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Abstract. For topological dynamical systems (X,T, σ) with abelian group

T which admit an equicontinuous factor π : (X,T, σ) → (Y, T, δ) the Ellis
semigroup E(X) is an extension of Y by its subsemigroup Efib(X) of elements

which preserve the fibres of π. We establish methods to compute Efib(X) and

use them to determine the Ellis semigroup of dynamical systems arising from
primitive aperiodic bijective substitutions. As an application we show that for

these substitution shifts, the virtual automorphism group is isomorphic to the

classical automorphism group.

1. Introduction

Consider (X,T, σ), the action σ of an abelian group (or semigroup) T by home-
omorphisms on a compact metrisable space X. The Ellis semigroup E(X) of
(X,T, σ) is the compactification of the group action in the topology of pointwise
convergence on XX . The study of its topological and algebraic structure, which was
initiated by Ellis [12], reveals dynamical properties of (X,T, σ) and is consequently
an area of active study.

One topological property which has recently incited a lot of interest is tameness:
(X,T, σ) is tame if E(X) is the sequential compactification of the action [20, 16],
that is, each element of E(X) is a limit of a sequence (as opposed to a limit of a net,
or generalised sequence) of homeomorphisms coming from the group action. This
can be expressed purely using cardinality: E(X) is tame if and only if its cardinality
is at most that of the continuum [16]. Tameness implies, for instance, the following
dynamical property [20, 17, 14]: If a compact metrisable minimal system which
admits an invariant measure is tame, then it is a µ-almost one to one extension of
its maximal equicontinuous factor. Here µ is the unique ergodic probability measure
on the maximal equicontinuous factor of (X,T, σ), and µ-almost one-to-one means
that the set of points in the maximal equicontinuous factor which have a unique
pre-image under the factor map has full µ-measure. As soon as all fibres of the
maximal equicontinuous factor map contain more than one point, the system is
thus not tame.

Systematic investigations focussing on the algebraic structure of E(X) are to our
knowledge, restricted to the question of when E(X) is a group, when it has a single
minimal left ideal, or, in the case of T = Z+, when its adherence subsemigroup is
left simple. E(X) is a group if and only if (X,T, σ) is distal (proximality is trivial),
E(X) has a single minimal left ideal if and only if proximality is transitive (see, for
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instance, [3]), and the adherence subsemigroup is left simple if and only if forward
proximality implies forward asymptoticity [8]. Recently, a detailed computation
of the Ellis semigroups of the dynamical systems arising from almost canonical
projection method tilings [1, 2] has exhibited another algebraic structure which
seems worthwhile investigating, namely the semigroups are all disjoint unions of
groups. Semigroups which are disjoint unions of groups are precisely those which
are completely regular, which means that every element admits a generalised inverse
with which it commutes. Ellis semigroups associated to almost canonical projection
method tilings are tame [1].

For the most part, good descriptions of Ellis semigroups are only currently avail-
able for tame systems. The present paper arose from a desire to obtain explicit
algebraic descriptions of Ellis semigroups for a class of dynamical systems which
are not tame. We study the Ellis semigroup of systems (Xθ,Z, σ) arising from
bijective substitutions θ. The fibres of the maximal equicontinuous factor map of
such systems are never singletons and so the resulting semigroup is not tame. They
also enjoy two properties which we harness. The first is that for these Z-actions,
forward and backward proximality are non-trivial and equal to forward and back-
ward asymptoticity. We describe systems (X,Z, σ) with this property in Section
2.6, and show that their Ellis group E(X) is the disjoint union of the acting group
Z with its kernelM(X), that is, the smallest bilateral ideal of E(X); in particular,
E(X) is completely regular. This reduces the task to the study of M(X).

The kernelM(X) of a compact sub-semigroup of XX is always completely simple
and therefore can be described by the Rees-Suskevitch theorem and its topological
extensions (Theorems 2.1, 2.4, 2.5). This theorem characterises a completely simple
semigroup as a matrix semigroup M [G; I,Λ;A], where G is the so-called structure
group, where I and Λ index the right and left ideals respectively, and where A is a
matrix through which the semigroup operation is defined. Its entries are elements
of G which specify the idempotents.

The second property that bijective substitution systems enjoy is that they are
unique singular orbit systems. This means that they have exactly one orbit of
singular fibres (fibres of the factor map on which proximality is non-trivial) over an
equicontinuous factor. We study these systems in Section 3 in a way which can be
summarised as follows. Given an equicontinuous factor π : (X,T, σ)→ (Y, T, δ) we
obtain a short exact sequence of right-topological semigroups for the Ellis semigroup
which restricts to a short exact sequence of its kernel

(1.1) Efib(X) ↪→ E(X)
π̃
� E(Y ) ∼= Y and Mfib(X) ↪→M(X)

π̃
�M(Y ) ∼= Y.

Here Efib(X) is the subsemigroup of functions which preserve the fibres of the factor
map π, and Mfib(X) is the kernel of Efib(X). The two matrix semigroups asso-
ciated to Mfib(X) and M(X) via the Rees-Suskevitch theorem are related (when
properly normalised): they share the same I, Λ and A, and their corresponding
structure groups form an exact sequence

(1.2) Gfib ↪→ G
π̃
� Y,

derived from the above (1.1). Finally we make one further reduction: we restrict
Mfib(X) to a singular fibre and obtain again a completely simple semigroup to
which we can apply the Rees-Suskevitch theorem. If Y contains a single T -orbit,
say that of y0, such that π−1(y0) is singular, then the restriction of Mfib(X) to
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π−1(y0), denoted Mfib
y0 (X), has a matrix form which shares the same I, Λ and A

as the other two matrix semigroups above. Furthermore, we show in Corollary 3.14
that, if the singular fibres are finite and the idempotents generate Mfib

y0 (X), then

the structure group Gfib equals the infinite Cartesian product G
Y/T
π , where Gπ

is the structure group of Mfib
y0 (X), and Y/T is the space of T -orbits of Y . We

thus obtain a description ofM(X) through the finite semigroupMfib
y0 (X) and the

extension (1.2). We prove that the extension is algebraically split so that G is a
semidirect product of Gfib with Y . While Mfib(X) is topologically isomorphic its
matrix semigroup representation, M(X) is only algebraically isomorphic to it.

The dynamical system (Xθ,Z, σ) associated to a primitive aperiodic bijective
substitution of length ` has a natural equicontinuous factor, namely the adding
machine (Z`, (+1)), and only the orbit of 0 ∈ Z` has singular fibres. We use the
hierarchical symmetry defined by the substitution θ to compute the matrix form of

Mfib
0 (Xθ) in Theorem 4.6,

Efib0 (Xθ)\{Id} =Mfib
0 (Xθ) ∼= M [Gθ; Iθ,Λ;A].

M [Gθ; Iθ,Λ;A] is a finite semigroup, to which we refer also as the structural semi-
group of the substitution. The structure group Gθ has already appeared in work
by Lemanczyk and Mentzen in [22] who identify it as the object whose centraliser
completely encodes the essential centraliser of (Xθ, σ).

Provided that the smallest normal subgroup of Gθ which contains the group
generated by the entries of A, which we denote by Γθ, is all of Gθ, Theorem 4.12

gives a complete description of E(Xθ) from Efib0 (Xθ). In particular, E(Xθ)\Z is
completely simple and there is a semigroup isomorphism

(1.3) E(Xθ)\Z =M(Xθ) ∼= M [G
Z`/Z
θ o Z`; Iθ,Λ;A].

On the way to achieving this we also show that Efib(Xθ) is topologically isomorphic
to

Efib(Xθ) ∼= (M [Gθ; Iθ,Λ;A] ∪ {Id}) ×
∏

[z]∈Z`/Z
[z]6=[0]

Gθ,

and this isomorphism makes clear where the non-tameness comes from.
In general, Γθ can be a proper subgroup of Gθ, but the quotient group Gθ/Γθ is

always a cyclic group. We call its order h the generalised height of the substitution.
h is at least as large as the classical height of a constant length substitution, and we
give in Section 6 examples where it is strictly larger. It is related to the topological
spectrum of the dynamical system which is given by the action of Z on a minimal
left ideal of E(Xθ), and E(Xθ) factors onto Z/hZ. In other words, E(Xθ) is a
graded semigroup and its calculation can be reduced to its elements of degree 0. In
the case of nontrivial generalised height our result is Theorem 4.22. Here, with the
assumption that the generalised height equals the classical height, we are able to
describe E(Xθ) algebraically in a similar way as in the trivial height case, but with
the structure group Gθ replaced with Γ̄θ. However, when the generalised height
is strictly larger than the classical height, the extension problem (1.2) remains
unsolved.

In Section 5, we apply our machinery to partly answer a recent question of
Auslander and Glasner in [4]. They define the notion of a semi-regular dynamical
system, and ask whether a minimal, point distal shift which is not distal can be
semi-regular. They show that the Thue-Morse shift is semi-regular. We extend
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their result, by showing in Corollary 5.11, that the shift generated by a primitive
aperiodic bijective substitution is semi-regular. Implicitly, we relate the structure
group Gθ to the virtual automorphism group that Auslander and Glasner define.

Our work is related to recent work of Staynova [27], in which she computes the
minimal idempotents of the Ellis semigroup for dynamical systems of bijective sub-
stitutions θ that are an AI extension of their maximal equicontinuous factor. In
other words, (Xθ, σ) is an isometric extension, via f : Xθ → Xφ, of a constant
length substitution shift (Xφ, σ), which is in turn an almost one-to-one exten-
sion, via πmax : Xφ → Xmax, of its maximal equicontinuous factor. Martin [24]
characterises the bijective substitutions that are AI extensions of their maximal
equicontinuous factor using a combinatorial property on the set of two-letter words
allowed for θ, namely that they are partitioned into sets according to what indices
they appear at, as we scan all fixed points. Staynova uses the functoriality of the
Ellis semigroup construction, namely that a map between dynamical systems in-
duces a semigroup morphism between their Ellis semigroups, and the fact that the
Ellis semigroup of an equicontinuous system is a group, thus having exactly one
idempotent. Using Martin’s combinatorial condition, she first computes the preim-
ages of that idempotent in E(Xφ). Apart from the identity map, all pre-images
are minimal idempotents and live in the unique minimal left ideal. She then pulls
this information up through the factor map f to find that each of these minimal
idempotents has two preimages, one for each minimal left ideal in E(Xθ).

Our work goes beyond the results of Staynova in several respects. First, our
techniques apply to all bijective substitutions. Indeed it is easy to define substitu-
tions that do not satisfy Martin’s criterion, so that their dynamical systems are not
AI extensions of their maximal equicontinuous factor (see Example 4.11). Second,
we do not only determine the idempotents, but the complete algebraic structure of
E(Xθ), at least if generalised height is not larger than classical height.

This paper is organised as follows. In Section 2 we provide the necessary back-
ground on semigroups and the Ellis semigroup of a dynamical system, and study Z-
actions for which forward and backward proximality implies forward and backward
asymptoticity, respectively. In Section 3 we study the Ellis semigroup for dynamical
systems which have a single orbit of singular fibres under an equicontinuous factor
map. In Section 4, we study in detail the Ellis semigroup of a bijective substitution
dynamical system, and give an algorithm that computes its structural semigroup.
In Section 5 we apply our results to investigate the virtual automorphism group of
bijective substitution shifts. We end in Section 6 with some examples.

2. Preliminaries

The literature on the algebraic aspects of semigroups is vast and, although our
work is partly based on now classical results from the the forties we provide some
background to the reader, who may not be familiar with the basic material. This
can all be found in [19]. We then recall the basic definitions and results on the Ellis
semigroup of topological dynamical systems. These can mostly be found in [3] or
[18].

2.1. Semigroups, basic algebraic notions. A semigroup is a set S with an asso-
ciative binary operation, which we denote multiplicatively. Some of the semigroups
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in this paper have an identity element, but some do not. However they will never
have a 0 element.

A normal inverse to s ∈ S is an element t ∈ S such that sts = s, tst = t and
st = ts. A general element in a general semigroup need not admit a normal inverse,
but if it exists, it is unique. We may therefore denote it by s−1. A semigroup
is called completely regular if every element admits a normal inverse. Completely
regular semigroups have been studied in great detail [26]. They are exactly the
semigroups which may be written as disjoint unions of groups, i.e. S =

⊔
i Gi such

that multiplication restricted to Gi defines a group structure [26, Theorem II.1.4].
The normal inverse of s ∈ Gi is then its group inverse in Gi.

Of particular importance in the analysis of a semigroup are its idempotents and
its ideals. An idempotent of a semigroup S is an element p ∈ S satisfying pp = p.
The set of idempotents of S is partially ordered via p ≤ q if p = pq = qp. An
idempotent is called minimal if it is minimal w.r.t. the above order. In general, we
cannot expect to have minimal idempotents.

A (left, right, or bilateral) ideal of a semigroup S is a nonempty subset I ⊆ S
satisfying SI ⊆ I, IS ⊆ I, or SI ∪ IS ⊆ I respectively. The different kind of ideals
will play different roles below. When we simply say ideal we always mean bilateral
ideal. A semigroup is called simple if it does not have any proper ideal, and left
simple if it does not have any proper left ideal. Note that a left simple semigroup is
simple. (Left, right, or bilateral) ideals are ordered by inclusion. A minimal (left,
right, or bilateral) ideal is a minimal element w.r.t. this order, that is, a (left, right,
or bilateral) ideal is minimal if it does not properly contain another (left, right,
or bilateral) ideal. In general, we cannot expect to have minimal ideals, but their
existence in our specific context will be guaranteed for by compactness, see below.

Whereas the intersection of two left ideals may be empty, this is not the case
for the intersection of two bilateral ideals, or the intersection of a left ideal with a
bilateral ideal. Therefore the intersection of all bilateral ideals of a semigroup S is
either the unique minimal ideal of S, also called the kernel of S, or the intersection
is empty, in which case S does not admit a minimal ideal. The kernel of a semigroup
without zero element is always simple [19].

Related to left and right ideals are the so-called Green’s equivalence relations.
Two elements x, y ∈ S are L-related if they generate the same left ideal, that is,
there are s, s′ ∈ S such that x = sy and y = s′x. Likewise x, y ∈ S are R-related
if they generate the same right ideal. The intersection of the L-relation with the
R-relation is called the H-relation. The relation generated by the L-relation and
the R-relation, that is the join of L and R, is called the D-relation. The relations
L and R commute, so x and y are D-related if there is a z such that x and z are L-
related and z and y are R-related. Two results are of importance for what follows:
First, an H-class of S which contains an idempotent is a subgroup of S whose
neutral element is the idempotent [19, Corollary 2.26], and second, two H-classes
containing idempotents and which belong to a common D-class must be isomorphic
as groups [19, Proposition 2.3.6].

2.2. Simple semigroups and the Rees matrix form. Let G be a group, let I
and Λ be non-empty sets, and let A = (aλi)λ∈Λ,i∈I be a Λ× I matrix with entries
from G. Then the matrix semigroup M [G; I,Λ;A] is the set I × G × Λ together
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with the multiplication

(i, g, λ)(j, h, µ) = (i, gaλjh, µ).

The matrix A is called the sandwich matrix and the group G is called the structure
group.

