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Abstract

Modern technologies have generated big data at an unprecedented scale and speed,

which has spurred remarkable progress in high-dimensional statistical research and

offers alternative solutions to some prominent financial research questions facing the

“curse of dimensionality”. This thesis endeavors to utilize some newly developed

statistical methods to address the “curse of dimensionality” in financial research,

while providing new perspectives on the economic and financial implications. For

instance, Chapter One of this thesis addresses the “factor zoo enigma” while taking

account of high correlations observed between factors. I introduce a newly developed

machine learning method to dissect this chaotic factor zoo: the OWL estimator, which

is not only efficient in dimension reduction but also robust with correlated variables.

Chapter Two extends the econometric theory of the OWL estimator I derived in

Chapter One, and mainly concerns the underlying statistical properties of the OWL

estimator under less restrictive conditions. Furthermore, I utilize the nodewise LASSO

technique to identify and quantify the bias in the OWL estimator and I propose the

de-biased OWL estimator before deriving its asymptotic normality property. Chapter

Three employs the OWL shrinkage method in the portfolio optimization problems, to

exploit contemporaneous relations between stocks. I also develop a flexible algorithm

which can incorporate bespoke constraints on portfolio weights should investors have

any prior information on individual stocks.

This thesis covers a broad range of research areas spanning between empirical

asset pricing and econometric inferences. It contributes to the literature concerning

high-dimensional statistics, with an emphasis on the LASSO-type estimators, while

taking account of correlated variables. It also contributes to the empirical asset pricing

literature: this thesis sheds light on new perspectives of the “factor zoo enigma”, where

the importance of factor correlations is highlighted. It also enriches the literature
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pertaining to portfolio optimization problems. The OWL shrinkage method offers an

extension to the existing LASSO shrinkage method while further exploiting stocks’

contemporaneous relations.
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Introduction

Modern technologies have generated big data at an unprecedented scale and speed,

which has spurred remarkable progress in high-dimensional statistical research and

offers alternative solutions to some prominent financial research questions facing the

“curse of dimensionality”. Like many other disciplines, empirical asset pricing lit-

erature has seen an explosion of growth in factors claiming to have the explanatory

power to the cross section of the expected asset returns. Hundreds of anomaly factors

have been documented and cross-tested. However, the majority of them face intense

scrutiny for p-hacking and data-mining. Hence, the quest to find an appropriate

method to identify useful factors that drive the cross section of asset prices in high

dimensional datasets is much needed. Traditional methods such as portfolio sorting

and Fama-MacBeth regression used to find useful factors in the factor zoo suffer from

the “curse of dimensionality”. On the other hand, a new estimation method from

the machine learning literature, namely the LASSO estimator (Tibshirani, 1996) has

become a new trend in financial applications because of its efficiency in dimension re-

duction. Despite its huge success and popularity in dealing with high-dimensional big

data, the LASSO estimator is often criticized for suffering severe complications from

correlated data. Therefore, the objective of this thesis is to study high dimensional

financial problems while taking account of correlations in big data.

In Chapter One, I attempt to decipher the “factor zoo enigma” where factors are

highly correlated. I begin with a linear setup for a stochastic discount factor (SDF)

model before deriving the SDF method to estimate risk prices for factors. I show

that the SDF method and the Fama-Macbeth regression are directly related but have

different implications on redundant factors, which are defined as factors that con-

tain no pricing information but earn positive risk premiums due to the correlations

between factors. Hence, I follow Cochrane (2005) to use the SDF method to infer
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priced factors. For estimation method, I introduce a newly developed machine learn-

ing tool, the Ordered-Weighted-LASSO (OWL) estimator, together with the SDF

method, to dissect this chaotic factor zoo. The OWL estimator achieves sparsity

shrinkage and correlation identification simultaneously. Specifically, the OWL esti-

mator encompasses the LASSO shrinkage method as a special case and thus enjoys the

sparsity shrinkage property of the LASSO estimator. On the other hand, the OWL

estimator is robust to correlated factors: highly correlated variables will be identified

during estimation and will be assigned with similar coefficients by the OWL estimator

(grouping). I also study statistical properties of the OWL estimator. First, I derive

the estimation error bound and the consistency property of the OWL estimator under

a finite number of factors. Second, I move on to derive the convergence rate of the

OWL estimator with an infinite number of factors under the Gaussian assumption

and other regularity conditions. Third, I show that by introducing a thresholded es-

timator based on the OWL estimate, it achieves consistency in model selection, i.e.

the thresholded estimator can pick the factors with non-zero risk prices as the true

ones. Fourth, I derive the grouping condition under which correlated factors will be

assigned with the same coefficients. Using simulated data, I show that the OWL esti-

mator outperforms other benchmarks such as LASSO, adaptive LASSO, Elastic Net,

and OLS estimators, particularly when factors are highly correlated. For empirical

analysis, I use granular data such as the Compustat and CRSP datasets to construct

80 anomaly factors via portfolio sorting. Similarly, I use the bi-variate sorting method

to construct thousands of test portfolios, while controlling micro stocks. The empiri-

cal results reveal some interesting findings. First, the factor loading of 80 candidate

factors exhibits high correlations, which makes the traditional Fama-MacBeth regres-

sion method ill-conditioned to estimate risk premiums. Strong correlations in factor

loading will not only result in the weak factor identification problem (Kleibergen,

2009) in Fama-MacBeth regression, but also lead to distortions in the interpretation

of redundant factors. Second, micro and small stocks have a strong impact on factors’

interpretations. Micro stocks, defined as stocks whose market capitalization is smaller

than the 20 percentile of all stocks listed in the New York Stock Exchange, comprise

less than 10% of total market capitalization but constitute 56% of all common stocks

traded on NYSE, NASDAQ and AMEX. This casts doubts on applications using in-
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dividual stocks as test assets to find factors that drive asset prices in the cross section

of the stock market. Third, the OWL estimator suggests that ‘liquidity’ related fac-

tors primarily drive asset prices, and their high correlations are also identified by

the OWL estimator. However, sub-sample estimations reveal a possible time-varying

trend in factor selections during different periods. We find that ‘profitability’ and

‘momentum’ are prominent factors driving asset prices between 1980 and 2000, while

‘liquidity’ related factors become crucial determinants of the cross section of expected

asset returns between 2001 and 2017. An out-of-sample exercise shows substantial

gains in Sharpe ratios by comparing sub-samples and the full sample. Therefore, a

theoretical extension of the OWL estimator enabling time-varying parameters would

be of great interest as a future research subject, though it is not in the scope of this

thesis. On the other hand, we also compare the Sharpe ratios of portfolios constructed

using factors selected by the OWL, LASSO, Elastic Net and Fama-MacBeth estima-

tors, and find that the factor-hedged portfolios using the OWL estimation method

yield 20% to 30% higher Sharpe ratios than other benchmarks.

In Chapter Two, I focus on deriving robust inferences of the OWL estimator under

less restrictive assumptions. In Chapter One, I derived the convergence rate of the

OWL estimator under the i.i.d. Gaussian assumption. Now, in Chapter Two, I impose

a less restrictive mixing condition and allow fatter tails for variables. I first derive the

estimation error bound (oracle inequality) for the OWL estimator. Then, by utilizing

a Bernstein-type inequality and some exponential inequalities studied by Dendramis

et al. (2019) under the mixing condition, I show that the oracle inequality holds with

probability tending to one if the number of factors grows to infinity. I also derive

the closed-form formula for this probability with a finite number of factors, which

reveals that both the correlation structure and tail distribution of random variables

influence this probability. For a long while, the LASSO-type estimators have been

criticized for being biased and incapable of statistical inference. Recent developments

in the nodewise LASSO technique (see Van De Geer et al. (2014) and Kock (2016) for

example) make this task possible. Chapter Two also introduces the de-biased OWL

estimator by implementing a nodewise LASSO technique to remove biases from the

OWL estimator. I first give a detailed account of identifying and quantifying the

bias of the OWL estimator. Then I derive the asymptotic normality property under
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mixing conditions for the de-biased OWL estimator, which enables inference and

testing. Using simulated data, I find that the de-biased OWL estimator can greatly

decrease the estimation error in the OWL estimate, while including the true values

in the 95% confidence interval with satisfying rates. Empirically, I use 80 factors

constructed in Chapter One to predict returns for 15 large stocks (with no missing

data) from the Dow Jones Industrial Average index. Note that this empirical analysis

is different from Chapter One, where I investigated factors that contribute to the

cross-sectional asset prices, whereas here, I implement a lagged time-series regression

to find strong predictors for each stock’s return. I find that ‘sales’ related factors are

strong predictors for many stocks. However, the results vary substantially between

different stocks.

In Chapter Three (joint work with Kazuhiro Hiraki), we focus on the portfo-

lio optimization problem. We start from a general mean-variance efficient portfolio

optimization framework and point out the challenges and remedies that have been

proposed in the literature to improve its empirical performance. This paper extends

the norm shrinkage method of DeMiguel et al. (2009a) and a VAR(1) model im-

plemented in DeMiguel et al. (2014) to catch serial correlations between stocks. We

propose a novel norm shrinkage (the OWL shrinkage) method which explicitly exploits

contemporaneous correlations between stocks. First, we derive the grouping condi-

tions (i.e. stocks will be assigned with similar portfolio weights) in relation to stocks’

contemporaneous correlations. Second, we devise an ADMM (Alternating Direction

Method of Multiplier) algorithm and tailor it to solve the optimization problem with

the OWL shrinkage method. This algorithm is flexible to incorporate bespoke bounds

constraints on portfolio weights should investors have prior beliefs about individual

stocks. Empirically, we apply the OWL shrinkage method with various constraints

on five different asset classes, including the Fama-French 25 portfolios, S&P 500 and

S&P 100 stocks with daily and monthly returns, and randomly selected 100 and 500

stocks from the CRSP dataset with daily and monthly returns. We find strong evi-

dence that the OWL shrinkage method yields very similar portfolio weights to (but

not the same as) those of the 1/N portfolio strategy (DeMiguel et al., 2009b) due to

the grouping property, but outperforms the 1/N portfolio strategy in terms of both

the Sharpe ratio and turnovers. We also find that the OWL-based portfolio strategies
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work better in asset classes where assets exhibit higher correlations (e.g. the S&P 100

stocks with monthly returns rather than the randomly selected stocks from CRSP

dataset with daily returns).

