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Abstract—In musical compositions, identifying critical points that
reveal atypical and unexpected decisions is valuable from a compositional
perspective as these points arguably contribute to the enjoyment of
listening to music and are useful for applications such as automatic music
generation and music understanding. In this study, we suggest a machine
learning-based approach for identifying critical decision points, where
we utilise two long short-term memory (LSTM) models that originally
function as generative networks and are repurposed in our case to identify
critical decision points. These models are trained on musical corpora
from the classical period and the 20th century providing different angles
to the analysis. We demonstrate this approach using two short musical
examples and an excerpt from Chopin’s Nocturne in E flat major (Op.
9 No. 2). We compare our suggested machine-learning-based approach
to two time series analysis methods as the baselines, evaluate the results,
and suggest some future directions for this approach.

Index Terms—musical composition analysis, music information re-
trieval, machine learning, long short-term memory networks, time series
analysis

I. INTRODUCTION

Composing music is typically a theory-based practice that has
been developed for hundreds of years [1]. Following the rules of
music theory provides a basis for composers, however, composers
intentionally make some atypical and unexpected decisions in musical
pieces, which might not necessarily be aligned with the appropriate
music theory [2]. These atypical and unexpected decision points are
critical as they arguably contribute to the enjoyment of listening to
music, guide audiences’ expectations, and give character to the pieces
from a compositional point of view [3].

Generating musical compositions using machine learning is an
active research field and various neural models have been utilised
ranging from long short-term memory networks [4] to transformers
[5] [6]. One common practice is to represent music symbolically
in the generative music models [7]. Symbolic music representations
(e.g. MIDI) consist of musical notes in the form of time series data,
where fundamental musical attributes such as note number (pitch),
velocity (musical dynamics) and timing are numerically presented [8].
A common paradigm in generative music systems is auto-regressive
generation, where the musical properties of the next note are predicted
by the model given a musical sequence as the prior and this procedure
continues iteratively to generate longer music sequences [5].

Identifying critical decision points that exhibit atypical and un-
expected behaviour is useful for generative music studies, where
generated pieces can be conditioned on these critical points and
generative models can arguably learn musical patterns effectively with
a particular emphasis on these points. These critical decision points
are also useful for other types of music information retrieval research
such as music understanding and music recommendation systems,
where we typically need a thorough analysis of the musical pieces
[9]. Even though the critical points might be subjective ultimately,
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having a better understanding of these points through the lenses of
neural models and time series analysis methods is insightful for music
information retrieval and computational creativity research [10].

In this study, we present a novel machine learning-based method
using long short-term memory networks (LSTMs) to identify critical
decision points in musical compositions [11]. We repurpose two
LSTM-based generative music models for our analysis making use
of their auto-regressive behaviour and utilise two distinct training
corpora that are curated from the GiantMIDI-Piano dataset [12].
These two musical corpora consist of pieces from the classical period
and the 20th century to conduct this analysis from two different era-
dependent perspectives. We compare our suggested machine learning-
based method to two other traditional time series analysis approaches
that we construct as baselines. We demonstrate these methods on
two manually designed short musical examples and an excerpt from
Frédéric Chopin’s Nocturne in E flat major (Op. 9 No.2), evaluate
the results of these methods, and suggest some future directions for
this approach.

II. METHODOLOGY

To identify critical decision points, we employ a machine learning-
based method and also two time series analysis methods that are con-
structed as baselines. These methods use only the pitch information
in symbolic music representations of musical pieces, as arguably it is
one of the most important and apparent musical features for atypical
and unexpected decisions. In all of our methods, we convert the
pitch values of musical notes into pitch-classes, which are the octave
invariant versions of pitches. There are 128 pitch values (ranging
from 0 to 127) in typical symbolic music representation (MIDI) and
12 pitch-classes, namely C, C#, D, D#, E, F, F#, G, G#, A, A# and
B. We present the musical pieces to our analysis methods using the
pitch-class values of musical notes, as the conversion from pitch to
pitch-class simplifies our analysis, where the pitch-class is capable
of capturing tonality and pitch-based features.

