, we can write

Fx) =

s(n) = ca(n)s"
B

for some polynomials cg(x) € K|[z], where we sum over all roots 5 of g(z). The key
step is to be able to legitimately write z = exp, log,, * for some modified version of
the roots 8. Lemma [f] tells us how to do this.

Lemma 6. Let p be a prime. Let g(x) € Zp[z] be a monic polynomial, and let /3
be a root of g(z) in a splitting field K of g(x) over Qp, with |B|, = 1. Let e be the
ramification index of K/Q,. Let

3 )1 ife<p—1
( ) q= p]'logp(eJrlﬂ ’Lf e>p— 1}
where here log,, is the real logarithm to base p. Then \(%)q — 1, < p~ V=,

Proof. Let m be a uniformizer. Since |3|, = 1, by Proposition [3| there exists a root
of unity w(f) € Ok which is congruent to § modulo 7. We have

B 1B —w(B)lp
g 2 BTV g .
P e e Tl
First suppose e < p — 1, so that ¢ = 1. Since 8 = w(f) mod 7, we have

1B —w(@B)p < Inlp = p Ve < p /1)
as desired. Now suppose e > p — 1, so that ¢ = p/'8(¢+D1 Since logp(e +1) <
log, (e + 1)], our choice of ¢ implies 77 = 0 mod pr. Since f = w(B) mod m,
D
Kummer’s theorem then implies 7 = w(f)? mod pm, so
187 = w(B)]p < |prlp = p~ ' < pm /7D

since1+%>12p—il. [l

We make two remarks regarding Lemmal[6] The first is that the case e > p—1in
Equation does occur. For example, consider the sequence defined by s(n+3) =
2s(n) and s(0) = s(1) = 5(2) = 1. Let p=3. Then K = Q3(¥/2),e =3 >2=p—1,
and ¢ = 9.
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The second remark is that the value of ¢ given by Lemma [f] is not necessarily
optimal. For example, the extension K = Q5 of degree 1 contains the square root of
unity —1. This root of unity is not included in those guaranteed by Proposition
but allowing 8 € Zs \ 2Zs to be divided by 1 or —1 allows us to reduce the value of
q from 2 to 1.

We now state the main result of this section.

Theorem 7. Let p be a prime, and let s(n),>0 be a constant-recursive sequence
of p-adic integers with monic characteristic polynomial g(z) € Zylz]. Then there
exists an analytic approzimate twisted interpolation of s(n)n>o to Z,.

Proof. As in Lemma @ let K be a degree-d splitting field of g(z) over Q, with
ramification index e, and f = d/e. Let ¢ be defined as in Equation . We have
s(n) =3 g cp(n)B" for some cg(z) € Klz].

We mimic what is done to interpolate the Fibonacci numbers to R. By Propo-
sition [2] all roots of g(x) lie in Okg. Let n > 0 and 0 < r < ¢ — 1. For each root 8
such that |8], = 1, we have

Bqn—&-r _ w(ﬂ)qnﬁ’” (%)qn

by Lemma [6] Therefore

s(gn+r) = Z cplgn +r)Batr
B

= Z cg(gn + T)ﬂqn+r + Z cglgn +r)w(B)"B" €XPyp (n Ing (%)tﬁ :

1Blp<1 |Blp=1

We discard terms involving $7"*" where |3, < 1 since these tend to 0 quickly. For
the remaining terms, we must replace w(3)?" with a function defined on Z,.

When n is restricted to a fixed residue class modulo p/ — 1, the expression w(3)9"
is constant, and we can now define, for each 0 <i <pf —2and 0 <r < ¢g—1,

Sir(qr +71) = Z ca(qr + rw(B) 8" exp,, (:c log,, (%)(ﬁ
[Blp=1

for x € Z,,.

Recall A;, ={m>0:m=1 mod p/ — 1 and m =r mod ¢} for 0 <i < pf —2
and 0 < r < g— 1. Then for m € A, ,, s;,(m) agrees with the second sum in the
expression for s(m).