Next, I will briefly discuss how this thesis relates and contributes to a few strands

of literature. First, this thesis contributes to the rich asset pricing literature devoted

to identifying factors that drive cross-sectional asset prices. Hundreds of factors and

anomalies have been claimed to capture and explain the cross section of expected

stock returns, see Fama and French (1992, 2015), Carhart (1997), Hou et al. (2014)

for some examples of the most celebrated factors in the asset pricing literature. Har-

vey et al. (2015) document 316 factors that have been published since the CAPM of

Sharpe (1964) and Lintner (1965) in the 1960s, and find that the majority of them

face intense scrutiny for p-hacking and data-mining. Thus, they suggest raising the

bar for testing pricing factors using the t-statistic at the cutoff value of 3 instead

of 1.96. Hou et al. (2018b) replicate 447 anomaly factors and find 64% of them are

not replicable using the traditional t-statistic, and that rises to 85% if using the cut-

off t-value of 3. Traditionally, Fama-MacBeth (FM) regression (Fama and MacBeth,

1973) is employed to find factors with significant risk premiums. However, Kleibergen

(2009) shows that the FM regression suffers from multicolinearity problems and the

standard statistical inference is distorted under correlated factors. From a different

perspective, Cochrane (2005) shows that correlated factors will lead to FM regression

incapable of removing redundant factors, which contain no pricing information but

are correlated to priced factors, and thus earn positive risk premiums. Gospodinov

et al. (2014) develop a model misspecification robust test to tackle useless factors, us-

ing a step-wise test to remove useless factors one by one. Kelly et al. (2019) propose

the instrumented principal component analysis by introducing observable character-

istics as instruments for unobservable dynamic loadings. Fama and French (2018) use

Sharpe ratio and employ the Right-Hand-Side method of Barillas and Shanken (2018)

to “choose factors”. Harvey and Liu (2017) suggest a step-wise bootstrap method to

test for factors’ ability to explain stock returns. Pukthuanthong et al. (2018) propose

a protocol to select factors: all factors should be correlated with principal compo-

nents of test assets covariance matrix. However, these methods mainly concern a
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low-dimensional setting, where the number of candidate factors is (substantially) less

than the number of observations, and they pay little attention to the correlations be-

tween factors. In this thesis, I introduce a newly developed machine learning method,

the Ordered-Weighted-LASSO estimator, which is tailored to deal with high dimen-

sional problems (the number of factors can be larger than observations, if needed)

with correlated factors. To the best of my knowledge, this thesis is the first attempt

to dissect the factor zoo while taking account of the correlations between factors.

Chapter Two of this thesis is closely related to the high-dimensional economet-

ric and machine learning literature. The LASSO estimator (Tibshirani, 1996) has

long been celebrated for achieving dimension reduction within a convex optimization

problem. Many adaptations and improvements have been made to achieve various

targets. The literature about the LASSO family evolves rapidly. To name a few,

Yuan and Lin (2006) allow the LASSO estimator to shrink variables as groups by

introducing the group LASSO estimator. Zou (2006) introduces the adaptive LASSO

by adding a consistent estimate as the adaptive weight of the LASSO penalty, mak-

ing the adaptive LASSO estimator enjoy the oracle property. Zou and Hastie (2005)

combine the LASSO and Ridge shrinkage and propose the Elastic Net estimator,

which stabilizes factor selection among correlated variables. Yet it was only recently

that the bias in the LASSO-type estimators was addressed. Belloni et al. (2014) and

Van De Geer et al. (2014) propose the double-LASSO estimator and the de-sparsified

LASSO estimator which can identify and correct the bias in the LASSO estimate. In

Chapter Two, I follow the ideas of Van De Geer et al. (2014) to implement the node-

wise LASSO technique to identify and correct the bias in the OWL estimator, before

deriving the asymptotic normality property for the bias-corrected OWL estimator.

Meanwhile, researchers have been making strenuous efforts to better understand the

asymptotic properties of the LASSO estimator and have made remarkable progress

while assuming the i.i.d. process for random variables. For instance, Kock (2016)

studies the LASSO estimator for panel data and derives the oracle inequality for the

LASSO estimator under the i.i.d. sub-Gaussian assumption. In Chapter Two, I relax

the i.i.d. assumption and replace it with a less restrictive α-mixing condition. In

addition, I also relax the sub-Gaussian assumption on tail distributions of random

variables. Instead, I leave a parameter q, which controls the fatness of tail distri-
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butions, in the formula concerning the asymptotic properties of the OWL estimator.

I utilize some exponential inequality results from Dendramis et al. (2019) to derive

the oracle inequality (i.e. the upper bound of the estimation error of the OWL esti-

mator) and show that the oracle inequality holds with probability tending to one if

the number of factors grows to infinity. Meanwhile I provide a closed-form solution

for this probability when the number of factors are finite. Therefore, Chapter Two

contributes to the high-dimensional statistical literature, where the theoretical results

of LASSO-type estimators rely on less restrictive assumptions.

Chapter Three of this thesis contributes to the voluminous literature pertaining

to portfolio optimization problems. The mean-variance efficient portfolio theory put

forward by Markowitz (1952), despite its theoretical elegance, performs poorly in

empirical applications, due to the difficulties of precisely estimating two important

ingredients in the portfolio optimization problem: the expected returns and covari-

ances. Empirical applications usually use the sample analogs of these two ingredients

in practice. Michaud (1989) looks into the “Markowitz optimization enigma” and

finds that the mean variance optimization is in fact “error maximization”: the esti-

mation errors in the sample analogs are so large that they erode all the gains from

optimization. Subsequently, many researchers have attempted to mitigate the estima-

tion errors in those sample estimates of the expected returns and covariance matrix.

Ledoit and Wolf (2003) propose a shrinkage based estimation method for the covari-

ance matrix that shrinks the sample covariance matrix to a target matrix (for instance

the identity matrix), and they find substantial gains in out-of-sample Sharpe ratio of

the minimum variance portfolio. Jagannathan and Ma (2003) suggest a simple no-

short-sale constraint on all stocks and find significant improvement in out-of-sample

Sharpe ratio for the minimum variance portfolio. They argue that the no-short-sale

constraint can effectively prevent large upward biases in the sample covariance matrix.

DeMiguel et al. (2009a) consider the LASSO shrinkage method on portfolio weights

for the minimum variance portfolio and achieve competitive Sharpe ratio compared to

other benchmarks. DeMiguel et al. (2014) implement a VAR(1) model capturing se-

rial correlations between stocks and find substantial gains in Sharpe ratio. DeMiguel

et al. (2009b) compare the naive 1/N portfolio strategy with 14 other optimization-

based portfolio strategies and find superior performance in the naive diversification
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portfolio strategy. The novel portfolio optimization method in Chapter Three of this

thesis extends the work of DeMiguel et al. (2009a) and DeMiguel et al. (2014), while

the empirical results in Chapter Three relate it to DeMiguel et al. (2009b). Specifi-

cally, the OWL shrinkage method encompasses and accounts for the sparse selection

property of the LASSO shrinkage method in DeMiguel et al. (2009a). It also explicitly

exploits contemporaneous relations between stocks, which is a nice extension of the

VAR(1) method in DeMiguel et al. (2014), which however is a reduced model and

leaves the contemporaneous correlations between stocks unexplained. On the other

hand, our empirical results reveal that the OWL-based portfolio strategies yield very

similar portfolio weights to the 1/N portfolio in DeMiguel et al. (2009b) due to the

grouping property, but outperform the 1/N portfolio strategy in both Sharpe ratio

and turnovers (transaction cost). So our OWL shrinkage method for portfolio op-

timization problems complements this strand of literature and offers an alternative

interpretation for the naive 1/N portfolio strategies.
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Chapter 1

Dissecting the Factor Zoo: A

Correlation-Robust Approach

1.1 Introduction

Hundreds of anomaly variables have been proposed in the past few decades, claim-

ing explanatory power to the cross section of average returns. Yet many of them

are found spurious and not replicable, see Harvey et al. (2015), Mclean and Pontiff

(2016) and Hou et al. (2018b) for a detailed discussion. Cochrane (2011) dubs this

phenomenon the “factor zoo” and further argues that using characteristics related fac-

tors to explain the cross section of average returns is in disarray. He emphasizes the

importance of finding factors that can provide independent information about average

returns, and of distinguishing factors that can be summarized by others. Fama and

French (2008) survey empirical methods for dissecting anomalies and point out that

portfolio sorting and Fama-MacBeth regression (Fama and MacBeth, 1973) are tra-

ditionally employed to find useful factors that drive asset prices. However, in the zoo

of factors, portfolio sorting will encounter the curse of dimensionality, while Fama-

MacBeth regression will suffer from multicollinearity.1 Kleibergen (2009) cautions

that the estimation of risk premium that results from a Fama-MacBeth regression is

sensitive to collinearity of factor loadings. In the most recent development, a new

strand of literature using machine learning techniques to solve high dimensional fi-

1In particular, for the second stage Fama-MacBeth regression, factor correlations measured by
factor loadings are usually much higher than those measured by their time series (see Section 1.4 for
a detailed illustration).
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nancial problems attracts great attention. In particular, using the LASSO estimator

(Tibshirani, 1996) to choose factors becomes the new mainstream in finance literature.

However, it is well known that the LASSO estimator performs poorly when covariates

are correlated. Yet the mere fact that correlation prevails in the factor zoo brings

in severe complications: Kozak et al. (2020) and Figueiredo and Nowak (2016) show

that, with correlated factors, LASSO tends to yield unstable estimate and wrongly

shrink off some useful factors. Correlation in high dimensionality deepens the “factor

zoo enigma”, so Cochrane (2011) points out: “How to address these questions in the

zoo of new variables, I suspect we will have to use different methods.”

This paper introduces a newly developed machine learning tool, the Ordered-

Weighted-LASSO (OWL), to dissect this chaotic factor zoo. OWL permits correlation

among explanatory variables, which distinguishes it from standard machine learning

tools like LASSO. Factor correlations are common in high dimensional big data and

they are of great importance in financial implications. For instance, Asness et al.

(2013) find a negative correlation between ‘momentum’ and ‘value’ factors, which

leads to superior portfolio performance. Cochrane (2005) also points out that factor

correlations jeopardize the implications of using risk premiums to infer priced factors.

Cochrane (2011) shows that to determine which factors are useful in explaining the

cross section of average returns, we need to check whether expected returns line up

with the covariances of returns with factors. In other words, it is the covariance mea-

sured by factor loadings, which is typically highly correlated, that really matters to

infer priced factors. Hence, in the quest to find useful factors to explain the cross

section of average returns, factor correlations play an important role and should not

be neglected.