It is an easy exercise to determine the idempotents and the left and the right
ideals of M [G; I,Λ;A]. Indeed, an idempotent is of the form

(i, a−1
λi , λ),

the left ideals are the sets I ×G× Λ′, Λ′ ⊂ Λ, and the right ideals are I ′ ×G× Λ,
I ′ ⊂ I. In particular, a completely simple semigroup has minimal left and minimal
right ideals, namely those for which Λ′ or I ′ contain a single element. These minimal
left and right ideals are also the L and the R classes, and so the H-classes are of
the form {i} × G × {λ}. {i} × G × {λ} is a subsemigroup of M [G; I,Λ;A] which
is a group. The identity element of this group is the idempotent (i, a−1

λi , λ). It
is isomorphic to G via the isomorphism (i, g, λ) 7→ aλig. The normal inverse of
(i, g, λ) is (i, a−1

λi g
−1a−1

λi , λ). In particular, a matrix semigroup as defined above is
completely regular.

A completely simple semigroup is a simple semigroup which has minimal idem-
potents. We have the following characterisation of completely simple semigroups.1

Theorem 2.1 (Rees-Suskevitch). A semigroup is completely simple if and only if
it is isomorphic to a matrix semigroup M [G; I,Λ;A] for some group G.

A proof of this theorem can be found in almost any textbook on semigroups.
Since this result will be important in what follows we give a partial sketch of how
to construct a Rees matrix from for a completely simple semigroup S. Proofs can
be found in [19]. S can be partitioned into its R-classes, which we index by a set I.
It can also be partitioned into its L-classes, which we index by Λ. These partitions
intersect yielding a partition into H-classes. It can be shown that if S is simple and
contains an idempotent, then it consists of a single D-class and that all its H-classes
contain an idempotent. In particular, S is a disjoint union of groups which are all
isomorphic. Moreover, each R-class is a minimal right ideal and each L-class is a
minimal left ideal so that each H-class is the intersection of a minimal right with
a minimal left ideal. Up to here, everything is canonical. But now we choose a
minimal right ideal Ri0 and a minimal left ideal Lλ0

and set

G := Hi0λ0

where we use the notation Hiλ = Ri ∩Lλ. As mentioned above, all other H-classes
are isomorphic to G, and indeed, given any ri ∈ Hiλ0

and qλ ∈ Hi0λ

Hi0λ0
3 x 7→ rix ∈ Hiλ0

(2.1)

Hi0λ0
3 x 7→ xqλ ∈ Hi0λ(2.2)

are bijections which are group isomorphisms if ri and qλ are idempotents. Now
the isomorphism between G and the other Hiλ will follow from the fact that L
commutes with R. Taking into account these choices define the matrix A = (aλi)
through

aλi = qλri.

1Recall that we excluded the case that S has a 0-element. For semigroups with 0-element there
is an analogous but slightly different characterisation [19].
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Then a direct calculation shows that

M(G; I,Λ;A) 3 (i, g, λ) 7→ rigqλ ∈ S
yields the desired isomorphism.

We must ask how the Rees matrix form of a completely simple semigroup depends
on the choices. The first choice is that of the right and left ideals indexed i0 and λ0,
it defines the structure group G = Hi0λ0

. A different choice will lead to a different
but isomorphic structure group. An isomorphism can always be constructed using
(2.1, 2.2). The second choice is that of the elements ri and qλ. It affects the sandwich
matrix. Indeed, one has the freedom to multiply any row of A from the left and,
independently, any column of A from the right by an element of G to obtain a
sandwich matrix which defines an isomorphic semigroup. It is therefore possible to
normalise A in such a way that one of its rows and one of its columns contains only
the identity element of G. More precisely, having chosen the right and left ideals
indexed by i0 and λ0 we can always bring A into its so-called normalised form by
taking ri to be the unique idempotent of Hiλ0

and qλ to be the unique idempotent
of Hi0λ [19, Theorem 3.4.2]. Up to the choice of i0 and λ0 this normalised Rees
matrix form is then unique. Since any pair (i, λ) ∈ I × Λ determines a unique
idempotent of S we can also formulate this as follows: once we have chosen an
idempotent of S, typically denoted e, we obtain a unique normalised Rees matrix
form for S. To be precise we call this the normalised Rees matrix form for S w.r.t.
e. In what follows the use of e refers to this chosen minimal idempotent.

Given a normalised matrix semigroup M(G; I,Λ;A) w.r.t. e, we call the subgroup
Γ of G generated by the coefficients aλi of A the little structure group.

Lemma 2.2. Consider a normalised matrix semigroup M(G; I,Λ;A) w.r.t. e =
(i0, 1, λ0). The subsemigroup of M(G; I,Λ;A) which is generated by the idempotents
is equal to M(Γ; I,Λ;A).

Proof. Let K be the subsemigroup of M(G; I,Λ;A) which is generated by the
idempotents. By definition of the little structure group, (i, G, λ) ∩ K ⊂ (i,Γ, λ).
Normalisation implies aλi = 1 provided i = i0 or λ = λ0. Given aλi we know that
(i, a−1

λi , λ) is an idempotent. Hence

(i0, aλi, λ0) = (i0, 1, λ)(i, a−1
λi , λ)(i, 1, λ0) ∈ (i0, G, λ0) ∩K.

This shows that (i0,Γ, λ0) ⊂ (i0, G, λ0) ∩K. Hence also

(i,Γ, λ) = (i, 1, λ0)(i0,Γ, λ0)(i0, 1, λ) ⊂ (i, G, λ) ∩K.
This shows that M(G; I,Λ;A) ∩K = M(Γ; I,Λ;A). �

2.2.1. Example. We consider a class of matrix semigroups M [G; I, {±};A] which
will play a major role later. For this family, G is a finite group with neutral element
1 and I ⊆ G is a subset which generates G. Fix g0 ∈ I. Let Λ = {+,−} be a set
of two elements. Define the Λ× I matrix A = (aλi)λi

(2.3) a+ g = 1 a− g = g0g
−1

Then M [G; I, {±};A] has 2|I||G| elements of which 2|I| are idempotents. Note that
M [G; I, {±};A] is normalised w.r.t. the idempotent e = (g0,1,+).

Lemma 2.3. With the notation above, the little structure group of M [G; I, {±};A]
is the group generated by gh−1, g, h ∈ I.

Proof. This follows directly from gh−1 = a−1
−ga−h. �
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2.3. Compact semigroups. A topological semigroup is a semigroup S equipped
with a topology in which the multiplication map S×S → S is (jointly) continuous.
A semigroup (equipped with a topology) is called right-topological if, for any s ∈
S right multiplication ρs : S → S, ρs(t) := ts is continuous. Note that this is
equivalent to multiplication S × S → S being continuous in the left variable which
is why the term left-topological is also sometimes employed. We follow here the
terminology of [18]. A topological semigroup is right-topological and left-topological
(with the obvious definition), but the converse need not be true.

Let X be a topological space. The set F (X) of functions X → X with the
topology of pointwise convergence is the same as the infinite Cartesian product XX

with product topology. It is perhaps the simplest example of a right-topological
semigroup, the semigroup product being composition of functions. If X is compact
then F (X) is compact. Only if X is discrete is F (X) a topological semigroup.

Let π : X → Y be a continuous surjection. We call the preimage π−1(y) the
π-fibre of y. Let F fib(X) ⊂ F (X) be the subsemigroup of all functions X → X
which preserve the π-fibres. Since fibres are closed subspaces of X, F fib(X) is a

closed subsemigroup of F (X). We can view f ∈ F fib(X) as a function f̃ on Y ,

(2.4) f̃ : y 7→ f |π−1(y)

which, evaluated at y is the restriction of f to π−1(y), f̃(y)(x) = f(x) for x ∈
π−1(y). This identification f 7→ f̃ yields a topological isomorphism, i.e. a homeo-
morphism which is also a semigroup isomorphism, between F fib(X) and the direct
product

∏
y∈Y F (π−1(y)) where the semigroup multiplication in the latter space is

f̃1f̃2(y) = f̃1(y) ◦ f̃2(y) and we equip it with the product topology, F (π−1(y)) still
carrying the topology of pointwise convergence. Recall that F (π−1(y)) is a topo-
logical semigroup if the fibre of y is finite. By definition of the product topology we
therefore get that

∏
y∈Y F (π−1(y)) is a topological semigroup provided all fibres

are finite.
For compact semigroups one has the following results concerning their kernels

and corresponding Rees matrix form.

Theorem 2.4. Let S be a compact right-topological semigroup. Then S admits a
kernel M(S) which contains all minimal idempotents, so that M(S) is isomorphic
to a matrix semigroup. Furthermore, all minimal left ideals are compact and home-
omorphic, and two H-classes ofM(S) which belong to the same minimal right ideal
are topologically isomorphic.

This theorem is discussed in [18, Corollary 2.6 and Theorem 2.11]. The essen-
tial input from the compact topology is the existence of an idempotent and the
continuity of the map (2.2). We mention that in general, minimal right ideals are
not closed, nor are H-classes closed, nor are two H-classes topologically isomorphic
which do not belong to the same minimal right ideal. M(S) is then not topologically
isomorphic to a matrix semigroup.

One consequence of Theorem 2.4 will be particularly important below, namely
that for any minimal idempotent p of a compact right-topological semigroup S, pSp
is a group. Indeed, the chain of inclusions

(2.5) pM(S)p ⊂ pSp = pSpp ⊂ pM(S)p.

shows that pSp is isomorphic to the structure group of the kernel M(S).
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If the multiplication of S is jointly continuous then the topological aspects of
Theorem 2.4 can be strengthened. We can equip the normalised Rees matrix form
M [G; I,Λ;A] (w.r.t. e = (i0, 1, λ0)) of M(S) with the following topology: We
identify G with Hi0λ0

= eSe, I with the set of idempotents of Lλ0
, Λ with the set

of idempotents of Ri0 , and we equip all these subsets of S with the relative topology,
and finally I ×G× Λ with the product topology. Under the assumption that S is
a compact topological semigroup, we have that G is a compact topological group,
I and Λ compact subsets and the semigroup product on M [G; I,Λ;A] is jointly
continuous.

Theorem 2.5. Let S be a compact topological semigroup. Then M(S) is topologi-
cally isomorphic to the normalised matrix semigroup M [G; I,Λ;A].

A proof of this theorem can be found in [9, Theorem 3.21]. As now also the map
(2.1) is continuous, all H-classes of M(S) are closed and topologically isomorphic.

2.4. Extensions of groups by completely simple semigroups. We now use
the above description of completely simple semigroups to study extensions

K ↪→ S
π
� Y

where Y is a group with neutral element y0, S a semigroup, π a semigroup epimor-
phism and K the kernel of π,

K = {s ∈ S : π(s) = y0}.
K is a subsemigroup of S which is closed if S and Y are right-topological and π
continuous.

If e ∈ S is an idempotent then π(e) must be an idempotent, hence equal to y0 so

that we obtain a restricted extension eKe ↪→ eSe
πe
� Y where πe is the restriction

of π to eSe. If moreover e is an idempotent in the kernel of S then by (2.5),eSe is
a group, as is eKe, so that the restricted extension is an extension of groups.

A semigroup S is regular if for any s ∈ S there exists t ∈ S such that s = sts.
Clearly, any completely regular semigroup is regular.

Proposition 2.6. Consider an extension K ↪→ S
π
� Y of a group Y by a com-

pletely simple semigroup K, where S is regular. Then S is completely simple. If K
has normalised Rees matrix form M [G; I,Λ;A] w.r.t. an idempotent e then S has
normalised Rees matrix form M [G; I,Λ;A] w.r.t. e, where G = eSe is the extension

of Y by G = eKe determined by the exact sequence of groups eKe ↪→ eSe
πe
� Y .

Proof. We first show that S must be completely simple. Let M ⊂ S be an ideal.
Then M ∩K is an ideal of K. As K is simple, M ∩K = K. Thus M contains all
idempotents of S. Let s ∈ S and t ∈ S such that s = sts. Then ts is an idempotent
and so we see that S ⊂ SK ⊂ SM ⊂M . Therefore S is completely simple.

Let M [G; I,Λ;A] be the normalised Rees matrix form of S w.r.t. e, in particular
G = eSe. Since K contains the subsemigroup generated by the idempotents of S, by
Lemma 2.2, the coefficients of A belong to G := eKe = kerπe. Hence M [G; I,Λ;A]
is well-defined and, with e = (i0, 1, λ0) and (i0, 1, λ0)(i, g, λ)(i0, 1, λ0) = (i0, g, λ0)
we obtain

π(i, g, λ) = π(i0, g, λ0) = πe(g)

so that K = M [kerπe; I,Λ;A]. Since the normalised Rees matrix form w.r.t. e is
unique we see that I,Λ and A are completely determined by K. �
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We will apply Proposition 2.6 to a situation in which Y is a topological group
and K is a topological semigroup, but S is only a right-topological semigroup.
Therefore we cannot conclude that S is topologically isomorphic to M [G; I,Λ;A].
Indeed, the group G = eSe is only closed if the right ideal containing e is closed,
which we cannot expect. The interest in the above construction is therefore only
algebraic. It is particularly useful if the group extension is split so that G is a
semidirect product of G with Y .

2.5. Ellis semigroup of a dynamical system. Given a dynamical system (X,T, σ)
the family of homeomorphisms {σt|t ∈ T} is a subsemigroup of F (X). Its closure,
denoted E(X,T, σ), or simply E(X) if the rest is understood, is still a semigroup,
called the Ellis semigroup (or enveloping semigroup) of the dynamical system. Since
X is compact the set of all functions X → X is compact in the topology of point-
wise convergence and so E(X,T, σ) is a compact right topological semigroup, by
construction.

The Ellis semigroup is closely related to the proximality relation. Given a met-
ric d on X which generates the topology, a pair of points x, x′ are proximal if
inft∈T d(σt(x), σt(x′)) = 0. The proximal relation does not depend on the choice of
metric (which generates the topology). Its relation with the Ellis semigroup is the
following:

Theorem 2.7. [3, Chapter 3, Proposition 8] Let E(X) be the Ellis semigroup of a
dynamical system (X,T, σ). Two points x and y are proximal if and only if there
exists f ∈ E(X) such that f(x) = f(y).

In particular we see that, given any idempotent p ∈ E(X) and x ∈ X, the points
p(x) and x are proximal.

2.6. Complete regularity for Z-actions. In this section we provide a criterion
for complete regularity of the Ellis semigroup for Z actions. We will see below that
it is satisfied by the dynamical systems defined by bijective substitutions.

Since the union of the closure of two sets is the closure of their union we can
decompose

(2.6) E(X) = E(X,Z+) ∪ E(X,Z−)

where E(X,Z±) is the closure of {σt|t ∈ Z±}. This allows us to compute the
elements of E(X) by looking independently, forward in “time”, and backwards in
“time”.

We say that two points x, x′ ∈ X are forward proximal if

inf
t∈Z+

d(σt(x), σt(x′)) = 0

We say that two points x, x′ ∈ X are forward asymptotic if

lim
t→+∞

d(σt(x), σt(x′)) = 0

Similarly, we define backward proximality and asymptoticity using σ−1 in place of
σ. Clearly sequences which are forward asymptotic are forward proximal. The
following lemma is related to the work of [8] in which the adherence semigroup of
a Z+-action is defined and analysed.



THE ELLIS SEMIGROUP OF BIJECTIVE SUBSTITUTIONS 11

Lemma 2.8. Let (X,σ) be a dynamical system for which forward proximality
agrees with forward asymptoticity. Then E(X,Z+) has a unique minimal left ideal
M(X,Z+) and contains besides this ideal only Z+.

