THE ELLIS SEMIGROUP OF BIJECTIVE SUBSTITUTIONS

JOHANNES KELLENDONK AND REEM YASSAWI

ABSTRACT. For topological dynamical systems (X,T,c) with abelian group
T which admit an equicontinuous factor = : (X,T,0) — (Y,T,) the Ellis
semigroup E(X) is an extension of Y by its subsemigroup E/%®(X) of elements
which preserve the fibres of 7. We establish methods to compute Ef?(X) and
use them to determine the Ellis semigroup of dynamical systems arising from
primitive aperiodic bijective substitutions. As an application we show that for
these substitution shifts, the virtual automorphism group is isomorphic to the
classical automorphism group.

1. INTRODUCTION

Consider (X, T, o), the action ¢ of an abelian group (or semigroup) T by home-
omorphisms on a compact metrisable space X. The Ellis semigroup E(X) of
(X,T,0) is the compactification of the group action in the topology of pointwise
convergence on X . The study of its topological and algebraic structure, which was
initiated by Ellis [12], reveals dynamical properties of (X, T, o) and is consequently
an area of active study.

One topological property which has recently incited a lot of interest is tameness:
(X,T,0) is tame if E(X) is the sequential compactification of the action [20, 16],
that is, each element of E(X) is a limit of a sequence (as opposed to a limit of a net,
or generalised sequence) of homeomorphisms coming from the group action. This
can be expressed purely using cardinality: F(X) is tame if and only if its cardinality
is at most that of the continuum [16]. Tameness implies, for instance, the following
dynamical property [20, 17, 14]: If a compact metrisable minimal system which
admits an invariant measure is tame, then it is a p-almost one to one extension of
its maximal equicontinuous factor. Here p is the unique ergodic probability measure
on the maximal equicontinuous factor of (X, T, o), and p-almost one-to-one means
that the set of points in the maximal equicontinuous factor which have a unique
pre-image under the factor map has full g-measure. As soon as all fibres of the
maximal equicontinuous factor map contain more than one point, the system is
thus not tame.

Systematic investigations focussing on the algebraic structure of E(X) are to our
knowledge, restricted to the question of when F(X) is a group, when it has a single
minimal left ideal, or, in the case of T = Z™, when its adherence subsemigroup is
left simple. E(X) is a group if and only if (X, T, o) is distal (proximality is trivial),
E(X) has a single minimal left ideal if and only if proximality is transitive (see, for

2010 Mathematics Subject Classification. 37B15, 54H20, 20M10.

J.K. would like to thank Marcy Barge for discussions about the Ellis semigroup of substitutional
systems. Both authors thank Eli Glasner and Olivier Mathieu for their useful comments. This
project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 648132.

1



2 JOHANNES KELLENDONK AND REEM YASSAWI

instance, [3]), and the adherence subsemigroup is left simple if and only if forward
proximality implies forward asymptoticity [8]. Recently, a detailed computation
of the Ellis semigroups of the dynamical systems arising from almost canonical
projection method tilings [1, 2] has exhibited another algebraic structure which
seems worthwhile investigating, namely the semigroups are all disjoint unions of
groups. Semigroups which are disjoint unions of groups are precisely those which
are completely reqular, which means that every element admits a generalised inverse
with which it commutes. Ellis semigroups associated to almost canonical projection
method tilings are tame [1].

For the most part, good descriptions of Ellis semigroups are only currently avail-
able for tame systems. The present paper arose from a desire to obtain explicit
algebraic descriptions of Ellis semigroups for a class of dynamical systems which
are not tame. We study the Ellis semigroup of systems (Xy,Z,0) arising from
bijective substitutions 6. The fibres of the maximal equicontinuous factor map of
such systems are never singletons and so the resulting semigroup is not tame. They
also enjoy two properties which we harness. The first is that for these Z-actions,
forward and backward proximality are non-trivial and equal to forward and back-
ward asymptoticity. We describe systems (X, Z, o) with this property in Section
2.6, and show that their Ellis group E(X) is the disjoint union of the acting group
Z with its kernel M(X), that is, the smallest bilateral ideal of E(X); in particular,
E(X) is completely regular. This reduces the task to the study of M (X).

The kernel M(X) of a compact sub-semigroup of XX is always completely simple
and therefore can be described by the Rees-Suskevitch theorem and its topological
extensions (Theorems 2.1, 2.4, 2.5). This theorem characterises a completely simple
semigroup as a matriz semigroup M[G; I, A; A], where G is the so-called structure
group, where I and A index the right and left ideals respectively, and where A is a
matrix through which the semigroup operation is defined. Its entries are elements
of G which specify the idempotents.

The second property that bijective substitution systems enjoy is that they are
unique singular orbit systems. This means that they have exactly one orbit of
singular fibres (fibres of the factor map on which proximality is non-trivial) over an
equicontinuous factor. We study these systems in Section 3 in a way which can be
summarised as follows. Given an equicontinuous factor 7 : (X,T,0) — (Y, T, ) we
obtain a short exact sequence of right-topological semigroups for the Ellis semigroup
which restricts to a short exact sequence of its kernel

(1.1) Bf(X) < E(X) 5 EY)=Y and MIP(X) < M(X) 5 M(Y) =Y.

Here E/%*(X) is the subsemigroup of functions which preserve the fibres of the factor
map 7, and M7?(X) is the kernel of Ef®(X). The two matrix semigroups asso-
ciated to MP?(X) and M(X) via the Rees-Suskevitch theorem are related (when
properly normalised): they share the same I, A and A, and their corresponding
structure groups form an exact sequence

(1.2) gf“’<—>gf»Y,

derived from the above (1.1). Finally we make one further reduction: we restrict
M'®(X) to a singular fibre and obtain again a completely simple semigroup to
which we can apply the Rees-Suskevitch theorem. If Y contains a single T-orbit,
say that of yo, such that 7=!(yo) is singular, then the restriction of Mf®(X) to
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7 (y0), denoted M/®(X), has a matrix form which shares the same I, A and A
as the other two matrix semigroups above. Furthermore, we show in Corollary 3.14
that, if the singular fibres are finite and the idempotents generate M{éb(X ), then

the structure group G/% equals the infinite Cartesian product Gr/”, where G,
is the structure group of M{;éb(X ), and Y/T is the space of T-orbits of Y. We
thus obtain a description of M(X) through the finite semigroup Mg:gb(X ) and the
extension (1.2). We prove that the extension is algebraically split so that G is a
semidirect product of G/* with Y. While M/%*(X) is topologically isomorphic its
matrix semigroup representation, M(X) is only algebraically isomorphic to it.

The dynamical system (Xp,Z,0) associated to a primitive aperiodic bijective
substitution of length ¢ has a natural equicontinuous factor, namely the adding
machine (Z, (+1)), and only the orbit of 0 € Z, has singular fibres. We use the
hierarchical symmetry defined by the substitution 6 to compute the matrix form of
MI™®(X4) in Theorem 4.6,

E{"(Xo)\{Id} = MJ™(Xy) 2 M[Gy; Ip, A; A].

M|[Gy; Ip, A; A] is a finite semigroup, to which we refer also as the structural semi-
group of the substitution. The structure group Gy has already appeared in work
by Lemanczyk and Mentzen in [22] who identify it as the object whose centraliser
completely encodes the essential centraliser of (Xg,0).

Provided that the smallest normal subgroup of Gy which contains the group
generated by the entries of A, which we denote by Ty, is all of Gy, Theorem 4.12
gives a complete description of E(Xy) from Egib(Xg). In particular, E(Xp)\Z is
completely simple and there is a semigroup isomorphism

(1.3) E(Xo)\Z = M(Xg) = M[G2" x Zy; Iy, A; A.

On the way to achieving this we also show that E/%*(Xj) is topologically isomorphic
to
ET(Xy) = (M[Go; Ig, A; Aju{Id}) x [] G,

[2]€Zy /2
[z]#[0]

and this isomorphism makes clear where the non-tameness comes from.

