
TANGENT CURVES TO DEGENERATING HYPERSURFACES

LAWRENCE JACK BARROTT AND NAVID NABIJOU

ABSTRACT. We study the behaviour of rational curves tangent to a hypersurface under degener-
ations of the hypersurface. Working within the framework of logarithmic Gromov–Witten theory,
we extend the degeneration formula to the logarithmically singular setting, producing a virtual
class on the space of maps to the degenerate fibre. We then employ logarithmic deformation
theory to express this class as an obstruction bundle integral over the moduli space of ordinary
stable maps. This produces new refinements of the logarithmic Gromov–Witten invariants, en-
coding the degeneration behaviour of tangent curves. In the example of a smooth plane cubic
degenerating to the toric boundary we employ localisation and tropical techniques to compute
these refinements. Finally, we leverage these calculations to describe how embedded curves tan-
gent to a smooth cubic degenerate as the cubic does; the results obtained are of a classical nature,
but the proofs make essential use of logarithmic Gromov–Witten theory.
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1. INTRODUCTION

Degeneration is a core technique in modern enumerative geometry. The basic idea is to degen-
erate a given target variety X to a simpler one:

X  X0.

Under suitable conditions, enumerative invariants of the general fibre X can be reconstructed
from those of the central fibre X0 [Li02, ACGS20a, ACGS20b, Ran19]. If the central fibre is suf-
ficiently simple — for example, if it decomposes into a union of toric varieties meeting trans-
versely — then its invariants can in turn be computed directly.

As such, degeneration is usually viewed solely as a method: it calculates the desired invari-
ants on the general fibre in terms of invariants on some auxiliary central fibre. It has been
tremendously successful at this task, underpinning many major results in the field: for a sam-
ple, see [MP06, OP09, GPS10, PP17].
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There is another aspect of degeneration, however, which has been mostly overlooked: the
invariants of the central fibre provide refinements of the invariants of the general fibre. This is be-
cause the moduli space associated to the central fibre typically has multiple virtual irreducible
components. These refinements are geometrically meaningful: they provide information about
how algebraic curves in X degenerate as X does.

In this paper, we investigate the geometric meaning of these refinements in the novel context
of hypersurface degenerations. We examine rational curves with maximal contact order to
a given hypersurface and study their behaviour as the hypersurface degenerates. Using the
machinery of logarithmic Gromov–Witten theory, we explicitly calculate the aforementioned
refinements, and use them to answer classical (and previously open) questions. Along the way,
we establish a general degeneration formula for logarithmically singular families, and develop
a new virtual push-forward technique which we exploit to calculate the virtual class on the
central fibre.

1.1. Logarithmically singular degeneration formula (§2). The degenerations we wish to study
are logarithmically singular, and therefore fall outside the scope of the usual degeneration for-
mula [ACGS20a, ACGS20b]. Our first main result is an extension of the degeneration formula
to logarithmically singular families in genus zero.

Theorem A (Theorems 2.1 and 2.3). Let X be a logarithmically smooth scheme, and let X →
A1 be a projective, surjective and logarithmically flat morphism, where the base is equipped
with the trivial logarithmic structure. Choose discrete data for a moduli space of genus zero
logarithmic stable maps Klog(X ). Then, there is a perfect obstruction theory for the morphism

Klog(X )→ LogM0,n × A1

defining a family of virtual fundamental classes on the fibres of Klog(X )→ A1

[Klog(Xt)]virt

satisfying the conservation of number principle. If a fibre Xt is logarithmically smooth, then
this class coincides with the usual virtual fundamental class for the space of logarithmic stable
maps; otherwise, the class we construct is new.

We are most interested in cases where the general fibre Xt6=0 is logarithmically smooth but
the central fibre X0 is not. In this situation, X → A1 will not be logarithmically smooth.

These hypotheses incorporate at least two distinct classes of examples. The first are hyper-
surface degenerations, in which X = X × A1 with divisorial logarithmic structure induced by
a degenerating family of hypersurfaces in X . This is the situation we focus on in this paper.

The second are degenerations of varieties, where we take all logarithmic structures to be
trivial. This latter class includes the types of degenerations appearing in the classical degen-
eration formula, however equipped with the trivial logarithmic structure instead of the more
standard logarithmic structure encoding the degeneration. It would be interesting to compare
the central fibre contributions of Theorem A to those which appear in the classical degeneration
formula. We speculate that the virtual push-forward methods developed below can be adapted
for this purpose, and plan to return to this in future work. We thank the anonymous referee for
suggesting this additional direction.

Theorem A produces a virtual class on the central fibre, but it does not provide a method to
compute it. In the rest of this paper, we develop new tools to solve this problem. These tools are
specific to the setting of hypersurface degenerations, though we anticipate that variants may
be applied in other contexts.
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1.2. Hypersurface degenerations (§3). Consider a smooth projective varietyX and a family of
hypersurfaces with smooth total space

Z ⊆ X × A1

whose general fibre Zt6=0 is smooth and whose central fibre D = Z0 is singular. Our running
example is a smooth cubic curve E ⊆ P2 degenerating to the toric boundary ∆ ⊆ P2. Let X
denote the divisorial logarithmic scheme:

X = (X × A1, Z).

The projection X → A1 defines a logarithmically flat family satisfying the hypotheses of Theo-
rem A. For t 6= 0, Xt is the logarithmic scheme associated to the smooth pair (X,Zt). However,
X0 is typically not the logarithmic scheme associated to the pair (X,Z0). In fact, X0 is not even
logarithmically smooth. Nevertheless, Theorem A produces a virtual class

[Klog(X0)]virt

integrals over which coincide with the logarithmic Gromov–Witten invariants of the general fi-
bre. This produces new information: the moduli space Klog(X0) typically has a decomposition
into clopen substacks, indexed by appropriate combinatorial data. The individual contribu-
tions of these substacks provide refinements of the logarithmic Gromov–Witten invariants of
the general fibre, and contain information concerning the degeneration behaviour of tangent
curves. See §1.4 below for a detailed discussion of this in the case (P2, E) (P2,∆).

1.3. Virtual push-forward formula (§4). Our goal is to compute the aforementioned refined
invariants on X0. To this end, we establish a powerful virtual push-forward formula. The
logarithmic scheme X0 has underlying variety X and so there is a finite and representable
morphism of moduli spaces:

ι : Klog(X0)→ K(X).

In general it is not known, or even expected, that there is a simple way to relate the two virtual
classes via this map. The basic problem is that the perfect obstruction theory for the logarithmic
moduli space is defined over a moduli space of logarithmically smooth curves, which has a
different deformation theory to the usual moduli space of prestable curves (accounting for
deformations of the logarithmic structure on the base).

We show that for certain hypersurface degenerations, the difference in deformation theories
can in fact be controlled and described explicitly, resulting in a virtual push-forward formula:

Theorem B (Theorem 4.3). Consider a logarithmically flat family X → A1 arising from a hy-
persurface degeneration as above, and satisfying Assumptions 4.1 and 4.2. Consider a moduli
space of genus zero logarithmic stable maps to X with maximal tangency at a single marked
point. Then, there exists a vector bundle F on K(X) which satisfies

(1) ι?[K
log(X0)]virt = e(F ) ∩ [K(X)]virt

and

e(F ) · e(LogOb) = e(π?f
?OX(D)).

Theorem B is obtained from the following result, which isolates the “logarithmic part” of the
obstruction theory on the central fibre. This part is packaged in the LogOb term above.



4 LAWRENCE JACK BARROTT AND NAVID NABIJOU

Theorem C (Theorem 4.16). There is a perfect obstruction theory for the morphism ψ in the
diagram

Klog(X0) LogM0,1 M0,1
ϕ

ψ

and an equality of virtual fundamental classes:

ψ![M0,1] = ϕ![LogM0,1].

As far as we are aware, this is the first result giving a direct comparison between logarithmic
and non-logarithmic obstruction theories. The difference is controlled by the Artin fan and
encoded in the LogOb term (§4.5 and Definition 4.21). We show that LogOb can be calculated
explicitly in terms of line bundles associated to piecewise-linear functions on the tropicalisation
(§5.2.4). We explain this in some detail, as we believe similar methods will be applicable in
other contexts.

We remark that there is no analogue of Theorem C on the general fibre. The central fibre
moduli space has tightly constrained tropical geometry (§4.2). This allows us to control the
deformation theory of the morphism LogM0,1 → M0,1 (Proposition 4.18), which we use to
compare the obstruction theories. We expect our methods to be applicable whenever the tropi-
cal geometry is similarly constrained.

1.4. New numbers, new conjectures (§5). The virtual push-forward formula (1) reduces the
calculation of the (refined) logarithmic Gromov–Witten invariants of X0 to tautological inte-
grals on a moduli space of ordinary stable maps. In the final section, we employ torus localisa-
tion to calculate these integrals in our main example, conjecture new hypergeometric formulae,
and deduce consequences for classical enumerative geometry.

Recall that we consider a smooth cubic E degenerating to the toric boundary ∆. The moduli
space of logarithmic stable maps to X0 coincides with the moduli space of ordinary stable maps
to ∆ (Lemma 4.5 and Proposition 4.11):

Klog(X0) = K(∆).

This space decomposes into clopen substacks by fixing the degree of the stable map over each
of the three components of ∆. The virtual class [Klog(X0)]virt similarly decomposes. We thus
obtain refinements of the maximal contact logarithmic Gromov–Witten invariants of (P2, E),
indexed by length-3 partitions of the degree.

These refinements can be computed using Theorem B. In the equivariant setting, the class
e(LogOb) is invertible, and so (1) can be rewritten as:

ι?[K
log(X0)]virt =

(
e(π?f

?OP2(3))

e(LogOb)

)
∩ [K(P2)].

This is the formulation which we use to carry out our calculations. The localisation procedure is
outlined in §5.2. A novel and crucial aspect is the computation of LogOb, as well as a recursive
algorithm for cutting localisation graphs into simpler pieces. These give methods for explicitly
computing the logarithmic part of the obstruction theory in terms of evaluation and cotangent
line classes, which we expect to be applicable more broadly.

The functoriality of virtual localisation allows us to separate out the individual component
contributions and thus compute the desired refinements. We implement the localisation algo-
rithm in accompanying Sage code, which we use to generate the refined invariants up to degree
8. Complete tables are given in §5.3.
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Based on these low-degree calculations, we conjecture general hypergeometric formulae for
some of the ordered multi-degree contributions (Conjecture 5.6). Although we are unable to
prove these conjectures, we provide strong theoretical evidence for them: we show in Proposi-
tion 5.9 that they are equivalent to the purely combinatorial Conjecture 5.8, which we have ver-
ified for large d. Finally (§5.5) we show how these component contributions can be leveraged
to uncover the classical degeneration behaviour of embedded tangent curves to E, uncovering
complete information for d = 2 and d = 3.

1.5. Future directions. There are a number of directions in which the techniques developed
in this paper can be applied. All share a common theme: the calculation of geometrically
meaningful refinements of logarithmic Gromov–Witten invariants, arising in the central fibre
of a degenerating family.

A relatively straightforward extension would be to repeat the calculations of §5 for the other
toric del Pezzo surfaces. More difficult, but perhaps more interesting, would be to consider
higher-dimensional targets (here some difficulties might arise from the fact that a general de-
generation of a smooth divisor will not have smooth total space). Another interesting direction
would be to consider degenerations to non-reduced divisors.

Even within the scope of our main example, it remains to unravel the degeneration pictures
of §5.5 for d ≥ 4. As we discuss, this requires a refinement of our construction which separates
the contributions of different torsion points. It is possible that such a refinement can be found
by synthesising our techniques with the scattering diagram approach of [Grä20]. We plan to
investigate this jointly with T. Gräfnitz.