Proof. An element f ∈ E(X,Z+)\Z+ is the limit of a generalised sequence (σtν )ν ,
tν ∈ Z+ which is not in Z+. Hence the generalised sequence (tν)ν has the property
that for any finite N ∈ Z+ there exists ν0 such that tν ≥ N for all ν > ν0. In
particular, if x and y are forward asymptotic points then limν d(σν(x), σν(y)) = 0,
and hence f(x) = f(y).
E(X,Z+) is also a compact right topological semigroup and hence has minimal

left ideals and minimal idempotents. Furthermore, x, y ∈ X are forward proximal if
and only if there exists f ∈ E(X,Z+) such that f(x) = f(y). Let p ∈ E(X,Z+) be
any idempotent. For any x ∈ X, p(x) is forward proximal to x, and by our assump-
tion therefore forward asymptotic to x. This implies that if f ∈ E(X,Z+)\Z+,
then f(p(x)) = f(x). Since x was arbitrary we find f = fp.

This identity shows that any f ∈ E(X,Z+)\Z+ lies in the ideal generated by the
idempotent p. If p is minimal then this ideal is a minimal left ideal. Since p can be
any minimal idempotent there can only be one minimal left ideal. �

Note that the unique minimal left idealM(X,Z+) of the previous lemma is the
kernel of E(X,Z+).

Corollary 2.9. Let (X,σ) be a dynamical system for which forward proximality
agrees with forward asymptoticity and backward proximality agrees with backward
asymptoticity. Then E(X) is completely regular. If moreover the forward and
the backward proximality relations are non-trivial (not diagonal) then E(X) is the
disjoint union of its kernel M(X) with the acting group Z.

Proof. Minimal left ideals which contain idempotents are completely simple and
hence, by the Rees structure theorem, disjoint unions of groups. Therefore Lemma
2.8 implies that E(X,Z+)\Z+ is completely regular. E(X) is thus a union of
completely regular sub-semigroups. Hence any element of E(X) has an inverse
with which it commutes.

To proof the second statement we first show that M(X,Z+) is a minimal left
ideal in E(X). Let f ∈ E(X), g ∈ E(X,Z+)\Z+. So f = limσnν and g = limσmµ ,
however with mµ → +∞. Then fg = limν σ

nνg. Since σnνg = limµ σ
nν+mµ ∈

E(X,Z+) and E(X,Z+) is closed we have fg ∈ E(X,Z+). Suppose that fg =
σn for some n ∈ Z. As g ∈ M(X,Z+) we have gp = g for some idempo-
tent p ∈ M(X,Z+). It follows that 1 = σ−nfg = σ−nfgp = p. This implies
that E(X,Z+) is a group and thus contradicts the assumption that the forward
proximality relation is non-trivial [3]. Hence fg /∈ Z so that by Lemma 2.8,
E(X)M(X,Z+) ⊂ M(X,Z+) and moreover M(X,Z+) ∩ Z = ∅. To show min-
imality of M(X,Z+) it suffices to show that all idempotents of M(X,Z+) are
minimal in E(X). Let q ∈ M(X,Z+) and p ∈ E(X) be idempotents such that
p ≤ q. This means that pq = qp = p. As we just showed, p = pq ∈M(X,Z+). But
then p = q as q is minimal in E(M,Z+).

As the kernel of a semigroup is the union of its minimal left ideals we now have
shown that M(X) =M(X,Z+) ∪M(X,Z−) and that M(X) ∩ Z = ∅. �

The arguments in the second part of the proof were adapted from [7] where it
is also shown that, for minimal Z-actions on totally disconnected compact metric
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spaces, the condition that forward proximality agrees with forward asymptoticity
and backward proximality agrees with backward asymptoticity is also necessary for
complete regularity.

2.7. Equicontinuous factors and the structure of E(X). In this section T is
an abelian group. When we have a factor map between two dynamical systems, the
acting group is the same. A dynamical system (X,σ) is called equicontinous if the
family of homeomorphisms {σt, t ∈ T} is equicontinuous. If the action is transitive
then this is the case if and only if, for any choice of x0 ∈ X there is an abelian
group structure on X (denoted additively) such that x0 is the identity element and
σt(x) = x+ σt(x0)− x0. This group structure is topological.

Moreover, for a minimal equicontinuous system and w.r.t. the above group struc-
ture on X, evx0

: E(X) → X is an isomorphism of topological groups, where evx0

is evaluation at the point x0 ∈ X, evx0
(f) = f(x0) [3, Chap. 3, Theorem 6].

An equicontinuous factor is a factor π : (X,σ) → (Y, δ) such that (Y, δ) is
equicontinuous. As with any factor map, π induces a continuous semigroup mor-
phism π∗ : E(X) → E(Y ) via π∗(f)(y) = π(f(x)) where x is any pre-image of y
under π. As (Y, δ) is equicontinuous evy0 : E(Y )→ Y is a semigroup isomorphism
where y0 is the identity element in Y . We denote by π̃ : E(X)→ Y the composition
evy0 ◦ π∗, which is also a continuous surjective semigroup morphism.

Definition 2.10. Let π : (X,σ) → (Y, δ) be an equicontinuous factor. Define
Efib(X) to be the subsemigroup of E(X) which consists of those elements which
preserve the π-fibres π−1(y), y ∈ Y .

In other words, Efib(X) is the kernel of the continuous semigroup morphism π̃
and therefore a closed subsemigroup. We summarize this situation with the exact
sequence of right-topological semigroups

(2.7) Efib(X) ↪→ E(X)
π̃
� Y

in which the involved maps are continuous semigroup morphisms. While E(X)
is only right-topological, Y is topological. As we will see below, under certain
circumstances, Efib(X) is also a topological semigroup.

3. The fibre-preserving part Efib(X)

In this section we investigate the fibre-preserving part Efib(X) of E(X) for
dynamical systems which factor onto an equicontinuous system, π : X → Y . We
call a point y ∈ Y is regular (for π) if the proximal relation restricted to π−1(y) is
trivial. Otherwise we call the point singular (for π).

Proposition 3.1. Suppose that π : (X,σ)→ (Y, δ) is an equicontinuous factor map
whose fibres π−1(y) are all finite. Then Efib(X) is a compact topological semigroup.

Proof. Efib(X) is a compact subsemigroup of F fib(X), defined in Section 2.3. By
assumption, all F (π−1(y)) are (trivially) topological semigroups. Therefore the
semigroup multiplication of

∏
y∈Y F (π−1(y)) is jointly continuous. As Efib(X) is

a closed subsemigroup of F fib(X) its product is also jointly continuous. �

We can now apply Theorem 2.5 to conclude the following.
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Corollary 3.2. Suppose that π : (X,σ) → (Y, δ) is an equicontinuous factor map
whose fibres π−1(y) are all finite. Then the kernel Mfib(X) of Efib(X) is topolog-
ically isomorphic to its normalised Rees matrix form.

We now consider more closely the algebraic structure of Efib(X). To simplify
the notation we drop the reference to X and denote it by Efib.

When identifying Efib with a subsemigroup of F fib(X) ∼=
∏
y∈Y F (π−1(y)) we

observe that it belongs actually to the smaller semigroup
∏
y∈Y E

fib
y where

Efiby := Efib|π−1(y),

the restriction of Efib to the fibre π−1(y). Indeed, any f ∈ Efib corresponds to a

function f̃ on Y whose value f̃(y) belongs to Efiby . Efiby is a compact subsemigroup

of F (π−1(y)). Moreover, since the elements of E commute with the action σ of T

the functions f̃ have to be covariant in the sense that

f̃(δt(y)) = σtf̃(y)σ−t

for all y ∈ Y and t ∈ T . In other words, Efib is a subsemigroup of

Cov := {f̃ ∈
∏
y∈Y

Efiby : f̃ is covariant},

again equipped with the pointwise semigroup multiplication (f̃1f̃2)(y) = f̃1(y) ◦
f̃2(y). Equipped with the product topology, Cov is compact and the inclusion
Efib ⊂ Cov is continuous.

Recall by (2.5) that if p is any minimal idempotent then pEp is a group. We
fix any such minimal idempotent e, recalling that different minimal idempotents
define isomorphic groups. As π̃ : E → Y is onto, and π̃(efe) = π̃(f), the restriction
π̃ : eEe → Y is also onto. A lift under π̃ is a right inverse s : Y → eEe to
π̃ : eEe→ Y , i.e. it satisfies π̃ ◦ s = Id. A lift always exists by the axiom of choice.
We do not demand that it is continuous, nor, for the time being, that it preserves
the group structure. But we can and do demand that it satisfies s(δt(y)) = σts(y)
for all t ∈ T , and also that s(y)−1 = s(−y) for each y ∈ Y . We impose the latter
condition now although we will not use it until Proposition 3.13.

Given a lift s : Y → eEe, we define Φy2y1 : Efib → Efib by

(3.1) Φy2y1(f) = s(y2 − y1)f s(y2 − y1)−1

where s(z)−1 is the group inverse to s(z). Although we do not include this in our
notation, it must be kept in mind that Φy2y1 depends on the choice of lift. Since

s(δt(y)) = σts(y) we have Φ
δt(y2)
y1 (f) = σtΦy2y1(f)σ−t.

Note that Φy2y1 also defines a map from Efiby1 to Efiby2 , namely if ϕ ∈ Efiby1 and

f is an element of Efib which restricts to ϕ on π−1(y1), that is ϕ = f̃(y1) in the
notation above, then Φy2y1(ϕ) is defined to be the restriction of Φy2y1(f) to π−1(y2).

This does not depend on the choice of f , as s(y2− y1)−1 maps π−1(y2) to π−1(y1).

Lemma 3.3. Let e ∈ E(X) be a minimal idempotent.

(1) eEfiby e is a group.

(2) If y is regular then eEfiby e = Efiby .

(3) For any y1, y2, the restriction Φy2y1 : eEfiby1 e → eEfiby2 e is a group isomor-
phism.
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Proof. eEfiby e is entirely determined by the action of eEfibe on eπ−1(y). It is hence
the homomorphic image of a group.

Idempotents must act like the identity on a regular fibre, as can be seen as
follows: The points e(x) and x are proximal. In a regular fibre this can only be the
case if e(x) = x. Hence eEfiby e = Efiby if y is regular.

Let s : Y → eEe be a right inverse to π̃ : eEe → Y ; s(z) restricts to a map
eπ−1(y) → eπ−1(y + z) whose inverse is the restriction of s(z)−1, as s(z)−1s(z) =
s(z)s(z)−1 = e. Hence Φy2y1 is conjugation with a bijection. �

Definition 3.4. We call the group determined up to isomorphism by Lemma 3.3

the structure group of the factor system (X,σ)
π→ (Y, δ) and denote it by Gπ.

Definition 3.5. We say that the system (X,σ) is a unique singular orbit system
if it admits an equicontinuous factor which has a single orbit of singular points.

We now specialize to the context of unique singular orbit systems and fix a
singular point y0 ∈ Y . Define T ⊂ Efib to be

(3.2) T = {f ∈ Efib : f(x) = x for all x in a regular fibre}.
Since idempotents can only project proximal points, and regular fibres contain no
proximal pairs, so idempotents belong to T . However T may be larger. Given the
minimal idempotent e, eT e is a subsemigroup of eEfibe. We claim that it is even
a normal subgroup. Indeed, if f ∈ eT e then its inverse in eEfibe also acts trivially
on regular fibres and so belongs to eT e. Furthermore, an element g ∈ eEfibe acts
bijectively on regular fibres and hence gfg−1 acts as gg−1 = Id on them.

Let Ty0 be the restriction of T to π−1(y0); it is a subsemigroup of Efiby0 . Then

eTy0e is the restriction of eT e to eπ−1(y0); it is a normal subgroup of eEfiby0 e. We
now use the maps Φyy0 from (3.1) to transport the group eTy0e along Y and define
the subsemigroup of Cov

(3.3) CovT := {f̃ ∈ Cov : f̃(y0) ∈ Ty0 , and f̃(y) ∈ Φyy0(eTy0e) for all y regular}.
Although the map Φyy0 depends on the choice of a lift s : Y → eEe for π̃, the space

CovT does not. Indeed, if we take another lift to obtain a map Φ′
y
y0 then Φyy0(f̃)(y0)

will differ from Φ′
y
y0(f̃)(y0) by a conjugation with an element h ∈ eEfiby0 e, which

does not matter as eTy0e is a normal subgroup of eEfiby0 e. By covariance CovT
does not depend on the choice of y0 in the unique orbit of singular points. Finally,
the dependence of CovT on the choice of minimal idempotent e can be controlled
with the isomorphisms (2.1,2.2). If the singular fibre π−1(y0) is finite then the
isomorphisms are bicontinuous by Theorem 2.5 and Corollary 3.2.

Theorem 3.6. Let (X,σ) be a minimal unique singular orbit system. CovT is a
subsemigroup of Efib.

Proof. Let g ∈ T and y ∈ Y . Then f := Φyy0(g) belongs to CovT ∩ Efib. Indeed,
Φyy0(g) = Φyy0(ege) ∈ Φyy0(eTy0e).

By definition g acts non-trivially only on the fibres of the T -orbit of y0. Hence
f := Φyy0(g) acts non-trivially only on the fibres of the T -orbit of y. As (Φyy0)−1(f̃(y))

is the restriction of ege to eπ−1(y0) we find that, given any regular point y and any

g ∈ eTy0e, CovT ∩ Efib contains the function f which satisfies (Φyy0)−1(f̃(y)) = g

and f̃(y′) = Id for any point y′ in another orbit. By taking finite products of such
functions we see that CovT ∩ Efib contains, for any choice of k points y1, · · · , yk
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in distinct regular orbits and any choice of k + 1 elements gi ∈ Ty0 , i = 0, · · · , k a

function f such that (Φyiy0)−1(f̃(yi)) = egie, i ≥ 1, f̃(y0) = g0, and f̃(y′) = Id for
a point y′ in another orbit. By definition of the topology of pointwise convergence
and since covariance is a closed relation, the set of these elements is dense in CovT .
Since Efib is the kernel of a continuous map it is closed; it hence contains CovT . �

Corollary 3.7. Let (X,σ) be a minimal unique singular orbit system. If Efiby0 = Ty0
then Efib is topologically isomorphic to Cov.

Proof. If Efiby0 = Ty0 then Φyy0(eTy0e) = Efiby , for regular y, so that the condition

f̃(y) ∈ Φyy0(eTy0e) is trivially satisfied as is f̃(y0) ∈ Ty0 . Hence CovT = Cov. Thus

by Theorem 3.6 we have Cov ⊆ Efib. On the other hand, we saw that Efib is a
subsemigroup of Cov and that the inclusion is continuous. Since Cov is compact
this gives the result. �

We end this section by establishing a criterion which implies the condition of the
last corollary, namely that Efiby0 = Ty0 .

Definition 3.8. Let π : (X,σ)→ (Y, δ) be an equicontinuous factor. The minimal
rank rπ of the factor π is the smallest possible cardinality |π−1(y)| of a fibre, y ∈ Y .
The coincidence rank crπ(y) of the fibre y ∈ Y is the largest possible cardinality a
subset of π−1(y) can have, which contains only pairwise non-proximal elements.

