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Abstract 

The dramatic drop in sequencing costs has created many opportunities for novel biological 

research. Many research questions depend on comparing sequenced reads to a “reference 

genome” to characterise genes, regulatory regions, genetic variation and gene expression. 

Typically, the reference genome is computationally assembled de novo from reads generated 

by “shotgun sequencing” and is often the first step in the molecular characterisation of a 

species. Unfortunately, this process is prone to errors, which results in several regions of the 

genome to be missing, fragmented, or mis-assembled in the reference. I review the sources 

of these errors, the challenges in evaluating the quality of de novo genome assemblies, 

present new metrics and a tool to overcome some of the limitations. Furthermore, I show 

that fine tuning the parameters of assembly software is an effective way to obtain higher 

quality genome assemblies. However, the quality of genome assemblies is ultimately tied to 

the length and the error profile of sequenced. I present a tool to facilitate rapid transfer of 

gene annotations to a new genome assembly with high confidence so that known regions of 

the genome do not need to be recharacterized. Furthermore, intermediate output of the tool 

can also be used to transfer variant annotation and other data formats. Finally, I present a 

graphical interface for the popular BLAST software. Among other things, it is useful for 

qualitative quality assessment of genome assemblies and gene annotations or to 

characterise regions of interest in newly assembled genomes. I believe the approaches 

presented here can play a key role in genomic characterisation of previously understudied 

organisms. As examples, I present two studies on social evolution in ants where I led specific 

analyses through the application of above-mentioned tools and related concepts.  



 

5 

 

Contents 

List of figures ...................................................................................................................................................................... 9 
List of tables ...................................................................................................................................................................... 10 
Chapter 1: Introduction ................................................................................................................................................... 11 

Genome sequencing and assembly ..................................................................................................................................... 11 
Errors in genome assemblies ................................................................................................................................................ 13 
Impact of assembly errors on genomic analyses ............................................................................................................. 15 
Thesis overview ........................................................................................................................................................................ 15 

Chapter 2: Parameter exploration improves the accuracy of long-read genome assembly ........................... 18 
Contributions ............................................................................................................................................................................ 18 
Abstract ....................................................................................................................................................................................... 19 
Introduction ............................................................................................................................................................................... 19 
Results ........................................................................................................................................................................................ 22 

Thirty-six assemblies by varying three key Canu parameters ............................................................................. 22 
Measures of assembly contiguity, accuracy and completeness ........................................................................... 23 
Four complementary metrics reveal extensive variation in assembly quality ................................................ 24 
Processing and chromosome-level scaffolding of best assembly for use as the reference assembly ........ 25 

Discussion ................................................................................................................................................................................. 26 
Estimates of sequencing error is a key parameter for optimisation ................................................................... 26 
Tool for comparing genome assemblies and selecting the best one .................................................................. 26 

Methods ...................................................................................................................................................................................... 27 
Sample collection and sequencing ................................................................................................................................ 27 
Pacbio sequencing of a pool of 21 haploid brothers for assembly ........................................................................ 27 
Assembly parameters and workflow ........................................................................................................................... 28 
Assembly quality metrics and ranking ........................................................................................................................ 29 
Determining significance of assembly parameters ................................................................................................. 30 
Removal of residual sequencing errors and rare alleles from the best assembly ............................................ 31 
Identification of foreign DNA in the best assembly ................................................................................................. 31 
Ordering and orienting contigs ...................................................................................................................................... 31 

Data availability ........................................................................................................................................................................ 33 
Acknowledgements ................................................................................................................................................................ 34 
Supplementary methods ....................................................................................................................................................... 35 

CompareMyGenomes tool usage ................................................................................................................................... 35 
Comparison of Canu, flye, and wtdbg2 assemblers .................................................................................................. 35 
Quality control of Illumina reads ................................................................................................................................. 36 

Supplementary figures ........................................................................................................................................................... 37 



 

6 

 

Supplementary tables ............................................................................................................................................................ 50 
Chapter 3: Rapid transfer of annotation to de novo genome assemblies ............................................................. 54 

Contributions ........................................................................................................................................................................... 54 
Introduction ............................................................................................................................................................................... 55 
Methods ...................................................................................................................................................................................... 55 

Chain file generation ......................................................................................................................................................... 55 
Lift over of annotations in GFF format files .............................................................................................................. 56 
Quality control of transferred gene annotations ....................................................................................................... 57 

Results ......................................................................................................................................................................................... 57 
Discussion ................................................................................................................................................................................. 58 
Data availability ....................................................................................................................................................................... 59 
Acknowledgements ................................................................................................................................................................ 59 

Chapter 4: Sequenceserver: a modern graphical user-interface for BLAST ...................................................... 60 
Contributions ........................................................................................................................................................................... 60 
Introduction ............................................................................................................................................................................... 61 
Results ......................................................................................................................................................................................... 61 

Assisted installation and BLAST query submission ................................................................................................ 61 
Usage by individual researchers and as part of community databases ............................................................. 64 

Outlook ....................................................................................................................................................................................... 64 
Methods ..................................................................................................................................................................................... 66 

Technical implementation details ................................................................................................................................ 66 
Sustainable software development approach ........................................................................................................... 66 
User centric design of graphical user interface ........................................................................................................ 67 

Data Availability ...................................................................................................................................................................... 68 
Acknowledgments .................................................................................................................................................................. 69 

Chapter 5: Choosing the best gene predictions with GeneValidator .................................................................. 70 
Contributions ........................................................................................................................................................................... 70 
Abstract ....................................................................................................................................................................................... 71 
Introduction ............................................................................................................................................................................... 71 
Installing and running GeneValidator ............................................................................................................................... 73 
GeneValidator workflows ..................................................................................................................................................... 74 

Extracting sequence identifiers of low scoring gene predictions ........................................................................ 74 
Subsetting the HTML report to only low scoring gene predictions .................................................................... 75 
Using GeneValidator web server to iteratively refine gene models ................................................................... 76 
Merging gene predictions from two different sources ............................................................................................ 77 
Using NCBI’s non-redundant database of protein sequences with GV ............................................................ 80 

Tips and tricks ........................................................................................................................................................................... 81 
Acknowledgements ................................................................................................................................................................ 83 



 

7 

 

Chapter 6: Fire ant social chromosomes: Differences in number, sequence and expression of odorant 

binding proteins .............................................................................................................................................................. 85 
Contributions ........................................................................................................................................................................... 85 
Introduction .............................................................................................................................................................................. 86 
Results ........................................................................................................................................................................................ 89 

The fire ant reference genome assembly contains 23 putative OBPs ................................................................. 89 
Nonsynonymous differentiation between SB and Sb in OBPs ............................................................................ 90 
Copy number and structural differentiation between SB and Sb in OBPs ...................................................... 92 
Fourteen OBPs are differentially expressed between social forms .................................................................... 93 
Gene coexpression modules correlated with social form ...................................................................................... 95 
Three OBPs are in a region of the genome with characteristics of a recent selective sweep ...................... 96 

Discussion ................................................................................................................................................................................. 96 
The putative role of OBPs in determining social dimorphism ............................................................................ 96 
General evolutionary patterns of OBPs in S. invicta ................................................................................................ 98 

Conclusion .............................................................................................................................................................................. 100 
Methods ................................................................................................................................................................................... 100 

OBP discovery and manual gene model curation .................................................................................................. 100 
Identifying allelic differences for OBPs carried by alternate variants of the social chromosome ............ 101 
Detection of copy number and structural variation in OBPs ............................................................................. 102 
Gene expression of S. invicta OBPs in publicly available RNA sequencing datasets ................................... 102 
Differential expression of gene coexpression modules across social forms .................................................. 103 
Evidence for selection based on nucleotide diversity ........................................................................................... 103 

Data availability ..................................................................................................................................................................... 103 
Acknowledgements .............................................................................................................................................................. 104 

Chapter 7: No supergene despite social polymorphism in the big-headed ant Pheidole pallidula ............... 105 
Contributions ......................................................................................................................................................................... 105 
Abstract .................................................................................................................................................................................... 106 
Introduction ............................................................................................................................................................................ 106 
Results ...................................................................................................................................................................................... 108 

Reference genome for Pheidole pallidula .................................................................................................................... 108 
No evidence of social supergene in genome-wide SNP survey .......................................................................... 108 
Simulations demonstrate sufficient power to detect social supergene ............................................................. 111 
Absence of coverage discrepancies underlying social supergene ...................................................................... 112 

Discussion ................................................................................................................................................................................ 113 
Methods .................................................................................................................................................................................... 115 

Sample collection ............................................................................................................................................................. 115 
Microsatellite genotyping .............................................................................................................................................. 116 
DNA extraction for Illumina library preparation and sequencing ..................................................................... 117 



 

8 

 

Species identification ....................................................................................................................................................... 117 
Long read library preparation and sequencing ....................................................................................................... 118 
De novo assembly Ppal_gnE ........................................................................................................................................... 119 
Scaffolding Ppal_gnE ....................................................................................................................................................... 119 
Reference-based analysis (mapping, variant calling, filtering) ........................................................................... 119 
Simulations of association test with supergene region ......................................................................................... 121 
Assembling non-mapping reads .................................................................................................................................. 122 

Data availability ...................................................................................................................................................................... 122 
Acknowledgements ............................................................................................................................................................... 122 

Chapter 8: Discussion .................................................................................................................................................... 123 
Technology trickles down slowly ...................................................................................................................................... 123 
My contributions .................................................................................................................................................................... 125 
Data sharing and integration .............................................................................................................................................. 126 

Data qualities ..................................................................................................................................................................... 126 
Infrastructure for secondary databases ...................................................................................................................... 127 

Annex 1: Supplementary information for chapter 4 ............................................................................................. 130 
Supplementary tables .......................................................................................................................................................... 130 

Annex 2: Supplementary information for chapter 5 .............................................................................................. 134 
Supplementary Methods ..................................................................................................................................................... 134 

OBP discovery and manual gene model curation ................................................................................................... 134 
Phylogenetic analysis ...................................................................................................................................................... 135 
Read filtering of S. invicta whole-genome sequences ............................................................................................. 136 
Detection of copy number and structural variation in OBPs .............................................................................. 136 
Orthology in other species ............................................................................................................................................. 137 
Variant Calling in S. invicta OBPs ................................................................................................................................ 138 
Sequencing and variant calling of the OBPs of an outgroup species ................................................................ 138 
Gene expression of S. invicta OBPs in publicly available RNA sequencing datasets .................................... 139 
Differential expression of gene co-expression modules across social forms ................................................. 140 
Gene Ontology (GO) term annotation of the Solenopsis invicta genome ........................................................... 141 
Evidence for selection based on nucleotide diversity ............................................................................................ 142 

Supplementary figures ......................................................................................................................................................... 143 
Supplementary tables .......................................................................................................................................................... 146 

Annex 3: Supplementary information to chapter 6 ................................................................................................ 157 
Supplementary figures ......................................................................................................................................................... 157 
Supplementary tables ........................................................................................................................................................... 165 

References ....................................................................................................................................................................... 176 

 



 

9 

 

List of figures 

Figure 2.1: Thirty-six assemblies compared using four measures of assembly quality ................................... 25 
Figure 2.S1: Length distribution of raw Pacbio reads .............................................................................................. 37 
Figure 2.S2: Contig length vs average coverage ........................................................................................................ 38 
Figure 2.S3: Correlation between the metrics ........................................................................................................... 39 
Figure 2.S4: Length vs coverage after scaffolding ................................................................................................... 40 
Figure 2.S5: Dot-plot of the presented assembly and the draft assembly ........................................................... 41 
Figure 2.S6: Estimated error rate of corrected reads ............................................................................................... 42 
Figure 2.S7: Coverage histogram before and after removing unresolved haplotigs ........................................ 43 
Figure 2.S8: R general linear model output ............................................................................................................... 44 
Figure 2.S9: Proportion of genotype calls against proportion of homozygous calls ........................................ 45 
Figure 2.S10: Histogram of number of genotype individuals at each site ........................................................... 46 
Figure 2.S11: Histogram of mean genotype read depth of sites ............................................................................. 47 
Figure 2.S12: Histogram of mean genotype quality of sites .................................................................................... 48 
Figure 2.S13: Minor allele frequency spectrum of sites ........................................................................................... 49 
Figure 4.1: Sequenceserver’s user-interface and usage statistics .......................................................................... 62 
Figure 4.2: Automatic BLAST algorithm selection .................................................................................................. 63 
Figure 5.1: High-level schematic of the steps carried out by GeneValidator. ..................................................... 73 
Figure 5.2: Screenshot of GeneValidator web application ..................................................................................... 77 
Figure 6.1: Phylogenetic tree of fire ant OBPs ........................................................................................................... 90 
Figure 6.2. Position of the OBPs on the social chromosome ................................................................................... 91 
Figure 6.3. Expression patterns for all analysed RNA-seq datasets ..................................................................... 94 
Figure 7.1: SNPs associated with social type are not linked .................................................................................. 110 
Figure 7.2: Contigs with biased coverage are small ................................................................................................. 113 
Figure A2.S1: Density distribution of p-values for differential expression between social forms ............... 143 
Figure A2.S2: Correspondence between queen and worker modules. .............................................................. 144 
Figure A2.S3: Nucleotide diversity along the genome ........................................................................................... 145 
Figure A3.S1: PCA for minor PCs ................................................................................................................................ 157 
Figure A3.S2: Purple simulated SNP is the most significant variant in Fisher’s exact test ............................ 158 
Figure A3.S3: Solenopsis invicta simulation ................................................................................................................ 159 
Figure A3.S4: Formica selysi simulation ..................................................................................................................... 160 
Figure A3.S5: Mis-genotyping simulations ............................................................................................................... 161 
Figure A3.S6: Geographical location map of samples. ........................................................................................... 162 
Figure A3.S7: Mapped read proportion by social type ........................................................................................... 163 
Figure A3.S8: Mean mapping quality by social type .............................................................................................. 164 



 

10 

 

List of tables 

Table 2.S1: Assembly parameters tested ..................................................................................................................... 50 
Table 2.S2: Improvements made by polishing and haplotigs removal ................................................................. 51 
Table 2.S3: Contaminant species identified in the best assembly ......................................................................... 51 
Table 2.S4: Comparison of the published fire ant genome assemblies with the presented assembly ......... 52 
Table 2.S5: Comparison of three popular assemblers using the presented CompareMyGenomes tool ...... 53 
Table 6.1: OBP differentiation between SB and Sb .................................................................................................. 92 
Table A1.1: Research using Sequenceserver ............................................................................................................ 130 
Table A1.2: Public community websites using Sequenceserver ........................................................................... 131 
Table A2.S1: Correspondence between presented and previously published sequences ............................. 146 
Table A2.S2: Accession numbers of the gene expression data used. .................................................................. 147 
Table A2.S3: Closest BLASTP hit of newly produced S. invicta OBP sequences in NCBI “nr” database .... 148 
Table A2.S4: Number of genes represented in each co-expression module .................................................... 149 
Table A2.S5: Gene co-expression modules ............................................................................................................... 151 
Table A2.S6: Putative OBP orthologs in other species. .......................................................................................... 152 
Table A3.S1: Comparison of P. pallidula reference assembly with Hymenopteran genomes ......................... 165 
Table A3.S2: Microsatellite primers details ............................................................................................................. 170 
Table A3.S3: Sample details – geography and social form ................................................................................... 170 
Table A3.S4: BLASTN hits of significant SNPs to S. invicta genome ................................................................... 173 
Table A3.S5: Regions unique to single- and multiple-queen genomes .............................................................. 174 
Table A3.S6: Illumina sequencing summary ............................................................................................................ 175 
Table A3.S7: Nanopore sequencing summary ......................................................................................................... 175 

 



 

11 

 

Chapter 1: Introduction 

Biologists can today query many aspects of an organism’s genome. Such investigations often 

depend on comparing reads from various sequencing experiments to a reference genome, 

where the reference genome itself is derived from shotgun sequencing of the organism’s 

DNA. Thus, obtaining a reference genome is often the first step in the molecular study of a 

species. 

I review the process of obtaining a reference genome in the sections below, with a particular 

focus on highlighting the limitations and their consequences. This is followed by a summary 

overview of my thesis. 

Genome sequencing and assembly 

The genetic information of an organism is encoded in long molecules of deoxy ribonucleic 

acid (DNA). These are carried in thread-like structures inside the nucleus of each cell of the 

organism, called the chromosomes. DNA molecules consist of two complementary chains 

of nucleotide molecules that wrap around each other to form a double-helix structure. Four 

nucleotide molecules make up the chains: ‘adenine’, ‘thymine’, ‘guanine’, and ‘cytosine’. 

The sequence of nucleotide molecules that make up the chain can be read as a string of ‘A’, 

‘T’, ‘G’, and ‘C’ through a process known as sequencing. Sequencing technologies, however, 

can only read DNA molecules that are much smaller than the chromosomes of most 

organisms. Chromosomes are thus broken down into smaller fragments for sequencing and 

computationally reconstructed afterwards. This process is referred to as genome assembly. 

DNA for genome assembly is ideally extracted from an inbred individual where large 

regions of homologous chromosomes are expected to be near identical. If it is difficult to 

rear the organism in laboratory conditions for inbreeding (e.g., pandas) or where enough 

DNA cannot be extracted from a single individual (e.g., small insects), DNA from wild-type 

or more than one individual may be used. However, there can be considerable differences 
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between the homologous chromosomes of wild-type individuals which must additionally 

be resolved by the assembly process (this allelic diversity further increases if DNA from 

several individuals is pooled together). The DNA is ideally extracted from gametes so that 

the reference represents the germline, although DNA from other tissue types or whole-body 

may also be used. 

The extracted DNA is subject to a series of processing steps and then loaded on to the 

sequencing machine. The specifics depend on the sequencing technology but follow the 

general process of breaking the DNA into overlapping fragments, selecting DNA fragments 

of appropriate size, and ligating them to short “adapter sequences” that help initiate the 

sequencing reaction. This process is known as “library preparation”. In some cases, it may 

be required to break the DNA into a single strand. The sequence of nucleotides is then 

determined through synthesis of the complementary strand – four fluorescent-labelled 

nucleotides are introduced in the reaction chamber and emission spectra of the nucleotide 

that incorporates into the chain is observed. Illumina and Pacific Biosciences take this 

approach. Alternatively, the sequence of nucleotides may be determined by pushing DNA 

fragments through a protein nanopore and monitoring the electrical current generated by 

this process, an approach pioneered by Oxford Nanopore technologies. 

Sequencing technologies are not perfect. Mistakes are made in the process of reading the 

sequence of nucleotides in a DNA fragment. For example, a nucleotide ‘A’ in the DNA may 

be replaced by nucleotide ‘G’ in the sequenced read. This is termed ‘substitution error’. 

However, insertion or deletion of a few (2-4) nucleotides compared to the input DNA are 

also observed. These are called ‘indel’ errors. The rate of substitution and indel errors 

depend on the sequencing technology. It can be as high as 15% for Pacific Biosciences and 

Oxford Nanopore sequencing to lower than 1% for Illumina sequencing (Schirmer et al., 

2016; Weirather et al., 2017). Other sequencing errors include “adapter contamination” and 

“chimeric reads”. Adapter readthrough is when the sequencing process reads through the 

end of DNA fragment and into the adapter sequence resulting in a portion of adapter 

sequence to remain fused with the read (Martin, 2011), while chimeric reads are formed by 

accidental fusion of two different DNA fragments (drive5.com/usearch/manual/chimeras). 
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Errors in genome assemblies 

The outcome of whole-genome sequencing is readouts of the DNA fragments as a series of 

‘A’, ‘T’, ‘G’, and ‘C’. Depending on the sequencing technology, the reads may be of fixed 

length, as in Illumina sequencing, or of variable length as in Pacbio and Oxford Nanopore 

sequencing. Genome assembly works by aligning pairs of reads to determine the overlap 

between them. Overlaps between the reads are termed ‘containment’ when all bases in a 

read align with the other, or ‘dovetail’ when the overlap only involves the ends of the reads. 

Put simply, the genome is reconstructed by stitching together reads with dovetail overlaps 

and using both dovetail and containment overlaps to identify and correct sequencing errors 

along the way. This process should ideally give us as many sequences as the number of 

chromosomes in the organism and each base of the sequence would be exactly same as in 

the chromosome. However, except for a few species with very simple genome, this picture 

is far from reality. 

For most eukaryotes, several regions of the genome end up fragmented, missing, or mis-

assembled. This is because eukaryotic genomes are repetitive, meaning we find the exact 

same or near-identical sequences several times in the genome. To understand why repeats 

are problematic, let us assume that the sequenced reads are error free to begin with. Now, if 

the reads are shorter than the length of the sequence that is repeated in the genome, we can 

see how reads from exact copies of the repeat will cluster together during overlap detection. 

Accordingly, the different repeat copies are ‘collapsed’ into one in the assembly and the 

regions containing the other copies of the repeat are split into two. This is most often the 

case when the repeated sequences are interspersed. When the repeat copies are in tandem, 

other copies may be collapsed without fragmentation as commonly observed with large 

stretches of short repeat sequences (such as tandem array of di- and tri-nucleotide motifs). 

Finally, when the repeat copies are near-identical, e.g., with just one base difference 

between them, it is easy to see how the repeat copies can end up being ‘shuffled’ or 

‘rearranged’ in the resulting assembly. If the shuffled repeats had opposing orientations, 

their shuffling can further result in the region between the repeats to be inverted (Phillippy, 

Schatz and Pop, 2008, fig. 4). 
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Sequencing error makes it harder to distinguish between exact or near exact and diverged 

repeats. Consider the ~15% sequencing error rate of Pacific Biosciences or Oxford Nanopore. 

All alignments with identity >70% (100 – 2 x 15) must be considered by the assembler or true 

overlaps may be missed. Now remember how each region of the genome is sequenced 

multiple times. Assuming a random error model (which fits our use case very well), not all 

reads will have an error at the same base. This knowledge is used to correct reads prior to 

assembly. In case of Pacific Biosciences and Oxford Nanopore, read correction can decrease 

the sequencing error considerably, thus allowing us to distinguish between repeat copies 

with up to 2-3% divergence (Koren et al., 2017). Inability to resolve repeat copies beyond this 

limit results in collapse and fragmentation, or rearrangement. Furthermore, a mistake in 

distinguishing repeat copies during error correction can homogenise their reads. (Nurk et 

al., 2020) indicate this can happen but do not provide any details. We can suppose that repeat 

homogenisation will further contribute to collapse and fragmentation, or rearrangement.  

Collapse is the most common reason for missing sequences and assembly fragmentation, 

but not the only contributing factor. For each region of the genome, there must be enough 

reads to reliably distinguish true overlaps from false, repeat or sequencing-error induced 

overlaps. However, biases introduced during library preparation and sequencing can result 

in some regions of the genome to have less reads than the others. If the “read coverage” of a 

region falls below a threshold it may become impossible to reliably reconstruct the region. 

Accordingly, the region will be excluded from the assembly and the surrounding region 

fragmented into two. Ross et al. (Ross et al., 2013) provide a detailed overview of the sources 

of coverage bias. A common reason is polymerase chain reaction (PCR) based DNA 

amplification step during library preparation and sequencing which lower the coverage of 

GC- and AT-rich regions of the genome. GC- and AT-rich regions also tend to have a higher 

proportion of sequencing errors than average. 

Other assembly errors include “split alleles” and “consensus errors”. Split alleles are like the 

opposite of collapse. Regions of homologous chromosomes that are diverged above a certain 

threshold may be assembled twice, one copy for each allele (Hahn, Zhang and Moyle, 2014). 

Consensus errors are residual sequencing errors. Despite error correction of reads and 

afterwards, error correction of the assembled sequences, some sequencing errors make it 
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through, leading to substitution and indel (consensus) errors in the assembly. Finally, efforts 

to place assembled sequences in their chromosomal order using linkage, optical or other 

form of chromosomal maps can result in mis-joins, inversions, and erroneous splitting. 

Impact of assembly errors on genomic analyses 

Errors in genome assemblies reduce the sensitivity and specificity of downstream analyses. 

Genomic regions missing in the assembly are difficult to characterise (Chapter 7). If the 

missing regions are the result of a repeat collapse, reads from the collapsed copy can map to 

the copy present in the assembly and result in small differences between the repeat copies 

to be incorrectly identified as polymorphisms (Vollger et al., 2019). Assembly fragmentation 

can lead to underestimation of synteny relationships (Liu, Hunt and Tsai, 2018). While 

fragmentation, rearrangements, consensus errors and mis-joins can all lead to errors in gene 

prediction (Alkan, Sajjadian and Eichler, 2011; Florea et al., 2011; Denton et al., 2014). Finally, 

split alleles can create the illusion of gene or segmental duplications (Kelley and Salzberg, 

2010). 

Thesis overview 

My thesis is divided into two parts. In Part 1, I present software tools and workflows to 

overcome some of the limitations of genome assemblies. While in Part II, I present two 

collaborative studies on social evolution in ants which provided the inspiration for software 

presented in Part I. 

Part I 

In Chapter 2, I discuss the challenges in evaluating the quality of de novo genome assemblies, 

present new metrics and a tool to overcome some of the limitations. Furthermore, I show 

that fine tuning the parameters of assembly software is an effective way to obtain higher 

quality genome assemblies. 
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In Chapter 3, I present a tool to transfer gene annotations with high confidence to a new, 

improved genome. Furthermore, intermediate output of the tool can also be used to transfer 

variant annotation and other data formats. 

In Chapter 4, I present a graphical interface for the popular BLAST software. Among other 

things, it is useful for qualitative assessment of genome assemblies and gene annotations or 

to characterise regions of interest in newly obtained genomes. 

In Chapter 5, I present a software and related workflows for quality assessment, filtering, 

and manual curation of gene annotations. 

Part II 

In Chapters 6 and 7, I present two studies investigating social evolution in the red fire ants, 

Solenopsis invicta, and in the big-headed ant, Pheidole pallidula. Both species have two types 

of colony organisation, either headed by a single queen or by multiple queens. In 2013, Wang 

and Wurm showed that the social polymorphism in fire ants is linked to a large region of 

suppressed recombination on chromosome 16, akin to Y-chromosome (Wang et al., 2013). In 

2017, I took part in a study led by Rodrigo Pracana to characterise the differences in odorant-

binding proteins (OBPs) between the two social forms of fire ant, an important class of 

proteins responsible for communication in ants (Chapter 6). While for the big-headed ant, 

we investigated if the social polymorphism is linked to a Y-like chromosome similar to fire 

ants (Chapter 7), i.e., does evolution often take the same genomic path towards phenotypic 

convergence? However, the studies were fraught with high-level of assembly fragmentation 

and missing sequences. This set me on the path to understand their cause (presented in this 

chapter) and devise ways to overcome associated challenges (presented in Part I of the 

thesis). 
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Chapter 2: Parameter exploration improves 

the accuracy of long-read genome assembly 

Contributions 

I led the design of the study and did most of the work. For some specific parts of the project, 

I reached out to others for their relevant expertise: Alicja Witwicka performed the test for 

statistical significance, Anindita Brahma performed the test for foreign DNA contaminants, 

Eckart Stolle collected the ants, genotyped them and extracted the DNA. All steps of the 

work were done under the guidance of Yannick Wurm. I wrote the chapter. Eckart provided 

very helpful comments on an initial draft. Yannick provided valuable guidance throughout 

the writing. Everyone involved read and contributed to improving the manuscript later. 

 

The chapter is intended for submission as a Methods article to Genome Research: 

A Priyam, A Witwicka, A Brahma, E Stolle, Y Wurm (in prep)  
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Abstract 

Long-read sequencing is now routinely applied to generate high-quality reference genome 

assemblies. However, datasets differ in repeat composition, heterozygosity, read lengths and 

error profiles. The assembly parameters that provide the best results for any particular 

dataset could thus differ from the default settings of the assembly software. To determine 

the potential benefits of optimising assembly, we generated 44x genome coverage of Pacbio 

long-molecule sequences for the invasive red fire ant Solenopsis invicta. From this dataset, we 

generated 36 assemblies using the Canu software by systematically varying three key 

parameters that affect how the software handles raw sequence reads. We compared the 

generated assemblies using four complementary metrics: contiguity, presence of expected 

single-copy genes, resolved assembly length, and concordance with independently 

generated short Illumina sequences. We find that the assemblies vary considerably in terms 

of all four metrics, and that more than half of the parameter combinations led to higher 

assembly qualities than when using default parameters. The best assembly had 22% higher 

contiguity, 12.8% more of the expected single-copy genes, 0.2% higher concordance with 

Illumina sequences and was 1.8 Mb longer than if using default parameters. Our results 

demonstrate the benefits of fine-tuning assembly parameters. Furthermore, we provide a 

practical framework and a generic analysis tool for researchers wanting to pragmatically 

compare and choose among multiple assemblies.  

Introduction 

High-quality genome assemblies are essential for modern biological research (Schneider et 

al., 2017). They serve as the reference for annotating genes and other genomic features  

(Raymond et al., 2018; Shields et al., 2018), identifying genetic and epigenetic variation 

(Kronenberg et al., 2018), and quantifying gene expression (Srivastava et al., 2019). Assemblies 

are in turn crucial for characterizing the genetic architecture of complex traits (Nadeau et 

al., 2016) and patterns of genome structure evolution (Wicker et al., 2018). Unfortunately, 

eukaryotic genome assemblies typically contain major errors. This is because eukaryotic 
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genomes include large amounts of repetitive sequences (Schatz, Delcher and Salzberg, 2010) 

that are difficult to resolve due to limitations of sequencing processes and assembly 

algorithms. The inability to resolve repetitive sequences leads to assembly fragmentation 

(Ye et al., 2011), to collapsing of multiple occurrences of repetitive sequence into fewer 

assembled sequences (Alkan, Sajjadian and Eichler, 2011), and to misassembly of repetitive 

regions (Phillippy, Schatz and Pop, 2008). Such shortcomings of genome assemblies reduce 

the sensitivity and specificity of downstream analyses. For example, assembly 

fragmentation can lead to underestimation of synteny relationships (Liu, Hunt and Tsai, 

2018), and to errors in gene prediction (Alkan, Sajjadian and Eichler, 2011; Florea et al., 2011; 

Denton et al., 2014). Furthermore, when the sequence reads from different copies of a 

repetitive element map to a collapsed representation of the repeat, small differences 

between the repeat copies can be incorrectly identified as polymorphisms (Vollger et al., 

2019).  

Long-molecule sequencing has the potential to dramatically improve genome assemblies 

(Miga et al., 2020). In particular, long reads can capture entire tandem arrays of repetitive 

elements, thus resolving such regions (Koren et al., 2013). Furthermore, single-molecule 

long-read sequencing technologies from Pacific Biosciences and Oxford Nanopore are more 

robust to variation in GC composition than short-read technologies (Rhoads and Au, 2015). 

However, the ability of assembly software to reconstruct the correct genome sequence can 

depend on the dataset (Mikheenko et al., 2018; Kolmogorov et al., 2019) and on the  

algorithmic parameters used (Conte et al., 2017; Minio et al., 2019; Zhang, Jain and Aluru, 

2019). Such variations likely arise because whole-genome sequence datasets differ in 

characteristics including repeat composition, heterozygosity, read lengths and read error 

profiles, whereas assembly software defaults are based on particular datasets. This suggests 

that testing different assemblers and assembly parameters may be advantageous. But how 

can de novo assembly projects apply this knowledge? 

An exhaustive search of the parameter space of most assemblers is impractical because 

assemblers can have dozens of continuous parameters. Fundamentally, assemblers work by 

determining overlaps between pairs of reads and stitching together reads that overlap the 

best (Myers et al., 2000). For the popular Canu and FALCON assemblers, Conte et al.'s work 
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(Conte et al., 2017) suggests that modifying minimum read length and minimum overlap 

length parameters can affect assembly quality. Another parameter that may similarly affect 

assembly quality is the estimate of sequencing error. If the true sequencing error is higher 

than the estimate used by the algorithm, then true overlaps between reads may be missed. 

This would fragment the assembly. Alternatively, if the true sequencing error is lower than 

the estimate used by the algorithm, the number of false overlaps may increase. This can lead 

to assembly fragmentation, collapse, or mis-assembly of repetitive regions. 

Choosing the best of multiple de novo genome assemblies is challenging. An assembly is 

better if it is more contiguous, complete, and accurate. The N50 metric provides a 

straightforward view of contiguity despite lacking direct biological relevance. Similarly, 

testing for the presence and completeness of protein-coding genes from related organisms 

(Simão et al., 2015) or concordance with transcriptomic data (Riba-Grognuz et al., 2011; 

Denton et al., 2014) can indicate completeness and accuracy in genic regions. However, 

genome-wide measures of completeness or accuracy are less immediate. Most projects lack 

datasets that are ideal for such comparisons, including sequences from independent fosmid 

or BAC libraries, high-resolution genetic, optical, or chromatin interaction maps, or a high-

quality reference assembly. Although of lower resolution, independently derived Illumina 

DNA sequences can be used in such cases due to the ubiquity of Illumina sequencing. 

Indeed, mapping of short insert size Illumina DNA sequences can detect structural errors in 

an assembly (Khelik et al., 2020) or provide a base-by-base view of consensus accuracy 

(Thomas and Hahn, 2019). But there is a considerable overhead in applying tools 

implementing such ideas, interpreting their output and summarising them into general 

statements of assembly completeness and accuracy. 

To test the impact of parameter optimisation on assembly quality and to establish a simple 

approach for selecting the best assembly, we obtained Pacbio reads for the red fire ant, 

Solenopsis invicta and generated 36 assemblies using Canu (Koren et al., 2017). This species is 

a model for the study of social behaviour, and a globally invasive pest (Tschinkel, 2006). The 

draft genome assembly for this species (Wurm et al., 2011) has been cited more than 300 times 

despite its high fragmentation (69,511 sequences) and capturing only 79% of the genome 

(estimated to be 450 Mb (Stolle et al., 2019)). Importantly, the fragmentation and the missing 
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sequences affect genomic regions involved in environmental perception (Pracana, Levantis, 

et al., 2017; Venthur and Zhou, 2018), complex behavioural and developmental traits 

(Privman, Wurm and Keller, 2013; Wang et al., 2013; Buechel, Wurm and Keller, 2014; 

Pracana, Priyam, et al., 2017; Martinez-Ruiz et al., 2020), differences between long- and short-

lived individuals, and potential pesticide targets (Venthur and Zhou, 2018). To compare the 

generated assemblies, we used four complementary metrics that characterise assembly 

completeness, contiguity, and accuracy. We show that varying error thresholds for finding 

overlaps between reads greatly improves contiguity and accuracy of Canu assemblies. 