The logarithmically singular degeneration formula also applies to degenerations of a target
X  X0 with trivial logarithmic structure. This provides an alternative to the usual degener-
ation formula, since the central fibre moduli space is a space of ordinary stable maps to X0. It
would be worthwhile to explore the geometric meaning of the central fibre refinements, and
how they compare to the contributions in the classical degeneration formula.

1.6. Relation to work of Gräfnitz. The recent [Grä20] also treats a degeneration of (P2, E).
Although both the degeneration and the techniques involved are completely different to ours,
there appears to be some concordance in the resulting numerical calculations. We plan to in-
vestigate this in future work.

1.7. Logarithmic background. In this paper we assume familiarity with the basics of logarith-
mic geometry. We now provide a high-level overview of the subject. Details may be found in
any modern reference, see e.g. [ACG+13, ACM+16, Ogu18].

Conceptually, a logarithmic structure on a scheme X is a collection of functions which are
declared to be monomials. Formally, a logarithmic structure consists of a constructible sheaf of
monoids MX (which plays the role of an indexing sheaf for the monomials) and a line bundle
and section (OX(α), sα) associated to every section α ofMX . This data is equivalently encoded
in a morphism

X → AX
where AX is the Artin fan of X [Ols03, BV12, AW18]. This is an irreducible zero-dimensional
Artin stack, locally modelled on the quotient of a toric variety by its dense torus. The pairs
(OX(α), sα) on X arise as pullbacks of certain universal pairs on AX .

The data of AX is equivalent to the data of the tropicalisation ΣX , which is an abstract cone
complex generalising the fan of a toric variety [CCUW17]. Piecewise-linear functions on ΣX
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are equivalent to global sections of MX , and so the association

α 7→ (OX(α), sα)

generalises the correspondence between piecewise-linear functions and toric Cartier divisors.
Much of logarithmic geometry may profitably be interpreted as a far-reaching generalisation
of toric geometry.

1.8. Conventions. We work over an algebraically closed field of characteristic zero, denoted k.
Given a morphism X → Y of stacks we will denote the derived dual of the relative cotangent
complex by

TX|Y := (LX|Y )∨

and refer to it as the relative tangent complex. Similar conventions will apply in the logarithmic
setting.

1.9. Acknowledgements. It is a pleasure to thank Pierrick Bousseau and Tim Gräfnitz for
many inspiring discussions. We also thank Dan Abramovich, Michel van Garrel, Tom Graber,
Mark Gross, Sanghyeon Lee, Dhruv Ranganathan and Helge Ruddat for helpful conversations.
We are grateful to the anonymous referee for numerous helpful suggestions and expositional
advice, as well as the observation that our logarithmically singular degeneration formula might
have applications beyond hypersurface degenerations.

Parts of this work were carried out during research visits at the National Centre for Theoret-
ical Sciences Taipei, the University of Glasgow, the Mathematisches Forschungsinstitut Ober-
wolfach and Boston College, and it is a pleasure to thank these institutions for hospitality and
financial support.

2. DEGENERATION FORMULA FOR LOGARITHMICALLY SINGULAR FAMILIES

Let X be a logarithmic scheme and let p : X → A1 be a projective surjective morphism, where
the base is equipped with the trivial logarithmic structure. We assume:

(1) X is logarithmically smooth over the trivial logarithmic point.
(2) p : X → A1 is logarithmically flat.

Since A1 has the trivial logarithmic structure, p is logarithmically flat if and only if the morphism
X → AX × A1 is flat in the usual sense [Gil16].

Under these assumptions we establish a degeneration formula, in genus zero, for the family
of logarithmic schemes given by p. Note that p may be logarithmically singular, and there are
many interesting examples for which this is the case.

Choose arbitrary discrete data for a moduli space of genus zero logarithmic stable maps to
X and denote the resulting moduli space by Klog(X ). Since every stable map to X must factor
through a fibre of p, there is a proper morphism

q : Klog(X )→ A1

whose fibre over a point t ∈ A1 is the moduli space of stable maps to the corresponding fibre of
p:

Klog(X )t = Klog(Xt).
We begin by constructing a perfect obstruction theory for the family of moduli spaces Klog(X )
relative to the base LogM0,n × A1 (Theorem 2.1).
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This produces a bivariant class for the morphism q, giving a family of virtual classes on the
fibres satisfying the conservation of number principle. If a given fibre Xt is logarithmically
smooth, then the induced class on this fibre coincides with the usual virtual fundamental class
for the moduli space of logarithmic stable maps to Xt. Otherwise, the class we construct is new
(Theorem 2.3).

Logarithmic families to which this result applies include hypersurface degenerations (see
§3), as well as target degenerations with trivial logarithmic structure.

2.1. Perfect obstruction theory. Since X is logarithmically smooth, the space Klog(X ) admits
a perfect obstruction theory over the moduli stack of not-necessarily-minimal logarithmically
smooth curves. The latter stack is not smooth, but is nonetheless logarithmically smooth and
irreducible of the expected dimension (in this case, n− 3). It can be described [GS13, Appendix
A] as

LogM0,n

where M0,n is viewed as a logarithmic stack with divisorial logarithmic structure correspond-
ing to the locus of singular curves, and Log denotes Olsson’s moduli stack of logarithmic struc-
tures [Ols03].

Theorem 2.1. There exists a compatible triple of perfect obstruction theories for the diagram

Klog(X ) LogM0,n × A1 LogM0,n
ρ

in which EKlog(X )|LogM0,n
is the usual obstruction theory for the moduli space of logarithmic

stable maps. The obstruction theory for ρ is given explicitly by:

(R•π?L
•f?Tlog

X/A1)∨.

Proof. Consider the following commutative diagram involving the universal logarithmic stable
map:

C X

Klog(X ) A1.

f

π p

q

There is the following exact triangle on X :

(2) Tlog
X/A1 → Tlog

X → p?TA1
[1]−→ .

We have R•π?f
?p?TA1 = q?TA1 because R•π?OC = OKlog(X ) (this is the only place where the

genus zero assumption is used). Applying R•π?L
•f? to (2) gives an exact triangle

R•π?L
•f?Tlog

X/A1 → R•π?f
? Tlog
X → q?TA1

[1]−→

which we dualise to obtain:

q?ΩA1 → EKlog(X )|LogM0,n
→ EKlog(X )|LogM0,n×A1

[1]−→ .

The arguments of [Man12a, Construction 3. 13] then apply to show that EKlog(X )|LogM0,n×A1

forms a perfect obstruction theory. Commutativity with the morphisms to the cotangent com-
plexes is automatic, since LogM0,n × A1 → LogM0,n is smooth. �



8 LAWRENCE JACK BARROTT AND NAVID NABIJOU

2.2. Conservation of number. With this at hand, we may consider for any t ∈ A1 the cartesian
square:

Klog(Xt) Klog(X )

LogM0,n LogM0,n × A1

jt

ρt � ρ

it

The obstruction theory Eρ = EKlog(X )|LogM0,n×A1 defines [Man12a] a refined virtual pullback
morphism ρ! from which we obtain a virtual class

(3) [Klog(Xt)]virt := ρ![LogM0,n]

(recall that LogM0,n is an irreducible stack of dimension n− 3). Equivalently we have

[Klog(Xt)]virt = ρ!
t[LogM0,n]

where Eρt = EKlog(Xt)|LogM0,n
= L•j?tEKlog(X )|LogM0,n×A1 is the induced perfect obstruction

theory (see [BF97, Proposition 7.2]). The usual pull-push yoga shows that the family of classes
(3) satisfies the conservation of number principle [Man12b, Proposition 3.9].

2.3. Degeneration formula. We now assume that the general fibre Xt6=0 is logarithmically
smooth. In this setting, the conservation of number principle will ensure that the invariants
of the central fibre X0 coincide with those of the logarithmically smooth general fibre Xt6=0.

Lemma 2.2. For t ∈ A1 the obstruction theory Eρt is given by:

Eρt = (R•π?L
•f?Tlog

Xt
)∨.

Proof. The only slightly delicate point here is to observe that p : X → A1 is logarithmically flat
by assumption, and so by [Ols05, (1.1 (iv))] we have a natural isomorphism:

L•i?tT
log
p = Tlog

Xt
.

The result then follows immediately by pull-push yoga. �

Note in particular that Eρt is necessarily of perfect amplitude contained in [−1, 0]. For ar-
bitrary targets this does not hold: we have used the fact that Xt sits in a logarithmically flat
family X → A1 with logarithmically smooth total space.

Theorem 2.3 (Degeneration formula). Suppose that the general fibre Xt6=0 is logarithmically
smooth. For all t we have a virtual fundamental class

[Klog(Xt)]virt = ρ!
t[LogM0,n]

satisfying the conservation of number principle. For t 6= 0 this coincides with the usual virtual
fundamental class for the logarithmically smooth target Xt.

Proof. This follows from Lemma 2.2, which shows that the two obstruction theories on Klog(Xt)
coincide. �

The newly-constructed virtual class[Klog(X0)]virt naturally decomposes as a sum over the
connected components of the moduli space. This produces refinements of the logarithmic
Gromov–Witten invariants of the general fibre, describing how logarithmic stable maps de-
generate in the family.
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3. HYPERSURFACE DEGENERATIONS

We will apply the degeneration formula of the previous section to hypersurface degenerations.
In this section, we describe the target geometry and establish basic facts about the moduli space.
In the next section, we prove the virtual push-forward result which will allow us to compute
the central fibre refinements.

3.1. Geometric setup. Our target geometry consists of a static ambient variety X — assumed
to be smooth and projective — together with a one-parameter family of divisors in X

Z ⊆ X × A1

with smooth total space Z. We are interested in the situation where the general fibre Zt6=0 is
smooth but the central fibre D = Z0 is singular.

Main example. We adopt the following running example, which serves as our primary mo-
tivation (indeed, the calculations and conjectures of §5 will focus entirely on this case). Take
X = P2 and consider a family Z ⊆ P2×A1 of plane cubics whose general fibres Zt6=0 are smooth
genus one curves and whose central fibre is the toric boundary

D = Z0 = ∆ = D0 ∪D1 ∪D2 ⊆ P2
z0z1z2 .

Such families with smooth total space Z are easy to construct, by choosing a sufficiently generic
homogeneous cubic.

3.2. Logarithmic structures. Given the geometric setup above, we introduce several associ-
ated logarithmic schemes. We will consistently use calligraphic letters to denote logarithmic
schemes, and ordinary letters to denote ordinary schemes.

Definition 3.1. Let X denote the varietyX×A1 equipped with the divisorial logarithmic struc-
ture corresponding to Z. Note that since Z is smooth, X is logarithmically smooth over the
trivial logarithmic point.

Definition 3.2. For t ∈ A1 let Xt denote the variety X equipped with the pullback of the loga-
rithmic structure MX along the inclusion it : X = X × {t} ↪→ X × A1.

The ghost sheaf of Xt is given by

MXt = i−1
t MX = NZt

,

that is, the constant sheaf with stalk N supported along the divisor Zt. The line bundle and
section associated to the generator of this monoid are:

(i?tOX×A1(Z), i?t sZ) = (OX(Zt), sZt).

From this we have, using the Olsson/Borne–Vistoli characterisation of logarithmic structures
[Ols03, BV12]:

Lemma 3.3. For t 6= 0, MXt is the divisorial logarithmic structure associated to the smooth
divisor Zt ⊆ X .

For t = 0, however, this is not the case. It is easy to see why: the ghost sheaf MX0 is the
constant sheaf ND supported on D = Z0, whereas the ghost sheaf for the divisorial logarithmic
structure will have higher rank along the singular locus of D. In the language of [Che14], MX0

is the rank one Deligne–Faltings pair associated to (OX(D), sD).

