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Abstract

Dental development has been used to assess whether an individual may be below or above an age that 
serves as a legal threshold. This study used development of the first and second mandibular molars from 
a large sample of individuals (N = 2,676) to examine the age threshold for minimum age of criminal 
responsibility. A bivariate ordered probit model was applied to dental scores following the Moorrees 
et al. (1963) system, with the addition of a crypt-absent/present stage. Then a 10-fold cross-validation 
within each of the sexes showed that the bivariate models produce unbiased estimates of age but are 
heteroskedastic (with increasing spread of the estimates against actual age). To address the age threshold 
problem, a normal prior centered on the threshold is assumed, and the product of the prior and the 
likelihood is integrated up to the age threshold and again starting at the age threshold. The ratio of 
these two integrals is a Bayes factor, which because the prior is symmetric around the threshold, can 
also be interpreted as the posterior odds that an individual is over versus under the age threshold. It was 
necessary to assume an unreasonably high standard deviation of age in the prior to achieve posterior 
odds that were well above “evens.” These results indicate that dental developmental evidence from the 
first and second molars is of limited use in examining the question of whether an individual is below or 
over the minimum age of criminal responsibility. As the third molar is more variable in its development 
than the first two molars, the question of dental evidence regarding the age of majority (generally 18 
years) remains problematic.

We have previously considered the legal 
age threshold problem (Konigsberg et 
al. 2019) in regard to the age of major-

ity. This age, typically 18 years, often is the basis for 
deciding whether to grant asylum to an individual 
seeking refuge, with individuals younger than 18 
years of age being granted asylum and those older 
than 18 being deported. We previously considered 
the developmental status of the third molar, the 
latest forming of the teeth, and demonstrated the 

importance of selecting an appropriate prior age 
distribution and accurately accounting for vari-
ability in age at attainment (Konigsberg et al. 2019). 
Here we consider a younger age threshold known 
as the minimum age of criminal responsibility 
(MACR). This age is variable around the globe and 
is subject to change under local legal systems. We 
thus expanded the previously presented method to 
address the more complex problem of evaluating 
age estimated from multiple teeth against an age 
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Wales, where the Children and Young Person’s Act 
of 1933 (see https://www.legislation.gov.uk/ukpga/
Geo5/23-24/12) states in section 50 that “it shall be 
conclusively presumed that no child under the age 
of 10 years can be guilty of any offence.”

Because in this study we focused on age thresh-
olds younger than 18 years, we use earlier-forming 
teeth than in our previous study (Konigsberg et al. 
2019). Specifically, here we consider the bivariate 
problem of development of the first and second 
mandibular molars. Bivariate, and more generally 
multivariate, problems must deal with the fact that 
typically there is residual correlation between vari-
ous age indicators. In other words, once the effect of 
age is accounted for, a correlation remains between 
the indicators (Green 1961; Šešelj 2013). Several 
previous studies present parametric approaches 
to deal with this residual correlation. Boldsen et al. 
(2002) and Fieuws et al. (2016) describe an ad hoc 
method that accounts for the residual correlations. 
Konigsberg (2015) uses a Markov chain Monte 
Carlo approach to estimate the residual correla-
tions. Hens and Godde (2020) uses the composite 
likelihood method implemented in the R pack-
age “mvord” (Hirk et al. 2018, 2020). Additionally, 
Braga et al. (2005) used a nonparametric Bayesian 
approach to find the proportion of individuals 
in a given age category who were in a particular 
pattern of dental development, so they had no 
need to estimate residual correlations. Because 
here our parametric approach considers only the 
two-tooth bivariate problem, we use methods that 
maximize the bivariate likelihood to estimate the 
single residual correlation directly.

Materials and Methods

Radiographic Sample
The initial sample consisted of mandibular pan-
oramic radiographs showing the central lower 
incisors through third molars for 3,334 males and 
females from London. These individuals were clas-
sified as “white” or Bangladeshi. We removed from 
the sample 11 individuals with no molars observ-
able, 4 individuals with unobservable first molars, 
27 individuals with no second or third molars 
unobservable, and 585 individuals with unobserv-
able third molars. Additionally, one girl age 9.64 
years had a first molar at stage “root three-quarter 

threshold that varies by country. Cipriani (2009) 
thoroughly reviewed worldwide variation in the 
MACR, but treatment of MACR has changed con-
siderably since that time. We therefore review some 
recent history and variation in the MACR.