Our baseline methods are based on two fundamental musical
attributes, namely the most common pitch-class and the tonality.
These methods rely on a statistical analysis of a given musical
piece in terms of these musical attributes to investigate the critical
decision points. Since these baseline methods are based on the
statistics of the subject musical piece, the analysis is based on the
information provided within the piece itself. Therefore, these two
baseline methods are called within piece analysis based on the most
frequent pitch-class and within piece analysis based on the tonality.

Our suggested machine learning-based method repurposes an
LSTM network that was originally trained for a music generation
setting, where it predicts the pitch-class of the next note given a
prior sequence of pitch-classes. The network outputs the predicted
pitch-class via a softmax layer, which gives the probabilities of pitch-
classes among 12 candidates. To conduct our critical decision points
analysis, we run the LSTM network over an already existing musical
piece note by note and utilise the softmax layer to compare the
predicted note and the actual note in the piece. Since this method



analyses critical decision points based on the characteristics of and
the patterns in the provided training corpus to the LSTM network,
we call this method corpus-based analysis using LSTM networks.

We use a measure of interestingness to conduct the critical decision
points analysis, where we calculate the interestingness level of each
note in the subject piece. In our baseline methods, the interestingness
measure is binary, and critical decision points are considered to be
the ones with high interestingness. In our machine learning-based
method, this measure has twelve discrete levels as per 12 pitch-classes
in the softmax layer and higher interestingness levels correspond to
more critical notes. The details of the interestingness calculations are
given in the next sections.

A. Within Piece Analysis based on the Most Frequent Pitch-Class

We present a musical piece, M , of N notes, as a list of MIDI
note numbers, M = [m1, . . . ,mN ], where mi ∈ {0, 1, . . . , 127}
representing musical pitches. We convert the list of MIDI note
numbers, M , into a list of pitch classes, P , as:

P = [pi = mi mod 12 : mi ∈ M ]

The values of pi ∈ P ranging from 0 to 11 represent twelve pitch
classes from note C to note B, respectively. To conduct the interest-
ingness analysis, we select a subject note in P , denoted as ps, and also
a window symmetrically centred around ps with the size of w that is
an odd number. Then, we extract the list of windowed samples such
that Pwindow = [ps−(w−1)/2, . . . , ps−1, ps+1, . . . , ps+(w−1)/2] with
w − 1 elements, where the first and second halves include samples
before and after the subject note, ps, respectively. Afterwards, to
find the most frequent pitch-class in the windowed samples, we
check the frequency of occurrence of each pitch-class, pck, where
pc0,...,11 = 0, . . . , 11, as:

fP (pck) = |[pi ∈ Pwindow : pi = pck]|

Then, we create a list of [fP (pc0), . . . , fP (pc11)] and sort it in
ascending order to find the most frequently occuring pitch-class,
which is the pitch-class of the last item in the list, denoted as pcmf .
Afterwards, to determine the interestingness of the subject note, ps,
we use the following function:

I(Pwindow, s, pcmf ) =

{
1, ps ̸= pcmf

0, ps = pcmf

Practically, it means if the pitch-class of a note is not the most
frequently occurring pitch-class within the subject window, then it’s
considered to be an interesting note in the sequence. We iteratively
repeat this process for the upcoming subject notes to apply this
method over a section of the musical piece. This approach is arguably
the simplest way of conducting an interestingness analysis. Even
though it demonstrates the basics of our analysis approach, it is
limited from a musical point of view as it tends to classify all the
pitch-classes except the most-frequent one as interesting. Therefore,
we construct the second baseline method, which is musically more
informative.