The following result emphasises the mildly pathological nature of the logarithmic scheme
X0.
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Lemma 3.4. The logarithmic scheme X0 is not logarithmically smooth.

Proof. It is enough to show that X0 is not logarithmically regular [Ogu18, Theorem 3.5.1]. Let
x ∈ D be a singular point of the divisor and let g ∈ OX,x be the germ of a local equation
for D. A local chart for the logarithmic structure is given by N → OX , 1 7→ g. Thus, using
the notation of [Niz06, Definition 2.2], the ideal generated by the non-invertible part of the
logarithmic structure is

IX,xOX,x = (g) C OX,x
and so OX,x/IX,xOX,x = OD,x, which is not regular since x is a singular point of D. We thus
conclude that X0 is not logarithmically smooth at x. �

Remark 3.5. The structure morphism from X0 to the trivial logarithmic point satisfies the con-
ditions to be a generically logarithmically smooth family, as defined in [FFR21, Definition 2.1].

Main example. Recall thatZ ⊆ P2×A1 is a family of plane cubics with smooth general fibre and
central fibre equal to the toric boundary. For t 6= 0 we get the divisorial logarithmic structure
associated to the smooth plane curve Zt ⊆ P2, while for t = 0 the logarithmic structure has
local charts given by

N→ OP2 , 1 7→ s∆

where s∆ is a local equation for the toric boundary ∆ ⊆ P2. Away from the co-ordinate points
[1, 0, 0], [0, 1, 0], [0, 0, 1] the boundary is smooth and the logarithmic structure agrees with the
divisorial logarithmic structure with respect to ∆, but near such a co-ordinate point it differs
since the stalk of the ghost sheaf is N. Note that the tropicalisation of X0 is simply a ray (see
[GS13, Appendix B] for an introduction to tropicalisations of logarithmic schemes).

3.3. Logarithmic flatness. Returning to the general setup, let p denote the second projection:

p : X × A1 → A1.

We equip A1 with the trivial logarithmic structure. With the logarithmic structures on source
and target fixed, there is a unique enhancement of p to a logarithmic morphism p : X → A1.

Remark 3.6. Note that there is no way of enhancing p to a logarithmic morphism if we equip
A1 with its toric logarithmic structure; since the central fibre contains points where the loga-
rithmic structure is trivial, such an enhancement would restrict to give a map from the trivial
logarithmic point to the standard logarithmic point, which does not exist.

With this definition, the logarithmic schemes Xt arise as fibre products

Xt X

{t} A1

� p

(note that since the base morphism is strict, the underlying scheme of the fibre product is the
fibre product of the underlying schemes). The following result will allow us to apply the de-
generation formula established in §2.

Lemma 3.7. The morphism p is logarithmically flat, but not logarithmically smooth.
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Proof. If p was logarithmically smooth then by base change we would have that X0 is logarith-
mically smooth, contradicting Lemma 3.4.

In order to show that p is logarithmically flat, we will use the local chart criterion due to
Gillam [Gil16, §1.1]. Choosing an open subset of X of the form U = U × A1 for U ⊆ X affine
open, we have

U = SpecB × A1 = SpecB[s]

where B is a regular ring. Taking g(s) ∈ B[s] a local equation for Z, a local chart for the
logarithmic structure is given by:

P = N→ B[s]

1 7→ g(s).

On the other hand, the base of p is A1 = Spec k[s] with the trivial logarithmic structure, so a
chart is given by the trivial map:

Q = 0→ k[s].

Then Gillam’s local chart criterion says that p is logarithmically flat if and only if the map

k[s][N] = k[s, w]→ B[s, w±1] = B[Z]

s 7→ s

w 7→ g(s) · w
is flat. The corresponding map on schemes is

SpecB × A1
s ×Gm,w → A1

s × A1
w

and the fibre over a point (t, r) ∈ A1
s × A1

w is

V(g(t) · w − r) ⊆ SpecB ×Gm,w

which always gives a divisor in SpecB×Gm,w. This is a morphism with equidimensional fibres
between two smooth schemes, and hence is flat by miracle flatness. �

3.4. Logarithmic stable maps. This paper is concerned with logarithmic Gromov–Witten the-
ory in the genus zero maximal contacts setting. Consider therefore the following combinatorial
data

Γ = (g, β, n, α) = (0, β, 1, (Z · β))

where β ∈ H+
2 (X × A1) = H+

2 (X) is any curve class; n = 1 is the number of marked points;
and α = (Z · β) = (Zt · β) (which does not depend on t) is the tangency order at the single
marked point x. We may then consider the associated moduli space of logarithmic stable maps
[Che14, AC14, GS13]:

Klog(X ).

We suppress the fixed combinatorial data Γ from the notation. Since X is logarithmically
smooth and p : X → A1 is logarithmically flat, we may apply the degeneration formula (Theo-
rems 2.1 and 2.3) to conclude the existence of a perfect obstruction theory for:

Klog(X )→ LogM0,n × A1.

This induces a family of virtual classes on the fibres of q : Klog(X ) → A1 satisfying the conser-
vation of number principle.

Main example. Given β = d ∈ H+
2 (P2) the tangency order is α = (Zt · β) = (3d). For t 6= 0 the

moduli space Klog(Xt) consists of logarithmic stable maps to (P2, Zt) with tangency order 3d at a
single marking. It has virtual dimension zero, but in general is obstructed. The exception is the
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case d = 1, when the moduli space consists of 9 isolated points, corresponding to the 9 flex lines
of the smooth cubic Zt. For d ≥ 2 it contains higher-dimensional components corresponding to
multiple covers and reducible curves.

4. OBSTRUCTION BUNDLE AND VIRTUAL PUSH-FORWARD

From now on we make the following two assumptions concerning our hypersurface degener-
ation. Both are trivially satisfied in our main example.

Assumption 4.1. OX(D) is convex.

Assumption 4.2. Consider any morphism f : P1 → X of class β′ with 0 < β′ ≤ β. If f does not
factor through D, then f−1(D) consists of at least two distinct points.

The second assumption holds in particular whenever the components of D are sufficiently
positive and have empty total intersection.

Consider as above the moduli space of logarithmic stable maps to X0. There is a forgetful
morphism to the moduli space of ordinary stable maps to the underlying variety:

ι : Klog(X0)→ K(X).

In this section, we obtain a formula relating the virtual classes of these spaces:

Theorem 4.3. There exists a vector bundle F on K(X) which satisfies

(4) ι?[K
log(X0)]virt = e(F ) ∩ [K(X)]virt

and
e(F ) · e(LogOb) = e(π?f

?OX(D)).

Such a push-forward result necessitates the comparison of logarithmic and non-logarithmic
obstruction theories; one of the main contributions of this work is to explain how such a com-
parison can be made, and made rather explicitly, via computations on the Artin fans. The
difference between the obstruction theories is captured in the LogOb term (see Definition 4.21).
In §5.2.4 we show how to express LogOb in terms of tautological line bundles on K(X).

Theorem 4.3 reduces the logarithmic Gromov–Witten theory of X0 to tautological integrals
on the moduli space of ordinary stable maps toX . In §5 we use functorial virtual localisation to
calculate these integrals in our main example, determining the component contributions which
refine the logarithmic Gromov–Witten invariants.

Remark 4.4. Once we localise, the equivariant class e(LogOb) will be invertible (see Theorem
5.4). This allows us to rewrite (4) as:

(5) ι?[K
log(X0)]virt =

(
e(π?f

?OX(D))

e(LogOb)

)
∩ [K(X)]virt.

It is this formulation which we will use to carry out our calculations.

4.1. Central fibre moduli: factorisation through D. We now investigate the central fibre of
our family of moduli spaces. The following result is a direct consequence of Assumption 4.2
and the maximal contacts setup:

Lemma 4.5. The underlying morphism of any logarithmic stable map to X0 factors through the
divisor D ⊆ X , and hence the morphism forgetting the logarithmic structures

Klog(X0)→ K(X)

factors through K(D) ↪→ K(X).
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Remark 4.6. Throughout we understand K(X) to mean the moduli space of ordinary stable
maps with associated combinatorial data Γ = (g, β, n) = (0, β, 1), induced by the combinatorial
data Γ for the logarithmic moduli space (see §3.4).

Proof of Lemma 4.5. We first claim that it is sufficient to prove the assertion on the level of closed
points. For consider a general family f : C → X0 of logarithmic stable maps over a base loga-
rithmic scheme S . By passing to an open cover, we may assume that S is atomic [AW18, §2.2],
and we let Q = Γ(S,MS). Tropicalising, we obtain a family of tropical stable maps

(6)
@ R≥0

σ

f

p

over the base cone σ = Q∨R = HomN(Q,R≥0). The fibre of p over an interior point of the base
cone gives the combinatorial type of the “most degenerate” fibre in the family C → S ; that is,
the fibre over the unique deepest stratum of the atomic logarithmic scheme S.

The map f : C → X factors through D if and only if f?sD = 0, where sD is a section of
OX(D) cutting out D. This section corresponds to the identity piecewise-linear function on the
tropical target R≥0, and so f?sD = 0 if and only if f : @ → R≥0 factors through R>0 ⊆ R≥0

(after removing the unique vertex of the cone complex @). Moreover this property is preserved
under edge contractions, so it suffices to check it for the most degenerate fibre. Fixing a closed
point s in the deepest stratum of S we see that the tropicalisation of Cs → X0 is the same as the
tropicalisation (6) of the family. Therefore it is sufficient to show that Cs → X0 factors through
D.

Consider therefore a logarithmic stable map over a closed logarithmic point, with under-
lying morphism f : (C, x) → X . Suppose for a contradiction that there is some irreducible
component C ′ ⊆ C not mapped insideD. Since we must have x 7→ D it follows that there must
be an irreducible component of C not mapped into D and not contracted to a point, so we may
assume that f is not constant on C ′. But then by Assumption 4.2 it follows that there are at least
two points of C ′ which are mapped into D by f . It is easy to see from this that the resulting
tropical map cannot satisfy the balancing condition [GS13, §1.4], since there is only one marked
point and the genus of the source curve is zero. �

4.2. Central fibre moduli: tropical moduli and minimal monoid. The previous lemma im-
plies a number of surprising and extremely useful facts concerning the minimal monoids ap-
pearing in the logarithmic structure on Klog(X0). Fix a logarithmic stable map

f : C → X0

over a logarithmic point (Speck, Q), where Q is the corresponding minimal monoid [GS13].
Tropicalising, we obtain a tropical stable map

(7) f : @→ R≥0
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over σ = Q∨R. Since the image of f is contained inside D it follows that the image of f is
contained inside R>0 ⊆ R≥0. An example of such a tropical stable map is illustrated below:

v0 x
l1

v1
l2

v2c2

l3v3c3

l4
v4c4

The tropical parameters are indicated in the diagram; they consist of the source edge lengths
l1, l2, l3, l4 and the target offsets c2, c3, c4.

In general, let r denote the number of edges and m the number of leaves of @, the latter of
which are in bijective correspondence with the target offset parameters.

Proposition 4.7. There is a natural quotient morphism Nr+m → Q defining the minimal monoid
Q. The relations are linearly independent, so the associated closed embedding of toric varieties

UQ = Speck[Q] ↪→ Speck[Nr+m] = Ar+m

is a complete intersection. Moreover, dimUQ = r + 1.

Remark 4.8. The fact that UQ is regularly embedded in a smooth toric variety will turn out to
be crucial when we come to analyse the logarithmic deformation theory in §4.5.

Proof. In [GS13, §1.5], the minimal monoid Q is obtained by taking the free monoid generated
by the tropical parameters and quotienting by the tropical continuity relations, with the caveat
that one is required to saturate both the relations and the resulting quotient monoid. We will
show that in our setting these additional saturation steps are unnecessary.