The UN position on MACR has evolved consid-
erably in the last 30 years. The 1989 UN Convention 
on the Rights of the Child stated that a minimum 
age should be established by individual nation 
states, but gave no recommended age (United Na-
tions 1989). In 2007, CRC General Comment 10 
provided a recommendation of a single age of at 
least 12 years, and in 2019 CRC General Comment 
24 raised this to 14 years (UN Committee on the 
Rights of the Child 2007, 2019). Both documents 
commended countries with higher ages and op-
posed the use of multiple age thresholds, either for 
the severity of the crime or for comprehension of 
criminality by the child. In cases of unknown age, 
the UN suggests exhausting the search for docu-
mentation and use of interviews before resorting 
to developmental examination. Dental and skeletal 
markers are not recommended because they are 
“often inaccurate, due to wide margins of error” 
(UN Committee on the Rights of the Child 2019: 
para. 34). The 2019 UN Global Study on Children 
Deprived of Liberty takes a firmer position, stating 
that minimum age established by states “shall not 
be below 14 years of age” (UN General Assembly 
2019, sec. 109) and that severity of the crime should 
never be used to lower this age.

In line with the UN minimum age for military 
recruitment and armed conflict of 15 years, Ursini 
(2015) recommends an international MACR of 15 
years to resolve location-based inconsistencies 
in the prosecution of war crimes committed by 
child soldiers. Under current laws, countries must 
prosecute war crimes, but the MACR depends on 
the country. As a result, a child who would not face 
criminal charges in one country could be executed 
in another. An international MACR of 15 years 
acknowledges that children who are too young to 
be in the military should also be too young to com-
mit war crimes, and that military recruitment of 
children under 15 is itself a war crime (Ursini 2015). 
Despite these recommendations, standards for 
MACR remain widely variable. As of July 2019, over 
120 countries had an MACR under 14 years (UN 
General Assembly 2019). Some existing MACRs 
may be well below 14 years, as in England and 
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BIOPROBIT has the advantage that it calculates 
the gradient vector (partial derivatives of the log-
likelihood) and is consequently fast and accurate. 
We used BIOPROBIT to fit the entire data set to 
10 different models, ranging from a single effect 
(age) to a three-way interaction among age, sex, 
and ethnicity, as well as all second order and main 
effects. The models consequently test for direct and 
indirect impacts of both sexual dimorphism and 
ethnic membership on age progression in tooth de-
velopment. We then used Schwarz’s (1978) Bayesian 
information criterion (BIC) to pick the preferred 
model. We also applied BIOPROBIT separately 
within each sex using three models (age, age and 
ethnicity, and age-by-ethnicity interaction with 
age and ethnicity main effects). Again, we used 
Schwarz’s (1978) BIC to pick the preferred model 
within each sex.

Cross-validation of the Bivariate Ordered 
Probit Models
It is important to test the appropriateness of 
the bivariate ordered probit models for estimat-
ing ages for individuals. While a leave-one-out 
strategy often has been applied to assess appro-
priateness of regression-based analyses via the 
PRESS statistic (Allen 1974), the calculation of the 
bivariate ordered probit is too time-consuming 
to use this approach. We instead used a 10-fold 
cross-validation approach, which optimizes the 
bias/variance trade-off (Kohavi 1995). Employing 
maximum likelihood, we first fitted parameters of 
a bivariate ordered probit model using a training 
sample. We then found the age for an individual in 

complete” and a second molar at stage “crown half 
complete.” Both teeth were far too underdeveloped 
for the given age. We assume there was an error in 
the age or that the radiograph was from a different 
individual, so we omitted this individual. This left 
2,706 individuals for whom all three molars were 
observable. Of these, 30 had second molars with 
roots greater than three-quarters length following 
Moorrees et al.’s (1963) scoring but without a crypt 
formed for the third molar. These individuals were 
omitted because Baba-Kawano et al. (2002) have 
shown that third molar agenesis is related to late 
tooth formation. This resulted in a final sample of 
2,676 individuals (1,325 F, 1,351 M). Figure 1 shows 
the age distribution for these individuals.

The first and second molars were scored by the 
fourth author using the Moorrees et al. (1963) sys-
tem, with the addition of two stages (crypt absent 
and crypt present) prior to cusp initiation. The final 
scoring was thus 1 = no crypt, 2 = crypt, 3 = cusp 
initiation, 4 = cusp coalescence, 5 = cusp occlusal 
outline complete, 6 = crown half complete, 7 = 
crown three-quarter complete, 8 = crown complete, 
9 = root initiation, 10 = root cleft formation, 11 
= root one-quarter complete, 12 = root one-half 
complete, 13 = root three-quarter complete, 14 
= root complete, 15 = root apex half complete, 
and 16 = root apex complete. In our sample, all 16 
stages were observed for the second molar; for the 
first molar the earliest stage observed was stage 6 
(crown half complete).