The main empirical question of this paper is, in the high dimensional and po-

tentially highly correlated factor zoo, how to select useful factors and disentangle

correlations between factors? OWL provides a unified solution to this question. We

first show that the OWL estimator is consistent with finite factors. Then, we allow the

number of factors to diverge and derive the convergence rate of the OWL estimator

before we devise a thresholded estimator that is consistent in model selection. We

also derive conditions under which correlated factors will be grouped together. This

allows for factor-correlation identification and sparsity shrinkage, simultaneously.
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In a Monte Carlo experiment, we consider 90 candidate factors (K = 90) with

correlations taken into account. We compare OWL with LASSO, Elastic Net, adaptive

LASSO, and OLS estimators. We do this experiment in three settings: one with

the number of test assets marginally larger than the number of factors (N = 100);

one with a large number of test assets (N = 1000, N � K) which represents a

low-dimensional setting; and finally, one with a small number of assets (N = 70,

N < K) which represents a high-dimensional setting. In general, OWL is the best

performer, especially when factors are correlated. Adaptive LASSO performs well in

the low-dimensional setting, but performs the worst in the high-dimensional setting:

its performance depends heavily on a consistent estimator as an adaptive weight.

LASSO, on the other hand, typically performs worst, especially when factors are

correlated. LASSO estimator is severely affected by factor correlations, producing

very unstable estimation and wrongly shrinking some useful factors to zeros, which is

also pointed out by Kozak et al. (2020) and Figueiredo and Nowak (2016). Although

Elastic Net does improve on the performance of LASSO when factors are correlated,

stabilizing factor selections and reducing estimation errors, it is still substantially

outperformed by OWL. This experiment shows that in the high-dimensional factor

zoo where factors are correlated OWL is the best candidate.

Empirically, we initially consider 100 firm characteristics documented in Green

et al. (2017), using CRSP and Compustat datasets, from January 1980 to December

2017. We first construct anomaly factors of each characteristic according to Fama

and French (1992, 2015).2 We obtain 80 anomaly factors. For test portfolios, we

follow suggestions of Cochrane (2011), Lewellen et al. (2010) and Feng et al. (2020)

by forming bi-variate sorted portfolios, and then combine them together as the grand

set of test portfolios.3

The empirical results complement and challenge some common stances in asset

pricing literature. First, we find moderate correlation among 80 anomaly factors,

measured by their time series. Some beta related anomalies are highly correlated with

2We first discard any characteristics having more than 40% missing data. We then use non-micro
stocks to form decile portfolios at each point of time. If at any point of time there are insufficient
stocks to form the decile portfolios, we delete the characteristic.

3For robustness check (included in the online appendix), we also consider other methods of con-
structing test portfolios while controlling for micro stocks, and we find that OWL is consistent in
picking useful factors when a reasonable number of micro stocks are removed.
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other anomalies, including accruals, profitability, volatility and liquidities.4 15% of the

correlation coefficients are higher than 0.5 (absolute value). However, that rises to 68%

when factor correlations are measured by their factor loadings. So Kleibergen (2009)

raises concerns about the multicollinearity issue for the Fama-MacBeth estimator.

Furthermore, from a different perspective, using Fama-MacBeth regression to test for

factor risk premiums when factors are correlated is ill-positioned: it is inadequate to

remove redundant factors, which contain no pricing information but earn positive risk

premiums (see Section 1.2.1 for a detailed illustration). Cochrane (2011) emphasizes

the importance of finding factors that can provide independent information about

average returns and of distinguishing from factors that can be summarized by others

(i.e., redundant factors). These alarmingly high correlations among factors echo his

concerns: in the zoo of variables, we should consider new methods.

Second, treatment of micro stocks is crucial for empirical interpretation. OWL

identifies ‘market’ as the primary factor for the cross section of asset returns. This

finding confirms the empirical evidence by Harvey and Liu (2017). However, when

micro stocks are included, the importance of the market factor plummets. Micro

stocks, although only taking up less than 10% of market capitalization, constitute

56% of all stocks in the database. That rings alarms about methodologies using

individual stocks as test assets: they may bias results because of the abundance of

small stocks and their inferiority in aggregated market capitalization. Hence, we adopt

and advocate the use of sorted and pooled portfolios as the grand set of test portfolios

as in Feng et al. (2020) while controlling micro stocks. Sorted portfolios can efficiently

avoid: 1) the “error in variable” bias; 2) missing data problems from individual stocks;

3) problems caused by inferior stocks that little represent the market but dominate

the estimation result.

Third, liquidity related factors are the main drivers of the variation of cross sec-

tional average returns. ‘Illiquidity’ (Amihud, 2002) is the most important anomaly

factor, followed by ‘standard deviation of traded dollar volume’ (Chordia et al., 2001).

Their high correlation is identified by OWL. In addition, some ‘asset growth rate’,

‘profitability’ and ‘investment’ related factors are also significant to explain the cross

section of average returns. This finding is consistent with Hou et al. (2018a): they

4For this reason, Green et al. (2017) discard beta related anomalies in their factor library.
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add ‘asset growth rate’ in their q4 factor model and propose the q5 factor model.

Interestingly, the ‘size effect’ disappears during the 1980-2000 period, which is well

documented (Amihud, 2002; van Dijk, 2011; Asness et al., 2018). However, it be-

comes evident again after removing more small stocks (smaller than 40 percentile of

the NYSE listed), implying that the vanishing size effect is likely to be caused by

some small “junk” stocks. Once “junk” stocks are removed, the size effect resurfaces,

which echoes the discovery by Asness et al. (2018): size matters, if you control your

junk.

Fourth, from an out-of-sample (OOS) perspective, we follow a similar procedure

to Freyberger et al. (2020) to conduct the OOS exercise to compare hedged portfo-

lios using factors selected by either the OWL, LASSO, Elastic Net or Fama-MacBeth

estimator. We find that the hedged portfolio using OWL selected factors produces

20% to 30% higher out-of-sample Sharpe ratios than other methods. Meanwhile, sub-

sample estimations reveal that liquidity related factors are particularly evident after

2000, while before that (1980 - 2000) ‘profitability’ and ‘momentum’ are the most

important factors to drive asset prices, indicating a shift in economic characteristics.

Furthermore, the Sharpe ratios rise substantially while the skewness and kurtosis of

portfolio returns are reduced greatly in sub-samples compared to the full sample es-

timation. This trend urges us to caution about a possible time-varying nature in

prominent factors that drive asset prices.

Related literature

This paper naturally builds on a series of papers devoted to identifying pricing factors.

Fama and French (1992) propose the three-factor model, consisting of a market return

factor, a size and a value factor, that achieves enormous success. Carhart (1997) adds

the momentum factor in Fama-French’s three factor model that makes it the new

standard among practitioners. Hou et al. (2014) explore the investment perspectives

and propose the q4 model which includes an investment factor, a profitability factor,

and a size factor along with the market factor. Fama and French (2015) develop their

own version of investment and profitability factors and expand the three-factor model

to a five-factor model. Fama and French (2018) argue that an extra ‘momentum’

factor increases Sharpe ratio according to a new test method proposed by Barillas
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and Shanken (2018), and they suggest a six-factor model. Now after over half a

century since the CAPM of Sharpe (1964) and Lintner (1965), hundreds of anomaly

factors have been proposed, claiming explanatory power to the cross section of average

returns. Harvey et al. (2015) document 316 factors and find most of them are the

result of data-snooping. Hou et al. (2018b) try to replicate 447 anomaly factors, and

find 64% to 85% of them are not replicable.

This paper also relates to a series of econometric papers devoted to asset pricing

model testing. Fama and MacBeth (1973) put forward the two-pass regression method

that has now become a standard practice in finance. Green et al. (2017) use Fama-

MacBeth regression to find significant factors for the US stock market. Lewellen

(2015) studies the cross sectional properties of return forecasts derived from the Fama-

MacBeth regression and finds that forecasts vary substantially across stocks and have

strong predictive power for actual returns. Kan and Zhang (1999) caution that the

presence of useless factors bias test results, leading to a lower than normal threshold

to accept priced factors. Gospodinov et al. (2014) develop a model misspecification

robust test to tackle spurious factors, using a step-wise test to remove useless factors

one by one. Kelly et al. (2019) propose the instrumented PCA (IPCA) analysis

by introducing observable characteristics that instrument for unobservable dynamic

loadings. Fama and French (2018) use Sharpe ratio and employ the Right-Hand-

Side method of Barillas and Shanken (2018) to “choose factors”. Harvey and Liu

(2017) suggest a step-wise bootstrap method to test for factors.5 Pukthuanthong

et al. (2018) propose a protocol to select factors: all factors should be correlated with

principal components of test assets covariance matrix. However, our paper differs from

other approaches by allowing correlations among factors, which is little discussed

in the literature. The OWL estimator achieves sparsity selection and correlation

identification simultaneously.

This paper also contributes to the rapidly growing literature using machine learn-

ing techniques to solve financial problems. Tibshirani (1996) proposes the LASSO

estimator which achieves dimension reduction within a convex optimization problem.

Since then, many adaptations and improvements have been made to achieve vari-

5 In Harvey and Liu (2017), at each step they pick a factor that has the best statistics (for
instance, the t-stat), then bootstrap the null hypothesis that factor has no explanatory power by
orthogonalizing asset returns with the factor.
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ous targets. The literature about the LASSO family evolves rapidly. Yuan and Lin

(2006) allow LASSO to shrink variables as groups by introducing the group LASSO.

Freyberger et al. (2020) employ the adaptive group LASSO to find pervasive factors

to explain the cross section of average returns. Zou (2006) introduces the adaptive

LASSO by adding a consistent estimator as the weight of LASSO which makes the

adaptive LASSO estimator consistent and enjoys the oracle property. Bryzgalova

(2015) modifies the adaptive LASSO using factor loadings from the first pass Fama-

MacBeth regression as the adaptive weight to estimate risk premiums in the second

pass regression. Feng et al. (2020) adopt the double selection LASSO of Belloni et al.

(2014) to “tame” the factor zoo. Fan and Li (2001) propose the smoothly clipped

absolute deviation (SCAD) estimator so that it bridges hard-thresholding and soft-

thresholding. Ando and Bai (2015) employ SCAD to find Chinese stock predictors.

Zou and Hastie (2005) combine the `1 and `2 norm and propose the elastic net (EN),

which stabilizes factor selection among correlated variables. Kozak et al. (2020) em-

ploy EN in a Bayesian framework and find that sparse principle components can

largely explain the cross section of the average returns. Gu et al. (2020) compare

popular machine learning techniques used in empirical asset pricing literature and

demonstrate large economic gains using regressing trees and neuron networks.