In general, T'y can be a proper subgroup of Gy, but the quotient group Gy /Ty is
always a cyclic group. We call its order h the generalised height of the substitution.
h is at least as large as the classical height of a constant length substitution, and we
give in Section 6 examples where it is strictly larger. It is related to the topological
spectrum of the dynamical system which is given by the action of Z on a minimal
left ideal of E(Xy), and E(Xy) factors onto Z/hZ. In other words, E(Xy) is a
graded semigroup and its calculation can be reduced to its elements of degree 0. In
the case of nontrivial generalised height our result is Theorem 4.22. Here, with the
assumption that the generalised height equals the classical height, we are able to
describe E(Xy) algebraically in a similar way as in the trivial height case, but with
the structure group Gy replaced with 'y. However, when the generalised height
is strictly larger than the classical height, the extension problem (1.2) remains
unsolved.

In Section 5, we apply our machinery to partly answer a recent question of
Auslander and Glasner in [4]. They define the notion of a semi-regular dynamical
system, and ask whether a minimal, point distal shift which is not distal can be
semi-regular. They show that the Thue-Morse shift is semi-regular. We extend
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their result, by showing in Corollary 5.11, that the shift generated by a primitive
aperiodic bijective substitution is semi-regular. Implicitly, we relate the structure
group Gy to the virtual automorphism group that Auslander and Glasner define.

Our work is related to recent work of Staynova [27], in which she computes the
minimal idempotents of the Ellis semigroup for dynamical systems of bijective sub-
stitutions @ that are an Al extension of their maximal equicontinuous factor. In
other words, (Xg,0) is an isometric extension, via f : X9 — X, of a constant
length substitution shift (X4, o), which is in turn an almost one-to-one exten-
sion, via Tpmas @ X¢ — Xmag, of its maximal equicontinuous factor. Martin [24]
characterises the bijective substitutions that are Al extensions of their maximal
equicontinuous factor using a combinatorial property on the set of two-letter words
allowed for 6, namely that they are partitioned into sets according to what indices
they appear at, as we scan all fixed points. Staynova uses the functoriality of the
Ellis semigroup construction, namely that a map between dynamical systems in-
duces a semigroup morphism between their Ellis semigroups, and the fact that the
Ellis semigroup of an equicontinuous system is a group, thus having exactly one
idempotent. Using Martin’s combinatorial condition, she first computes the preim-
ages of that idempotent in E(X,). Apart from the identity map, all pre-images
are minimal idempotents and live in the unique minimal left ideal. She then pulls
this information up through the factor map f to find that each of these minimal
idempotents has two preimages, one for each minimal left ideal in E(Xjp).

Our work goes beyond the results of Staynova in several respects. First, our
techniques apply to all bijective substitutions. Indeed it is easy to define substitu-
tions that do not satisfy Martin’s criterion, so that their dynamical systems are not
AT extensions of their maximal equicontinuous factor (see Example 4.11). Second,
we do not only determine the idempotents, but the complete algebraic structure of
E(Xy), at least if generalised height is not larger than classical height.

This paper is organised as follows. In Section 2 we provide the necessary back-
ground on semigroups and the Ellis semigroup of a dynamical system, and study Z-
actions for which forward and backward proximality implies forward and backward
asymptoticity, respectively. In Section 3 we study the Ellis semigroup for dynamical
systems which have a single orbit of singular fibres under an equicontinuous factor
map. In Section 4, we study in detail the Ellis semigroup of a bijective substitution
dynamical system, and give an algorithm that computes its structural semigroup.
In Section 5 we apply our results to investigate the virtual automorphism group of
bijective substitution shifts. We end in Section 6 with some examples.

2. PRELIMINARIES

The literature on the algebraic aspects of semigroups is vast and, although our
work is partly based on now classical results from the the forties we provide some
background to the reader, who may not be familiar with the basic material. This
can all be found in [19]. We then recall the basic definitions and results on the Ellis
semigroup of topological dynamical systems. These can mostly be found in [3] or
[18].

2.1. Semigroups, basic algebraic notions. A semigroup is a set S with an asso-
ciative binary operation, which we denote multiplicatively. Some of the semigroups
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in this paper have an identity element, but some do not. However they will never
have a 0 element.

A normal inverse to s € S is an element ¢ € S such that sts = s, tst =t and
st =ts. A general element in a general semigroup need not admit a normal inverse,
but if it exists, it is unique. We may therefore denote it by s~'. A semigroup
is called completely regular if every element admits a normal inverse. Completely
regular semigroups have been studied in great detail [26]. They are exactly the
semigroups which may be written as disjoint unions of groups, i.e. S = | |, G; such
that multiplication restricted to G; defines a group structure [26, Theorem I1.1.4].
The normal inverse of s € G; is then its group inverse in G;.

Of particular importance in the analysis of a semigroup are its idempotents and
its ideals. An idempotent of a semigroup S is an element p € S satisfying pp = p.
The set of idempotents of S is partially ordered via p < ¢ if p = pg = gp. An
idempotent is called minimal if it is minimal w.r.t. the above order. In general, we
cannot expect to have minimal idempotents.

A (left, right, or bilateral) ideal of a semigroup S is a nonempty subset I C S
satisfying ST C I, IS C I, or STUIS C I respectively. The different kind of ideals
will play different roles below. When we simply say ideal we always mean bilateral
ideal. A semigroup is called simple if it does not have any proper ideal, and left
simple if it does not have any proper left ideal. Note that a left simple semigroup is
simple. (Left, right, or bilateral) ideals are ordered by inclusion. A minimal (left,
right, or bilateral) ideal is a minimal element w.r.t. this order, that is, a (left, right,
or bilateral) ideal is minimal if it does not properly contain another (left, right,
or bilateral) ideal. In general, we cannot expect to have minimal ideals, but their
existence in our specific context will be guaranteed for by compactness, see below.

Whereas the intersection of two left ideals may be empty, this is not the case
for the intersection of two bilateral ideals, or the intersection of a left ideal with a
bilateral ideal. Therefore the intersection of all bilateral ideals of a semigroup S is
either the unique minimal ideal of S, also called the kernel of S, or the intersection
is empty, in which case S does not admit a minimal ideal. The kernel of a semigroup
without zero element is always simple [19].

Related to left and right ideals are the so-called Green’s equivalence relations.
Two elements x,y € S are L-related if they generate the same left ideal, that is,
there are s,s’ € S such that x = sy and y = s'z. Likewise z,y € S are R-related
if they generate the same right ideal. The intersection of the L-relation with the
R-relation is called the H-relation. The relation generated by the L-relation and
the R-relation, that is the join of £ and R, is called the D-relation. The relations
L and R commute, so x and y are D-related if there is a z such that = and z are £-
related and z and y are R-related. Two results are of importance for what follows:
First, an H-class of S which contains an idempotent is a subgroup of S whose
neutral element is the idempotent [19, Corollary 2.26], and second, two H-classes
containing idempotents and which belong to a common D-class must be isomorphic
as groups [19, Proposition 2.3.6].

2.2. Simple semigroups and the Rees matrix form. Let G be a group, let
and A be non-empty sets, and let A = (axi)ren,icr be a A x I matrix with entries
from G. Then the matriz semigroup M[G;I,A; A] is the set I x G x A together



6 JOHANNES KELLENDONK AND REEM YASSAWI

with the multiplication

(ia g, )‘)(]7 h7 :u) = (Z7 ga}\jha /u‘)

The matrix A is called the sandwich matriz and the group G is called the structure
group.

It is an easy exercise to determine the idempotents and the left and the right
ideals of M[G; 1, A; A]. Indeed, an idempotent is of the form

(i7 a’;;’ )\)7

the left ideals are the sets I x G x A’, A’ C A, and the right ideals are I’ x G X A,
I’ C I. In particular, a completely simple semigroup has minimal left and minimal
right ideals, namely those for which A’ or I’ contain a single element. These minimal
left and right ideals are also the £ and the R classes, and so the H-classes are of
the form {i} x G x {A}. {i} x G x {A} is a subsemigroup of M[G;I, A; A] which
is a group. The identity element of this group is the idempotent (i,ay,\). Tt
is isomorphic to G via the isomorphism (i,g,A) — ax;g. The normal inverse of
(i,g,) is (i,a}lg’la;il, ). In particular, a matrix semigroup as defined above is
completely regular.