Testing the Univariate Probit Models
Konigsberg et al. (2016) describe a Lagrange multi-
plier test (Bera et al. 1984; Johnson 1996) that can 
be used to determine whether a univariate probit 
model adequately represents the age progression 
for an ordinal categorical trait. We used this test on 
the straight scale of age (not logged) to test whether 
the univariate probit gives an adequate goodness 
of fit for the first and second molars separately in 
females and males. We separated the sample into 
females and males because of the known sexual 
dimorphism in tooth development.

Bivariate Ordered Probit Model
Using the first and second molars, it is possible to 
fit a bivariate ordered probit model (Greene and 
Hensher 2010: 291–294). This model can be fit using 
BIOPROBIT (Sajaia 2008) in Stata (StataCorp 2019). 

FIGURE 1. Age distribution of the 
females and males included in 
this study.
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these cross-validations, as well as further explana-
tion on the procedure.

Prior and Posterior Probabilities
As we point out in Konigsberg et al. (2019), the 
age threshold problem generally has an implicit 
prior probability density. Hillewig et al. (2013) 
used an explicit uniform prior of 16–26 years for 
an age threshold of 18 years. This is an informative 
prior, because (26–18)/(18–16) = 4.0, so the prior 
odds that an individual is between ages 18 and 26 
(and thus older than age 18) versus between ages 
16 and 18 (and thus younger than age 18) are 4.0. 
Sironi and Taroni (2015: 131) caution against the 
use of uniform priors, noting that “posterior odds 
on the chronological age are strongly biased by the 
uniform distribution because individuals in specific 
extreme age ranges would generally not be asked to 
be examined for forensic age assessment purposes.” 
Sironi et al. (2017: e27) suggest selecting a prior 
distribution “by reasoning on the distribution of 
the ages of the persons for whom a medico-legal 
expert evaluation may be requested.” This is a dif-
ficult proposition, as the individuals for whom 
evaluations are requested will not have known ages.

We chose to use a normal distribution of age 
centered on the threshold age for the prior density. 
As we are concerned with younger age thresh-
olds, and thus a more readily discernable period 
of growth and development, we used a standard 
deviation of 0.5378, which places the 0.01% and 
99.99% values of age at 2 years below and above 
the age threshold. This tighter range contrasts with 
Konigsberg et al.’s (2019) 0.01% and 99.99% values 
of age 5 years below and above the threshold for the 
age of majority. As the prior odds are “evens,” the 
posterior odds that an individual is above versus 
below the age threshold T is

22

∫Pr (a≥T|{M1,M2})
 = 

a=T

	
π({M1,M2}|a)×f (a)da

	
(1)

Pr (a<T|{M1,M2})
	

T

	
π({M1,M2}|a)×f (a)da∫

a=2

This is in the same format as Konigsberg et al.’s 
(2019: eq. 8) univariate (single tooth) equation. The 
brace notation {M1,M2} indicates the stages for the 
first and second molars, and π({M1,M2}|a) indicates 
the probability from the bivariate ordered probit of 
being in the given stages at exact age a. The symbol 
f(a)is the normal probability density for exact age 

a testing sample that gave the highest probability 
of the appearance of the first and second molar 
stages. This is equivalent to a Bayesian estimate of 
age with a uniform prior.

Individuals in the earliest stages for both mo-
lars have posterior densities of age that rise to the 
left boundary, and individuals in the last stages 
for both molars similarly have posterior densities 
that rise to the right boundary. While we always 
included these individuals in the training sample, 
we excluded them from the testing sample because 
their maximum likelihood age estimates would go 
to a boundary. All other individuals were randomly 
permuted and then divided into 10 samples of 
(approximately) equal size. For the females, there 
were 7 individuals in the earliest stages of the two 
molars and 418 in the latest stage. All 10 of the 
cross-validation testing sets consequently had 90 
individuals. For the males, there were 12 individuals 
in the earliest stages of the two molars and 354 in 
the latest stages. Five of the cross-validation testing 
sets consequently had 98 individuals and five had 
99 individuals.

The cross-validations proceeded by taking nine 
of the sets and combining these individuals with 
the individuals in the earliest and latest tooth stages 
to form a training sample. The bivariate ordered 
probit model was then estimated by constrained 
maximum likelihood (with constraints being the 
ordering of the intercepts) using “constrOptim.
nl” in the package “alabama” (Varadhan 2015) in R 
(R Core Team 2020). We used Fisher’s z-transform 
(Bond and Richardson 2004) so as to not require 
constraints at –1 and 1 for the residual polychoric 
correlation between tooth stages. This transforma-
tion is z = arctanh(r), which can be back converted 
to r = tanh(z). Finally, the training sample models 
formed from the nine data sets were applied to each 
of the 10 test data sets. Table 1 gives the layout for 