Lastly, we provide a simple, generic tool that can be used to similarly select among multiple 

assemblies. 

Results 

Thirty-six assemblies by varying three key Canu parameters	

We obtained 2.9 million Pacbio reads, totalling 20.2 billion bases (45x genome coverage) 

from a diploid sample of S. invicta (N50 read length of 8,876 bp; Figure 2.S1). We first 

assembled this dataset using default parameters of Canu. We then generated 35 additional 

assemblies to test the effects of three parameters (full details in Table 2.S1). We varied the 

estimated raw overlap error rate, using values corresponding to sequencing error rates of 

12.5%, 13.75%, 15% (default), 16.25%, and 17.5%. We varied the stringency of trimming raw 

reads, requiring a minimum of 4 overlaps (default), a more relaxed setting of 2 overlaps, and 

disabling trimming of raw reads altogether. Finally, we varied the estimated error rate of the 

“corrected reads” generated by Canu using values corresponding to corrected error rates 

between 1.15% and 5.87% (default: 2.25%). We “polished” the consensus sequence of each 

assembly (Chin et al., 2013) removed unresolved haplotypes (Roach, Schmidt and Borneman, 

2018) to minimise the impacts of residual errors on measurements of assembly quality (Table 

2.S2). 
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Measures of assembly contiguity, accuracy and completeness 

To compare the 36 genome assemblies, we obtained four metrics of assembly quality. We 

first calculated NG50, which is the N50 metric normalised by estimated genome size. 

Second, we determined how many of the 4,415 expected single-copy genes are present and 

complete (Simão et al., 2015). Third, we generated and mapped short-read Illumina 

sequences from a PCR-free library from two closely related individuals to each assembly. 

This mapping enabled us to measure the resolved length of each assembly, which we 

defined as the regions of the assembly that have greater than 5-fold coverage but less than 

twice the median coverage of the assembly (Figure 2.S2). Resolved length metric improves 

the total assembly length metric to show how much of the genome is potentially usable for 

analysis through standard approaches and how much is assembler “chaff” (Salzberg et al., 

2012). Indeed, regions with particularly low coverage can contain high amounts of 

sequencing errors, whereas regions with particularly high coverage typically contain 

collapsed repeats. Finally, we measured the number of solidly mapped Illumina reads, 

meaning reads that mapped to the resolved regions in their entirety (i.e., without clipping) 

and within the expected distance and orientation of its mate (i.e., concordantly), as a 

percentage of total reads. Clipped and non-concordant mapping patterns for large numbers 

of reads occur when there are assembly errors such as mis-joins, inversions, collapses, and 

consensus errors (Liu et al., 2015). The reason we exclude unresolved regions is because 

mappings in such regions are noisy: we cannot be sure if the reads truly originated from that 

region. The reason we divide by the number of total reads instead of the number of mapped 

reads is that the former is closer to the ground truth. After all, the entirety of whole-genome 

sequencing output should map to a completed genome assembly. An advantageous side-

effect of following this approach is that the metric simultaneously summarises assembly 

completeness and accuracy in a single number. Furthermore, unlike likelihood-based 

approaches (Rahman and Pachter, 2013), the metric is meaningful in a non-comparative 

context: the value would tend to 100% for a perfect assembly. This makes solid pairs a useful 

metric to show assembly quality in centralised databases. 
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Four complementary metrics reveal extensive variation in assembly 

quality 

We found a 2.3-fold difference in the NG50 metric of contiguity between assemblies (237,734 

bp to 543,457	bp) and 1.4-fold variation in the number of missing or incomplete single-copy 

genes (141 to 202). Furthermore, resolved assembly lengths vary up to 12.6	Mb, i.e., by up to 

~2.8% of genome size. Finally, there was a 2.6% range in the proportion of Illumina read 

pairs that map concordantly to resolved regions of the assemblies. These four 

measurements of assembly quality have positive but weak correlations (average 0.66), 

highlighting their complementarity and the importance of considering multiple measures 

of genome quality (Figure 2.S3). 

To select the best assembly, we summed the ranks of the assemblies in each metric, 

weighted by the complement of the average correlation of the metric with other metrics 

(Figure 2.1). Twenty-three assemblies (64%) had higher overall quality than obtained 

through default parameters. In particular, the best ranked assembly had 17.2% higher NG50 

(518,074 vs 441,945 bp), had 11.3% less missing or incomplete expected single-copy genes (141 

vs 159), had 1.8 Mb higher resolved length and had 0.33% more Illumina reads mapping 

correctly (57.81% vs 57.62%) than the default assembly. This best ranked assembly was based 

on a raw error rate of 13.75%, no trimming of raw reads, and a corrected read error rate 

corresponding to 3.45%.  

In this experiment, the estimated error rate for corrected reads had the most significant 

impact on the overall assembly quality (generalised linear model; p < 10-5), followed by the 

estimated error rate for raw reads (p < 0.05). There was no general trend for the impact of 

raw read trimming on assembly quality (p = 0.5). 
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Figure 2.1: Thirty-six assemblies compared using four measures of assembly quality 

Thirty-six polished genome assemblies ordered on the y-axis from best (top) to worst (bottom) based on the 

weighted sum of their ranks (rightmost panel) in each of the four metrics (other panels). The x-axis shows the 

range of values of each metric, or of the weighted rank in case of the rightmost panel. The assembly generated 

using default parameters is highlighted in yellow. Twenty-three assemblies scored higher than the ‘default’ 

assembly. 

Processing and chromosome-level scaffolding of best assembly for 

use as the reference assembly 

To make the best assembly suitable for use as the reference assembly for the red fire ant, we 

improved the consensus sequence by mapping short read population-sequencing datasets 

(270x genome coverage (Stolle et al., 2019; Martinez-Ruiz et al., 2020)) to correct residual 

sequencing errors (Logsdon, Vollger and Eichler, 2020) and replace rare alleles in the 
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assembly (Ballouz, Dobin and Gillis, 2019). Additionally, we removed likely contaminating 

contigs that appear to be from bacteria, fungi or plants (Table 2.S3). Finally, we ordered and 

oriented the contigs into chromosome-level scaffolds using genetic maps, complemented by 

optical maps, and paired RNA sequencing reads. The resulting assembly captures 347 Mb of 

the fire ant genome in 16 chromosomes, with 10% of the assembly being in 916 unplaced 

contigs (Figure 2.S4). This is the most contiguous, accurate and complete genome assembly 

of the red fire ant Solenopsis invicta (Table 2.S4). A comparison with the draft genome 

assembly of the species shows the inclusion of many more sequences into chromosomes 

(Figure 2.S5). 

Discussion 

Estimates of sequencing error is a key parameter for optimisation 

Although genome assemblers can produce relatively accurate consensus sequences from 

long-molecule sequences, we show that small changes in parameters that indicate estimated 

sequencing errors substantially improve assembly contiguity, completeness and accuracy. 

This is likely because such fine-tuning helps to resolve lower-complexity regions of the 

genome. Our general finding that tuning these parameters improves assembly outcomes 

should similarly apply to other datasets. However, the specific levels of these parameters 

and their impact will depend on dataset specific features including repeat composition of 

the genome and the lengths and the error profiles of sequenced reads. For example, we 

obtained the highest quality assembly from a different fire ant Pacbio dataset by increasing 

the overlap error thresholds for raw reads by 2% and decreasing the overlap error threshold 

for corrected reads by 0.5% (data not shown). 

Tool for comparing genome assemblies and selecting the best one 

Our work also shows the importance of considering multiple metrics that can reveal 

independent aspects of assembly quality. Our approach of weighing the metrics by their 
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relative independence provides a robust framework for comprehensive comparison of 

assembly quality. To simplify the application of our genome comparison approach we have 

created a standalone tool, CompareMyGenomes, that will derive these complementary 

metrics and rank the assemblies based on weighted sum of ranks, producing summary 

tables and figures analogous to our Figure 1. This tool is agnostic to the sequencing 

approach: as inputs it requires a set of genome assemblies, and a set of paired Illumina 

sequences (Supplementary methods). Additional metrics (Mikheenko et al., 2018) can be 

included for ranking and visualisation using simple tabular files. This tool can become key 

for effectively and efficiently obtaining high-quality assemblies for the thousands of species 

whose genomes are now being sequenced. 

Methods 

Sample collection and sequencing 

We collected male pupae of the fire ant Solenopsis invicta from one single-queen colony from 

Campo Grande, Brazil (GPS coordinate: 20°38’46.85”S 50°38’36.58”W, permit number: 

14BR015531/DF). Since the pupae are from a single-queen colony they are full brothers. 

Males of this species are haploid, while the females are diploid. Samples were flash-frozen 

and preserved at -80° centigrade until further processing. Species was confirmed using 

partial sequencing of the mitochondrial cytochrome c oxidase I gene and colony 

organisation (i.e., single- or multiple-queen) was verified using a Gp-9 marker assay (Stolle 

et al., 2019). 

Pacbio sequencing of a pool of 21 haploid brothers for assembly 

We extracted DNA from the twenty-one haploid brothers (whole body) using a CTAB-

phenol-chloroform protocol (Hunt and Page, 1992). From this DNA, the Centre for 

Genomics Research in Liverpool prepared a SMRT library with a size selection of 10 kb and 

sequenced the library using 5 SMRT cells on a Pacbio Sequel (V2 chemistry). 
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Assembly parameters and workflow 

We generated a total of 36 assemblies from the Pacbio sequences, using Canu (version 1.6 

(Koren et al., 2017)). One assembly was generated using default parameters to serve as a 

reference point for all comparisons. The remaining 35 assemblies were generated to test the 

effects of three parameters: overlap error rate for detecting overlaps between raw reads 

(rawErrorRate), minimum number of overlaps required to not trim or split raw reads 

(corMinCoverage), and error rate for detecting overlaps between corrected reads 

(correctedErrorRate). For rawErrorRate we tested the values 0.25, 0.275, 0.30 (default), 

0.325, and 0.35 corresponding to sequencing error rates of 12.5%, 13.75%, 15% (default), 

16.25%, and 17.5%. For corMinCoverage we tested the values 4 (default), 2, and 0. Zero 

disables trimming and splitting of raw reads whereas two represents a more relaxed 

trimming and splitting stringency compared to the default. For correctedErrorRate we 

tested values specific to each combination of rawErrorRate and corMinCoverage. 

Specifically, we used the -correct option of Canu to generate corrected reads for the fifteen 

combinations of rawErrorRate and corMinCoverage. We then estimated error rate of the 

corrected reads by mapping them to the GCF_000188075.1 reference assembly (Wurm et al., 

2011) using minimap2 (2.5-r574 (Li, 2018)) and calculating the total edit distance between the 

reads and the reference divided by the total number of bases mapped. We only considered 

highly conserved, single-copy, protein-coding genes for the calculation. This is because we 

expected that the reads mapping to these regions are extremely unlikely to be mismapped. 

The genes (n=988) were downloaded from Ensembl BioMart matching the criteria: 

orthologous to the nematode C. elegans and without a paralog. Furthermore, because coding 

regions of genes may be shorter than the reads and read mapping tools typically provide 

edit distance of the whole read in the SAM format, we derived the mismatch rate by 

obtaining a pileup of the reads in the regions of interest using samtools (version 1.4.1 (Li et 

al., 2009)). The fifth column of the pileup format provided the number of mismatches and 

the fourth column provided the number of mapped bases. At first, we set 

correctedErrorRate to twice the estimated error rate (Figure 2.S6) and generated fifteen 

assemblies, one for each combination of rawErrorRate and corMinCoverage. However, ten 

out of the first fifteen assemblies came out highly fragmented (N50 < 100 kb). This suggested 
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to us that there is more noise in corrected reads than estimated. Indeed, for the set of 

corrected reads obtained using default parameters our estimate of error threshold deviated 

from the default value by almost 3%. We thus assembled each set of corrected reads twice 

more by increasing the calculated error threshold by 3% and by 6% and generated 30 more 

assemblies. From the initial fifteen assemblies, we only retained five that had N50 > 100 kb 

for further comparison. Overall, we tested values of correctedErrorRate corresponding to 

error rate of corrected reads between 1.15% and 5.87%. 

For all except the default assembly we changed two other parameters from their default 

values. By default, Canu’s read correction step only corrects the longest input reads that 

would represent 40x genome coverage. However, as trimming of raw reads alone can 

discard up to 28% of data, we were apprehensive of losing more and disabled such subsetting 

of input reads by setting corOutCoverage to 100 (canu.readthedocs.io). Additionally, we 

changed the corMhapSensitivity parameter from “normal” to “high” to increase the 

sensitivity of overlap detection between raw reads (Berlin et al., 2015). 

We polished all assemblies and removed unresolved haplotigs from all assemblies prior to 

comparison as residual sequencing errors and “unresolved haplotigs” can impact BUSCO 

and read mapping metrics (Table 2.S2). For polishing, we used raw Pacbio data in BAM 

format with the SMRTLink software suite (version 5.1.0.26412) which takes into account 

quality signals inherent to SMRT sequencing (Chin et al., 2013). To remove unresolved 

haplotigs, we used Pacbio reads with the purge_haplotigs pipeline (commit 0b9afdfd 

(Roach, Schmidt and Borneman, 2018)) which works on the principle that redundantly 

assembled loci will have high sequence similarity to some region of the genome and have 

half the mean genome coverage. Minimap2 (2.5-r574 (Li, 2018)) was used to map Pacbio reads 

to the assemblies; reads shorter than 1000 bp were discarded prior to mapping. Figure 2.S7 

shows coverage histogram of the best assembly before and after running purge_haplotigs. 

Assembly quality metrics and ranking 

For each assembly, we obtained measures of contiguity, completeness and accuracy. First, 

we used quast (version 4.6.1 (Gurevich et al., 2013)) to get the NG50 metric of contiguity. 
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Second, we used BUSCO (version 3.0.1 (Simão et al., 2015)) to determine how many of the 

genes expected to be present in a single copy in Hymenopteran species (n=4,415) are indeed 

present and intact in each assembly. This provides a measure of assembly accuracy and 

completeness in genic regions. For a genome-wide measure of accuracy and completeness, 

we downloaded Illumina reads derived from a brother of the individuals used for Pacbio 

sequencing and from another male of a nearby colony (SRA runs SRX4907869 and 

SRX4907871 respectively (Stolle et al., 2019)). We cleaned the Illumina reads (Supplementary 

methods) and mapped them to the assemblies using default parameters of bwa-mem 

(version 0.7.17 (Li, 2013)). Next, for each assembly, we used mosdepth (version 0.2.6 (Pedersen 

and Quinlan, 2018)) to obtain read depth at each base of the assembly in a BED file. Using 

custom scripts, we then filtered the bases with depth lower than 5x (assembler chaff) or 

higher than twice the median coverage (collapsed regions). The number of bases retained 

after filtering is the resolved length of the assembly, a measure of assembly completeness. 

Next, we used bedtools (version 2.28.0 (Quinlan and Hall, 2010)) to select reads that mapped 

to resolved regions of the genome. Finally, using a custom script, we counted the reads that 

mapped to resolved regions of the genome, were not clipped, and mapped concordantly 

with respect to their mate. The number of solidly mapped Illumina reads as a percentage of 

total reads is a measure of assembly accuracy and completeness. 

To consolidate the four metrics of assembly quality into an overall assembly rank, we first 

ranked the assemblies by each metric. We then calculated Spearman’s rank correlation 

coefficient between pairs of metrics and from this, average correlation of a metric with other 

metrics. Finally, we summed the ranks of the assemblies in each metric, weighted by one 

minus the average correlation of the metric with other metrics (i.e., complement of the 

average correlation of the metric). 

Determining significance of assembly parameters 

We modelled the overall assembly rank as a function of the three assembly parameters 

(Figure 2.S8). Interaction terms were removed from the model in a stepwise procedure, 

based on their level of significance. To ensure that the data fit the assumptions of a linear 



 

31 

 

model, we inspected homoscedasticity, multicollinearity, the relationship between residuals 

and predicted values, and recognised them as satisfactory across the model. 

Removal of residual sequencing errors and rare alleles from the best 

assembly 

To remove residual sequencing errors and rare alleles from the best assembly we used the 

Pacbio reads and eighteen Illumina whole-genome sequence datasets: all thirteen “bigB” 

labelled SRA runs from BioProject PRJNA542606 (Martinez-Ruiz et al., 2020) and five such 

SRA runs from BioProject PRJNA396161 (Stolle et al., 2019). First, we cleaned the Illumina 

reads as described in the “quality control of Illumina reads” section. Next, we mapped the 

cleaned Illumina reads to the assembly using bwa-mem (version 0.7.17 (Li, 2013)). Third, we 

mapped the raw Pacbio reads to the assembly using minimap2 (version 2.17 (Li, 2018)); reads 

shorter than 1000 bp were discarded prior to mapping. Finally, we used pilon (--fix 

snps,indels; version 1.23 (Walker et al., 2014)) on the assembly and the resulting alignments 

to generate a polished assembly. 

Identification of foreign DNA in the best assembly 

To identify foreign DNA in the best assembly we used Kraken2 (version 2.0.8 (Wood, Lu and 

Langmead, 2019)) to compare the contigs to NCBI’s non-redundant databases of nucleotide 

sequences (downloaded on April 22, 2020) and 231 new insect viral sequences from the 

literature (Käfer et al., 2019). 

Ordering and orienting contigs 

To assign the polished and filtered contigs to one of the sixteen fire-ant chromosomes, we 

generated genetic maps from RAD sequencing (RAD-seq) of seven families (Wang et al., 

2013), and complemented them with contig connectivity information derived from Bionano 

optical maps (Stolle et al., 2019) and from RNA sequencing of multiple tissue types and 

developmental stages (Calkins et al., 2018) all SRA runs from BioProjects PRJNA542606 
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(Martinez-Ruiz et al., 2020), PRJNA422376 (Calkins et al., 2018), PRJNA266847, and 

PRJNA393960. These were then input to ALLMAPS (version 0.8.12 (Tang et al., 2015)) to order 

and orient the contigs; all datasets were equally weighted to reduce propagating biases of 

any one dataset. 

To create genetic maps, we first demultiplexed the RAD-seq reads using a custom script and 

cleaned the demultiplexed reads using default parameters of stacks2 (version 2.5 (Rochette, 

Rivera-Colón and Catchen, 2019)). Second, for each family, we mapped the cleaned RAD-

seq reads to the assembly using bwa-mem (version 0.7.17 (Li, 2013)) and genotyped the 

individuals using stacks2 (-X "populations: -e ecoRI --vcf"). The VCF output of stacks 

contained only bi-allelic sites. Next, for each family, we plotted the number of called sites 

for each individual on x-axis and the corresponding number of homozygous sites on the y-

axis (Figure 2.S9). Because the individuals are haploid, we expect an almost 1:1 correlation 

between the number of called sites and the number of homozygous sites. Based on the plot, 

we eliminated individuals that were 2 standard deviations away from the regression line. 

We additionally removed individuals that jumped out as having too few called sites. Next, 

we filtered variant sites based on the number of missing observations (because the 

individuals are haploid males, we treated heterozygous calls as missing observation), mean 

site depth, mean genotype quality, and minor allele frequency. The respective thresholds 

were chosen by inspecting a frequency histogram of each parameter for each family and 

testing several values (Figure 2.S10-S13). We found a suitable threshold for the number of 

missing observations to be around 25-30% of the number of individuals in the family, for 

mean site depth to be around 99th percentile, for mean genotype quality to be around 10th 

percentile, and for minor allele frequency to be either around 0.38 or 0.10. Next, we phased 

the filtered genotypes using a haplotype doubling method (Wang et al., 2013) and converted 

the phased and filtered genotypes matrix to a format suitable for MSTmap (downloaded on 

December 17, 2019  (Wu et al., 2008)). For MSTmap, we used the distance_function kosambi 

and population_type DH for all the families and family specific values for the parameters 

cutoff_p_value and missing_threshold, ranging from 10-6 to 10-10 for cutoff_p_value and either 

0.25 or 0.30 for missing_threshold. The variant sites clustered into expected 16 linkage 

groups for six out of the seven families. However, one family had very few markers: only 389 

while the other families had between 5,000 and 17,000 markers. We discarded it. Linkage 
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groups from the five remaining families were then converted to ALLMAPS compatible 

format. Scripts used for linkage map creation and conversion to ALMMAPS format, 

including from the steps below are available at the following GitHub repository: 

github.com/wurmlab/to_allmaps.  

For Bionano optical maps, we first scaffolded the assembly using hybrid scaffolding option 

of IrysView software using the aggressive preset (version 2.5.1). Next, we used 

bionano2Allmaps.pl script (github.com/tanghaibao/jcvi/issues/37) to convert contig 

connectivity information from IrysView’s output to ALLMAPS compatible format. We then 

eliminated paths with less than four markers. 

For RNA-seq data, we mapped them to our assembly using bwa-mem (-M; version 0.7.17 (Li, 

2013)) and eliminated reads that mapped to more than one location in the genome 

(bioinformatics.stackexchange.com). Next, we generated ab initio gene predictions using 

AUGUSTUS (--gff3=on --species=fly; version 3.2.3 (Stanke et al., 2008)). Next, we used 

AGOUTI (version 0.3.3-25-ga7e65d6 (Zhang, Zhuo and Hahn, 2016)) to generate contig 

connectivity information from read mappings and ab initio gene predictions. Finally, we 

used a custom script to convert AGOUTI’s output to ALLMAPS compatible format. 

Data availability  

The Pacbio data that were used to generate the 36 assemblies as well as the scaffolded best 

assembly are available from NCBI (BioProject PRJNA609320). 

The code written for this project is split into two repositories. First, a tool to compare 

genome assemblies: github.com/wurmlab/CompareMyGenome. Second, a set of scripts to 

create linkage maps, and to convert linkage maps and contig connectivity information from 

Bionano and RNA-seq data to ALLMAPS compatible format: 

github.com/wurmlab/to_allmaps. 
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Supplementary methods 

CompareMyGenomes tool usage 

docker run wurmlab/comparemygenomes --help 

 

CompareMyGenomes 1.0 

Calculate measures of contiguity, completeness, accuracy and rank the 

assemblies. 

 

comparemygenomes --genome-size 450000000 --busco-lineage hymenoptera 

directory_containing_assemblies_and_illumina_reads/ 

 

-g, --genome-size  Expected genome size in base pairs. 

-b, --busco-lineage One of the 44 BUSCOv3 lineages, e.g., mamalia, 

insecta, nematoda and so on. Required, unless 

--rank-only is specified. 

--rank-only   Don’t compute metrics. Only rank assemblies based 

on given tabular files. 

--help    View this message 

Comparison of Canu, flye, and wtdbg2 assemblers 

Assemblies generated by three popular long-read genome assembly software: Canu (Koren 

et al., 2017), flye (Kolmogorov et al., 2019), and wtdbg2 (Ruan and Li, 2020) were compared 

using our CompareMyGenomes tool (Table 2.S5). Assemblies were generated using default 

parameters. In case of Canu, we additionally used the purge_haplotigs pipeline (Roach, 

Schmidt and Borneman, 2018) to remove unresolved haplotigs which is typical of Canu 

assemblies. None of the assemblies were polished. 

wtdbg2 generated the most contiguous assembly, but the assembly generated by Canu had 

the most resolved regions (13 Mb more than the next best) and considerably higher 
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proportion of solidly mapped Illumina reads (57.62% compare to 55.25% of the runner up), 

followed by Flye. There is a 0.01% difference in the BUSCO score (Simão et al., 2015) of Canu 

and Flye assemblies. However, this difference is minor and likely to be eliminated by any 

subsequent polishing steps. 

Quality control of Illumina reads 

We filtered and trimmed Illumina datasets prior to use. First, we removed optical duplicates 

using clumpify.sh (version 37; biostars.org). Second, we removed reads with mean quality 

threshold lower than 15 using htqc (Yang et al., 2013). Third, we compared the mean base 

quality per cycle, per tile to the mean base quality of that cycle across all tiles to test for air-

bubbles becoming trapped in the flow cell (sequencing.qcfail.com). For this, we obtained 

the difference between per-cycle mean base quality for a tile and the per-cycle mean base 

quality for all tiles from FastQC’s text output (version 0.11.5; 

bioinformatics.babraham.ac.uk). Where this difference was greater than 4, we changed the 

corresponding base in the reads to ‘N’. This was done by creating a BED file of positions 

from the tile and cycle information and then using seqtk (version 1.2; github.com/lh3/seqtk) 

to convert bases at the positions specified in the file. Next, we considered that reads with 

multiple occurrences of low-quality bases may be problematic. To eliminate such reads, we 

turned bases with quality scores lower than 12 to ‘N’ using seqtk (reads with excessive Ns are 

removed in the next step). Finally, we used cutadapt (version 1.13 (Martin, 2011)) to trim 

adapter sequences, to trim low-quality bases from 3' and 5’ ends, to trim any leading and 

trailing ‘N’s, to eliminate after trimming reads shorter than 50 bp and those with more than 

4 ‘N’s. For the Illumina sequences used for assembly comparison, we retained 64,850,542 

pairs of 50-150 bp reads (i.e., 79.23% of sequenced bases) after filtering. 
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Supplementary figures 

 

 

Figure 2.S1: Length distribution of raw Pacbio reads 

Read lengths on x axis vs count of read lengths on y axis. The black vertical line is the N50 read length (8,876 

bp). 
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Figure 2.S2: Contig length vs average coverage 

Distribution of contig lengths (x axis) and mean read depths (y axis) of the best assembly. The axes are log 

scaled. Reads were mapped using default parameters of minimap2 (version 2.17 (Li, 2018)). Average read depth 

of contigs were calculated using mosdepth (version 0.2.6 (Pedersen and Quinlan, 2018)). Some contigs have 

average depth as high as 8000x. Contigs with average depth higher than twice the median coverage (36x) are 

likely to contain collapsed representation of larger regions of the genome. Contigs with average depth lower 

than 5x are likely to contain higher amounts of sequencing error. This is because the SMRTLinks polishing 

step, which is critical for long-read genome assemblies, excludes regions with coverage lower than 5x. 
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Figure 2.S3: Correlation between the metrics 

Each panel shows the values taken by a pair of metrics on the x and the y axes, and Spearman’s rank correlation 

coefficient (⍴) between the metrics. 
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Figure 2.S4: Length vs coverage after scaffolding 

Distribution of sequence lengths (x axis) and mean read depths (y axis) of the best assembly, like Figure 2.S2, 

but after scaffolding. Sequences longer than 10 Mb are the chromosomes, while the cloud of sequences on the 

left are unplaced contigs. 
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Figure 2.S5: Dot-plot of the presented assembly and the draft assembly 

Dot-plot of the presented assembly (x axis) against the draft fire ant genome (y axis). The assemblies were 

aligned using minimap2 (version 2.17; -c -P -k19 -w19 -m200 (Li, 2018)) and visualised using dotPlotly 

(github.com/tpoorten/dotPlotly; -m 100000). Most breaks in collinearity are along the x axis. These show 

inclusion of new sequences in the presented assembly. 
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Figure 2.S6: Estimated error rate of corrected reads 

The estimated value of the parameter correctedErrorRate (y axis) against rawErrorRate (x axis) and trimming 

stringency (shape). 
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Figure 2.S7: Coverage histogram before and after removing unresolved haplotigs 

Coverage histogram of the best assembly before removing unresolved haplotigs (left) and after. There is a clear 

enrichment of bases under 18x coverage (half the median coverage) which is largely resolved after using 

purge_haplotigs.  
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Figure 2.S8: R general linear model output  
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Figure 2.S9: Proportion of genotype calls against proportion of homozygous calls 

Proportion of individuals genotypes per site (x axis) against proportion of homozygous individuals per site (y 

axis).  
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Figure 2.S10: Histogram of number of genotype individuals at each site 

Number of individuals genotyped per site (x axis) against their count (y axis), for each of the seven families 

(M013 - P034). Black vertical line shows the threshold chosen for each family. 
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Figure 2.S11: Histogram of mean genotype read depth of sites 

Mean read depth of genotypes per site (x axis) against their count (y axis), for each of the seven families (M013 

- P034). Black vertical line shows the threshold chosen for each family. 
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Figure 2.S12: Histogram of mean genotype quality of sites 

Mean genotype quality per site (x axis) against their count (y axis), for each of the seven families (M013 - P034). 

Black vertical line shows the threshold chosen for each family.  
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Figure 2.S13: Minor allele frequency spectrum of sites 

Minor allele frequency per site (x axis) against their count (y axis), for each of the seven families (M013 - P034). 

Black vertical line shows the threshold chosen for each family.  
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Supplementary tables 

Table 2.S1: Assembly parameters tested 

We tested the effect of varying overlap error thresholds for raw and corrected reads, and stringency of 

trimming of raw reads (first three columns). Two other parameters were changed from default values when 

generating these assemblies, the sensitivity of overlap detection and the proportion of reads to use for 

correction (last two columns). 

 

rawErrorRate 
Overlap error 
threshold for 
raw reads 
(twice the 
estimated 
sequencing 
error rate) 

corMinCoverage 
Stringency of 
trimming raw 
reads  

correctedErrorRate 
Overlap error 
threshold for 
corrected reads 
(twice the estimated 
error rate of 
corrected reads) 

corOutCoverage 
What proportion 
of input reads to 
correct 

corMhapSensitivity 
Sensitivity level of 
finding overlaps 
between raw reads 

0.300 4 0.045 40x normal 
0.250 0 0.05378 100x high 
0.250 0 0.08378 100x high 
0.250 0 0.11378 100x high 
0.275 0 0.03947 100x high 
0.275 0 0.06947 100x high 
0.275 0 0.09947 100x high 
0.300 0 0.03132 100x high 
0.300 0 0.06132 100x high 
0.300 0 0.09132 100x high 
0.325 0 0.02682 100x high 
0.325 0 0.05682 100x high 
0.350 0 0.02346 100x high 
0.350 0 0.05346 100x high 
0.250 2 0.04622 100x high 
0.250 2 0.07622 100x high 
0.275 2 0.04515 100x high 
0.275 2 0.07515 100x high 
0.300 2 0.04489 100x high 
0.325 2 0.04507 100x high 
0.350 2 0.04518 100x high 
0.250 4 0.04313 100x high 
0.250 4 0.07313 100x high 
0.275 4 0.04281 100x high 
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0.275 4 0.07281 100x high 
0.300 4 0.04319 100x high 
0.300 4 0.07319 100x high 
0.325 4 0.04342 100x high 
0.325 4 0.07342 100x high 
0.350 4 0.04352 100x high 
0.350 0 0.08346 100x high 
0.300 2 0.07489 100x high 
0.350 2 0.07518 100x high 
0.350 4 0.07352 100x high 
0.325 2 0.07507 100x high 
0.325 0 0.08682 100x high 

 

Table 2.S2: Improvements made by polishing and haplotigs removal 

Improvements made by each round of polishing and haplotype filtering. 

 Raw contigs Pacbio polished 
contigs 

Illumina polished 
contigs 

Haplotype-
filtered 

General error rate 1.34 1.30 1.26 - 

%reads with insertion 6.48% 3.91% 1.79% - 

%reads with deletion 2.75% 2.82% 2.19% - 

Mean mapping 
quality 

25.73 27.49 28.24 - 

BUSCO D:3.4%,F:1.3%,M:0
.7% 

D:2.2%,F:0.8%,M:0.4
% 

D:2.3%,F:0.5%,M:0.
5% 

D:0.7%,F:0.6%,M:0
.6% 

 

Table 2.S3: Contaminant species identified in the best assembly 

Kingdom Species 

Bacteria Bordetella bronchialis (taxid 463025) 

Bacteria Streptococcus respiraculi (taxid 2021971) 
Bacteria Pseudomonas silesiensis (taxid 1853130) 

Bacteria Streptomyces albus (taxid 1888) 

Bacteria Stappia sp. ES.058 (taxid 1881061) 

Bacteria Streptomyces griseoviridis (taxid 45398) 
Bacteria Agrobacterium (taxid 357) 

Bacteria Terrabacteria group (taxid 1783272) 

Bacteria Euhalothece natronophila Z-M001 (taxid 522448) 
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Bacteria Streptomyces sp. CC0208 (taxid 2306165) 
Bacteria Pontibacter korlensis (taxid 400092) 

Bacteria Cardiobacterium hominis (taxid 2718) 

Bacteria Legionella anisa (taxid 28082) 

Bacteria Streptomyces griseoviridis (taxid 45398) 
Bacteria Bradyrhizobium symbiodeficiens (taxid 1404367) 

Fungi Pichia membranifaciens NRRL Y-2026 (taxid 763406) 

Fungi Aspergillus (taxid 5052) 

Plants Ipomoea trifida (taxid 35884) 
Plants Vigna unguiculata (taxid 3917) 

Plants Gossypioides kirkii (taxid 47615) 

Plants Populus trichocarpa (taxid 3694) 

Plants Gossypium raimondii (taxid 29730) 
Plants Brassica oleracea (taxid 3712) 

Plants Viridiplantae (taxid 33090) 

Plants Arachis hypogaea (taxid 3818) 

Plants Brassica rapa (taxid 3711) 
Plants Solanum pinnatisectum (taxid 50273) 

Plants Gossypioides kirkii (taxid 47615) 

Plants Vigna unguiculata (taxid 3917) 

Plants Sesamum indicum (taxid 4182) 
Plants rosids (taxid 71275) 

Plants Mesangiospermae (taxid 1437183) 

Plants Hordeum vulgare subsp. vulgare (taxid 112509) 

Plants Cannabis sativa (taxid 3483) 

 

Table 2.S4: Comparison of the published fire ant genome assemblies with the presented assembly 

 

 

Unique 
resolved 
length 

NG50 

Complete 
single-
copy 
BUSCO 
genes 

Duplicated 
single-
copy 
BUSCO 
genes 

% Solid 
read pairs 

Additional 
problematic 
sequences 

presented 
assembly 369 Mb 19.8 Mb 97.5% 0.6% 58.02% 16Mb unresolved 

(Yan et al., 
2020) 365 Mb 12.6 Mb 97.0% 1.7% 57.76% 

25Mb unresolved 
17Mb duplicated 
haplotypes 
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(Fontana et 
al., 2019) 328 Mb 7.14 Mb 88.4% 0.3% 51.27% 21 Mb unresolved 

(Wurm et al., 
2011) 333 Mb 0.44 Mb 96.2% 0.3% 51.08% 66 Mb unresolved 

 

Table 2.S5: Comparison of three popular assemblers using the presented CompareMyGenomes tool 

Three popular assemblers compared using our CompareMyGenomes tool. Assemblies were generated using 

default parameters. In case of Canu, we additionally used the purge_haplotigs pipeline to remove unresolved 

haplotigs, which is typical of Canu assemblies. None of the assemblies were polished. Although wtdbg2 

generated the most contiguous assembly, the assembly generated by Canu has the most resolved regions and 

considerably higher proportion of solidly mapped Illumina reads. The 0.01% difference in the BUSCO score 

of Canu and Flye assemblies is minor, and likely to be eliminated by polishing. 