A completely simple semigroup is a simple semigroup which has minimal idem-
potents. We have the following characterisation of completely simple semigroups.*

Theorem 2.1 (Rees-Suskevitch). A semigroup is completely simple if and only if
it is isomorphic to a matriz semigroup M|G; I, A; A] for some group G.

A proof of this theorem can be found in almost any textbook on semigroups.
Since this result will be important in what follows we give a partial sketch of how
to construct a Rees matrix from for a completely simple semigroup S. Proofs can
be found in [19]. S can be partitioned into its R-classes, which we index by a set I.
It can also be partitioned into its £-classes, which we index by A. These partitions
intersect yielding a partition into H-classes. It can be shown that if S is simple and
contains an idempotent, then it consists of a single D-class and that all its H-classes
contain an idempotent. In particular, S is a disjoint union of groups which are all
isomorphic. Moreover, each R-class is a minimal right ideal and each L-class is a
minimal left ideal so that each H-class is the intersection of a minimal right with
a minimal left ideal. Up to here, everything is canonical. But now we choose a
minimal right ideal R;, and a minimal left ideal L, and set

G .= Hi())\o
where we use the notation H;» = R; N Ly. As mentioned above, all other H-classes
are isomorphic to G, and indeed, given any r; € H;y, and g\ € H;
(2.1) Hio)\o DX =TT € Hi)\o
(22) Hio)\o DT Iy € Hio)\
are bijections which are group isomorphisms if r; and g, are idempotents. Now
the isomorphism between G and the other H;, will follow from the fact that £

commutes with R. Taking into account these choices define the matrix A = (ay;)
through

Axi = gAT-

1Recall that we excluded the case that S has a O-element. For semigroups with 0-element there
is an analogous but slightly different characterisation [19].
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Then a direct calculation shows that
M(G;1,A;A) 3 (3,9, \) = 1iggx € S

yields the desired isomorphism.

We must ask how the Rees matrix form of a completely simple semigroup depends
on the choices. The first choice is that of the right and left ideals indexed iy and Ag,
it defines the structure group G' = H;,»,. A different choice will lead to a different
but isomorphic structure group. An isomorphism can always be constructed using
(2.1,2.2). The second choice is that of the elements r; and ¢,. It affects the sandwich
matrix. Indeed, one has the freedom to multiply any row of A from the left and,
independently, any column of A from the right by an element of G to obtain a
sandwich matrix which defines an isomorphic semigroup. It is therefore possible to
normalise A in such a way that one of its rows and one of its columns contains only
the identity element of G. More precisely, having chosen the right and left ideals
indexed by iy and A9 we can always bring A into its so-called normalised form by
taking r; to be the unique idempotent of H;», and ¢ to be the unique idempotent
of Hioa [19, Theorem 3.4.2]. Up to the choice of ig and Ao this normalised Rees
matrix form is then unique. Since any pair (i,\) € I X A determines a unique
idempotent of S we can also formulate this as follows: once we have chosen an
idempotent of S, typically denoted e, we obtain a unique normalised Rees matrix
form for S. To be precise we call this the normalised Rees matrix form for S w.r.t.
e. In what follows the use of e refers to this chosen minimal idempotent.

Given a normalised matrix semigroup M (G; I, A; A) w.r.t. e, we call the subgroup
I" of G generated by the coefficients ay; of A the little structure group.

Lemma 2.2. Consider a normalised matriz semigroup M(G;1,A; A) w.r.t. e =
(i0,1,X0). The subsemigroup of M (G; I, A; A) which is generated by the idempotents
is equal to M(T;1,A; A).
Proof. Let K be the subsemigroup of M(G;I,A; A) which is generated by the
idempotents. By definition of the little structure group, (i,G,\) N K C (i,T, ).
Normalisation implies ay; = 1 provided ¢ = ig or A = A\g. Given a); we know that
(i,ay;', ) is an idempotent. Hence

(i07 ANy )\0> = (i07 1) )‘)(27 a;ilv A)(Z7 1a )‘0) € (an Ga )‘0> NK.
This shows that (ig,I', Ao) C (40, G, Ao) N K. Hence also

(&, T, ) = (4,1, Xo) (40, ', Mo) (40, L, A) C (4, G, A) N K.

This shows that M (G;I,A; A)N K = M(T;1,A; A). O
2.2.1. Ezample. We consider a class of matrix semigroups M[G; 1, {£}; A] which
will play a major role later. For this family, GG is a finite group with neutral element
1 and I C G is a subset which generates G. Fix go € I. Let A = {4, —} be a set

of two elements. Define the A x I matrix A = (ax;)x

(2.3) g =1 a—g=gog '

Then M|[G;I,{%}; A] has 2|I||G| elements of which 2|I| are idempotents. Note that
MIG; I,{£}; A] is normalised w.r.t. the idempotent e = (go, 1, +).

Lemma 2.3. With the notation above, the little structure group of M[G; I, {%}; A]
is the group generated by gh™', g,h € I.

Proof. This follows directly from gh™! = a:;a_h. O
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2.3. Compact semigroups. A topological semigroup is a semigroup S equipped
with a topology in which the multiplication map S x S — S is (jointly) continuous.
A semigroup (equipped with a topology) is called right-topological if, for any s €
S right multiplication ps : S — S, ps(t) := ts is continuous. Note that this is
equivalent to multiplication S x S — S being continuous in the left variable which
is why the term left-topological is also sometimes employed. We follow here the
terminology of [18]. A topological semigroup is right-topological and left-topological
(with the obvious definition), but the converse need not be true.

Let X be a topological space. The set F'(X) of functions X — X with the
topology of pointwise convergence is the same as the infinite Cartesian product XX
with product topology. It is perhaps the simplest example of a right-topological
semigroup, the semigroup product being composition of functions. If X is compact
then F(X) is compact. Only if X is discrete is F'(X) a topological semigroup.

Let 7 : X — Y be a continuous surjection. We call the preimage 7~ !(y) the
n-fibre of y. Let Ff®(X) C F(X) be the subsemigroup of all functions X — X
which preserve the 7-fibres. Since fibres are closed subspaces of X, Ff®(X) is a
closed subsemigroup of F(X). We can view f € F/%*(X) as a function fonv,

(24) f: Y= f|7r*1(y)

which, evaluated at y is the restriction of f to 7 '(y), f(y)(z) = f(x) for z €
7 1(y). This identification f f yields a topological isomorphism, i.e. a homeo-
morphism which is also a semigroup isomorphism, between F7%(X) and the direct
product [], y F(n~(y)) where the semigroup multiplication in the latter space is
fifo(y) = fi(y) o f2(y) and we equip it with the product topology, F(71(y)) still
carrying the topology of pointwise convergence. Recall that F(7~!(y)) is a topo-
logical semigroup if the fibre of y is finite. By definition of the product topology we
therefore get that [] .y F(nm=(y)) is a topological semigroup provided all fibres
are finite.

For compact semigroups one has the following results concerning their kernels
and corresponding Rees matrix form.

Theorem 2.4. Let S be a compact right-topological semigroup. Then S admits a
kernel M(S) which contains all minimal idempotents, so that M(S) is isomorphic
to a matrix semigroup. Furthermore, all minimal left ideals are compact and home-
omorphic, and two H-classes of M(S) which belong to the same minimal right ideal
are topologically isomorphic.

This theorem is discussed in [18, Corollary 2.6 and Theorem 2.11]. The essen-
tial input from the compact topology is the existence of an idempotent and the
continuity of the map (2.2). We mention that in general, minimal right ideals are
not closed, nor are H-classes closed, nor are two H-classes topologically isomorphic
which do not belong to the same minimal right ideal. M(S) is then not topologically
isomorphic to a matrix semigroup.