If the system (X,σ) is minimal, then the coincidence rank of an equicontinuous
factor can be shown to be independent of y and so crπ = crπ(y) is the coincidence
rank of the factor π : (X,σ) → (Y, δ). If the factor is not specified then the
coincidence rank is meant to be the coincidence rank of the maximal equicontinuous
factor. See [2] for details and a context. Not every system contains regular fibres. It
can be shown that for minimal systems with finite coincidence rank for the maximal
equicontinuous factor, the maximal equicontinuous factor contains a regular fibre if
and only if the system is point distal i.e. contains a point x that is proximal only to
itself [2], and if that is the case, any other equicontinuous factor must also contain
regular fibres. (Since this is a side remark we don’t include a proof.)

Lemma 3.9. If the minimal rank rπ of the equicontinuous factor Y of a minimal
system is finite and the factor contains some regular fibre then y ∈ Y is regular if
and only if |π−1(y)| = rπ.

Proof. Let y0 be a regular point. Then crπ = |π−1(y0)|. It follows that crπ ≥ rπ.
On the other hand, since rπ is finite there exists a point y1 for which rπ = |π−1(y1)|.
Clearly crπ(y1) ≤ |π−1(y1)|. Hence crπ = rπ. Thus all points of a regular fibre
must be pairwise non-proximal, and moreover, a fibre cannot contain more than rπ
pairwise non-proximal points. �

Lemma 3.10. Let π : (X,σ) → (Y, δ) be an equicontinuous factor with finite
minimal rank. Let f ∈ Efib be an element which acts on the singular fibres as an
idempotent. Then for some N , fN = f on the singular fibres and fN = Id on the
regular fibres.

Proof. Since regular fibres contain only distal points, and only finitely many, any
element of f ∈ Efib must act on a regular fibre as a bijection. Since regular fibres
have rπ elements, then if N = rπ! , fN acts like the identity on a regular fibre. If



16 JOHANNES KELLENDONK AND REEM YASSAWI

f acts like an idempotent on the singular fibre then fN acts like f on the singular
fibres. �

We denote by Y/T the space of T -orbits of Y and its elements by [y].

Corollary 3.11. Consider a unique singular orbit system with finite minimal rank.
Let y0 ∈ Y be singular. The restriction Ty0 of T to π−1(y0) contains all idempotents
of Efiby0 . In particular, if Efiby0 is generated by its idempotents then Efiby0 = Ty0 and
consequently,

Efib = Cov ∼= Efiby0 ×
∏

[y]∈Y/T
y 6=y0

Gπ.

This is a topological isomorphism if we equip the r.h.s. with the product topology.

Proof. Any idempotent of Efiby0 is the restriction of an element f ∈ Efib which,
by Lemma 3.10, may be assumed to act trivially on all regular fibres. Hence any
idempotent of Efiby0 is the restriction of an element f ∈ T . Under the assumption
of finite minimal rank the structure group Gπ must be finite and thus topologically
isomorphic to Efiby for regular y. Covariance allows us to factor out the action of
T and thus describe Cov as a direct product over the space of orbits Y/T . �

3.1. Recovering E(X) from Efib(X) and Y . Although we now have a pretty
good description of Efib(X) and Y for unique singular orbit systems with finite
minimal rank, it is not obvious how this describes E(X). As our interest lies in
minimal systems which have a singular fibre, their Ellis semigroup must contain two
non-commuting idempotents. This implies that E(X) cannot be left-topological2,
even when Efib(X) and Y are topological. This is a sign that we cannot expect a
semidirect product construction, paralleling that of groups, which describes E(X)
with its topology through Efib(X) and Y . However, on the purely algebraic side,
we will see that Proposition 2.6 turns out to be useful in this regard.

Notation 3.12. We let M(X) denote the kernel of E(X) and Mfib(X) denote
the kernel of Efib(X). Recall that these kernels are completely simple. Picking a
minimal idempotent e, we let G = eE(X)e and Gfib = eEfib(X)e denote the Rees
structure group of M(X) and Mfib(X) respectively.

As Y = π̃(E(X)) = π̃(eE(X)) ⊂ π̃(M(X)), (2.7) gives rise to the exact sequence

Efib(X) ∩M(X) ↪→M(X)
π̃
� Y.

Efib(X)∩M(X) contains all idempotents ofM(X). Moreover, it is simple, as can
be seen as follows: As M(X) is completely simple, given x, y ∈ Efib(X) ∩M(X)
there is an idempotent z ∈ M(X) such that x, z belong to the same minimal left,
while z, y belong to the same minimal right ideal ofM(X). Since z is an idempotent
we have z ∈ Efib(X). Since x, z ∈ Efib(X) ∩M(X) belong to the same minimal
left ideal of M(X) then there is a ∈ M(X) such that x = az. It follows that
π̃(a) = 0, thus a ∈ Efib(X) ∩ M(X). Similarly, since z, y ∈ Efib(X) ∩ M(X)
belong to the same minimal right ideal ofM(X) then there is b ∈ Efib(X)∩M(X)
such that z = yb. Hence x = ayb for a, b ∈ Efib(X) ∩M(X). This proves that
Efib(X)∩M(X) is simple and therefore equal to the kernel Mfib(X) of Efib(X).

2Since T is abelian, if left multiplication is continuous then limν σtν limµ σsµ =

limµ limν σtν+sµ = limµ σsµ limν σtν , hence all elements of E(X) commute.
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A further restriction of (2.7) to eM(X)e leads to the exact sequence of groups

Gfib ↪→ G
π̃
� Y.

We show now that for systems which satisfy the conclusion of Corollary 3.7 the
above sequence has a split section, so that the structure group G is the semi-direct
product of Gfib with the group Y .

Proposition 3.13. Let (X,σ) be a minimal system with an equicontinuous factor
π : (X,σ)→ (Y, δ) such that Efib = Cov. Let e be a minimal idempotent of E and
s : Y → eEe be a lift of π̃ which satisfies s(δt(y)) = σts(y) and s(−y) = s(y)−1.
Define, for y ∈ Y the map ŝ(y) : eX → eX by

ŝ(y)(x) = s(π(x) + y)s(π(x))−1(x).

Then ŝ : Y → eEe is a right inverse to π̃ which satisfies ŝ(δt(y)) = σtŝ(y) and is a
group homomorphism.

Proof. Let y ∈ Y . By definition

ŝ(y)(x) = s(y)g(π(x))(x)

where g(z) = s(y)−1s(z + y)s(z)−1. We see that g(z)(x) ∈ eπ−1(z) for all x ∈
eπ−1(z), hence g(z) : eπ−1(z) → eπ−1(z) is an is element of eEfibz e. Using
s(δt(y)) = σts(y) we obtain g(δt(π(x)))(σtx) = σtg(π(x))(x). Thus Y 3 z 7→
g(z) ∈ eEfibz e is covariant along the orbit of y and hence an element of eCove. By
assumption eCove = eEfibe. Thus ŝ(y) = s̃(y)g is an element of eEe.

We show that ŝ(y) is a right inverse to π̃. Let x ∈ π−1(0). We have

π̃ŝ(y) = π∗(ŝ(y))(0) = π(ŝ(y)(x)) = π(s(y)(x)) = y + π(x) = y

where we have used s(0)−1 = e in the third equality. The identity ŝ(δt(y)) = σtŝ(y)
follows readily. It remains to show that ŝ is multiplicative:

ŝ(y1 + y2)(x) = s(π(x) + y1 + y2)s(π(x))−1(x)

= s(π(x) + y1 + y2)s(π(x) + y2)−1s(π(x) + y2)s(π(x))−1(x)

= ŝ(y1)ŝ(y2)(x).

�

Corollary 3.14. Let (X,T, σ) be a minimal system with an equicontinuous factor
π : (X,σ) → (Y, δ) such that Efib = Cov. Then the structure group Gfib of

Mfib(X) is isomorphic to G
Y/T
π . Moreover, the structure group of M(X) is G =

Gfib o Y . Furthermore if M [Gfib; I,Λ;A] is the normalised Rees matrix form for
Mfib(X) w.r.t. e, then M(X) is algebraically isomorphic to M [Gfib o Y ; I,Λ;A].

Proof. Apply Proposition 2.6, Corollary 3.2 and Proposition 3.13. �

For unique singular orbit systems with finite minimal rank and for which Efiby0 (X)
is generated by its idempotents, we have now reduced the calculation of the kernel
of their Ellis semigroup to the calculation of the kernel of Efiby0 (X) which we denote

Mfib
y0 (X). Indeed, if M [G; I,Λ;A] is the normalised matrix form ofMfib

y0 (X) w.r.t.
e, then G = Gπ which we may identify with the subgroup Gπ ×

∏
[y0]6=[y]∈Y/T {1}

of G
Y/T
π . It follows that

(3.4) Mfib(X) ∼= M [Gπ; I,Λ;A]×
∏

[y0] 6=[y]∈Y/T

Gπ ∼= M [GY/Tπ ; I,Λ;A]
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where the second topological isomorphism is given by the map ((i, g, λ), f) 7→
(i, (g, f), λ). We will see in the next section how to compute Gπ, I, Λ, and A
for systems arising from bijective substitutions.

4. Bijective substitutions and their Ellis semigroup

In this section we discuss the Ellis semigroup of a family of minimal Z-actions
which are both unique singular orbit systems, and also systems for which for-
ward/backward proximality is non-trivial and agrees with forward/backward asymp-
toticity. This is the family of bijective constant length substitution shifts. For these
systems, Corollary 2.9 tells us that E(X) is the disjoint union of its kernel M(X)
with the acting group Z, so that a description of M(X) suffices to completely de-
scribe the Ellis semigroup. Next, for most of these systems, Corollary 3.14 will
apply, so that we are on the way to describing M(X) once we know its restriction
to a singular fibre which we call below the structural semigroup. This is the content
of Theorem 4.6. We consolidate to get a global statement in Theorem 4.12. Finally,
we identify the substitution shifts to which we cannot apply Corollary 3.14, and we
replace it with Theorem 4.22.

4.1. Generalities. We briefly summarise the notation and results concerning sub-
stitutions that we will need; for an extensive background see [5] or [13].

A substitution is a map from a finite set A, the alphabet, to the set of nonempty
finite words (finite sequences) on A. We extend θ to a map on finite words by
concatenation:

(4.1) θ(a1 · · · ak) = θ(a1) · · · θ(ak),

and to bi-infinite sequences · · ·u−2u−1u0u1 · · · as

θ(· · ·u−2u−1u0u1 · · · ) := · · · θ(u−2)θ(u−1)θ(u−1) · θ(u0)θ(u1) · · · .

Here the · indicates the position between the negative indices and the nonnegative
indices.

We say that θ is primitive if there is some k ∈ N such that for any a, a′ ∈ A,
the word θk(a) contains at least one occurrence of a′. We say that a finite word is
allowed for θ if it appears somewhere in θk(a) for some a ∈ A and some k ∈ N.

The substitution shift (Xθ, σ) is the dynamical system where the space Xθ con-
sists of all bi-infinite sequences all of whose subwords are allowed for θ. If θ is
primitive, Xθ = Xθn for each n ∈ N. We equip Xθ with the subspace topology of
the product topology on AZ, making the left shift map σ a continuous Z-action.
Primitivity of θ implies that (Xθ, σ) is minimal.

We say that a primitive substitution is aperiodic if Xθ does not contain any
σ-periodic sequences. This is the case if and only if Xθ is an infinite space. The
substitution θ has (constant) length ` if for each a ∈ A, θ(a) is a word of length `.
In this case one can describe the substitution with ` maps θi : A → A, 0 ≤ i ≤ `−1,
such that

θ(a) = θ0(a) · · · θ`−1(a)

for all a ∈ A. A substitution θ is bijective if it has constant length and each of
the maps θi is a bijection. If θ is bijective, then Xθ is the disjoint union of finitely
many primitive bijective substitution shifts, and consequently its Ellis semigroup
is also the disjoint union of finitely many Ellis semigroups of primitive substitution
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shifts. Henceforth we assume that θ is primitive but this comment means that all
our results have analogous statements for non-primitive bijective substitutions.

We say that the bijective θ is simplified if

(1) every θ-periodic point is a fixed point of θ, so that in particular θ0 = θ`−1 =
1, and

(2) each word θ(a) contains all letters from A.

Given any bijective substitution θ, both properties will be satisfied by a large enough
power θn of θ. Indeed, if M is the lowest common multiple of the least periods of
the periodic points, then each periodic point is a fixed point under θM . Since for
any n ∈ N, Xθ = Xθn , there will be no loss in generality in assuming that θ is
simplified and this is henceforth a standing assumption.

4.2. An equicontinuous factor with a unique orbit of singular fibres. Let
θ be an aperiodic primitive substitution of length `. Define B(n) := θn(Xθ),which
is a clopen subset of Xθ. Then σi(B(n)) = σj(B(n)) if i − j = 0 mod `n whereas
otherwise σi(B(n)) ∩ σj(B(n)) = ∅ [11, Lemma II.7]. In other words

Pn = {σk(B(n)) : 0 ≤ k ≤ `n − 1}
is a σ`

n

-cyclic partition of Xθ of size `n For n ≥ 1, define πn : Xθ → Z/`nZ by

πn(x) = i if x ∈ σi(B(n)).

The map πn can be described as follows. Using the partition P1, any bi-infinite
sequence x = (xi)i∈Z ∈ Xθ can be uniquely decomposed into blocks of length ` such
that

(i) The i-th block is a substitution word θ(ai), for some ai ∈ A. Here we say
that the 0-th block is the one which contains x0, and

(ii) The sequence (ai)i∈Z is an element of Xθ.

Now set π1(x) := i if the 0-th block starts at index −i (if we shift that block i units
to the right then its first letter has index 0). This procedure can be performed
with Pn and θn yielding an analogous definition for πn(x). In particular, the πn
are pattern equivariant (or local) and hence continuous. Note that if πn(x) = i,
then πn+1(x) ≡ i mod `n. Therefore, the collection of these maps πn defines a
continuous map

(4.2) π : Xθ → Y := lim
←

Z/`nZ

onto the inverse limit lim← Z/`nZ defined by the canonical projections Z/`n+1Z �
Z/`nZ. The inverse limit space can be identified with the space of left-sided se-
quences (yi)i<0 = · · · y−2 y−1, 0 ≤ yi < `, and then π(x) = (yi)i<0 is such that for

each positive integer n, πn(x) =
∑−1
i=−n `

−i−1yi. It then follows that π◦σ = (+1)◦π
where (+1) is addition of 1 = · · · 001 (only the last digit is not 0) with carry over.
Its additive inverse is addition of −1 = · · · `−1 `−1 `−1 . In other words (Xθ, σ)
factors onto the odometer with ` digits (adding machine). This is the equicontin-
uous factor map with which we work. As the space is the space of `-adic integers,
we will denote it using the notation Z`.

Proposition 4.1. Let θ be a primitive aperiodic bijective (and simplified) substi-
tution of length ` and π : Xθ → Z` be defined by (4.2). The fibre π−1(0) contains
exactly the θ-fixed points. These are in one-to-one correspondence with the allowed
two letter words.
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Proof. It is quickly seen that π◦θ = (×`)◦π where (×`) is multiplication by ` in Z`
and corresponds to left shift with adjoining a 0: (×`)(· · · y−2 y−1) = · · · y−2 y−10.
Hence any θ-fixed point is mapped by π to a (×`)-fixed point in Z`, and the only
such one is 0. Thus all θ-fixed points belong to π−1(0). It also follows that θ must
preserve π−1(0).