Table 1. Layout for the 10-fold Cross-validations

Group

Earliest 
Stages Sample Latest Stages

M1 = Cr.5,
M2 = no crypt 1 2 3 4 5 6 7 8 9 10 M1 = A.c

M2 = A.c

Female 7 90 90 90 90 90 90 90 90 90 90 418

Male 12 98 98 98 98 98 99 99 99 99 99 354

Abbreviations: M1, M2, first and second molars; no crypt, stage 1; Cr.5, crown half complete (stage 6); A.c, root apex 
complete (stage 16).
aSamples 1–10 are randomized with respect to age. For example, for test sample 1 in females (n = 90), the training sample 
consisted of the 7 individuals in the earliest tooth stages, the 418 individuals in the latest tooth stages, and the individuals 
in training samples 2–10.
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findings agree with those from Liversidge (2011), 
who showed sexual dimorphism in the timing of 
dental development but similar dental develop-
ment in White and Bangladeshi samples of the 
same sex.

Table 4 shows the parameter values for females 
and males estimated from the age main effect 
model run separately by sex using BIOPROBIT 
in Stata. The parameters are listed following a 
typical transition analysis format, which gives the 
mean transition ages, or mean age at attainment 
for each stage, followed by the common standard 
deviation for each tooth by sex and the residual 
correlation coefficient between M1 and M2 for each 
sex. Using these parameters to calculate a bivariate 
integral requires dividing the transition means by 
their associated standard deviation. For example, 
consider a male who is in the crown half complete 

a. The numerator integration is up to 22 years, as 
this is well past the upper tail of the prior density. 
Similarly, denominator integration starts at 2 years, 
as this is well below the lower tail of the prior 
density. Taking the posterior odds from Equation 
(1), the posterior probability that an individual 
is over the threshold age can be found from the 
usual equation PO/(1+PO), where PO represents 
the posterior odds from Equation (1).

Results

The goodness-of-fit p-values from the Lagrange 
multiplier test in females are 0.8158 and 0.3305 
for the first and second molars, respectively, and in 
males are 0.2169 and 0.2199. As all these p-values > 
0.10 on the raw scale of age, it appears that the ages 
at transition between adjacent stages are normally 
distributed. Adopting a cumulative probit on the 
raw scale of age thus is appropriate. Table 2 shows 
the BIC for the 10 different bivariate ordered probit 
models of the effects of age, sex, and/or ethnicity 
on tooth stage. The total number of parameters 
for the model with no effects is 26, consisting of 10 
intercepts for the first molar (to represent 11 stages), 
plus 15 intercepts for the second molar (to repre-
sent 16 stages), plus one correlation. The model 
with age as a single effect adds two slopes (one for 
each tooth), bringing the total to 28 parameters, 
as shown in the bottom row of Table 2. The other 
models listed in Table 2 have greater numbers of 
parameters because of the slopes added for each 
main effect and each interaction. The model with 
the lowest BIC (i.e., the “best” model) is the model 
that contains only the main effects of age and 
sex; this model has two more parameters (for the 
first and second molar slopes on sex) than the 
age model.

Table 3 shows similar BIC comparisons subdi-
vided by sex. The table considers the model with 
only age as a main effect, the model with age and 
ethnicity as main effects, and the model with these 
main effects and an interaction between age and 
ethnicity. These results show that the model with 
only age as a main effect has the lowest BIC value 
and thus represents the best model for both males 
and females when analyzed separately by sex. This 
suggests that ethnicity does not measurably impact 
age at attainment for these tooth stages. These 

Table 2. Bayesian Information Criteria (BIC) 
for the Entire Sample

Model
Number of 
Parameters 

(k)
lnLK BIC

Age*ethnicity*sex 40 –4310.7924 8937.268

Age+ethnicity*sex 34 –4320.8680 8910.067

Age*ethnicity+sex 34 –4319.4462 8907.223

Age*sex+ethnicity 34 –4323.7843 8915.899

Age+sex+ethnicity 32 –4325.8821 8904.311

Age*ethnicity 32 –4353.6817 8959.910

Age*sex 32 –4324.1296 8900.806

Age+ethnicity 30 –4359.5199 8955.802

Age+sexa 30 –4326.2032 8889.169

Age 28 –4359.8920 8940.762
BIC = –2 × lnLK + ln(2676) × k, where lnLK is the log-likelihood of the 
model and 2,676 is the sample size.
aAge+sex gave the smallest BIC.