We claim that {(s;,,A;,):0<i<p/—2and 0 <r < g— 1} is an analytic
approximate twisted interpolation of s(n),>q to Z,. By Lemma each set A;, has

B

the correct density property. Since |logp(w—m)q|p < p~ Y@= for each § satisfying

exp,, (z log, (%)q)

is well defined for # € Z,. Therefore the function x — s; ,.(gz + r) is analytic
on Z,. Since each cg is continuous, and Z, is compact, we can define C' =

|8, = 1, the expression
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max|g|<1 MaXgez, |¢s(7)|p. Then for n € A;, we have

[s(n) — sir(n)]p = Z cg(n)p"| < |}3r|la§1 lcg(n)B™|, < C (lglafl |5|p) )
|8lp<1 o '

where we interpret a maximum over the empty set to be 0, and 0° to be 0. O

Remark. We do not use the fact that the functions cg are polynomials, but only
that they are continuous. Hence the proof of Theorem [7] works more generally for
any sequence s(n)>o which can be written s(n) = > ;cs(n)B8" as a sum over a
finite set B C Ok, where the functions cg are arbitrary continuous functions.

Example. Let s(0) = s(1) = s(2) = 1, and s(n+3) = 3s(n+2)+2s(n+1) —6s(n).
Let p = 2. Then the roots of the characteristic polynomial are 3 and £+1/2. Because
of these last two roots, s(n) # s;.(n), and Theorem [7| gives only an approximate
twisted interpolation.

The proof of Theorem [7] gives us sufficient conditions for a constant-recursive
sequence s(n),>o to have an analytic twisted interpolation to Z,. If g(z) = x¢ +
---4a1x+ag € Zp[z] is a monic characteristic polynomial for s(n),>o, with s(n) =
>_pcp(n)B" and

{B :|B|p < 1 and cg is not the 0 polynomial} = 0,

then there exists an analytic twisted interpolation of s(n),>0 to Z,. In particular,
since, up to a unit, ag =[] 5 8, we have the following corollary.

Corollary 8. Let p be a prime, and let s(n),>o be a constant-recursive sequence
of p-adic integers with monic characteristic polynomial ° + -+ a1z +ag € ZLy[z].
If lag|p, = 1, then there exists a twisted interpolation of s(n)n>o to Zy.

If all roots of g(x) satisfy |8|, = 1, then we can extend s(n),>o to a two-
sided sequence s(n),ez of p-adic integers satisfying Recurrence . In this case,
Theorem E implies that s(n) = s;,.(n) for all n € Z such that n =i mod pf — 1
and n =r mod ¢. Additionally, we obtain the following corollary. We continue to
assume the hypotheses of Theorem

Corollary 9. Ife < p—1 and all roots of g(x) satisfy 8 =1 mod w, then s(n)
can be interpolated to Zi,.

Proof. Since f = 1 mod 7, we have w(8) = 1. It follows from Theorem |z| that,
for a fixed r, the functions s; »(qx + r) coincide for all 7. Since e < p — 1, we have
g = 1, and therefore the only value of r is r = 0, so s(n) = spo(n) for alln > 0. O

Example. Let p > 5. Let s(0) = s(1) = 1, and let s(n+2) = 2s(n+1)+(p—1)s(n).
Then e < 2 < p — 1, and the roots of 22 — 2z — (p — 1) are congruent to 1 modulo
m. Therefore s(n),>o can be interpolated to Z,.

Our next result tells us that Theorem [7]is the best that we can hope for.