One consequence of Theorem 2.4 will be particularly important below, namely
that for any minimal idempotent p of a compact right-topological semigroup S, pSp
is a group. Indeed, the chain of inclusions

(2.5) pM(S)p C pSp = pSpp C pM(S)p.
shows that pSp is isomorphic to the structure group of the kernel M(S).
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If the multiplication of S is jointly continuous then the topological aspects of
Theorem 2.4 can be strengthened. We can equip the normalised Rees matrix form
M[G;I,A;A] (wrt. e = (ig,1,A0)) of M(S) with the following topology: We
identify G with H,,», = eSe, I with the set of idempotents of Ly,, A with the set
of idempotents of R;,, and we equip all these subsets of S with the relative topology,
and finally I x G x A with the product topology. Under the assumption that S is
a compact topological semigroup, we have that G is a compact topological group,
I and A compact subsets and the semigroup product on M[G;I,A; A] is jointly
continuous.

Theorem 2.5. Let S be a compact topological semigroup. Then M(S) is topologi-
cally isomorphic to the normalised matriz semigroup M[G; I, A; A).

A proof of this theorem can be found in [9, Theorem 3.21]. As now also the map
(2.1) is continuous, all H-classes of M (.S) are closed and topologically isomorphic.

2.4. Extensions of groups by completely simple semigroups. We now use
the above description of completely simple semigroups to study extensions

KsS5SyYy

where Y is a group with neutral element yg, S a semigroup, 7 a semigroup epimor-
phism and K the kernel of 7,

K={seS:nm(s)=yo}.

K is a subsemigroup of S which is closed if S and Y are right-topological and m
continuous.
If e € S is an idempotent then 7m(e) must be an idempotent, hence equal to yg so

that we obtain a restricted extension eKe < eSe 5 Y where T, is the restriction
of 7 to eSe. If moreover e is an idempotent in the kernel of S then by (2.5),eSe is
a group, as is eKe, so that the restricted extension is an extension of groups.

A semigroup S is regular if for any s € S there exists ¢ € S such that s = sts.
Clearly, any completely regular semigroup is regular.

Proposition 2.6. Consider an extension K — S Sy of a group Y by a com-
pletely simple semigroup K, where S is reqular. Then S is completely simple. If K
has normalised Rees matriz form M[G;1,A; A] w.r.t. an idempotent e then S has
normalised Rees matriz form M[G; I, A; A] w.r.t. e, where G = eSe is the extension

of Y by G = eKe determined by the exact sequence of groups eKe — eSe Zy.

Proof. We first show that S must be completely simple. Let M C S be an ideal.
Then M N K is an ideal of K. As K is simple, M N K = K. Thus M contains all
idempotents of S. Let s € S and ¢ € S such that s = sts. Then ts is an idempotent
and so we see that S C SK C SM C M. Therefore S is completely simple.

Let M[G; 1, A; A] be the normalised Rees matrix form of S w.r.t. e, in particular
G = eSe. Since K contains the subsemigroup generated by the idempotents of S, by
Lemma 2.2, the coefficients of A belong to G := eKe = ker .. Hence M[G; I, A; A]
is well-defined and, with e = (ip, 1, \g) and (ig, 1, Ao)(Z, g, A) (%0, 1, Ao) = (40,9, Xo)
we obtain

ﬂ’(iag7 )‘) = 7.[-(750797 )\0) = ﬂ-e(g)

so that K = Mlkerm,; I, A; A]. Since the normalised Rees matrix form w.r.t. e is
unique we see that I, A and A are completely determined by K. [
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We will apply Proposition 2.6 to a situation in which Y is a topological group
and K is a topological semigroup, but S is only a right-topological semigroup.
Therefore we cannot conclude that S is topologically isomorphic to M[G; I, A; A].
Indeed, the group G = eSe is only closed if the right ideal containing e is closed,
which we cannot expect. The interest in the above construction is therefore only
algebraic. It is particularly useful if the group extension is split so that G is a
semidirect product of G with Y.

2.5. Ellis semigroup of a dynamical system. Given a dynamical system (X, T, o)
the family of homeomorphisms {c’|t € T} is a subsemigroup of F(X). Its closure,
denoted E(X,T, o), or simply E(X) if the rest is understood, is still a semigroup,
called the Ellis semigroup (or enveloping semigroup) of the dynamical system. Since
X is compact the set of all functions X — X is compact in the topology of point-
wise convergence and so E(X,T,o0) is a compact right topological semigroup, by
construction.

The Ellis semigroup is closely related to the prozimality relation. Given a met-
ric d on X which generates the topology, a pair of points z,z’ are prorimal if
infier d(ot(x), 0" (2")) = 0. The proximal relation does not depend on the choice of
metric (which generates the topology). Its relation with the Ellis semigroup is the
following:

Theorem 2.7. [3, Chapter 3, Proposition 8] Let F(X) be the Ellis semigroup of a
dynamical system (X,T,o). Two points x and y are proximal if and only if there
exists f € E(X) such that f(x) = f(y).

In particular we see that, given any idempotent p € E(X) and € X, the points
p(z) and x are proximal.

2.6. Complete regularity for Z-actions. In this section we provide a criterion
for complete regularity of the Ellis semigroup for Z actions. We will see below that
it is satisfied by the dynamical systems defined by bijective substitutions.

Since the union of the closure of two sets is the closure of their union we can
decompose

(2.6) BE(X) = B(X,Z")UE(X,Z")

where E(X,Z%) is the closure of {ot|t € Z*}. This allows us to compute the
elements of E(X) by looking independently, forward in “time”, and backwards in
“time”.
We say that two points z, 2’ € X are forward prozimal if
inf d(o'(x),0'(2")) =0
tez+
We say that two points z,z’ € X are forward asymptotic if
. t TN
tl}inood(a (x),0'(2") =0
Similarly, we define backward proximality and asymptoticity using ' in place of
o. Clearly sequences which are forward asymptotic are forward proximal. The

following lemma is related to the work of [8] in which the adherence semigroup of
a ZT-action is defined and analysed.
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Lemma 2.8. Let (X,0) be a dynamical system for which forward proximality
agrees with forward asymptoticity. Then E(X,Z%) has a unique minimal left ideal
M(X,Z7") and contains besides this ideal only 7.

Proof. An element f € E(X,Z7)\Z" is the limit of a generalised sequence (o'*),,
t, € Z* which is not in Z*. Hence the generalised sequence (t,), has the property
that for any finite N € Z% there exists vy such that ¢, > N for all v > 1y. In
particular, if  and y are forward asymptotic points then lim, d(o”(x),c"(y)) = 0,
and hence f(z) = f(y).

E(X,7Z7) is also a compact right topological semigroup and hence has minimal
left ideals and minimal idempotents. Furthermore, z,y € X are forward proximal if
and only if there exists f € E(X,Z") such that f(z) = f(y). Let p € E(X,Z") be
any idempotent. For any x € X, p(x) is forward proximal to x, and by our assump-
tion therefore forward asymptotic to x. This implies that if f € E(X,ZT)\ZT,
then f(p(z)) = f(z). Since = was arbitrary we find f = fp.

This identity shows that any f € E(X,Z%)\Z™ lies in the ideal generated by the
idempotent p. If p is minimal then this ideal is a minimal left ideal. Since p can be
any minimal idempotent there can only be one minimal left ideal. O

Note that the unique minimal left ideal M(X,Z™) of the previous lemma is the
kernel of E(X,Z7T).

Corollary 2.9. Let (X,0) be a dynamical system for which forward prozimality
agrees with forward asymptoticity and backward proximality agrees with backward
asymptoticity. Then E(X) is completely reqular. If moreover the forward and
the backward prozimality relations are non-trivial (not diagonal) then E(X) is the
disjoint union of its kernel M(X) with the acting group Z.

Proof. Minimal left ideals which contain idempotents are completely simple and
hence, by the Rees structure theorem, disjoint unions of groups. Therefore Lemma
2.8 implies that E(X,Z")\Z" is completely regular. FE(X) is thus a union of
completely regular sub-semigroups. Hence any element of E(X) has an inverse
with which it commutes.