Since the maps θi are bijections of A, θ is injective on Xθ. Hence it is injective
on π−1(0). We claim that π−1(0) must be finite. To prove the claim let x, x′ ∈ Xθ.
If x 6= x′ there exists n ∈ N such that x[−`n,`n−1] 6= x′[−`n,`n−1] (here x[n,m] is the

word xnxn+1 · · ·xm). It follows that θ−n(x)[−1,0] 6= θ−n(x′)[−1,0]. Since there are

only finitely many words of length two π−1(0) must be finite. It follows that the
restriction of θ to π−1(0) is bijective and thus π−1(0) must be a union of periodic
orbits under θ.

As θ is bijective and simplified we have θ(x)[−1,0] = x[−1,0] for any x ∈ Xθ. It
follows that θ-periodic points are θ-fixed points and that they are in one-to-one
correspondence with the allowed two letter words. �

Proposition 4.2. Let θ be a primitive aperiodic bijective substitution of length `
and let π : Xθ → Z` be defined by (4.2). Then the orbit of π−1(0) is the only
singular fibre orbit. The minimal rank is rπ = s where s is the size of the alphabet.

Proof. Suppose that y = . . . y−2y−1 does not belong to the Z-orbit of 0. This is
the case precisely if for infinitely many n, y−n 6= 0 and, for infinitely many n,
y−n 6= `− 1. Now if we take x ∈ π−1(y) and decompose it into substitution words
θn(a) of level n (as described above), then the substitution word θn(a0) which

covers index 0 must be θn(a0) = x[kn,kn+`n−1] where kn = −
∑−1
i=−n `

−i−1yi. Since

y−n 6= 0 for infinitely many n we have kn
n→∞−→ −∞, and since y−n 6= ` − 1 for

infinitely many n we have kn+ `n−1
n→∞−→ = +∞. Furthermore, by bijectivity of θ,

a0 is uniquely determined by x0. It follows that x is uniquely determined by y and
x0. Since there are exactly s choices for x0 we see that π−1(y) contains s elements.

We now show that π−1(y) is a regular fibre if y does not belong to the orbit of Z.
Suppose that x, x′ were proximal. Then there exists n ∈ Z such that xn = x′n. In
other words σn(x)0 = σn(x′)0. Also y + n does not belong to the Z-orbit of 0 and
since σn(x), σn(x′) ∈ π−1(y + n) we conclude from the above that x = x′. Hence
all points of π−1(y) are pairwise non-proximal.

We have seen above that π−1(0) has s(2) elements where s(2) is the number of
allowed two letter words. Given that θ is aperiodic we must have s(2) > s. Thus
π−1(0) cannot be a regular fibre. �

Since θ is simplified its fixed points are precisely those of the form θ∞(a) ·θ∞(b),
where ab is an allowed word for θ. Such a fixed point is uniquely determined by ab.
We will use the notation a · b to denote it.

Corollary 4.3. Let θ be a primitive bijective aperiodic substitution of constant
length. If two points x, x′ ∈ Xθ are forward (or backward) proximal then they are
forward (or backward) asymptotic. Furthermore, forward and backward proximality
are non-trivial. In particular the Ellis semigroup E(Xθ) is completely regular and
the disjoint union of its kernel M(Xθ) with Z.

Proof. Suppose that x, x′ ∈ Xθ are forward proximal. Then they are proximal
and so by Propositions 4.2 and 4.1 there is n ∈ Z such that σn(x) and σn(x′) are
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fixed points of the (simplified) substitution. Since they are forward proximal and
σ is left shift this means that there are allowed two-letter words ba, b′a such that
σn(x) = b · a and σn(x′) = b′ · a. In particular the two sequences agree to the right
and hence are forward asymptotic. If forward proximality were trivial then every
two letter word would be determined by its right letter. This cannot be the case
as the substitution is aperiodic. Hence forward proximality is non-trivial. For the
backward motion we argue in a similar way. The result now follows from Corollary
2.9. �

4.3. The kernel Mfib
0 (Xθ). The restriction Efib0 (Xθ) of Efib(Xθ) to the singular

fibre π−1(0) of the factor map π : Xθ → Z` contains besides the identity map only

its kernel Mfib
0 (Xθ). This kernel is a finite semigroup which we now compute. We

also call it the structural semigroup of θ. It completely determines Efib(Xθ).

Recall that since θ has length ` there are maps θi : A → A such that θ(a) =
θ0(a) · · · θ`−1(a) for all a ∈ A. θ is thus uniquely determined by what we call its
expansion, namely its representation as a concatenation of ` maps, which we write
as

θ = θ0|θ1| · · · |θ`−1.

It follows from (4.1) that the composition of two substitutions θ, θ′ of length ` and
`′ over the same alphabet (which we simply denote by θθ′) has then an expansion
into ``′ maps

θθ′ = θ0θ
′
0| · · · |θ`−1θ

′
0|θ0θ

′
1| · · · |θ`−1θ

′
`′−1

where the product θiθ
′
j is that of permutations, that is, composition of bijections.

In particular, the expansion of θ2 is given by

(4.3) (θ2)0| · · · |(θ2)`2−1 = θ0θ0| · · · |θ`−1θ0|θ0θ1| · · · |θ`−1θ`−1

and iteratively we find, for any given n the `n bijections (θn)i corresponding to the
expansion of θn.

Definition 4.4. Given a bijective substitution θ, we define the structure group Gθ
of θ to be the group generated by all the bijections (θn)i, n ∈ N, i = 0, · · · , `n − 1,
and its R-set by

Iθ := {(θn)i(θ
n)−1
i−1 ∈ Gθ : n ∈ N, i = 1, · · · , `n − 1}.

Note that Iθ is the collection of bijections we need to apply (from the left) to go
from some element (θn)i−1 in the expansion of some power of the substitution to
its successor (θn)i. The name R-set is motivated by the fact that Iθ will label the

right ideals of Mfib
0 (Xθ).

Lemma 4.5. If θ is simplified, then Gθ is generated by Iθ and

Iθ = {θiθ−1
i−1 ∈ Gθ : i = 1, · · · , `− 1}.

Proof. The first statement follows recursively as θi = θiθ
−1
i−1θi−1 and θ0 = 1. We

prove the second statement for n = 2 as the general statement then follows by
induction. Let (θ2)i−1(θ2)i be two consecutive bijections in the expansion of θ2.
We consider two cases, the first if (θ2)i−1(θ2)i appears as two consecutive columns
in a single substitution word, the second if it lies on the boundary, across two
substitution words.
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In the first case, (θ2)i−1|(θ2)i = θj−1θk|θjθk for some j ≤ ` − 1 and some
0 ≤ k ≤ `− 1, as in Equation (4.3). But then

(θ2)i(θ
2)−1
i−1 = θjθk(θj−1θk)−1 = θj(θj−1)−1,

and we are done as this last expression belongs to I.
In the second case, (θ2)i−1|(θ2)i = θ`−1θk|θ0θk+1 for some k < `− 1. Since θ is

simplified, θ0 = θ`−1 = 1, and here also we are done. �

In this section we will prove Theorem 4.6; in its statement the semigroup has
sandwich matrix as defined in (2.3).

Theorem 4.6. Let θ be a primitive aperiodic bijective substitution. The structural

semigroup Mfib
0 (Xθ) of θ is isomorphic to the matrix semigroup M [Gθ, Iθ, {±};A]

where Gθ is the structure group and Iθ is the R-set of θ.

We will first give a description of Mfib
0 (Xθ) as a subsemigroup of F (π−1(0)),

the set of functions from π−1(0) to itself, and then compute its Rees matrix form.
We recall that π−1(0) is the set of fixed points of θ which we denote a · b where

ab is an allowed two-letter word of A. To describe the action of Efib(Xθ) on
such a fixed point a · b we consider the set G(2) of all possible pairs of consecutive
permutations (θn)i−1, (θ

n)i, occurring in θn, n ∈ N, i = 1, · · · `n−1. We write them
with a dot (θn)i−1 · (θn)i, or abstractly L ·R. We note that the R-set is related to
G(2), namely

Iθ = {RL−1 : L ·R ∈ G(2)}.

Notice also that G(2) is the same for any power of the substitution.

Lemma 4.7. G(2) is invariant under the right diagonal Gθ-action

(L ·R)g = (Lg ·Rg).

Proof. Suppose that L ·R ∈ G(2), then for some k ∈ N and 0 < i < `k it appears as
L ·R = (θk)i−1 · (θk)i. Let g ∈ Gθ, so that it appears as g = (θn)j for some n ∈ N
and some 0 ≤ j ≤ `n − 1. Then, using the expansion of θn obtained in Equation
(4.3), we find that Lg ·Rg appears as two consecutive columns in the expansion of
θn+k and hence belongs to G(2) for each g ∈ Gθ. �

As we assume that θ is simplified, we have (θk)0 = (θk)`k−1 = 1 for each k ≥ 1.
Then

θk(L|R) = (θk)0L| · · · |(θk)`k−2L|L|R|(θk)1R| · · · |(θk)`k−1R

where we have used that (θk)`k−1L = L and (θk)0R = R. Hence if L · R =
(θn)i−1 · (θn)i then the expansion of θkθn contains θk(θn)i−1|θk(θn)i at positions
[`k(i− 2), `ki− 1].

Proposition 4.8. Let L ·R ∈ G(2). Then Efib contains an element f[L·R;+] which

acts on the singular fibre π−1(0) as

f[L·R;+](a · b) = L(b) ·R(b),

and it contains an element f[L·R;−] which acts on this fibre as

f[L·R;−](a · b) = L(a) ·R(a).
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Proof. Recall we assume that θ is simplified, so that θ0 = θ`−1 = 1.
Let n be such that L · R = (θn)ν−1 · (θn)ν , for some 1 ≤ ν ≤ `n − 1. Let a · b

be a fixed point. Then the two-letter word σν(a · b)[−1,0] is (θn)ν−1(b)(θn)ν(b).

Furthermore the expansion of θkθn contains θk(θn)i−1|θk(θn)i at positions [`k(i−
2), `ki− 1]. Hence

σν`
k

(a · b)[−`k,`k−1] = θkL(b) θkR(b).

It follows that

σν`
k

(a · b) k→+∞−→ L(b) ·R(b)

in the topology of Xθ. By compactness there exists f[L·R;+] ∈ E(Xθ) which agrees
with the map a · b 7→ L(b) · R(b) on the singular fibre. It follows from the exact
sequence (2.7) that an element of E(Xθ) either preserves all π-fibres or none. Hence
f[L·R;+] ∈ E(Xθ)

fib.
To construct elements in E(Xθ) which acts like a · b 7→ L(a) · R(a) on the

singular fibre we take ν′ = ν− `n with n and ν as above. Then the two-letter word
σν
′
(a · b)[−1,0] is L(a)R(a) and, similarly we find

σν
′`k(a · b) k→+∞−→ L(a) ·R(a).

By compactness we find the required map f[L·R;−]. �

Let us denote the restriction of f[L·R;ε] to π−1(0) by [L ·R; ε] and set

G
(2)
± := {[L ·R; ε] : L ·R ∈ G(2), ε ∈ {±}}

It is easily checked that different elements of G
(2)
± define different maps on π−1(0).

Proposition 4.9. For any ϕ ∈Mfib
0 (Xθ) there exists L ·R ∈ G(2) and ε = ± such

that ϕ = [L ·R; ε].

Proof. Any ϕ ∈Mfib
0 (Xθ) ⊂ Efib0 (Xθ) is the restriction of a function f ∈ Efib(Xθ)

to π−1(0). We consider first the case that this function belongs to E(X,Z+), that
is, f is a pointwise limit of a generalised sequence (σνi)i with νi > 0 (the inequality
is strict as f 6= Id). Note that ϕ(a · b)[−1,0] is an open neighbourhood of ϕ(a · b).
Thus given a ·b ∈ π−1(0) there exists a i0 such that ϕ(a ·b)[−1,0] = σνi(a ·b)[−1,0] for

i ≥ i0. As π−1(0) is finite there exists a ν > 0 such that ϕ(a ·b)[−1,0] = σν(a ·b)[−1,0]

for all a · b ∈ π−1(0). Let L = (θn)ν−1 and R = (θn)ν where `n ≥ ν. Then, for
all a · b ∈ π−1(0) we have ϕ(a · b)[−1,0] = L(b) · R(b)[−1,0]. Since the fixed points
are uniquely determined by their two-letter word on [−1, 0] the map ϕ is given by
a · b 7→ L(b) ·R(b). It is thus the restriction of f[L·R;+] to π−1(0).

If f ∈ E−(Xθ) we argue similarly: there exists a ν < 0 such that, for all
a · b ∈ π−1(0) we have ϕ(a · b)[−1,0] = σν(a · b)[−1,0]. Then we take L = (θn)`n−ν−1

and R = (θn)`n−ν where `n ≥ ν. This leads to ϕ(a · b)[−1,0] = L(a) ·R(a)[−1,0], for

all a · b ∈ π−1(0) and we conclude that ϕ is the restriction of f[L·R;−] to π−1(0). �

We can compute the compositions of elements of G
(2)
± , for example

[L ·R; +][L′ ·R′; +](a · b) = [L ·R; +](L′(b) ·R′(b))
= LR′(b) ·RR′(b)
= [LR′, RR′,+](a · b)
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and likewise

[L ·R; +][L′ ·R′;−](a · b) = [L ·R; +](L′(a) ·R′(a))

= LR′(a) ·RR′(a)

= [LR′ ·RR′;−](a · b).

In this way we get

Corollary 4.10. Mfib
0 (Xθ) = G

(2)
± with product given by

[L ·R; +][L′ ·R′; +] = [LR′ ·RR′; +]

[L ·R;−][L′ ·R′;−] = [LL′ ·RL′;−]

[L ·R; +][L′ ·R′;−] = [LR′ ·RR′;−]

[L ·R;−][L′ ·R′; +] = [LL′ ·RL′; +].

Proof. Combine Propositions 4.8 and 4.9 together with the fact that all [L ·R; ε] act
differently to see that there is a one-to-one correspondence between the elements

of Mfib
0 (Xθ) and G

(2)
± . The form of the product is a direct calculation along the

lines above. �

Proof of Theorem 4.6. Given the result of Corollary 4.10 it remains to show that

G
(2)
± is isomorphic to M [Gθ, Iθ, {±};A] for a (any) fixed choice of g0 = R0L

−1
0 ∈ Iθ.

Recall that, as a set, M [Gθ, Iθ, {±};A] = Iθ ×Gθ × {±}. Consider the map

(4.4) G
(2)
± 3 [L ·R; ε] 7→

{
(RL−1, RL0R

−1
0 , ε) if ε = −

(RL−1, R, ε) if ε = +.

Its injectivity is clear and its surjectivity is equivalent to Lemma 4.7. A direct
calculation shows that it preserves the product structures. �

The Rees structure group of M [Gθ, Iθ, {±};A] is Gθ, the structure group of θ. It
is related to the structure group Gπ of the factor π : (Xθ, σ)→ (Z`, (+1)) as follows:
The choice of g0 ∈ Iθ to define the normalised matrix semigroup corresponds to a

choice of a minimal idempotent e of Efib0 (Xθ,Z+). Then we may view Gπ = eEfib0 e.
Gπ is thus a permutation of eπ−1(0) and if we identify eπ−1(0) via a · b 7→ b with
A then we obtain Gθ.

We remark that an idempotent e ∈ Efib0 (Xθ,Z+) has the form e = (i,1,+),

i ∈ Iθ, so that eMfib
0 (Xθ)e = {i} × Gθ × {+} which is isomorphic to Gθ via the

projection onto the middle component.