B. Within Piece Analysis based on the Tonality

Similar to the most frequent pitch-class method, we obtain
Pwindow = [ps−(w−1)/2, . . . , ps−1, ps+1, . . . , ps+(w−1)/2], subject
note, ps, and most frequent pitch-class, pcmf . Then, based on the
pcmf , we infer the musical tonality of the subject window assuming
that pcmf is the pitch-class of tonic note, i.e. the first-degree note of
a musical scale (e.g. C in C major scale). To infer the tonality, we
generate two template lists for major and minor scales in terms of
the pitch-class intervals taking the tonic pitch-class as the reference
point. Major scales can be constructed by adding each of the interval
values in the set of {2, 4, 5, 7, 9, 11} to the tonic. Similarly, the set

Fig. 1. (a) Manually designed musical excerpt in C major with b9 tension
(pitch-class of Db / C#), (b) within piece analysis based on the most frequent
pitch-class with w = 51 and w = 101, (c) within piece analysis based on the
tonality with w = 51 and w = 101, (d) corpus-based analysis using LSTMs
trained on the classical period music, and (e) the 20th century music.



Fig. 2. (a) Manually designed musical excerpt in D major with #11 tension
(pitch-class of G#), (b) within piece analysis based on the most frequent pitch-
class with w = 51 and w = 101, (c) within piece analysis based on the tonality
with w = 51 and w = 101, (d) corpus-based analysis using LSTMs trained on
the classical period music, and (e) the 20th century music.

of {2, 3, 5, 7, 8, 10} can be used for the minor scales. Using these
interval sets, we generate major and minor reference lists such that
Rmajor = [pmf , pmf + 2, pmf + 4, pmf + 5, pmf + 7, pmf +
9, pmf+11] and Rminor = [pmf , pmf+2, pmf+3, pmf+5, pmf+
7, pmf + 8, pmf + 10]. Depending on the value of pmf , since the
values in the reference lists can be bigger than 11, we process these
reference lists with the modulo 12 operator to ensure that they are
valid pitch-class values. Then, in our subject window Pwindow, we
count the total number of pitch-classes that match with the major and
minor reference lists, as:

nmajor(Pwindow) = |[pi ∈ Tmajor : pi ∈ Pwindow]|

nminor(Pwindow) = |[pi ∈ Tminor : pi ∈ Pwindow]|

Depending on the total number of matching major and minor
pitch-classes, whichever is the higher, we infer the tonality as
such. Based on the obtained tonality, we select a reference list
Rselected = Rmajor or Rselected = Rminor . Then, we determine
the interestingness of the subject note, ps, as:

I(Pwindow, s, Rselected) =

{
1, ps ̸∈ Rselected

0, ps ∈ Rselected

This interestingness analysis classifies pitch-classes that are not
part of the tonality as interesting. Compared to our first baseline
method, this method is musically more informative as it considers
the notion of tonality / atonality which is related to atypical and
unexpected decisions compositionally. However, depending on the
window length and the nature of the piece, the tonality-based ap-
proach might be limited due to the temporal scope of inferred tonality.
Therefore, we propose our machine learning-based method, which is
arguably a more capable alternative due to analysing from a corpus-
based perspective and its ability to model characteristics and patterns
presented in the data.

C. Corpus-based Analysis using LSTM Networks
We repurpose a generative LSTM network [11] and utilise it for

our critical decision points analysis. The network consists of an
embedding layer with the embedding dimension of 256, an LSTM
layer with 1024 units, and a softmaxed dense layer for the predictions
of 12 pitch-classes, in this respective order from input to output. We
use a categorical cross-entropy loss function as per our 12 pitch-
classes and an Adam optimiser with the learning rate of 0.005 [13].

The decisions made by the network over 12 pitch-classes depend
on the characteristics of the training corpus. Thus, to conduct this
analysis from two different perspectives, we curated two different
era-dependent subsets of the GiantMIDI-Piano dataset, which has
10855 classical piano pieces [12]. This dataset also has metadata
including the birth years of the composers and using this metadata, we
curated two subsets for the pieces whose composers’ birth years are in
the range of 1700-1720 and 1900-1905. The subset corresponding to
1700-1720 birth years has 114 pieces and 173428 notes, whereas the
other subset has 61 pieces and 222182 notes in total. While selecting
these birth years, we considered the number of notes they have, which
should ideally be around 200000 based on our initial experiments
with the LSTM architecture. We also aimed for the subsets to reflect
distinct musical periods in terms of their characteristics. The first
subset with the birth years from 1700 to 1720 roughly corresponds
to the classical period and the second subset roughly corresponds
to the 20th century period. As these periods have distinct musical
characteristics stylistically, they can provide different angles to our
analysis. Using these two subsets, we trained two LSTM models for
3000 epochs each.