To proof the second statement we first show that M(X,Z") is a minimal left
ideal in E(X). Let f € E(X), g € E(X,Z")\Z". So f =limc™ and g = limo™*,
however with m, — +oco. Then fg = lim, 6" g. Since o™ g = lim, o™ ™ €
E(X,Z%) and E(X,Z%) is closed we have fg € E(X,Z"). Suppose that fg =
o™ for some n € Z. As g € M(X,Z") we have gp = g for some idempo-
tent p € M(X,Z%). Tt follows that 1 = 07" fg = 07" fgp = p. This implies
that E(X,Z7") is a group and thus contradicts the assumption that the forward
proximality relation is non-trivial [3]. Hence fg ¢ Z so that by Lemma 2.8,
EX)M(X,ZT) ¢ M(X,Z") and moreover M(X,ZT)N7Z = (). To show min-
imality of M(X,Z") it suffices to show that all idempotents of M(X,Z") are
minimal in E(X). Let ¢ € M(X,Z") and p € E(X) be idempotents such that
p < ¢. This means that pg = gp = p. As we just showed, p = pq € M(X,Z7"). But
then p = ¢ as ¢ is minimal in E(M,Z").

As the kernel of a semigroup is the union of its minimal left ideals we now have
shown that M(X) = M(X,Z7) UM(X,Z7) and that M(X)NZ = (. O

The arguments in the second part of the proof were adapted from [7] where it
is also shown that, for minimal Z-actions on totally disconnected compact metric
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spaces, the condition that forward proximality agrees with forward asymptoticity
and backward proximality agrees with backward asymptoticity is also necessary for
complete regularity.

2.7. Equicontinuous factors and the structure of E(X). In this section T is
an abelian group. When we have a factor map between two dynamical systems, the
acting group is the same. A dynamical system (X, o) is called equicontinous if the
family of homeomorphisms {o?,t € T} is equicontinuous. If the action is transitive
then this is the case if and only if, for any choice of zg € X there is an abelian
group structure on X (denoted additively) such that x¢ is the identity element and
ot(x) =z + o*(xg) — 9. This group structure is topological.

Moreover, for a minimal equicontinuous system and w.r.t. the above group struc-
ture on X, ev,, : E(X) — X is an isomorphism of topological groups, where ev,,
is evaluation at the point xg € X, evy, (f) = f(xo) [3, Chap. 3, Theorem 6].

An equicontinuous factor is a factor # : (X,0) — (Y,9) such that (Y,0) is
equicontinuous. As with any factor map, 7 induces a continuous semigroup mor-
phism 7, : E(X) — E(Y) via m.(f)(y) = n(f(z)) where z is any pre-image of y
under 7. As (Y, ) is equicontinuous evy, : E(Y) — Y is a semigroup isomorphism
where yo is the identity element in Y. We denote by 7 : E(X) — Y the composition
€vy, © Ty, Which is also a continuous surjective semigroup morphism.

Definition 2.10. Let 7 : (X,0) — (Y,d) be an equicontinuous factor. Define
E/®(X) to be the subsemigroup of E(X) which consists of those elements which
preserve the m-fibres 771 (y), y € Y.

In other words, E7%(X) is the kernel of the continuous semigroup morphism 7
and therefore a closed subsemigroup. We summarize this situation with the exact
sequence of right-topological semigroups

(2.7) E(X) s B(X) Sy

in which the involved maps are continuous semigroup morphisms. While E(X)
is only right-topological, Y is topological. As we will see below, under certain
circumstances, E/"(X) is also a topological semigroup.

3. THE FIBRE-PRESERVING PART EF?(X)

In this section we investigate the fibre-preserving part Ef®(X) of E(X) for
dynamical systems which factor onto an equicontinuous system, 7 : X — Y. We
call a point y € Y is regular (for 7) if the proximal relation restricted to 7=1(y) is
trivial. Otherwise we call the point singular (for 7).

Proposition 3.1. Suppose that 7 : (X, o) — (Y, 0) is an equicontinuous factor map
whose fibres =1 (y) are all finite. Then ET?(X) is a compact topological semigroup.

Proof. E¥*(X) is a compact subsemigroup of Ff®(X), defined in Section 2.3. By
assumption, all F(m~!(y)) are (trivially) topological semigroups. Therefore the
semigroup multiplication of [, ., F(7~!(y)) is jointly continuous. As E/*(X) is
a closed subsemigroup of F/%(X) its product is also jointly continuous. (Il

We can now apply Theorem 2.5 to conclude the following.
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Corollary 3.2. Suppose that 7w : (X,0) — (Y,0) is an equicontinuous factor map
whose fibres =1 (y) are all finite. Then the kernel MT®(X) of Ef**(X) is topolog-
ically isomorphic to its normalised Rees matrixz form.

We now consider more closely the algebraic structure of Ef*(X). To simplify
the notation we drop the reference to X and denote it by Ef%.

When identifying E/%* with a subsemigroup of F/%(X) = Her_ F(r=(y)) we
observe that it belongs actually to the smaller semigroup Her Eg“’ where

ib . __ ib
By = BTy,

the restriction of E7% to the fibre 7=!(y). Indeed, any f € E/%® corresponds to a
function f on Y whose value f (y) belongs to Eg i, E{; it i5 a compact subsemigroup
of F(n~1(y)). Moreover, since the elements of E commute with the action o of T
the functions f have to be covariant in the sense that

F(8' () =o' fly)o™
for all y € Y and t € T. In other words, Ef? is a subsemigroup of

Cov:={f € H E{;ib : f is covariant},
yey

again equipped with the pointwise semigroup multiplication ( fi fg)(y) =fi (y) o
fz(y) Equipped with the product topology, Cov is compact and the inclusion
ET® C Cov is continuous.

Recall by (2.5) that if p is any minimal idempotent then pEp is a group. We
fix any such minimal idempotent e, recalling that different minimal idempotents
define isomorphic groups. As 7 : E — Y is onto, and 7(efe) = 7(f), the restriction
7 : eFe — Y is also onto. A lift under 7 is a right inverse s : Y — eFe to
7:eFe— Y, ie. it satisfies 7 o s = Id. A lift always exists by the axiom of choice.
We do not demand that it is continuous, nor, for the time being, that it preserves
the group structure. But we can and do demand that it satisfies s(6'(y)) = o's(y)
for all t € T, and also that s(y)~! = s(—y) for each y € Y. We impose the latter
condition now although we will not use it until Proposition 3.13.

Given a lift s: Y — eFe, we define ®¥2 : ETib — pfib by

(3.1) U2 (f) =s(ya — 1) f s(y2 —v1) "

where s(z)~! is the group inverse to s(z). Although we do not include this in our
notation, it must be kept in mind that ®¥2 depends on the choice of lift. Since
t

5(0"(y)) = o*s(y) we have @y, (f) = o' @2 (f)o~".

Note that ®¥2 also defines a map from EJ to EJ?®, namely if ¢ € EJ* and
f is an element of E/® which restricts to ¢ on 7 !(y;), that is ¢ = f(y;) in the

. . . . 71

notation above, then ®¥2(¢) is defined to be the restriction of ®¥2(f) to 77" (y2).
This does not depend on the choice of f, as s(y2 —y1) ™! maps 71 (y2) to 71 (y1).

Lemma 3.3. Let e € E(X) be a minimal idempotent.
(1) eEl'e is a group.
(2) Ify is regular then eE?fibe = Egib.
(3) For any y1,ys, the restriction o2 - engbe — eEgae 18 a group 1Somor-
phism.
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Proof. eE]™e is entirely determined by the action of eE/"¢ on ex ! (y). It is hence
the homomorphic image of a group.

Idempotents must act like the identity on a regular fibre, as can be seen as
follows: The points e(z) and z are proximal. In a regular fibre this can only be the
case if e(z) = x. Hence eEg“’e = E{;ib if y is regular.

Let s : Y — eFe be a right inverse to @ : eEe — Y s(z) restricts to a map
e (y) — em~1(y + 2z) whose inverse is the restriction of s(z)71, as s(z)71s(z) =
5(z)s(z) ! = e. Hence ®¥ is conjugation with a bijection. O

Definition 3.4. We call the group determined up to isomorphism by Lemma 3.3
the structure group of the factor system (X, o) = (Y,d) and denote it by G.