Let v0 denote the vertex of @ containing the marking x. Suppose as above that @ has r edges
e1, . . . , er, with associated lengths le1 , . . . , ler and expansion factors αe1 , . . . , αer , and m leaves
v1, . . . , vm with associated target offsets c1, . . . , cm. For each leaf vi we have

ci +
∑
e

αele = f(v0)

where the sum runs over the edges e connecting vi to v0. A complete set of tropical continuity
relations is thus given by equations of the form

(8) ci +
∑
e

αele = cj +
∑
e′

αe′ le′

for i, j ∈ {1, . . . ,m} distinct. This gives m − 1 independent relations, and since each equation
involves two distinct target offsets appearing without multiplicity, it follows that this set of
equations is saturated, linearly independent, and that the quotient monoid is saturated.

SinceQ is obtained as a quotient of a free monoid of rank r+m bym−1 linearly independent
relations, it has rank r + 1 and so dimUQ = r + 1 as claimed. �

Corollary 4.9. The pre-saturated monoidQpre (also called the coarse monoid: see [Che14, §3.7])
is automatically saturated, so Qpre = Q.

Proof. Follows directly from the quotient description of Q given above. �

Corollary 4.10. The natural composite Nr → Nr+m → Q is injective.
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Proof. Since both Nr and Q are integral, it suffices to show that the map on groupifications is
injective. The equations (8) above imply thatQgp = Zr×Z with final generator given by a single
offset parameter. The map on groupifications is then Zr ↪→ Zr×Z which is clearly injective. �

4.3. Central fibre moduli: identification with maps to D. The following result, an improve-
ment upon Lemma 4.5, will allow us to precisely describe the geometry of the central fibre
moduli space. The basic idea is that the factorisation of the stable map through D trivialises
the problem of comparing the line bundles and sections encoded in the logarithmic structure,
ensuring existence and uniqueness of logarithmic lifts.

Proposition 4.11. The morphism forgetting the logarithmic structures

ι : Klog(X0)→ K(D)

is an isomorphism (of stacks over schemes).

Proof. We will show that ι is étale and bijective on geometric points. Since it is also repre-
sentable [Che14, Theorem 1.2.1], this is enough to conclude that it is an isomorphism [Sta18, Tag
02LC].

It follows immediately from Corollary 4.9 that ι is injective on geometric points (see [Che14,
§3.7]). To show surjectivity, consider an ordinary stable map

f : C → D

over Speck. Since we are in genus zero, there is a unique assignment of expansion factors to the
nodes of C such that the balancing condition is satisfied. This discrete data produces a minimal
monoid Q together with a morphism Nr → Q where r is the number of nodes of C.

Choose a logarithmic morphism (Speck, Q) → (Speck,Nr) extending the morphism Nr →
Q, and consider the logarithmically smooth curve

C → (Speck, Q)

obtained by pulling back the minimal logarithmically smooth curve over (Speck,Nr). The
morphism (Speck, Q) → (Speck,Nr) involves choices, but crucially since Nr → Q is injective
(Corollary 4.10) these choices all differ by automorphisms of (Speck, Q). Hence we obtain a
unique logarithmic curve C up to isomorphism.

It remains to enhance the morphism C → D → X to a logarithmic morphism C → X0. The
morphism

f [ : f−1MX0 →MC

on the level of ghost sheaves is uniquely determined by the tropical combinatorics. Letting
1 ∈ MX0 denote the unique generator, we may interpret f [1 as a piecewise-linear function
on @ with values in Q [CCUW17, Remark 7.3]. The associated line bundle OC(f [1) restricted
to each component C ′ ⊆ C is a sum over adjacent nodes and markings, weighted by expan-
sion factors. By the balancing condition this has the same degree, and hence is isomorphic to,
f?OX(D)|C′ . Since C is genus zero, these component-wise isomorphisms patch to give a global
isomorphism:

f?OX(D) ∼= OC(f [1).

Moreover, the associated sections vanish on both sides. On the left-hand side, this is because the
curve is mapped entirely inside the divisor. On the right-hand side, this is because @maps en-
tirely inside R>0 and so the piecewise-linear function is nonzero on every vertex of the tropical
curve, which implies that the associated section vanishes, see e.g. [RSPW19, Propositon 2.4.1].
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This identification of line bundles and sections gives a logarithmic enhancement f : C → X0.
This shows that ι is surjective on geometric points.

Finally, we need to show that ι is étale. Consider therefore a square-zero lifting problem for
schemes:

S Klog(X0)

S′ K(D).

This is equivalent to the data of a logarithmic stable map to X0 over S and an ordinary stable
map to D over S′:

(C,MC) (X0,MX0) C ′ D

(S,MS), S′.

We begin by constructing the logarithmic structure on S′. Note that the underlying topological
spaces for S and S′ are identical. We will produce local charts for S′ using the local charts for
S. Replace S by an open subset which admits a chart Q→ OS , where Q is the minimal monoid
described in §4.2. Our aim is to produce a natural lift:

OS′

Q OS .

Recall from Proposition 4.7 that Q arises as a quotient Nr+m → Q where r is the number of
nodes of the source curve and m is the number of target offset parameters. The prestable curve
C ′ → S′ has an associated minimal logarithmic structure pulled back from M0,1, which defines
a morphism:

Nr → OS′ .

On the other hand, the target offsets c1, . . . , cm must map to zero inOS′ since the curve is always
mapped inside the divisor. We therefore obtain a unique map Nr+m → OS′ given simply as the
composite:

Nr+m → Nr → OS′ .

The quotient Nr+m → Q is defined by equations of the form (8). Since each ci is mapped to zero
inOS′ it follows that both sides of these equations are sent to zero under the map Nr+m → OS′ .
Hence this map descends to the quotient, giving a chart

Q→ OS′

as required. These local constructions are consistent with respect to generisation of the monoid,
and therefore glue to produce a strict square-zero extension:

(S,MS)→ (S′,MS′).

We now choose a logarithmic enhancement (S′,MS′) → (M0,1,MM0,1) of the morphism S′ →
M0,1, and pull back the universal curve to obtain a logarithmic enhancement of the source
curve:

(C ′,MC′)→ (S′,MS′),
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Again the logarithmic enhancement on the base involves choices, but since Nr → Q is injective
(Corollary 4.10) all such choices differ by the automorphisms ofMS′ . Hence we obtain a unique
logarithmic curve up to isomorphism.

Finally, to obtain a logarithmic map (C ′,MC′) → X0 we first observe that C ′ and C have
the same underlying topological space, and therefore that there is an equality of ghost sheaves
MC′ = MC . This gives us the logarithmic enhancement on the level of ghost sheaves, and
completing this to a full logarithmic enhancement proceeds via similar arguments to those used
above to prove that ι is surjective on geometric points. We have thus constructed a unique lift
S′ → Klog(X0), which completes the proof. �

Corollary 4.12. The morphism ι : Klog(X0)→ K(X) is a closed embedding.

Remark 4.13. The inclusion K(D) ↪→ K(X) furnishes the domain with a virtual fundamental
class whose pushforward to K(X) is:

e(π?f
?OX(D)) ∩ [K(X)]virt.

Although the previous lemma establishes an isomorphism Klog(X0) = K(D), the virtual classes
on the two spaces do not coincide and even have different dimensions. Theorem 4.3 relates the
two classes, identifying the difference as e(LogOb).

4.4. Target geometry. We derive a fundamental exact triangle on the target space X0, which
will be useful later.

Proposition 4.14. We have the following exact triangle on X0:

(9) Tlog
X0
→ TX → OD(D)

[1]−→ .

Proof. Consider the logarithmically smooth scheme X = (X × A1, Z). We have a short exact
sequence of sheaves:

0→ Tlog
X → TX×A1 → OZ(Z)→ 0.

Pulling back along the inclusion i0 : X0 ↪→ X we obtain an exact triangle:

i?0 Tlog
X → i?0TX×A1 → L•i?0OZ(Z)

[1]−→ .

By taking the standard resolution ofOZ(Z) it is easy to see that L•i?0OZ(Z) = OD(D), so in fact
we have the exact triangle:

(10) i?0 Tlog
X → i?0TX×A1 → OD(D)

[1]−→ .

Consider on the other hand the morphism p : X → A1. Since p is logarithmically flat, we have
by base change [Ols05, 1.1(iv)]:

Tlog
X0

= L•i?0T
log
p .

The morphism p is integral and therefore satisfies Olsson’s condition (T ) [Ols05, 1.3]. Hence
Tlog
p fits into an exact triangle [Ols05, 1.1(v)]:

Tlog
p → Tlog

X → p?TA1
[1]−→ .

Applying L•i?0 to this, we obtain

Tlog
X0
→ i?0 Tlog

X → i?0 p
?TA1

[1]−→
which we rotate to give:

(11) i?0 Tlog
X → i?0 p

?TA1 → Tlog
X0

[1]
[1]−→ .
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Finally, we have the following exact sequence, again better thought of as an exact triangle:

(12) i?0TX×A1 → i?0 p
?TA1 → TX [1]

[1]−→ .

Since the logarithmic morphism p : X → A1 factors through X ×A1 with the trivial logarithmic
structure, the composite of the first arrow in (10) with the first arrow in (12) yields the first
arrow in (11). Applying the octahedral axiom to (10), (11), (12), we obtain (9) as required. �

Remark 4.15. The connecting homomorphism i?0 p
?TA1 → TX [1] in (12) is zero since the triangle

is split. However, there does not appear to be any way of using this fact to infer a splitting of
(9).

4.5. Isolating LogOb. Having established the basic properties of the logarithmic target and the
moduli space, we start working towards the virtual push-forward Theorem 4.3.

The basic difficulty in obtaining a virtual push-forward result for ι is that the obstruction
theories for the source and the target are defined with respect to different bases: LogM0,1 and
M0,1, respectively. In this section, we address with this issue by producing a perfect obstruction
theory for the morphism

ψ : Klog(X0)→M0,1

thereby extracting the “logarithmic part” of the obstruction theory.

Theorem 4.16. There is a perfect obstruction theory for the morphism ψ in the following dia-
gram:

(13) Klog(X0) LogM0,1 M0,1.
ϕ=ρ0

ψ

This obstruction theory fits into an exact triangle

ϕ?LLogM0,1|M0,1
→ EKlog(X0)|M0,1

→ EKlog(X0)|LogM0,1

[1]−→

and produces a virtual fundamental class on Klog(X0) which agrees with the virtual fundamen-
tal class constructed in §2:

ψ![M0,1] = ϕ![LogM0,1].

Remark 4.17. As is commonplace when dealing with Artin stacks of infinite type, the above
result holds only after replacing LogM0,1 by a suitable union of smooth charts, which we now
describe. Recall that LogM0,1 has a smooth cover by stacks of the form

(14) V ×AP
AQ

where V → M0,1 is a smooth chart, P is a monoid giving a local chart P → OV for the loga-
rithmic structure on M0,1, and P → Q is any morphism of monoids [Ols03, Corollary 5.25 and
Remark 5.26].

The morphism ϕ factors through the smooth cover consisting of those stacks of the form
(14) in which Q is the minimal monoid associated to a logarithmic stable map to X0. To be
more precise: given a closed point ξ ∈ Klog(X0) there is an associated minimal monoid Q
giving a local chart for the logarithmic structure around ξ, and another minimal monoid P
giving a local chart for the logarithmic structure around ψ(ξ) ∈ M0,1, together with a natural
morphism P → Q. After choosing a suitable atomic neighbourhood V for ψ(ξ), we have a local
factorisation of ϕ through the associated chart:

ψ−1(V )→ V ×AP
AQ → LogM0,1.
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From now on, therefore, we replace LogM0,1 by the image of the charts described above.