Table 3. Bayesian Information Criteria (BIC) 
for Females Only and Males Only

Model
Number of 
Parameters 

(k)
lnLK BIC

Females (n = 1,325)

Age*ethnicity 32 –2022.0711 4274.196

Age+ethnicity 30 –2023.1207 4261.916

Agea 28 –2026.5845 4254.466

Males (n = 1,351)

Age*ethnicity 32 –2273.0752 4776.826

Age+ethnicity 30 –2280.2027 4776.663

Agea 28 –2281.7588 4765.358
BIC = –2 × lnLK + ln(n) × k, where lnLK is the log-likelihood of the model 
and n is the sample size.
aAge gave the smallest BIC in both samples.
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“folds” of the cross-validation that did not include 
the actual case.

Figure 2B is an example of how an outlier—an 
individual who is developmentally advanced or de-
layed for their chronological age—will fall outside 
the estimated age distribution. This individual, a 
female that had the second highest squared differ-
ence between the true and the estimated age in the 
10-fold cross-validation, had a true age of 9.8 years, 
although her first molar had the root apex complete 
and her second molar had a complete root. The 
maximum likelihood age estimate (12.8 years) is 
above the true age of 9.8 years, and the 95% highest 
posterior density bounds of 10.9–14.8 years does not 

stage for the first molar and crypt formed for the 
second molar. This individual’s limits of integration 
for the first molar would be negative infinity and 
1.919/0.924; for the second molar they would be 
2.296/0.989 and 2.997/0.989. The means for the 
bivariate normal would be the given age divided 
by each standard deviation (0.924 and 0.989), and 
the residual correlation would be 0.660.

As an example of how to apply the parameter 
values from Table 4, Figure 2A shows a posterior 
density of estimated age for a 10-year-old female 
with her first molar in the root apex complete 
stage and her second molar in the root one-quarter 
complete stage. The posterior density was found 
using a uniform prior, so the original likelihood 
function is divided by the integral of the likelihood 
function. The maximum likelihood estimate for 
the age is 9.92 years, close to the true age of 10 
years. The 95% highest posterior density bounds, 
found using the “hpd” function in the R package 
“TeachingDemos” (Snow 2020), are 8.05–11.84 
years. These calculations were done using the nine 

Table 4. Bivariate Ordinal Probit Parameter 
Values for Females and Males by Tooth: 
Mean Age at Attainment (Years) for Each Stage

Parametera Female Male

M1 M2 M1 M2

No crypt/crypt — 2.264 — 2.296

Crypt/Cu.in — 3.137 — 2.997

Cu.in/Cu.co — 3.782 — 3.976

Cu.co/Cu.oc — 4.601 — 4.881

Cu.oc/Cr.5 — 5.073 — 5.373

Cr.5/Cr.75 1.818 6.114 1.919 6.341

Cr.75/Cr.c 2.717 6.911 2.923 7.433

Cr.c/R.i 3.239 7.867 3.489 8.202

R.i/R.cl 3.761 8.481 3.998 8.861

R.cl/R.25 4.479 9.236 4.811 9.540

R.25/R.5 5.266 10.232 5.457 10.469

R.5/R.75 6.265 11.139 6.508 11.496

R.75/R.c 7.303 12.373 7.657 12.889

R.c/A.5 7.948 13.190 8.493 13.527

A.5/A.c 9.103 14.673 9.713 14.776

Standard deviation 0.948 0.978 0.924 0.989

Correlation 0.671 0.660
Standard deviation indicates common standard deviation for each tooth by 
sex. Correlation indicates the first (M1)–second (M2) residual correlation for 
females and males, respectively.
aStages: Cu.in, cusp initiation (stage 3 in this study); Cu.co, cusp 
coalescence (stage 4); Cu.oc, cusp outline complete (stage 5); Cr.5, crown 
half complete (stage 6); Cr.75, crown three-quarter complete (stage 7); 
Cr.c, crown complete (stage 8); R.i, root initiation (stage 9); R.cl, root cleft 
formation (stage 10); R.25, root one-quarter complete (stage 11); R.5, root 
half complete (stage 12); R.75, root three-quarter complete (stage 13); R.c, 
root complete (stage 14); A.5, root apex half complete (stage 15); and A.c, 
root apex complete (stage 16).

FIGURE 2. (A) Posterior density of age for an actual 10-year-
old female with the first molar in the root apex complete stage 
and the second molar in the root one-quarter complete stage. 
(B) Posterior density of age for an actual 9.8-year-old female 
with the first molar in the root apex complete stage and the 
second molar in the root complete stage. Dashed lines, actual 
age; solid lines, maximum likelihood estimate (MLE; highest 
posterior density); gray region, 95% highest posterior density.

A

B
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a 10-year-old female with her first molar in the 
root apex complete stage and her second molar in 
the root one-quarter complete stage. Because the 
prior density is symmetric around the threshold, 
the Bayes factor is also the posterior odds. This 
individual is 10 years old and has the dental devel-
opment of a typical 10-year-old, so the posterior 
odds are near “evens” at 0.9311. Given a case like 
this, the calculated posterior probability that this 
individual is older than 10 years is 0.4822.