Definition 3.5. We say that the system (X, o) is a unique singular orbit system
if it admits an equicontinuous factor which has a single orbit of singular points.

We now specialize to the context of unique singular orbit systems and fix a
singular point yo € Y. Define T C Ef? to be

(3.2) T ={f € E': f(z) =z for all z in a regular fibre}.

Since idempotents can only project proximal points, and regular fibres contain no
proximal pairs, so idempotents belong to 7. However 7 may be larger. Given the
minimal idempotent e, eTe is a subsemigroup of eE/%e. We claim that it is even
a normal subgroup. Indeed, if f € €T e then its inverse in e E7%¢ also acts trivially
on regular fibres and so belongs to eTe. Furthermore, an element g € eE/?e acts
bijectively on regular fibres and hence gfg~" acts as gg~! = Id on them.

Let 7y, be the restriction of 7 to 7 (yo); it is a subsemigroup of E/®. Then
eTyoe is the restriction of eTe to er~*(yp); it is a normal subgroup of eE{jgbe. We
now use the maps ®¥ from (3.1) to transport the group e7,,e along Y and define
the subsemigroup of Cov

(3.3) Covr:={f € Cov: f(yo) € Ty, and f(y) € Y (eTy,e) for all y regular}.
Although the map ®¥  depends on the choice of a lift s : ¥ — eFEe for 7, the space

Cov does not. Indeed, if we take another lift to obtain a map ®'y then ®¥ (f)(yo)

will differ from (Il’go(f)(yo) by a conjugation with an element h € eE;j(fbe, which
does not matter as e7y,e is a normal subgroup of eE?-f(fbe. By covariance Covy
does not depend on the choice of yg in the unique orbit of singular points. Finally,
the dependence of Covy on the choice of minimal idempotent e can be controlled
with the isomorphisms (2.1,2.2). If the singular fibre m=1(y) is finite then the
isomorphisms are bicontinuous by Theorem 2.5 and Corollary 3.2.

Theorem 3.6. Let (X,0) be a minimal unique singular orbit system. Covy is a
subsemigroup of ET%.

Proof. Let g € T and y € Y. Then f := ®¥ (g) belongs to Covy N Efi® Indeed,
Y (9) = Y (ege) € DY (eTy, e).

By definition g acts non-trivially only on the fibres of the T-orbit of yo. Hence
f = ®Y (g) acts non-trivially only on the fibres of the T-orbit of y. As (®¥ )~* (f(y))
is the restriction of ege to em~!(yo) we find that, given any regular point y and any

g € €Tyee, Covy N EF® contains the function f which satisfies (9% )~ (f(y)) = ¢

and f(y') = Id for any point 3/ in another orbit. By taking finite products of such
functions we see that Covy N Ef® contains, for any choice of k points y1,--- , Yk
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in distinct regular orbits and any choice of k£ + 1 elements g; € Ty,, ¢ =0,--- ,k a
function f such that (@ZO)’l(f(yZ)) = egie, i > 1, f(yo) = go, and f(y') = Id for
a point 3’ in another orbit. By definition of the topology of pointwise convergence
and since covariance is a closed relation, the set of these elements is dense in Covr.
Since E/% is the kernel of a continuous map it is closed; it hence contains Covy. O

Corollary 3.7. Let (X, 0) be a minimal unique singular orbit system. If Eg(fb =Ty,
then E¥% is topologically isomorphic to Cov.

Proof. If Eggb = Ty, then ®Y (eT,e) = Egib, for regular y, so that the condition
fly) e Y (eTy,e) is trivially satisfied as is f(yo) € Ty, Hence Covy = Cov. Thus
by Theorem 3.6 we have Cov C Ef® On the other hand, we saw that E/? is a
subsemigroup of Cov and that the inclusion is continuous. Since Cov is compact
this gives the result. O

We end this section by establishing a criterion which implies the condition of the
last corollary, namely that Eggb = Tyo-

Definition 3.8. Let 7 : (X,0) — (Y, ) be an equicontinuous factor. The minimal
rank r of the factor 7 is the smallest possible cardinality |7 ~!(y)| of a fibre, y € Y.
The coincidence rank cry(y) of the fibre y € Y is the largest possible cardinality a
subset of 771(y) can have, which contains only pairwise non-proximal elements.

If the system (X, o) is minimal, then the coincidence rank of an equicontinuous
factor can be shown to be independent of y and so ¢r, = c¢r(y) is the coincidence
rank of the factor = : (X,0) — (¥,d). If the factor is not specified then the
coincidence rank is meant to be the coincidence rank of the maximal equicontinuous
factor. See [2] for details and a context. Not every system contains regular fibres. It
can be shown that for minimal systems with finite coincidence rank for the maximal
equicontinuous factor, the maximal equicontinuous factor contains a regular fibre if
and only if the system is point distal i.e. contains a point x that is proximal only to
itself [2], and if that is the case, any other equicontinuous factor must also contain
regular fibres. (Since this is a side remark we don’t include a proof.)

Lemma 3.9. If the minimal rank r, of the equicontinuous factor Y of a minimal
system is finite and the factor contains some regular fibre then y € Y is regular if
and only if |77 (y)| = rx.

Proof. Let yo be a regular point. Then cr, = |77 1(yo)|. It follows that cr, > r,.
On the other hand, since r; is finite there exists a point y; for which r, = |7 =1(y1)|.
Clearly crn(y1) < |7~ 1(y1)|. Hence cr, = 7,. Thus all points of a regular fibre
must be pairwise non-proximal, and moreover, a fibre cannot contain more than r,
pairwise non-proximal points. ([

Lemma 3.10. Let 7 : (X,0) — (Y,0) be an equicontinuous factor with finite
minimal rank. Let f € ET™ be an element which acts on the singular fibres as an
idempotent. Then for some N, fN = f on the singular fibres and fN =1d on the
reqular fibres.

Proof. Since regular fibres contain only distal points, and only finitely many, any
element of f € E/® must act on a regular fibre as a bijection. Since regular fibres
have 7, elements, then if N = 7!, f~ acts like the identity on a regular fibre. If
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f acts like an idempotent on the singular fibre then fV acts like f on the singular
fibres. (]

We denote by Y/T the space of T-orbits of Y and its elements by [y].

Corollary 3.11. Consider a unique singular orbit system with finite minimal rank.
Letyo € Y be singular. The restriction Ty, of T to m~'(yo) contains all idempotents
of Eggb. In particular, if E?%b 1s generated by its idempotents then E%b =Ty, and
consequently,
Jib _ o~ pfib
E'" =Cov=E]"x [[ G

lyley/T

Y7#Yo
This is a topological isomorphism if we equip the r.h.s. with the product topology.

Proof. Any idempotent of EJ® is the restriction of an element f € E/® which,
by Lemma 3.10, may be assumed to act trivially on all regular fibres. Hence any
idempotent of E?Jjgb is the restriction of an element f € 7. Under the assumption
of finite minimal rank the structure group G, must be finite and thus topologically
isomorphic to Eg“’ for regular y. Covariance allows us to factor out the action of
T and thus describe Cov as a direct product over the space of orbits Y/T. O

3.1. Recovering E(X) from E/*(X) and Y. Although we now have a pretty
good description of Ef®(X) and Y for unique singular orbit systems with finite
minimal rank, it is not obvious how this describes F(X). As our interest lies in
minimal systems which have a singular fibre, their Ellis semigroup must contain two
non-commuting idempotents. This implies that E(X) cannot be left-topological?,
even when E7°(X) and Y are topological. This is a sign that we cannot expect a
semidirect product construction, paralleling that of groups, which describes E(X)
with its topology through E/%*(X) and Y. However, on the purely algebraic side,
we will see that Proposition 2.6 turns out to be useful in this regard.