 Resolved length NG50 Completed 
BUSCO 

Solid pairs 

Canu+ 
purge_haplotigs 

366,814,754 bp 441,945 bp 96.4% 57.62% 

Flye 353,678,069 bp 402,671 bp 96.5% 55.25% 

Wtdbg2 320,860,502 bp 502,081 bp 68.6% 48.12% 
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Chapter 3: Rapid transfer of annotation to 

de novo genome assemblies 

Contributions 

Yannick Wurm identified the conceptual need for the software. I researched the specifics of 

chain file creation, limitations of UCSC liftOver, implemented the software, and wrote the 

chapter. Rodrigo Pracana provided very helpful feedback on an initial draft of the chapter. 

 

The chapter is intended for submission as a brief communication to Bioinformatics: 

A Priyam, R Pracana, Y Wurm (in prep)  
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Introduction 

Reference genomes are subject to change. This creates the need to transfer coordinates of 

genes, single nucleotide polymorphisms (SNPs) and other annotations (a point coordinate 

or a coordinate interval) to a new genome assembly. For model organisms, this is commonly 

done using the programs liftOver (Kuhn, Haussler and Kent, 2013) or CrossMap (Zhao et al., 

2014) and a “chain file” (Kent et al., 2003) downloaded from UCSC Genome Browser. Chain 

files describe regions of similarity between the two genome assemblies. Using chain files, 

the tools liftOver and CrossMap can transfer annotations stored in a variety of file formats. 

Alternatively, researchers may use NCBI’s Remap web service (ncbi.nlm.nih.gov). However, 

both the services are limited in terms of the species and the genome builds they can transfer 

the coordinates between. This is a major disadvantage for researchers working with other 

organisms or custom genome builds. Furthermore, the tools liftOver and CrossMap do not 

correctly process hierarchical or connected features in Generic Feature Format (GFF) files, 

a popular file format for gene annotations. This can result in non-biologically meaningful 

output such as coding sequence annotation without a parent transcript annotation, or the 

coding sequence of a transcript split across two sequences. 

We present flo, a command line tool to generate chain files suitable for coordinate transfer 

between genome assemblies of the same or very closely related species, and to transfer genes 

and other annotations in Generic Feature Format (GFF) files. The generated chain file can 

in turn be used with liftOver and CrossMap to transfer annotations in BED, BAM, VCF and 

other file formats supported by the two. 

Methods 

Chain file generation 

Flo creates chain file following the process described in Kent 2003. Briefly, the two genome 

assemblies are first aligned to identify short segments of high sequence similarity. These 
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segments are then ‘chained’ to form longer alignments using a scoring scheme that allows 

for large gaps that can span local insertion or inversion events. Next, the gaps in the longest 

chain at each locus are filled by progressively stacking shorter chains and trimming the parts 

of the shorter chain that overlap in a process known as ‘netting’. The resulting chains cover 

each locus of the genome exactly once and can be used for annotation lift over. 

We use BLAT (Kent, 2002) to align the two genome assemblies. The alignments are chained 

and netted using the programs axtChain, chainSort, and chainNet (Kent 2003). The chains 

retained after the netting process are extracted for lift over using netChainSubset. To speed 

up the alignment and the chaining process, we split the target genome assembly into a user 

defined number of files and process them in parallel using GNU Parallel (Tange, 2011). To 

further speed up the alignment process, we split the query sequences (target assembly) into 

5000 bp chunks and use -fastMap option of BLAT. Finally, only the alignments with identity 

95% or higher are used by default. 

Lift over of annotations in GFF format files 

Feature annotations in the widely used General Feature Format (GFF) file are defined as a 

hierarchy of genomic intervals, each with its associated sequence ontology term and other 

meta data. For example, a gene is defined as an interval containing one or more messenger 

RNA intervals, which are in turn composed of intervals defining exons and parts of coding 

sequences. To capture this hierarchical relationship, we sort the annotations in a GFF file 

by their start coordinates and length and read them into a tree data structure that preserves 

the order of child nodes. The annotations are sorted so that parent intervals are read before 

child intervals. Next, we map the intervals represented by leaf nodes to the new assembly 

using liftOver (-minMatch=0.5 (Kuhn, Haussler and Kent, 2013)) and the chain file generated 

above. The node is considered mapped if 50% or more of the interval represented by the 

node mapped to the new assembly. We then consider the parents of the leaf nodes: If one or 

more child of a parent node mapped to the same sequence, strand, and in the same order on 

the target assembly, we mark the parent node as mapped and update its sequence identifier, 

strand, and start and end coordinates based on the child nodes that mapped. Otherwise, the 

node and all its children are recursively marked as unmapped. We repeat this process with 
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the parents of the parent nodes, their parents, and so on, till all the nodes have been 

processed. Finally, we write the nodes that mapped and those that did not to two output GFF 

files. 

Quality control of transferred gene annotations 

Flo reports both full-length and partial mappings of annotations in a GFF file. However, 

partial matches of annotations may not always be biologically meaningful. For example, a 

partially mapped gene annotation may be frameshifted or yield a chimeric protein product 

in other ways. Even full-length match of a gene may contain a nonsense mutation resulting 

in truncated protein product, or the gene may have mapped to a paralog. Thus, as a final 

step we compare the translated amino-acid sequence of gene annotations before and after 

mapping and report the difference in their length and the Levenshtein distance between the 

sequences. Researchers can use this table output to obtain a subset of gene annotations with 

the desired level of confidence: mappings that yield exactly identical protein-product, or up 

to those with one mismatch, and so on. For example, partial matches can serve as a useful 

bait in RNA sequencing studies, while comparative analyses may prefer identical mappings. 

Furthermore, this arrangement allows future investigation of why some gene models do not 

yield exactly identical sequences and can hint at errors in the target assembly or annotation 

errors in the source assembly. Although, some differences will necessarily be a result of 

differences between the samples from which the assemblies are derived. 

Results 

We tested flo on genome assemblies of the red fire ant (Wurm et al., 2011) and with  

annotations downloaded from NCBI. First, annotation transfer between the draft assembly 

(Wurm et al., 2011) and itself resulted in 99.9% gene models to be mapped with exactly 

identical protein sequence, as it should. Next, we transferred annotations from the draft 

assembly to the genome assembly generated in the previous chapter. A match was reported 

for 96.5% of all intervals and all transcripts. 88.7% of all transcripts had no frameshift or 
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missense mutations. 64.4% of all transcripts yielded identical protein product, 13.6% had up 

to one mismatch, 7.8% had up to five mismatches, and 3% of the transcripts had more than 

five mismatches. 4.9% of all transcripts mapped with a truncated protein product. 

Interestingly, 2.9% of the transcripts had longer protein product after mapping, suggestive 

of a frameshift error in the source annotation. The remaining 3.5% of the transcripts either 

did not map at all, i.e., were deleted in the new assembly, or mapped inconsistently, i.e., their 

child features mapped to different sequences, strand, or were not in the same order as input. 

The entire process ran in less than 200 CPU hours for the moderately sized 450 Mb fire ant 

genome. Whole-genome alignment was the most time-consuming step. Increasing BLAT’s 

minimum identity threshold from 95% to 98% reduced the runtime by 5-fold with a modest 

loss of about hundred features.  

Discussion 

We present flo, a command line tool to generate chain files and lift over annotations in GFF 

format to a new assembly. The source and the target genome assemblies, the number of 

parallel processes to run, and the GFF files containing annotations on the source assembly 

are provided through a configuration file. Flo transfers all annotations in GFF files including 

protein-coding genes, non-coding RNA, transfer RNA and others. The software provides a 

detailed breakdown of annotations that couldn’t be lifted and why. For protein-coding 

genes, flo additionally generates a table describing similarity between the input and output 

protein product for quality filtering. If no GFF files are given, flo only generates the chain 

file. Users can optionally specify BLAT parameters to use for chain file generation and use 

the included helper script to download the required dependencies. 

We show that flo achieves high sensitivity on the fire ant genome and runs relatively fast. In 

our experience, flo runs faster and achieves higher sensitivity compared to approaches that 

perform spliced alignment of a gene’s amino-acid sequence to the target genome such as 

exonerate (Slater and Birney, 2005) or spaln (Gotoh, 2008). Although we did not specifically 

test inter-species annotation transfer, we expect the approach will work for closely related 
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species that have a high level of similarity between the genomes. Finally, how flo compares 

to approaches such as liftOff (Shumate and Salzberg, 2020) remain to be seen. 

Data availability 

flo is available at https://github.com/wurmlab/flo. Fire ant annotations transferred to the 

new assembly are available on request. 
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Chapter 4: Sequenceserver: a modern 

graphical user-interface for BLAST 

Contributions 

Yannick Wurm conceived the software and outlined the software development and the 

user-experience design principles detailed in Methods. I created the software, including the 

underlying architecture, wrote 90% of the code, reviewed and integrated code contributed 

by co-authors, directly supervised the work of seven co-authors, contributed to the user-

interface design (how the software looks) and to the software development and the user-

experience design principles. Yannick Wurm and I wrote the manuscript. Ben Woodcroft 

provided significant input on an initial draft of the manuscript. All authors read and 

contributed to improving the manuscript later. 

 

A variation of the chapter has been published as brief communication: 

A Priyam, B Woodcroft, V Rai, I Moghul, A Munagala, F Ter, H Chowdhary, I Pieniak, L 

Maynard, M Gibbins, H Moon, A Davis-Richardson, M Uludag, N Watson-Haigh, R Challis, 

H Nakamura, E Favreau, E Gómez, T Pluskal, G Leonard, W Rumpf, Y Wurm (2019) 

"Sequenceserver: a modern graphical user interface for custom BLAST databases" 

Molecular Biology and Evolution 36(12): 2922–2924.  
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Introduction  

The dramatic drop in sequencing costs has created many opportunities for individuals and 

groups of researchers to generate genomic or transcriptomic sequences from previously 

understudied organisms. Many research questions require small- or large-scale sequence 

comparisons, and BLAST (Basic Local Alignment Search Tool) is the most established tool 

for many such analyses (Altschul et al., 1990; Camacho et al., 2009). Unfortunately, BLAST 

analysis of new data can be challenging. There are delays before new data are submitted to 

and become publicly available on central BLAST repositories such as the NCBI (National 

Center for Biotechnology Information), and only small queries are feasible on such 

repositories. BLAST can be downloaded and installed locally, but its usage can be 

challenging for researchers without experience of command-line interfaces. Finally, 

commercial software to overcome such hurdles is too costly for many laboratories. 

Here, we present Sequenceserver, a free graphical interface for BLAST designed to increase 

the productivity of biologist researchers performing and interpreting BLAST searches on 

custom data sets, and of bioinformaticians setting up shared laboratory or community 

databases. It has a user-centric focus (Garrett, 2010) on accompanying researchers through 

their work process. Below, we provide an overview of Sequenceserver features that facilitate 

BLAST query submission and interpretation. 

Results 

Assisted installation and BLAST query submission 

Installing Sequenceserver on computers running macOS or Linux is typically rapid, 

requiring only one or few commands (see online documentation). If necessary, 

Sequenceserver automates the download of BLAST (Camacho et al., 2009) binaries and can 

manage the conversion of FASTA files to BLAST databases. A user accesses 

Sequenceserver’s graphical interface in a web browser at	localhost:4567	(Figure 4.1A). All 
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detected BLAST databases are automatically listed here. The user types, pastes or drag-and-

drops FASTA format query sequences into a text-field (Figure 4.1A). To prevent common 

errors, an alert message is shown, and query submission is disabled if the query is invalid 

(e.g., combining nucleotide and protein sequences). The user then selects databases. The 

appropriate basic BLAST algorithm will automatically be used (Figure 4.2). When multiple 

algorithms are appropriate, a pull-down in the BLAST submission button allows the user to 

toggle between them. An “advanced parameters” field provides access to all standard 

BLAST parameters. 

 

 

Figure 4.1: Sequenceserver’s user-interface and usage statistics 

(A) Partial screenshot of the query interface. Numbers circled in red highlight the steps involved and some 

specific features. (1) Three or more sequences were pasted into the query field (typewriter font; only the 

identifier is visible for the third sequence); a message confirms to the user that these are amino acid sequences. 

(2) The Swiss-Prot protein database was the first database to be selected. As a result, additional database 

selections are limited to protein databases; nucleotide databases are disabled. (3) Optional advanced 

parameters were entered which constrain the results to the ten strongest hits with	E-values stronger than 10−10. 

(4) The BLAST button is automatically activated and labelled “BlastP” as this is the only possible basic BLAST 

algorithm for the given query-database combination. As the user’s mouse pointer hovers over the BlastP 

button, a tooltip indicates that a keyboard shortcut exists for this button. (B) Partial screenshot of a 

Sequenceserver BLAST report. An interactive version of this figure is online 
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at	sequenceserver.com/paper/resultsinteractive	(last accessed August 25, 2019). Three amino acid sequences 

were compared against the Swiss-Prot database using BlastP with an	E-value cutoff of 10−10	and keeping only 

the ten strongest hits per query. This screenshot shows a portion of the results for the first query. Numbers 

circled in red highlight some specific features of this report. (1) An index overview summarizes the query and 

database information and provides clickable links to query-specific results. (2) Results for the first query are 

shown. These include a graphical overview indicating which parts of the query sequence align to each hit, a 

tabular summary of all hits, and alignment details for each hit. (3) The first hit is selected for download; its 

alignment details have been folded away. (4) The user is studying the second hit; the mouse pointer hovers 

over the link to the hit’s UniProt page. (C) Sequenceserver usage as of June 11, 2019. These include download 

statistics from	rubygems.org/gems/sequenceserver, Google Analytics statistics for	sequenceserver.com, and 

citation statistics from	app.dimensions.ai/details/publication/pub.1085102830, and GitHub statistics 

from	github.com/wurmlab/sequenceserver. 

 

 

 

 

Figure 4.2: Automatic BLAST algorithm selection 

BLAST includes five basic algorithms (right column). Arrows indicate how Sequenceserver automatically 

selects an appropriate BLAST algorithm based on the sequence types of the query (left column) and selected 

databases (middle column). For the first three combinations of query and database types, only one algorithm is 

possible. The circle indicates that for nucleotide query and nucleotide database, the user can choose between 

BLASTN and TBLASTX. 
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Usage by individual researchers and as part of community databases 

Usage statistics including downloads, preprint citations, GitHub, and mailing list 

participation (Figure 4.1C) indicate that Sequenceserver is extensively used for molecular-

genetic research on emerging model organisms (Table A1.1). For example, Sequenceserver 

installations on personal computers helped characterize the evolution of tunicate genomes 

(Blanchoud et al., 2018), fire ant olfactory genes (Pracana, Levantis, et al., 2017), and loci 

affecting Sorghum shoot architecture (McCormick, Truong and Mullet, 2016). 

Sequenceserver has also been used to analyse human prostate cancer genomes (Seim et al., 

2017) and to identify bacteria affecting shelf life of milk (Reichler et al., 2018). 

Importantly, Sequenceserver also represents a main querying mechanism for more than 50 

community genome databases (Table A1.2), including the PHI-base database of genes 

underpinning pathogen–host interactions (Winnenburg et al., 2006), an initiative to 

sequence 1,000 wild yeast genomes (Shen et al., 2016), and the	reefgenomics.org	coral 

genomics database; last accessed August 25, 2019 (Liew, Aranda and Voolstra, 2016). Such 

community resources typically integrate Sequenceserver as part of larger web servers (e.g., 

Nginx (Reese, 2008)) and customize it by adding links from BLAST hits to genome browsers 

or other gene-specific information. Additionally, many password protected Sequenceserver 

instances exist for unpublished data. 

Outlook 

In creating Sequenceserver, we aimed to respect user-centric design principles, open-

source, and sustainable software engineering practices. Our software is built using Ruby and 

Javascript frameworks commonly used for professional software development. The 

resulting robust architecture and flexibility facilitate customization and integration with 

other tools. This has led to contributions of improvements and bug-fixes by 21 

bioinformaticians unrelated to the initial project; many are now co-authors. Our community 

is testing the ability to import pre-existing BLAST or DIAMOND XML result files (Buchfink, 



 

65 

 

Xie and Huson, 2015), and new manners of visualizing results (Wintersinger and Wasmuth, 

2015; Cui et al., 2016). Such efforts will continue to improve the ability of researchers to 

analyse and interpret genomic data. 

Analytics and A/B testing can provide a data-driven framework for the development of new 

features and user-interface optimisations. For example, we can suppose that a new feature 

or user-interface optimisation should reduce the time it takes to run a BLAST search, or the 

time taken to find matching database sequences on results pages (e.g., how long it takes for 

a user to click on a FASTA download button after the results page has loaded). A random 

sample of users would then be exposed to the new feature, while a control group would 

continue to use the software without any changes. Usage statistics derived from the two 

groups can then be used to tell if the new feature improved or degraded the user-experience 

and by how much. Such an approach has two benefits. First is the reduction of developer’s 

bias due to the large sample size of tens or hundreds of users. This is a rather important 

point as a single developer, or a small development team cannot anticipate all the ways in 

which a global user base comprising of different age groups and backgrounds will perceive 

the software changes. The second benefit is the formalisation of abstract design principles 

into tangible goals (e.g., time taken to find relevant database sequences) that can be more 

easily communicated, discussed, and acted upon. 

A challenge in conducting A/B tests is that our software is typically installed on user’s 

computer for use by an individual or a small group, and maybe seldom updated. However, 

this can be overcome by collaborating with large community databases (Table A1.2). Finally, 

conducting A/B tests will require integration with an analytics software like Matomo 

(matomo.org) that can handle data collection in an anonymised and GDPR compliant 

manner. Integration with analytics software will enable consent-based collection of further 

usage statistics that can help identify a baseline for A/B testing (e.g., randomisation strategy, 

how long to run the test) as well as avenues for software improvements, thus providing a 

complete data-driven framework for iterative evolution of our software. 
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Methods 

Technical implementation details 

We developed Sequenceserver from scratch rather than basing our work on the NCBI’s 

initial Perl/CGI wwwblast wrapper to reduce technical debt (Lehman, 1980). The core of 

Sequenceserver is written in the Ruby language (Flanagan and Matsumoto, 2008) popular 

for creating websites (Ruby, Copeland and Thomas, 2020) and bioinformatics tools (Goto et 

al., 2010), while JavaScript and HTML/CSS are used for layout and interactions in the web 

browser. We use pre-existing tools and libraries to facilitate development: The lightweight 

framework Sinatra (Harris and Haase, 2011) is used to create URL endpoints to load the 

search form and run BLAST searches from the browser. BLAST searches are delegated to 

the compiled command line version of BLAST (Camacho et al., 2009); we use Ox 

(github.com/ohler55/ox) to parse BLAST XML and create the HTML report. Underscore 

(underscorejs.org), HTML5 Shiv (github.com/afarkas/html5shiv), jQuery (jquery.com), 

jQuery UI (jqueryui.com), Webshim (afarkas.github.io/webshim/demos), and Bootstrap 

(getbootstrap.com) libraries create a uniform scripting environment (for dynamic aspects of 

the user interface) and a consistent look-and-feel (for visual layout) across browsers. The d3 

(d3js.org) and BioJS (Gómez et al., 2013) libraries are used respectively for generating the 

graphical overview and the sequence viewing interface. Details regarding versions of the 

different software libraries are indicated in the source code repository at 

github.com/wurmlab/sequenceserver. 

Sustainable software development approach 

We followed six software engineering practices to facilitate and accelerate development 

while increasing robustness, improving the long-term sustainability of the software (Prlić 

and Procter, 2012; Wilson et al., 2014). First, we used an open source and agile development 

approach (Shore and Warden, 2007) involving frequent incremental improvements, peer 

review and frequent deployment on our servers and within the community. Second, we 

structured the software according to the object-oriented programming paradigm (Weisfeld, 
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2013) to cleanly separate different parts of code. Third, we followed two important software 

development principles: “don’t repeat yourself” (DRY) leads to fewer lines of code and thus 

fewer bugs, and makes it easier to read and understand code than if similar commands are 

repeated in several places (Hunt and Thomas, 2000); “keep it simple, stupid” (KISS) reduces 

unnecessary complexity and thus lowers risks and leads to higher maintainability 

(Raymond, 2003). Fourth, we reuse widely established software packages and libraries (see 

above) to benefit from work done by others. This accelerates our work and reduces the 

amount of Sequenceserver-specific code, which in turn further reduces the likelihood of 

adding bugs (Sametinger, 1997). Fifth, we implemented unit and integration tests (Ammann 

and Offutt, 2016) for many parts of Sequenceserver’s code, and use continuous integration 

(travis-ci.org) to ensure these tests are automatically run whenever a change is made to the 

code, thus increasing the likelihood and speed of detecting errors. Sixth, we use automatic 

code checkers including rubocop (github.com/bbatsov/rubocop) and w3 validator to ensure 

that our code respects relevant style guides and development principles. Such respect of 

style standards (e.g., names of variables and methods, code structure and formatting) makes 

code more accessible to others than if we had chosen no or different conventions (Martin, 

2009; Wurm, 2015). Finally, we use the Code Climate platform (codeclimate.com) for 

automated reviews of code quality. 

User centric design of graphical user interface 

To ensure a fluid user experience that increases researcher productivity, we designed 

Sequenceserver around eight modern user interface design principles. First, the interface 

contains only essential information to minimize distractions for the user. Second, the 

information is laid out in a clear and hierarchically structured manner. As part of this, we 

paid special attention to typography, using typefaces specifically designed for legibility and 

aesthetics on electronic devices (Roboto and Open Sans). Third, we used automation where 

possible to minimize the amount of decisions the user must make. For example, we limit the 

choices for algorithm selection based on query type and databases selection – this is because 

only a single basic BLAST algorithm is possible for all cases except for nucleotide-nucleotide 

search (Figure 4.2). Fourth, we use interactive visual feedback and cues for step-by-step 
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discovery of the workflow. For example, the BLAST button remains disabled until the user 

has provided query sequence(s) and selected target databases. If the user tries to click the 

BLAST button while it is disabled, a tooltip indicates that a required input is missing. 

Similarly, the selection of protein databases is automatically disabled if the user has already 

selected a nucleotide database (and vice versa). Fifth, we remain consistent and contextual 

with regards to user interaction. For example, notification of detection of sequence type does 

not depend on how the query sequence was provided. This notification is shown below the 

query sequence input field – where the user is likely to look after query input – instead of 

using a global designated notification area or displaying pop-up windows that can be 

disruptive or are ignored. Similarly, a “clear query” button is shown only after the user has 

provided query sequence(s) and is positioned where a user is likely to look for it. Sixth, we 

try not to let the advantages of a graphical interface and efforts to create an easily accessible 

user experience limit the scope of what the user can do. For example, all possible advanced 

BLAST search options can be entered via a generic input field. Similarly, tooltips over report 

download links are only shown after the mouse pointer has hovered for at least 500ms. This 

delay means most users will not be bothered by tooltips after they have used the interface a 

few times. Seventh, we exploit intuitive human notions of colours. For example, if the user 

erroneously tries to combine nucleotide and amino acid sequences in the query, the query 

input-area is gently highlighted using a red border to indicate an error. At a different level, 

in the graphical overview shown for each query, the colour of each hit indicates its strength, 

with stronger e-values being darker. Finally, the wording of error messages is similar to an 

informal human conversation to create empathy and familiarity, which may also clarify that 

Sequenceserver is built by a community of scientists. 

Data Availability 

Source code is available under GNU Affero General Public License (AGPL) 3.0 

at	github.com/sequenceserver	(last accessed August 25, 2019). Additional documentation is 

available online at	sequenceserver.com	(last accessed August 25, 2019). 
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Chapter 5: Choosing the best gene 

predictions with GeneValidator 

Contributions 

I wrote most of the chapter with inputs from Ismail Moghul and Yannick Wurm. Ismail 

provided the figures and the code snippets included in the chapter, modified GeneValidator 

software where it was required, and contributed to the writing with significant input from 

myself. The section “Merging gene predictions from different sources” was Yannick’s idea. 

 

The annex has been published as a book chapter: 

I Moghul*, A Priyam*, Y Wurm (2019) "Choosing the Best Gene Predictions with 

GeneValidator" Gene Prediction, Methods in Molecular Biology (2019), Volume 1962; 

Chapter 16. 
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Abstract 

GeneValidator is a tool for determining whether the characteristics of newly predicted 

protein-coding genes are consistent with those of similar sequences in public databases. For 

this, it runs up to seven comparisons per gene. Results are shown in an HTML report 

containing summary statistics and graphical visualisations that aim to be useful for curators. 

Results are also presented in CSV and JSON formats for automated follow-up analysis. 

Here, we describe common usage scenarios of GeneValidator that use the JSON output 

results together with standard UNIX tools. We demonstrate how GeneValidator's textual 

output can be used to filter and subset large gene sets effectively. First, we explain how low-

scoring gene models can be identified and extracted for manual curation – for example, as 

input for genome browsers or gene annotation tools. Second, we show how GeneValidator's 

HTML report can be regenerated from a filtered subset of GeneValidator's JSON output. 

Subsequently, we demonstrate how GeneValidator's GUI can be used to complement 

manual curation efforts. Additionally, we explain how GeneValidator can be used to merge 

information from multiple annotations by automatically selecting the higher scoring gene 

model at each common gene locus. Finally, we show how GeneValidator analyses can be 

optimised when using large BLAST databases. 

Introduction 

Using accurate gene annotations is important because they affect subsequent analyses 

(Yandell and Ence, 2012). For some species, annotations can be downloaded directly from a 

public database such as Ensembl or NCBI (Benson et al., 2018). For newly sequenced species, 

approaches to identify protein-coding genes in a genome sequence typically combine 

evidence from multiple data sources (including ab initio models, ESTs, RNA-seq and protein 

alignments) (Holt and Yandell, 2011; Hoff et al., 2016; Keilwagen et al., 2018). Whether gene 

feature annotations are downloaded from a public database or newly generated, they may 

contain errors resulting from biases of the underlying data, algorithmic choices (Schnoes et 
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al., 2009), and the general limitations of a one-dimensional representation of DNA 

sequences. Common errors include frameshifts, incorrect exon-intron structure, incorrect 

merging of adjacent genes, and incorrect splitting of genes at long intron positions (Steijger 

et al., 2013). 

We previously described GeneValidator (GV), a tool to evaluate the quality of protein-

coding gene predictions based on comparisons with a database of known proteins (Drăgan 

et al., 2016). In brief (Figure 5.1), GV first runs a BLAST search against the given database, 

retaining sequences of hits with e-value stronger than 10-5. Next, GV runs up to seven 

validations on each gene prediction. Each validation tests if the characteristics of the query 

gene deviate from those of similar sequences in the reference database. Based on predefined 

thresholds, the result of each validation is a pass or a fail. The overall score of the prediction 

is a scaled percentage of the validations that passed. Predictions with a score lower than 75 

(i.e., more than one failed validation) may be regarded as potentially problematic. 

Explanation of the approach and an overview of the data underlying each validation is 

included in the HTML report, along with several visualisations to facilitate interpretation. 

Detailed results are also available in CSV and JSON format for spreadsheet and 

programmatic access. 

Results produced by GV are dependent on the quality and coverage of the database used for 

validation. Furthermore, higher scores indicate consistency with database sequences and 

not biological truths. Several publicly available databases of protein sequences such as 

Swiss-Prot (The Uniprot Consortium, 2017), UniRef50 (Suzek et al., 2015; The Uniprot 

Consortium, 2017), TrEMBL (The Uniprot Consortium, 2017), or NR (Benson et al., 2018) can 

be used with GV. The GV approach becomes increasingly reliable as proteomes of more 

species are submitted to these databases by the global research community, and as the 

quality of submitted sequences improve due to experimental validation, manual verification 

by experts, and technological and algorithmic advances in sequencing and automated gene 

prediction. We created GV to be flexible. Many of GV's features are designed to facilitate 

automatic processing of large gene sets (e.g., whole-genome annotation) as part of custom 

workflows. These include GV's versatile JSON output, ability to leverage HPC facilities, and 

the possibility to use advanced BLAST search options. GV also includes a web server that 
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can be used as a shared resource. Here, we discuss five common use cases of GV that can be 

easily incorporated into custom workflows. 

 

Figure 5.1: High-level schematic of the steps carried out by GeneValidator. 

Installing and running GeneValidator 

GV runs on Linux and macOS. To install GV, run the command shown below. This will 

install GV and all its dependencies to a directory called "genevalidator" in the current 

working directory. 

sh -c "$(curl -fsSL https://install-genevalidator.wurmlab.com)" 

The software includes example sequences to test the installation. The following command 

can be used to run GV on these example sequences with the included Swiss-Prot database. 

GV will print the results of validations for each gene prediction to the terminal, ending with 

a summary, and the directory where detailed results were saved to. 
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genevalidator --db genevalidator/blast_db/swissprot \ 
--num_threads 4 \ 
genevalidator/exemplar_data/protein_data.fa 

GeneValidator workflows 

A gene set will almost inevitably contain some gene predictions with low scores. It can be 

desirable to curate these manually. Here, we begin by providing two approaches to facilitate 

inspection of these low-scoring predictions. First (Subheading 3.1), we show how to use GV’s 

JSON output to extract the sequence identifiers of low scoring gene predictions. Among 

other things, these can be used to subset the initial gene set, to prioritise inspection in a 

genome browser (Buels et al., 2016), or for annotation editing in a tool such as Apollo (Lee et 

al., 2013). Second (Subheading 3.2), we show how to create a new HTML report by subsetting 

GV’s JSON output. This can reduce the need to navigate through a long HTML report. 

Subsequently (Subheading 3.3), we introduce GV’s graphical interface. This is helpful for 

rapidly viewing how GV’s validation results change during manual curation. 

We also provide guidance on two more general challenges based on our applications of GV. 

First (Subheading 3.4), we show how GV can be used to automatically select the best gene 

model from multiple gene sets at each common gene locus. Furthermore (Subheading 3.5), 

we show how to restrict GV to use a specific subset of a BLAST database. This is to avoid 

BLAST searching against sequences unlikely to be informative. 

Extracting sequence identifiers of low scoring gene predictions 

GV’s JSON output can be used with JQ (stedolan.github.io/jq), a command-line JSON 

processor (included in GV package), to select gene predictions matching a particular 

criterion and access validation results and associated metadata. In the example below, we 

extract identifiers of predictions with a score lower than 75 (i.e., having failed more than one 

validation) and having at least two BLAST hits for manual curation. The idea is that while 

having two BLAST hits is insufficient for GV's statistical tests (and thus results in a low 
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score), they may provide sufficient evidence for biologically interpreting whether the 

prediction could be appropriate. 

1. Extract FASTA header of gene predictions that have more than two BLAST hits and 

an overall score of less than 75. 

jq --raw-output ".[] | 
  select(.no_hits >= 2 and .overall_score < 75) | 
  .definition" input_file_results.json \ 
  > sequence_definitions.txt 

2. Extract sequence identifier (first word of the FASTA header) using the cut command. 

cut -d ' ' -f 1 sequence_definitions.txt \ 
> sequence_ids.txt 

Subsetting the HTML report to only low scoring gene predictions 

GV’s JSON output can be filtered using JQ and input back to GV to reproduce results for the 

selected gene predictions. This is useful to create smaller HTML report, for example 

focusing on a particular gene family. In the example below, we subset GV’s output for the 

low scoring gene predictions selected in 3.1.  

1. Select gene predictions that have more than two BLAST hits and an overall score of 

less than 75. 

jq "[ .[] | 
select(.no_hits >= 2 and .overall_score < 75) ] |    
sort_by(.overall_score)" input_file_results.json \ 
> input_file_results_subset.json 

2. Reproduce GV’s output. 

genevalidator --json input_file_results_subset.json 
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Using GeneValidator web server to iteratively refine gene models 

Although running GV from the command-line is ideal for processing of large datasets and 

custom workflows, a graphical user interface can facilitate iterative usage. For example, 

during manual curation of gene models, running GV repeatedly as a gene model is revised 

can help a curator verify that changes, they are making indeed improve the gene model. 

Building on the lessons learnt when developing the Sequenceserver BLAST interface 

(Priyam et al., 2019), we also built a graphical user interface (app) for GV that is accessible 

through a web browser.  

1. Launching GV app requires the path to a directory containing one or more BLAST 

databases; the interface (accessible at localhost:5678) is opened automatically in the 

default browser. 

genevalidator app --num_threads 4 \ 
  --database_dir genevalidator/blastdb/  

2. To validate gene predictions, paste the corresponding FASTA sequences into the 

text area, select the database to compare to, and click "Analyse Sequences" (Figure 

5.2). The results are then shown on the same page. 

We also host a GV web server at genevalidator.wurmlab.com with two caveats: first, it is 

suitable for up to 10 queries at a time, and second, given computational constraints on this 

server, we only provide the Swiss-Prot and the UniRef50 databases. 
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Figure 5.2: Screenshot of GeneValidator web application 

A screenshot of the GeneValidator web application as launched from the command line via "genevalidator 

app" or by accessing genevalidator.wurmlab.com. 

Merging gene predictions from two different sources 

Different gene prediction approaches are unlikely to generate identical gene models for a 

locus. GV can be used to select the higher scoring gene model for each locus from multiple 

gene sets. Briefly, we first identify annotations corresponding to the same locus from the 

different sources (steps 1	–	3 below). Subsequently, we generate a FASTA file containing 
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alternative predictions for each locus and use GV’s "--select_single_best" option to 

select the higher scoring one (step 4 below). 

We make multiple simplifying assumptions to generate a mapping of annotations 

corresponding to the same locus from the different sources (steps 1 – 3 below). Specifically, 

we assume that we have a single transcript (splice-form) per source per locus, that gene 

predictions from different loci do not overlap, and that annotations are available in a GFF3 

format file. Often, additional pre-processing of gene sets will be necessary to take these into 

account. 