Theorem 10. Let p be a prime and K a finite extension of Q,. Suppose that
B is a nonempty finite set of elements of K such that |B|, < 1 for each 8 € B.
For each B € B, let cg : Z, — K be a continuous function. For n € N, define
s(n) =3 gcp cp(n)B", and suppose that there is a twisted interpolation of s(n)n>o
to Z,. Then s(n) =0 for alln > 0.
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Proof. Let (s;,A;) be a twisted interpolation for s(n),>o. Let z € Z, \ N, and
define k,, € N by k,, = (z mod p"). Fix j. The closure Zj of each partition element
Aj in Z, satisfies A; = r+qZ, for some 0 < r < g—1, where ¢ is as in Deﬁnition
this implies that there exists x € Z, \ N such that k,, € A; for sufficiently large
n. Now fix any such z € 4; \ 4;. As n — oo, the continuity of s; implies that
s(kn) = sj(kn) — sj(z). On the other hand, as n — oo, % — 0 for each 3, and
we have that s(k,,) — 0. Thus s; is identically zero on A;\ A;. Since A; = r+qZ,,
if k € A; then there exists a sequence of elements (2,,),>0 in 4; \ A;, such that
x, — k, and now continuity of s; again tells us that s(k) = 0. O

Example. Consider the sequence defined by s(n+2) = 2s(n) and s(0) = s(1) = 1.
Let p = 2. The roots of the characteristic polynomial are ++/2. Since v/2 is a
uniformizer of Q2 (v/2)/Q, Theoremtells us that there is no twisted interpolation
of s(n)p>o to Zy.

4. LIMITS AND DISTRIBUTION OF RESIDUES

In this section we describe two applications of Theorem The first concerns
p-adic limits of subsequences of constant-recursive sequences, such as the limits
suggested by Figure The second concerns the density of residues modulo p®
attained by a constant-recursive sequence.

Using the power series of Theorem |7} we can compute limits of s(n) along se-
quences of points in A; .

Corollary 11. Let a,b € Z with a > 1. Under the hypotheses of Theorem[7, the

limit lim,, oo s(ap’™ + b) exists in Z, and is equal to

lim s(ap’™ +b) = Z Cﬁ(b)w(ﬁ)aﬁb

n—oo
|Blp=1

In particular, the value of this limit is algebraic over Q.

We note that if the coefficients ay_1,...,ap in Recurrence (/1)) are integers and
s(n)y>o is integer-valued, then the limit above is algebraic over Q.

Proof. For sufficiently large n, we have ap/™+b = a+b mod pf —1 and ap/+b=1b
mod ¢. Therefore

ap’™+b
|S(apfn + b) — Sa—i—b,(b mod q)(apfn + b)‘p S C (lg’lla;é(l |ﬁ|p> .
P

As n — oo, the right side of the inequality tends to 0, so we have
nlglgo S(apfn + b) = nh~>ngo Sa-l—b,(b mod q) (apfn + b)
= 8a+b,(b mod q) (b)
= > cpbw(B)B
[Blp=1
by continuity of s; ,(qx + 7). O
Corollaryis a generalization of the fact that if 8 € Z,\pZ,, then lim,,_, pr" =

w(B). This can be seen since s(n) = 5" satisfies the recurrence s(n+1) = Bs(n) of
order 1. For example, see [§].
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It also follows from Corollary [11| that the sequence
( lim s(ap™ + b))
n— oo

of p-adic integers satisfies Recurrence , the original recurrence satisfied by s(n),>0.
Other limits, such as lim,, s(agpzf” + a1p/™ 4+ b), can be computed similarly.

If all roots of g(x) satisfy |G|, = 1, then we can relax the hypotheses of Corol-
lary and allow a to be an arbitrary integer, obtaining the same conclusion.
Additionally, we have the following.

Corollary 12. Under the hypotheses of Theorem@ if a € (p! — 1)Z and all roots
of g(z) satisfy |B|, = 1, then we obtain the integer limit

. f’ﬂ _
nl;r& s(ap’™ + b) = s(b).

b>0

Proof. The computation in the proof of Corollary shows that

hm s(ap’™ +b) = ZCB BBl = chg(b)ﬁb = s(b). O
B

Our second application of the power series of Theorem [7]is determining the value
of the limiting density

lim [{s(n) mod p* : n > 0}

a—00 pe

of attained residues. This limit exists since the sequence of densities modulo powers
of p is a non-increasing sequence bounded below by 0. Let u be the Haar measure
on Z, defined by p(m+p“Z,) = p~*. For f > 1 and ¢ > 1 a power of p, recall the
definition of the family of sets A;, in Equation .