Notation 3.12. We let M(X) denote the kernel of E(X) and M7%®(X) denote
the kernel of E/%%(X). Recall that these kernels are completely simple. Picking a
minimal idempotent e, we let G = eE(X)e and G/** = eE/?(X)e denote the Rees
structure group of M(X) and M/%®(X) respectively.

AsY =7(E(X)) = m(eE(X)) C 7(M(X)), (2.7) gives rise to the exact sequence

S (X) A M(X) = M(X) 5 Y.

Ef(X)N M(X) contains all idempotents of M(X). Moreover, it is simple, as can
be seen as follows: As M(X) is completely simple, given z,y € Ef(X) N M(X)
there is an idempotent z € M(X) such that z, z belong to the same minimal left,
while z, y belong to the same minimal right ideal of M(X). Since z is an idempotent
we have z € Ef?(X). Since z,z € Ef?*(X) N M(X) belong to the same minimal
left ideal of M(X) then there is a € M(X) such that z = az. It follows that
7(a) = 0, thus a € EF*(X) N M(X). Similarly, since z,y € Ef(X) N M(X)
belong to the same minimal right ideal of M (X) then there is b € Ef**(X)NM(X)
such that z = yb. Hence x = ayb for a,b € E/*(X) N M(X). This proves that
Ef*(X) N M(X) is simple and therefore equal to the kernel M/%®(X) of Ef*(X).

2Since T is abelian, if left multiplication is continuous then lim, o' lim, o =
lim,, lim, otvtsu = lim, o+ lim, a'v, hence all elements of F(X) commute.
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A further restriction of (2.7) to eM(X)e leads to the exact sequence of groups
it g L.
We show now that for systems which satisfy the conclusion of Corollary 3.7 the

above sequence has a split section, so that the structure group G is the semi-direct
product of G/* with the group Y.

Proposition 3.13. Let (X,0) be a minimal system with an equicontinuous factor
7:(X,0) = (Y,8) such that B/ = Cov. Let e be a minimal idempotent of E and
5:Y — eEe be a lift of @ which satisfies s(d*(y)) = ols(y) and s(—y) = s(y)~ L.
Define, for y € Y the map §(y) : eX — eX by

8(y)(x) = s(m(2) +y)s(n(z)) " (2).
Then §: Y — eFEe is a right inverse to & which satisfies 3(6(y)) = o'3(y) and is a
group homomorphism.

Proof. Let y € Y. By definition
W)(x) = s(y)g(m(x))(x)

§
where g(z) = s(y)7's(z + y)s(z)~L. We see that g(2)(x) € er~*(z) for all z €
en (), hence g(z) : en !(z) — en~!(z) is an is element of eEf®c. Using
s(6%(y)) = ots(y) we obtain g(6'(n(z)))(ctz) = olg(r(x))(x). Thus Y > z
g(2) € eEf e is covariant along the orbit of 3 and hence an element of eCove. By
assumption eCove = eE/%e. Thus 3(y) = 3(y)g is an element of eFe.
We show that §(y) is a right inverse to 7. Let x € 771(0). We have

75(y) = m(8(y))(0) = w(5(y)(z)) = m(s(y)(x)) =y + 7(z) =y
where we have used s(0)~! = e in the third equality. The identity §(6'(y)) = o5(y)
follows readily. It remains to show that § is multiplicative:
Sy +y2)(z) = s(r(@) +y1 +y2)s(m(z) " (2)
= s(m(2) +y1 +y2)s(m(x) +y2) " s(m(2) + y2)s(n(x)) " (x)
= 3(y1)5(y2)(2).
|

Corollary 3.14. Let (X,T,0) be a minimal system with an equicontinuous factor
7 (X,0) = (Y,8) such that Ef"® = Cov. Then the structure group G/ of
MFP(X) is isomorphic to GY'T . Moreover, the structure group of M(X) is G =
Gf® x Y. Furthermore if M[GT™; 1, A; A] is the normalised Rees matriz form for
MI(X) w.rt. e, then M(X) is algebraically isomorphic to M[GT?* x Y I, A; A].
Proof. Apply Proposition 2.6, Corollary 3.2 and Proposition 3.13. [

For unique singular orbit systems with finite minimal rank and for which EJ*(X)
is generated by its idempotents, we have now reduced the calculation of the kernel
of their Ellis semigroup to the calculation of the kernel of Eg(fb(X ) which we denote

MJP(X). Indeed, if M[G; I, A; A] is the normalised matrix form of MJ®(X) w.r.t.
e, then G = G which we may identify with the subgroup G~ x [], 1 iev {1}

of G¥/T. 1t follows that
(3.4) MIPX) 2 MG I Al x [ G = MIGYT 1A A]
[yol#£[yl€Y/T
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where the second topological isomorphism is given by the map ((¢,g9,A), f) —
(i,(g,f),A). We will see in the next section how to compute G, I, A, and A
for systems arising from bijective substitutions.

4. BIJECTIVE SUBSTITUTIONS AND THEIR ELLIS SEMIGROUP

In this section we discuss the Ellis semigroup of a family of minimal Z-actions
which are both unique singular orbit systems, and also systems for which for-
ward /backward proximality is non-trivial and agrees with forward /backward asymp-
toticity. This is the family of bijective constant length substitution shifts. For these
systems, Corollary 2.9 tells us that E(X) is the disjoint union of its kernel M(X)
with the acting group Z, so that a description of M(X) suffices to completely de-
scribe the Ellis semigroup. Next, for most of these systems, Corollary 3.14 will
apply, so that we are on the way to describing M(X) once we know its restriction
to a singular fibre which we call below the structural semigroup. This is the content
of Theorem 4.6. We consolidate to get a global statement in Theorem 4.12. Finally,
we identify the substitution shifts to which we cannot apply Corollary 3.14, and we
replace it with Theorem 4.22.

4.1. Generalities. We briefly summarise the notation and results concerning sub-
stitutions that we will need; for an extensive background see [5] or [13].

A substitution is a map from a finite set A, the alphabet, to the set of nonempty
finite words (finite sequences) on A. We extend 6 to a map on finite words by
concatenation:

(4.1) O(ay---ar) =0(ay)---0(ag),
and to bi-infinite sequences ---u_su_juguy - -+ as
O( - u_su_quouy -+ ) = 0(u_g)f(u_1)0(u_1) - 0(up)f(uy) - -

Here the - indicates the position between the negative indices and the nonnegative
indices.

We say that 6 is primitive if there is some k € N such that for any a,a’ € A,
the word 6% (a) contains at least one occurrence of a’. We say that a finite word is
allowed for 6 if it appears somewhere in 6 (a) for some a € A and some k € N.

The substitution shift (Xp, o) is the dynamical system where the space Xy con-
sists of all bi-infinite sequences all of whose subwords are allowed for 6. If 0 is
primitive, Xy = Xy~ for each n € N. We equip Xy with the subspace topology of
the product topology on A%, making the left shift map o a continuous Z-action.
Primitivity of 6 implies that (Xp, o) is minimal.

We say that a primitive substitution is aperiodic if Xy does not contain any
o-periodic sequences. This is the case if and only if Xy is an infinite space. The
substitution 6 has (constant) length ¢ if for each a € A, 6(a) is a word of length £.
In this case one can describe the substitution with £ maps 6; : A — A, 0 <i < /—1,
such that

0(a) =6o(a)---0p—1(a)
for all a € A. A substitution 6 is bijective if it has constant length and each of
the maps 6; is a bijection. If 6 is bijective, then Xy is the disjoint union of finitely
many primitive bijective substitution shifts, and consequently its Ellis semigroup
is also the disjoint union of finitely many Ellis semigroups of primitive substitution
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shifts. Henceforth we assume that 6 is primitive but this comment means that all
our results have analogous statements for non-primitive bijective substitutions.
We say that the bijective 0 is simplified if
(1) every f-periodic point is a fixed point of 8, so that in particular 8y = 6,_1 =
1, and

(2) each word 6(a) contains all letters from A.
Given any bijective substitution 6, both properties will be satisfied by a large enough
power 0" of 0. Indeed, if M is the lowest common multiple of the least periods of
the periodic points, then each periodic point is a fixed point under ™. Since for
any n € N, Xy = Xpyn, there will be no loss in generality in assuming that 6 is
simplified and this is henceforth a standing assumption.