Bondell and Reich (2008) propose the octagonal shrinkage and clustering algorithm

for regression (OSCAR) that achieves clustered selection when variables are highly

correlated. Zeng and Figueiredo (2015) reveal the close connection between OWL and

OSCAR: by adopting a linear weighting scheme for ω, OWL encompasses the OSCAR

regularization. Bogdan et al. (2015) study the sorted `1 penalized estimator (SLOPE)

which is closely related to OWL. In fact, their design, before we define the weighting

vector ω, is exactly the same. However, the weighting vector for SLOPE is non-linear

and they assume that all variables are not correlated before implementing the false

discovery rate (FDR) to select factors. OWL differs from SLOPE in the sense that

it permits correlations among variables and a linear ω maps OWL to OSCAR, which

enables clustering identification.
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1.2 Methodology

To study which factors jointly explain the cross section of average returns, we adopt

the SDF method in Cochrane (2005). Section 1.2.1 explores the relationship between

risk price and risk premium and explains which one should be used to infer priced

factors; Section 1.2.2 points out limitations of traditional methods when facing high-

dimensionality and offers a remedy by imposing sparsity; Sections 1.2.3 and 1.2.4

introduce the OWL estimator and discuss its statistical properties.

1.2.1 Risk price or risk premium?

Let m denote the stochastic discount factor (SDF)

m = r−1
0 (1− b′(f − E(f))), (1.1)

where r0 is the zero beta rate which is a constant, f is a K × 1 vector of K factor

returns, which can be either traded factors or mimicking portfolio returns of non-

traded factors. b is a K×1 vector of the SDF coefficient, referred to as the risk price;

a non-zero (zero) entry of b means the corresponding factor is (not) priced and b′ is

the transpose of vector b.

We want to draw inferences on the risk prices of factors. Finding useful factors

is the goal of this paper, that is factors with non-zero risk prices and that directly

drive the variation of SDF and contain pricing information. More specifically, they

reflect the marginal utility of factors to explain the cross-section of average returns.

Factors can also be useless or redundant. Useless factors are those whose risk prices

are zero and which are uncorrelated with other useful factors. Redundant factors

also have zero risk prices but they are correlated with some useful factors. In other

words, they can be summarized by other useful factors. Risk premium refers to the

free parameter in the second pass Fama-MacBeth regression: the first pass obtains

the factor loadings by running time-series regressions of each asset; the second pass

runs cross-sectional regressions of asset returns on factor loadings. Cochrane (2005)

shows that risk price and risk premium are directly related through the covariance

matrix of factors

λ = E(ff ′)b, (1.2)
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where b is a vector of risk prices and λ is a vector of risk premiums. However, they

differ substantially in their interpretation. Risk premium of a factor infers how much

an investor demands to pay for bearing the risk of the factor. Risk price implies

whether a factor is useful to explain the cross-section of average asset returns. When

factors are uncorrelated, that is, E(ff ′) is a diagonal matrix. Then, bi = 0 (the ith

factor is not priced) implies λi = 0 (the ith factor earns zero risk premium), and

vice verse. However, this is not true when factors are correlated: an unpriced factor

can earn positive risk premium by being correlated with a useful factor. To give an

example, suppose we have two factors f1 and f2, the covariance matrix is E(ff ′) = 10 1

1 10

 , the first factor is priced and the second is not, that is b1 = 1 6= 0 and

b2 = 0. Then, according to (1.2), we have λ1 = 10 and λ2 = 1. So we find that

the unpriced factor f2 (i.e. b2 = 0) earns non-zero risk premium (i.e. λ2 6= 0) by

simply being correlated with a useful factor f1. As discussed before, if factors are

uncorrelated it is valid to use either risk price (SDF method) or risk premium (Fama-

MacBeth regression) to select factors. However, factors are typically correlated in a

high dimensional setting, so we should use risk price to infer priced factors.

Denote by R the excess returns of a vector of N test assets. Define Y = (f ′, R′)′, so

Var(Y ) =

 Var(f) Cov(R, f)′

Cov(R, f) Var(R)

 , where Var(f) and Var(R) are the K×K and

N×N variance-covariance matrices of factors f and test asset returns R, respectively.

Cov(R, f) is the N ×K covariance matrix of returns and factors. The fundamental

asset pricing equation states that E(Rm) = 0 for any admissible SDF. However, the

fundamental equation may not hold when m is unknown and is estimated from a

model. The deviation from zero of the above equation is regarded as the pricing

error. Let m(b) denote the unknown SDF which depends on the unknown risk price

b. Pricing error e(b) can be written and simplified as

e(b) = E[Rm(b)] = E(R)E(m(b)) + Cov(R,m(b))

= r−1
0 E(R)E(1− b′(f − E(f))) + r−1

0 Cov(R, 1− b′(f − E(f)))

= r−1
0 [E(R)− Cov(R, f)b]

= r−1
0 (µR − Cb),

(1.3)

where µR := E(R) is the N × 1 vector of the expectation of excess returns of test
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assets and C := Cov(R, f). A quadratic form of the pricing error can be defined as

Q(b) = e(b)′W e(b), (1.4)

where W is a N ×N weighting matrix. Then we can estimate b by minimizing Q(b):6

b̂ = arg min
b

Q(b) = arg min
b

(µR − Cb)′W (µR − Cb), (1.5)

which gives

ˆ̂b = (Ĉ ′Ŵ Ĉ)−1Ĉ ′Ŵ µ̂R, (1.6)

where Ĉ = ̂Cov(R, f) =
1

T

T∑
t=1

(Rt − µ̂R)(ft − µ̂f )′, µ̂f =
1

T

T∑
t=1

ft and µ̂R =
1

T

T∑
t=1

Rt.

ˆ̂b is an empirical estimate of b̂ where we use sample estimates of C and µR.7 For the

weighting matrix W , Ludvigson (2013) offers two choices of W for comparing models.

First, W = E(RR′)−1, which connects Q(b) to the well known Hansen-Jagannathan

(HJ) distance. Ludvigson (2013) points out that the use of HJ distance is more

appropriate with limited asset choices (small N , large T ), in which case the weighting

matrix E(RR′)−1 accounts for and offsets the variations of test assets, leading to

stable estimators. On the other hand, when test assets are prolific, Ludvigson (2013)

advocates the second choice of W : the identity matrix. She argues that using the

identity matrix does not tilt the weight to favor any subset of test assets, especially

when test assets represent particular economic interests. In our application, the test

assets consist of firm characteristic sorted portfolios, hence we do not want to tilt the

weights to favor any firm characteristics, so the identity matrix will be used as the

weighting matrix throughout this paper.

1.2.2 Challenges and/or blessings of high-dimensionality

Cochrane (2011) points out that traditional methods like portfolio sorting to identify

useful factors have fallen short in the high-dimensional world. For instance, following

Fama and French (1992, 2008) to construct 5 by 5 portfolios, and supposing there are

n characteristics, we have to sort all stocks into 5n portfolios. When n is small, say

6Since r0 in (1.3) is a constant, it can be dropped out in the minimization problem.
7Note that in Section 1.2.4, the statistical properties of b̂ are built upon assumptions on C and

µR. In order to have consistent estimator for ˆ̂b, we need to impose an additional condition that
T � N and T � K to ensure consistent estimates of Ĉ and µ̂R.
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n = 2, it is handy to sort portfolios and check the marginal distribution of returns

on each characteristic. However, when n is large, for instance n = 10, it is infeasible

to sort stocks into 510 ≈ 9.8 million portfolios. Yet, there are hundreds of anomaly

based factors having been proposed in empirical asset pricing literature, see Harvey

et al. (2015) and Hou et al. (2018b) for examples. For the Fama-MacBeth regression

method, there are several complications too. First, K is likely to diverge (K > N)

in the high-dimensional world, in which case the Fama-MacBeth regression becomes

infeasible. Second, variables are likely correlated under high-dimensionality. As dis-

cussed in Section 1.2.1, when factors are correlated, unpriced factors can earn positive

risk premiums if they are correlated with priced factors. In this case, Fama-MacBeth

regression is likely to pick up redundant factors. Third, Kleibergen (2009) cautions

that the second pass Fama-MacBeth regression faces the weak factor identification

problem when factors are correlated.

Nonetheless, empirical finance research has demonstrated strong evidence that

many of those proposed factors are actually useless or redundant. Thus, the sparsity

assumption which originates from the machine learning literature becomes a useful

tool to handle these problems. Approximate sparsity assumes that for K candidate

factors, there are at most S of them which are useful ( S � K) while the exact number

and location of these useful factors need not to be known ex ante. Tibshirani (1996)

proposed the LASSO estimator which is a milestone in achieving sparsity within a

convex optimization problem and subsequently has been widely used to solve high

dimensional financial problems, see Chinco et al. (2019) for example. However, the

LASSO estimator is also well known for its poor performance when covariates are

correlated. Kozak et al. (2020), Figueiredo and Nowak (2016) and Zou and Hastie

(2005) have demonstrated that when factors are correlated, the LASSO estimator is

unstable and wrongly shrinks some useful factors to zeros.

To circumvent the curse of dimensionality while taking account of factor correla-

tions, we introduce a newly developed machine learning tool, the Ordered-Weighted-

LASSO (OWL) estimator (Figueiredo and Nowak, 2016), which explicitly allows for

factor correlations.
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1.2.3 The Ordered-Weighted-LASSO (OWL) estimator

The OWL estimator is achieved by adding a penalty term in equation (1.5)8

b̂ = arg min
b

1

2
(µR − Cb)′(µR − Cb) + Ωω(b), Ωω(b) = ω′|b|↓, (1.7)

where |b|↓ := (|b|[1], |b|[2], · · · , |b|[K])
′ and |b|[1] ≥ |b|[2] ≥ · · · ≥ |b|[K], is a vector of

the absolute values of risk prices, decreasingly ordered by their magnitude. ω is a

pre-specified K × 1 weighting vector, defined as

ωi = λ1 + (K − i)λ2, i = 1, ..., K, (1.8)

where λ1 and λ2 are two tuning parameters. In order to solve (1.7), we use the

proximal gradient descent algorithm. More details about this algorithm are included

in the Online appendix. The OWL estimator is sensitive to the choice of the weighting

vector ω. So finding appropriate values for tuning parameters λ1 and λ2, which pin

down the weighting vector, is crucial. Following the machine learning literature, we

use a five-fold cross-validation method to find tuning parameters.9

1.2.4 Statistical properties

This section discusses the statistical properties of the OWL estimator. We first show

that, with some regularity conditions, when the number of factors K is finite, the

OWL estimator is consistent. Then we allow K to go to infinity and, with the spar-

sity assumption and restricted eigenvalue condition, we derive the convergence rate of

the OWL estimator, and hence the conditions for consistent OWL estimation. Next,

we devise a thresholded estimator based on the OWL estimate that can achieve con-

sistency in model selection. Finally, we derive the grouping condition under which

two correlated factors will be grouped together.