Theorem 13. Let s(n)p>0 be a sequence of p-adic integers with an approzimate
twisted interpolation {(s;r, Air):0 <4< pf =2 and 0 <r < q—1}. Then

lim [{s(n) mod p* : n > 0}|

a—o0 pe

=ulZ,N U Sir(r+ qZy)

Proof. First, note that
[{s(n) mod p : n > 0} = [s(N)

For n € A; ., define t(n) = s;(n). Let the extension K and the constants C, D be
as in Deﬁnition For all n > 0, we have |s(n)—t(n)|, < CD", so s(N) = Z,Nt(N).

Since [+ maOd pal ‘Z m(N;am od p"| are non-increasing functions of «, the limits
exist and
’W ‘Z N t(N) mod p°
lim = lim
a—00 po‘ a—00 p

Therefore it suffices to work with ¢(n). Note that in the case of a twisted inter-
polation, s(n) = t(n) and we work in Z,, but in general t(n) is an element of
Ok.

By Lemma we have r + ¢Z, = A; , for each i and r, so

N) = U sin(Air) = sin(r + qZp).

7,7
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Note that ¢(N) = t(Z,) is compact, and hence closed, in K. It follows that

Z, N t(N) is closed in Z,. The set Z, \ t(N) is open, so it is a countable union of
cylinder sets, i.e. sets of the form k + pﬂZp, where k € Z,. Since Z,, is a countable

union of cylinder sets, it follows that Z, N¢(N) is also a countable union of cylinder
sets and is therefore measurable. It follows that

.U(Zp ﬁm) =pl| ZpN Usiﬂ“(T +qZyp)

It remains to show that

Z, N t(N) mod p*
pOt

lim
a—r 00

- y,(zp N (N)) .
Let
Sy = U k+p“Zy.
kE(ZPﬁW mod p"‘)

Since Z, Nt(N) C Sy, it follows that W > u(Zp N (N)) for each «a,

w > M(Zpﬁ (N))

To establish the other inequality, we fix € > 0 and we suppose that for some a,
ZpNt(N) mod p® — . 5 . -
‘pmt(# > M(Zp N (N)) +e, le. ,u(Sa \t(N)) > e. Since S, \ t(N) is open,
there exists a set T C S, \ t(N), which is a finite union of cylinder sets, and whose
p-mass is at least 5. There exists 8 > « such that T' is a union of cylinder sets all

of which are of the form k + p?Z,. Then 1(Sg) < u(Sa) — §. If ,u(Sg \ s(N)) > €,

and so lim,_,

we iterate this procedure until we find a v with u(Sﬂ, \s(N)) < ¢, and hence

Wt(N;—amOdp' < ,u(Zp N (N)) + €. As this is true for any € > 0, this

completes the proof. O

limg 00

We apply Theorem to compute the limiting density of residues attained by
the Fibonacci sequence modulo 11¢ in Theorem We suspect that the method
we use there generalizes to any p and any constant-recursive sequence.

5. THE FIBONACCI SEQUENCE

In this section we apply the results from Sections [3] and [ to the Fibonacci
sequence F'(n),>0, which satisfies

Fn+2)—F(n+1)—F(n)=0
with initial conditions F'(0) = 0 and F'(1) = 1. Accordingly, we take K = Q,(¢),

where ¢ is a root of 22 —z — 1. Let ¢ be the other root. Note that /5 : =24 —1 €
Qu(¢), and in fact Q,(v/5) = Qu(¢). The ramification index of the extension

Q,(9)/Q, is as follows.