4.2. An equicontinuous factor with a unique orbit of singular fibres. Let
6 be an aperiodic primitive substitution of length ¢. Define B := §"(X,),which
is a clopen subset of Xg. Then o?(B™) = ¢7(B™) if i — j = 0 mod ¢" whereas
otherwise ¢*(B™) N ¢’ (B™) = ) [11, Lemma IL.7]. In other words

P ={c"(B™):0<k< -1}
is a 0" -cyclic partition of Xy of size £* For n > 1, define 7, : Xy — Z./]0"Z by
ma(z) =i if z € o'(BM).

The map m, can be described as follows. Using the partition P;, any bi-infinite
sequence ¢ = (z;);ez € Xp can be uniquely decomposed into blocks of length ¢ such
that

(i) The i-th block is a substitution word 6(a;), for some a; € A. Here we say
that the 0-th block is the one which contains zg, and

(ii) The sequence (a;);cz is an element of Xy.
Now set 1 (x) := 7 if the 0-th block starts at index —i (if we shift that block ¢ units
to the right then its first letter has index 0). This procedure can be performed
with P,, and 6" yielding an analogous definition for 7, (x). In particular, the m,
are pattern equivariant (or local) and hence continuous. Note that if 7, (x) = i,
then m,4+1(z) = ¢ mod ¢". Therefore, the collection of these maps m, defines a
continuous map

(4.2) m: X9 oY = liinZ/f"Z

onto the inverse limit lim, Z/¢"Z defined by the canonical projections Z/{"*17 —
Z/0™Z. The inverse limit space can be identified with the space of left-sided se-
quences (Y;)i<o = -+ Y—2y—1, 0 < y; < £, and then 7(x) = (y;)i<o is such that for
each positive integer n, m,(x) = z:ﬁn 0= 1y;. Tt then follows that moo = (+1)om
where (+1) is addition of 1 = ---001 (only the last digit is not 0) with carry over.
Its additive inverse is addition of —1 = ---£—1¢—1¢—1. In other words (Xy, o)
factors onto the odometer with ¢ digits (adding machine). This is the equicontin-
uous factor map with which we work. As the space is the space of f-adic integers,
we will denote it using the notation Z;,.

Proposition 4.1. Let 6 be a primitive aperiodic bijective (and simplified) substi-
tution of length { and 7 : Xg — Zy be defined by (4.2). The fibre 7=1(0) contains
exactly the 0-fixed points. These are in one-to-one correspondence with the allowed
two letter words.
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Proof. Tt is quickly seen that 108 = (x£)on where (x£) is multiplication by £ in Z,
and corresponds to left shift with adjoining a 0: (x£)(---y_oy—1) = -+ y—_2y—_10.
Hence any 6-fixed point is mapped by 7 to a (x¥¢)-fixed point in Zy, and the only
such one is 0. Thus all §-fixed points belong to 7=1(0). It also follows that 6 must
preserve 7 1(0).

Since the maps 6; are bijections of A, 6 is injective on Xy. Hence it is injective
on 7~1(0). We claim that 7—!(0) must be finite. To prove the claim let z, 2’ € X,.
If © # 2’ there exists n € N such that T[_gngn_1] F x[—zn,en—u (here @[, ) is the
word Z,Tpy1 - ). It follows that 67" (x)[_10) # 07" (2')[-1,09). Since there are
only finitely many words of length two 7~1(0) must be finite. It follows that the
restriction of 6 to 771(0) is bijective and thus 7=1(0) must be a union of periodic
orbits under 6.

As 0 is bijective and simplified we have 6(x);_19 = 21,0 for any x € Xy. It
follows that @-periodic points are -fixed points and that they are in one-to-one
correspondence with the allowed two letter words. ([l

Proposition 4.2. Let 6 be a primitive aperiodic bijective substitution of length £
and let © : Xg — Zg be defined by (4.2). Then the orbit of #=1(0) is the only
singular fibre orbit. The minimal rank is v, = s where s is the size of the alphabet.

Proof. Suppose that y = ...y_oy_1 does not belong to the Z-orbit of 0. This is
the case precisely if for infinitely many n, y_, # 0 and, for infinitely many n,
y_n # £ — 1. Now if we take z € 7~ (y) and decompose it into substitution words
0" (a) of level n (as described above), then the substitution word 6"(ag) which
covers index 0 must be 0" (ag) = =, i, +¢n—1] Where k, = — Z;:l_n £~ 1y,. Since
Y_n # 0 for infinitely many n we have k, "% _0, and since y_, # ¢ —1 for
infinitely many n we have k,, + /™ — 1 [ SR Furthermore, by bijectivity of 6,
ap is uniquely determined by zg. It follows that = is uniquely determined by y and
7o. Since there are exactly s choices for zg we see that 7= 1(y) contains s elements.

We now show that 7=1(y) is a regular fibre if y does not belong to the orbit of Z.
Suppose that z, ' were proximal. Then there exists n € Z such that z,, = z/,. In
other words o™ (x)g = 0™ (2’)g. Also y + n does not belong to the Z-orbit of 0 and
since o™(x),0™(z') € 7 1(y + n) we conclude from the above that z = 2’. Hence
all points of 771 (y) are pairwise non-proximal.

We have seen above that 7-1(0) has 5(2) elements where s() is the number of
allowed two letter words. Given that € is aperiodic we must have s2 > s. Thus
771(0) cannot be a regular fibre. O

Since 6 is simplified its fixed points are precisely those of the form 6> (a)-0°°(b),
where ab is an allowed word for §. Such a fixed point is uniquely determined by ab.
We will use the notation a - b to denote it.

Corollary 4.3. Let 0 be a primitive bijective aperiodic substitution of constant
length. If two points x,a’ € Xy are forward (or backward) prozimal then they are
forward (or backward) asymptotic. Furthermore, forward and backward prozimality
are non-trivial. In particular the Ellis semigroup E(Xp) is completely reqular and
the disjoint union of its kernel M(Xy) with Z.

Proof. Suppose that z,z’ € Xy are forward proximal. Then they are proximal
and so by Propositions 4.2 and 4.1 there is n € Z such that ¢”(x) and ¢"(2') are
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fixed points of the (simplified) substitution. Since they are forward proximal and
o is left shift this means that there are allowed two-letter words ba, b’'a such that
o™(z) =b-a and 0" (2') = b - a. In particular the two sequences agree to the right
and hence are forward asymptotic. If forward proximality were trivial then every
two letter word would be determined by its right letter. This cannot be the case
as the substitution is aperiodic. Hence forward proximality is non-trivial. For the
backward motion we argue in a similar way. The result now follows from Corollary

2.9. (]

4.3. The kernel M(J;ib(Xg). The restriction Egib(Xg) of E¥*(Xy) to the singular
fibre 771(0) of the factor map 7 : Xy — Z; contains besides the identity map only
its kernel M{;ib(Xg). This kernel is a finite semigroup which we now compute. We
also call it the structural semigroup of 6. It completely determines E¥%(X,).

Recall that since 6 has length ¢ there are maps 0; : A — A such that 6(a) =
Oo(a)---0¢_1(a) for all a € A. 6 is thus uniquely determined by what we call its
expansion, namely its representation as a concatenation of £ maps, which we write
as

0 = 00[0,]---|6;_1.

It follows from (4.1) that the composition of two substitutions 6, 8" of length £ and
¢ over the same alphabet (which we simply denote by 6#6’) has then an expansion
into ¢/ maps

00" = 00| - -+ 1001010001 | - -+ 10010 _,
where the product 910;- is that of permutations, that is, composition of bijections.
In particular, the expansion of 62 is given by

(4.3) (0%)o] -~ [(0*)p2—1 = Oobo| -+ - |0—100]0061] - - - |0o—100—1

and iteratively we find, for any given n the ¢" bijections (6™); corresponding to the
expansion of ™.

Definition 4.4. Given a bijective substitution 6, we define the structure group Gy
of 6 to be the group generated by al