We run our trained networks over sequences of pitch-classes and
use the softmax predictions to conduct our analysis. We make use



of the auto-regressive nature of the networks, where the predictions
are made note by note with a moving window for the prior sequence
rather than generating many samples in one go. We select a subject
note, ps, within the list of pitch-classes, P , similar to our baseline
methods. In this method, the list of Pprior = [ps−100, . . . , ps−1] is
obtained from the P , where we have a fixed length of 100 samples
for the prior musical sequence to be provided to the network. Using
the Pprior , the network makes predictions for the subject note, ps,
via the softmaxed probabilities for each of the 12 pitch-classes, each
denoted as spci . Then, we have the list of softmaxed probabilities for
the subject note, ps, which is Ss = [spc0 , spc1 , . . . , spc11 ]. Similar to
our baseline methods, we have a measure of interestingness. In this
case, it has 12 discrete levels due to twelve pitch-classes rather than
being a binary measure. To calculate the interestingness of ps, we
sort the list of Ss in descending order and get the index (from 1 to
12) of spci that corresponds to the pitch-class of the subject note, ps,
in the sorted list. So, this index becomes the interestingness level of
the ps, where lower probability inferred by the model for the existing
note means higher interestingness.

III. EXPERIMENTS AND RESULTS

To demonstrate our methods, we manually designed two short
musical examples, and also extracted an excerpt from Chopin’s
Nocturne in E flat major (Op.9 No. 2). The audio files for these
musical examples can be found here1.

A. Manually Designed Musical Excerpts

Our manually designed musical examples exhibit both tonal and
atonal features. One example consists of an ascending and descending
C major scale with the b9 tension (pitch-class of Db / C#) at the
climax of the melody as shown in Figure 1 (a). The other manually
designed example consists of ascending and descending D major
scale with the #11 tension (pitch-class of G#) similarly at the climax
as shown in Figure 2 (a). To conduct our analysis methods over
these short musical examples, we looped these melodies nine times
to elongate the samples so that our methods can be performed in
terms of the window and prior sequence lengths.

For our C major example, we conducted our baseline analysis
methods with the window lengths of 51 and 101 for both the most
common pitch-class and the tonality cases. In each method, these
different window lengths produced the same results. We present the
results for our baseline methods in Figure 1 (b) and (c). The method
based on the most frequent pitch-class acts as expected as it classifies
all the pitches except C as interesting. Even though this is not very
informative from a musical point of view, it demonstrates our time
series analysis approach. The second baseline based on the tonality
classifies only the C# as interesting, which is the expected behaviour
as it is not a part of C major scale.

Over the C major example, we conducted our suggested machine
learning-based method with the models trained on the classical period
and the 20th century music data. These results are shown in Figure
1 (d) and (e), respectively. The model trained on the classical period
classifies the pitch of C# as the most interesting note of the melody,
which is aligned with our expectations as it is not part of the C
major scale. Also, it classifies the C and B notes following the
C# as relatively interesting notes, which behaviour still addresses
the unexpected and salient part of the melody. The model trained
on 20th century music doesn’t classify the note C# as one of the
highly interesting notes, which is a good indicator of the different
perspectives provided by this model since non-tonal notes are more
common in the 20th century music compared to the classical period.
Instead of the C# note, this model classifies the notes C and B

1https://soundcloud.com/user-330551093/sets/identifying-critical-points

following the C# as the most interesting notes, which is arguably
reasonable as it still highlights the relatively unstable part of the
melody.