Example 4.11. Consider the substitution θ given by

a
b
c
7→

a
b
c

b
a
c

a
c
b

a
b
c

We use the notation

αβ
γ

 to denote the bijection that sends a to α, b to β and c

to γ. The expansion of θ is θ0|θ1|θ2|θ3 with θ0 = θ3 = 1 =

ab
c

, while θ1 =

ba
c


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and θ2 =

ac
b

 are two transpositions. We quickly find that

Iθ =

θ1θ
−1
0 =

ba
c

 , θ2θ
−1
1 =

ca
b

 , θ3θ
−1
2 =

ac
b

 .

Clearly Iθ generates Gθ = S3. The normalised sandwich matrix is

A

(
1 1 1
1 τ1 τ2

)
where τ1 = θ1θ

−1
0 θ1θ

−1
2 = θ2 and τ2 = θ2θ

−1
1 θ2θ

−1
3 = θ2θ1θ2 are transpositions.

Mfib
0 (Xθ) = M [S3, Iθ, {±};A] has 2 minimal left ideals each of which contains 18

elements, and 3 minimal right ideals each of which contains 12 elements.
We note that (Xθ, σ) is not an AI-extension of (Z4,+1); this can be seen by

applying Martin’s criterion, which we do not describe here (see [24] or [27] for
definitions and details); it suffices to note that θ admits seven two-letter words, has
height one, and the set of two-letter words cannot be partitioned into sets of size
three, creating an obstruction. Thus the techniques of [27] do not apply.

4.4. The full semigroup E(Xθ). We now combine Theorem 3.6 with our results
from Section 3 to determine Efib(Xθ) and, as far as possible, E(Xθ). We consider

first the simpler case in which Mfib
0 (Xθ) is generated by its idempotents.

Theorem 4.12. Let θ be a primitive aperiodic bijective substitution and suppose

that its structural semigroup Mfib
0 (Xθ) is generated by its idempotents. Then

Efib(Xθ) is topologically isomorphic to

Efib(Xθ) ∼= (Mfib
0 (Xθ) ∪ {Id}) ×

∏
[z]∈Z`/Z
[z]6=[0]

Gθ.

Using the sets Iθ, {±} and the sandwich matrix A from normalised Rees matrix form

M [Gθ; Iθ, {±};A] forMfib
0 (Xθ) we can also express this as follows: Efib(Xθ)\{Id}

is completely simple and topologically isomorphic to

Efib(Xθ)\{Id} ∼= M [Gfibθ ; Iθ, {±};A], Gfibθ = G
Z`/Z
θ .

Here an entry aλ,g of A is identified with the function f̃ ∈ Gfibθ which satisfies

f̃(0) = aλ,g and f̃(z) = 1 for regular z.
Furthermore E(Xθ)\Z is algebraically isomorphic to

E(Xθ)\Z ∼= M [Gθ; Iθ, {±};A], Gθ = Gfibθ o Z`

where A is understood to take values in the subgroup Gθ × {1}Z`/Z\{[0]} o {0} of

G
Z`/Z
θ o Z`.

Proof. As Efib(Xθ)0 = Mfib
0 (Xθ) ∪ {Id} it is generated by its idempotents. Fur-

thermore, the minimal rank rπ is equal to |A|. The first expression for Efib(Xθ) is
thus a direct application of Corollary 3.11. The second expression corresponds to
(3.4). The last statement follows from Corollary 3.14. �
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While the isomorphism between E(Xθ)\Z and M [G
Z`/Z
θ o Z`; Iθ, {±};A] is not

continuous when G
Z`/Z
θ o Z` is equipped with the product topology, Theorem

4.12 makes clear where the non-tameness comes from: whereas the restrictions
of Efib(Xθ) to individual fibres are finite semigroups, it is the fact that the struc-
ture group of its kernel consists of all possible functions over the orbit space which
implies that the cardinality of Efib(Xθ), and hence of E(Xθ), is larger than that
of the continuum.

4.5. Height. The assumption of the last theorem, namely that Mfib
0 (Xθ) is gen-

erated by its idempotents, is not always satisfied. To treat the other cases we
introduce a new notion of height.

Let Iθ be the R-set of a bijective substitution θ and Γθ be the group generated by
{gh−1 : g, h ∈ Iθ}. We have seen in Lemma 2.3 that Γθ is the Rees structure group

of the subsemigroup generated by the idempotents of Mfib
0 (Xθ). If Iθ contains 1

then Γθ contains Iθ and therefore coincides with Gθ, and consequently Mfib
0 (Xθ)

is generated by its idempotents. However, Γθ need not even be a normal subgroup
of Gθ; see Section 6.2 for an example.

Lemma 4.13. Let Γ̃θ be a normal subgroup of Gθ which contains the little structure
group Γθ. Denote by φ : Gθ → Gθ/Γ̃θ the canonical projection. Then φ(g1) = φ(g2)

for any two elements of Iθ. In particular, Gθ/Γ̃θ is a finite cyclic group.

Proof. If φ(g1) 6= φ(g2) for two elements of Iθ then φ(g1g
−1
2 ) 6= 1. But g1g

−1
2 ∈

Γθ ⊆ kerφ. Since Iθ generates Gθ, the class of Iθ is a generator of Gθ/Γ̃θ. �

We denote the order of Gθ/Γ̃θ by h̃. Note that h̃ must devide any ν > 0 for

which (θn)ν ∈ Γ̃θ (here n is large enough such that ν ≤ `n). Indeed, (θn)ν(θn)0
−1

is a product of ν elements of Iθ and so its image in Gθ/Γ̃θ is ν times the generator

of Gθ/Γ̃θ. In particular, h̃ devides `− 1.

4.5.1. Classical height. To better understand the meaning of the quantity h̃ we
recall the notion of height which occurs in the context of constant length substitu-
tions.

The equicontinuous factor Z` which we have described above for a primitive ape-
riodic substitution θ of constant length is not always the maximal equicontinuous
factor, i.e. there might be an intermediate equicontinuous factor (Xmax,+g) be-
tween (Xθ, σ) and (Z`,+1). The relevant quantity which governs this is the height
of the substitution. In view of what follows we refer to it here as its classical height.
This is a natural number arising as the height of a tower comprising a Kakutani-
Rohlin model for the dynamical system and shows up also in the spectral analysis.
It can be computed as follows. Consider a one-sided fixed point u = u0u1 · · · of θ.
The (classical) height hcl of θ is defined as

(4.5) hcl(θ) := max{n ≥ 1 : gcd(n, `) = 1, n| gcd{k : uk = u0}} .
For primitive substitutions it turns out to be independent of the choice of u. The
following result was shown by Dekking [11], with partial results by Kamae [21] and
Martin [24].

Theorem 4.14. Let θ be a primitive aperiodic substitution of length ` and classical
height hcl. Then the maximal equicontinuous factor of (Xθ, σ) is (Z`×Z/hclZ, (+1)×
(+1)).
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The theorem says that 1
hcl

corresponds to a topological eigenvalue of the dynam-

ical system (Xθ, σ) which does not already occur in the spectrum of (Zl,+1). It
moreover implies that the surjection π̃ in (2.7) factors through Z/hclZ× Z`,

E(Xθ) � Z/hclZ× Z` � Z`
and therefore leads to a continuous surjective semigroup morphism

Efib(Xθ) � Z/hclZ
Stated differently, Efib(Xθ) is a Z/hclZ-graded right topological semigroup.

A more detailed analysis yields the following picture. Let u be any one-sided
fixed point of θ. For a ∈ A, let iu(a) = min{k : uk = a}. We claim that the set
{n ∈ N : un = a} of occurences of a in u is contained in iu(a) + hclN where hcl is
as in (4.5). For, say that a occurs at indices i and j in u. Let v be the one-sided
fixed point of θ that starts with a. By minimality there exists i0 ∈ N0 such that we
see a in v at the indices i0 + i and i0 + j, a = vi0+i = vi0+j . Recall that the height
h can be defined using any fixed point of θ. Taking v in place of u in Definition
(4.5) we see that all indices at which we see the letter a in v are multiples of h.
Thus h divides i − j, and our claim follows. In other words, we can partition the
alphabet into subsets Ak := {a ∈ A : iu(a) ≡ k mod h} and σ(Ak) = Ak+1. Note
also that if θ is simplified then {k : uk = u0} contains ` − 1 and hence the height
must divide ` − 1. In Lemma 4.15 and Theorem 4.17, we extend this partition to
Gθ and E(Xθ).

Lemma 4.15. Let θ be a primitive aperiodic bijective substitution with structure
group Gθ. If θ has classical height hcl, then there is a surjective group homomor-
phism φcl : Gθ → Z/hclZ such that for all g ∈ Iθ we have φcl(g) = 1.

Proof. We may assume that θ is simplified and hence the height hcl divides `− 1.
Fix an arbitrary one-sided fixed point u = u0u1 · · · of θ. For a ∈ A, let iu(a) =
min{k : uk = a}; we have seen that {n ∈ N : un = a} is contained in iu(a) + hclN.
We now understand k and iu(a) as an index modulo hcl. As θj(uk) = u`k+j

we see that iu(θj(a)) − iu(a) ≡ (` − 1)iu(a) + j. Since the height must divide
` − 1 we find (` − 1)iu(a) + j ≡ j. Hence iu(θj(a)) − iu(a) does not depend on
a and so φcl(θj) := iu(θj(a)) − iu(a) is a well defined map from {θj , j ≥ 0} to
Z/hclZ. We compute iu(θj′θj(a)) ≡ j′ + `(j + `iu(a)) ≡ j′ + j + iu(a) and thus
see that φcl is multiplicative. It hence induces a surjective group homomorphism
φcl : Gθ → Z/hclZ. Clearly φcl(θjθ

−1
j−1) = 1. �

4.5.2. Generalised height. To discuss generalised height we introduce the maps ev0

and evz0, where
ev0 : Xθ → A, ev0(x) := x0

reads the letter on 0 of x and evz0 := ev0|eπ−1(z) is the restriction of ev0 to the subset

eπ−1(z) of the fibre over z. Here again, e is a chosen minimal idempotent, but we
take it from E(Xθ,Z+). Clearly, if z is regular then eπ−1(z) = π−1(z). Note that
if z ∈ Z+ then ev0(x) = ev0(e(x)) because e does not affect the right infinite part
of a fixed point. evz0 is a bijection which we will use below to identify eπ−1(z) with
A. As we already mentioned, conjugation with ev0

0 identifies Gπ with Gθ and Γπ
with Γθ.

Lemma 4.16. Let f ∈ E(Xθ,Z+) and z ∈ Z`\Z−. There exists fz ∈ Gθ such that
for all x ∈ π−1(z) we have ev0(f(x)) = fz(x0).
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Proof. We first show the result for z = n ∈ Z+ and f = σm, m ≥ 0. Then x =
σn(a.b) for some fixed point a.b and n ≥ 0. It follows that σm(x) = (θk)n+m(θk)−1

n (x0)
for x ∈ π−1(z) and all k with `k > n + m. Thus for z = n we can take
σmz = (θk)n+m(θk)−1

n .
Next suppose z is regular and f = σm. Since (X,σ) is forward minimal there is

h ∈ E(Xθ,Z+) with π̃(h) = z, where h is the limit of some generalised sequence
σnν and π−1(z) = h(π−1(0)). Let x ∈ π−1(z), i.e. x = h(a.b) for some fixed point
a.b. By continuity of σ and ev0 we have

ev0 ◦ σm ◦ h(a.b) = lim
ν

ev0 ◦ σm+nν (a.b)

and since π−1(0) is finite there exists ν0 such that for all ν ≥ ν0 and all a.b ∈ π−1(z),
limν′ ev0 ◦ σm+nν′ (a.b) = ev0 ◦ σm+nν (a.b). Hence

σmz = σmnν

once ν ≥ ν0.
Now let f ∈ E(Xθ,Z+) and z ∈ Z`\Z−. f is the limit of some generalised

sequence σnµ . We have

ev0 ◦ f(x) = lim
µ

ev0 ◦ σnµ(x)

As π−1(z) is finite there exists µ0 such that for all µ ≥ µ0 and all x ∈ π−1(z),
limµ′ ev0 ◦ σnµ′ (x) = ev0 ◦ σnµ(x). Hence fz = σnµz once µ ≥ µ0. �

Theorem 4.17. Let Γ̃θ be a normal subgroup of Gθ which contains the little struc-
ture group Γθ. There exists a continuous surjective semigroup morphism

η : E(Xθ,Z+)→ Gθ/Γ̃θ ∼= Z/h̃Z

such η(σf) = η(f)+1. In other words, 1
h̃

is a topological eigenvalue of the dynamical

system (E(Xθ,Z+), λσ).

Proof. By Lemma 4.16, given z ∈ Z`\Z− we can assign to any f ∈ E(Xθ,Z+) a
map fz ∈ Iθ. It depends on z but since two elements of Iθ differ by an element of
Γθ the class fzΓ̃θ is independent of z. We can therefore define

η(f) := fzΓ̃θ.

We show that η is locally constant. For that we consider the following neighbour-
hood of f : given z /∈ Z− let

V = {f ′ ∈ E(Xθ,Z+) : ev0(f(x)) = ev0(f ′(x))∀x ∈ π−1(z)}.

Then, if f ′ ∈ V we must have fz = f ′z and hence η(f) = η(f ′). Hence η is locally
constant, so continuous. It is immediate that η(σf) = η(f) + 1. By continuity we
obtain η(f1f2) = η(f1) + η(f2).

Finally e2πiη is a continuous eigenfunction for the eigenvalue 1
h̃

. �

Let us compute the degree of the map f[L·R,+] where L·R = (θn)ν−1·(θn)ν , ν ≥ 0.

We have seen that f[(θn)ν−1·(θn)ν ,+] is the limit of a subnet of (σν`
k

)k. Furthermore h̃

devides `−1. Hence ν and ν`k agree modulo h̃ showing that η(σν`
k

) is independent

of k and equal to ν modulo h̃. Thus

η(f[(θn)ν−1·(θn)ν ,+]) = ν modulo h̃.
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The above calculation shows also that the degree of an element of Mfib(Xθ,Z+)
depends only on its restriction to the singular fibre π−1(0). It is hence determined by

a grading onMfib
0 (Xθ,Z+) ∼= Iθ×Gθ×{+}. The latter can be easily obtained using

the bijection (4.4) between G
(2)
+ and Iθ×Gθ×{+}; it is given by η : Iθ×Gθ×{+} →

Gθ/Γ̃θ,

η(i, g,+) = gΓ̃θ.

In particular, as it should be, idempotents have degree 0.

As an aside we remark that the grading η can be extended to all of E(Xθ). We
can repeat the above with E(Xθ,Z−) while exchanging σ with σ−1 and Iθ with I−1

θ .

One then finds that η(f[(θn)ν−1·(θn)ν ,−]) = ν − 1 modulo h̃ and η(i, g,−) = gΓ̃θ.

The grading of E(Xθ,Z+) restricts to a grading of the group Gθ = eE(Xθ,Z+)e.
We denote the elements of degree k by Gθk := η−1({k})∩Gθ. Thus Gθ =

⊔
k∈Z/h̃Z Gθk

with GθkGθl = Gθk+l and Gθk = fkGθ0 for any choice of element f ∈ Gθ1. Similarly,

the grading restricts to Gfibθ , the structure group of the kernel of Efib.