Figure 4B shows a 12-year-old male who had 
a first molar with the root apex complete and a 
second molar in the root three-quarters complete 
stage. The posterior odds that an individual at 
this developmental stage would be over 10 years 
old as opposed to under 10 years old is 4.7696, 
with a posterior probability of being older than 10 
years equal to 0.8267. Figures 4C and 4D show the 
same case as in Figure 4B but with increasingly 
diffuse priors: Figure 4C uses a standard deviation 
of 0.8067 years (0.01% and 99.99% values of 7 and 
13 years), whereas Figure 4D uses a standard devia-
tion of 1.3444 (0.01% and 99.99% values of 5 and 
15 years). With these increasingly diffuse priors, the 
posteriors odds are 8.587 (Figure 4C) and 18.3278 
(Figure 4D). These posterior odds translate into 
calculated posterior probabilities of being greater 
than 10 years old of 0.8957 (Figure 4C) and 0.9483 
(Figure 4D).

Table 5 summarizes the results from Figure 
4, listing the actual age and sex of each case with 
their observed tooth stages, the prior standard 
deviations, the 0.01% and 99.9% boundary ages (in 
years) for the prior distribution, and the posterior 

include the true age. Again, the model used here 
was from the nine “folds” of the cross-validation 
that did not include the actual case. Of the 900 
females split into groups of 90 individuals each for 
the 10-fold cross-validation, 848 individuals had 
their actual ages within the estimated 95% highest 
posterior densities. This is 94.22% of individuals, 
close to the expected 95%. The comparable figure 
for the 985 males in the cross-validation study is 
936 (95.02%) individuals within the estimated 
95% highest posterior densities.

Figure 3 shows estimated ages against true ages 
using the 10-fold cross-validation for females and 
for males separately; Figure 3A indicates the outlier 
individual shown in Figure 2B. The figure shows 
that the estimates of age appear to be unbiased, 
because the lines of identity evenly divide the 
clusters of points. Figure 3 also shows that the age 
estimates are heteroskedastic, with the spread of 
residuals increasing with increasing age. This is to 
be expected because variation in acceleration or 
deceleration of growth or development increases 
after birth.

Figure 4 illustrates the posterior probability 
that an individual is older than 10 years under dif-
ferent scenarios. The posterior probability that an 
individual is over the threshold is calculated using 
Equation (1). Figures 4A and 4B use a prior density 
for age with a mean of 10 years and a standard 
deviation of 0.5378. As described in the meth-
ods, this standard deviation places the 0.01% and 
99.99% values of age at 2 years above and below 
the threshold age, so from 8 to 12 years. Figure 
4A shows the same individual as from Figure 2A, 

FIGURE 3. Estimated age plotted 
against true age for females 
(A) and males (B) using 10-fold 
cross-validation. The triangle 
in A shows the individual from 
Figure 2B; diagonal lines, lines 
of identity.

A B
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problem is that it requires specifying loss functions 
and the relative costs of misclassifications.

Discussion

The analytical approach we used in this study has 
distinct advantages over previously used methods 
to estimate age with respect to legally defined 
thresholds, but our results also highlight issues with 
relying solely on dental (and skeletal) age estima-
tors. The principal advantages of our approach are 
that it is Bayesian based, generates clear statements 
of probabilities, and is flexible. The models used 
here allow specification of prior age distributions, 
selection of different relevant age thresholds, and 
the use of multiple traits or observations. This is 
particularly relevant to the minimum age of crimi-
nal responsibility (MACR), which continues to vary 
by country and which has not been addressed in 
the age estimation literature to the same extent as 

probability that the case is at or older than 10 years. 
These posterior probabilities were obtained by 
converting the posterior odds ratios as described 
in the methods. The posterior probability that an 
individual is at or over 10 years of age from this 
table represents an evidentiary statement. The pos-
terior probabilities also can be used in a decision 
theoretic framework (Sironi et al. 2020) to decide 
whether or not an individual is at or over 10 years 
of age. While this seems an attractive approach, the 

FIGURE 4. (A) Prior density (gray 
region) and likelihood curve for 
a female with an actual age 10 
years, a first molar in the root 
apex complete stage, and a 
second molar in the root one-
quarter complete stage, using 
a prior density for age with a 
mean of 10 years and a standard 
deviation of 0.5378. (B–D) A male 
with an actual age of 12 years, 
a first molar in stage root apex 
complete, and a second molar in 
the root three-quarter complete 
stage, with a prior that runs from 
age 8 to age 12 (B), from age 7 to 
age 13 (C), and from age 5 to age 
15 (D). Dotted horizontal lines, 
integral of the prior times the 
likelihood up until age 10 years; 
dashed horizontal lines, integral 
past age 10 years.