Lemma 14. Let p be a prime, and let d be the degree of the extension Q,(¢)/Qp.
o Ifp=1,4 mod 5, then p € Qp, soe=d=1.
o Ifp=2,3 mod5, then 9 Q, ande=1 and d = 2.
o [fp=>5,then ¢ € Qs and e =d = 2.
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For p = 5 we take the uniformizer to be 7 = /5. For other primes we take
m = p. Throughout this section, e denotes the ramification index of Q,(¢)/Q,, as
determined in Lemma and f =d/e.

For primes p # 2 we obtain the following.

Theorem 15. Let p # 2 be a prime, and let 0 < i < p — 2. Define the function
F; - Zp — Zp by
(@) = (~)"w(@)) (log, 555)
Fi(z) = Z x™,
>0 m/5
and let A; = {n >0:n =14 mod p/ —1}. Then {(F;,A;) : 0<i<pf—-2}isa
twisted interpolation of F(n)n>o to Z,.
Proof. Since p # 2, we have ¢ = 1 by Equation . We have
¢n _ d_)n

F(n) = T

for each integer n > 0. The roots of x2 —xz—1 satisfy |¢|, = ||, = 1. By Theorem
w(p)" exp, (x log,, ﬁ) —w(o) exp,, (m log,, %)
V5

defines an analytic function on Z, which agrees with F(n) on A;. Expanding the
power series for exp,, gives

mZZ:O w(o)* <logp "J&)):l;;;((b)l (1ng %)m

m

We claim that log, Té?) = —log, % Since p # 2, we have —1 = ¢- ¢ = w(d)w ()
mod 7; since —1 and w(@)w(¢) are both (pf — 1)-st roots of unity, this implies
w(¢)w(@) = —1. Therefore
¢ ¢ _ —
log,, oo T log,, o = log,1 =0,
and ”
(@) = (~1)mw(@)) (log, 555)
Fi(x) = Z ' ™.
= m!/5

For p = 2 one can also state a version of Theorem [I5] where there are 6 functions
in the twisted interpolation since ¢ = p = 2.

For p = 5 it turns out that F;(z) simplifies somewhat, allowing us to interpolate
a twisted Fibonacci sequence to Zs. Define the p-adic hyperbolic sine by

O

e —e€ — 1
sinhp(x) :: pr(x) pr( JL‘) _ Z 'x2m+1.
>0 ’

2 (2m+1)

Corollary 16. Let p = 5. The function F(n)/w(3)™ can be extended to an analytic
function on Zs, namely

2
- ¢
NG sinhs (J: logs w(3)) .
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Proof. One checks that ¢ = ¢ =3 mod /5 in Og,(4), so that w(¢) = w(¢) = w(3),
and the coefficient of ™ is 0 for even m. Therefore, for every integer n, we have

20(3)" (1 o )2m+1

w Og5 — oy 2 n

F(n) = g w(3) 2l = 7M(3) sinhs (n logs —?3 ) . O
— (2m + 1)V5 NG w(3)

Bihani, Sheppard, and Young [I] similarly showed that 2" F(n) can be extended
to an analytic function on Zs, in this case by a hypergeometric series.
Since w(3)®" = w(3) in Zs for all n > 0, from Corollary [16|we see that the coeffi-

cient of 2° in the power series expansion of % sinhg (m logs ﬁ) islim, o F(5") =

0. Moreover, the coefficient of z! is

R N Ok

the 5-adic digits of which comprise the diagonal stripes seen in Figure Other
coefficients of this power series can be obtained as limits similarly.

Corollary [11] allows us to establish the other limits suggested by Figure[l}] For a
prime p and a, b € Z, we have

Jim F(ap™ +b) = w(ﬁb)aﬁbb\;gw(@“cbb.

Zn)

For p = 2 one computes that lim, . F(p**) and lim,, o, F(p*"*!) are equal to

+ —g. For p = 11 the limit lim,,_,o, F((p") is a root of 522 + 5x + 1.