1. Intersect the transcript annotations in the GFF3 files (requires prior installation of 

bedtools). We require that both hits are on the same strand ("-s"). If comparing 

more than two GFF3 files, see the bedtools documentation ("-b" can take multiple 

values). The output file contains the entire input record from both input files ("-wa 

-wb"). 

 
awk '/\tmRNA\t/' geneset1.gff > geneset1_mrnas.gff 
awk '/\tmRNA\t/' geneset2.gff > geneset2_mrnas.gff 
bedtools intersect -wa -wb -s \ 
-a geneset1_mrnas.gff -b geneset2_mrnas.gff \ 
> geneset_overlaps.bed 

2. Extract the GFF3 attributes columns (i.e., the 9th and 18th column) which contain the 

sequence identifiers. 

awk '{printf ("%s;\t%s;\n", $9, $18)}' \ 
  geneset_overlaps.bed > attributes_columns.tsv 

3. Extract the sequence identifiers from the attributes columns. 

perl -nle '@ids = /ID=(.*?);/g; 
  print join("\t", @ids) if @ids' \ 
attributes_columns.tsv > mapping_ids.tsv 
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4. Now that we have identifiers of the annotations corresponding to the same locus 

from both the gene sets, their respective sequences can be extracted and then used 

with GV’s "--select_single_best" option. 

a. Create indexes for each of the FASTA files (requires prior installation of 

samtools). 

samtools faidx geneset1.fasta 
samtools faidx geneset2.fasta 

b. Create output FASTA file. 

touch output.fa 

c. Loop over the "mapping_ids.tsv" file. Extract FASTA sequence for each ID 

and write them to a temporary FASTA file. Run GV using the "--

select_single_best" option on the temporary FASTA file. The "--

select_single_best" mode prints the highest scoring sequence to STDOUT 

in FASTA format, which is written to the output file previously created. 

cat mapping_ids.tsv | while read -r line; do 
echo "$line" | cut -f 1 | \ 

 xargs samtools faidx geneset1.fasta \ 
 > gv_run_tmp.fa 

echo "$line" | cut -f 2 | \ 
 xargs samtools faidx geneset2.fasta \ 
 >> gv_run_tmp.fa 

genevalidator --select_single_best gv_run_tmp.fa \ 
 >> output.fa 

rm gv_run_tmp.fa 
done 

It may be desirable to include gene models unique to both sets in the final output. We leave 

this as an exercise for the reader. 
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Using NCBI’s non-redundant database of protein sequences with GV 

While it is desirable to validate gene predictions against a gold standard database like Swiss-

Prot, its limited coverage (The Uniprot Consortium, 2017) makes this challenging for many 

species. At the same time, technological advances continue to increase the quality of 

automated predictions (Minoche et al., 2015). This makes it tempting to use a more 

comprehensive database such as NCBI’s non-redundant collection (NR) of manually 

reviewed as well as automatically generated protein sequences for validation. However, the 

large size of the NR database means BLAST searches can take days. We show how to use 

BLAST’s ability to restrict searches to a list of identifiers 

(ncbi.nlm.nih.gov/books/NBK279673) to accelerate a GV analysis. For this, we first restrict 

the BLAST search to a particular taxonomic lineage to avoid BLAST searching against 

sequences unlikely to be informative. Additionally, we exclude sequences from the focal 

species to avoid circular self-validation. 

For the implementation below, we consider the example of the red fire ant, Solenopsis invicta 

(Wurm et al., 2011). We first obtain taxon identifiers of all species in Eukaryota (id: 2759). 

Subsequently, we exclude all Solenopsis species (taxonomy id: 13685). We then obtain 

GenInfo identifiers (GI numbers) of all sequences in the retained taxa. We finally run GV 

using this list.  

1. Obtain a list of eukaryotic taxon identifiers (this requires prior installation of 

Taxonkit). 

taxonkit list --ids 2759 --indent "" \ 
> taxon_ids_eukaryotes.txt 

2. Obtain a list of Solenopsis taxon identifiers. 

taxonkit list --ids 13685 --indent "" \ 
> taxon_ids_solenopsis.txt 

3. Subtract the two. 
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grep -Fvx -f taxon_ids_solenopsis.txt \ 
taxon_ids_eukaryotes.txt > taxon_ids.txt 

4. Download a tab-delimited file from NCBI linking taxon ids and GI Numbers. 

curl -L -O 
ftp://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/prot.accession2t
axid.gz 

5. Use csvtk (github.com/shenwei356/csvtk), a multithreaded CSV/TSV processor 

(packaged with GV), to extract the rows where the taxid is in the taxon_ids.txt file. 

zcat prot.accession2taxid.gz | \ 
csvtk --tabs grep --fields taxid \ 

--pattern-file taxon_ids.txt | \ 
cut -f 4 | tail -n +2 > gi_list.txt 

6. Finally, we pass this file to GV using "--blast_option" option. 

genevalidator --blast_options "-gilist gi_list.txt" --db nr \ 
--num_threads 40 geneset1.fa 

Starting with BLAST+ version 2.8.0 (in development at the time of this writing) steps 4 & 5 

can be skipped and the list of taxon ids from step 3 can be passed directly to BLAST using 

the new "-taxidlist" option. 

Tips and tricks 

1. GV’s overall score is based on the percentage of validations that pass, i.e., where the 

score is above a threshold that we have determined to be appropriate. To emphasise 

the fact that GV results are highly dependent on the quality of information in 

databases and cannot be solely relied upon to classify a ‘perfect’ gene prediction, the 

overall score is decreased by 10%. The highest possible score is thus 90%. 
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2. GV will run the validations provided there are at least five BLAST hits for a given 

prediction. This can be changed using the "--min_blast_hits" option. A higher 

number of BLAST hits will increase the relevance of the comparisons. 

3. GV generates several summary statistics for the input gene set. These include first, 

second and third quartiles of the overall scores, number of good and bad 

predictions, and number of predictions with insufficient BLAST hits. In addition to 

providing an overview of the quality of the input gene set, the summary statistics can 

be used to choose between predictions from two different sources. 

4. GV includes a tool for downloading sequence databases from NCBI to use for 

comparisons (i.e., "genevalidator ncbi-blast-dbs"). This is a parallelised 

alternative to the “update_blastdb.pl” script included in BLAST+ package. 

5. GV is also able to run BLAST searches on NCBI servers using BLAST’s "-remote" 

option (e.g., "genevalidator --db 'swissprot -remote' geneset.fa"). This 

has the benefit of being able to immediately use the most up-to-date version of a 

given database. However, using a remote BLAST database is very slow. We 

recommended using this for validating only a few genes (e.g., fewer than 25). 

6. It is possible to run BLAST independently and to subsequently provide the output 

XML ("-outfmt 5") or tab-delimited ("-outfmt 6") to GV. This can be particularly 

useful if BLAST results have already been produced for other analyses, or when 

BLAST can be run on a cluster. 

7. BLAST is often the slowest step of GV pipeline, especially when working with large 

datasets. In such cases, DIAMOND (Buchfink, Xie and Huson, 2015) can be used 

instead of BLAST for (up to 20,000x!) faster database searching. Since DIAMOND’s 

XML output is compatible with BLAST, it can be used directly with GV along with one 

additional input, i.e., a FASTA file of hit sequences (when used with BLAST, GV is able 

to automatically extract hit sequences from BLAST database). Our wiki 
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(github.com/wurmlab/genevalidator/wiki) provides detailed instructions for using 

GV with DIAMOND. 

8. To resume a terminated analysis, GV can be run with "--resume" option. In resume 

mode, GV skips previously successful steps, including running BLAST. Gene 

predictions that were successfully processed are skipped as well. 

9. It is possible to split an input gene set into multiple chunks, run GV on each chunk 

across multiple compute nodes, and combine the results for each chunk into a single 

report. 

1. After splitting the input file and running GV on each input file, the following 

command can be used to merge the individually produced GV JSON files. 

cat */*.json | jq '.[] ' | jq --slurp '.' > MERGED_JSON 

2. The merged JSON can then be used to produce a single report for the whole gene 

set. 

genevalidator --json MERGED_JSON 
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Chapter 6: Fire ant social chromosomes: 

Differences in number, sequence and 

expression of odorant binding proteins 

Contributions 

Rodrigo Pracana and Ilya Levantis led the study of fire ant odorant binding proteins (OBPs) 

under supervision of Yannick Wurm. They did most of the biological analyses. The OBPs 

reported in this study were at first identified using a newer, more contiguous assembly and 

later transferred back to the reference assembly. I performed automated annotation of the 

new assembly, created the software used for manual curation of the OBPs, transferred the 

annotations back to the reference assembly together with Ilya and discovered some of the 

errors in the reference assembly reported in this study together with Rodrigo. I helped draft 

the ‘OBP discovery and manual gene model curation’ section and contributed to later 

versions of the manuscript. 

 

The chapter has been published: 

R Pracana, I Levantis, C Martínez-Ruiz, E Stolle, A Priyam, Y Wurm (2017) "Fire ant social 

chromosomes: Differences in number, sequence and expression of odorant binding 

proteins" Evolution Letters, 1(4): 181– 228 
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Introduction 

Variation in social behaviour is common yet our knowledge of the mechanisms 

underpinning its evolution is limited (Robinson, Grozinger and Whitfield, 2005; Johnson 

and Linksvayer, 2010). The fire ant Solenopsis invicta provides a rare, textbook example of 

variation in a fundamental social trait: some colonies have one queen, whereas others have 

up to dozens of queens. Queens that will form their own single-queen colony typically 

disperse over greater distances and can effectively colonize newly available habitats. In 

contrast, multiple-queen colonies can outcompete single-queen colonies in saturated 

habitats and harsh environments and can split by fission (Bourke and Heinze, 1994; Ross and 

Keller, 1995; Tschinkel, 2006). Multiple additional traits differ between the two social forms, 

including in queen fecundity, colony size, worker size distribution, and worker 

aggressiveness (Ross and Keller, 1995; DeHeer, Goodisman and Ross, 1999; Keller and Ross, 

1999; Goodisman, DeHeer and Ross, 2000; DeHeer, 2002; Buechel, Wurm and Keller, 2014; 

Huang and Wang, 2014). 

A series of landmark studies (Ross, 1997; Keller and Ross, 1998; Ross and Keller, 1998) 

demonstrated that the two social forms are under the control of a Mendelian element. This 

element was first identified in a screen of electrophoretic markers as a polymorphic protein 

coding gene, Gp-9, with two alleles: Gp-9B and Gp-9b (Ross, 1997). If a colony includes only 

Gp-9 BB workers, they will accept a single Gp-9 BB queen and execute any additional queens. 

In contrast, if more than ~20% of the workers in a colony are Gp-9 Bb heterozygotes, they 

will execute reproductively active Gp-9 BB queens but accept dozens of Gp-9 Bb queens 

(Ross, 1997; Keller and Ross, 1998; Ross and Keller, 1998; Keller and Ross, 1999; DeHeer, 

Goodisman and Ross, 1999; Ross and Keller, 2002; Gotzek and Ross, 2007). In contrast, Gp-9 

bb queens die before becoming reproductively active (Ross, 1997; DeHeer, Goodisman and 

Ross, 1999; Keller and Ross, 1999; Gotzek and Ross, 2007; Trible and Ross, 2016). The workers 

discriminate between queens of alternate genotypes based on olfactory cues (Keller and 

Ross, 1998; Ross and Keller, 1998, 2002), such as differences in the queens’ cuticular 

hydrocarbon profiles (Eliyahu et al., 2011; Trible and Ross, 2016). Because workers carrying 

the Gp-9b allele recognize whether queens also carry this allele and execute those that do 
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not, this system represents a rare example of a “green beard gene” (Keller and Ross, 1998), 

named after a theoretical model of a behavioural selfish genetic element (West and Gardner, 

2010). 

In another landmark study, Krieger and Ross (Krieger and Ross, 2002) demonstrated that 

Gp-9 encodes an odorant binding protein (OBP). OBPs are essential components of insect 

communication systems: they bind and transport pheromones and other semiochemicals, 

generally mediating their perception and sometimes their secretion (Pelosi et al., 2006, 2014; 

Leal, 2013). Furthermore, tests of historical selection on Gp-9 reveal a significant excess of 

nonsynonymous (amino acid replacing) substitutions relative to synonymous (silent) 

substitutions between the lineage of Gp-9 b-like alleles and Gp-9 B-like alleles in the fire ant 

and its relatives. This implies that directional or diversifying selection has driven the 

molecular evolution of Gp-9 and is associated with differentiation between the two forms of 

social organization in these ants (Krieger and Ross, 2002, 2005). Several models lay out the 

potential function of Gp-9, generally involving differential production or perception of 

pheromones in queens as well as workers of alternate genotypes (Krieger, 2005; Gotzek and 

Ross, 2007, 2009). 

However, recent genome-wide analyses of the social dimorphism revealed that the 

association between genotype and form of social organization is not limited to Gp-9 (Wang 

et al., 2013). Instead, genetic maps obtained using Restriction site Associated DNA (RAD) 

markers from crosses in seven families showed that this association extends over a large 

chromosomal region of suppressed recombination. The two variants of this region, 

respectively, marked by the Gp-9B and Gp-9b alleles are carried by a pair of “social 

chromosomes” named SB and Sb. The region is genetically differentiated over 10.8 Mb (55%) 

of the mapped assembly of the social chromosomes, although its total length could be 19.4–

31.5 Mb given the estimated size of the non-assembled portion of the genome (Pracana, 

Priyam, et al., 2017). Based on the current NCBI gene set, this region contains at least 443 

protein coding genes, including Gp-9. The two chromosomes differ by at least one large 

inversion affecting a large portion of the region and an additional small (48 kb) inversion. 

The region of suppressed recombination can be described as a supergene, a locus containing 

multiple genes with tightly linked allelic combinations that control a complex polymorphic 



 

88 

 

phenotype (Linksvayer, Busch and Smith, 2013; Schwander, Libbrecht and Keller, 2014; 

Thompson and Jiggins, 2014). 

A study of general patterns of divergence and diversity showed that Sb has two orders of 

magnitude lower diversity than SB and the rest of the genome, and that there is high ratio 

of nonsynonymous to synonymous substitutions between SB and Sb (Pracana, Priyam, et al., 

2017). These results suggest that the evolution of Sb has been shaped by Hill–Robertson 

effects (the effects of selection on linked loci) due to the rarity of recombination in Sb (Wang 

et al., 2013; Pracana, Priyam, et al., 2017). However, little work has been done to characterize 

the genes present in the supergene region and to identify the mechanisms by which SB and 

Sb control the phenotypic differences between single- and multiple-queen colonies. Studies 

using cDNA microarrays representing 3673 genes demonstrated that the supergene region 

is enriched for genes that are differentially expressed between queens (Nipitwattanaphon et 

al., 2014) and workers (Wang, Ross and Keller, 2008; Wang et al., 2013) of the two colony types. 

This suggests that genes other than Gp-9 could be responsible for the social dimorphism. 

Given that the determination of queen number requires the differential production and 

perception of semiochemicals by individuals of each genotype, it remains likely that OBPs 

play a part in determining the dimorphism. 

Here, we determine to which extent OBPs have potentially functional divergence between 

social forms. For this, we identify all OBPs in the fire ant reference genome and map them 

to their genomic locations. Subsequently, we use population-sequencing data to identify 

allelic differences between OBPs found on alternate variants of the social chromosome 

supergene. We also sequence an outgroup species, Solenopsis geminata, which allows us to 

determine which supergene variant carries the derived allele for each substitution. Finally, 

we compare gene expression profiles of all OBPs and gene coexpression modules between 

social forms. We show that there are nucleotide and amino acid sequence level differences 

between SB and Sb in the supergene OBPs, and that OBPs inside and outside the supergene 

are differentially expressed between single- and multiple-queen colonies. 
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Results 

The fire ant reference genome assembly contains 23 putative OBPs 

We combined automatic and manual curation approaches incorporating genomic and gene 

expression data to identify the sequence, exon structure, and location of 23 putative OBP 

genes in the S. invicta reference genome. Seventeen of these matched fire ant OBP gene 

sequences that had been previously reported, although with differences in sequence or in 

their inferred location in linkage groups (Table A2.S1 and Annex 3 Supplementary 

Methods). The remaining seven putative OBP genes are novel to S. invicta (Table A2.S3).  

Interestingly, the coverage depth of SiOBPZ6 is fourfold higher (95% confidence interval 

[3.66–4.78]; t-test tdf = 6 = 14.0, P < 10−5) than that of 1000 randomly selected genes, suggesting 

that there are four copies of this gene. There is little genetic variation among reads mapping 

to this gene across the 14 individuals in our dataset (4.2 Single Nucleotide Polymorphisms 

[SNPs] per 1000 bp). The alignment of whole- genome sequencing reads of the outgroup 

species S. geminata to the S. invicta reference assembly shows that all OBPs are covered in 

this outgroup species. The coverage depth of SiOBPZ6 is three- fold higher in S. geminata 

(95% confidence interval [2.78–3.16]; t-test tdf = 999 = 20.7, P < 10−15), suggesting that this species 

also carries multiple copies of this gene. 

Nine of the 23 OBPs in the genome are adjacent to unrelated genes, the remainder are 

organized into gene clusters. There are three locations in the genome each containing a 

cluster of four OBPs (two in linkage group 16, one in linkage group 3) and one containing a 

cluster of two OBPs (in linkage group 6). Intriguingly, none of these clusters appear to be 

completely monophyletic (Figure 6.1). For previously known OBPs, the topology of our 

phylogenetic tree agrees with previously published trees (Gotzek et al., 2011; Zhang et al., 

2016), with the exception of the position of SiOBP15 (low bootstrap values in all trees) and 

SiOBP5. 



 

90 

 

 

Figure 6.1: Phylogenetic tree of fire ant OBPs 

Phylogenetic tree based on a codon-level alignment of revised gene predictions for previously 

described OBPs (SiOBP1–17) and novel OBPs (SiOBPZ2–Z6). Branches are colored by gene cluster 

and linkage group (lg). SiOBPZ1 was removed from this analysis because the high divergence of 

its sequence led to unreliable alignments and positioning in the phylogeny. All OBPs on linkage 

group 16 (lg16) are within the supergene-like region of the social chromosomes (Figure 6.2). 

 

Nonsynonymous differentiation between SB and Sb in OBPs 

Eight of the OBPs are located in scaffolds of the SB fire ant genome assembly that map to 

the supergene region, with two clusters of four OBPs (Figure 6.2). One of the clusters 

includes Gp-9 (which was named SiOBP3 in (Gotzek et al., 2011)). A ninth gene, SiOBP9, is 

located in an unmapped scaffold that likely also belongs to the supergene region based on 

high levels of SB-Sb differentiation (Figure 6.2). To determine whether the supergene OBPs 

have allelic differences between SB and Sb, we used whole-genome sequence data from 

seven SB males and seven Sb males. 
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These data confirmed the previous finding that Gp-9/SiOBP3 has eight nonsynonymous and 

one synonymous fixed single nucleotide substitutions between SB and Sb in the North 

American study population (Krieger and Ross, 2002). Of the other OBPs in the supergene 

region, SiOBP4 has three nonsynonymous and two synonymous substitutions. Two 

additional supergene OBPs have one fixed nonsynonymous substitution between SB and 

Sb (Table 6.1). Performing an analysis of the ratio of nonsynonymous to synonymous 

substitutions between alleles (dN/dS) was only possible for the two genes with the most 

divergent alleles: Gp-9/SiOBP3 had the highest ratio of nonsynonymous to synonymous 

substitutions (dN/dS = 1.48), followed by SiOBP4 (dN/dS = 0.74). 

We analysed the OBP sequences from an outgroup species, S. geminata, estimated to have 

diverged from S. invicta 3–3.5 million years ago (Moreau and Bell, 2013; Ward, Sean G. Brady, 

et al., 2015), that is, before the divergence between SB and Sb in S. invicta (estimated 0.35–0.42 

million years ago (Wang et al., 2013)). These sequences allowed us to determine the ancestral 

allele in each substitution. Sb carried the derived allele in most of the positions with 

nonsynonymous substitutions between SB and Sb (seven out of eight in Gp-9/SiOBP3 and 

all in SiOBP4 and SiOBPZ3; we could not derive the two SiOBP13 substitutions, as S. 

geminata read coverage was too low for this gene). This pattern is consistent with most 

nonsynonymous substitutions between SB and Sb having arisen in the lineage leading to 

Sb. 

 

Figure 6.2. Position of the OBPs on the social chromosome 

Relative positions on the social chromosome (i.e., linkage group 16) of 10 OBP loci, highlighting intron–exon 

structures and differences between the supergene region of Sb (blue) and SB (red). SiOBPZ5 is specific to Sb 

but we do not know its exact location; SiOBP15 is missing a 3-exon region in Sb; SiOBP9 is in an unmapped 

scaffold that likely belongs to the supergene region based on high levels of SB-Sb differentiation (Pracana et 

al. 2017). 
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Table 6.1: OBP differentiation between SB and Sb 

The number of sequence-level differences between SB and Sb and differential OBP gene expression between 

multiple- and single-queen colonies. 

 

 

Copy number and structural differentiation between SB and Sb in 

OBPs 

We also found structural differences between SB and Sb affecting two OBPs. For the first, 

SiOBP15, we detected a ~2600 bp deletion unique to Sb individuals (Figure 6.2, Table 6.1). 

This deletion is derived (i.e., it is not present in the outgroup species, S. geminata) and causes 

the loss of three out of five coding exons (89 out of 139 amino acids), although it does not 

cause a frameshift. The second OBP with a major structural difference is SiOBP12. In Sb 

individuals, this gene is duplicated, forming the Sb-specific SiOBPZ5 (Figure 6.2, Table 5.1). 

This gene increases the total OBP count of S. invicta to 24. There are 18 fixed amino acid 

differences between SiOBPZ5 and the SB allele of SiOBP12 sequence (one deleted codon, 21 

nonsynonymous and four synonymous nucleotide-level fixed differences; four codons each 

contain two single-nucleotide fixed differences; dN/dS = 2.67). Intriguingly, SiOBP12 has an 

early stop codon (TAG) at codon position 16 of 176 in all seven SB individuals and the 
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reference genome. These individuals are also affected by six nonsynonymous SNPs and two 

polymorphic indels downstream of the early stop codon. Sb individuals have the CAG allele 

at position 16 of SiOBP12 but have a slightly later early stop codon at position 37 due to a 

frameshifting insertion of 17 bp at codon position 25 (nucleotide position 74). The outgroup 

species S. geminata has neither of the early stop codons. However, the very low S. geminata 

read coverage observed in the two terminal exons of this gene (median < 3; tdf = 999 = −11.29, P 

< 10−27) could indicate a deletion in this species. SiOBP12 is thus non-functional in Sb and SB 

individuals, and putatively non-functional in the outgroup species. The Sb-specific gene 

SiOBPZ5 appears to be functional as it has no early stop codons. None of the other OBPs 

showed differences in structure or in copy number between SB or Sb. 

Fourteen OBPs are differentially expressed between social forms 

We compared expression levels between single- and multiple-queen colonies in workers 

and in queens (Figure 6.3; Table 5.1) using RNA-seq data from Morandin et al. (2016). General 

expression patterns showed an enrichment in differentially expressed genes in the 

supergene region in queens (expected proportion = 0.022, observed   proportion   =   0.059,   

Chi2df = 1 = 32.84, P = 10−8) but not in workers (expected proportion = 0.021, observed 

proportion = 0.024, Chi2df = 1 = 0.05, P = 0.82). 

In queens, fourteen OBPs, including seven in the supergene region, were significantly 

differentially expressed between multiple-queen and single-queen colonies (DESeq2 Wald 

test; Benjamini–Hochberg adjusted P < 0.05). Consistent with this, the entire group of 24 fire 

ant OBPs showed significantly stronger P-values for differential expression between queens 

from single- and multiple-queen colonies than would be expected by chance (tested among 

12,693 transcripts, two-sided Kolmogorov–Smirnov test; P < 10−11; Figure A2.S1). Surprisingly, 

all of the OBPs that were differentially expressed between social forms in queens were more 

highly expressed in multiple-queen colonies than in single-queen colonies (14 significant 

OBPs in queens, binomial test 14 out of 14; null probability = 0.5;    P < 10−4). In workers, only 

four OBPs (all in the supergene region) were significantly differentially expressed between 

social forms (DESeq2’s Wald test Benjamini–Hochberg adjusted P < 0.05). All the 

differentially expressed OBPs in workers were also differentially expressed in queens. For 
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one of these OBPs (SiOBP17), a different splice form was differentially expressed between 

colony types in queens than in workers (Figure 6.3). 

We additionally obtained qualitative gene expression profiles of all OBPs across 18 

additional samples, in total representing seven different conditions of body part, social form, 

and caste (Table A2. 2). We find generally consistent expression patterns for OBPs across all 

independent samples (Figure 6.3). For instance, in every sample, Gp-9/SiOBP3 was the most 

highly expressed of all OBPs, whereas SiOBPZ3 was only residually expressed (0.26 or fewer 

transcripts per million reads). Six OBPs had only residual expression in queen antennae and 

in heads, although most of these showed at least some expression in whole-body samples. 

The expression of one of these genes, SiOBP9, appears to be limited to males. 

 

Figure 6.3. Expression patterns for all analysed RNA-seq datasets 

Each tile represents the logarithm base 2 of DESeq normalized transcript counts. The rows with asterisks (∗) 

correspond to those OBPs with significant differential expression between social forms within castes in dataset 

A (Morandin et al. 2016). Information about each dataset is available in Table A2.S2 (A: PRJDB4088, B and C: 

PRJNA49629, D: PRJNA266847). † The exons of SiOBP5 and SiOBP7 are split across three unmapped scaffolds; 

we do not know whether these genes are within or outside the supergene region. 
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Gene coexpression modules correlated with social form 

We used WGCNA (Langfelder and Horvath, 2008) to produce modules of coexpressed genes 

from a set of worker samples (Wang, Ross and Keller, 2008) and a set of queen samples 

(Nipitwattanaphon et al., 2013). Both datasets compare SB/SB and SB/Sb samples. The queen 

and worker datasets, respectively, clustered into 30 and 37 coexpression modules (Table 

A2.S4). Most modules in one dataset share a significant number of probes with a module in 

the other dataset (30 out of 31 in queens and 35 out of 37 in workers; Fisher’s exact test for the 

overlap of the pairs of modules across the datasets, Bonferroni corrected P > 0.05; Figure 

A2.S2). However, in most cases there was no one-to-one correspondence between datasets 

(17 out of 31 modules in queens and 19 out of 37 in workers have significant overlaps with 

more than one module). Eight of the OBPs discovered in the present study are represented 

in the microarray (Table A2.S4). In the worker dataset, the module “worker_D” includes four 

of the OBPs (SiOBP3, SiOBP12, SiOBP13, and SiOBP16), accounting 25% of the 16 genes in the 

module. OBPs were present in nine other modules, although in all nine cases the OBP 

represented a very small proportion of the genes in the module (Table A2.S4). 

We tested whether there were gene coexpression modules with differential eigengene 

expression between genotypes or social forms. In queens, four modules had differential 

expression between genotypes (Table A2.S6). In workers, one module had differential 

eigengene expression between genotypes, and one module had differential gene expression 

between social forms (Table A2.S6). One of the modules that had differential expression 

between genotypes in queens (“queen_X”) corresponded with the module with differential 

expression between genotypes in workers (“worker_Z”). Only one of the modules with 

differential eigengene expression includes an OBP (SiOBP15 in “queen_D”). None of these 

modules were enriched for any GO term. 
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Three OBPs are in a region of the genome with characteristics of a 

recent selective sweep 

We used measurements of π among SB individuals in nonoverlapping 10 kb windows from 

Pracana et al. (2017) to determine whether any OBPs are in regions of low π, characteristic of 

recent selective sweeps. Among windows overlapping OBPs, two neighbouring windows 

had π within the lower quartile of the whole-genome distribution (π < 0.0004; Figure A2.S3). 

These two windows overlap the loci SiOBPZ4, SiOBPZ7, and SiOBPZ6, which are within 19 

kb of each other on linkage group 3. We did not perform an equivalent analysis on Sb 

individuals because the entire region of suppressed recombination has the signature of a 

recent sweep in Sb (Pracana, Priyam, et al., 2017). 

Discussion 

The putative role of OBPs in determining social dimorphism 

The description of Gp-9 as a green beard gene (Keller and Ross, 1998) and its subsequent 

characterization as an OBP (Krieger and Ross, 2002) led to the proposal of different models 

of how this single gene can control the dimorphism in social organization (reviewed by 

(Gotzek and Ross, 2007). At their most basic level, these models propose that Gp-9 controls 

the production of a green-beard odour in queens and the differential perception of this 

odour by workers of alternate genotypes. However, it was also proposed that Gp-9 

additionally controls differential odour production in workers (Gotzek and Ross, 2007), as 

well as a number of physiological and morphological traits in queens (Keller and Ross, 1995; 

DeHeer, Goodisman and Ross, 1999; DeHeer, 2002) and males (Lawson, Vander Meer and 

Shoemaker, 2012). The discovery that Gp-9 is tightly linked to hundreds of other genes 

(Wang et al., 2013; Pracana, Priyam, et al., 2017)—including the nine additional OBPs we 

report here—suggests that the roles previously attributed to Gp-9 could be split between 

multiple genes. 
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The key roles of OBPs in semiochemical perception (Leal, 2013) and secretion (Li et al., 2008; 

Iovinella et al., 2011; Sun et al., 2012) lead to the prediction that such proteins are involved in 

determining the two colony types. Our results support this hypothesis, as we find divergence 

in protein coding sequence between SB and Sb in the OBPs in the supergene region, as well 

as differences in the regulation of OBP expression between single- and multiple-queen 

colonies. 

The differences in protein coding sequence affect seven of the ten OBPs in the supergene 

region, including Gp-9/SiOBP3. The biggest differences are in SiOBPZ5, absent in SB, and 

in SiOBP15, which is missing three exons in Sb. Such differences could have a major effect 

on semiochemical communication. Additionally, among the four intact OBPs with 

nonsynonymous divergence between SB and Sb, both Gp-9/SiOBP3 and SiOBP4 have 

dN/dS ratios indicative of adaptive differentiation between the alleles of these genes 

(Krieger and Ross 2002). This interpretation comes with some caution due to our relatively 

low sample size (14 individuals from an invasive population). 

Additionally, 14 out of the 24 fire-ant OBPs were differentially expressed between social 

forms in queens or in workers. Our analysis uncovers three potentially important aspects of 

the differential regulation of OBP expression in the two social forms. First, all of the 

differentially expressed OBPs are more highly expressed in multiple-queen colonies than in 

single-queen colonies, suggesting that multiple-queen colony traits are associated with the 

activation of semiochemical communication pathways. Second, this activation seems to be 

stronger in queens, as more OBPs were differentially expressed between social forms in 

queens (14 OBPs) than in workers (four OBPs). This result reflects the more general pattern 

that the supergene region was enriched for differentially expressed genes between colony 

types in queens, but not in workers. The pools of workers from multiple-queen colonies 

contain a mix of individuals of both genotypes (36% SB/SB and 64% SB/Sb workers expected 

(Buechel, Wurm and Keller, 2014)), which could mask differences between SB/SB workers 

from single-queen colonies and SB/Sb workers from multiple-queen colonies. Indeed, 

previous studies using cDNA microarray data and a different gene set suggest that the 

supergene region is enriched for differentially expressed genes in both queens 

(Nipitwattanaphon et al., 2013) and workers (Wang et al., 2013). Third, several of the queen-
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specific differentially expressed OBPs are located outside the supergene, implying that they 

are regulated in trans by elements in the supergene. It is important to note that all three 

patterns could be affected by our use of samples from whole bodies, which is known to 

introduce several types of biases if the differences in expression are tissue specific (Johnson, 

Atallah and Plachetzki, 2013; Montgomery and Mank, 2016). A particular issue is differences 

in allometry (i.e., relative body-size proportions) between the individuals of different 

groups, for instance the larger gaster of queens in single-queen colonies relative to queens 

in multiple-queen colonies (Tschinkel, 2006). These biases cannot be resolved by standard 

normalization methods, which are designed to normalize by entire library size rather than 

by the relative abundance of different transcripts (Dillies et al., 2013). Tissue-specific gene 

expression profiling (Bastian et al., 2008; Robinson et al., 2013; Jasper et al., 2016) would be 

needed to control for such allometric differences. 

Our results also support the idea that along with OBPs, other genes are likely involved in 

defining the social polymorphism of S. invicta. For instance, only one of the coexpression 

modules with significantly different eigengene expression contained an OBP. Furthermore, 

other genes inside and outside the supergene region were differentially expressed between 

social forms. Thus, a venue of further investigation would be to examine the potential roles 

of other genes, including genes from families known to be involved in communication, 

including chemosensory proteins (Kulmuni, Wurm and Pamilo, 2013), desaturases 

(Helmkampf, Cash and Gadau, 2015), fatty-acid reductases (Lassance et al., 2010; Niehuis et 

al., 2013), and olfactory (Wurm et al., 2011), gustatory (Robertson, Warr and Carlson, 2003; 

Zhou et al., 2012), and ionotropic receptors (Benton et al., 2009; Zhou et al., 2012). It is 

important to note that additional experimental work would be necessary to demonstrate 

whether OBPs or any of these proteins have a functional role. An interesting approach 

would be to measure the effect of artificially modifying the sequence or expression level of 

each gene to test their specific function (Gaj, Gersbach and Barbas, 2013; Mohr et al., 2014). 