We begin with a fundamental result on the geometry of the morphism LogM0,1 →M0,1. The
proof makes crucial use of the properties of the minimal monoid Q established in §4.2.

Proposition 4.18. LLogM0,1|M0,1
is of perfect amplitude contained in [−1, 1].

Proof. The assertion is local, so we may replace LogM0,1 and M0,1 by suitable smooth charts,
as described above, to obtain a diagram:

(15)

LogM0,1 M0,1

AQ AP .
�

The map M0,1 → AP to the Artin fan is smooth because M0,1 is logarithmically smooth. There-
fore by flat base change we have

LLogM0,1|M0,1
= LAQ|AP

(we have suppressed the pullback from the notation). Hence, we obtain an exact triangle

(16) LAP
→ LAQ

→ LLogM0,1|M0,1

[1]−→

(again suppressing pullbacks). Since the Artin cones are global smooth quotients, their cotan-
gent complexes may be described easily in terms of the prequotients using the equivariance
of the exact triangles associated to the quotient morphism, see e.g. [Beh05, p.4]. Starting with
P , we have P = Nr where r is the number of nodes of the source curve. Consequently the
prequotient UP = Ar is smooth, and LAP

has an explicit two-term resolution, which may be
expressed as a TP -equivariant complex of vector bundles on UP :

LAP
= [ΩUP

→ (LieTP )∨ ⊗OUP
].

Thus, LAP
has perfect amplitude contained in [0, 1]. The monoid Q, on the other hand, is not

always free, and as such UQ is not always smooth. However, we have seen in Proposition 4.7
that UQ is always regularly embedded inside an affine space Ar+m, and using this we obtain a
natural three-term resolution of LAQ

by vector bundles

LAQ
= [N∨UQ|Ar+m → ΩAr+m |UQ

→ (LieTQ)∨ ⊗OUQ
]

demonstrating that LAQ
has perfect amplitude contained in [−1, 1]. From these two facts and

the exact sequence (16), it is easy to show (by the same argument as in the proof of Theorem 2.1)
that LLogM0,1|M0,1

has perfect amplitude contained in [−1, 1]. �

Remark 4.19. The exact triangle (16) obtained in the above proof allows us to express the coho-
mology sheaves of LLogM0,1|M0,1

in terms of pullbacks of toric line bundles from the Artin fan.
By definition, these pullbacks are the line bundles associated to piecewise-linear functions on
the tropicalisation of the moduli space. This will prove to be a crucial computational tool.

Proof of Theorem 4.16. Consider the composite

EKlog(X0)|LogM0,1
[−1]→ LKlog(X0)|LogM0,1

[−1]→ ϕ?LLogM0,1|M0,1
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and denote the cone of this morphism by EKlog(X0)|M0,1
. By the axioms of a triangulated cate-

gory, we obtain a morphism of exact triangles:

(17)

ϕ?LLogM0,1|M0,1
EKlog(X0)|M0,1

EKlog(X0)|LogM0,1

ϕ?LLogM0,1|M0,1
LKlog(X0)|M0,1

LKlog(X0)|LogM0,1
.

[1]

[1]

We know that EKlog(X0)|LogM0,1
is of perfect amplitude contained in [−1, 0], and Proposition 4.18

shows that ϕ?LLogM0,1|M0,1
is of perfect amplitude contained in [−1, 1]. From this it is easy to

show (by the same argument as in the proof of Proposition 2.1) that

EKlog(X0)|M0,1

is of perfect amplitude contained in [−1, 1]. Several applications of the Four Lemma imply that
the morphism

EKlog(X0)|M0,1
→ LKlog(X0)|M0,1

is surjective on H−1 and an isomorphism on both H0 and H1. But H1
(
LKlog(X0)|M0,1

)
= 0 since

the map is representable, so we conclude that H1
(
EKlog(X0)|M0,1

)
= 0. Thus, EKlog(X0)|M0,1

is of
perfect amplitude contained in [−1, 0], and defines a perfect obstruction theory which fits into
an exact triangle:

ϕ?LLogM0,1|M0,1
→ EKlog(X0)|M0,1

→ EKlog(X0)|LogM0,1
.

It remains to show that this induces the same virtual class as the obstruction theory over
LogM0,1. There is a morphism of vector bundle stacks over Klog(X0)

EKlog(X0)|LogM0,1

κ−→ EKlog(X0)|M0,1

and (17) gives CKlog(X0)|LogM0,1
= CKlog(X0)|M0,1

×E
Klog(X0)|M0,1

EKlog(X0)|LogM0,1
, from which we

obtain the equality:

ϕ![LogM0,1] = 0!
E
Klog(X0)| Log M0,1

[CKlog(X0)|LogM0,1
]

= 0!
E
Klog(X0)| Log M0,1

κ![CKlog(X0)|M0,1
]

= 0!
E
Klog(X0)|M0,1

[CKlog(X0)|M0,1
]

= ψ![M0,1]. �

In anticipation of the computations to follow, we take this opportunity to introduce some
useful notation.

Definition 4.20. Given a bounded complex F, we write χ(F) to denote the alternating sum of
its cohomology sheaves

χ(F) =
∑
i∈Z

(−1)i · Hi(F)

viewed as a class in K-theory. This mild abuse of notation should not lead to any confusion.

Definition 4.21. We let LogOb denote the following K-theory class on Klog(X0):

LogOb = χ(ϕ?TLogM0,1|M0,1
) +O.
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Locally, therefore, LogOb may be expressed as:

(18) LogOb = χ(TAQ
)− χ(TAP

) +O.
The extra trivial bundle term is to account for the difference in rank between the monoids Q
and P (see §5.2.4). We note that LogOb has constant rank 1.

The computations of the following section will only depend on the Euler class of LogOb.
This is why we focus on the K-theory class.

4.6. Building the obstruction bundle. Having constructed an obstruction theory for Klog(X0)
over M0,1, we now compare it to the obstruction theory for the space of ordinary stable maps.

Proposition 4.22. There exists a compatible triple of perfect obstruction theories for the dia-
gram

(19) Klog(X0) K(X) M0,1
ι

ψ

in which EKlog(X0)|K(X) is given by a vector bundle supported in degree −1.

Proof. We will first build the obstruction theory for the morphism ι, and after show that it is
given by a vector bundle supported in degree −1. Recall from Proposition 4.14 that there is an
exact triangle on X0:

Tlog
X0
→ TX → OD(D)

[1]−→ .

Applying R•π?L
•f? and dualising and shifting the result, we obtain:

(20) EKlog(X0)|LogM0,1
[−1]→ (R•π?L

•f?OD(D))∨ → ι?EK(X)|M0,1

[1]−→ .

Here we have used the explicit expression for the first term given by Lemma 2.2. On the other
hand, we have from Theorem 4.16 an exact triangle:

(21) EKlog(X0)|LogM0,1
[−1]→ ϕ?LLogM0,1|M0,1

→ EKlog(X0)|M0,1

[1]−→ .

Our goal is to construct a complex EKlog(X0)|K(X) fitting into an exact triangle:

(22) (R•π?L
•f?OD(D))∨ → ϕ?LLogM0,1|M0,1

→ EKlog(X0)|K(X)
[1]−→ .

Once this is achieved, we will obtain the desired compatible triple by applying the octahedral
axiom to (20), (21), (22). To construct (22), we will construct a morphism

(23) (R•π?L
•f?OD(D))∨ → ϕ?LLogM0,1|M0,1

and then take the mapping cone. By the axioms of a triangulated category, it is enough to
construct a morphism:

ι?EK(X)|M0,1
→ EKlog(X0)|M0,1

.

From Tlog
X0
→ TX we obtain the following morphism, which has already appeared in the exact

triangle (20):
ι?EK(X)|M0,1

→ EKlog(X0)|LogM0,1
.

From the exactness of (21), it follows that this morphism factors through EKlog(X0)|M0,1
if and

only if the following composition is zero:

ι?EK(X)|M0,1
→ EKlog(X0)|LogM0,1

→ ϕ?LLogM0,1|M0,1
[1].
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Recall from the proof of Theorem 4.16 that this factors as:

(24) ι?EK(X)|M0,1
→ EKlog(X0)|LogM0,1

→ LKlog(X0)|LogM0,1
→ ϕ?LLogM0,1|M0,1

[1].

Now consider the following commuting diagram of moduli spaces:

(25)
Klog(X0) K(X)

LogM0,1 M0,1.

ι

ϕ

Associated to this diagram is the following square:

(26)

ι?EK(X)|M0,1
EKlog(X0)|LogM0,1

ι?LK(X)|M0,1
LKlog(X0)|LogM0,1

.

This square is commutative. This follows directly from the construction of the perfect obstruc-
tion theory for logarithmic stable maps [GS13, §5] applied to the targets X (with trivial log-
arithmic structure) and X (with divisorial logarithmic structure), restricting the latter to the
central fibre. Using this, we may refactor (24) as:

(27) ι?EK(X)|M0,1
→ ι?LK(X)|M0,1

→ LKlog(X0)|LogM0,1
→ ϕ?LLogM0,1|M0,1

[1].

Finally, from (25) we obtain a pair of interlocking exact triangles

ι?LK(X)|M0,1
LKlog(X0)|M0,1

LKlog(X0)|K(X)

ϕ?LLogM0,1|M0,1
LKlog(X0)|M0,1

LKlog(X0)|LogM0,1

=

[1]

[1]

which allow us to factor (27) as:

ι?EK(X)|M0,1
→ ι?LK(X)|M0,1

→ LKlog(X0)|M0,1
→ LKlog(X0)|LogM0,1

→ ϕ?LLogM0,1|M0,1
[1].

We conclude that the composition is zero, because the final three terms form an exact trian-
gle. Thus, we obtain the morphism (23) giving rise to the exact triangle (22). Applying the
octahedral axiom to (20), (21), (22) we obtain the fundamental exact triangle:

(28) ι?EK(X)|M0,1
→ EKlog(X0)|M0,1

→ EKlog(X0)|K(X)
[1]−→ .

We now show that EKlog(X0)|K(X) forms a perfect obstruction theory. Consider the exact triangle
(22). Since OX(D) is convex (Assumption 4.1), we have a 2-term resolution

(R•π?L
•f?OD(D))∨ = [O → π?f

?OX(D)]∨

and therefore this term has perfect amplitude contained in [0, 1]. The second term of (22) has
perfect amplitude contained in [−1, 1], and thus (by the same argument as in the proof of The-
orem 2.1) we conclude that EKlog(X0)|K(X) has perfect amplitude contained in [−1, 1].

On the other hand, the first two terms of (28) are both of perfect amplitude contained in
[−1, 0], from which it follows that the final term is of perfect amplitude contained in [−2, 0].
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Combining these two observations, we conclude that EKlog(X0)|K(X) is of perfect amplitude con-
tained in [−1, 0]. The axioms of a triangulated category produce a morphism of exact triangles

ι?EK(X)|M0,1
EKlog(X0)|M0,1

EKlog(X0)|K(X)

ι?LK(X)|M0,1
LKlog(X0)|M0,1

LKlog(X0)|K(X)

[1]

[1]

and two applications of the Four Lemma show that the right-hand vertical morphism

EKlog(X0)|K(X) → LKlog(X0)|K(X)

is surjective on H−1 and an isomorphism on H0. We thus obtain a perfect obstruction theory
for ι, fitting into the compatible triple (28).

It remains to show that this obstruction theory is given by a vector bundle in degree−1. The
crucial observation is that ι is a closed embedding (Corollary 4.12) and so:

H0
(
LKlog(X0)|K(X)

)
= 0.