BA

C D

Table 5. Summary of Scenarios for Figure 4A–D

Scenario Sex Actual Age M1 M2 Prior SD Normal 
Rangea Posteriorb

Fig. 4A Female 10 A.c R.25 0.5378 8–12 0.4822

Fig. 4B Male 12 A.c R.75 0.5378 8–12 0.8267

Fig. 4C Male 12 A.c R.75 0.8067 7–13 0.8957

Fig. 4D Male 12 A.c R.75 1.3444 5–15 0.9483
aThe 0.01% and 99.99% ages for a normal distribution centered on 10 years that serves as the prior distribution.
bThe posterior probability that an individual is <ME>10 years of age.

HB 93.1 interior [w].indd   36HB 93.1 interior [w].indd   36 9/7/21   1:42 PM9/7/21   1:42 PM



Age Threshold Problem: Molar Development  ■  000

(Heard and Rubin-Delanchy 2018), although the 
assumption of independence of p-values required 
by many of these methods is unlikely to be the 
case here. Lucas et al. (2014) also introduced a 
two-by-two tabling method similar to that seen in 
more recent studies that use dental development 
to assess MACR.

The four more recent studies (Balla et al. 2019; 
Cameriere et al. 2018; Ravi et al. 2020; Thomas et 
al. 2021) all used some form of two-by-two tabling 
of actual age at or above versus below a threshold 
against the number of individuals that fall above 
or below some cut-point for an age indicator. This 
two-by-two tabling approach suffers from three 
problems. First, it does not place a higher probabil-
ity on being above the age threshold for individuals 
who are further above the cut-point value of some 
indicator. Second, the two-by-two tabling approach 
is specific to the age threshold. For age-of-majority 
problems, which are generally age 18, this is not a 
relevant problem. In contrast, we have seen that the 
MACR varies widely around the globe. Finally, as 
we previously pointed out (Konigsberg et al. 2019), 
the two-by-two tabling method largely depends 
on the age distribution of the reference sample. 
Thus, our study appears to be the first to properly 
address the problem of estimating from dentition 
probabilities of being at or above age thresholds 
relevant to the MACR.

Unlike the previous studies, the approach we 
take here avoids influence of the reference sample 
age distribution, frames probabilities in a way that 
treats dental development as a function of age, and 
appropriately deals with multiple indicators. How-
ever, our results also highlight issues with relying 
solely on dental (and skeletal) age estimators. Many 
of these issues stem from the less than perfect 
relationship between age estimators and actual age, 
due to individual variability in developmental rates, 
error associated with sampling and age estimation 
methods, and the potential impacts of sex, ethnic-
ity/population membership, and other factors on 
developmental trajectories. Below we specifically 
consider these issues with respect to variability in 
dental development and age estimators, the call for 
population-specific standards, and the UN stance 
against using skeletal and dental indicators for 
assessing MACR.

One consequence of the imperfect relation-
ship between estimated and actual age is that the 

has the legal age of majority. Despite considerable 
discussion about using third molar development to 
assess whether an individual has reached the legal 
age of majority (Acharya 2011; Akkaya et al. 2019; 
Cameriere et al. 2008; Corradi et al. 2013; De Luca 
et al. 2014; Galić et al. 2015; Liversidge and Marsden 
2010; Lucas et al. 2016; Márquez-Ruiz et al. 2017; 
Sironi et al. 2018; Streckbein et al. 2014; Uys et al. 
2018), comparatively little work has been done on 
dental development as a marker for whether or 
not an individual has reached MACR (Balla et al. 
2019; Cameriere et al. 2018; Lucas et al. 2014; Ravi 
et al. 2020; Thomas et al. 2021; Yadava et al. 2011).

All six previous studies that used dental devel-
opment to assess MACR, unlike the approach taken 
here, adopted methods influenced by the reference 
sample age distribution (i.e., the problem of age 
mimicry). The earliest of these studies (Yadava et 
al. 2011) focuses on the 10-year threshold but does 
not actually calculate the probability of being equal 
to or older than 10 years as opposed to less than 10 
years. Instead, the study attempted to estimate ages 
using random-effects meta-analysis, in which each 
tooth stage observed in an individual is assigned a 
mean age-within-stage and a standard error of the 
mean based on a reference sample. Each mean is 
weighted by the inverse of the sum of the squared 
standard error and an estimated common variance 
based on divergence between the means. The mean 
age-within-stage thus depends on both develop-
ment and the reference sample age distribution. 
Additionally, the study lacks a statistically sound 
way to evaluate estimated age ranges relative to 
an age threshold.