General evolutionary patterns of OBPs in S. invicta 

The evolution of the OBP gene family is generally thought to follow the birth-and-death 

model, where gene duplication is followed by either the pseudogenization or the rapid 
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functional divergence of the duplicate gene (Nei and Rooney, 2005; Vieira, Sánchez-Gracia 

and Rozas, 2007). The S. invicta OBPs are organized in clusters along the genome, as in other 

insect species (Xu, Zwiebel and Smith, 2003; Forêt and Maleszka, 2006; Vieira, Sánchez-

Gracia and Rozas, 2007). However, none of these clusters appear to be monophyletic (Figure 

6.1). This is consistent with the birth– death model, where the fast evolution of genes can 

mask their true phylogenetic relationship (Vieira, Sánchez-Gracia and Rozas, 2007; Gotzek 

et al., 2011; Vieira and Rozas, 2011). Alternative explanations include translocations affecting 

the OBPs during or after duplication, or ectopic gene conversion across different clusters 

after duplication (Arguello and Connallon, 2011). Another argument in support of the birth-

and-death model is that we find evidence of expansions in OBP number. One example is the 

putative ant specific OBP expansion reported previously (the OBP cluster including 

SiOBP14 in Figure 6.1 (Gotzek et al., 2011)). We found no one-to-one orthologous sequences 

for these genes in other ants or in other arthropods (the 11 genes in this group of OBPs have 

BLAST similarity to only three genes in the ant Monomorium pharaonis; phylogenetic group 

1 in Table A2.S6). A cluster with several novel genes identified in our study (the group 

including SiOBP7 and SiOBP8 in Figure 6.1) follows a similar pattern (five OBPs have BLAST 

similarity to one M. pharaonis gene, two have BLAST similarity to one Pogonomyrmex 

barbatus gene; phylogenetic group 2 in Table A2.S6). These groups of genes may have 

expanded in the lineage leading to S. invicta and S. geminata, although this conclusion would 

require the exhaustive identification of OBPs in the present study to be replicated for other 

ant species. An example of a putatively recent expansion is SiOBPZ6, which seems to be 

present in multiple copies both in S. invicta and in S. geminata. Lack of heterozygosity in the 

region suggests that the gene copies have been recently affected by ectopic gene conversion 

(Arguello and Connallon, 2011). Furthermore, finding that the S. invicta SiOBPZ6 

quadruplication is in a region that has a signature of a recent selective sweep makes it 

tempting to speculate that SiOBPZ6 is involved in a recent adaptive process (Kondrashov, 

2012)—for example, to the invasive range of this species (Ascunce et al., 2011). 
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Conclusion 

Previous studies have focused on how the evolution of the social chromosomes has been 

affected by restricted recombination (Wang et al., 2013; Pracana, Priyam, et al., 2017), whereas 

the work presented here focuses on the putative mechanisms by which these chromosomes 

control social organization. In summary, our analyses provide a comprehensive overview of 

OBPs in the fire ant genome, describing patterns of differentiation and expression that are 

consistent with the predicted roles of OBPs in determining social organization in this 

species. Our study highlights the need for tissue-specific expression profiles, as well as for 

broader taxonomic sampling to understand OBP evolution during the origin of the multiple-

queen colony organization. Finally, our work provides a starting point for future functional 

studies on the roles of OBPs in the social chromosome system. 

Methods 

OBP discovery and manual gene model curation 

The sequences of 18 fire ant OBP genes were previously reported, based on searches of 

Sanger-sequenced Expressed Sequence Tag (EST) libraries (Table A2.S1; (Xu, Zwiebel and 

Smith, 2003; Wang et al., 2007; Gotzek et al., 2011; Wurm et al., 2011). We used a curation 

approach similar to those previously used on other genes (Ingram et al., 2012; Corona et al., 

2013; Kulmuni, Wurm and Pamilo, 2013; Privman, Wurm and Keller, 2013) to find the 

position of these OBP genes in the fire ant genome assembly (Wurm et al., 2011) and to 

discover previously unreported OBP genes. Our curation pipeline is described in detail in 

Annex 3 Supplementary Methods. Briefly, we iteratively per- formed blastn and blastp 

(Camacho et al., 2009; Priyam et al., 2019) searches of the fire ant genome assembly (Wurm 

et al. 2011) using as queries the previously known fire ant OBP sequences as well as UniProt 

sequences that are part of the Pfam family “PBP_GOBP” (Finn et al., 2014; The Uniprot 

Consortium, 2015). We manually curated the results of these searches by inspecting 

alignments of transcriptomic and genomic reads, which allowed us to infer intron–exon 
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boundaries and coding sequences of these OBPs. We labelled the curated gene predictions 

that correspond to the previously known OBP genes (SiOBP1–17) according to the notation 

used by Gotzek et al. (2011) and we labelled newly discovered loci SiOBPZ1–Z7. We used a 

genetic map (Pracana, Priyam, et al., 2017) to assign OBPs to linkage groups. We generated a 

codon-level alignment of the S. invicta OBPs using MAFFT-linsi (version 6.903b (Katoh and 

Toh, 2008)) and PRANK (version 120626 (Löytynoja and Goldman, 2005)), and built a 

phylogenetic tree using RaxML (version 8.2.9 (Stamatakis, 2006)). 

Identifying allelic differences for OBPs carried by alternate variants 

of the social chromosome 

We used whole-genome sequences from one SB and one Sb male from each of seven 

colonies that had been sequenced at low coverage (Illumina 2∗100 bp paired-end genome 

shotgun sequences; ~6×–8× coverage) in 2012 (NCBI SRP017317 (Wang et al., 2013)). Each of 

these samples is a haploid male (ants have a haplodiploid sex determination system). We 

filtered the reads, aligned them to the reference genome using bowtie2 (version 2.1.0 

(Langmead and Salzberg, 2012)), and used samtools and bcftools (version 1.3.1 for both (Li et 

al., 2009)) to call variants among the individuals (Annex 3 Supplementary Methods). 

We produced whole-genome sequencing reads of the out- group species S. geminata. We 

sequenced a pool of 10 workers (sampled in Thailand by Dr. Adam Devenish, University 

College London, United Kingdom) using Illumina HiSeq 4000 (11× coverage; Annex 3 

Supplementary Methods). We called variants between the sample and the reference 

assembly (using freebayes version 1.0.2-33-gdbb6160 (Garrison and Marth, 2012)) within the 

coding sequence of each OBP using freebayes (Annex 3 Supplementary Methods). We 

classed the alleles in each SB-Sb substitution as ancestral or derived based on the allele 

carried in the outgroup species. We estimated the rate of synonymous and non- 

synonymous divergence (dS and dN, respectively) between SB and Sb using seqinR (version 

3.0-7 (Charif et al., 2007)). 
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Detection of copy number and structural variation in OBPs 

We visually inspected the alignments of the seven SB and the seven Sb haploid male 

samples against each OBP region. Deletions were identified as regions with no coverage and 

duplications were identified as regions where the coverage was higher than the background 

(Annex 3 Supplementary Methods). Using the de novo assembler MIRA (version 4.0.2 (B. 

Chevreux, Wetter and Suhai, 1999)), we produced the sequence of the duplicate copy of 

SiOBP12, which we named SiOBPZ5 (approach detailed in Annex 3 Supplementary 

Methods). 

Gene expression of S. invicta OBPs in publicly available RNA 

sequencing datasets 

We analysed all available RNA sequencing (RNA-seq) data from the NCBI SRA database for 

S. invicta (data from Wurm et al. 2011; Morandin et al. 2016 and PRJNA266847; details in Table 

A2.S2). We determined the expression levels of S. invicta transcripts using the Kallisto count 

mode (version 0.43.0 (Bray et al., 2016a)). Each sample was independently normalized using 

the DESeq2 method (version 1.14.1 (Love, Huber and Anders, 2014)). Additionally, we 

performed genome-wide analysis of differential expression of data from Morandin et al. 

(Morandin et al., 2016), comparing three pools of queens from multiple-queen colonies with 

two pools from single-queen colonies, as well as two pools of workers from multiple-queen 

colonies with three pools from single-queen colonies. The pools of workers from multiple-

queen colonies contain a mix of individuals of both genotypes, whereas the pool of queens 

from multiple-queen colonies has only SB/SB queens. We used a standard DESeq2 

approach to identify expression differences between single- and multiple-queen samples in 

queens and in workers. Additional details regarding these analyses are in Annex 3 

Supplementary Methods. 
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Differential expression of gene coexpression modules across social 

forms 

We created gene coexpression modules from two cDNA microarray datasets (Platform 

GPL6930, with 25,344 probes representing 3673 genes; Annex 3 Supplementary Methods; 

Wang et al. 2007), one with queen samples (GSE42062 (Nipitwattanaphon et al., 2013)), the 

other with worker samples (E-GEOD-11694 (Wang, Ross and Keller, 2008)). Both datasets 

included SB/SB and SB/Sb samples. We created modules for each set using weighted gene 

coexpression network analysis (WGCNA) (version 1.49 (Langfelder and Horvath, 2008)). We 

used t-tests to determine whether any module eigengene is correlated with genotype or 

social form. In queens, we compared SB/SB to SB/Sb samples because all samples originate 

in multiple-queen colonies. In workers, we separated the effect of genotype from the effect 

of social form following the approach in Wang et al. (2008):  we compared genotypes (SB/SB 

vs SB/Sb) using samples from multiple-queen colonies, and we compared across social 

forms (single queen vs multiple queen) using SB/SB samples only. 

Evidence for selection based on nucleotide diversity 

Genomic regions that underwent recent selective sweeps are characterized by low 

nucleotide diversity (π) (Smith and Haigh, 1974; Nei, 1987; Nachman, 2001). We used 

measurements of π along a sliding window of the genome, originally produced by Pracana 

et al. (2017), to identify selection pressure acting on S. invicta OBPs. Measurements of π were 

taken from nonoverlapping 10 kb windows (Annex 3 Supplementary Methods). 

Data availability 

This analysis relies on the following data: 

• Illumina sequences from 15 fire ant males: NCBI SAMN00014755 

• Fire ant reference genome assembly: GCA_000188075.1. 
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We deposited the genomic reads of the Solenopsis geminata sample on NCBI SRA 

(SRX3045159). We manually produced gene models for 24 OBPs, which we deposited to 

NCBI. Additionally, all data is available at wurmlab.github.io/data. 

Acknowledgements 

We thank K. G. Ross, R. A. Nichols, C. Eizaguirre, L. Henry, E. Favreau, T. Colgan, two 

anonymous reviewers, the editor and the associate editor for advice and comments on the 

manuscript, and QMUL’s SBCS Evolution group for support and stimulating discussion. We 

thank A. Devenish for supplying Solenopsis geminata samples. This work was supported by 

the Biotechnology and Biological Sciences Research Council (grant BB/K004204/1), the 

Natural Environment Research Council (grant NE/L00626X/1), NERC EOS Cloud, the 

Deutscher Akademischer Austauschdienst (DAAD) Postdoc-Programm (570704 83), Marie 

Curie Actions (PIEF-GA-2013-623713), and QMUL Research-IT and MidPlus computational 

facilities (The Engineering and Physical Sciences Research Council grant EP/K000128/1). 

  



 

105 

 

Chapter 7: No supergene despite social 

polymorphism in the big-headed ant 

Pheidole pallidula 

Contributions 

Emeline Favreau led the study under supervision of Yannick Wurm. She did most of the 

work, including in the field work, laboratory experiments, data analysis and drafting the 

manuscript. I generated the genome assembly that forms the basis of all analysis, provided 

considerable input in determining potential reference bias in the analyses, and in revising 

the draft manuscript and interpreting the results. 

 

The chapter is intended for submission to Nature Communications: 

E Favreau, C Lebas, E Stolle, A Priyam, R Pracana, S Aron, Y Wurm (in prep) 

  



 

106 

 

Abstract 

Phenotypic polymorphisms that are maintained over time within a population are 

sometimes associated with genetic structures that hinder unfavourable allele 

recombination, such as supergenes. Recent studies in socially polymorphic ant species have 

demonstrated that large supergene regions of suppressed recombination are responsible for 

determining alternate forms of social organisation in at least two distinct lineages. Such 

findings suggest that supergenes may be required for maintaining social polymorphism, in 

line with the theory that such regions can resolve conflict. To test this, we focus on an 

independent lineage, the Mediterranean big-headed ant Pheidole pallidula, in which single- 

and multiple-queen colonies co-occur in the same population. We perform extensive 

genomic comparisons and show that a large supergene region does not underpin social 

polymorphism in this system. Our work highlights that even complex social polymorphisms 

can be maintained by other mechanisms. 

Introduction 

Evolutionary success within variable environments favours complex phenotypes, involving 

an important suite of characters and associated genes (Stearns, 2010; Thompson and Jiggins, 

2014). Selecting for genetic diversity (e.g., against inbreeding, for local adaptation) while 

maintaining allelic combinations associated with those complex phenotypes can be 

controlled by genetic architectures altering recombination levels. Supergenes, loosely 

defined as two or more tight linked loci associated with alternating complex phenotypes 

(Thompson and Jiggins, 2014), combine favourable alleles by hindering recombination, 

resulting in populations with balanced phenotypic polymorphisms. Supergenes are at the 

basis of sex chromosomes, plant mechanisms preventing self-fertilisation (Mather, 1950), 

butterfly’s Müllerian mimicry (Joron et al., 2011), and more recently they have been detected 

in social organisation of ants (Wang et al., 2013; Purcell et al., 2014). 
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Ants ancestrally have one queen per colony, yet many ant species have transitioned to 

having exclusively multiple-queen colonies (Hughes, Ratnieks and Oldroyd, 2008). A 

smaller number of species exhibit both social forms, which is called social polymorphism 

(Boulay et al., 2014). In the socially polymorphic species, there are different benefits 

associated with the number of queens, depending on relatedness, phenotypic differences 

and local competition for instance (Bourke and Franks, 1995). Generally, multiple-queen 

colonies benefit from more worker resources (sharing brood care, foraging, fighting local 

competition (Hölldobler and Wilson, 1977)); in contrast, single-queen colonies benefit from 

high relatedness of offspring (Hölldobler and Wilson, 1977). In some species the two colony 

types are associated with different dispersal strategies (Boulay et al., 2014).  

The genetic basis of social polymorphism has been investigated in two socially polymorphic 

lineages, including the red fire ant Solenopsis invicta and the silver alpine ant Formica selysi 

(Wang et al., 2013; Purcell et al., 2014; Brelsford et al., 2020). These two lineages are distantly 

related (119 million years (My) of divergence (Blanchard and Moreau, 2017)). However, in 

both the lineages, chromosomal inversions have led to the formation of a large region of the 

genome (several megabases (Mb)) where recombination is suppressed in the heterozygous 

state. The resulting supergene is associated with social form, in that all queens in multiple-

queen colonies bear non-recombining alleles at this locus. In the single-queen genotype, all 

diploids are homozygous for the region and the supergene recombines. This suggests that 

supergene architecture may be required for maintenance of intra-specific variation of ant 

social organisation (Rubenstein et al., 2019). 

While it is currently impossible to validate the presence of a social supergene in every single 

socially polymorphic ant species, we sought to investigate the presence or absence of a social 

supergene in one other socially polymorphic lineage, the Mediterranean big-headed ant 

Pheidole pallidula. This species is distantly related to Solenopsis and Formica (> 100 My) yet 

presents the same social polymorphism (Aron et al., 1999). If P. pallidula contains a supergene 

architecture associated with social form, we expect to find chromosomally linked variants 

that are associated with the phenotype. We further expect to find evidence of degeneracy in 

the non-recombining allele. 
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Results 

To determine whether a supergene is associated with social polymorphism in P. pallidula we 

first constructed a reference genome assembly. We then mapped sequenced reads (whole-

genome) from individuals of single- and multiple-queen colonies to the reference genome 

to identify single-nucleotide polymorphisms (SNPs) associated with social forms. Finally, 

we used simulations to demonstrate the validity of our analyses.  

Reference genome for Pheidole pallidula 

We constructed a de novo assembly of the genome of P. pallidula from 17x coverage of Oxford 

Nanopore long reads and 93x coverage of pairs of Illumina reads (150 bp). The resulting 

assembly (Ppal_gnE) has a length of 287 Mb, with an N50 length of 588 kb. Out of the 1,658 

single-copy orthologous genes in the BUSCO insect reference dataset, 98.8% are present and 

complete, while only 0.7% are duplicated. The genome assembly length is reasonably close 

to the flow cytometry-based estimate for the genome size of another Pheidole species (326 

Mb (Tsutsui et al., 2008)). With 4,130 assembled contigs, this assembly is more fragmented 

than the ten expected chromosomes (Lorite and Palomeque, 2010). Nevertheless, our 

assembly’s contig N50 is ranked in the top decile of 137 Hymenoptera genome assemblies 

(Table A3.S1). 

No evidence of social supergene in genome-wide SNP survey 

We collected workers from 108 colonies across three populations in France, Italy and Spain 

(Figure 7.1a), and determined the social form of each colony by genotyping six polymorphic 

microsatellite loci (average allele number per locus = 27.5, Table A3.S2) in eight workers per 

colony. We identified a total of 37 single-queen colonies and 71 multiple-queen colonies 

(Table A3.S3). We sequenced the genome of one worker from each colony using Illumina 

technology and obtained 6x coverage for each sample or 1380x coverage in total. We used 

bowtie2 (Langmead and Salzberg, 2012) to map the Illumina reads to the reference genome 

and freebayes (Garrison and Marth, 2012) for variant calling. We selected 121,786 biallelic 
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SNPs (one every 2,463 bp on average) that were polymorphic within each population and 

present in at least 75% of the samples. 

We performed a Principal Component Analysis (PCA) of the selected SNPs. The first two 

principal components each explained less than 4% of the variation. Furthermore, the 

samples did not cluster by social form (Figure 7.1b). Instead, the first principal component 

splits Vigliano samples from the other two populations. Further exploration of principal 

components did not reveal social clusters either (Figure A3.S1). This suggests that the social 

forms are not strongly differentiated at the genomic level. This is further confirmed by 

consistently low fixation index (FST) in each of the population (< 0.25 using 10kb slide and 

30kb window sizes; Figure 7.1e). In comparison, the average FST in Solenopsis and Formica 

supergenes is 0.9 (Pracana, Priyam, et al., 2017; Brelsford et al., 2020). 

Next, we performed a genome-wide association test for social organisation. Out of the 121,786 

SNPs, we found that 46 were significantly associated with social form (Fisher’s exact test Padj 

< 0.05, Bonferroni correction, Figure 7.1c). However, the SNPs were located on 42 different 

contigs, both large and small. Furthermore, none of the contigs had a strong association in 

both the populations (Figure 7.1d). Instead, it seems each population carries a unique, weak 

association with social organisation. Finally, only two of these contigs showed similarity to 

the Solenopsis supergene, the closest socially polymorphic lineage (Table A3.S4). 
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Figure 7.1: SNPs associated with social type are not linked 

a) Experimental design: 108 sequenced workers, one per colony, originating from 3 populations containing 
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both single-queen and multiple-queen colonies. Short-reads were mapped to long-read assembly, followed by 

SNP calling. 

b) PC1 and PC2 derived from the whole genomic dataset (121,786 within-population polymorphic SNPs, 

supported by 75% of samples, analysis from variance-standardised relationship matrix), explaining just over 

5% of the total variance. Samples group by geographical locations. 

c) Manhattan plot for association test across the whole dataset (121,786 Fisher’s exact test P values, Bonferroni 

adjustment). The 2,555 contigs are ordered by length. There are 46 SNPs that are significantly associated with 

social form (P = 0.05, represented by the dashed line). The colour of the SNPs alternate based on their contig 

membership. 

d) No common contigs yielding stronger within-population association signals (Pearson’s correlation R = 

0.443). 1,748 contigs containing SNPs within each population are represented by the lowest P value from each 

population (Fisher’s exact test on SNP data, raw P value). The size of the circle radius equals the product of the 

P values from the association test in each population. 

e) FST between social forms within each population, in an overlapping sliding window analysis. 

 

Simulations demonstrate sufficient power to detect social supergene 

We investigated if our association tests based on SNPs from one single worker per colony 

was powerful enough to detect an association between phenotype and genotype. We first 

simulated one single-nucleotide variant (homozygote in all single-queen samples, 

heterozygote in all multiple-queen samples) which we added to the Pheidole dataset with 

121,786 SNPs. The simulated SNP was by far the most significant after multiple comparison 

adjustments (Figure A3.S2). 

We then investigated if our association tests were powerful enough to detect an association 

with a fixed allele frequency for a simulated supergene region. We based this simulation on 

known systems by adding to our original dataset a realistic number of SNPs modelled on 

the Solenopsis supergene. 2.5% of the simulated SNPs were fixed for social form in the 

supergene: homozygote in all single-queen and a third of multiple-queen samples, 

heterozygote in two-thirds of multiple-queen (Buechel, Wurm and Keller, 2014; Pracana, 

Priyam, et al., 2017). We randomly assigned a missing genotype to 25% of our samples, 

reflecting our original dataset. All simulated SNPs (n = 3,054) were detected by our method, 

with a P value lower than the real SNPs (Figure A3.S3). We additionally simulated the 
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Formica supergene: 3.6% of SNPs fixed for social form, homozygote in all single-queen 

samples, heterozygote for 68% of multiple-queen samples, homozygote alternative for 32% 

of the multiple-queen (Purcell et al., 2014). Again, all simulated SNPs were detected, with a P 

value even lower than in the Solenopsis simulation (Figure A3.S4). 

Finally, we investigated the effect of misgenotyping some of the samples on our analysis. 

We expect that the strength of association is so important in our dataset that the 46 

significant SNPs will be detected by Fisher's exact tests, even when the categorical values 

(social type of the colony: single-queen or multiple-queen) is wrongly assigned. We set the 

alternative social type to 10% of our samples and investigated the subsequent association 

tests. We find that a large proportion of the 46 real significant SNPs are always recovered as 

significant in the simulations (Figure A3.S5). 

Absence of coverage discrepancies underlying social supergene 

We investigated if the genomic region potentially associated with social type may be missing 

in the reference genome. Since the reference assembly is derived from individuals of single-

queen colonies, there are two possibilities. First, the region is present only in the individuals 

of multiple-queen colony. Second, the region is carried by individuals of both social forms 

but collapsed in the reference assembly. 

We thus investigated the proportion and sequence similarity of unmapped reads (Table 

A3.S5), proportion and content of regions unique to each social type. We find that the 

regions unique to one social type are small and without significant sequence similarity to 

known ant social features (Table A3.S5). We also find that the contigs that are extremely 

enriched in either single-queen colony reads (top y axis in Figure 7.2) or multiple-queen 

colony reads (bottom y axis) are small and without significant SNP associated with social 

type. These coverage discrepancies investigations show that it is unlikely that the genome 

contains a region associated with social type. 
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Figure 7.2: Contigs with biased coverage are small 

Each contig is a round point, ordered by length on the x axis. Log2 read fold change is based on the median-

normalised mean read depth of 777,165 Bruniquel unfiltered SNPs. Contigs that are enriched in either single-

queen colony reads (pink, top y axis) or multiple-queen colony reads (green, bottom y axis) are very small (left 

x axis) and without significant SNP (If the contig contains significant SNPs from the GWAS, the contig is 

represented by a triangle). 

Discussion 

We investigated whether the social polymorphism of P. pallidula is associated with a 

supergene. We genotyped 108 colonies for their social form and sequenced short reads from 

a representative worker of each colony. We assembled the genome de novo and tested for 

association with social form. In the whole dataset, we find 949 SNPs associated with social 

form, but none in genomic proximity to one another. We demonstrate that those loci are not 

significantly associated with social form within a population, and that each population has 

unique high FST regions. Furthermore, our datasets are complete, as there is no reference 

bias that could have supported the evidence of an absent (non-mapped) Y-like region. Our 

sampling effort led to a relatively small (n = 108) and heterogeneous dataset (each population 

has a skew towards one social form). Our experimental design included a PCR-based library 
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(non-random amplification) and a relatively low coverage per sample (6x). Yet, our 

simulation models show that the analysis would have detected an association as small as 

one significant locus.  

The lack of social supergene brings into question the evolutionary origin of the social 

polymorphism in P. pallidula. There are many factors, other than a large non-recombining 

region, that could be at the origin of this polymorphism. First, life history, such as natural 

succession, can see a multiple-queen colony become single-queen as it matures (Hölldobler 

and Wilson, 1977). Second, other abiotic factors could be associated, such as phenotypic 

plasticity linked to environmental predictability, like in the system of facultatively sexual 

rotifer Brachionus plicatilis (Franch-Gras et al., 2018). Third, it could be one (or several) very 

young supergene(s) in which two or more multiple-queen alleles are linked without signals 

of divergence. Alternatively, we could expect unlinked but associated polymorphisms to 

signal the early stages of a supergene, such as the LaLal2 paralog that is involved in the self-

incompatibility mechanism but is unlinked to other heterostyly genes in Arabidopsis lyrata 

(Thompson and Jiggins, 2014). Fourth, a social supergene could have evolved in the genome, 

altered by gene flow from subsequent population divergence and/or selection pressures 

from mutation load, such as in a hot potato scenario (Jeffries et al., 2018). There, the 

supergene accumulates mutations in the non-recombining allele to the extent that the focal 

genes move to another chromosome (turnover). Fifth, social form could still have a genetic 

basis at a polygenic threshold trait, such as human red hair (Hysi et al., 2018). There, each 

locus would have a very small effect that our analyses would not have detected. Sixth, social 

forms could vary depending on a threshold of allele frequencies, such as in the wing 

dimorphism of the sand cricket (Roff, Stirling and Fairbairn, 1997), which our dataset could 

not have detected. Finally, the social polymorphism of P. pallidula might be molecularly 

associated at another level of selection pressure (e.g., with differentiated gene expression, 

methylation or proteomic patterns). Further work, ideally combining long-term field 

observation and complete dataset analyses, will produce a more extensive survey of the 

potential mechanisms at play here. 

The fact that there is no social supergene in P. pallidula contrasts with the social supergenes 

detected in two socially polymorphic ant species, S. invicta and F. selysi (Wang et al., 2013; 
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Purcell et al., 2014). It seems that the social polymorphism of P. pallidula is less bimodal than 

in these two lineages, in which a chromosomal inversion stops recombination at a specific 

locus that is associated with the social form and corresponding phenotypic characteristics. 

Cases of inversion associated with phenotypic characteristics are quite common, such as 

speciation in Drosophila species (Noor et al., 2001). In the well-studied case of the colour 

polymorphism in Heliconius butterflies, the genus contains only one known species with an 

inversion associated with colour polymorphism (Joron et al., 2011), while the rest of the 

species with colour polymorphism hold a polygenic system associated with colour (Nadeau, 

2016). We hypothesize that the evolution of social organisation in ants follows a similar 

pattern in which there are many ways to evolve into a socially polymorphic system, in the 

ecologically diverse, 13,000-species strong genus. Moreover, the two examples of social 

chromosomes are tinted with local adaptation accents: S. invicta has more variability in the 

native range than in the North America population, F. selysi encompasses variation due to 

assortative mating and maternal effect (Avril et al., 2019, 2020). A large-scale comparative 

analysis of social polymorphisms among the ants will give us a better idea of the 

mechanisms underlying the seemingly diverse case of social supergenes. 

Methods 

Sample collection 

From each of 108 Pheidole pallidula colonies, 58 colonies were sampled in 2002-04 from 

France (Fournier, Aron and Milinkovitch, 2002) and Spain, and 57 were sampled in 2016-17 

from France, Spain and Italy. Based on their geographic distribution, we expect all samples 

to be from the subspecies Pheidole pallidula pallidula (Seifert, 2016). We collected minor and 

major workers, either selected from within the colony, or attracted with bait outside the 

colony. All were stored in 100% molecular grade ethanol. We named three populations 

based on the location of the majority of samples: Bruniquel, Vigliano, Iberia (Figure A3.S6). 
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Microsatellite genotyping 

We genotyped each colony using microsatellite markers and estimated its number of 

queens. We first extracted DNA from eight workers of each colony, using a slightly adapted 

version of a protocol based on a co-polymer solution (Gadau, 2009). Briefly, we reduced each 

individual into small fragments on a FastPrep homogeniser (MP Biomedicals) for two two-

minute cycles of 8,000 rpm separated by one minute of rest, in a 5% Chelex solution with 1g 

ceramic beads. We then proceeded to the incubation and centrifuge steps as per the 

protocol. We evaluated DNA yields using fluorometry (Qubit 2.0, Life Technologies). 

We then amplified six microsatellite loci, using species-specific markers developed by 

(Fournier, Aron and Milinkovitch, 2002), with fluorescent forward primers (VIC Ppal01T, 

NED Ppal33, PET Ppal84, FAM Ppal03, FAM Ppal73, VIC Ppal12) and non-fluorescent reverse 

primers. We performed multiplex PCRs using Type-It PCR kit (Qiagen) with 1μl of extracted 

DNA, following the manufacturer's cycling conditions modifying the annealing step (90s at 

61 °C) and the total number of cycles (35). The microsatellite genotyping was performed on 

a 3730 DNA Analyser (Applied Biosystems); we subsequently determined the microsatellite 

length for each marker with GeneMarker software (v.2.4.0, SoftGenetics). 

For each colony, we estimated the number of queens by counting the number of alleles 

present in each primer. With the assumptions that this species is singly-mated (Fournier, 

Aron and Milinkovitch, 2002) and that eight workers are a fair representation of the colony 

genotype, we use a simple rule: if more than three alleles are present at a locus within a 

colony dataset, the colony has multiple queens. 

We subsequently evaluated the level of potential sample outliers with a principal 

component analysis, inputting the genotypes of each colony in the R package adegenet 

(Jombart, 2008; R Core Team, 2014). 
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DNA extraction for Illumina library preparation and sequencing 

We first extracted high-quality DNA from one representative worker from 39 single-queen 

colonies and from 76 multiple-queen colonies (Table A3.S3). We followed a phenol-

chloroform extraction protocol (Hunt and Page, 1995), with slight modifications: 10μl 

Proteinase K were added to the CTAB step, and we omitted the NaCl-Tris-Cl step. We 

further cleaned the extractions using part of Sigma Aldrich GenElute™ Mammalian 

Genomic DNA Miniprep Kit protocol (from step 4; catalogue number G1N70) and reduced 

the extraction volume to 20μl with an Evaporator centrifuge (Uniequip, Univapo 100H). 

We then prepared individual libraries for whole-genome sequencing, using NEBNext® 

Ultra™ II FS DNA Library Prep Kit for Illumina (catalogue number E7805) and a 

combination of two primer sets (NEBNext® Multiplex Oligos for Illumina® Dual Index 

Primers Set 1 catalogue number E7600 and Set 2 catalogue number E7780). We altered the 

protocol by reducing in half the reagent volumes, to improve performance while reducing 

the costs, inspired by (Tan and Mikheyev, no date). Each resulting library was controlled for 

fragment size (300bp) using TapeStation High-Sensitivity tape (Agilent). 115 libraries were 

pooled in equimolar quantities. The final 15nM pool was sequenced on three lanes of 

Illumina HiSeq 4000 platform with 150 bp paired-end (Genewiz). We obtained 2,762,930,432 

short-read raw sequences (Table A3.S6), which is the equivalent of more than 1,300x genome 

coverage (genome size estimated from Pheidole genus average in (Tsutsui et al., 2008)). Each 

sample contributes to an average of 16x coverage, with one outlier sample E15 with 66x 

coverage. The number of sequenced reads is significantly different between single-queen 

and multiple-queen samples (Kolmogorov-Smirnov test P = 0.00558, Wilcoxon test P = 

0.01009). 

Species identification 

We downloaded every COI barcode sequence for the taxon “Pheidole” in the BOLD 

database (v3.boldsystems.org), as well as the unique COI sequence of Pheidole pallidula from 

NCBI (GenBank: EF518381.1), whose sample originated from France (pers. comms Corrie 

Moreau). We reduced the number of BOLD sequences by collapsing redundant sequences 
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(cd-hit-est v4.6.8, overlap c = 0.97, word size n=10, length of description in .clstr file d= 0). The 

final database file contained 600 BOLD sequences and one NCBI sequence. For each 

sample, we compared the Illumina raw reads (forward and reverse) against that database 

(Magic-BLAST v1.4.0 -dbtype nucl -parse_seqids (Boratyn et al., 2019)). To identify each 

sample, we assign the taxon name of the database sequences that bore the following criteria: 

100% identity and the highest alignment score. All samples were identified as P. pallidula, 

with predictable regional proximity: our Italian and Corsican samples match BOLD 

barcodes from an Italian sample, French and Spanish samples match the NCBI barcode 

from the French sample. 

Long read library preparation and sequencing 

Prior to this study, there was no reference genome for this species and the closest species 

Atta cephalotes (Ward, Seán G. Brady, et al., 2015) with an assembled genome (Suen et al., 2011) 

is 83.5 My apart from Pheidole. We thus obtained one queenless French colony, kept alive in 

the laboratory, for MinION sequencing (colony 12). Workers were fed twice a week on 

Bhatkar diet (Bhatkar and Whitcomb, 1970) and water ad libitum. 

We selected males and workers from two single-queen colonies, to reduce the allelic 

diversity of the resulting assembly in the potential supergene, under the assumptions of a 

Solenopsis/Formica system with homozygous supergene in single-queen samples. We 

extracted high-molecular weight DNA from each sample. We first reduced the samples in 

pellets using either a hand pestle, or a tissueRuptor. We then applied the phenol-chloroform 

extraction method mentioned above, with special modifications to ensure the preservation 

of long molecules. We prepared six libraries based on two chemistry kits (2D and 1D2); 

following ONT MinION protocols with several modifications. The libraries were 

subsequently sequenced following the manufacturer’s instructions. Six sets of reads were 

obtained from the MinION runs (17x), basecalled with ONT Albacore version 2.1.7. We 

obtained raw reads with an average sequence length of 2.6Kb and an overall genome 

coverage of 17x (Table A3.S7). 
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De novo assembly Ppal_gnE 

We assembled all MinION reads, using Flye v2.4 (Kolmogorov et al., 2019) and a genome size 

estimation of 300Mb (Tsutsui et al., 2008). We used Pilon v1.22 (Walker et al., 2014) to improve 

the assembly, by reducing error rate and increasing contiguity. Pilon parameters were: --fix 

snps, indels --diploid. The samples used to polish were a set of 10 single-queen Italian 

samples. The reads were cleaned using the approach described in Chapter 2 and sub-

sampled to obtain equal coverage from each sample. The final assembly (Ppal_gnE) was 

improved after ten Pilon iterations.  

We controlled the quality of the finished assembly, by obtaining an estimation of continuity 

(N50) and other diagnostics with QUAST v4.6.1 (Gurevich et al., 2013) and an estimation of 

gene completeness with BUSCO v3.0 using a total of 1,658 insect references (Simão et al., 

2015). 

Scaffolding Ppal_gnE 

We scaffolded Ppal_gnE assembly (generated with Flye and polished with Pilon) using 

AGOUTI (Zhang, Zhuo and Hahn, 2016) using publicly available RNA-seq reads (GenBank: 

EF518381.1). We first mapped these RNA-seq reads to each other with bwa (Li and Durbin, 

2009), and we generated an annotation file with MAKER (Cantarel et al., 2007) for AGOUTI 

input. We performed AGOUTI scaffolding with a minimum of five supporting RNA reads, 

with 318 contigs being scaffolded. The resulting assembly statistics were improved: N50 is 

587,760 (previously 446,424bp), number of contigs is 3,954 (previously 4,130). 