8We use the identity matrix for the weighting matrix W .
9 Given the grid values of λ1 and λ2, at each point on the grid, we first divide the sample into five

equal parts in their time series dimension. We use four parts (training sample) to estimate the model
with OWL. After obtaining the estimated model, we forecast the returns of the fifth part (testing
sample), and compute the root of mean squared forecast error (RMSE). We then repeat the same
procedure five times by rotating the training samples and testing samples, and compute the average
RMSE for this point on the grid. Tuning parameters are determined by the smallest average RMSE
on the grid.

In practice, once the tuning parameters are in a suitable region, the model selection is stable. In
the empirical analysis, this region for tuning parameters is between 10−7 and 10−6.

31



Suppose that

µR = Cb0 + ε, (1.9)

where ε is the pricing error from (1.3) after scaling a constant r−1
0 . Then (1.7) can be

written as10

b̂ = arg min
b

1

N
||µR − Cb||22 +

1

N

K∑
i=1

λ1 + λ2(K − i)]|b|[i], (1.10)

where|b|[i] is the ith element of |b|↓ := (|b|[1], |b|[2], · · · , |b|[K])
′ and |b|[1] ≥ |b|[2] ≥ ... ≥

|b|[K]. In order to derive the next theorem, we make the following assumptions.

Assumption 1.2.1 (Gram matrix). The N × K covariance matrix of returns and

factors C is normalized, such that Σ̂ =
C ′C

N
→p Σ, where Σ is a full rank matrix,

Σ̂j,j = 1, for all j ∈ {1, ..., K}.

Assumption 1.2.1 requires a full rank Gram matrix Σ̂, which restricts applications

to a low dimensional case where the number of factors K is smaller than the number

of assets N . Theorem 1.2.1 below is built on Assumption 1.2.1, which delivers the

consistency property of the OWL estimator in a typical low dimensional case (K < N).

Assumption 1.2.2 (Normality). Suppose that ε in (1.9) follows a normal distribution

such that ε ∼ i.i.d.N(0, Iσ2), and E(ε′C(j)) = 0, where C(j) is the jth column of C.

The i.i.d. normal assumption imposed on ε is for the sake of obtaining the prob-

ability measures in (1.11) and (1.14). We recognize that this assumption is rather

restrictive and we leave it as a further research agenda which we could explore under

α−mixing condition (weak correlation) and fat tails.

Theorem 1.2.1 (Consistency of OWL). Let Assumptions 1.2.1 and 1.2.2 be satisfied.

Suppose that t > 0, λ0 = 2σ

√
t2 + 2 logK

N
= o(1), λ1 and λ2 are such that

λ1

N
≥

λ0, λ1 = o(N) and λ2 = o(N). Then with probability at least

p = 1− 2 exp(−t
2

2
), (1.11)

10Note that the scaler “2” on the second term of (1.10) is dropped because it is negligible when

tuning parameter λ1

N �
√

logK
N , which will be introduced in the next theorem.
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the estimator b̂ satisfies

(b̂− b0)′Σ̂(b̂− b0) ≤
(
λ0 +

λ1 + λ2(K − 1)

N

)
||b0||1. (1.12)

In addition, if K is fixed, t→∞, and N →∞, then

||b̂− b0||2 → 0.

Proof: see Appendix 1.A.1.1.

Theorem 1.2.1 shows the consistency of the OWL estimator when K is finite

and offers an upper bound in (1.12) of the estimation error of the OWL estimator

(b̂ − b0)′Σ̂(b̂ − b0) . It is derived in a low dimensional setting where the number of

factors is small while the number of observable assets is large (K � N).

Next, we consider the high dimensional setting, where we allow the number of

factors K to grow to infinity. Then we derive the convergence rate of the OWL esti-

mator and the conditions for consistent estimation. With K � N , the Gram matrix

Σ̂ will be singular. In order to derive the convergence rate, we impose Assumptions

1.2.3 and 1.2.4.

Assumption 1.2.3 (Sparsity). Denote by S the number of non-zero parameters in

b0 = {b0
1, b

0
2, · · · , b0

K}. We assume that S

√
logK

N
= o(1) when N,K →∞.

Let s0 denote a subset, s0 ⊂ {1, · · · , K}, and |s0| the cardinality of s0. For

b = {b1, · · · , bK} ∈ RK , denote bs0 := bi1{i ∈ s0, i = 1, · · · , K}, bsc0 := bi1{i /∈ s0, i =

1, · · · , K}. Then b = bs0 + bsc0 .

Assumption 1.2.4 (Restricted eigenvalue condition, Bickel et al. (2009)). For all b

such that ||bsc0||1 ≤ 3||bs0||1, Σ̂ satisfies the restricted eigenvalue condition

φ2
0 := min

s0⊂{1,...,K}
|s0|<K

min
b∈RK\{0}

||bsc0 ||1≤3||bs0 ||1

b′Σ̂b

||bs0||22
> 0. (1.13)

The restricted eigenvalue condition implies the compatibility condition in Buhlmann

and Van de Geer (2011) (pp. 106), which is the key requirement to establish Theorem

1.2.2 below. See the online Appendix for the motivation and the derivation of the

compatibility condition.
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Theorem 1.2.2 (Convergence rate of OWL). Let Assumptions 1.2.2, 1.2.3 and 1.2.4

be satisfied. Suppose that t > 0, λ0 = 2σ

√
t2 + 2 logK

N
= o(1) and let

λ1

N
= 2λ0.

Then with probability at least

p = 1− 2 exp(−t
2

2
), (1.14)

b̂ satisfies

(b̂− b0)′Σ̂(b̂− b0) +
λ1

N
||b̂− b0||1 ≤ 4(

λ1

N
)2 S

φ2
0

+ 2
λ2

N
(K − 1)||b0||1. (1.15)

In addition, if λ2 = O(
S logK

K
), then

||b̂− b0||1 = O(S

√
logK

N
), ||b̂− b0||2 = O(

√
S logK

N
). (1.16)

Proof: see Appendix 1.A.1.2.

Theorem 1.2.2 establishes the convergence rate of the OWL estimator in a high

dimensional setting, where both K and N go to infinity. Following a similar argument

from Kock and Callot (2015), by utilizing the `∞ bound and the convergence rate we

can introduce a thresholded estimator b̃ that is consistent in model selection. From

(1.16), we obtain

||b̂− b0||∞ ≤ ||b̂− b0||2 ≤ C

√
S logK

N

with probability close to one by selecting a constant C sufficiently large. Given the

OWL estimator b̂, we define the thresholded estimator b̃ as

b̃j =

b̂j if |b̂j| ≥ H,

0 if |b̂j| < H,

(1.17)

where H is the hard thresholding parameter. We set

H = c

√
S logK

N
, (1.18)

where c > 0 is any positive fixed constant. Recall that by Assumption 1.2.3,
√

(logK)/N =

o(1), so H = o(1). In the following theorem we show that estimator b̃ is a consistent
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estimator of b0 and can select the true non-zero coefficients of factors with probability

tending to one. We assume that K →∞ and b0 has property

‖b0‖2
2 =

K∑
j=1

(b0
j)

2 →
∞∑
j=1

(b0
j)

2 <∞, as K →∞. (1.19)

Theorem 1.2.3 (Consistency of model selection by thresholding). Let Assumptions

1.2.2, 1.2.3 and 1.2.4 be satisfied and (1.19) holds. Then the following is true.

(a) The thresholded estimator b̃ computed with H, (1.18), has property

‖b̃− b0‖2 = op(1), as N →∞. (1.20)

(b) b̃ has property

P(b̃j = 0, j ∈ {k : b0
k = 0})→ 1, as N →∞. (1.21)

(c) For any ξn →∞ such that ξnH = o(1),

P(b̃j 6= 0, j ∈ {k : |b0
k| > ξnH})→ 1, as N →∞. (1.22)

Proof: see Appendix 1.A.1.3.

Theorem 1.2.3 shows that thresholded estimator b̃ offers a theoretical foundation

for consistency in model selection, in which b̃ will select the true useful factors as non-

zeros while shrinking off all useless factors, with probability tending to one. However,

finding a suitable threshold H is an empirically challenging problem, especially in

small samples and this task is beyond the scope of this paper. After all, the goal of

this paper is not to find a new parsimonious asset pricing model, but to identify a set

of useful (and potentially highly correlated) factors that drive asset prices.

Next, we investigate the grouping condition under which correlated factors will be

grouped together, i.e. assigning similar values to the coefficients of correlated factors.

Theorem 1.2.4 (Grouping). Let fi and fj be the ith and jth factor returns (both of

size T×1). b̂i and b̂j are OWL estimates of risk prices of factor i and j. Let σ(fi−fj)

denote the standard deviation of the vector fi − fj, and µR, σR be the N × 1 vectors
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collecting the mean and standard deviation of N test assets. If

σ(fi − fj) <
λ2

‖µR‖2 ‖σR‖2

,

then b̂i = b̂j.

Proof: see Appendix 1.A.1.4.

Corollary 1.2.1. Let fi, fj, λ2, µR, σR be the same as in Theorem 1.2.4. If

σ(fi + fj) <
λ2

‖µR‖2 ‖σR‖2

,

then b̂i = −b̂j.

Proof: see Appendix 1.A.1.5.

Theorem 1.2.4 has several implications. First, when factors are highly correlated

(i.e. σ(fi − fj) is small) they are more likely to be grouped together (i.e. receive

similar coefficients, b̂i ≈ b̂j): two factors exhibiting high correlation could be the

result of the same unobservable underlying factor that dictates these observable factors

simultaneously. Thus, they should share similar magnitude in explaining asset returns

which are driven by the same unobservable underlying factor. Second, the hyper

parameter λ2 in (1.8) has direct impact on factor grouping: large λ2 encourages

grouping.11 Third, the mean (µR) and standard deviation (σR) of test assets affect

the grouping property. A set of less informative assets (small µR and/or small σR)

will result in factor grouping: weak factors are equally inadequate to explain a set of

less informative test assets. Corollary 1.2.1 shows that the OWL estimator can also

group negatively correlated factors and assign opposite signs to those factors.

Theorem 1.2.1 and Theorem 1.2.2 establish the consistency property of the OWL

estimator under some regularity conditions and Theorem 1.2.3 establishes the theoret-

ical foundation that a thresholded estimator based on the OWL estimator can achieve

consistency in model selection. Theorem 1.2.4 shows that the OWL estimator per-

mits correlations among factors and can group correlated factors, which distinguishes

it from the LASSO estimator that suffers severely from correlated variables.

11 A geometric interpretation of the OWL norm is included in the online appendix, and more
details about how λ2 affects the grouping property can be found in Zeng and Figueiredo (2015).
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1.3 Simulation

This section studies the performance of the OWL estimator together with other bench-

mark estimators in various Monte Carlo simulation experiments.