For the example in D major, similarly, we conducted our baseline
methods with the window lengths of 51 and 101. The results for
different window lengths are the same in each method. Analyses
based on the most frequent pitch-class and the tonality are depicted
in Figure 2 (b) and (c), respectively. Similar to the C major example,
the method based on the most frequent pitch-class classifies any pitch
except the tonic (D) as interesting and the method based on the
tonality classifies only the non-tonal (G#) note as interesting, which
is expected since it is the only note that is not part of D major scale.

We applied our suggested machine learning-based method to the
D major example using two different models similarly. As shown in
Figure 2 (d), the model trained on the classical period data classifies
the D after G# as the most interesting note of the melody, where G#
is classified as the second most interesting note. In contrast to the C
major example, the model trained on the classical period data doesn’t
classify the only non-tonal note (G#) as the most interesting one,
yet these results show that this model is able to locate the arguably
most interesting part of our designed example while gradually paying
attention to the other notes as well. The model trained on the 20th
century data doesn’t classify the G# as the most interesting note,
which is reasonable given the characteristics of the musical period.
Instead of the G#, this model classifies the notes D, B and F# as the
most interesting notes.

Based on these results, the method based on tonality is more
informative for the critical decision points analysis than the method
based on the most common pitch-class since pitch-classes out of
tonality are generally associated with atypical and unexpected de-
cisions. However, one limitation of the method based on tonality
is that it only relies on the tonality feature, which is not strictly
considered in musical practices necessarily. Also, another limitation
of the baseline methods is that they are binary classification methods.
Our suggested machine learning-based approach provides us with
reasonable and more detailed information, where there is a sensible
difference between two different era-specific models.

B. Chopin’s Nocturne in E Flat Major (Op. 9 No. 2)

In this section, we demonstrate our baseline approaches and the
suggested machine learning-based method on an excerpt from a well-
known musical composition, Chopin’s Nocturne in E flat major (Op.
2 No. 2). We utilised our baseline methods with the window sizes
of 51 and 101, whose results are shown in Figure 3 (b), (c), (d) and
(e). We also conducted the analysis using our machine learning-based
method with two models trained on the classical period and the 20th
century dataset, whose results are given in Figure 3 (f) and (g). Since
the analysis only focuses on the pitch features, we normalised the
note durations to 16th notes to make the effect of pitch-class clearly
distinguishable while listening to the piece. Also, to accommodate
the window sizes of 51 and 101, and the prior sequence length of
100 for the machine learning-based method, we extracted a longer
excerpt than the one in Figure 3. More specifically, we have more
than 100 notes before and after the excerpt presented.

In the most common pitch-class-based analysis, for the window
size of 51 as shown in Figure 3 (b), the most common pitch-class
is calculated as Eb (D#), which is reasonable as it is the original
tonic of the piece. But, apparently, the most common pitch-class has
changed for the last quarter of the piece since the last three Eb notes
are not considered as ’not interesting’. When we investigated this
issue, we found that the most common pitch-class was changed to F
or G depending on the subject note. This is one of the limitations of
this baseline method, where the calculated specific musical feature



Fig. 3. (a) A processed excerpt from Chopin’s Nocturne in E flat major (Op. 9 No. 2), (b) within piece analysis based on the most frequent pitch-class with
w = 51, and (c) with w = 101, (d) within piece analysis based on the tonality with w = 51, and (e) with w = 101, (f) corpus-based analysis using LSTMs
trained on the classical period music, and (g) the 20th century music.



that is at the core of the analysis might change temporally. When
the window size is 101 (Figure 3 (c)), seemingly the most common
pitch-class is calculated as F. We further investigated these results,
and found that for the subject note of Db in the third measure, the
most common pitch-class is detected as G. This can happen given
the nature of algorithm where we have a moving window, but this
is a limitation of this approach, where the most common pitch-class
changes at a granular level. Also, these results show that the window
size affects the calculation of the most common pitch-class.