Reference-based analysis (mapping, variant calling, filtering) 

We performed a reference-based variant calling using the assembly Ppal_gnE and Illumina 

raw reads on the QMUL HPC facility (King, Butcher and Zalewski, 2017). We first mapped 

raw reads of each sample to the assembly using Bowtie2 v2.3.4 (Langmead et al., 2009) local 

alignment, obtaining 115 BAM files with alignments private to each sample.  
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We first quantified the variation between single-queen and multiple-queen samples in our 

alignment dataset using R. The proportion of mapped reads is not significantly different 

between social form (Figure A3.S7, T test P = 0.58). The mapping quality is significantly 

different between social form (Figure A3.S8, Kolmogorov-Smirnov test on average mapping 

quality of each sample, P = 0.002, Wilcoxon test P = 0.00036). This can be explained in part 

by the geographical origins of samples: samples from the same geographical locality as the 

reference assembly have a smaller difference between social forms (Kolmogorov-Smirnov 

test P = 0.04, Wilcoxon test P = 0.01). 

We then used FreeBayes (--use-best-n-alleles 2; version 1.2.0 (Garrison and G., 2012)) to call 

the variants, obtaining 587,048 variants. We filtered the variant file with BCFtools v1.8 (Li et 

al., 2009; Garrison and G., 2012), Tabix v0.2.5 (Li, 2011) and VCFtools v0.1.15 (Danecek et al., 

2011). Briefly, we sorted and indexed the VCF file, we kept biallelic SNPs, with a minimum 

quality phred of 30 and minimum sample support of 75% (--remove-indels --minQ 30 --min-

alleles 2 --max-alleles 2).  

We initially investigated this variant dataset by conducting a PCA using PLINK (--allow-

extra-chr --allow-no-sex --pheno –cluster; version 1.90b4.6 (Chang et al., 2015)) and visualised 

the results using R. We asked if some samples were outliers based on regional groups, and 

we estimated the proportion of variance explained by each principal component (n = 20 

PCs). Seven samples were removed from the analysis with VCFtools, due to their outlier 

nature after the coverage analysis and after the PCA: three Spanish samples under the 

hypothesis of species misidentification, three samples under the hypothesis of mislabelled 

(PCA cluster in contradiction with geographical origin), one sample under the hypothesis of 

contamination (ten times more read depth). 

We further filtered the variant database with VCFtools by keeping SNPs that are 

monomorphic within each population. Using the resulting 121,786 SNPs, we calculated 

Fisher’s exact tests for association with social organisation using PLINK and visualised the 

results using R. 



 

121 

 

We replicated the association tests and visualisation for each population, enabling us to 

compare at the contig level the correlation between unadjusted P values of Bruniquel and 

Vigliano (Figure 2b). We also calculated FST values between social forms for each 

population using R package PopGenome (2.7.5) (Pfeifer et al., 2014). 

Simulations of association test with supergene region  

We first performed a simulation in which one simulated variant (homozygote in single-

queen samples, heterozygote in multiple-queen samples) was added to the VCF (109 

samples, within coding regions). We ran a Fisher’s exact test (allele count in two sample 

categories: single-queen and multiple-queen) using PLINK (Chang et al., 2015), adjusted for 

multiple comparisons in R (p.adjust, Benjamini & Hochberg method, see (Benjamini and 

Hochberg, 1995)). This simulated SNP was by far the most significant (Figure A3.S5). 

To test whether our analysis would detect a realistic supergene, we additionally simulated 

a dataset that replicates the model of S. invicta. We first selected 3,757 real Pheidole SNPs 

(100% sample-coverage, in coding regions, within-population polymorphic, from 108 diploid 

workers). Based on Pracana (Pracana, Priyam, et al., 2017), 2,5% of all SNPs are fixed in S. 

invicta supergene region. We therefore added 95 simulated SNPs to the dataset, represent 

what we expect from the supergene system: homozygous SNPs for all single-queen and 1/3 

of multiple-queen samples, heterozygous SNPs for 2/3 of multiple-queen samples (Buechel, 

Wurm and Keller, 2014). We then ran Fisher test and adjusted for multiple comparisons. All 

simulated SNPs are associated with social form (Padj value < 0.05), strongly segregated away 

from the real dataset points (Figure A3.S7). 

We additionally simulated a dataset that replicates the model of F. selysi. Based on (Purcell 

et al., 2014), 3.7% of all SNPs are fixed in the supergene region. We therefore added 139 

simulated SNPs to the dataset, represent what we expect from the supergene system: 

homozygous SNPs for all single-queen, 68% heterozygote multiple-queen samples and 32% 

multiple-queen samples that are homozygous for the alternative allele. All simulated SNPs 

are associated with social form (Padj < 0.05), strongly segregated away from the real dataset 

points. As predicted, the Fisher test detects more easily the Formica SNPs (in which there is 
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strictly no homozygote for reference in multiple-queen samples) than the Solenopsis SNPs, 

with respectively P values of 7.659e-09 and 6.402e-18. 

Assembling non-mapping reads 

We used SPAdes (version 3.12.0 (Bankevich et al., 2012)) to assemble the reads from 

polygynous samples that did not map to the monogynous assembly. 

Data availability 

Raw reads, the genome assembly, and analysis scripts are available on request. They will be 

uploaded respectively to NCBI and GitHub. 
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Chapter 8: Discussion 

In the previous chapters, I presented the limitations of reference genome assemblies, tools 

to overcome some of the limitations, and examples of studies that are now possible because 

of lower costs of genome sequencing than ever before. In this chapter, I will discuss some of 

the recent developments in genome sequencing and assembly and put my thesis in 

perspective of these developments. Next, I will discuss some of the challenges in biological 

data sharing, integration, and their potential solutions. 

Technology trickles down slowly 

Sequencing technologies are advancing and so are the assembly approaches. Human 

genome continues to demonstrate what is possible. Just this year, Nurk et al., (2022) 

demonstrated a complete, telomere-to-telomere (T2T) assembly of all human chromosomes 

except Y. One might then assume that it is just a matter of time before a complete, T2T 

genome assembly can be generated for other species. Let us put that in perspective. 

First, the human T2T genome assembly was generated by sequencing a hydatidiform cell 

line which is almost perfectly homozygous (Fan et al., 2002). Researchers working with other 

species may not be so lucky. Instead, they need to work with what is effectively a diploid or 

a polyploid sample, such as a population of haploid sperm cells, or DNA from whole-body 

containing both the copies of parental DNA as well as somatic mutations from the different 

cell types. Considerable advances have made in the genome assembly using diploid samples 

(Cheng et al., 2022; Jarvis et al., 2022). However, the applicability of these approaches for a 

genome that is to be sequenced for the first time depends on two factors. First, some of the 

approaches require sequencing parents-offspring trio (Jarvis et al., 2022) which may limit 

their applicability (Cheng et al., 2022). Second, genome organisation of a newly sequenced 

species may violate the assumptions of the underlying computational methods as Cheng et 

al., (2022) themselves found in the case of the sterlet genome. Indeed, genome assembly 

algorithms often make assumptions or have thresholds derived from the datasets they were 
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tested with, and the assumptions may not hold, or the thresholds may not be optimal for a 

different species. In fact, this was one of the key points of Chapter 2. 

Second, the human T2T genome assembly was generated and validated using an array of 

complementary sequencing technologies (e.g., Pacific Biosciences HiFi, Oxford Nanopore 

ultra-long, Hi-C, Illumina, Strand-seq). This may not only be prohibitively expensive for 

many labs that work on a much smaller budget, but also, they may lack the expertise to 

reliably generate libraries for the different sequencing technologies. An example from 

personal experience is the Oxford Nanopore reads for the big-headed ant, Pheidole pallidula, 

in Chapter 7. While the words ultra-long reads (>40,000 bp) are often associated with Oxford 

Nanopore, the average read length we obtained was a mere 2,600 bp. Unfortunately, due to 

funding constraint it was not possible to get the sample re-sequenced at a sequencing centre 

with greater experience, and due to time (and funding) constraint it was not possible to 

improve the sequencing run by ourselves. One finds many such stories at conferences or 

stories where appropriate expertise had to be developed before long-molecular sequencing 

could be applied. 

Third, the human T2T genome assembly was not the outcome of an automatic assembly 

pipeline. It required significant manual curation. To quote Jarvis et al. (2022) “Completing 

the T2T-CHM13 assembly also required a substantial amount of manual curation by dozens 

of people over many months, with different groups focused on each chromosome.” Such 

manpower and expertise are also beyond the reach of many labs working on different 

species. Due to funding and project-specific constraints many small labs restrict themselves 

to the final output of genome assembler or adopt some heuristics (e.g., polish the assembly 

using Illumina reads), without truly understanding their pitfalls (like how polishing can 

homogenise repeats) and validating the results (e.g., quantifying assembly accuracy before 

and after polishing). Instead, the onus of accounting for assembly errors is often left for 

downstream analysis (Chapters 6 and 7 are good examples of how individual analyses must 

deal with assembly imperfections). 

Thus, generating completed, T2T genome assemblies for all species, or more specifically, 

from any given sample (for the ultimate high-resolution analysis) still requires further 
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advances in the handling of diploid and polyploid samples, including sequencing library 

preparation, faster and more adaptive assembly algorithms that can automatically produce 

the optimal assembly for any given species and sequence dataset, and further reduction of 

sequencing costs (Pacific Biosciences sequencing costs approximately four times more than 

Illumina at the time of this writing). The advances required are numerous and complex 

enough that they will take a long time to materialise. However, based on the importance of 

the research questions and the funding landscape some researchers may push the envelope 

and generate a complete, T2T genome assembly for their species. While others will continue 

to answer biological questions that they can using the technologies and tools at their 

disposal given the project and funding constraints. 

We are already at a stage where long-molecule sequencing has been applied to many species 

to generate higher-quality genome assemblies and answer biological questions that were 

impossible with short-read sequencing. This has already added to our collective knowledge 

of what works and what doesn’t and made it possible for more researchers to obtain higher 

quality genome assemblies for their species. As more and more researchers continue to 

apply long-molecule sequencing and other forthcoming advances in genome sequencing 

and assembly approaches, the technology and the know-how will slowly trickle down. Until 

one day, we may indeed have a complete, T2T gnome assemblies for all species. However, 

in the process, we will generate many incomplete and imperfect genome assemblies, build 

communities around them, and answer biological questions despite their limitations. 

My contributions 

My thesis is set against the above-described backdrop of iterative technological progress. 

Chapter 2 encourages researchers to make the best of the available technology by testing 

different genome assembly software and assembly parameters. I describe a tool that can be 

used to rank the generated assemblies using multiple metrics of assembly quality and select 

the best. The chapter further demonstrates the benefit of such assembler-parameter-space 

exploration. Next, as technologies advance and the research questions move forward, newer 
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genome assemblies will inevitably be generated to either replace the old one or to 

complement it (e.g., to better capture the allelic diversity of a population). The tool described 

in Chapter 3 can then be used to carry over annotations to the newer, or alternate assembly. 

Finally, as discussed in the previous section, the onus to account for assembly errors often 

falls on downstream analyses, Chapters 4 and 5 empowers the researchers with tools that 

can be used to QC genomic regions and gene annotations in a targeted and visual manner. 

Data sharing and integration 

The current generation of sequencing technologies already produce dramatically better 

genome assemblies than their predecessors. This has spurred an ambitious international 

collaboration to produce reference genome assemblies for millions of species (Lewin et al., 

2018). The reference assemblies will likely be accompanied by reference gene annotations 

and datasets that were used to generate them. The result will be treasure trove of data. 

However, the scale of data will also bring with it challenges in their dissemination and 

analysis. I discuss two such challenges below and present potential solutions. 

Data qualities 

Genome assemblies and annotations are typically deposited to databanks upon publication, 

from where they can be downloaded by anyone for further analysis. However, the databanks 

do not often do a very good job of communicating the quality of the available data. Genome 

assemblies are presented only in terms of their contiguity and genome annotations in terms 

of counts of feature types and their size distribution. As a result, each researcher or research 

lab must repeat the same quality control steps, which is wasteful and increases the chances 

of propagating errors. 

For genome assemblies, the databanks can provide quality information at three levels to 

reduce the above-mentioned inefficiencies. First, they can compute and display the metrics 

presented in Chapter 2 to provide a summary overview of genome assembly quality and 
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help researchers choose if multiple competing genome assemblies are available. Second, by 

assigning a Phred-like quality score to each base in the assembly using an approach such as 

Referee (Thomas and Hahn, 2019) and making this information available for download. 

Third, by identifying regions likely to be problematic (i.e., containing mis-assemblies), for 

example, using an approach similar to (Warr et al., 2015) and making the information as BED 

file so that such regions they can be eliminated or specifically-treated by dependent analysis. 

A similar approach can work for genome annotations. Approaches such as BUSCO (Simão 

et al., 2015) can be used to provide biologically meaningful summary overview of the of gene-

set’s quality. While, quality of individual feature annotations can be indicated using metrics 

such as Annotation Edit Distance (Holt and Yandell, 2011). Alternatively, approaches such 

as GeneValidator (Drăgan et al., 2016) can be used not only to assign a score to each 

annotation, but also indicate the type of error that may be present. 

Infrastructure for secondary databases 

Researchers often create custom databases focussed on a particular species or a lineage to 

foster collaboration, to reduce inefficiencies in accessing data directly from large primary 

databases, and to provide unique integrations in the form of additional data types, or search, 

download, analysis and visualisation tools that are not supported by the primary databases 

(see Annex 1, Table A1.2 for examples). This has led to the development of software tools 

that can be pieced together to create such databases (gmod.org). However, these software 

are not always easy to install and provision. Furthermore, there is the associated cost of 

procuring and maintaining the hardware on which the database will run and dedicating 

human resource for developing custom integrations and providing long-term maintenance 

such as, software updates or incorporating newly published datasets. It is not uncommon to 

a) hire dedicated software developer(s) for the creation and maintenance of such databases 

and b) leave the databases unmaintained if the funding runs dry or due to other operational 

challenges. The costs can limit smaller research communities and individual labs from 

creating and operating custom databases. Arguably, individual labs and small research 

communities stand to benefit the most from such centralisation of efforts. While databases 
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that could be but were never created or left unmaintained represent missed opportunities 

for the scientific community as a whole. 

I created SequenceServer with Yannick (Chapter 4) in response to some of these challenges. 

We purposefully designed it to be easy to install, integrate, operate and maintain. Today, it 

has become a popular way to provide BLAST-search functionality in several custom 

databases, both large and small (Annex 1, Table A1.2). JBrowse genome browser is another 

example of a database component that has become popular due to its ease of setup, use, and 

integration (Skinner et al., 2009; Buels et al., 2016; Yao et al., 2020). Such purposeful design of 

software components that are used to build custom databases can considerably lower the 

costs of their creation and maintenance. Furthermore, setup of a private company dedicated 

to providing hardware, software, and human resources for creation and maintenance of 

custom databases can simplify many of the challenges by amortising costs and developing 

standard integrations. 
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Annex 1: Supplementary information for 

chapter 4 

Supplementary tables 

Table A1.1: Research using Sequenceserver 

Interplay of chimeric mating-type loci impairs fertility rescue and 
accounts for intra-strain variability in Zygosaccharomyces rouxii inter- 
species hybrid ATCC42981 

Bizzarri et al., 2019 

A genome-wide association study of non-photochemical quenching in 
response to local seasonal climates in Arabidopsis thaliana 

Rungrat et al., 2019 

Taraxacum kok-saghyz (rubber dandelion) genomic microsatellite loci 
reveal modest genetic diversity and cross-amplify broadly to related 
species 

Nowicki et al., 2019 

Developmental expression and evolution of hexamerin and 
haemocyanin from Folsomia candida (Collembola) 

Liang et al., 2019 

Disentangling the mechanisms of mate choice in a captive koala 
population 

Brandies et al., 2018 

Evidence for sexual reproduction: Identification, frequency, and spatial 
distribution of Venturia effusa (pecan scab) mating type idiomorphs 

Young et al., 2018 

Pseudomonas fluorescens group bacterial strains are responsible for 
repeat and sporadic post pasteurization contamination and reduced 
fluid milk shelf life 

Reichler et al., 2018 

Complete pathway elucidation and heterologous reconstitution of 
Rhodiola salidroside biosynthesis 

Torrens-Spence et al., 2018 

Evolution of the shut-off steps of vertebrate phototransduction Lamb et al., 2018 
De novo draft assembly of the Botrylloides leachii genome provides 
further insight into tunicate evolution 

Blanchoud et al., 2018 

Whole-genome sequence of the metastatic PC3 and LNCaP human 
prostate cancer cell lines 

Seim et al., 2017 

Fire ant social chromosomes: Differences in number, sequence and 
expression of odorant binding proteins 

Pracana et al., 2017 

Ecological genomics for the conservation of dwarf birch. Borrell, 2017 
Transcriptomic discovery and comparative analysis of neuropeptide 
precursors in sea cucumbers (Holothuroidea) 

Suwansa-ard et al., 2018 

High-throughput genotyping analyses and image-based phenotyping 
in Sorghum bicolor 

McCormick, 2017 

Bacteriocins of non-aureus staphylococci isolated from bovine milk Carson et al., 2017 



 

131 

 

Naturally occurring high oleic acid cottonseed oil: Identification and 
functional analysis of a mutant allele of Gossypium barbadense fatty acid 
desaturase-2 

Shockey et al., 2016 

3D sorghum reconstructions from depth images enable identification 
of quantitative trait loci regulating shoot architecture 

McCormick et al., 2016 

A workflow for studying specialized metabolism in nonmodel 
eukaryotic organisms 

Torrens-Spence et al., 2016 

Transcriptomic identification of starfish neuropeptide precursors 
yields new insights into neuropeptide evolution 

Semmens et al., 2016 

Multi-species sequence comparison reveals conservation of ghrelin 
gene-derived splice variants encoding a truncated ghrelin peptide 

Seim et al., 2016 

Characterization of a second secologanin synthase isoform producing 
both secologanin and secoxyloganin allows enhanced de novo 
assembly of a Catharanthus roseus transcriptome 

Dugé de Bernonville et al., 2015 

Identification and heterologous expression of the chaxamycin 
biosynthesis gene cluster from Streptomyces leeuwenhoekii 

Castro et al., 2015 

Discovery of sea urchin NGFFFamide receptor unites a bilaterian 
neuropeptide family 

Semmens et al., 2015 

Comparative analysis reveals loss of the appetite-regulating peptide 
hormone ghrelin in falcons 

Seim et al., 2015 

Reconstructing SALMFamide neuropeptide precursor evolution in the 
phylum Echinodermata: Ophiuroid and crinoid sequence data provide 
new insights 

Elphick et al., 2015 

Molecular biology approaches in bioadhesion research Rodrigues et al., 2014 
Discovery of a novel methanogen prevalent in thawing permafrost Mondav et al., 2014 
Neuropeptides and polypeptide hormones in echinoderms: New 
insights from analysis of the transcriptome of the sea cucumber 
Apostichopus japonicus 

Rowe et al., 2014 

Discovery of a novel neurophysin-associated neuropeptide that 
triggers cardiac stomach contraction and retraction in starfish 

Semmens et al., 2013 

The evolution and diversity of SALMFamide neuropeptides Elphick et al., 2013 
The protein precursors of peptides that affect the mechanics of 
connective tissue and/or muscle in the echinoderm Apostichopus 
japonicus 

Elphick, 2012 

 

Table A1.2: Public community websites using Sequenceserver 

Reference /description URL 

Dieterich et al., 2007. Genomic resources for the nematode, 
Pristionchus pacificus 

pristionchus.org 

Amborella Genome Project, 2013. Amborella genome database amborella.uga.edu 
Chiu et al., 2013. Spotted wing fly-base spottedwingflybase.org 
Petrillo et al., 2015. JRC GMO-amplicons: Database of amplicon 
sequences related to genetically modified organisms 

gmo-crl.jrc.ec.europa.eu 
jrcgmoamplicons/db scans/blast 

Kirmitzoglou and Promponas, 2015. LCR-eXXXplorer: Explore 
low complexity regions in protein sequences 

repeat.biol.ucy.ac.cy/fgb2 
gbrowse/swissprot/ 

Brandl et al., 2016. Planmine: Data and tools to mine planarian 
biology 

planmine.mpi-cbg.de 
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Mun et al., 2016. Lotus-base: Resources, tools, and datasets for the 
model legume Lotus japonicus 

lotus.au.dk 

Liew et al., 2016. ReefGenomics: Genomic and transcriptomic 
data for marine organisms 

reefgenomics.org 

Shen et al., 2016. Y1000+ project: Initiative to sequence 1000 wild 
yeasts 

y1000plus.wei.wisc.edu 

Nakagawa and Takahashi, 2016. gEVE: Database of genome-
based endogenous viral elements 

geve.med.u-tokai.ac.jp 

Janies et al., 2016. EchinoDB: Database of orthologous transcripts 
from echinoderms 

echinodb.uncc.edu 

Louro et al., 2016. Assembled transcriptomes of sea bass and sea 
bream 

sea.ccmar.ualg.pt:4567 

Hane et al., 2016. Lupin genome portal: Genome assembly and 
annotations for the narrow-leafed lupin 

lupinexpress.org 

Challis et al., 2016. Lepbase: Lepidopteran genome database lepbase.org 
Zhu et al., 2017. CottonFGD: Cotton functional genomics 
database 

cottonfgd.org 

Hill et al., 2017. Hopbase: Database for genomics of Humulus 
lupulus (hop) 

hopbase.org 

Torres et al., 2017. LeishDB: Database for leishmania genomic 
information 

leishdb.com 

Naas et al., 2017. BLDB: Beta-lactamase database bldb.eu:4567 
Elsik et al., 2018. Hymenoptera genome database hymenopteragenome.org 
Hagen et al., 2018. Bovine genome database bovinegenome.org 
Meng et al., 2019. CircFunBase: A database for functional 
circular RNAs 

bis.zju.edu.cn/CircFunBase 

Ravindran et al., 2018. Daphnia stressor database: Gene 
expression database for Daphnia 

www.daphnia-stressordb.uni-
hamburg.de/dsdbstart.php 

Gene expression database for Alvinella pompejana, and 
Platynereis dumerilii 

jekely-lab.tuebingen.mpg.de 

EFISH Genomics 2.0: web portal for electric fish genomic 
resources 

efishgenomics 
integrativebiology.msu.edu 

NBIGV, Non-B cell derived immunoglobulin variable region 
database 

nbigv.org 

iBeetle-base: Database of Tribolium RNAi phenotypes ibeetle-base.uni-goettingen.de 
Cacao genome database cacaogenomedb.org 
Ant genomes, predicted transcripts and proteome antgenomes.org 
Aplysia transcriptome aplysiagenetools.org:4567 
Ash tree genome ashgenome.org 
Asparagus genome project asparagus.uga.edu 
Dwarf birch genome project birchgenome.org 
Fallon et al., 2018. Firefly genome database blast.fireflybase.org 
Genome, predicted transcripts and proteins of tardigrades blast.tardigrades.org 
Botulinum neurotoxin database bontbase.org 
eplant.org: Sequenced genomes of all plants to facilitate 
comparative genomic studies 

eplant.org:4567 
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FusoPortal: A Fusobacterium genome and bioinformatic 
repository 

fusoportal.org 

NCHU fish genome database lep-fish.nchu.edu.tw:4567 
Fish genome database brcwebportal.cos.ncsu.edu:4567 
MarpolBase: Genome database for the common liverwort, 
Marchantia polymorpha 

marchantia.info 

MitoFun: A curated resource of complete fungal mitochondrial 
genomes 

mitofun.biol.uoa.gr 

Oat genome oatgenomeproject.org 
Spiny mouse transcriptome spinymouse.erc.monash.edu 
Measles, mumps, and rubella viruses database and analysis 
resource 

mmrdb.org 

Whole-genome sequence of the metastatic PC3 and LNCaP 
human prostrate cancer cell lines 

ghrelinlab.org 

10.1093/dnares/dsz003 Genome database for Iberian ribbed newt inewt.nibb.ac.jp:8111 
Crop genomics lab’s BLAST server plantgenomics.snu.ac.kr 
Exome of Kronos durum wheat and Cadenza bread wheat 
mutants 

wheat-tilling.com 

Gene expression analysis and visualisation for wheat wheat-expression.com 
Fungal genomics fungalgenomics.science.uu.nl 
Stazione Zoologica Anton Dohrn glossary-blast.bioinfo.szn.it 
Georgia State University db.cbn.gsu.edu:4568 
Desplan Lab (Drosophila developmental biology) desplan-lab.bio.nyu.edu 
Commonwealth Scientific and Industrial Research Organisation hieracium.csiro.au 
Institute of Cytology and Genetics of Siberian Branch of the 
Russian Academy of Sciences 

seqserver.sysbio.cytogen.ru 

Taiwan Agricultural Genomics Resource Center tagrc.org:4568, tagrc.org:4569 
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Annex 2: Supplementary information for 

chapter 5 

Supplementary Methods 

OBP discovery and manual gene model curation 

We used MAKER2 (version 2.31 (Cantarel et al., 2007)) to generate consensus gene models 

for the S. invicta genome assembly (Wurm et al., 2011) from TopHat2  (version 2.0.11 (Kim et 

al., 2013) alignments of RNA-seq reads (SRA accessions SRX757226-SRX757228) to the 

reference genome, an assembly of fire ant Expressed Sequence Tag (EST) libraries, protein 

sequences from SwissProt (downloaded June, 2014), A. mellifera (amel_OGSv3.2_pep.fa) and 

N. vitripennis (Nvit_OGSv1.2_pep.fa) genome projects, and de novo predictions from SNAP 

(Korf, 2004) and Augustus (Stanke et al., 2006) using HMM models that had been generated 

during the fire ant genome project (Wurm et al., 2011). To identify regions of the genome 

putatively containing OBPs, we performed blastn and tblastn (Camacho et al., 2009; Priyam 

et al., 2019) searches of the fire ant genome on antgenomes.org (Wurm et al., 2009) using as 

queries previously published fire ant OBP sequences (Gotzek et al., 2011) and Uniprot 

sequences that are part of the Pfam family ‘PBP_GOBP’ (Finn et al., 2014; The Uniprot 

Consortium, 2015). We integrated all aforementioned data using the genomic annotation 

editor Afra (github.com/wurmlab/afra), the genome browser JBrowse (Skinner et al., 2009), 

the tool GeneValidator (which assesses the quality of annotations by comparing them to 

public databases (Drăgan et al., 2016)) and custom scripts. Manual curation followed a the 

standard approach based on Web Apollo (Lee et al., 2013), including the inspection and 

adjustment of exon boundaries to ensure that the exon-intron structure of gene models was 

consistent with mappings of RNA sequence reads, and that the gene models had canonical 

splice sites, translation start and stop sites, and appropriate open reading frames. We also 

identified alternative spliced transcripts by visualising the alignments of the RNA sequence 
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reads. After producing high quality gene models through this method, we used these 

sequences for further blastn and tblastn searches against the reference genome to identify 

further putative OBPs. These were curated as above; this process was repeated iteratively 

until no new putative OBP loci were discovered. 

Our pipeline identified seventeen out of the eighteen OBP genes that had been previously 

reported, although eight had differences in sequence and/or length relative to the published 

sequences (Table A2.S1). We found no genomic region with more than 80% identity to the 

remainder gene, SiOBP18 (Table A2.S1), which had been identified from a single Sanger-

sequenced EST (Wang et al. 2007; Gotzek et al. 2011), suggesting that this gene is either 

missing from the reference genome assembly, or that the sequence of the original EST was 

an artefact. We found evidence of alternative splicing for SiOBP17 (four splice forms) and for 

the newly discovered SiOBPZ7 (two splice forms). We found no support for the suggestion 

that SiOBP12 and SiOBP13 share an exon (Zhang et al., 2016). All the genomic and 

transcriptomic sequences analysed in the OBP discovery pipeline included an insertion 

relative to the reference assembly affecting SiOBP14 (insertion of a T in position 

NW_011802221.1:1,287,729), suggesting an error in the assembly. The sequence reported for 

this gene includes this insertion. 

(Pracana, Priyam, et al., 2017) (Pracana, Priyam, et al., 2017) (Pracana, Priyam, et al., 2017) to 

assign OBPs to linkage groups. We were able to position 20 of the OBPs in linkage groups, 

including all novel OBPs (Figure 6.1). Four OBPs were in unmapped scaffolds. Of these, 

SiOBP9 is in a scaffold that we previously classed as putatively in the supergene (Pracana, 

Priyam, et al., 2017) given its high SB-Sb differentiation. SiOBP2 was in a scaffold without any 

divergence, thus classified as outside the supergene. It was not possible to confidently 

determine the positions of the remaining two OBPs (SiOBP5 and SiOBP7), as each had exons 

in multiple small unmapped scaffolds. 

Phylogenetic analysis 

S. invicta OBPs are a highly divergent gene family (Gotzek et al., 2011). We aligned the coding 

sequences of the 24 S. invicta OBPs using MAFFT-linsi (version 6.903b (Katoh and Toh, 
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2008)). We removed ambiguous sections from this alignment using trimAL (version 1.4.1; 

(Capella-Gutiérrez, Silla-Martínez and Gabaldón, 2009)) with the -gappyout option and 

built a "guide" tree using RaxML (version 8.2.9; (Stamatakis, 2006)) with the GTRGAMMAI 

model. We then used PRANK (version 120626; (Löytynoja and Goldman, 2005)) to generate 

a codon-level alignment of the original sequences, guided by the tree obtained above. Using 

the same parameters as above, we removed ambiguous sections from this alignment using 

trimAl and built a final tree using RaXML (10,000 bootstraps). 

Read filtering of S. invicta whole-genome sequences 

We used whole-genome sequences from one SB and one Sb male from each of seven 

colonies that had been sequenced at low coverage (Illumina 2*100bp paired-end genome 

shotgun sequences; ~6x-8x coverage) in 2012 (NCBI SRP017317) (Wang et al., 2013). Each of 

these samples is a haploid male (ants have a haplo-diploid sex determination system), and 

the sequencing coverage is sufficiently homogeneous (Pracana, Priyam, et al., 2017) for the 

analysis reported here, including high confidence genotype calling. We used seqtk (version 

1.0-r31 (github.com/lh3/seqtk) to trim 2bp from the start and 5bp from the ends of the reads. 

We removed any read where more than 25% of the bases had a quality score smaller than 25 

using fastq_quality_filter in the fastx toolkit (version 0.0.14 

(hannonlab.cshl.edu/fastx_toolkit)). We used GNU parallel to parallelise this pipeline 

(Tange, 2011). 

Detection of copy number and structural variation in OBPs 

We used bowtie2 (version 2.1.0 (Langmead and Salzberg, 2012)) to align the cleaned reads to 

the reference genome assembly. We visually inspected the alignments of each of our curated 

gene predictions, searching for regions with no coverage to identify deletions and high 

coverage to identify duplications. 

The genomic region that includes three exons of SiOBP15 (scaffold NW_011801067.1:293,460-

296,015) had no reads in any Sb individual, consistent with a deletion of this region (it is 
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impossible to determine the exact size of the deletion as the region is directly upstream of a 

non-assembled portion of the scaffold). We observed no other such pattern of deletion. 

SiOBP12 (which is within the supergene region) had approximately two times higher 

coverage in Sb individuals relative to SB individuals. Approximately half of the reads from 

Sb individuals had a small number of consistent sequence differences to the other reads. 

This suggested that a recent duplication of the gene occurred. To obtain consensus 

sequences for Sb individuals for both duplicates, we extracted all pairs of reads from Sb 

individuals for which at least one pair mapped to the contig containing the transcribed 

region of SiOBP12 and performed de novo assembly using MIRA (version 4.0.2 (Bastien 

Chevreux, Wetter and Suhai, 1999)). This resulted in assemblies on separate contigs of two 

genes: SiOBP12 and the Sb-specific duplicate we named SiOBPZ5. 

Visual inspection of SiOBPZ6 (outside the supergene region) revealed that this gene had a 

much higher number of mapped reads than other genes. To estimate the number of copies 

of SiOBPZ6, we measured the median coverage per base pair of the seven SB individuals for 

this gene and for 1000 additional randomly sampled genes using bedtools coverage (with 

argument -d; version 2.25.0 (Quinlan and Hall, 2010)). For each individual, we calculated the 

ratio between the coverage of SiOBPZ6 and the mean coverage of the 1000 random genes. 

For a single-copy gene, we expect these ratios to be one; we used a one-sample t-test to 

determine if the distribution of these ratios had a mean different from one. We did not 

produce individual sequences for each SiOBPZ6 copy because there was an insufficient 

number of variable sites to differentiate the copies. The sample used for genome assembly 

(NCBI SAMN00014755 (Wurm et al., 2011)) was not included in this test because it was 

sequenced using an earlier (noisier) Illumina technology. 

Orthology in other species 

Using a reciprocal blast approach, we searched for the closest orthologous sequence of each 

OBP gene. First, we ran a tblastn search of all S. invicta OBPs against all non-S. invicta 

arthropod sequences available on NCBI nr on 2017-03-21, accepting hits where e-value < 10-

3. We then ran a blastx search of these hits against the S. invicta gene predictions (including 
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our newly curated OBP set). We report the hits with the lowest e-value (Table A2. 7). We 

repeated this analysis by searching non-ant arthropods (not Formicidae). 

Variant Calling in S. invicta OBPs 

We added the contig with the Sb-specific SiOBPZ5 to the reference assembly. Using bowtie2 

(version 2.1.0 (Langmead and Salzberg, 2012)), we aligned the cleaned reads of the seven Sb 

individuals (see above) to the revised assembly and the seven SB individuals to the original 

reference assembly. We called single nucleotide polymorphisms (SNPs) in the protein 

coding regions of the supergene OBPs using samtools mpileup (Li et al., 2009) and bcftools 

call (--ploidy 1 and –m; version 1.3.1 (samtools.github.io/bcftools/bcftools.html). We 

manually inspected the read alignments at each SNP position using the genome viewer IGV 

(Thorvaldsdóttir, Robinson and Mesirov, 2013). 

Sequencing and variant calling of the OBPs of an outgroup species 

We produced whole-genome sequencing reads of the outgroup species Solenopsis geminata. 