1.3.1 Simulation design

In our experiment, consider K candidate factors, 2K/3 of them are useful factors, that

is they are priced (b 6= 0), and K/3 of them are useless or redundant factors (b = 0).

Within these useful factors, K/3 are highly correlated, and K/3 are uncorrelated.

Let ρ denote the K × K correlation coefficient matrix of C (N × K) defined in

(1.3). We suppose that ρ1, ρ2, ρ3 ∈ (−1, 1) and ρ is divided into 3 blocks such that:

bk1 =


1 . . . ρ1

...
. . .

...

ρ1 . . . 1


︸ ︷︷ ︸

K/3

; bk2 =


1 . . . ρ2

...
. . .

...

ρ2 . . . 1


︸ ︷︷ ︸

K/3

; bk3 =


1 . . . ρ3

...
. . .

...

ρ3 . . . 1


︸ ︷︷ ︸

K/3

and

ρ =


bk1 0

bk2

0 bk3

 .

In the block bk1 (block 1) the diagonal elements are ones and off-diagonal elements

are ρ1; similarly for the block bk2 and bk3 where off-diagonal elements are ρ2 and ρ3,

respectively. These three blocks constitute the diagonal direction of matrix ρ, and

elsewhere ρ is filled with zeros. This setting allows three blocks of factors. Within

each block, factors are correlated with a correlation coefficient ρ1, ρ2 or ρ3, but factors

in different blocks are uncorrelated.

We first set the values of ρ1, ρ2 and ρ3, and then randomly generate an N × K

matrix C, denoted as simC, which has the correlation coefficient matrix of ρ.12 We

further set an oracle value for b (risk price). Then we simulate the cross section of

average returns as µR = simC ∗ b + e, where e is a pricing error vector, with the

12In particular, we first randomly generate an N×K matrix where each column follows a standard
normal distribution. Then multiply it with the Cholesky decomposition of ρ.
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scale about 10% of simC, i.e. e ∼ N(0, 0.01). Finally, we estimate risk price with

simulated data simC and µR using OWL, LASSO, adaptive LASSO, Elastic Net, and

naive OLS estimators.13 Then we compare these estimators with the pre-specified

oracle value of b.

1.3.2 Simulation results

In the first experiment, we consider 90 candidate factors (K = 90). 30 of them

(block 1) are useful factors which are also highly correlated (b 6= 0, ρ1 = 0.9); 30

of them (block 2) are useless/redundant factors, which are also highly correlated

(b = 0, ρ2 = 0.9); and 30 of them (block 3) are useful factors but not correlated

(b 6= 0, ρ3 = 0). There are 100 test assets (N = 100).

Figure 1.1 reports the plot of the OWL estimator over 90 factors along with other

benchmarks and the oracle value (black). The upper left panel displays the plots of

estimated SDF coefficients for all factors. The remaining three panels display the

detailed plot of estimates for each of these three blocks of factors. The upper right

panel displays the plot of all estimates of useful factors that are highly correlated. In

the presence of high correlation, the LASSO estimator performs poorly with highest

estimation errors. Adaptive LASSO is strongly governed by the adaptive weights and

is set to be the OLS estimate. So adaptive LASSO exhibits very similar behaviour

to the OLS estimator. Elastic Net, as a hybrid estimator between LASSO and Ridge

regression, is designed to stabilize LASSO selections in the presence of correlation.

Although Elastic Net does improve the performance of LASSO in the context of cor-

related factors, it is still substantially outperformed by OWL. OWL produces the

smallest estimation error and is the only estimator that groups together highly cor-

related variables by assigning them with similar coefficients. The bottom left panel

displays the plot of all estimates of useless/redundant factors which are highly corre-

lated. In terms of shrinking off useless/redundant factors, LASSO, EN, and OWL all

perform well: they set most useless factors to zeros. By contrast, adaptive LASSO

is affected by the adaptive weights (i.e., the OLS estimate) and fails to set many

useless/redundant factors to zeros. The bottom right panel displays the plot of all

13See the online Appendix for an introduction to LASSO, adaptive LASSO, and Elastic Net (EN)
estimators. OLS estimator is only included if N > K.
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Figure 1.1. Estimation of SDF coefficients: N = 100, K = 90
This figure reports the values of the OWL estimator over 90 factors along with other benchmarks

and the oracle value (black). There are 100 test assets, 90 candidate factors, which are divided into 3

equal blocks, where correlation coefficients of factors within each block are ρ1 = 0.9, ρ2 = 0.9, ρ3 = 0.

The upper left panel displays the plot of estimated SDF coefficients for all factors. The remaining

three panels are detailed plots of estimates for each of these three blocks of factors. The upper right

panel displays the plot of all estimates of useful factors that are highly correlated. The bottom left

panel displays the plot of all estimates of useless/redundant factors. The bottom right panel displays

the plot of all estimates of useful factors that are not correlated. In each plot, OWL estimator is

displayed along with LASSO, adaptive LASSO, Elastic Net, and naive OLS estimator.
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estimates of useful factors which are not correlated. Again, LASSO and Elastic Net

are the worst performers, yielding the largest estimation errors. Also note that in

the uncorrelated setting Elastic Net performs similarly to LASSO. In the ideal world

where factors are uncorrelated, OLS and adaptive LASSO are the best performers,

which is tightly followed by OWL. Note that OWL, LASSO and Elastic Net are biased

towards zero, which is typically observed for shrinkage-estimators in small samples.

For the robustness check of this experiment, we repeat the simulation multiple

times and report the deviation of each estimator from the oracle values. Because of

limited display space, we put the robustness check in Appendix 1.A.4.

In the second experiment, there are 1000 test assets (N = 1000, N � K) and

everything else is the same as in the first experiment. This setting typically represents

a low-dimensional world.

Figure 1.2 reports the plot of estimated SDF coefficients using OWL and other

benchmarks with 1000 test assets. When test assets are abundant, all shrinkage

based estimators do a good job to shrink off useless/redundant factors. Adaptive

LASSO performs the best at estimating uncorrelated factors: governed by the OLS

weights, it is the only unbiased estimator among shrinkage based estimators. LASSO

and Elastic Net produce the most biased estimators among all benchmarks. With

highly correlated useful factors, OWL produces the most accurate estimation. With

uncorrelated factors, OLS and adaptive LASSO are undoubtedly the best estimators,

followed closely by OWL. For that reason, adaptive LASSO would be a good estimator

in a low dimensional world where N � K. However, in a world of many factors, where

K > N , OLS will be infeasible, hence the adaptive LASSO using OLS weighting is

also improbable.

In the third experiment, there are 70 test assets (N = 70, N < K), everything else

is the same as in the first two experiments. This setting represents a high-dimensional

world, where the number of factors is greater than the number of test assets.

Figure 1.3 reports estimation results of each method along with the oracle value.

Once K > N the naive OLS estimator becomes infeasible, thus we remove it from

the benchmarks. Meanwhile, we use the LASSO estimate as the adaptive weight for

adaptive LASSO estimator. As for useless factors, all machine learning methods do a

good job to shrink most useless factors to zeros. For the highly correlated useful factors
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Figure 1.2. Estimation of SDF coefficients: N = 1000, K = 90
This figure reports the plot of the values of the OWL estimator along with other benchmark estima-

tors. The number of assets is 1000. The rest are the same as in the first experiment in Figure 1.1.

OWL is still the best estimator, producing the smallest estimation error, while LASSO

and adaptive LASSO are the worst performers producing very volatile estimates and

wrongly shrinking many useful factors to zero. Interestingly, we find that Elastic Net

performs significantly better compared to LASSO. However, despite this, Elastic Net

is still substantially outperformed by OWL. For the useful factors (both correlated and

uncorrelated), adaptive LASSO, using the LASSO estimate as the adaptive weight,

performs the worst. The adaptive weight exacerbates the estimation severely.
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Figure 1.3. Estimation of SDF coefficients: N = 70, K = 90
This figure reports the plot of the values of the OWL estimator along with other benchmark estima-

tors. Adaptive LASSO is using the LASSO estimate as its adaptive weight. The number of assets is

70. The rest are the same with the first experiment in Figure 1.1.

These three experiments confirm that the LASSO estimator performs poorly when

factors are correlated. Elastic Net does improve the performance of LASSO under

such circumstance, however, it is still substantially outperformed by the OWL estima-

tor, which makes the OWL estimator the best candidate when factors are correlated.

Adaptive LASSO is a good choice in a low-dimensional setting where N � K; how-

ever, it performs the worst in a high-dimensional setting where K > N (i.e., the OLS

estimate becomes infeasible).
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1.4 Empirical analysis

This section applies the OWL estimator while using the SDF method to find useful

factors among 80 anomaly factors that drive the cross section of average returns in

stock market. We first introduce the datasets, followed by a detailed account of the

construction of anomaly factors and test portfolios. We consider both value weighted

and equal weighted methods, controlling micro stocks. We construct pooled bi-variate

sorted portfolios as test assets following a similar method to Feng et al. (2020).

1.4.1 Data

We use the U.S. stock data from the Center for Research in Security Prices (CRSP)

and Compustat database14 to construct anomaly variables and test portfolios. The

period spans from January 1980 to December 2017, totalling 456 months on all NYSE,

AMEX and NASDAQ listed common stocks. Risk-free rate and market excess returns

are downloaded from Kenneth French’s on-line data library. All anomaly variables

are demeaned and scaled to have the same standard deviation with the market factor.

1.4.2 Constructing the anomaly factors

We consider 100 firm characteristics described in Green et al. (2017),15 while deleting

characteristics that have more than 40% missing data. Then, for each remaining

characteristic, we sort stocks into decile portfolios at each month using uni-variate

sorting. Micro stocks, defined as having market capitalization smaller than the 20

percentile of NYSE listed stocks, are removed. Although micro stocks only account

for less than 10% of aggregated market capitalisation, they constitute about 56% of

all stocks in the database, implying that small stocks would distort the interpretation

of the aggregated market capitalization if not removed, also see Hou et al. (2014) and

Fama and French (2015). Then, anomaly factors are computed as the spread returns

between the top and the bottom decile portfolios. Characteristics having insufficient

data to construct decile portfolios at every month will be dropped. Note that the

sorting is always from high to low according to characteristics, and the anomaly

14CRSP and Compustat data are downloaded from the Wharton Research Data Services.
15We are grateful to Jeremiah Green for providing SAS code to compute firm characteristics.
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variables are top decile return minus the bottom decile return. That will end up

with some slight difference with some familiar notations. For instance, the famous

size factor ‘small-minus-big’ in our factor library would be ‘big-minus-small’; however,

they are essentially the same after giving a negative sign. In estimation, we only care

about the coefficient magnitude. The interpretation of the sign of coefficients should

be looked at together with the sorting order when forming anomaly variables. Overall,

we obtain 80 anomaly factors which are listed in Table 1.1. See Green et al. (2017)

for a detailed description of each characteristic.