In the tonality-based analysis, for the window size of 51, whose
results are shown in Figure 3 (d), all the notes out of the Eb major
scale are classified as interesting, which is reasonable as the tonality
of the original piece is Eb major. But, as we know from the most
common pitch-class analysis with the window size of 51, for the last
quarter of the piece, the calculated most common pitch-class is not
Eb, instead, it is F or G. So, this suggests that the inferred tonality
for the last quarter of the piece cannot be Eb major and the notes in
the last quarter are not classified with respect to Eb major scale. Even
though the analysis seems to correctly identify the non-tonal notes
considering the original tonality, this example shows that it can be a
coincidence, which is a limitation of this method. When we have the
window size of 101, F is the most common pitch-class throughout
the piece as shown in the analysis above. We investigated the tonality
in this case, and F minor was inferred throughout the excerpt except
for the Db note in the third measure, where the tonality was inferred
as G minor. Given these inferred tonalities, interestingness analysis
classifies all the notes correctly, but since F minor is not the original
tonality of the piece and it fluctuates for one note (Db), these results
show the limitation of this method, where the inferred tonality differs
depending on the window size and might deviate at a note level.

These results from the baseline methods show the limitations of
these techniques. Typical time series analysis approaches might not
be reliable and informative, and they rely on a single musical metric
(such as the most common pitch-class or the tonality) that depends on
the window size. Also, they might fluctuate at a granular level for a
subject note. So, these limitations encourage us to use a machine
learning-based approach that does not rely on a specific musical
metric and is able to model complex interdependencies and patterns
in the data.

We analyse the same excerpt with our suggested machine learning-
based approach using the models trained with the classical period and
the 20th century data, whose results are shown in Figure 3 (f) and (g),
respectively. The classical period model identifies all of the non-tonal
pitches as highly interesting reasonably. These pitches are A natural
in the first measure, B natural in the second measure, and B natural
and Db in the third measure. Also, it classifies the G before the Db in
the third measure as one of the most interesting notes. Arguably, this
might be due to having a relatively high interval between the subject
note and the previous note, where the subject note corresponds to the
beginning of the musical theme. The last seven notes are classified
as some of the least interesting ones and this makes sense as this
figure is very common in the classical period. When we analyse the
excerpt with our 20th century model, all the non-tonal pitches are
classified as the most interesting notes except the B natural at the
beginning of the third measure as shown in Figure 3 (g). This might
be due to having a repetition of the same pitch. Also, in contrast to
the classical period model, the last seven notes are classified as some
of the highly interesting notes. This is reasonable in the context of
20th century music as these kinds of musical figures are much rarer
in the 20th century compared to the classical period.

Compared to the baseline methods, our suggested machine
learning-based approach is more capable of capturing tonality-related
interestingness and also referring to other musical features as we’ve

pointed out above. Also, our machine learning-based approach pro-
vides more information about interestingness on a 12-level scale
compared to the baseline methods that have a binary scale. The results
of the machine learning-based approach need further investigation
from a deeper compositional point of view, which we plan to perform
as part of our future work including some human-subject evaluations
as well.

IV. CONCLUSIONS

In this study, we present a novel machine learning-based approach
for identifying critical points in musical compositions, which reveal
atypical and unexpected decisions. We compare our suggested method
to our baseline methods using various musical examples. We evaluate
the results, addressing the limitations of the baseline methods and
point out the advantages and the potential of our suggested ma-
chine learning-based approach. Identifying critical decision points in
musical compositions can be useful for automatic music generation
models that can be conditioned on the interestingness and also music
understanding studies.

In our future work, we plan to conduct human-subject studies with
composer and non-composer participants to evaluate the interesting-
ness levels of the notes in various musical pieces, which would allow
us to further analyse the performance of our suggested methodology.
Also, we are interested in introducing other musical attributes such
as dynamics and timing to the analysis, experimenting with other
machine learning architectures as different inference mechanisms,
and investigating their behaviour in the context of identifying critical
decision points. Moreover, we will use the interestingness levels
to condition generative music models, where musical pieces with
continuous control of interestingness can be composed.
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