Recall the definition (3.2) of T as the subsemigroup of elements of Efib which
act trivially on all regular fibres. Since we have only one orbit of singular fibres,
its restriction T0 to the fibre at 0 ∈ Z` is faithful and eT e isomorphic to eT0e. We
identify eπ−1(z) with A through the restricted evaluation map evz0 : eπ−1(z)→ A.
Define Tθ := ev0

0eT0e(ev0)−1, a subgroup of the group of bijections of A. We now

consider the situation in which Γ̃θ is a subgroup of Tθ = ev0
0eT0e(ev0)−1 and define

Cov(Γ̃θ) := {f̃ ∈ eCov e : (Φz0)−1(f̃(z)) ∈ (ev0
0)−1Γ̃θev

0
0 ∀z ∈ Z`}.

This group is independent of the choice of lift to define Φz0, as Γ̃θ is normal in Gθ.

Proposition 4.18. Let Γ̃θ be a normal subgroup of Gθ which contains Γθ and is
contained in Tθ. Then, w.r.t. the grading defined by Γ̃θ, we have the inclusion of
groups

Gfibθ 0
⊂ Cov(Γ̃θ).

Proof. Given f ∈ Gfibθ we have η(f) = 0 if and only if, for all z ∈ Z`\Z− we have

fz ∈ Γ̃θ. Note that, with f̃ defined as in (2.4), fz ◦ evz0 = evz0 ◦ f̃(z). Moreover, if

h ∈ E(Z+) then hz ◦ evz0 = ev
z+π∗(h)
0 ◦ h

∣∣
π−1(z) . It follows from Lemma 4.16 that

ev
z+π∗(h)
0 ◦ h

∣∣
π−1(z) ◦ (evz0)−1 ∈ Gθ. We apply this to h = s(z), the lift of z, to see

that g := evz0 ◦ s(z)
∣∣
π−1(0) (ev0

0)−1 ∈ Gθ. Now

(Φz0)−1(f̃(z)) = s(z)−1f̃(z)s(z) = s(z)−1 ◦ (evz0)−1 ◦ fz ◦ evz0 ◦ s(z)

∈ (ev0
0)−1 ◦ g−1Γ̃θg ◦ ev0

0 = (ev0
0)−1 ◦ Γ̃θ ◦ ev0

0

as Γ̃θ is normal in Gθ. Thus f ∈ Cov(Γ̃θ). �

Definition 4.19. The normal completion Γθ of the little structure group Γθ is the
smallest normal subgroup of Gθ which contains Γθ. The generalised height h of a
primitive aperiodic bijective substitution is the order of Gθ/Γθ.

Proposition 4.20. Generalised height must be at least as large as classical height.
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Proof. Recall the quotient map φcl : Gθ → Z/hclZ from Lemma 4.15. It satisfies
φcl(Γθ) = 0. As Γθ is generated by elements of the form ghg−1 with h ∈ Γθ and
g ∈ Gθ we have φcl(Γθ) = 0 and hence Gθ/Γθ factors onto Z/hclZ. �

In Section 6.2 we provide an example with trivial classical height but non-trivial
generalised height.

Proposition 4.21. Γθ = Tθ and

Gfibθ 0
= Cov(Γθ) ∼= Γ

Z`/Z
θ .

Proof. By Theorem 3.6 we have the inclusion of groups Cov(Tθ) = eCovT e ⊆
eEfibe = Gfibθ . Hence, by Proposition 4.18, Cov(Tθ) is a subgroup of

⊔
k∈Z/h̃Z f

kCov(Γθ)

where f is some element from Gfibθ 1
. Since s(z) and s(z)−1 have opposite degree,

(Φz0)−1(̃f(z))Γθ ∈ Gθ/Γθ must be the generator of Gθ/Γθ for all z. Hence, for any

f ∈ Cov(Tθ), (Φz0)−1(f̃(z))Γθ ∈ Gθ/Γ̄θ is constant in z. This is possible only if Tθ
is a subgroup of Γθ. If that is the case then Cov(Tθ) = Gfibθ 0

, again by Proposi-
tion 4.18.

The covariance condition says that a function f̃ ∈ Cov is determined on the Z-
orbit of a point z ∈ Z` by its value on z. We may hence chose for each Z-orbit [z] ∈
Z`/Z a representative z and then the obtain a bijection from Cov(Γθ) to Γθ-valued

functions over the orbit space Z`/Z by restricting f̃ to the chosen representatives.
This bijection is, of course, not canonical as it involves an uncountable choice of
representatives, but it is a topological isomorphism of semigroups. �

We end this section with the generalisation of Theorem 4.12 to substitutions
which may have non-trivial height.

Theorem 4.22. Let θ be a primitive aperiodic bijective substitution with generalised
height h. Using the sets Iθ, {±} and the sandwich matrix A from normalised

Rees matrix form M [Gθ; Iθ, {±};A] for Mfib
0 (Xθ), E

fib(Xθ)\{Id} is topologically
isomorphic to

Efib(Xθ)\{Id} ∼= M [Gfibθ ; Iθ, {±};A].

where Gfibθ is a Z/hZ-graded group and

Gfibθ k
= fkCov(Γθ)

for any element f of degree 1 of Gfibθ . Here an entry aλ,g of A is identified with the

function f̃ ∈ Gfibθ 0
which satisfies f̃(0) = aλ,g and f̃(z) = 1 for regular z.

If Gθ contains an element of order h then Gfibθ is a semidirect product

Gfibθ
∼= Cov(Γθ) o Z/hZ.

Furthermore E(Xθ)\Z is algebraically isomorphic to

E(Xθ)\Z ∼= M [Gθ; Iθ, {±};A]

where Gθ is the extension determined by Gfibθ ↪→ Gθ � Z` and A is understood

to take values in the subgroup Gfibθ . If moreover, generalised height is equal to
classical height then there is a split section s : Z` → Gθ whose image belongs to Gθ0.
In particular we have the algebraic isomorphism

Gθ ∼= Gfibθ o Z`.
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Proof. The first part follows from Prop. 4.21. It remains to show that Gfibθ
∼=

Cov(Γθ) o Z/hZ provided Gθ contains an element of order h. An element f ∈
Gfibθ with η(f) = 1 can be constructed as follows. We saw that any (i0, i,+) ∈
M [Gθ; Iθ, {±}, A] with i ∈ Iθ has degree 1. Pick i ∈ Gθ and let f be the function
which satisfies

f(z) := Φz0((ev0
0)−1(i0, i,+)ev0

0).

Then f is an element of degree 1 in Cov(Gθ). As Φz0 restricts to a group isomorphism

from eEfib0 e to Efibz it preserves the order of an element and therefore, if ih = 1,

then f has order h. In that case, Z/hZ 3 1 7→ f ∈ Gfibθ induces a split section for

the exact sequence Gfibθ 0
↪→ Gfibθ

η
� Z/hZ.

The result for E(Xθ) follows from Proposition 2.6. We have seen that, if h is
equal to the classical height, then π̃ factors through the maximal equicontinuous
factor which is Z/hZ×Z`. By the axiom of choice we can construct a covariant lift
s : Z` → Gθ which factors through {0} × Z` ⊂ Z/hZ× Z`. It hence takes values in
Gθ0. It follows that the split homomorphism ŝ constructed in Proposition 3.13 also

takes values in Gθ0. Thus Gθ0
∼= Gfibθ 0

o Z`. This implies the last statement. �

5. The virtual automorphism group of unique singular orbit systems

In this section we investigate the relationship between the automorphism group
and the virtual automorphism group of bijective substitutional systems, as defined
by Auslander and Glasner [4]. They show that an almost automorphic system is
semi-regular iff it is equicontinuous. They also show that the Thue-Morse shift is
semi-regular. Using our tools, in this section we will extend their result to show
that bijective substitution shifts are semi-regular.

We start a little bit more generally considering minimal systems (X,T, σ) where
T is an abelian group, unless we are talking about a substitution, in which case
T = Z.

5.1. Automorphism groups of bijective substitutions. The automorphism
group Aut(X) of a dynamical system (X,σ) is the group, under composition, of all
homeomorphisms of X which commute with σ. Since the elements of E(X) are
limits of generalised sequences of powers of σ, the automorphism group, viewed
as a subset of XX , lies in the commutant of E(X). Similar to the situation of
Ellis semigroups described in Section 2.7, if (X,σ) is minimal and π : X → Y is
an equicontinuous factor map, then the map π∗ from Section 2.7 is well-defined
on automorphisms of X inducing a group morphism π∗ : Aut(X) → Aut(Y ); see
[10]. We also have Aut(Y ) ∼= Y for a minimal equicontinuous system. But π∗ is
usually not surjective, although its image always contains T ⊂ Y . We can therefore
analogously define Autfib(X) as the kernel of π∗, that is, the subgroup of auto-
morphisms which preserve the π-fibres, and then determine Aut(X) through the

extension Autfib(X) ↪→ Aut(X) � π∗(Aut(Y )). Contrary to most elements of

Efib(X), the elements of Autfib(X) are always continuous and therefore, again by

minimality, Autfib(X) is determined by its restriction to a fibre π−1(y0). Further-

more, Autfib(X) must commute with Gfib = eEfib(X)e and therefore its restriction
to π−1(y0) is contained in the centraliser of the structure group Gπ = eEfiby0 (X)e in
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the permutation group Seπ−1(y0) of the factor [25, Theorem 33]. For primitive bi-

jective substitution shifts it can be shown that Autfib(X) exhausts that centraliser
and that π∗ : Aut(X)→ Aut(Y ) is as small as possible:

Theorem 5.1. [22, Theorem 5] Let θ be a primitive aperiodic bijective substitution

over the alphabet A. Then Autfib(Xθ) is isomorphic to the centraliser CSA(Gθ)
and

Aut(Xθ) ∼= CSA(Gθ)× Z.

5.2. Virtual automorphism groups. We start with the two algebraic lemmas.
Given a set X, x ∈ X and a group G ⊆ SX , the permutation group of X, let
StabG(x) denote the stabilizer of x in G, let NG(StabG(x)) denote the normaliser
of StabG(x) in G, and let CSX (G) denote the centraliser of G in SX . The following
lemma from group theory is well-known but we include a proof. Recall that a
group G acts transitively on X if for each pair x, y in X there exists g ∈ G such
that g(x) = y.

Lemma 5.2. Let G be a subgroup of the permutation group SX which acts transi-
tively on X, and let x ∈ X. Then

NG(StabG(x))/StabG(x) ∼= CSX (G).

Proof. Let h ∈ NG(StabG(x)). We first claim that if two f, f ′ ∈ G satisfy f(x) =
f ′(x), then fh−1(x) = f ′h−1(x). Indeed, f(x) = f ′(x) implies f ′ = fs for some
s ∈ StabG(x). Furthermore sh−1 = h−1s′ with s′ in StabG(x), as h normalises
StabG(x). Hence

fh−1(x) = fh−1(s′x) = fsh−1(x) = f ′h−1(x).

Therefore the map F : NG(StabG(x))/ StabG(x)→ SX defined by

F (h)(y) := fh−1(x), for any f ∈ G such that f(x) = y

is well-defined. We show F preserves the group multiplication. Let h1, h2 ∈
NG(StabG(x))/StabG(x). Then

(5.1) F (h1)(F (h2)(y)) = f1h
−1
1 (x), for any f1 ∈ G such that f1(x) = F (h2)(y)

and F (h2)(y) = f2h
−1
2 (x) for any f2 ∈ G such that f2(x) = y. In particular, f1(x) =

f2h
−1
2 (x) so that we may take f1 = f2h

−1
2 in (5.1). Thus F (h1)(F (h2)(y)) =

f2h
−1
2 h−1

1 (x). As f2(x) = y this is also equal to F (h1h2)(y).
Note that if F (h) = Id then fh−1(x) = f(x) for all f , which implies that F is

injective.
Furthermore, using our first claim again, it can be checked that F (h) commutes

with the elements of StabG(x) and so the image of F is contained in CSX (G). To
see that the image of F is all of CSX (G) let ψ ∈ CSX (G). Since G acts transitively
there exists h ∈ G such that ψ(x) = h−1(x). Then, for f ∈ G,

(5.2) ψ(f(x)) = fψ(x) = fh−1(x).

If we apply this formula to f ∈ StabG(x) we get h−1(x) = ψ(x) = ψ(f(x)) =
fh−1(x) which implies that h−1 normalises StabG(x). Now (5.2) shows that ψ =
F ([h]) where [h] is the class of h in NG(StabG(x))/StabG(x). �
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Let G1, G2 be two groups acting on X1 and X2, resp.. Let G ⊂ G1 × G2 a
subgroup such that the projection p1 : G → G1 is surjective. G1 × G2 acts on X1

via the projection p1 hence G also acts on X1: if f ∈ G then f(x) := f1(x) where
f1 = p1(f).

Lemma 5.3. In the above context, let x ∈ X1. Then p1 induces an isomorphism

NG(StabG(x))/StabG(x)→ NG1
(StabG1

(x))/ StabG1
(x).

Proof. f ∈ G belongs to StabG(x) iff f1(x) = x. Hence p−1
1 (StabG1(x)) = StabG(x).

In particular p1 descends to the quotients. h ∈ G belongs to NG(StabG(x)) iff
∀f ∈ StabG(x) we have fh−1(x) = h−1(x). Since p−1

1 (StabG1(x)) = StabG(x)
the latter is equivalent to ∀f1 ∈ StabG1(x) we have f1h

−1
1 (x) = h−1

1 (x). Hence
NG1

(StabG1
(x)) = p1(NG(StabG(x))). Hence the map induced by p1 is surjective.

p−1
1 (StabG1

(x)) = StabG(x) shows that p1(h) ∈ StabG1
(x) implies h ∈ StabG(x)

and so the map induced by p1 is injective. �

5.2.1. Definition of the virtual automorphism group. Let (X,σ, T ) be a minimal
system with abelian group T . We denote its Ellis semigroup here simply by E.
Let e ∈ E be a minimal idempotent and recall that G = eEe is a group. Pick
x0 ∈ e(X). Applying Lemma 5.2 to the space e(X) and the group G = G, we get

NG(StabG(x0))/(StabG(x0)) ∼= CSe(X)
(G).

Definition 5.4. Let (X,σ, T ) be minimal and e ∈ E be a minimal idempotent in
its Ellis semigroup. The virtual automorphism group V (X) of (X,σ) is defined to
be CSe(X)

(G).

While this definition depends on the choice of the minimal idempotent e it does
so only up to isomorphism, as different choices of idempotents lead to isomorphic
groups.

We remark that the restriction map

Aut(X) 3 Φ 7→ Φ|e(X) ∈ CSe(X)
(G)

is well-defined, as automorphisms commute with the elements of E(X). Further-
more, if e(X) is dense in X then this restriction map is an injective group homo-
morphism, as automorphisms are continuous. A condition guaranteeing that e(X)
is dense in X is point distality of (X,σ, T ), as minimal idempotents fix distal points.
So for a point distal minimal system (X,σ, T ), Aut(X) is a subgroup of V (X).

Definition 5.5. The minimal dynamical system (X,σ, T ) is called semi-regular
if the restriction map Φ 7→ Φ|e(X) is an isomorphism between the automorphism
group Aut(X) and the virtual automorphism group V (X).

Note that our definition is slightly different to Auslander and Glasner’s, who
simply require that the map Aut(X) → V (X) be onto. However for point distal
systems, and the systems we study here are point distal, the definitions coincide.