Table 1.1. Anomaly factors

Abbreviation Firm Characteristics Abbreviation Firm Characteristics

’absacc’ absolute accruals ’mom1m’ 1 month momentum
’acc’ working capital accruals ’mom36m’ 36 month momentum
’aeavol’ abnormal earnings announcement volume ’mom6m’ 6 month momentum
’agr’ asset growth ’ms’ financial statement score
’baspread’ bid-ask spread ’mve’ size
’beta’ beta ’mve ia’ industry adjusted size
’betasq’ beta squared ’nincr’ number of earnings increases
’bm’ book-to-market ’operprof’ operating profitability
’bm ia’ industry adjusted book-to-market ’pchcapx ia’ i.a. %change in capital expenditures
’cash’ cash holding ’pchcurrat’ % change in current ratio
’cashdebt’ cash flow to debt ’pchdepr’ % change in depreciation
’cashpr’ cash productivity ’pchgm pchsale’ % change in gross margin - %change in sales
’cfp’ cash flow to price ratio ’pchquick’ %change in quick ratio
’cfp ia’ industry adjusted cfp ’pchsale pchinvt’ % change in sale - % change in inventory
’chatoia’ industry adjusted change in asset turnover ’pchsale pchrect’ % change in sale - % change in A/R
’chcsho’ change in share outstanding ’pchsale pchxsga’ % change in sale - % change in SG&A
’chempia’ industry adjusted change in employees ’pchsaleinv’ % change in sales-to-inventory
’chinv’ change in inventory ’pctacc’ percent accruals
’chmom’ change in 6-month momentum ’pricedelay’ price delay
’chpmia’ industry adjusted change in profit margin ’ps’ financial statement score
’chtx’ change in tax expense ’quick’ quick ratio
’cinvest’ corporate investment ’retvol’ return volatility
’currat’ current ratio ’roaq’ return on assets
’depr’ depreciation ’roavol’ earning volatility
’dolvol’ dollar trading volume ’roeq’ return on equity
’dy’ dividend to price ’roic’ return on invested capital
’ear’ earnings announcement return ’rsup’ revenue surprise
’egr’ growth in common shareholder equity ’salecash’ sales to cash
’ep’ earnings to price ’saleinv’ sales to inventory
’gma’ gross profitability ’salerec’ sales to receivables
’grcapx’ growth in capital expenditure ’sgr’ sales growth
’grltnoa’ growth in long term net operating assets ’sp’ sales to price
’hire’ employee growth rate ’std dolvol’ volatility of liquidity (dollar trading volume)
’idiovol’ idiosyncratic return volatility ’std turn’ volatility of liquidity (share turnover)
’ill’ illiquidity ’stdacc’ accrual volatility
’invest’ capital expenditure and inventory ’stdcf’ cash flow volatility
’lev’ leverage ’tang’ debt capacity/firm tangibility
’lgr’ growth in long term debt ’tb’ Tax income to book income
’maxret’ max daily return ’turn’ share turnover
’mom12m’ 12 month momentum ’zerotrade’ zero trading days

Note: this table lists all 80 factors considered in our factor library. The abbreviation is consistent

with Green et al. (2017). For a more detailed description of each factor, including the original paper

where it is proposed, please refer to Green et al. (2017).

Figure 1.4a displays the heat map of factor correlation coefficients matrix mea-
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(a) Factor correlation measured by time series (b) Factor correlation measured by factor loadings

Figure 1.4. Factor correlation coefficients
This heat map displays the matrix of correlation coefficients of all 80 anomaly factors. Dark red

and deep blue colors signal high correlation (positive or negative) while light colours indicate low

correlation. There are N test assets and K factors, each asset/factor has T time series observations.

“Factor correlation measured by time series” means the correlation coefficients matrix is computed

through the T ×K factor time series data. “Factor correlation measured by factor loadings” means

the correlation coefficients matrix is computed through the N × K factor loadings after the first

stage of Fama-MacBeth regression.

sured by their time series.16 It suggests that 16% of factors exhibit correlation co-

efficients (absolute value) greater than 0.5. In particular, ‘beta’ related factors are

highly correlated with ‘liquidity’, ‘profitability’, ‘investment’, and other factors. For

that reason, Green et al. (2017) exclude ‘beta’ related factors in the factor zoo. Fig-

ure 1.4b displays the heat map of factor correlation coefficients matrix measured by

factor loadings. It exhibits much higher correlation compared to Figure 1.4a: 64%

correlation coefficients (absolute value) are greater than 0.5, implying serious mul-

ticollinearity issue if the standard Fama-MacBeth regression is employed. Cochrane

(2011) points out that we need to find whether expected returns line up with covari-

ances of returns with factors, implying that correlation measured by factor loadings

really matters for inferring priced factors.

16“Factor correlation measured by time series” means the correlation coefficients matrix is com-
puted through the T ×K factor time series data. “Factor correlation measured by factor loadings”
means the correlation coefficients matrix is computed through the N ×K factor loadings after the
first stage of Fama-MacBeth regression.
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1.4.3 Bi-variate sorted portfolios as test assets

Regarding test assets, there is a debate in the literature about using either individ-

ual stocks or sorted portfolios as test assets. Harvey and Liu (2017) use individual

stocks with bootstrap method to test for predictability of anomaly factors, and they

find that only two or three anomaly factors can significantly predict asset returns.

Lewellen (2015) employed Fama-MacBeth to test for anomaly factors with individual

stocks. However, others argue that individual stocks will introduce errors in variables

(EIV). When regression is made on estimated variables, i.e. factor loadings, the pre-

estimated factor loadings would incur estimation errors. Shanken (1992) modified the

estimator by introducing the “Shanken’s correction” term to mitigate EIV. However,

others argue that “Shanken’s correction” is minimal in small samples. On the other

hand, Fama and French (2008), Hou et al. (2014), Feng et al. (2020) advocate sorted

portfolios as test assets. Individual stocks are usually noisy and exhibit outliers, which

are the main source of EIV. Sorted portfolios are (weighted) mean returns of a group

of stocks sharing some similar characteristics, which would mitigate the EIV problem.

Hence, using sorted portfolios as test assets is an alternative (arguably better) way

to avoid EIV.

Yet the biggest drawbacks of using individual stocks stem from missing data and

micro stocks. It is inevitable, over a long period, to have new firms entering and old

firms exiting, and that will continually result in missing data. Discontinuity of data

leads to imprecise estimation of the covariance matrix of returns and factors, which

is essential for factor inference. On the other hand, sorted portfolios are constructed

at each point of time while sorting (possibly varying) stocks that share similar char-

acteristics into portfolios, guaranteeing that they are immune to the missing data

problem.

Micro stocks bring up another concern of using individual stocks as test assets.

Small stocks take up the majority of all stocks, while only a few big stocks constitute

a large share of total market capitalization. If individual stocks are used to gauge

factor impact, it is inevitable that they will distort the market implications: micro

stocks, as long as individual stocks are concerned for test assets, will dominate the

estimation result. Big stocks which have much larger impact on the market will be

out-weighted by the large number of small stocks. Portfolio sorting, however, can
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circumvent this issue by using the value weighted method, in which portfolio returns

are computed by the weighted average of stocks returns where the weights reflect their

market capitalization.

Fama and French (1992, 2015) use bi-variate sorting to create the five by five test

portfolios which have now become popular choices for test assets. However, Harvey

et al. (2015) caution that when only a small set of sorted portfolios are considered

for test assets, factor selection is biased towards the same characteristics that are

used to form test portfolios. Lewellen et al. (2010) argue that the 25 size and value

sorted portfolios are too low a threshold to test factors. They recommend adding

other portfolios in test assets. To strike a balance between using sorted portfolios and

individual stocks as test assets, Feng et al. (2020) construct a large set of combined

portfolios as test assets. In particular, they single out ‘size’ characteristic and combine

it with the remaining characteristics to form five by five bi-variate sorted portfolios

and pool them together as the grand set of test assets.17 We follow Feng et al. (2020)

to construct test portfolios and we obtain 1927 test portfolios as the grand set of test

assets.18

1.4.4 Which factors matter?

Considering high correlation among factors, we apply the OWL estimator while using

the SDF method to select useful factors from the 81 candidate factors.19

Table 1.2 reports the result of the OWL estimation. The first 5 columns are esti-

mated using the full sample, ranging from January 1980 to December 2017; columns

6-7 report results from 1980 to 2000, and columns 8-9 from 2001 to 2017. Both the

value weighted (vw) and equal weighted (ew) methods are considered. In order to

gauge the impact of small stocks, we consider three thresholds for micro stocks. This

table lists all anomaly factors selected in each estimation. It also reports how many

times each factor has been selected by all estimations and the ordinal number (in the

bracket) for each factor in a separate estimation, which indicates the importance of

the factor (smaller number implies greater importance).

17 ‘Size’ has been widely acknowledged as an important characteristic in asset pricing literature.
Fama and French (1992, 2015), Hou et al. (2014), Carhart (1997) all include the ‘size’ and the
‘market’ factors in their models.

18We drop any test portfolios which have insufficient stocks to sort, due to missing data.
19We include the market factor together with 80 anomaly factors, total 81 candidate factors.
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Table 1.2. Estimation results of the OWL estimator

Sample size full full full full full 1980:2000 1980:2000 2001:2017 2001:2017

Weighting vw vw vw ew ew vw vw vw vw

Micro stock 20 prctile 30 prctile 40 prctile 20 prctile 40 prctile 20 prctile 40 prctile 20 prctile 40 prctile

# selected

agr 5 agr (8) agr (8) agr (5) agr (4) agr (5)

baspread 2 baspread (7) baspread (4)

beta 2 beta (1) beta (1)

betasq 3 betasq (4) betasq (2) betasq (2)

cash 3 cash (6) cash (7) cash (6)

cashdebt 4 cashdebt (6) cashdebt (2) cashdebt (7) cashdebt (2)

dolvol 3 dolvol (10) dolvol (6) dolvol (6)

egr 3 egr (4) egr (3) egr (9)

ill 7 ill (2) ill (2) ill (6) ill (2) ill (5) ill (2) ill (6)

invest 2 invest (7) invest (10)

mom12m 1 mom12m (3)

mom6m 2 mom6m (1) mom6m (4)

mve 8 mve (1) mve (1) mve (1) mve (1) mve (3) mve (1) mve (1) mve (5)

pchcapx ia 1 pchcapx ia (5)

pchcurrat 4 pchcurrat (4) pchcurrat (3) pchcurrat (9) pchcurrat (4)

pchquick 2 pchquick (11) pchquick (4)

retvol 1 retvol (3)

roaq 2 roaq (2) roaq (7)

roic 3 roic (5) roic (7) roic (5)

salecash 1 salecash (3)

saleinv 1 saleinv (5)

sp 1 sp (6)

std dolvol 6 std dolvol (3) std dolvol (5) std dolvol (4) std dolvol (3) std dolvol (7) std dolvol (3)

stdcf 1 stdcf (7)

turn 1 turn (8)

Note: this table reports the selected useful factors using the OWL estimator. We consider

the full sample from 1980 to 2017 and two sub samples divided by year 2000. Equal weighted (ew)

and valued weighted (vw) sorting methods are both considered. Three treatments of micro stocks

are considered: we remove stocks that are smaller than 20 (30 or 40 ) percentile of NYSE listed

stocks. For each combination of the sample size, weighting method and micro-stock treatment, we

list all selected factors with the ordinal numbers in the bracket (smaller means more important).