We now turn to an application of Theorem A number of authors have
studied the distribution of residues of the Fibonacci sequence modulo m. Burr [3]
characterized the integers m such that (F'(n) mod m), > contains all residue classes
modulo m. In particular, the Fibonacci numbers attain all residues modulo 3* and
all residues modulo 5%.

The limiting densities of attained residues modulo powers of other primes can
be determined by Theorem We conclude the paper by determining the limiting
density of residues for p = 11. In this case, f = d = 1, so the twisted interpolation of
the Fibonacci sequence to Zj; consists of 10 functions Fy, ..., Fy. By Theorem

lim [{F(n) mod 11* : n > 0}| _ M(U Fi(le)> .
i=0

a—o0 11«

Therefore it suffices to determine F;(Zq1) for each 4 in the interval 0 <i <9.

Lemma 17. Let p = 11, and let 0 < i < 9 such that i # 5. Then F;(Z11) =

Proof. We determine the set F;(Z11) by decomposing F;(z) as the composition of
two simpler functions. Using w(¢)w(¢) = —1 and log;, ﬁ = —log; ﬁ, we
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have from the proof of Theorem [T5] that
w(9)" expy; (33 logy, ﬁ) —w(9) expyy (—x logy; %)
V5
w(e)iex zlogy; =2 ) — (—1)'w(p)Pex —xzlog,, =2
P11 811 5(g) P11 811 ()

Fi(z) =

B

where h;(z) = w(¢)® expy, (x logq; %)

One computes ‘log11 %;))’11 =L, s0 (log11 ﬁ) Zy11 = 117Z4;. Since exp;; is an
isomorphism from the additive group 11Z1; to the multiplicative group 1+ 11Z1,
we have

hi(Z11) = w(¢) (1 + 11Z11) = (¢" mod 11) 4 11Z;.

It remains to show that the image of (¢* mod 11) + 11Z;; under the function
Y %(y — (=1)¥y~1) is (F(i) mod 11) + 11Zy;. Let

i (1)t
z € (W mod 11) +11Z41 = (F (i) mod 11) + 11Zy;.
V5
We apply Hensel’s lemma to show that there exists y € (¢ mod 11) + 11Z;; such
that %(y — (=1)'y~1) = 2, or, equivalently, y* — v/5zy — (—1)" = 0. From our
choice of z, it is clear that yo = ¢® satisfies this polynomial equation modulo 11.
Then we must check that 2yo—+/5z Z 0 mod 11. The ring Z; contains two square
roots of 5; without loss of generality, choose v/5 =7 mod 11. Then ¢ =4 mod 11,
0 2yg — /52 Z0 mod 11 if and only if 24 — (4° — (—=1)’47%) # 0 mod 11, which
is true since i # 5. O

Figure [2| shows the first several levels of the infinite rooted tree in which the ver-
tices at level «v consist of all residues m modulo 11¢ such that F'(n) =m mod 11¢
for some n > 0. Two vertices at consecutive levels a and a+ 1 are connected by an
edge if the residue at level o + 1 projects to the residue at level «, and the edge is
labeled with the extra base-11 digit in the residue at level a + 1. Framed residues
represent full infinite 11-ary subtrees: to simplify the diagram we suppress these
full subtrees.

It follows from Lemma [ that

U Fi(Z11) = | J(F (i) mod 11) + 11Zy; = U m+ 117Z4;.
i#5 i#5 me{0,1,2,3,8,10}

Accordingly, level @ = 1 of Figure [2| contains the residues {0, 1,2, 3,8,10}, and the
outgoing edges from these vertices are suppressed since they consist of full 11-ary
subtrees. Level a = 1 also contains the residue 5; we will see that this residue has
a unique residue modulo 112 that projects onto it.