5.2.2. Unique singular fibre systems. We investigate the virtual automorphism group
V (X) for minimal systems which have an equicontinuous factor with a unique orbit
of singular points. Recall the definition (3.2) of T as the subsemigroup of elements
of Efib which act trivially on regular fibres and that it restriction Ty0 to π−1(y0)
is faithful. Recall the notation Gfib = eEfibe.
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Lemma 5.6. Let (X,σ, T ) be a minimal unique singular orbit system. Let y0 be
a singular point in its maximal equicontinuous factor and x0 ∈ eπ−1(y0). If eTy0e
acts effectively3 on eπ−1(y0), then

NG(StabG(x0)) = NGfib(StabGfib(x0))× T.

Proof. By Theorem 3.6 Efib contains CovT as defined in (3.3) and therefore

(5.3) StabG(x0) ⊃ {f̃ ∈ eCovT e : f̃(y0)(x0) = x0}.

Let h ∈ NG(StabG(x0)). Then f(h(x0)) = h(x0) for all f ∈ StabG(x0). Using

y := π̃(h) + y0 this means that f̃(y)(h(x0)) = h(x0). Suppose that y − y0 /∈ T ⊂ Y
(T seen as a subgroup of the maximal equicontinuous factor Y ). Since eTy0e acts
effectively there is γ ∈ eTy0e such that Φyy0(γ)(h(x0)) 6= h(x0). By (5.3) there exists

f ∈ StabG(x0) such that f̃(y) = Φyy0(γ). For this element we have f(h(x0)) =
Φyy0(γ)(h(x0)) 6= h(x0). This is a contradiction and thus all h ∈ NG(StabG(x0))
must satisfy π̃(h) ∈ T . Clearly σ ∈ NG(StabG(x0)) and so the above shows that
the exact sequence Gfib ↪→ G � Y restricts to the exact sequence

NGfib(StabGfib(x0)) ↪→ NG(StabG(x0)) � T.

We can lift the subgroup T ⊆ Y with the lift s : T → E given by s(t) = σt to see
that NG(StabG(x0)) is a semi-direct product, which is in fact direct, as σt commutes
with E, since T is abelian. �

Lemma 5.7. Let (X,σ, T ) be a minimal system with equicontinuous factor π :
X → Y . Let y0 ∈ Y , x0 ∈ eπ−1(y0) where e is a minimal idempotent of E(X). We
have

NGfib(StabGfib(x0)) ∼= CSeπ−1(y0)
(Gπ).

Proof. Gfib is a subgroup of eCove =
∏
y∈Y0

eEfiby e where Y0 ⊂ Y contains exactly
one representative for each orbit and we suppose that y0 ∈ Y0. Thus eCove has the
form G1×G2 with G1 = Gπ = eEfiby0 e and the projection p1 is surjective. We thus
can apply Lemma 5.3 and then Lemma 5.2 to see that

NGfib(StabGfib(x0)) ∼= NeEfiby0
e(StabeEfiby0

e(x0)) ∼= CSeπ−1(y0)
(Gπ).

�

Corollary 5.8. Let (X,σ) be a minimal unique singular orbit system. Let y0 be a
singular point of its maximal equicontinuous factor. If eTy0e acts effectively then
the virtual automorphism group is given by

V (X) ∼= CSeπ−1(y0)
(Gπ)× T.

Proof. Combine Lemmata 5.6 and 5.7. �

We provide a criterion for effectiveness of the action of eTy0e.

Lemma 5.9. Let X be a set and Γ be a non-trivial normal subgroup of a subgroup
G ⊆ SX which acts transitively on X. Then Γ acts effectively on X.

3For any x ∈ eπ−1(y0) there exists γ ∈ eTy0e such that γ(x) 6= x.
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Proof. Let FΓ = {a ∈ X : Γ(a) = {a}}. If h ∈ NSX (Γ) then for a ∈ FΓ

Γh(a) = {γh(a) : γ ∈ Γ} = {hγ′(a) : γ′ ∈ Γ} = {h(a)},
so that h(a) ∈ FΓ. By assumption, G lies in NSX (Γ), so that G(FΓ) ⊆ FΓ. Since
G is transitive we have either FΓ = X or FΓ = ∅. In the first case, Γ can consist
only of the identity, and in the second Γ acts effectively. �

We thus see that eTy0e acts effectively if it is non-trivial and eEfiby0 e acts transi-

tively on eπ−1(y0).

5.2.3. Bijective substitutions. We now focus again on the dynamical systems of
primitive aperiodic bijective substitutions. Recall that in this case we can iden-
tify eπ−1(0), the image of the singular fibre at 0 ∈ Z` under the chosen minimal
idempotent e ∈ E(Xθ,Z+), with the alphabet A using the map ev0

0. Under this

isomorphism Gπ = eEfib0 e ∼= Gθ and eT0e ∼= Γθ. Since θ is assumed primitive, the
structure group Gθ must act transitively on A. Aperiodicity of the substitution
implies that Iθ must consist of at least 2 elements. Hence Γθ is non-trivial, so by
Lemma 5.9, Γθ acts effectively on A.

Corollary 5.10. Let θ be a primitive aperiodic bijective substitution. The virtual
automorphism group is given by

V (Xθ) ∼= CSA(Gθ)× Z.

Proof. All hypothesis of Corollary 5.8 are satisfied. �

Corollary 5.11. The dynamical system of a primitive aperiodic bijective substitu-
tion is semi-regular.

Proof. We see from Theorems 5.1 and Corollary 5.10 that the virtual automorphism
group is isomorphic to the automorphism group. Furthermore, their fibre preserving
parts are isomorphic. Since these are finite groups and the automorphism group is
included in the virtual automorphism group, the map from Definition 5.5 must be
an isomorphism. �

Since the virtual automorphism group V (Xθ) can be expressed by means of
the Ellis semigroup E(Xθ), as we saw above, Corollary 5.11 describes the relation

between E(Xθ) and Aut(Xθ). Note that no non-trivial element of Autfib(Xθ) can
be an element of Efib(Xθ) as Efib(Xθ)\{Id} is a proper ideal and therefore cannot
contain an invertible element.

6. Examples

We provide here a list of examples of Ellis semigroups of dynamical systems
defined by a primitive, aperiodic, bijective substitution θ of constant length ` over
a finite alphabet A. For the benefit of the reader we summarise results and recall
calculation of E(Xθ).
E(Xθ) is the disjoint union of its kernel M(Xθ) with the acting group Z. It

depends only on the R-set Iθ ⊂ SA, which can easily be computed as in Lemma
4.5. But to describe its associated Rees matrix form we make a choice of minimal
idempotent e ∈ E(Xθ,Z+) which amounts to a choice of element g0 ∈ Iθ. Different
choices for e lead to isomorphic expressions, and, as far as the fibre preserving parts
are concerned, even homeomorphic ones.
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The first result is that the structural semigroup Mfib
0 (Xθ) is isomorphic to the

normalised matrix semigroup

Mfib
0 (Xθ) ∼= M [Gθ; Iθ, {±};A]

where the structure group Gθ is the group generated by Iθ, the + entries of A
equal 1, and the − entries of A equal g−1

0 g, g ∈ Iθ. They generate a subgroup of
Gθ which we call the little structure group Γθ. Everything is finite at this level and
so topologically trivial.

Next, the fibre preserving part Mfib(Xθ) is topologically isomorphic the nor-
malised matrix semigroup

Mfib(Xθ) ∼= M [Gfibθ ; Iθ, {±};A]

where Iθ is the same as above. The quotient Gθ/Γθ of Gθ by the normal completion
Γθ of the little structure group must be a cyclic group, its order h is the generalised
height of the substitution. The structure group of Mfib(Xθ) is Z/hZ-graded and
its subgroup of elements of degree 0 is

Gfibθ 0
∼= Γ

Z`/Z
θ .

If Gθ contains an element of order h then

Gfibθ
∼= Γ

Z`/Z
θ o Z/hZ,

a semidirect product whose explicit expression depends on the choice of an element

f of Gfibθ of degree 1. The sandwich matrix A is the same as that for Mfib
0 (Xθ),

because we view Γθ as a subgroup of Γ
Z`/Z
θ : an element g ∈ Γθ maps to the function

of Γ
Z`/Z
θ which takes value g on [0] and 1 otherwise. If generalised height is trivial

then we can rewrite the above

Mfib(Xθ) ∼=Mfib
0 (Xθ)×

∏
[z]∈Z`/Z
[z]6=[0]

Gθ

again a topological isomorphism.
Finally, the kernel M(Xθ) of the full Ellis semigroup has Rees-matrix form

M(Xθ) ∼= M [Gθ; Iθ, {±};A],

where Gθ is an extension of the equicontinuous factor Z` by Gfibθ . This isomorphism

is only algebraic. Again Iθ and the sandwich matrix A are the same, as Gfibθ is a
subgroup of Gθ. The extension is algebraically split if the height is equal to the
classical height h = hcl of the substitution. In this case

Gθ ∼= Gfibθ o Z`,

algebraically.

Besides the details for the Ellis semigroup we provide below also CA(Gθ), the cen-

traliser ofGθ in the group of permutations of the alphabet, which is also Autfib(Xθ).
For arbitrary size of the alphabet we can say the following. There is no aperiodic

bijective substitution with |Iθ| = 1. If Iθ contains two elements then Γθ must be a
cyclic subgroup of Gθ.
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6.1. Two-letter alphabet. To be compatible with primitivity and aperiodicity we
must have Iθ = S2. Hence Gθ = S2 = Z/2Z and Γθ = Γθ = S2. Thus all primitive,
aperiodic, bijective substitutions on a two-letter alphabet have the same structural

semigroup, namely M [S2;S2, {±};A]. The sandwich matrix is A =

(
1 1
1 ω

)
where

ω interchanges a with b. The generalised height is trivial for these substitutions.
We thus have

Gfibθ
∼= S

Z`/Z
2 , and Gθ ∼= S

Z`/Z
2 o Z`

where ` is the length of the substitution.
M [S2;S2; {±};A] is perhaps the simplest non-orthodox semigroup. Since S2 is

abelian, we have CA(Gθ) = Gθ. Thus all these substitutions have Autfib(Xθ) = S2,
generated by the map ω. The simplest example of this type is the (simplified)
Thue-Morse substitution, θ(a) = abba, θ(b) = baab, where the above result has
been obtained by Marcy Barge in a direct calculation [6].

6.2. Three-letter alphabet. If Gθ is a subgroup of S2 ⊂ S3 then we reproduce
the above results for the semigroup, but these can never be realised by a primitive
substitution on three letters, as one letter would stay fixed. So we consider the two
possible other cases, Gθ = S3 and Gθ = A3

∼= Z/3Z. For Gθ = S3, we give below
examples where Γθ ∼= Z/2Z or Γθ ∼= Z/3Z. In the first case, Γθ ∼= Z/2Z has normal
completion Gθ and so the height is trivial. In the second case Γθ ∼= Z/3Z is normal
in Gθ and the height equal to 2. The example we provide for this case has classical
height 1. We also give an example where Gθ ∼= Z/3Z, which, for aperiodic θ, forces
Γθ ∼= Z/3Z so that we have again trivial height.

(1) Consider the substitution θ

a
b
c
7→

a
b
c

b
a
c

c
b
a

c
a
b

a
b
c

Then it can be verified that Iθ =


ba
c

 ,

bc
a

 which generates Gθ = S3.

The structural semigroup is M [S3; Iθ, {±};A], whose normalised sandwich

matrix A =

(
1 1
1 ω

)
, where ω exchanges b with c. One finds Γθ =1,

cb
a

 ∼= Z/2Z, which is not normal in S3, and Γθ = Gθ = S3. Thus

θ has trivial generalised height. Hence

Gfibθ
∼= S

Z5/Z
3 , and Gθ ∼= S

Z5/Z
3 o Z5

Also CA(Gθ) = Autfib(Xθ) is trivial.
(2) Consider the substitution θ

a
b
c
7→

a
b
c

b
a
c

a
b
c

c
b
a

a
b
c

a
c
b

a
b
c
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It has θ0 = θ2 = θ4 = θ6 = 1 and the other three are the transpositions

of S3, θ1 =

ba
c

, θ3 =

cb
a

, and θ5 =

ac
b

. Hence Iθ = {θ1, θ3, θ5} and

Gθ = S3. The structural semigroup is M [S3; Iθ, {±};A] has normalised

sandwich matrix

(
1 1 1
1 ω ω2

)
, where ω =

bc
a

, a cyclic permutation.

Every element in Γθ is an even permutation, thus Γθ = Γθ = A3. It
follows that Gθ/Γθ ∼= Z/2Z and θ has generalised height equal to 2 and
therefore

Gfibθ 0
∼= A3

Z7/Z, Gfibθ
∼= A3

Z7/Z o Z/2Z,

as θ1 ∈ Iθ has order 2.
Note that the substitution has trivial classical height as any fixed point

must contain the word aa. We do therefore not know whether the extension

A3
Z7/ZoZ/2Z ↪→ Gθ

π̃
� Z7 defining the structure group Gθ ofM(Xθ) splits.

Again, CA(Gθ) = Autfib(Xθ) is trivial.
This example has a natural generalisation to alphabets of any size s with

Gθ = Ss and Γθ = As, the alternating group on s elements.
(3) Consider the substitution θ

a abc
b 7→ bca
c cab

whose third power is simplified. We find Iθ = {1, ω, ω2} ∼= Z/3Z where

ω =

bc
a

 is a cyclic permutation. It follows that Gθ = Γθ = Γθ ∼= Z/3Z.

The structural semigroup is M [Z/3Z; Iθ, {±};A] where A =

(
1 1 1
1 ω ω2

)
.

Gfibθ
∼= (Z/3Z)Z3/Z, and Gθ ∼= (Z/3Z)Z3/Z o Z3.

Finally, CA(Gθ) = Autfib(Xθ) ∼= Z/3Z, generated by ω. There is an obvi-
ous generalisation of this example to alphabets of any size s ≥ 2, the case
s = 2 corresponding again to the Thue-Morse substitution.

6.3. Four-letter alphabet. Our last example is related to the dihedral group D4.
Consider the substitution θ of length 7

a abadcba
b 7→ badcbab
c cdcbadc
d dcbadcd

which has classical height 2. If we identify the letters with the edges of a square
whose center is 0 in such a way that a corresponds to the lower right corner and
we order the edges counterclockwise, then θ1 and θ3 amount to the reflection along
the x-axis and the y-axis, resp., while θ2 and θ4 amount to the reflection along
the diagonal with slope −1 and +1, resp.. Finally θ5 = θ1 and θ6 = θ0 = 1.
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Thus Iθ = {θ1, ρ} where ρ = θ1θ2 is the rotation by π
2 to the right. It follows

that Gθ = D4 is the dihedral group of order 4 and that Γθ the group of order 2
generated by the reflection θ2. Its normal completion is thus the group generated by
the reflections θ2 and θ4, which commute, so Γθ ∼= Z/2Z×Z/2Z showing that height
is equal to the classical height, namely 2. Moreover, the element θ1 of Iθ has order

2. The structural semigroup is Mfib
0 (Xθ) = M [D4; Iθ, {±};A] with A =

(
1 1
1 θ4

)
.

Furthermore,

Gfibθ
∼= (Z/2Z× Z/2Z)Z7/Z o Z/2Z, and Gθ ∼= (Z/2Z× Z/2Z)Z7/Z o Z/2Z o Z7

Finally CA(Gθ) = Autfib(Xθ) = {1, ρ2}.
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