This fact is specific to our setting. It follows ultimately from the observation that all logarithmic
stable maps to X0 must factor through the divisor D (Lemma 4.5). We thus conclude that
EKlog(X0)|K(X) is of perfect amplitude concentrated in degree −1, so there is a vector bundle E
such that

(29) EKlog(X0)|K(X) = E∨[1]

which completes the proof. �

Proof of Theorem 4.3. Examining (22), we note that (R•π?L
•f?OD(D))∨ may be expressed as the

pullback of a complex on K(X). As will be demonstrated in the computations of §5, the same is
true for ϕ?LLogM0,1|M0,1

since it admits an explicit resolution in terms of tautological bundles.
Thus, we see that the vector bundle E obtained in (29) is the pullback of a bundle from K(X):

E = ι?F.

From this, it follows that

ι?[K
log(X0)]virt = ι?ι

![K(X)]virt = e(F ) ∩ [K(X)]virt.

The cohomological term e(F ) may easily be computed using the exact triangle (22) (or, to be
more precise, its analogue on K(X)). We have the following relation in K-theory:

F = −χ
(
E∨Klog(X0)|K(X)

)
= −χ

(
ϕ?TLogM0,1|M0,1

)
+ χ

(
R•π?L

•f?OD(D)
)
.

From the proof of Proposition 4.22 we have

χ(R•π?L
•f?OD(D)) = π?f

?OX(D)−O

while on the other hand by Proposition 4.18 we have (suppressing pullbacks as before):

−χ(ϕ?TLogM0,1|M0,1
) = −χ(TAQ

) + χ(TAP
).

Putting everything together, we arrive at the formula

F = π?f
?OX(D)− LogOb

where LogOb is given by Definition 4.21. This completes the proof. �
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5. COMPONENT CONTRIBUTIONS AND GEOMETRIC APPLICATIONS

While the preceding results may seem rather formal, we will now show that they are amenable
to calculation, with extremely concrete geometric consequences. We focus on the main example
of (P2, E) degenerating to (P2,∆). Although it is clear that our methods apply to any example
with a sufficiently strong torus action, we leave the investigation of these to future work.

5.1. Decomposition by unordered multi-degree. Consider the moduli space Klog(X0) = K(∆) =
K0,1(∆, d). This space has many connected and irreducible components, and is not pure-
dimensional, not even locally. Enumerating all its components, for general d, is a somewhat
non-trivial task. Instead we focus on a more granular decomposition of the moduli space.

Every stable map f : C → ∆ has a well-defined multi-degree d = d0 + d1 + d2 recording
the degree supported over each component of ∆. Given an unordered, non-negative partition
d ` d we let

K(∆,d) ⊆ K(∆)

denote the clopen substack consisting of maps of multi-degree d. We are interested in calculat-
ing the contributions of these substacks to the logarithmic Gromov–Witten invariant.

5.2. Localisation scheme and computation of LogOb. The strategy is to apply functorial vir-
tual localisation to the virtual push-forward formula (see Theorem 4.3 and Remark 4.4):

ι?[K
log(X0)]virt =

(
e(π?f

?OP2(∆))

e(LogOb)

)
∩ [K0,1(P2, d)].

Since virtual localisation is a well-established technique in enumerative geometry, we will not
spell out every detail in what follows, opting instead to focus on those aspects of our calculation
which are novel.

5.2.1. Localisation setup. We quickly run through the standard localisation setup for P2. Take
T = (C×)2 and denote the standard weights by µ1, µ2. Choose an injective group homo-
morphism T → (C×)3. This induces a linear action T y C3, whose weights we denote by
−λ0,−λ1,−λ2. Here each λi is a linear form in µ1, µ2, and we assume that:

(30) λ0 + λ1 + λ2 = 0.

The action T y C3 descends to an action T y P2 whose fixed points are the standard co-
ordinate points p0, p1, p2 and whose one-dimensional orbit closures are the toric divisorsD0, D1, D2.
Since the toric boundary ∆ is preserved by this action, we obtain an action on the logarithmic
scheme T y X0.

The action T y C3 induces a linearisation of the tautological bundle OP2(−1) and conse-
quently we obtain an action T y OP2(k) for any k ∈ Z, whose weights over p0, p1, p2 are
kλ0, kλ1, kλ2, respectively. Whenever we write OP2(k) we will mean the T -equivariant line
bundle equipped with this action.

5.2.2. Functoriality, fixed loci and normal bundles. The actions on X0 and P2 induce actions on the
corresponding moduli spaces, such that the morphism

ι : Klog(X0)→ K0,1(P2, d)

is equivariant. Since a T -fixed stable map to P2 must factor through ∆, we see that the T -fixed
loci in the source and the target are identical, and that ι restricts to an isomorphism between
the two. These fixed loci are well-understood and are indexed by so-called localisation graphs
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Θ [Kon95, GP99]. Up to a finite cover, each fixed locus FΘ is a product of Deligne–Mumford
spaces (parametrising curve components contracted to the torus-fixed points) and finite cyclic
gerbes (parametrising curve components covering the torus-invariant lines).

Given such a fixed locus, its contribution to the integral of ι?[Klog(X0)]virt is given by:

(31)
∫
FΘ

(
e(π?f

?OP2(∆)|FΘ
)

e(LogOb|FΘ
) · e
(
NFΘ|K0,1(P2,d)

)) .
Formulae for the normal bundle term in the denominator are well-known, see [GP99, §4] or
[CK99, Theorem 9.2.1].

By functorial virtual localisation [LLY99, Lemma 2.1], for every choice of multi-degree d the
contribution of the open and closed substack (see §5.1)

K(∆, d) ⊆ Klog(X0)

is given by the sum of those terms (31) for which FΘ ⊆ K(∆,d). Determining all such fixed loci
is an easy combinatorial exercise. Thus, the localisation calculation will allow us to separate
out the individual component contributions.

5.2.3. Computing π?f?OP2(∆). Since we are in genus zero, the bundle π?f?OP2(∆)|FΘ
is (non-

equivariantly) trivial, meaning that the term e(π?f
?OP2(∆)|FΘ

) is pure weight. The assumption
λ0 + λ1 + λ2 = 0 ensures we have an identification of equivariant line bundles

N∆|P2 = OP2(3)|∆.

The weights at the torus-fixed points are therefore 3λ0, 3λ1, 3λ2. From this the weights on
π?f

?OP2(∆)|FΘ
can easily be calculated, see e.g. [GP99, §4].

5.2.4. Local computation of LogOb. It remains to describe the denominator term e(LogOb|FΘ
).

This is the most novel part of the argument, relying crucially on the deformation theory of the
Artin fan and its relation to line bundles encoded in the logarithmic structure, together with a
tropical-geometric method for computing such bundles.

We begin with an explicit local description of LogOb. Consider an atomic open neighbour-
hood V ⊆ Klog(X0) (see [AW18, §2.2]). The unique closed stratum of V is indexed by a combi-
natorial type of tropical stable map to R≥0. As before, we let @ denote the source curve of this
combinatorial type; this has r edges and m leaves, corresponding to the edge lengths l1, . . . , lr
and target offsets c1, . . . , cm in the tropical moduli.

Lemma 5.1. We have

LogOb|V =

m∑
i=1

O(ci)−
m−1∑
j=1

O(rj)

in which the rj are certain relation parameters, defined in the proof.

Remark 5.2. The quantities ci and rj give piecewise-linear functions on the tropicalisation of
V or, equivalently, global sections of the ghost sheaf. These give rise to associated line bundles
O(ci) andO(rj) equipped with preferred sections. These are the pullbacks of the corresponding
toric Cartier divisors on the Artin fan.

Proof. Recall that we have

LogOb|V = χ(TAQ
)− χ(TAP

) +O
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where Q and P are the minimal monoids corresponding to the tropical stable map and the
underlying tropical curve, respectively. There are explicit presentations (see §4.2 and §4.5; as
before, we suppress pullbacks from the notation):

TAQ
=
[
O⊕r+1 → TAr+m → NUQ|Ar+m

]
,

TAP
=
[
O⊕r → TAr

]
.

From these, we obtain:

LogOb|V =
[
− (r + 1)O + TAr+m −NUQ|Ar+m

]
−
[
− rO + TAr

]
+O

= TAr+m − TAr −NUQ|Ar+m .(32)

The tangent bundle terms decompose into toric line bundles associated to the co-ordinate
hyperplanes:

TAr+m =
r∑
i=1

O(li) +
m∑
i=1

O(ci), TAr =
r∑
i=1

O(li).

The normal bundle term may also be expressed in terms of such bundles. Recall that Q arises
as a quotient

Nr+m → Q

given by m − 1 independent continuity relations. For each such relation, let rj denote the
sum of tropical parameters appearing on one side of the equation (notice that we always have
rj = f(vj) for some vertex vj ∈ @). We then have:

NUQ|Ar+m =
m−1∑
j=1

O(rj).

Putting everything together, we arrive at the desired formula. �

The preceding lemma gives a local description for LogOb in terms of line bundles associated
to piecewise-linear functions on the tropical moduli space. We now give a method for calculat-
ing such bundles, in terms of evaluation and cotangent line classes. A variant of this technique
was first employed in [BNR21, §3].

Construction 5.3. Consider the restriction to V of the universal logarithmic stable map

C X0

V

f

πx

which we tropicalise to obtain a tropical stable map

@ R≥0

σ

p

f

x

over the base cone σ = Q∨R = Trop(V). Given a piecewise-linear function ϕ on σ we wish to
describe the associated line bundle. First note that we have:

OV(ϕ) = x?π?OV(ϕ) = x?OC(p?ϕ).
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The basic idea is to compare the piecewise-linear functions p?ϕ and f?1 on @. This will give a
relation between the bundles OC(p?ϕ) and OC(f?1) = f?OX(D) on C. Pulling back along the
section x, we will then obtain an expression for OV(ϕ).

Let v0 ∈ @ be the vertex containing the marking leg, and denote the adjacent edges by
e1, . . . , ek, with associated expansion factors α1, . . . , αk. Let C0 be the corresponding curve com-
ponent and q1, . . . , qk the corresponding nodes. The piecewise-linear function f?1 has slope 3d
along the marking leg, and −αi along each edge ei. On the other hand, the function p?ϕ has
slope zero along every edge and leg. We thus obtain [RSPW19, Proposition 2.4.1]:

(33) OC(f?1− p?ϕ)|C0 = OC0(3dx− Σk
i=1αiqi)⊗ π?OV(f(v0)− ϕ).

Pulling back along x, using the fact that OC(f?1) = f?OX(D) = f?OP2(3), we obtain

OV(ϕ) = ev?xOP2(3)⊗ x?OC0(−3dx)⊗OV(ϕ− f(v0))

= ev?xOP2(3)⊗ L3d
x ⊗OV(ϕ− f(v0))(34)

where Lx is the cotangent line bundle. For every ϕ we will consider, the piecewise-linear func-
tion on V

ϕ− f(v0)

will be expressible as a linear combination of edge lengths (this will typically not be the case
for ϕ itself). Since the line bundle associated to an edge length is given by the pullback of the
corresponding boundary divisor in M0,1, the identity (34) gives a closed formula for OV(ϕ)
in terms of tautological bundles. The expression for e(OV(ϕ)) in terms of tautological classes
immediately follows.

5.2.5. Global computation of LogOb. The above computations are local to an atomic neighbour-
hood of the moduli space Klog(X0). We now show how to obtain a global description of e(LogOb|FΘ

),
over each fixed locus FΘ. We begin with the following key observation, which drastically sim-
plifies the calculations:

Theorem 5.4. e(LogOb|FΘ
) is pure weight.