Lucas et al. (2014) also focused on the 10-year 
threshold but attempted to estimate the probability 
that an individual is at or older than 10 years. To do 
so, they integrated normal distribution functions 
up to 10 years using the means and standard devia-
tions of age within tooth stages in a way that does 
not account for influence of the reference sample 
age distribution. Although not clearly described, 
they also introduced a series of different weightings 
and mishandled how they combined probabilities. 
The study first assumed that the probability values 
“are of equal importance” (Laird and Mosteller 
1990: 20), which amounts to a simple averaging of 
the p-values. They also included zero probabilities 
from unobserved teeth in their averaging and ig-
nored accepted methods for combining p-values 
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reference sample and a Bayesian approach (Braga 
et al. 2005; Corron et al. 2018). These two strategies, 
both taken here, address the issues of small sample 
effects, which may make two reference samples 
appear different even when drawn from the same 
population, and age distribution effects, which can 
produce apparent differences between samples 
even when the development of individuals at the 
same age is identical. Sample specificity, and pos-
sibly population specificity, also can be ameliorated 
by ensuring that the reference sample includes 
individuals from the same source population as 
the case of interest. Our sample is not globally 
representative, so we cannot rule out the possibility 
of population specificity.

As noted in the introductory remarks, skeletal 
and dental indicators are not recommended in 
a transnational policy context for determining 
whether an individual is at or above the MACR, 
because of the “wide margins of error” (UN Com-
mittee on the Rights of the Child 2019: para. 34). 
The results of our study support the view that the 
inherent variability in dental age estimators limits 
the utility of such approaches when used alone to 
determine whether an individual is below or above 
the MACR. Skeletal estimates of developmental 
age (Auf der Mauer et al. 2018; Aynsley-Green et 
al. 2012; Cameriere et al. 2015; Dedouit et al. 2012; 
Ekizoglu et al. 2015, 2016; Krämer et al. 2014; Lot-
tering et al. 2017; O’Connor et al. 2014; Ottow et al. 
2017; Pinchi et al. 2014; Vieth et al. 2018; Wittsch-
ieber et al. 2014) are also limited by the difference 
between chronological and developmental age. 
However, this is not an argument for abandoning 
skeletal and dental age estimation. We instead 
advocate for using an age estimation approach, 
like that presented here, to provide an additional 
or supporting line of evidence with respect to 
actual age. The models presented here are flexible 
in accommodating different informative prior age 
distributions, number of traits, and age threshold 
values, but they are statistically structured to pro-
duce results that can be incorporated into other 
models. Because of the sequential nature of the 
Bayes theorem, the age estimates and threshold 
evaluation results generated here can be com-
bined with other forms of quantitative evidence to 
strengthen probabilistic arguments, provided that 
the other quantitative evidence is independent of 
dental development.

models presented here require broad prior prob-
abilities of age in order to achieve high posterior 
probabilities from dental developmental data that 
an individual is over a given age threshold, much as 
we found previously (Konigsberg et al. 2019). It is 
conceivable that posterior densities of age could be 
narrowed, and likelihoods sharpened, by adding in-
formation from additional teeth. However, we also 
expect that the residual correlations between teeth 
after conditioning on age will be high, particularly 
for adjacent teeth (Garn et al. 1960; Garn and Smith 
1980; Parner et al. 2002), such as those we used 
here. Controlling for this effect may severely limit 
the additional information to be gleaned from 
adding more teeth, particularly teeth within the 
same developmental field. In the present study we 
did attempt to control for extremes in individual 
variability in developmental rates by excluding 
individuals with third molar agenesis, as these in-
dividuals are generally on a slower developmental 
track (Baba-Kawano et al. 2002; Garn et al. 1963). 
Our methods and results consequently should not 
be applied to individuals with third molar agenesis.

Another consequence of the imperfect rela-
tionship between estimated and actual age is the 
call by many for population-specific age estima-
tors or standards. For example, Noll (2016: 240) 
questions whether radiological age assessments 
should be considered “junk” science and raises the 
problem of “the absence of population-specific 
standards.” The methods we present here conse-
quently may produce different results when ap-
plied to different populations. The extent to which 
dental development is population specific rather 
than sample specific is debated (Corron et al. 2018), 
with some studies finding consistent developmen-
tal differences between groups (Liversidge 2008; 
Liversidge et al. 2017) and others seeing better 
results with pooled reference samples than with 
specific ones (Braga et al. 2005; Thevissen 2013). 
Sample specificity, unlike population specificity, is 
the result of sampling strategy rather than biologi-
cal difference.

Sample specificity is the more immediate 
issue because a developmental difference between 
groups cannot be determined until the effect of 
the sampling strategies can be ruled out. What 
does consistently emerge from these studies is 
that the sample specificity of individual methods 
can be at least partially ameliorated via a large 
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