DNA was extracted from a pool of ten workers (sampled in Thailand by Dr Adam Devenish, 

University College London, United Kingdom) using the Phenol-Chloroform method in 

Hunt and Page (1994) and sequenced using Illumina HiSeq 4000 (11x coverage). We filtered 

the reads using skewer (version 0.2.2 (Jiang et al., 2014)), with the following parameters: --

mean-quality 20, --end-quality 15, -l 100, -n yes and -r 0.1. The reads were aligned to the S. 

invicta reference genome assembly using bowtie2 (version 2.1.0 (Langmead and Salzberg, 

2012)). All OBPs were covered by S. geminata reads, although there was very low coverage 

(median coverage < 3) in the two terminal exons of SiOBP12 and SiOBP13. Freebayes (version 

1.0.2-33-gdbb6160 (Garrison and Marth, 2012)) was used to call variants between the sample 

and the reference assembly in the regions within 1000 bp of each OBP (excluding the two 

terminal exons of SiOBP12 and SiOBP13). We filtered the variants using the parameter RO < 

2, chosen based on visual inspection of the alignment using IGV (Thorvaldsdóttir, Robinson 

and Mesirov, 2013), and limited our analysis to homozygous positions within the coding 

sequence of each OBP. 
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Gene expression of S. invicta OBPs in publicly available RNA 

sequencing datasets 

We analysed all available RNA sequencing (RNA-seq) data from the NCBI SRA database for 

S. invicta as of January 2017 (data from Wurm et al. 2011; Morandin et al. 2016 and 

PRJNA266847; details in Table S2). These included Illumina and Roche 454 sequences. Read 

quality was assessed using FastQC (version 0.11.5 

(bioinformatics.babraham.ac.uk/projects/fastqc). Low quality bases were removed using the 

default options in fqtrim (version 0.9.5 (ccb.jhu.edu/software/fqtrim). 

We determined the expression levels of S. invicta transcripts using count mode in Kallisto 

(version 0.43.0 (Bray et al., 2016b)). As a reference, we modified the S. invicta protein-coding 

gene annotation release 100 (NCBI) by removing all automatically annotated OBPs and 

instead adding the OBP sequences we manually curated above. We masked regions of 

SiOBP12 and SiOBPZ5 that were identical between these recent duplicates to prevent reads 

from one gene to be misassigned to the other. SiOBP15 lacks three exons in its Sb variant, so 

to prevent misalignment, we treated each variant of SiOBP15 as a different transcript. The 

total read count for SiOBP15 is the sum of its two variants. To control for the potential effects 

of sequence differences between SB and Sb, we repeated the analysis twice: first using the 

SB alleles of the OBPs, then using the Sb alleles. We only show the analysis done using the 

Sb alleles of the OBPs because both analyses produced qualitatively identical results. 

For paired-end reads, we used the default counting options of Kallisto. For single-end reads, 

we provided Kallisto the average fragment length of each sample (as indicated on NCBI 

SRA) and we set the estimated standard deviation to 20 bp. To be able to analyse at least 

>50% of low-coverage Roche 454 reads with Kallisto, we set the average and the standard 

deviation of fragment length to 1. 

We used Tximport (version 1.3.0 (Soneson, Love and Robinson, 2015)) to import the 

estimated counts produced by Kallisto into the R programming language implementation 

of DESeq2 (version 1.14.1 (Love, Huber and Anders, 2014)). Each sample was independently 

normalised using the DESeq2 method. Additionally, we performed genome-wide analysis 
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of differential expression on data from (Morandin et al., 2016) using a standard DESeq2 

approach to identify expression differences between social forms in queens and in workers. 

Queens and workers were analysed separately because they were sampled using different 

collection methods, which resulted in different variance patterns in each dataset (Morandin 

et al., 2016). We included the Sb-specific SiOBPZ5 in the analysis as control. As expected, this 

gene is significantly differentially expressed between single- and multiple-queen colonies 

in both workers and queens. We performed a standard Chi2 test to determine whether the 

supergene region is enriched in differentially expressed loci relative to the rest of the 

genome. 

Differential expression of gene co-expression modules across social 

forms 

We created gene co-expression modules from two microarray sets comparing single-queen 

with multiple-queen colonies, one with queen samples (GSE42062 (Nipitwattanaphon et al., 

2013)) and the other with worker samples (E-GEOD-11694 (Wang, Ross and Keller, 2008)). 

We did not use the RNA-seq data because it does not include a sufficient number of samples 

of each social form to create gene co-expression modules. Both microarray sets use the same 

microarray platform (Platform GPL6930), which includes 25,344 probes (Wang et al., 2007). 

To determine the number of genes that these probes represented, we aligned the sequences 

of all probes against the gnG assembly for S. invicta using the ‘est2genome’ mode with a 

minimum 95% identity in Exonerate (version 2.2.0 (Slater and Birney, 2005)). The positions 

of the probes in the genome were then intersected against the annotation release 100 for S. 

invicta used in the rest of analyses with the R package ‘GenomicRanges’ (Lawrence et al., 

2013). The probe sequences intersected with 3,673 unique genes. 

We downloaded the normalised expression values of each dataset from NCBI GEO. For the 

queen set, we removed the 16 samples with reproductive age class because SB/SB 

reproductive samples had very low variance in gene expression relative to individuals of 

other age classes. The remaining set included 31 SB/SB samples and 31 SB/Sb samples (all 

virgin queens originating from multiple-queen colonies). The worker set included 20 
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samples from single-queen colonies and 40 from multiple-queen colonies (20 SB/SB and 20 

SB/Sb; we removed two Sb/Sb samples). For each set, we removed any probe that had “null” 

expression in more than five individuals. For the remaining probes, individuals with “null” 

expression were imputed to the median expression of the probe. After filtering, there were 

18,291 probes in common between the two datasets, representing 3,046 genes. We used the 

ComBat function in the sva R library (version 3.18.0 (Leek et al., 2012)) to adjust both sets for 

the year in which the microarrays were produced. We used Weighted Gene Co-expression 

Network Analysis (version 1.49 (Langfelder and Horvath, 2008)) to create signed modules for 

each set. We used a soft-thresholding power of 5 for both sets. Modules were detected using 

the Dynamic Tree Cut method and merged using an eigengene dissimilarity threshold of 

0.3. We used t-tests to determine whether any module eigengene is correlated with genotype 

or social form. In queens, we compared SB/SB to SB/Sb samples because all originate in 

multiple-queen colonies. In workers, we separated the effect of genotype from the effect of 

social form following the approach in Wang et al. (2008): we compared genotypes (SB/SB 

versus SB/Sb) using samples from multiple-queen colonies, and we compared across social 

forms (single-queen versus multiple-queen) using SB/SB samples only and corrected with 

the p-values Bonferroni correction. In the worker dataset, SB/Sb samples originate from 

both single- and multiple-queen colonies, so we also tested whether any module eigengene 

is correlated with social form in this dataset. 

Gene Ontology (GO) term annotation of the Solenopsis invicta genome 

We used the modified S. invicta annotations created for the RNA-seq alignments (above) as 

a query for blastp against the nr database of NCBI. We limited the hits to the 20 best matches, 

with a minimum e-value of 10-5. The results were used with Blast2GO (version 4.1.9; (Conesa 

et al., 2005)) to obtain the GO terms for each protein coding gene in S.invicta. 

We tested whether any GO terms were overrepresented in any co-expression modules that 

were significantly correlated with social form or genotype using TopGO (version 2.26.0 

(Alexa and Rahnenführer, 2009)) with the ‘elim’ algorithm and a Fisher’s exact test, with p-

values corrected for multiple-testing (Benjamini and Hochberg, 1995). 
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Evidence for selection based on nucleotide diversity 

Genomic regions that underwent recent selective sweeps are characterised by low 

nucleotide diversity (π) (Smith and Haigh, 1974; Nei, 1987; Nachman, 2001). We used 

measurements of π along a sliding window of the genome, originally produced by Pracana 

et al. (2017), to identify selection pressure acting on S. invicta OBPs. These measurements 

were produced from SNPs identified de novo from the 7 SB samples mentioned above and 

an additional SB sample (NCBI SAMN00014755, ~33x coverage) using Cortex (version 

1.0.5.20 (Iqbal et al., 2012)). Measurements of π were taken from non-overlapping 10kb 

windows. Sb samples were excluded to avoid measuring diversity across sibling pairs, and 

because of the very low diversity in the Sb supergene variant (π ≈ 0), which may be the result 

of low recombination in Sb and a putative recent fixation of this variant in the sampled 

population (Pracana, Priyam, et al., 2017). 
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Supplementary figures 

 

Figure A2.S1: Density distribution of p-values for differential expression between social forms 

Density distribution of the p-values for differential expression between social forms in queens for OBPs (in 

green) and all other protein-coding genes (red). The p-values for OBPs are strongly skewed towards 0. This 

result is based on the expression levels from the Morandin et al. (2016) dataset. 
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Figure A2.S2: Correspondence between queen and worker modules. 

Numbers in the table indicate probe counts in the intersection of the corresponding modules. Coloring of the 

table encodes − log(p), with p being the Fisher’s exact test p-value for the overlap of the two modules. A module 

in one dataset would be preserved across both sets if it had a single corresponding module in the other dataset 

with a large number of probes in common. 
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Figure A2.S3: Nucleotide diversity along the genome 

Nucleotide distribution (π, measured from SB individuals in (Pracana, Priyam, et al., 2017)) of 10kb windows of 

the assembled genome that overlap coding sequences. Vertical bars represent π of windows overlapping OBPs; 

orange bars representing those overlapping supergene OBPs. 
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Supplementary tables 

Table A2.S1: Correspondence between presented and previously published sequences 

Summary of correspondences between identifiers of sequences produced in this project and previously 

published sequences, including the number of sequence differences between the two groups. 

New annotation Gotzek et al. 2011 Other publication 

Name CDS 
length Accession Nucleotide 

mismatch 
Amino acid 
mismatch Accession Nucleotide 

mismatch 
Amino acid 
mismatch Publication 

SiOBP1 417 HQ853350 0 0 FJ215314 0 0 Xu et al. 
2009 

SiOBP2 456 HQ853351 0 0 - - - - 
SiOBP3/
Gp-9 459 (not 

submitted) - - AF427893 0 0 Krieger & 
Ross 2002 

SiOBP4 459 HQ853352 1 0 - - - - 

SiOBP5 432 HQ853353 0 0 - - - - 
SiOBP6 438 HQ853354 1 0 - - - - 

SiOBP7 399 HQ853355 0 0 EFZ13147 43 14 Wurm et 
al. 2011 

SiOBP8 459 HQ853356 0 0 - - - - 

SiOBP9 387 HQ853357 0 0 EFZ09576 45 22 Wurm et 
al. 2011 

SiOBP10 429 HQ853358 12 4 FJ215319 85 14 Xu et al. 
2009 

SiOBP11 447 HQ853359 1 0 EFZ10447 90 30 Wurm et 
al. 2011 

SiOBP12 525 HQ853360 9 5 FJ215315 8 4 Xu et al. 
2009 

SiOBP13 480 HQ853361 0 0 FJ215318 1 frameshift Xu et al. 
2009 

SiOBP14 486 HQ853362 1 1 - - - - 

SiOBP15 486 HQ853363 4 2 FJ215316 5 frameshift Xu et al. 
2009 

SiOBP16 513 HQ853364 2 2 FJ215317 112 51 Xu et al. 
2009 

SiOBP17 
339/3
66/28
8/246 

(not 
submitted) - - - - - - 

SiOBP18 - (not 
submitted) - - - - - - 
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Table A2.S2: Accession numbers of the gene expression data used. 

“Project” and “SRA” columns indicate NCBI identifiers. The descriptions provided and the sequencing method 

used are based on metadata available on NCBI and in the manuscripts. Two samples (marked with an asterisk) 

were discarded because of very low coverage after aligning the reads to the S. invicta genome. 

Publication Project Sequencing 
method 

SRA Description 

M
or

an
di

n 
et

 a
l 2

01
6 

PR
JD

B4
08

8 

Il
lu

m
in

a 
pa

ir
ed

-e
nd

 
DRS023318 Pool of 9 polygyne workers 1 

DRS023319 Pool of 9 polygyne workers 2 

DRS023320 Pool of 9 polygyne workers 3 

DRS023315 Pool of 3 polygyne queen 1 

DRS023316* Pool of 3 polygyne queen 2 

DRS023317 Pool of 3 polygyne queen 3 

DRS023312 Pool of 9 monogyne workers 1 

DRS023313* Pool of 9 monogyne workers 2 

DRS023314 Pool of 9 monogyne workers 3 

DRS023309 Pool of 3 monogyne queen 1 

DRS023310 Pool of 3 monogyne queen 2 

DRS023311 Pool of 3 monogyne queen 3 

W
ur

m
 e

t a
l 2

01
1 

PR
JN

A
49

62
9 

45
4 

ES
T

 

SRS084972 Pool of polygyne workers and queens from 
different developmental stages 

SRS084971 Pool of monogyne workers and queens from 
different developmental stages 

SRS084970 Pool of 100 heads from workers and queens 

SRS084969 Pool of 24 adult males 

Il
lu

m
in

a 
    

  s
in

gl
e -

en
d SRS377035 4 pooled polygyne queens 1 

SRS376911 4 pooled polygyne queens 2 

SRS376910 4 pooled polygyne queens 3 

	SRS376905 4 pooled polygyne queens 4 

SRS376904 4 pooled polygyne queens 5 

SRS376903 4 pooled polygyne queens 6 
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N
A

 

PR
JN

A
26

68
47

 

Il
lu

m
in

a 
    

pa
ir

ed
-e

nd
 

SRS742422 Antennae from queen, age 1 

SRS742424 Antennae from queen, age 2 

SRS742423 Antennae from queen, age 3 

 

Table A2.S3: Closest BLASTP hit of newly produced S. invicta OBP sequences in NCBI “nr” database 

S. invicta 
OBP 

Blast hit 
organism 

Blast hit description Blast hit 
e-value 

Blast hit 
identity 

Blast hit 
query 
coverage 

Blast hit 
accession 

SiOBP1 S. invicta general odorant-binding 
protein 69a-like 
precursor  

3.41E-98 100.00% 100.00% NP_001291522 

SiOBP2 S. invicta OBP2 precursor, partial  5.71E-105 100.00% 100.00% ADX94399 

SiOBP3 
(Gp-9) 

S. invicta PREDICTED: 
pheromone-binding 
protein Gp-9  

3.48E-109 100.00% 100.00% XP_011157711 

SiOBP4 S. invicta PREDICTED: 
pheromone-binding 
protein Gp-9  

3.36E-110 100.00% 100.00% XP_011157725 

SiOBP5 S. invicta PREDICTED: general 
odorant-binding protein 
72, partial  

1.06E-103 100.00% 100.00% XP_011156042 

SiOBP6 S. invicta PREDICTED: general 
odorant-binding protein 
lush, partial  

2.70E-104 100.00% 100.00% XP_011165204 

SiOBP7 S. invicta PREDICTED: general 
odorant-binding protein 
56d-like  

3.98E-93 100.00% 100.00% XP_011167532 

SiOBP8 S. invicta PREDICTED: 
uncharacterized protein 
LOC105203183  

1.34E-110 100.00% 100.00% XP_011170254 

SiOBP9 S. invicta PREDICTED: general 
odorant-binding protein 
83a-like  

5.12E-88 100.00% 100.00% XP_011173007 

SiOBP10 S. invicta PREDICTED: general 
odorant-binding protein 
69a-like isoform X2  

1.76E-100 100.00% 102.80% XP_011171270 

SiOBP11 S. invicta PREDICTED: 
pheromone-binding 
protein-related protein 6  

1.31E-106 100.00% 100.00% XP_011171271 

SiOBP12 S. invicta OBP12 precursor, partial  6.40E-117 97.70% 100.00% ADX94408 
SiOBP13 S. invicta PREDICTED: 

pheromone-binding 
protein Gp-9-like  

3.40E-112 100.00% 100.00% XP_011157738 

SiOBP14 S. invicta PREDICTED: 
pheromone-binding 
protein Gp-9-like 
isoform X1  

1.24E-115 99.40% 99.40% XP_011171390 
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SiOBP15 S. invicta PREDICTED: 
pheromone-binding 
protein Gp-9-like  

2.67E-116 100.00% 100.00% XP_011169815 

SiOBP16 S. invicta PREDICTED: 
pheromone-binding 
protein Gp-9-like  

2.29E-117 100.00% 100.00% XP_011169816 

SiOBP17.1 S. invicta OBP16 precursor, partial  1.31E-14 41.50% 79.30% ADX94412 

SiOBP17.2 S. invicta OBP16 precursor, partial  1.28E-14 35.40% 67.70% ADX94412 
SiOBP17.4 S. invicta OBP16 precursor, partial  5.71E-33 45.90% 84.40% ADX94412 

SiOBP17.7 S. invicta OBP16 precursor, partial  4.22E-26 46.00% 91.20% ADX94412 

SiOBPZ1 S. invicta PREDICTED: general 
odorant-binding protein 
71  

0 100.00% 100.00% XP_011161522 

SiOBPZ2 S. invicta PREDICTED: 
uncharacterized protein 
LOC105199157  

5.54E-90 100.00% 100.00% XP_011164418 

SiOBPZ3 S. invicta PREDICTED: 
uncharacterized protein 
LOC105202825  

9.07E-111 100.00% 100.00% XP_011169818 

SiOBPZ4 S. invicta PREDICTED: general 
odorant-binding protein 
56d-like  

1.55E-63 73.10% 100.80% XP_011167532 

SiOBPZ5 S. invicta OBP12 precursor, partial  4.81E-92 87.40% 100.60% ADX94408 

SiOBPZ6 S. invicta PREDICTED: 
uncharacterized protein 
LOC105203183  

1.67E-100 92.20% 100.00% XP_011170254 

SiOBPZ7.1 S. invicta PREDICTED: general 
odorant-binding protein 
56d-like  

1.89E-67 64.10% 73.10% XP_011161856 

SiOBPZ7.2 S. invicta PREDICTED: general 
odorant-binding protein 
56d-like  

1.48E-66 89.30% 99.10% XP_011161856 

 

Table A2.S4: Number of genes represented in each co-expression module 

Number of genes represented in each co-expression module; OBPs represented in each module. Each gene 

may be represented by multiple probes. Probes in queen_E_1 are not assigned to a module. 

Dataset Module Probe 
Numb
er 

Gene 
number 

OBP 
Number 

OBP 
Probes as 
% of Total 

OBPs Represented 

queen - 18291 3046 8 0.26 SiOBP1,SiOBP10,SiOBP12,SiOBP
13,SiOBP15,SiOBP16,SiOBP3,SiO
BP7 

worker - 18291 3046 8 0.26 SiOBP1,SiOBP10,SiOBP12,SiOBP
13,SiOBP15,SiOBP16,SiOBP3,SiO
BP7 

queen queen_A 6492 1342 5 0.37 SiOBP1,SiOBP12,SiOBP13,SiOBP
16,SiOBP3 

queen queen_B 1953 561 2 0.36 SiOBP1,SiOBP10 
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queen queen_C 1651 348 1 0.29 SiOBP1 
queen queen_D 319 75 1 1.33 SiOBP15 

queen queen_E 168 39 1 2.56 SiOBP7 

queen queen_F 115 15 1 6.67 SiOBP15 

worker worker_A 6023 1599 2 0.13 SiOBP1,SiOBP10 
worker worker_B 193 27 1 3.7 SiOBP15 

worker worker_C 135 24 1 4.17 SiOBP7 

worker worker_D 94 16 4 25 SiOBP12,SiOBP13,SiOBP16,SiOB
P3 

queen queen_G 1879 454 0 0 - 

queen queen_H 1190 296 0 0 - 

queen queen_I 619 109 0 0 - 

queen queen_J 451 102 0 0 - 
queen queen_K 335 77 0 0 - 

queen queen_L 164 72 0 0 - 

queen queen_M 550 63 0 0 - 

queen queen_N 203 62 0 0 - 
queen queen_O 510 41 0 0 - 

queen queen_P 115 34 0 0 - 

queen queen_Q 338 29 0 0 - 

queen queen_R 93 24 0 0 - 
queen queen_S 233 24 0 0 - 

queen queen_T 111 22 0 0 - 

queen queen_U 125 22 0 0 - 

queen queen_V 192 16 0 0 - 
queen queen_W 92 11 0 0 - 

queen queen_X 99 10 0 0 - 

queen queen_Y 39 8 0 0 - 

queen queen_Z 61 7 0 0 - 
queen queen_A_1 70 5 0 0 - 

queen queen_B_1 50 4 0 0 - 

queen queen_C_1 38 1 0 0 - 

queen queen_D_1 1 1 0 0 - 
queen queen_E_1 35 0 0 NA - 

worker worker_E 1867 486 0 0 - 

worker worker_F 2312 408 0 0 - 

worker worker_G 1587 401 0 0 - 
worker worker_H 632 217 0 0 - 
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worker worker_I 700 195 0 0 - 
worker worker_J 814 144 0 0 - 

worker worker_K 818 135 0 0 - 

worker worker_L 238 99 0 0 - 

worker worker_M 428 88 0 0 - 
worker worker_N 157 55 0 0 - 

worker worker_O 109 46 0 0 - 

worker worker_P 200 45 0 0 - 

worker worker_Q 152 44 0 0 - 
worker worker_R 181 43 0 0 - 

worker worker_S 161 38 0 0 - 

worker worker_T 125 36 0 0 - 

worker worker_U 153 30 0 0 - 
worker worker_V 148 25 0 0 - 

worker worker_W 86 24 0 0 - 

worker worker_X 233 16 0 0 - 

worker worker_Y 78 13 0 0 - 
worker worker_Z 65 12 0 0 - 

worker worker_A_1 118 11 0 0 - 

worker worker_B_1 49 11 0 0 - 

worker worker_C_1 52 10 0 0 - 
worker worker_D_1 57 10 0 0 - 

worker worker_E_1 60 10 0 0 - 

worker worker_F_1 50 9 0 0 - 

worker worker_G_1 33 8 0 0 - 
worker worker_H_1 41 6 0 0 - 

worker worker_I_1 41 6 0 0 - 

worker worker_J_1 70 6 0 0 - 

worker worker_K_1 31 5 0 0 - 

 

Table A2.S5: Gene co-expression modules 

Gene co-expression modules with module eigene differential expression between genotypes in queens (SB/SB 

versus SB/Sb), between genotypes in workers from multiple-queen colonies (SB/SB versus SB/Sb), and 

between social forms in SB/SB workers (single-queen colony versus multiple-queen colony). Differential 

expression was tested with t-tests within each comparison within each dataset, with p-values corrected for 

multiple testing using Bonferroni correction. 
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Dataset Module Comparison Gene 
Number 

Mean 
Difference t d.f. p-value Corrected 

p-value 

queen queen_X genotype 10 0.12 -17.52 48.99 9.73E-23 3.02E-21 

queen queen_E_1 genotype 0 0.06 -4.2 58.75 9.21E-05 2.86E-03 

queen queen_Y genotype 8 0.05 -3.72 50.23 5.10E-04 1.58E-02 
queen queen_D genotype 75 0.05 -3.42 51.91 1.22E-03 3.77E-02 

worker worker_Z genotype 12 -0.17 18.18 37.31 3.95E-20 1.46E-18 

worker worker_A_1 social_form 11 -0.08 11.11 29.18 5.35E-12 1.98E-10 

 

Table A2.S6: Putative OBP orthologs in other species. 

First, we ran a tblastn search of all S. invicta OBPs against all non-S. invicta arthropod sequences, accepting hits 

where e-value < 1x10-3. We then ran a blastx search of these hits against the S. invicta gene predictions 

(including our newly curated OBP set). We report the hits with the lowest e-value of the blastx search. We 

repeated this analysis by searching non-ant arthropods (not Formicidae). The coloured cells represent cases 

where the same non-S. invicta sequence aligns to multiple S. invicta OBPs. 

	 Grouping OBP Accession 	Sequence Name OBP 
coverage e-value 
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 SiOBP1 XM_012373322.1 

PREDICTED: Linepithema 
humile general odorant-binding 
protein 69a-like 
(LOC105675856), transcript 
variant X1, mRNA 

100.00% 2.02E-101 

 SiOBP2 XM_012675063.1 

PREDICTED: Monomorium 
pharaonis uncharacterized 
LOC105833365 (LOC105833365), 
mRNA 

98.68% 2.06E-74 

 SiOBP3 AF427903.1 

Solenopsis richteri putative 
odorant binding protein 
precursor (Gp-9) gene, Gp-9-b' 
allele, complete cds 

100.00% 4.57E-113 

 SiOBP4 AY818614.1 

Solenopsis sp. B0_178 putative 
odorant binding protein 
precursor (Gp-9) gene, Gp-9-B 
allele, complete cds 

100.00% 3.39E-103 

 SiOBP5 XM_012671527.1 

PREDICTED: Monomorium 
pharaonis general odorant-
binding protein 19a-like 
(LOC105831417), mRNA 

100.00% 2.41E-93 

 SiOBP6 XM_012670912.1 

PREDICTED: Monomorium 
pharaonis general odorant-
binding protein 99b-like 
(LOC105831060), mRNA 

100.00% 2.42E-82 



 

153 

 

 SiOBP9 XM_011693717.1 

PREDICTED: Wasmannia 
auropunctata general odorant-
binding protein 83a-like 
(LOC105452530), transcript 
variant X1, mRNA 

88.37% 1.05E-73 

 SiOBP10 XM_012684740.1 

PREDICTED: Monomorium 
pharaonis pheromone-binding 
protein-related protein 6-like 
(LOC105838856), mRNA 

100.00% 4.69E-103 

 SiOBP11 XM_011692838.1 

PREDICTED: Wasmannia 
auropunctata general odorant-
binding protein 83a-like 
(LOC105452039), mRNA 

100.00% 1.64E-78 

 SiOBPZ1 XM_012019767.1 

PREDICTED: Vollenhovia 
emeryi general odorant-binding 
protein 71 (LOC105566056), 
transcript variant X2, mRNA 

93.28% 2.04E-125 
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SiOBPZ3 XM_012679489.1 

PREDICTED: Monomorium 
pharaonis pheromone-binding 
protein Gp-9-like 
(LOC105835869), mRNA 

100.00% 7.12E-61 

SiOBP16 XM_012679489.1 

PREDICTED: Monomorium 
pharaonis pheromone-binding 
protein Gp-9-like 
(LOC105835869), mRNA 

77.78% 1.86E-52 

SiOBP14 XM_012679489.1 

PREDICTED: Monomorium 
pharaonis pheromone-binding 
protein Gp-9-like 
(LOC105835869), mRNA 

89.51% 7.72E-45 

SiOBP13 XM_012679489.1 

PREDICTED: Monomorium 
pharaonis pheromone-binding 
protein Gp-9-like 
(LOC105835869), mRNA 

91.25% 5.92E-44 

SiOBP17-
mRNA.4 XM_012679489.1 

PREDICTED: Monomorium 
pharaonis pheromone-binding 
protein Gp-9-like 
(LOC105835869), mRNA 

80.33% 5.48E-35 

SiOBP17-
mRNA.7 XM_012679489.1 

PREDICTED: Monomorium 
pharaonis pheromone-binding 
protein Gp-9-like 
(LOC105835869), mRNA 

78.76% 8.67E-28 

SiOBP17-
mRNA.2 XM_012679489.1 

PREDICTED: Monomorium 
pharaonis pheromone-binding 
protein Gp-9-like 
(LOC105835869), mRNA 

76.04% 1.48E-17 

SiOBP17-
mRNA.1 XM_012679489.1 

PREDICTED: Monomorium 
pharaonis pheromone-binding 
protein Gp-9-like 
(LOC105835869), mRNA 

73.17% 6.24E-17 

SiOBP12 XM_012669319.1 

PREDICTED: Monomorium 
pharaonis uncharacterized 
LOC105830146 (LOC105830146), 
mRNA 

85.14% 4.73E-47 
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SiOBP15 XM_011070365.1 

PREDICTED: Acromyrmex 
echinatior pheromone-binding 
protein Gp-9-like 
(LOC105154687), mRNA 

95.06% 1.67E-43 

SiOBPZ5 XM_012678755.1 

PREDICTED: Monomorium 
pharaonis uncharacterized 
LOC105835453 (LOC105835453), 
mRNA 

85.06% 1.52E-43 
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SiOBP7 XM_011693711.1 

PREDICTED: Wasmannia 
auropunctata B2 protein-like 
(LOC105452527), transcript 
variant X2, mRNA 

99.25% 1.59E-76 

SiOBPZ4 XM_011693711.1 

PREDICTED: Wasmannia 
auropunctata B2 protein-like 
(LOC105452527), transcript 
variant X2, mRNA 

97.69% 1.03E-61 

SiOBPZ2 XM_011693711.1 

PREDICTED: Wasmannia 
auropunctata B2 protein-like 
(LOC105452527), transcript 
variant X2, mRNA 

96.18% 2.05E-53 

SiOBP8 XM_011645916.1 

PREDICTED: Pogonomyrmex 
barbatus general odorant-
binding protein 56d-like 
(LOC105431629), partial mRNA 

73.20% 3.60E-29 

SiOBPZ6 XM_011645916.1 

PREDICTED: Pogonomyrmex 
barbatus general odorant-
binding protein 56d-like 
(LOC105431629), partial mRNA 

73.20% 4.52E-29 

SiOBPZ7-
mRNA.1 XM_012685128.1 

PREDICTED: Monomorium 
pharaonis general odorant-
binding protein 56d-like 
(LOC105839081), mRNA 

69.23% 9.17E-29 

SiOBPZ7-
mRNA.2 XM_012685128.1 

PREDICTED: Monomorium 
pharaonis general odorant-
binding protein 56d-like 
(LOC105839081), mRNA 

91.07% 1.47E-28 
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	 SiOBP1 XM_015321671.1 
PREDICTED: Polistes dominula 
uncharacterized LOC107066747 
(LOC107066747), mRNA 

97.12% 2.28E-70 

	 SiOBP2 XM_015656912.1 

PREDICTED: Neodiprion 
lecontei general odorant-
binding protein 19d-like 
(LOC107218882), mRNA 

62.50% 6.19E-04 

	 SiOBP3 HE578203.1 
Nasonia vitripennis OBP18 gene 
for putative odorant binding 
protein 18, strain AsmCX 

94.77% 1.17E-08 

	 SiOBP4 XM_015580922.1 

PREDICTED: Dufourea 
novaeangliae uncharacterized 
LOC107191806 (LOC107191806), 
mRNA 

90.20% 3.94E-10 

	 SiOBP5 KP963692.1 
Sclerodermus sp. MQW-2015 
odorant binding protein 7 
(obp6) mRNA, complete cds 

100.00% 1.61E-46 

	 SiOBP6 XM_015327234.1 PREDICTED: Polistes dominula 
general odorant-binding 93.15% 9.51E-26 
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protein 56d-like 
(LOC107069711), mRNA 

	 SiOBP9 XM_015579325.1 

PREDICTED: Dufourea 
novaeangliae general odorant-
binding protein 56d-like 
(LOC107190515), mRNA 

85.27% 5.28E-53 

	 SiOBP10 KP717060.1 
Apis cerana cerana odorant 
binding protein 10 mRNA, 
complete cds 

89.51% 3.14E-88 

	 SiOBP11 XM_017934140.1 

PREDICTED: Habropoda 
laboriosa general odorant-
binding protein 99b-like 
(LOC108571970), mRNA 

97.99% 2.89E-46 

	 SiOBPZ1 XM_015749472.1 

PREDICTED: Cephus cinctus 
general odorant-binding 
protein 71-like (LOC107272374), 
mRNA 

99.21% 2.12E-53 
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SiOBPZ3 XM_017910159.1 

PREDICTED: Eufriesea 
mexicana uncharacterized 
LOC108554787 (LOC108554787), 
mRNA 

76.43% 1.75E-15 

SiOBP16 XM_018027175.1 

PREDICTED: Ceratina 
calcarata uncharacterized 
LOC108626482 
(LOC108626482), mRNA 

50.29% 5.29E-10 

SiOBP14 XM_018027175.1 

PREDICTED: Ceratina 
calcarata uncharacterized 
LOC108626482 
(LOC108626482), mRNA 

89.51% 1.11E-14 

SiOBP13 XM_006608556.
1 

PREDICTED: Apis dorsata 
uncharacterized LOC102678956 
(LOC102678956), mRNA 

71.25% 4.89E-12 

SiOBP17-
mRNA.4 KT965294.1 

Melipona scutellaris odorant-
binding protein-4 mRNA, 
partial cds 

63.93% 1.67E-08 

SiOBP17-
mRNA.7 FN432786.1 

Glossina morsitans morsitans 
mRNA for odorant binding 
protein 8 (obp8 gene), isolate 
Gmm_1 

58.41% 1.06E-03 

SiOBP17-
mRNA.2 FN432786.1 

Glossina morsitans morsitans 
mRNA for odorant binding 
protein 8 (obp8 gene), isolate 
Gmm_1 

56.25% 1.89E-03 

SiOBP17-
mRNA.1 FN432786.1 

Glossina morsitans morsitans 
mRNA for odorant binding 
protein 8 (obp8 gene), isolate 
Gmm_1 

65.85% 1.98E-03 

SiOBP12 XM_015580922.1 

PREDICTED: Dufourea 
novaeangliae uncharacterized 
LOC107191806 (LOC107191806), 
mRNA 

82.29% 4.06E-11 

SiOBP15 XM_018027175.1 PREDICTED: Ceratina 
calcarata uncharacterized 91.98% 3.08E-14 
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LOC108626482 
(LOC108626482), mRNA 

SiOBPZ5 XM_006608556.
1 

PREDICTED: Apis dorsata 
uncharacterized LOC102678956 
(LOC102678956), mRNA 

50.57% 2.73E-10 
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SiOBP7 XM_015747897.1 

PREDICTED: Cephus cinctus 
general odorant-binding 
protein 56d-like 
(LOC107271663), mRNA 

99.25% 1.18E-51 

SiOBPZ4 XM_015323907.1 

PREDICTED: Polistes dominula 
general odorant-binding 
protein 56d-like 
(LOC107067956), mRNA 

95.38% 3.43E-44 

SiOBPZ2 XM_015323907.1 

PREDICTED: Polistes dominula 
general odorant-binding 
protein 56d-like 
(LOC107067956), mRNA 

93.89% 2.80E-39 

SiOBP8 XM_015323907.1 

PREDICTED: Polistes dominula 
general odorant-binding 
protein 56d-like 
(LOC107067956), mRNA 

97.39% 3.58E-19 

SiOBPZ6 XM_015323907.1 

PREDICTED: Polistes dominula 
general odorant-binding 
protein 56d-like 
(LOC107067956), mRNA 

97.39% 1.39E-17 

SiOBPZ7-
mRNA.1 XM_017898310.1 

PREDICTED: Eufriesea 
mexicana general odorant-
binding protein 56h-like 
(LOC108546299), mRNA 

69.23% 4.36E-18 

SiOBPZ7-
mRNA.2 

XM_003708502.
2 

PREDICTED: Megachile 
rotundata general odorant-
binding protein 56a-like 
(LOC100883755), mRNA 

92.86% 5.19E-18 
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Annex 3: Supplementary information to 

chapter 6 

Supplementary figures 

 

Figure A3.S1: PCA for minor PCs 

PCA for the whole dataset (121,786 within-population polymorphic SNPs, supported by 75% of samples; 108 

samples from Bruniquel (France), Vigliano, Iberia (France and Spain); analysis from variance-standardised 

relationship matrix. 
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Figure A3.S2: Purple simulated SNP is the most significant variant in Fisher’s exact test 

Monogynous samples are homozygous at this locus, polygynous samples are heterozygous. 
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Figure A3.S3: Solenopsis invicta simulation 

Manhattan plot from Fisher’s exact test of allele count (association test for social type).  