Proof. The fixed locus FΘ determines a unique “least degenerate” combinatorial type of tropical
curve, with only those nodes forced by the graph Θ. Since we are in genus zero, this in turn
defines a unique combinatorial type of tropical stable map to R≥0. As before, let us suppose
that @ has r edges and m leaves, corresponding to the edge lengths l1, . . . , lr and target offsets
c1, . . . , cm in the tropical moduli.

This combinatorial type may degenerate as we move towards the boundary of the fixed
locus. Note, however, that since the fixed locus only contains degenerations of contracted com-
ponents, and every leaf is non-contracted by stability, the number of leavesm remains constant
on the entire fixed locus (whereas the number of edges may exceed r over the boundary). We
assume for simplicity that the generic combinatorial type takes the following form:

v1

...

l1

3d1

c1

lm

3dm

vmcm

v0 x



28 LAWRENCE JACK BARROTT AND NAVID NABIJOU

Indeed, this is always the local structure around each vertex. To prove that e(LogOb|FΘ
) is

pure weight, it is equivalent to prove that it is pure weight when pulled back to each factor of
the fixed locus FΘ. We may thus consider each vertex individually. Up to a finite cover, we
have FΘ = M0,m+1. We begin by considering the target offset bundles O(ci). Away from the
boundary of FΘ, we compute

e(O(ci)) = 3λj(i) + 3dψx + 3diψqi

where pj(i) is the fixed point mapped to by the non-contracted leaf componentCvi away from its
intersection with Cv0 . As the combinatorial type degenerates, this formula must be modified
with appropriate boundary corrections, which we now describe. Given a partition A t B =
{1, . . . ,m, x}with x ∈ B, we let

D(A,B) ⊆M0,m+1

denote the corresponding boundary divisor. A direct calculation local to each boundary divisor
then gives the following global formula for e(O(ci)) on FΘ =M0,m+1:

(35) e(O(ci)) = 3λj(i) + 3dψx + 3diψqi −
∑

(A,B)
with i∈A

∑
j∈A

3dj ·D(A,B)

 .

Now, for j 6= i we have the following boundary relation, obtained by pullback fromM0,3:

ψx = (i j | x) =
∑

(A,B)
with i,j∈A

D(A,B).

Using 3d = 3d1 + . . .+ 3dm we thus obtain:

(3d− 3di)ψx =
∑
j 6=i

3djψx =
∑

(A,B)
with i∈A

(∑
j∈A
j 6=i

3dj ·D(A,B)

)
.

On the other hand, we have the following relation involving the remaining cotangent line
classes in (35), again easily obtained by pullback fromM0,3 (see also [LP04]):

3diψx + 3diψqi =
∑

(A,B)
with i∈A

3di ·D(A,B).

Combining these two expressions, we see that the non-weight terms in (35) cancel precisely,
leaving us with

e(O(ci)) = 3λj(i)

which is pure weight. It remains to show the same for theO(rj) terms. Recall (Lemma 5.1) that
these arose from the normal bundle of the local toric model for the moduli space of tropical
stable maps. We will show that this bundle is non-equivariantly trivial on the fixed locus,
which immediately implies that its Euler class is pure weight.

We begin by clarifying notation. The monoid Q will be used to denote the minimal monoid
corresponding to the least degenerate combinatorial type on the fixed locus. As already noted,
this combinatorial type can degenerate over FΘ, producing additional edge lengths but no ad-
ditional target offsets. We denote the minimal monoid corresponding to such a degeneration
by Q′, so that we have a regular embedding

UQ′ ⊆ Ar
′+m
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where r′ ≥ r is the number of edge lengths. The relevant piece of LogOb is then given, local to
such a stratum, by the bundle:

NUQ′ |Ar′+m .

On the other hand it is easy to see, by examining the defining equations, that the following
square is cartesian

UQ Ar+m

UQ′ Ar′+m
�

where the morphism UQ ↪→ UQ′ is induced by the generisation map Q′ → Q. Since this inter-
section is transverse, the square is Tor-independent, and so we have an identification

NUQ′ |Ar′+m = NUQ|Ar+m

where as usual we suppress pullbacks. Along the stratum under consideration, the morphism
FΘ → UQ′ factors through UQ, and we may therefore identify the relevant piece of LogOb with
the bundle

NUQ|Ar+m

corresponding to the least degenerate combinatorial type. There is such an identification along
every stratum of FΘ, and since these are compatible along generisations we obtain a global
identification. But the morphism FΘ → UQ factors through the origin (since all the tropical
parameters persist on the fixed locus), and so this bundle is pulled back from a point, hence
trivial. �

The upshot of the previous result is that in our computations we may discard all classes
which are not pure weight. This includes in particular all boundary correction terms. Con-
sequently, the class e(LogOb|FΘ

) may be computed from the generic combinatorial type of the
fixed locus, since all corrections arising from further degenerations will be discarded. Given the
techniques described above for calculating e(O(ci)) and e(O(rj)), this is now an easy process.

5.2.6. Graph splitting formalism. The discussion thus far shows how to compute all of the equi-
variant classes appearing in (31), and hence gives a complete in-principle method for carrying
out the localisation computation.

However, for the purposes of proving general formulae, as well as efficient computer cal-
culations, it is necessary to be more explicit. In this section, we uncover a recursive structure
governing the localisation contributions, which we leverage to carry out our computations.
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The basic idea is to recursively split each localisation graph at the root vertex supporting the
marking leg x. There are two possible situations, depending on the valency of this vertex:

(I)

x
d1

...
· · ·

dk

...

 
x

d1
...

· · ·
x

dk
...

(k ≥ 2)

(II)
d0

x

d1

...
· · ·

dk

...

 
x

d0

x
d1

...
· · ·

dk

...

Each time we split, we compare the contribution of the input graph to the product of contribu-
tions of the output graphs. This ratio is referred to as the defect. We have the following useful
lemma:

Lemma 5.5. The defect in π?f?OP2(3) cancels with the defect in LogOb.

Proof. Note that all the classes involved are pure weight. We will deal with the two splitting
pictures separately.

Case (I): Let pi be the torus-fixed point mapped to by the root vertex. The defect in π?f?OP2(3)
may be calculated from the normalisation sequence. There are k factors of (3λi)

−1 coming from
the nodes of the input graph which disappear after splitting, and one factor of 3λi coming from
the contracted component associated to the root vertex of the input graph; the defect is thus
(3λi)

1−k. On the other hand, the defect in LogOb is given by the k − 1 relation parameters at
the root vertex (which disappear after splitting). Since e(O(rj)) = ev?x(3H) after discarding
non-equivariant terms, each of these contributes a factor of 3λi, and hence the overall defect is
also (3λi)

1−k.

Case (II): Let pj be the torus-fixed point mapped to by the central (k+ 1)-valent vertex of the
input graph. The defect in π?f?OP2(3) is given by (3λj)

−1, coming from the single node which
disappears after splitting. On the other hand, the defect in LogOb is given by (the inverse of)
the target offset c0 in the first output graph (the other parameters and relations are unchanged).
We compute e(O(c0))−1 = (3λj)

−1, and so once again the defects cancel. �

Therefore, at each step it is only necessary to calculate the defect arising from the normal
bundle term, which amounts to a simple calculation on Deligne–Mumford space. Recursively,
this expresses the contribution of each localisation graph in terms of the contributions of the
so-called atomic graphs

pj

d
pi

x

which, using the techniques above, we easily calculate to be:

(36)
(

(−1)d

d · (d!)2 · (λj − λi)2d−1

)
·
d−1∏
a=1

(aλi + (3d− a)λj) ·
d−1∏
b=0

((3d− b)λi + bλj) .
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5.3. Tables of contributions. The graph splitting algorithm described above is implemented
in accompanying Sage code. The code is effective on an average laptop computer up to de-
gree 8. We use it to generate tables of component contributions, which we organise according
to unordered multi-degree (see §5.1). Note that, as we should expect, the sum of the contri-
butions for each degree gives the corresponding maximal contact logarithmic Gromov–Witten
invariant (as calculated for instance in [Gat03, Example 2.2]). The tables are as follows:

Degree 1

Multi-degree Contribution

(1, 0, 0) 9

Total: 9

Degree 2

Multi-degree Contribution

(2, 0, 0) 63/4

(1, 1, 0) 18

Total: 135/4

Degree 3

Multi-degree Contribution

(3, 0, 0) 55

(2, 1, 0) 162

(1, 1, 1) 27

Total: 244

Degree 4

Multi-degree Contribution

(4, 0, 0) 4,095/16

(3, 1, 0) 936

(2, 2, 0) 1,089/2

(2, 1, 1) 576

Total: 36,999/16

Degree 5

Multi-degree Contribution

(5, 0, 0) 34,884/25

(4, 1, 0) 6,120

(3, 2, 0) 8,190

(3, 1, 1) 4,680

(2, 2, 1) 5,040

Total: 635,634/25

Degree 6

Multi-degree Contribution

(6, 0, 0) 33,649/4

(5, 1, 0) 43,092

(4, 2, 0) 130,815/2

(4, 1, 1) 40,014

(3, 3, 0) 36,992

(3, 2, 1) 96,228

(2, 2, 2) 67,797/4

Total: 307,095

Degree 7

Multi-degree Contribution

(7, 0, 0) 2,664,090/49

(6, 1, 0) 318,780

(5, 2, 0) 541,926

(5, 1, 1) 350,658

(4, 3, 0) 682,290

(4, 2, 1) 948,528

(3, 3, 1) 513,639

(3, 2, 2) 547,344

Total: 193,919,175/49

Degree 8

Multi-degree Contribution

(8, 0, 0) 23,666,175/64

(7, 1, 0) 2,442,960

(6, 2, 0) 4,601,610

(6, 1, 1) 3,116,880

(5, 3, 0) 6,375,600

(5, 2, 1) 9,448,560

(4, 4, 0) 28,227,969/8

(4, 3, 1) 11,139,552

(4, 2, 2) 6,045,264

(3, 3, 2) 6,407,712

Total: 3,442,490,759/64

5.4. Conjectures. Based on the low-degree calculations presented above, we conjecture gen-
eral formulae for some of the component contributions. We then provide some theoretical
evidence for these in Proposition 5.9.

The conjectures are most conveniently stated by organising the component contributions
according to the ordered multi-degree, as opposed to the unordered multi-degree employed
thus far. This is a fairly trivial refinement, amounting to simply dividing each unordered
multi-degree contribution by its obvious symmetries. Given an unordered multi-degree d =
(d0, d1, d2), we let A(d) denote the number of ordered multi-degrees which induce d upon for-
getting the ordering. The ordered multi-degree contribution is then obtained by dividing the
unordered multi-degree contribution by A(d):

Cord(d) = Cunord(d)/A(d).

Conjecture 5.6. We have the following hypergeometric expressions for the ordered multi-
degree contributions:

Cord(d, 0, 0) =
1

d2

(
4d− 1

d

)
(d ≥ 1),(37)

Cord(d1, d2, 0) =
6

d1d2

(
4d1 + 2d2 − 1

d1 − 1

)(
4d2 + 2d1 − 1

d2 − 1

)
(d1, d2 ≥ 1).(38)
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Conjecture 5.7. The ordered multi-degree contributions enjoy the following integrality prop-
erty:

gcd(d0, d1, d2)2 · Cord(d0, d1, d2) ∈ Z≥0.

We conclude by providing some theoretical evidence for the conjectures. To be more pre-
cise, we will show that Conjecture 5.6 (37) is equivalent to the following purely combinatorial
formula:

Conjecture 5.8. Fix an integer d ≥ 1. Then we have

(39)
∑

(d1,...,dr)`d

2r−1 · dr−2

#Aut(d1, . . . , dr)

r∏
i=1

(−1)di−1

di

(
3di
di

)
=

1

d2

(
4d− 1

d

)
where the sum is over strictly positive unordered partitions of d (of any length).