It remains to determine F5(Z11). We continue to choose V5 =7 mod 11. We
need to determine for which z € Zq; the equation y? — \/gzy + 1 = 0 has a solution
in ¢® 4+ 112y, =1+ 117Zq,. If 2z = %, the equation becomes (y — 1)? = 0, which
clearly has a solution in 1 + 117Zq;. Consequently, the tree in Figure [2] contains an
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FIGURE 2. The tree of the residues attained by the Fibonacci se-
quence modulo small powers of 11.

infinite path corresponding to the 11-adic expansion of %, and it is precisely along
this path that more complicated branching occurs.

Lemma 18. Leta>1andj € {1,...,10}. Let z = % +45112® mod 112+, Let
fo(y) =y* = o2y + 1.
o Ifj € {2,6,7,8,10} then f.(y) has a root y € Z11 satisfying |y — 1|11 <
1/11°.
o Ifj€{1,3,4,5,9} then f.(y) has no root in Zi;.

Proof. We use the following version of Hensel’s lemma: If there is an integer a such
that |f.(a)|, < |f.(a)]2, then there is a unique p-adic integer y such f.(y) = 0 and
ly — alp <|fi(a)lp-

There are 6 quadratic residues modulo 11, namely 0, 1, 3, 4, 5, and 9. If
j € {2,6,7,8,10} then there exists o’ € {1,...,10} such that a’> — /5j = 0
mod 11. We check that a = 1 + 11%d’ satisfies the conditions of Hensel’s lemma.
We have

f2(a) = a® —V5za + 1
E£a2—-(24—yﬁﬂ]lga>a—%1 mod 1120+
= (am _.v@g) 112¢  mod 1120+

=0 mod 112211,
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On the other hand, since z = % mod 11% we have f/(a) =2a —2 =0 mod 11¢,
but f/(a) 0 mod 11%*! since a’ # 0 mod 11. It follows that

1
o = @

Since z = 15 mod 112, it follows that if y>—v/5zy+1 = O theny = 1 mod 11°.

Write y = 1 + 11%/ for some a’ € Zy;. If j € {1,3,4,5,9} then a’> — /5 = 0
mod 11 has no solution in o', so the computation above shows that f,(y) #Z 0
mod 11221 which contradicts our assumption that f,(y) = 0. O

1
|fz(a)ln < T12at1 <

Lemma 19. Let « > 1 and j € {1,...,10}. Let z = % + 7112271 mod 112«
Then f.(y) := y> — /52y + 1 has no root in Zq;.

Proof. The argument is similar to that of Lemma If 42 — V/5zy + 1 = 0 then
y=1 mod 11%. Write y =1+ 11%a’ for some a’ € Z1;. Then

f(y) =y* —VBzy+1

v — (2 + 5 112“*1) y+1 mod 112
= /5511271 mod 112

#£0 mod 11%¢,

which contradicts our assumption that f,(y) = 0. O

Lemmas [I8 and [I9] can be used to verify features of Figure 2] For example,
letting @ = 1 in Lemma[I9]shows that the edge labeled 0 is the only edge emanating
from the residue 5 modulo 11 on level a = 1. The residue 5 modulo 112 on level

2

a = 2 has an emanating edge labeled 9, since 2= =5+9- 112 mod 113. Letting

a = 1 in Lemma [18| shows that the other edges emanating from 5 modulo 112 are
9+ {2,6,7,8,10} mod 11 = {0, 4, 5,6, 8}.

Theorem 20. The limiting density of residues attained by the Fibonacci sequence

modulo 11¢ is
lim [{#(n) mod 11% : n > 0} _ 145

a—00 11« 264"
Proof. Tt follows from Lemma [17] that

U Fi(zn) = U m+ 11711,

i#5 me{0,1,2,3,8,10}

which has measure %. By Lemmasand F5(Z41) is a subset of 5+ 11274, and
so is disjoint from Fj;(Zq1) for each ¢ # 5. Moreover, it follows from these lemmas
that pu(F5(Z11)) = Yoo 775571 = 565, 0 that

9
145
M(iL—JOFi(ZU)> = %1 U
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