Total number of SNPs: 124, 840 (121,786 real and 3,054 simulated).  

The 121,786 real Pheidole SNPs are from the main text analysis: supported by 75% samples, within-population 

polymorphic.  

The 3,054 simulated SNPs (blue squares) reflect Solenopsis system: all monogynous samples are homozygous 

for the reference at the 3,054 simulated loci. A third of the polygynous samples are homozygous for the 

reference and two-thirds are heterozygous. 

The adjustment for multiple comparisons is Bonferroni.
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Figure A3.S4: Formica selysi simulation 

Manhattan plot from Fisher’s exact test of allele count (association test for social type).  

Total number of SNPs: 126,291 (121,786 real and 4,505 simulated).  

The 121,786 real Pheidole SNPs are from the main text analysis: supported by 75% samples, within-population 

polymorphic.  

The 4,505 simulated SNPs (blue squares) reflect Formica system: all monogynous samples are homozygous for 

the reference at the 4,505 simulated loci. A third of the polygynous samples are homozygous for the alternative 

and two-thirds are heterozygous. 

The adjustment for multiple comparisons is Bonferroni. 

 



 

161 

 

 

Figure A3.S5: Mis-genotyping simulations 

a) Histogram of the numbers of significant SNPs over 1000 simulations, in which 10% of the samples are mis-

genotyped (i.e., assigned the alternative social type). Significance is measured by Fisher’s exact tests and 

Bonferroni adjustment. The 46 real SNPs are indicated with the blue line. Most simulations contain less 

significant SNPs than the real dataset (regardless of the exact loci). 

b) The association analysis is powerful enough to include 10% of mislabelling the colonies’ social type. Indeed, 

for more than 950 simulations, the real significant SNPs (n = 46) are recovered in the simulated significant 

SNPs set. 

c) Proportion of real significant SNPs recovered by mis-genotyping simulations for 5% to 50% of samples being 

assigned the wrong labels. Assuming that our analysis contains up to 10% of mis-genotyping, the analysis 

design (GWAS using Fisher’s exact test and Bonferroni adjustment) is expected to recover at least 50% of true 

positive significant SNPs. 
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Figure A3.S6: Geographical location map of samples. 

a) Bruniquel population: 53 polygynous and 16 monogynous samples. 

b) Italian population: 7 polygynous and 16 monogynous samples. 

c) Iberian population: 11 polygynous and 5 monogynous samples. 

d) Overview of the populations. 

Background map © OpenStreetMap contributors. 
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Figure A3.S7: Mapped read proportion by social type 

Proportion of reads mapping to the reference for single-queen samples in orange and multiple-queen samples 

in purple. There is no significant difference between the means of proportion of read mapping between social 

types (T-test P = 0.58). 
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Figure A3.S8: Mean mapping quality by social type 

Data from Qualimap report. The quality of mapping is statistically different between social groups (KS test p 

= 0.002, Wilcoxon test p = 0.0003). We hypothesize that the genome reference influences these results. We 

thus subset the data for the samples that share geographical origins with the genome reference (Bruniquel and 

Iberia, 86 samples), the differences are statistically valid but to a lesser strength (KS test p = 0.04, Wilcoxon test 

p = 0.01). We conclude that the geographical origin has an impact on these results. 
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Supplementary tables 

Table A3.S1: Comparison of P. pallidula reference assembly with Hymenopteran genomes 

Assembly 
Accession Assembly Name Organism 

Contig 
N50 

Scaffold 
N50 

GCA_009193385.1 Nvit_psr_1 Nasonia vitripennis (jewel wasp) 7180486 7180486 
GCF_003254395.2 Amel_HAv3.1 Apis mellifera (honey bee) 5382476 13619445 
GCA_003254395.1 Amel_HAv3 Apis mellifera (honey bee) 5381094 13615080 

GCA_003314205.1 INRA_AMelMel_1.0 
Apis mellifera mellifera (German 
honeybee) 5131172 13573435 

GCF_003672135.1 Obir_v5.4 
Ooceraea biroi (clonal raider 
ant) 3735272 16888278 

GCF_003227725.1 Cflo_v7.5 
Camponotus floridanus (Florida 
carpenter ant) 1278439 1585631 

GCA_009650705.1 Solenopsis_invicta_SB1.0 Solenopsis invicta (red fire ant) 945877 13114153 

GCF_003227715.1 Hsal_v8.5 
Harpegnathos saltator (Jerdon's 
jumping ant) 911506 1078644 

GCA_009299975.1 ASM929997v1 Solenopsis invicta (red fire ant) 874937 16736736 

GCF_000599845.2 Tpre_2.0 
Trichogramma pretiosum (wasps, 
ants, and bees) 573774 1825723 

GCF_000344095.2 Aros_2.0 Athalia rosae (coleseed sawfly) 571016 943070 

GCF_000612105.2 Oabi_2.0 
Orussus abietinus 
(hymenopterans) 508621 612083 

GCF_004153925.1 Obicornis_v3 
Osmia bicornis bicornis (red 
mason bee) 454559 607766 

This study Ppal_E Pheidole pallidula 452000 NA 
GCF_005281655.1 TAMU_Nfulva_1.0 Nylanderia fulva (ants) 320712 443094 
GCA_009299965.1 ASM929996v1 Solenopsis invicta (red fire ant) 278331 11613644 
GCA_901521435.1 Clev_1.0 Crematogaster levior (ants) 255727 383244 
GCF_001272555.1 ASM127255v1 Dufourea novaeangliae (bees) 191865 2549405 

GCA_002217905.1 Apiscer_1.0 
Apis cerana japonica (Asiatic 
honeybee) 179487 180259 

GCF_001263575.1 Nlec1.0 
Neodiprion lecontei (redheaded 
pine sawfly) 87373 243810 

GCA_001263575.2 Nlec1.1 
Neodiprion lecontei (redheaded 
pine sawfly) 87373 243810 

GCA_900474305.1 Cfun 
Cecidostiba fungosa (wasps, ants, 
and bees) 87218 87417 

GCF_000204515.1 Aech_3.9 
Acromyrmex echinatior 
(Panamanian leafcutter ant) 80630 1110580 

GCA_000599845.1 Tpre_1.0 
Trichogramma pretiosum (wasps, 
ants, and bees) 78771 3706225 

GCF_000599845.1 Tpre_1.0 
Trichogramma pretiosum (wasps, 
ants, and bees) 78655 3706225 

GCF_000214255.1 Bter_1.0 
Bombus terrestris (buff-tailed 
bumblebee) 76043 3506793 

GCF_000503995.1 CerSol_1.0 
Ceratosolen solmsi marchali 
(wasps, ants, and bees) 74702 9558897 
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GCF_001594065.1 Ccosl1.0 Cyphomyrmex costatus (ants) 74312 1159032 

GCA_002156465.1 MCINOGS1.0 
Macrocentrus cingulum (wasps, 
ants, and bees) 65089 65089 

GCF_000220905.1 MROT_1.0 
Megachile rotundata (alfalfa 
leafcutting bee) 64153 1699680 

GCF_000188095.3 BIMP_2.2 
Bombus impatiens (common 
eastern bumble bee) 59072 1399493 

GCF_000188095.2 BIMP_2.1 
Bombus impatiens (common 
eastern bumble bee) 59072 1399493 

GCF_000188095.1 BIMP_2.0 
Bombus impatiens (common 
eastern bumble bee) 58885 1399493 

GCA_900474275.1 Synjap 
Synergus japonicus (wasps, ants, 
and bees) 55627 61479 

GCF_000612105.1 Oabi_1.0 
Orussus abietinus 
(hymenopterans) 54038 2372050 

GCF_001594055.1 Tzet1.0 Trachymyrmex zeteki (ants) 52131 1333945 

GCF_000806365.1 ASM80636v1 
Fopius arisanus (wasps, ants, 
and bees) 51867 978588 

GCF_000344095.1 Aros_1.0 Athalia rosae (coleseed sawfly) 51418 1366867 

GCA_000956155.1 ASM95615v1 
Cotesia vestalis (diamondback 
moth parasitoid) 46055 46055 

GCF_000002195.4 Amel_4.5 Apis mellifera (honey bee) 45688 997192 

GCA_001412515.2 Dall2.0 
Diachasma alloeum (wasps, 
ants, and bees) 45480 657001 

GCF_001412515.1 Dall1.0 
Diachasma alloeum (wasps, ants, 
and bees) 44932 645483 

GCF_000341935.1 Ccin1 
Cephus cinctus (wheat stem 
sawfly) 44905 622163 

GCF_001442555.1 ACSNU-2.0 Apis cerana (Asiatic honeybee) 43751 1421626 

GCA_900474325.1 Sumb 
Synergus umbraculus (wasps, 
ants, and bees) 42371 49302 

GCF_001465965.1 Pdom r1.2 
Polistes dominula (European 
paper wasp) 42260 1625592 

GCF_000648655.2 Cflo_2.0 
Copidosoma floridanum (wasps, 
ants, and bees) 40744 1210516 

GCF_003070985.1 ASM307098v1 
Temnothorax curvispinosus 
(ants) 38942 223562 

GCF_001483705.1 ASM148370v1 Eufriesea mexicana (bees) 38936 351926 
GCF_002006095.1 ASM200609v1 Pseudomyrmex gracilis (ants) 38830 317681 

GCF_000147195.1 HarSal_1.0 
Harpegnathos saltator (Jerdon's 
jumping ant) 38321 601965 

GCF_000956235.1 wasmannia.A_1.0 
Wasmannia auropunctata (little 
fire ant) 37912 1175369 

GCA_003055095.1 ASM305509v1 
Goniozus legneri (wasps, ants, 
and bees) 37816 167330 

GCA_003260585.1 UPENN_Mphar_2.0 
Monomorium pharaonis 
(pharaoh ant) 35919 18352397 

GCF_000217595.1 Lhum_UMD_V04 
Linepithema humile (Argentine 
ant) 35858 1402257 

GCA_900480045.1 Eadl 
Eurytoma adleriae (wasps, ants, 
and bees) 34678 38307 
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GCF_000611835.1 CerBir1.0 
Ooceraea biroi (clonal raider 
ant) 34211 1350650 

GCF_000949405.1 V.emery_V1.0 Vollenhovia emeryi (ants) 32417 1346088 

GCA_900474385.1 Opom 
Ormyrus pomaceus (wasps, ants, 
and bees) 30505 30557 

GCA_004794745.1 tlon_1.0 
Temnothorax longispinosus 
(ants) 30134 514432 

GCF_001313825.1 ASM131382v1 Dinoponera quadriceps (ants) 29911 1361239 

GCF_001313835.1 ASM131383v1 
Polistes canadensis (wasps, ants, 
and bees) 29465 521566 

GCF_001594075.1 Tcor1.0 Trachymyrmex cornetzi (ants) 29356 760749 
GCA_003710045.1 USU_Nmel_1.2 Nomia melanderi (Alkali bee) 28892 2351152 

GCA_900480025.1 Eann 
Eupelmus annulatus (wasps, 
ants, and bees) 28345 28524 

GCF_000184785.3 Aflo_1.1 Apis florea (little honeybee) 24915 2863240 

GCA_000188095.1 BIMP_1.0 
Bombus impatiens (common 
eastern bumble bee) 24802 1017298 

GCF_000184785.2 Aflo_1.0 Apis florea (little honeybee) 24704 2863240 
GCF_000184785.1 Aflo_1.0 Apis florea (little honeybee) 24704 2863240 
GCF_003651465.1 ASM365146v1 Formica exsecta (ants) 24299 997654 
GCA_003063835.1 AZXXR Aphaenogaster floridana (ants) 23448 439114 
GCF_001652005.1 ASM165200v1 Ceratina calcarata (bees) 23399 632424 

GCA_900474335.1 Onit 
Ormyrus nitidulus (wasps, ants, 
and bees) 22971 22984 

GCF_001263275.1 ASM126327v1 Habropoda laboriosa (bees) 22370 1784116 

GCF_000980195.1 M.pharaonis_V2.0 
Monomorium pharaonis 
(pharaoh ant) 21806 75377 

GCA_003063805.1 AZXXQ Aphaenogaster ashmeadi (ants) 21672 336807 

GCF_003260585.2 ASM326058v2 
Monomorium pharaonis 
(pharaoh ant) 21277 15645999 

GCA_000980195.2 M.pharaonis_V2.0 
Monomorium pharaonis 
(pharaoh ant) 21277 73835 

GCF_000188075.2 Si_gnH Solenopsis invicta (red fire ant) 21161 621039 

GCA_002290385.1 ApisCC1.0 
Apis cerana cerana (Asiatic 
honeybee) 21160 1393515 

GCA_003063725.1 AZXXO Aphaenogaster miamiana (ants) 20738 351517 

GCF_000147175.1 CamFlo_1.0 
Camponotus floridanus (Florida 
carpenter ant) 19487 451320 

GCA_003063745.1 AZXXM Aphaenogaster rudis (ants) 18941 269776 
GCF_000002325.1 Nvit_1.0 Nasonia vitripennis (jewel wasp) 18865 708988 
GCF_000002325.3 Nvit_2.1 Nasonia vitripennis (jewel wasp) 18840 708988 
GCF_000002325.2 Nvit_2.0 Nasonia vitripennis (jewel wasp) 18840 698296 

GCA_900480035.1 Euro 
Eupelmus urozonus (wasps, ants, 
and bees) 17904 18995 

GCA_001045655.1 ASM104565v1 Lasius niger (ants) 17048 17057 
GCA_000346575.1 ASM34657v1 Lasioglossum albipes (bees) 16944 628061 
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GCA_004916985.1 UKY_Npine_v1 
Neodiprion pinetum (white pine 
sawfly) 15816 609994 

GCA_003063765.1 AZXXP Aphaenogaster fulva (ants) 15753 255328 
GCA_003063815.1 AJDMW Aphaenogaster rudis (ants) 15622 300103 
GCA_003063865.1 AZXXN Aphaenogaster picea (ants) 15430 322984 
GCF_001594045.1 Acol1.0 Atta colombica (ants) 15290 2037154 
GCA_004329405.1 Cnig_gn1 Cataglyphis niger (desert ant) 15276 17950 

GCF_001594115.1 Tsep1.0 
Trachymyrmex septentrionalis 
(ants) 14962 2520094 

GCF_000143395.1 Attacep1.0 Atta cephalotes (ants) 14798 5154485 
GCA_000143395.1 Attacep1.0 Atta cephalotes (ants) 14798 5154485 
GCF_000188075.1 Si_gnG Solenopsis invicta (red fire ant) 14677 558018 

GCF_000648655.1 Cflo_1.0 
Copidosoma floridanum (wasps, 
ants, and bees) 14521 1037125 

GCF_000572035.2 Mdem2 
Microplitis demolitor (wasps, 
ants, and bees) 14116 1139389 

GCA_003595255.1 Sf_gnA Solenopsis fugax (ants) 13777 14463 

GCF_000572035.1 Mdem1 
Microplitis demolitor (wasps, 
ants, and bees) 13540 318766 

GCA_000980195.1 M.pharaonis_V1.0 
Monomorium pharaonis 
(pharaoh ant) 13470 16239 

GCA_900475205.1 Ebru 
Eurytoma brunniventris (wasps, 
ants, and bees) 12988 13596 

GCA_900490025.1 Mdor 
Megastigmus dorsalis (wasps, 
ants, and bees) 12960 18748 

GCA_001276565.1 ASM127656v1 Melipona quadrifasciata (bees) 12520 1864352 

GCA_002201625.1 Edil_v1.0 
Euglossa dilemma (dilemma 
orchid bee) 12398 143590 

GCA_004307685.1 ASM430768v1 Ceratina australensis (bees) 12363 145751 
GCA_004195275.1 ASM419527v1 Cataglyphis hispanica (ants) 11959 13064 

GCF_000187915.1 Pbar_UMD_V03 
Pogonomyrmex barbatus (red 
harvester ant) 11605 819605 

GCA_002249905.1 ASM224990v1 
Trichomalopsis sarcophagae 
(wasps, ants, and bees) 9960 22350 

GCA_900474315.1 Taur 
Torymus auratus (wasps, ants, 
and bees) 9699 9797 

GCA_003121605.1 ASM312160v1 
Leptopilina boulardi (wasps, 
ants, and bees) 9374 15354 

GCA_009602685.1 ASM960268v1 
Leptopilina heterotoma (wasps, 
ants, and bees) 9278 11848 

GCF_000469605.1 Apis dorsata 1.3 Apis dorsata (giant honeybee) 8422 732052 

GCA_001855655.1 ASM185565v1 
Leptopilina clavipes (wasps, ants, 
and bees) 8276 13761 

GCA_900490015.1 Msti 
Megastigmus stigmatizans 
(wasps, ants, and bees) 7394 9143 

GCA_004480015.1 UT_Atex_0.2 Atta texana (ants) 6806 10773 
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GCA_002806875.1 ASM280687v1 
Lepidotrigona ventralis hoosana 
(bees) 6124 6644 

GCA_003575265.1 Mp_gnA 
Monomorium pharaonis 
(pharaoh ant) 5266 5718 

GCA_900474355.1 Tger 
Torymus geranii (wasps, ants, 
and bees) 4982 4996 

GCA_009026005.1 ASM902600v1 
Leptopilina heterotoma (wasps, 
ants, and bees) 4476 5051 

GCA_009025955.1 ASM902595v1 
Leptopilina heterotoma (wasps, 
ants, and bees) 4420 5024 

GCA_900474235.1 Csem 
Cecidostiba semifascia (wasps, 
ants, and bees) 3407 6094 

GCA_000004775.1 Ngir_1.0 
Nasonia giraulti (wasps, ants, 
and bees) 1971 759431 

GCA_000004795.1 Nlon_1.0 
Nasonia longicornis (wasps, ants, 
and bees) 1876 758407 

GCA_001675545.1 ASM167554v1 
Cotesia vestalis (diamondback 
moth parasitoid) 1100 1100 

GCA_900490065.1 Neuqba 
Neuroterus quercusbaccarum 
(wasps, ants, and bees) 1019 1664 

GCA_900474215.1 Andinfl 
Andricus inflator (wasps, ants, 
and bees) 980 1665 

GCA_900474265.1 Andqra 
Andricus quercusramuli (wasps, 
ants, and bees) 977 1138 

GCA_900474195.1 Andgro 
Andricus grossulariae (wasps, 
ants, and bees) 799 1511 

GCA_009394715.1 ASM939471v1 
Diadromus collaris (wasps, ants, 
and bees) 695 695 

GCA_900474205.1 Andcurv 
Andricus curvator (wasps, ants, 
and bees) 635 1116 

GCA_900490055.1 Neusal 
Pseudoneuroterus saliens (wasps, 
ants, and bees) 536 970 

GCA_000819425.1 Ami_v1 
Apis mellifera intermissa (honey 
bee) 504 527 
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Table A3.S2: Microsatellite primers details 

Average allele per locus: 27.5. Primers from (Fournier, Aron and Milinkovitch, 2002). 

Locus 
Size range Number of alleles 
Expected Observed Expected Observed 

Ppal01T 156–194 144-202 11 23 
Ppal33 106–122 98-154 9 32 
Ppal84 104–128 100-139 8 31 
Ppal03 94–122 78-120 6 31 
Ppal73 136–150 121-159 8 29 
Ppal12 95–124 90-125 9 19 

 

Table A3.S3: Sample details – geography and social form 

P = polygynous, multiple-queen; M = monogynous, single-queen 

Sample Gyny Country Region Locality Latitude Longitude Elevation (m) 
A01 P France Occitanie Bruniquel 44.050628 1.677367 220 
A02 P France Occitanie Bruniquel 44.050628 1.677367 220 
A03 P France Occitanie Bruniquel 44.050628 1.677367 220 
A04 P France Occitanie Bruniquel 44.050628 1.677367 220 
A05 P France Occitanie Bruniquel 44.050628 1.677367 220 
A06 P France Occitanie Bruniquel 44.050628 1.677367 220 
A07 M France Occitanie Bruniquel 44.050628 1.677367 220 
A08 M France Occitanie Bruniquel 44.050628 1.677367 220 
A09 P France Occitanie Bruniquel 44.050628 1.677367 220 
A11 P France Occitanie Bruniquel 44.050628 1.677367 220 
A12 P France Occitanie Bruniquel 44.050628 1.677367 220 
A13 P France Occitanie Bruniquel 44.050628 1.677367 220 
A14 P France Occitanie Bruniquel 44.050628 1.677367 220 
A15 P France Occitanie Bruniquel 44.050628 1.677367 220 
A17 P France Occitanie Bruniquel 44.050628 1.677367 220 
A18 P France Occitanie Bruniquel 44.050628 1.677367 220 
A19 P France Occitanie Bruniquel 44.050628 1.677367 220 
A20 P France Occitanie Bruniquel 44.050628 1.677367 220 
A21 M France Occitanie Bruniquel 44.050628 1.677367 220 
A22 P France Occitanie Bruniquel 44.050628 1.677367 220 
A23 P France Occitanie Bruniquel 44.050628 1.677367 220 
A24 P France Occitanie Bruniquel 44.050628 1.677367 220 
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A25 P France Occitanie Bruniquel 44.050628 1.677367 220 
A26 P France Occitanie Bruniquel 44.050628 1.677367 220 
A27 P France Occitanie Bruniquel 44.050628 1.677367 220 
A28 P France Occitanie Bruniquel 44.050628 1.677367 220 
A29 M France Occitanie Bruniquel 44.050628 1.677367 220 
A30 P France Occitanie Bruniquel 44.050628 1.677367 220 
A31 P France Occitanie Bruniquel 44.050628 1.677367 220 
A32 P France Occitanie Bruniquel 44.050628 1.677367 220 
A33 P France Occitanie Bruniquel 44.050628 1.677367 220 
A34 P France Occitanie Bruniquel 44.050628 1.677367 220 
A35 P France Occitanie Bruniquel 44.050628 1.677367 220 
A36 P France Occitanie Bruniquel 44.050628 1.677367 220 
A37 P France Occitanie Bruniquel 44.050628 1.677367 220 
A38 P France Occitanie Bruniquel 44.050628 1.677367 220 
A39 M France Occitanie Bruniquel 44.050628 1.677367 220 
A40 P France Occitanie Bruniquel 44.050628 1.677367 220 
A41 P France Occitanie Bruniquel 44.050628 1.677367 220 
A43 P France Occitanie Bruniquel 44.050628 1.677367 220 
A44 P France Occitanie Bruniquel 44.050628 1.677367 220 
A45 P France Occitanie Bruniquel 44.050628 1.677367 220 
A46 P France Occitanie Bruniquel 44.050628 1.677367 220 
A47 P France Occitanie Bruniquel 44.050628 1.677367 220 
A48 P France Occitanie Bruniquel 44.050628 1.677367 220 
A49 M France Occitanie Bruniquel 44.050628 1.677367 220 
A50 M France Occitanie Bruniquel 44.050628 1.677367 220 
A51 P France Occitanie Bruniquel 44.050628 1.677367 220 
A52 P France Occitanie Bruniquel 44.050628 1.677367 220 
A53 M France Occitanie Bruniquel 44.050628 1.677367 220 
A54 P France Occitanie Bruniquel 44.050628 1.677367 220 
A55 M France Occitanie Bruniquel 44.050628 1.677367 220 
A56 M France Occitanie Bruniquel 44.050628 1.677367 220 
A57 M France Occitanie Bruniquel 44.050628 1.677367 220 
A58 P France Occitanie Bruniquel 44.050628 1.677367 220 
A59 P France Occitanie Bruniquel 44.050628 1.677367 220 
A60 M France Occitanie Bruniquel 44.050628 1.677367 220 
CAH1 P France Occitanie Cahones 42.38892 2.4965 79 
CMR01 P Spain Catalonia Girona 42.187349 2.487893 505 
CU121 P Spain Andalucia Jaén 37.788168 -3.773779 427 
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E01 P France Occitanie Perpignan 42.653533 2.924267 25 
E02 M France Occitanie La Vall 42.50741 3.00662 245 
E03 M France Occitanie La Vall 42.50733 3.00696 245 
E04 P France Occitanie La Vall 42.505117 3.0085 248 
E05 P France Occitanie La Vall 42.65355 2.924283 286 
E112 M France Occitanie Bruniquel 44.050281 1.655848 248 
E114 P France Occitanie Bruniquel 44.050325 1.656046 245 
E120 P France Occitanie Bruniquel 44.050203 1.656265 249 
E121 P France Occitanie Bruniquel 44.050046 1.6562 249 
E129 M France Occitanie Bruniquel 44.05018 1.65608 250 
E130 P France Occitanie Bruniquel 44.050295 1.65607 246 
E133 P France Occitanie Bruniquel 44.05032 1.656043 242 
E14 P France Occitanie St-Cyprien 42.639533 3.0146 0 
E16 M France Occitanie Perpignan 42.646417 2.8569 62 
E19 M France Occitanie St-Cyprien 42.646567 2.853683 66 
E24 P France Occitanie St-Cyprien 42.639533 3.0146 0 
E25 M France Occitanie Banyuls 42.457228 3.08627 77 
E28 P France Occitanie Perpignan 42.649033 2.8506 27 
E37 P France Occitanie Perpignan 42.646417 2.8569 62 
E55 P France Occitanie Perpignan 42.648633 2.848333 63 
E73 M France Occitanie Bruniquel 44.05016 1.65587 245 
E87 P France Occitanie Bruniquel 44.050341 1.655911 244 
E88 P France Occitanie Bruniquel 44.050246 1.656186 251 
E90 M France Occitanie Bruniquel 44.050083 1.656265 249 
E95 P France Occitanie Bruniquel 44.050043 1.656522 248 
I02 M Italy Tuscany Scandicci 43.745767 11.1315 100 
I03 M Italy Tuscany Scandicci 43.745953 11.131233 106 
I04 P Italy Tuscany Scandicci 43.745942 11.131283 107 
I05 P Italy Tuscany Scandicci 43.745925 11.131286 102 
I06 M Italy Tuscany Scandicci 43.745823 11.132031 90 
I07 P Italy Tuscany Scandicci 43.74613 11.1323 90 
I08 M Italy Tuscany Scandicci 43.74613 11.132264 89 
I10 M Italy Tuscany Scandicci 43.74618 11.13127 107 
I11 M Italy Tuscany Scandicci 43.745972 11.13122 109 
I12 M Italy Tuscany Scandicci 43.746028 11.130442 117 
I13 M Italy Tuscany Scandicci 43.745945 11.130439 114 
I14 M Italy Tuscany Scandicci 43.746033 11.130528 114 
I15 P Italy Tuscany Scandicci 43.746342 11.131203 106 
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I16 P Italy Tuscany Scandicci 43.7466 11.131181 111 
I18 M Italy Tuscany Scandicci 43.746537 11.131283 111 
I19 M Italy Tuscany Scandicci 43.746042 11.130414 115 
I20 M Italy Tuscany Scandicci 43.745381 11.129961 119 
I21 M Italy Tuscany Scandicci 43.74444 11.128992 133 
I22 P Italy Tuscany Scandicci 43.743661 11.128736 145 
I23 M Italy Tuscany Scandicci 43.743758 11.127064 148 
I24 M Italy Tuscany Scandicci 43.743733 11.126486 153 
I25 M Italy Tuscany Scandicci 43.74355 11.126069 145 
I27 P Italy Tuscany Scandicci 43.74587 11.130128 113 

 

Table A3.S4: BLASTN hits of significant SNPs to S. invicta genome 

35 out 46 significant SNPs have BLASTN hits (-evalue 1e-5 -max_target_seqs 1), including 2 in supergene (in 

bold).  

qseqid sseqid evalue identity length Location in gnG 
Ppal_E.contig_2068:294164-295164 NW_011800493.1 0 93.701 1016 recombining 
Ppal_E.contig_1245:234310-235310 NW_011795970.1 0 88.596 947 not in genetic map 
Ppal_E.contig_1136:149827-150827 NW_011797448.1 0 83.887 993 recombining 
Ppal_E.contig_1561:331475-332475 NW_011796802.1 0 86.724 693 recombining 
Ppal_E.contig_1050:84432-85432 NW_011847194.1 0 93.952 463 not in genetic map 
Ppal_E.contig_1562:744702-745702 NW_011795053.1 0 79.922 1031 supergene 
Ppal_E.contig_100:367779-368779 NW_011794844.1 0 88.151 557 supergene 
Ppal_E.contig_1734:422761-423761 NW_011800113.1 0 83.631 727 recombining 
Ppal_E.contig_1250:93795-94795 NW_011794565.1 0 79.041 1064 recombining 
Ppal_E.contig_2165:567683-568683 NW_011794869.1 2.25E-177 90.968 465 recombining 
Ppal_E.contig_413:53098-54098 NW_011796802.1 8.10E-177 88.528 523 recombining 
Ppal_E.contig_1226:101449-102449 NW_011798146.1 5.05E-149 77.905 964 recombining 
Ppal_E.contig_1808:410483-411483 NW_011794668.1 1.83E-143 88.759 427 recombining 
Ppal_E.contig_2581:111745-112745 NW_011795719.1 1.83E-143 77.143 1015 recombining 
Ppal_E.contig_1327:605293-606293 NW_011796896.1 8.52E-142 85.221 521 recombining 
Ppal_E.contig_1909:787554-788554 NW_011800113.1 8.52E-142 79.67 787 recombining 
Ppal_E.contig_123:763844-764844 NW_011796690.1 1.43E-139 78.954 822 recombining 
Ppal_E.contig_1096:326434-327434 NW_011794959.1 1.45E-129 84.294 503 recombining 
Ppal_E.contig_1399:157121-158121 NW_011796848.1 3.20E-111 84.828 435 recombining 
Ppal_E.contig_506:39428-40428 NW_011847869.1 4.22E-95 78.269 566 not in genetic map 
Ppal_E.contig_16:792877-793877 NW_011801990.1 1.52E-94 87.261 314 recombining 
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Ppal_E.contig_1327:605293-606293 NW_011796896.1 3.31E-86 85.993 307 recombining 
Ppal_E.contig_1018:243769-244769 NW_011798105.1 3.33E-81 84.356 326 recombining 
Ppal_E.contig_1916:428803-429803 NW_011802221.1 4.34E-75 79.121 455 recombining 
Ppal_E.contig_1096:326434-327434 NW_011794959.1 1.57E-69 85.053 281 recombining 
Ppal_E.contig_261:349222-350222 NW_011798377.1 1.25E-50 82.52 246 recombining 
Ppal_E.contig_132:0-670 NW_011800878.1 5.09E-33 92.929 99 recombining 
Ppal_E.contig_1096:104519-105519 NW_011797741.1 9.95E-32 78.667 225 not in genetic map 
Ppal_E.contig_1734:410266-411266 NW_011800113.1 2.15E-28 84.444 135 recombining 
Ppal_E.contig_39:141224-142224 NW_011796746.1 1.69E-19 79.006 181 recombining 
Ppal_E.contig_144:1312842-1313842 NW_011799552.1 1.31E-15 81.818 110 recombining 
Ppal_E.contig_1100:250823-251823 NW_011803501.1 2.20E-13 82.292 96 recombining 
Ppal_E.contig_1399:230526-231526 NW_011802208.1 2.20E-13 85.897 78 not in genetic map 
Ppal_E.contig_2082:146022-147022 NW_011799280.1 1.02E-11 85.915 71 recombining 
Ppal_E.contig_261:348035-349035 NW_011798377.1 4.76E-10 75.776 161 recombining 
Ppal_E.contig_1474:55129-56129 NW_011796384.1 7.97E-08 100 33 recombining 
Ppal_E.contig_261:348035-349035 NW_011798377.1 7.97E-08 97.222 36 recombining 
Ppal_E.contig_261:348035-349035 NW_011798377.1 7.97E-08 97.222 36 recombining 
Ppal_E.contig_530:3757-4757 NW_011795475.1 1.03E-06 97.059 34 recombining 

 

Table A3.S5: Regions unique to single- and multiple-queen genomes 

 Number of 
regions 

Regions 
length range 
(bp) 

Blast results 

Genomic regions unique 
to all 35 single-queen 
samples 

13 1,016 - 2,373 8 regions without any match 
5 regions with PREDICTED ant mRNA (either 
uncharacterized; or associated with cell 
energy, cell recognition) 

Genomic regions unique 
to all 73 multiple-queen 
samples 

161 1,002 - 10,499  
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Table A3.S6: Illumina sequencing summary   

We received 213G of data from Genewiz (size of directory with 115 fastq.gz files), with a total of 2,762,930,432 raw 

paired-end sequences. 

	 number of 
samples 

mean number of 
sequences 
representing a 
sample 

minimum 
number of 
sequences 
representing a 
sample 

maximum 
number of 
sequences 
representing a 
sample 

Total 115 12,012,741 6,411,726 63,391,150 
Polygynous 
samples 

74 11,802,151 6,411,726 63,391,150 

Monogynous 
samples 

39 12,378,667 7,040,495 20,799,984 

 

Table A3.S7: Nanopore sequencing summary 

Sample 
Origin 

Flow 
cell 

Run 
name 

Content Chemistry Total 
sequencing 
yield  
(bp) 

Average 
sequence 
length (bp) 

Genome 
coverage*  
(x) 

colony 
129** 

1 Phei2 1 male 2D 230 M 2.6 K 0.77 

2 Phei3 1 male 2D 141 M 2.0 K 0.47 

3 Phei4 1 male + 35 
workers 

2D 2.7 G 2.6 K 9 

colony 
12*** 

4 ppal4 100 
workers 

1D ligation 35 M 1.7 K 0.12 

5 ppal15 150 
workers 

1D ligation 409 M 2.1 K 1.4 

6 ppal16 200 
workers 

1D ligation 1.6 G 4.6 K 5.31 

* estimated Pheidole genome size = 300Mb  

** From Bruniquel, France (latitude 44.05018, longitude 1.65608)  

*** From Perpignan, France 
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