Unfortunately, we are unable to prove this conjecture itself (though we have verified it up to
d = 50). We note that, indexing the conjugacy classes of Sd by partitions and using the formula
d!/(#Aut(d1, . . . , dr) · Πr

i=1di) for the size of each such class, the conjecture may be recast as a
formula for the total sum of a certain class function on Sd. Alternatively, one can encode the
right-hand side and the product factors on the left-hand side into hypergeometric generating
functions, and the conjecture then asserts a non-trivial relationship between these functions.

Proposition 5.9. Conjecture 5.6 (37) is equivalent to Conjecture 5.8.

Proof. The connected component corresponding to the ordered multi-degree (d, 0, 0) is simply:

K0,1(D0, d) = K0,1(P1, d) ⊆ K(∆).

We will show that the integral of the logarithmic virtual class over this component is equal to
the left-hand side of (39). Proceeding with the localisation procedure outlined in §5.2, we make
the following specialisation:

λ2 = 0.

This is well-defined since λ2 never appears as a factor in the denominator of a localisation
contribution. At the end of the graph-splitting algorithm, we are left with atomic graphs of the
form:

(1)
p1

x
e

p2
(2)

p1

e
p2

x

However, we see from (36) that the atomic contributions of graphs of type (2) contain a factor of
λ2, and therefore vanish. As such, we only need to consider localisation graphs whose atomic
pieces are all of type (1). It is easy to see that these must take the following simple form:

(40) p1

x d1 p2

dr
p2

...

Recall that λ0 +λ1 +λ2 = 0, and thus the specialisation λ2 = 0 implies λ0 = −λ1. Consequently,
every localisation contribution will collapse to a number. Using (36), we calculate the product
of the atomic contributions of (40) to be:

r∏
i=1

(−1)di−1

d2
i

(
3di
di

)
.
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On the other hand, the defect in the normal bundle is given by:∫
M0,r+1

2r−1 · λ2r−2
1∏r

i=1(λ1/di − ψi)
.

Expanding the denominator as a power series and examining monomials of degree r− 2 in the
ψi, we obtain a sum over terms of the form

r∏
i=1

(di/λ1)ai+1 ·
∫
M0,r+1

r∏
i=1

ψaii

where a1 + . . .+ ar = r − 2 with ai ≥ 0. We may now calculate these integrals:
r∏
i=1

(di/λ1)ai+1

∫
M0,r+1

r∏
i=1

ψaii =
r∏
i=1

(di/λ1)ai+1 ·
(

r − 2

a1, . . . , ar

)

= (1/λ2r−2
1 )

r∏
i=1

dai+1
i ·

(
r − 2

a1, . . . , ar

)
.

Finally, by the multinomial theorem, the sum of these terms over (a1, . . . , ar) is equal to

(1/λ2r−2
1 ) (Πr

i=1di) (d1 + . . .+ dr)
r−2 = (1/λ2r−2

1 ) (Πr
i=1di) d

r−2

and we conclude that the normal bundle defect is given by:

2r−1dr−2
r∏
i=1

di.

Multiplying this defect by the product of the atomic contributions, we obtain the contribution
of the localisation graph (40):

2r−1 · dr−2

#Aut(d1, . . . , dr)

r∏
i=1

(−1)di−1

di

(
3di
di

)
.

Since such graphs are indexed by strictly positive unordered partitions of d, the claim follows.
�

5.5. Degenerations of embedded curves. The Gromov–Witten theory of (P2, E) incorporates
contributions from multiple covers and reducible curves, making a direct geometric interpre-
tation difficult. On the other hand, in low degrees it is possible to directly count the number
of embedded rational curves in P2 maximally tangent to E [Tak96]. The relationship between
these classical enumerative counts and the Gromov–Witten invariants is governed by multiple
cover formulae [GPS10, §6] and logarithmic gluing results [CvGKT21], though there remain
many degenerate loci whose contributions are not yet understood.

Consider, as before, a degeneration of E to ∆. An embedded tangent curve to E degenerates
uniquely along with the divisor, and it is natural to ask what one obtains in the central fibre.
This limiting curve must be contained entirely inside ∆ (otherwise, the limit would have to
intersect ∆ in at least two distinct points, and then the same would be true on the general fibre)
and so every embedded tangent curve to E defines a unique limiting multi-degree. Determin-
ing which curves in the general fibre limit to which multi-degrees in the central fibre, however,
is a rather subtle problem.

In this section we uncover this limiting behaviour, using the above Gromov–Witten calcula-
tions (on the central fibre) together with known multiple cover formulae (on the general fibre)
to unravel the behaviour of embedded curves. We obtain a complete description for d = 1, 2, 3,
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and partial information for d ≥ 4. These are results in classical enumerative geometry, but
are, as far as we are aware, new. We do not know of a proof which does not pass through
logarithmic Gromov–Witten theory.

5.5.1. Review: tangent curves and torsion points. We begin with a brief recap of the geometry of
tangent curves to E. This is a vast subject with a long history, and we make no attempt at
completeness; for a more detailed exposition, see for instance [Bou19, §0].

Fix p0 ∈ E a flex point of the cubic. It is easy to show that if C ⊆ P2 is a degree d curve
maximally tangent to E at a point p, then p must be a 3d-torsion point of the elliptic curve
(E, p0). Hence, for each d there are precisely (3d)2 candidate points on E which can support a
tangent curve of degree d.

These points can be subdivided according to their order in the group (E, p0). For our pur-
poses, it is only the divisibility by 3 which is important. We therefore say that a point p has
index 3k if k is the smallest integer such that the order of p divides 3k. For example, when d = 2
there are 36 6-torsion points, and these split up into 9 points of index 3 and 27 points of index
6. Of the latter, 3 have order 2, while the remaining 24 have order 6, but this further refinement
is not relevant to the discussion.

Given a point p ∈ E of index 3k for k|d, we can ask for the number of embedded integral
rational curves of degree d intersectingE with maximal tangency at the point p. It turns out that
these numbers only depend on d and k. They have been computed in low degrees in [Tak96]
(certain cases may also be deduced by combining Takahashi’s formula [Bou19] with the Gross–
Pandharipande–Siebert multiple cover formula [GPS10]).

For small d it is therefore possible, summing over the 3d-torsion points, to enumerate all
the embedded tangent curves and describe precisely their contributions to the Gromov–Witten
theory. In these cases, we can leverage our earlier Gromov–Witten calculations to study the
degeneration behaviour of these curves.

5.5.2. Degree 1. This case is somewhat trivial. On the general fibre, there are 9 3-torsion points
which each support a unique tangent line. On the central fibre, the only valid multi-degree is
(1, 0, 0). There is, however, a finer decomposition given by the ordered multi-degree, which in
this case records which of the co-ordinate linesD0, D1, D2 support the limit curve. This decom-
poses the central fibre moduli space into 3 connected components, each with a contribution of
3 to the Gromov–Witten invariant.

Thus we see that, of the 9 flex lines in the general fibre, 3 of them limit to each of D0, D1, D2.
In the more complicated cases to follow, we will ignore this 3-fold symmetry.

5.5.3. Degree 2. This is the first interesting case. There are 36 6-torsion points, 9 of which have
index 3 and the remaining 27 of which have index 6. By [Tak96, Proposition 1.4] we know that:

• each index 3 point supports 1 tangent line and no tangent conic;
• each index 6 point supports 1 tangent conic.

The general fibre moduli space Klog(P2|E) therefore consist of 27 isolated points parametrising
the tangent conics, together with 9 one-dimensional components parametrising ramified dou-
ble covers of the flex lines. Each of these one-dimensional components contributes 3/4 to the
Gromov–Witten invariant [GPS10, Proposition 6.1].
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The central fibre moduli space Klog(X0), on the other hand, decomposes according to the
multi-degrees (2, 0, 0) and (1, 1, 0) which we refer to as double covers and split curves, respec-
tively. Of course, double covers in the general fibre must limit to double covers in the central
fibre, but it is not clear how many of the 27 conics in the general fibre limit to double covers,
and how many limit to split curves.

On the other hand, we have calculated the contributions of the loci of double covers and
split curves (see §5.3): they are 63/4 and 18, respectively. This allows us to uniquely solve for
the number of limiting conics, obtaining the following picture:

η 0

2 9
(

3
4

)

27

2

18

9

9

18 = 18

63

4
= 9 + 9(3

4)

Thus, of the 27 embedded conics tangent to E, 18 limit to split curves and 9 limit to double
lines.

5.5.4. Degree 3. In this case there are 81 9-torsion points, which split into 9 points of index 3
and 72 of index 9. By [Tak96, Proposition 1.5] (see also [Ran98]) we know that:

• each index 3 point supports 1 tangent line and 2 tangent cubics;
• each index 9 point supports 3 tangent cubics.

Thus in total there are 9 · 2 + 72 · 3 = 234 tangent cubics in the general fibre moduli space.
There are also 9 two-dimensional components parametrising triple covers of the flex lines, each
contributing 10/9 to the Gromov–Witten invariant. The central fibre moduli space decomposes
according to the possible multi-degrees (3, 0, 0), (2, 1, 0) and (1, 1, 1). Once again, we can use
our knowledge of the central fibre contributions to solve for the number of limiting curves:

η 0

3 9
(

10
9

)

234

3

2

27

162

45

9

27 = 27

162 = 162

55 = 45 + 9
(

10
9

)
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5.5.5. Degree 4 and beyond. For d = 4, there are 144 12-torsion points, which split into 9 points
of index 3, 27 points of index 6 and 108 points of index 12. We know that [Tak96]:

• each index 3 point supports 1 tangent line, no tangent conics and 8 tangent quartics;
• each index 6 point supports 1 tangent conic and 14 tangent quartics;
• each index 12 point supports 16 tangent quartics.

There are thus 9 · 8 + 27 · 14 + 108 · 16 = 2178 embedded rational tangent quartics in the general
fibre. In addition we have the following components parametrising degenerate maps:

• 9 three-dimensional components, parametrising quadruple covers of flex lines;
• 27 one-dimensional components, parametrising double covers of embedded conics;
• 9 · 2 = 18 zero-dimensional components, parametrising reducible maps whose image is

the union of a flex line and a tangent cubic passing through a flex point.

The multiple cover components contribute 35/16 and 9/4, respectively. On the other hand, log-
arithmic gluing considerations [CvGKT21] show that each of the 18 components parametrising
reducible curves contributes 3 (more precisely, each “component” is actually made up of 3 iso-
lated points). We arrive at the following illustration of the general fibre moduli space:

2178 18(3)

2

27
(

9
4

)
4

9
(

35
16

)
We wish to describe the degeneration behaviour of the 2178 integral quartics. In order to do
this, it is first necessary necessary to describe the degeneration behaviour of the multiple covers
and reducible curves. The degenerations of multiple covers are determined by the previous
calculations for d = 1 and d = 2.

The degenerations of the reducible curves, however, cannot be deduced from previous cal-
culations. The problem is that, although we know how many of the 234 tangent cubics limit to
each of the multi-degrees (3, 0, 0),(2, 1, 0), (1, 1, 1), we are not able to separate out the limiting
behaviour of cubics passing through an index 3 point from those of cubics passing through an
index 9 point. This further information is crucial here, since only the cubics passing through an
index 3 point appear in the d = 4 moduli space.

As a final remark it is worth pointing out that for d > 4 further difficulties arise, due to
components of the general fibre whose contributions to the Gromov–Witten invariants are not
yet known. These include stable maps obtained by gluing two or more multiple covers, as
well as those obtained by gluing three or more embedded tangent curves (where one also has
moduli for the contracted component of the source curve). The degeneration questions we
consider here may serve as motivation for the determination of such contributions.
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