Table 1.2 shows that ‘size’ (mve) has been selected as the most important factor in

most of these estimations which, however, is not surprising. ‘Size’ characteristic has

multiple entries in forming test portfolios, thus ‘size’ impact prevails in test portfolios.

For this reason we exclude ‘size’ factor as a competing factor, yet we include it in the

table to show that OWL can correctly identify relevant factors.

The ‘illiquidity’ (ill) factor (Amihud, 2002) is the most important factor that drives

variations in test asset returns. Its explanatory power is particularly evident with

smaller stocks. Portfolios sorted with size greater than 20 or 30 percentile of NYSE

listed stocks exhibit higher importance of ‘illiquidity’ than those with 40 percentile.

That implies small firms face severer liquidity constraints, and demand risk premiums

to compensate for bearing the risk. ‘Standard deviation of dollar volume’ (std dolvol)
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(Chordia et al., 2001) which is another proxy for liquidity risk, follows ‘illiquidity’,

becoming the second most important anomaly factor. Meanwhile, its high correlation

with ‘illiquidity’ is also identified by the OWL estimator. Liquidity as a risk source

that commands risk premiums has been documented extensively in the literature.

Pástor and Stambaugh (2003) show that market-wide liquidity is a state variable

important for asset pricing. Average returns on stocks with high sensitivities to

liquidity exceed that for stocks with low sensitivities by 7.5%, while controlling for

‘market’, ‘size’, ‘value’ and ‘momentum’ factors. ‘Asset growth rate’ (agr) follows

‘illiquidity’ and ‘standard deviation of dollar volume’ as the third most frequently

selected anomaly factor. This finding coincides with Hou et al. (2018a) in which they

propose a new q5 model, adding ‘asset growth rate’ as a fifth factor into their famous

q4 model (Hou et al., 2014). Other anomaly factors that have been selected multiple

times include ‘beta’, ‘beta squared’ (betasq), ‘cash to debt ratio’, and ‘percentage

change in current ratio’ (pchcurrat), which are also related to liquidity risk. Beyond

that, ‘momentum’, ‘return on invested capital’ (roic), ‘return on assets’ (roaq) and

other profitability related factors are also selected by the OWL estimator multiple

times.

Columns 6 and 7 report estimations using the 1980 - 2000 sub-sample and columns

8 and 9 report estimations using the 2001 - 2017 sub-sample. We find that liquidity

constraint only appears in the second sub-sample (2001 - 2017), where liquidity related

factors (‘baspread’, ‘standard deviation of dollar volume’, ‘change in quick ratio’,

etc...) play an important role in explaining the cross section of average returns.

However, in the first sub-sample (1980 - 2000), columns 6 and 7 show no strong

evidence that liquidity related factors drive asset prices. Meanwhile, ‘momentum’

and ‘profitability’ related factors primarily drive asset prices between 1980 and 2000.

Interestingly, from 1980 to 2000, with 20-percentile-micro-stocks excluded, we find

‘size’ (mve) is not selected by the OWL estimator, which makes it the only exception

from all estimations. This phenomenon is well documented in the literature (see

Amihud (2002), van Dijk (2011) and Asness et al. (2018)): the size effect weakened

after its discovery in the early 1980s. However, when removing 40-percentile-micro-

stocks, size effect is evident again, which implies the vanishing of size effect is likely to

be caused by some small “junk” stocks. Once removing these junk stocks, size effect
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resurfaces again, which echoes the discovery by Asness et al. (2018): size matters, if

you control your junk.

1.4.5 Robustness check

In this section, we check whether liquidity related factors are robust in explaining the

cross section of asset returns as well as how small stocks affect factors’ interpretations.

Because of the limitation of space, we place this section in Appendix 1.A.4.

1.4.6 Out-Of-Sample analysis

Freyberger et al. (2020) point out that out-of-sample (OOS) exercise ensures that

in-sample over-fit does not explain superior performance in model selection. In this

subsection, we will evaluate the OOS performance of portfolios hedged with OWL

selected factors, and compare it with other benchmarks. To offer some insights to the

possible time-varying trend in prominent factors, we also consider two sub-samples,

divided before and after 2000. We report the first five factors with highest estimated

coefficients (absolute value).20

Table 1.3 shows the five most prominent factors selected using various methods

in different samples, controlling micro stocks. We consider both the full sample esti-

mation and the sub-sample estimations. We can find obvious differences in selected

factors between full-sample and sub-samples, as well as between sub-samples. In addi-

tion, controlling micro stocks has a big impact on factor selection too. While including

all micro stocks (P00), OWL and other methods select a mixture of ‘liquidity’, ‘prof-

itability’ and ‘momentum’ related factors. However, once we remove micro stocks

(P20 and P40), we can find some patterns in selected factors: OWL suggests that

the most important factors to drive asset prices in the first sub-sample are ‘momen-

tum’ and ‘profitability’ related factors while ‘liquidity’ related factors are relatively

unimportant. However, the implication is reversed in the second sub-sample, where

‘liquidity’ related factors mainly drive asset prices. On the other hand, LASSO and

20Concerning over-fitting typically yields poor performance in out-of-sample exercise, we consider
a five-factor model for out-of-sample prediction. We also consider a four-factor and a three-factor
model for robustness check. We find that a four-factor model performs slightly better than the
five-factor model in predictions. However, due to limited reporting space, we do not include them
and they are available on request.
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Table 1.3. Full/sub-sample factor selection using various methods

First five selected factors (decreasingly) ordered by their magnitude of b̂

Panel A: Full sample estimation

full P00

OWL ’ill’ ’mve’ ’cash’ ’chpmia’ ’roeq’
LASSO ’idiovol’ ’mve’ ’mom6m’ ’zerotrade’ ’operprof’
EN ’idiovol’ ’mve’ ’mom6m’ ’ill’ ’pctacc’
FM ’idiovol’ ’maxret’ ’ill’ ’betasq’ ’beta’

full P20

OWL ’mve’ ’ill’ ’mkt’ ’std dolvol’ ’pchcurrat’
LASSO ’idiovol’ ’mve’ ’ill’ ’mom36m’ ’ms’
EN ’mve’ ’idiovol’ ’ill’ ’mom36m’ ’bm’
FM ’idiovol’ ’baspread’ ’ill’ ’beta’ ’betasq’

full P40

OWL ’mkt’ ’mve’ ’cashdebt’ ’egr’ ’std dolvol’
LASSO ’mve’ ’idiovol’ ’ill’ ’operprof’ ’roavol’
EN ’mve’ ’idiovol’ ’ill’ ’operprof’ ’mkt’
FM ’idiovol’ ’baspread’ ’ill’ ’betasq’ ’beta’

Panel B: sub-sample estimation (1980:2000)

sub1 P00

OWL ’pchcurrat’ ’sp’ ’bm’ ’mkt’ ’absacc’
LASSO ’dy’ ’turn’ ’acc’ ’mve’ ’sp’
EN ’dy’ ’turn’ ’acc’ ’mve’ ’ill’
FM ’maxret’ ’retvol’ ’idiovol’ ’betasq’ ’mom1m’

sub1 P20

OWL ’mkt’ ’mom6m’ ’roaq’ ’salecash’ ’pchcurrat’
LASSO ’baspread’ ’dy’ ’gma’ ’mve’ ’ill’
EN ’baspread’ ’dy’ ’gma’ ’mve’ ’ill’
FM ’idiovol’ ’betasq’ ’beta’ ’ep’ ’baspread’

sub1 P40

OWL ’mkt’ ’mve’ ’cashdebt’ ’mom12m’ ’mom6m’
LASSO ’mve’ ’mve ia’ ’std turn’ ’invest’ ’turn’
EN ’mve’ ’mve ia’ ’std turn’ ’invest’ ’turn’
FM ’idiovol’ ’beta’ ’betasq’ ’baspread’ ’retvol’

Panel C: sub-sample estimation (2001:2017)

sub2 P00

OWL ’ill’ ’mve’ ’cash’ ’mkt’ ’roeq’
LASSO ’mve’ ’ill’ ’stdacc’ ’gma’ ’pctacc’
EN ’mve’ ’ill’ ’pctacc’ ’stdacc’ ’agr’
FM ’ill’ ’idiovol’ ’dolvol’ ’baspread’ ’std dolvol’

sub2 P20

OWL ’mve’ ’ill’ ’mkt’ ’std dolvol’ ’pchquick’
LASSO ’mve’ ’pchquick’ ’idiovol’ ’ill’ ’pchcurrat’
EN ’mve’ ’pchquick’ ’ill’ ’idiovol’ ’pchcurrat’
FM ’ill’ ’baspread’ ’idiovol’ ’std dolvol’ ’dolvol’

sub2 P40

OWL ’mkt’ ’beta’ ’betasq’ ’retvol’ ’baspread’
LASSO ’mve’ ’ill’ ’roavol’ ’tang’ ’pchquick’
EN ’mve’ ’ill’ ’sgr’ ’pchquick’ ’salerec’
FM ’idiovol’ ’baspread’ ’ill’ ’betasq’ ’beta’

Note: this table reports the first five factors selected with greatest magnitude of b̂ using

methods including OWL, LASSO, Elastic Net (EN), and two-pass Fama-MacBeth regression (FM).

We do factor selection either on the full sample (full) or two sub-samples, divided by year 2000

(sub1 and sub2). We also control micro stocks: we consider all stocks (P00), or remove micro stocks’

market capitalization which is smaller than 20/40 percentile of NYSE listed stocks (P20/P40).
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other methods do not show a clear pattern of change in characteristics. Moreover,

‘mkt’ as a primary factor selected by OWL when excluding micro stocks, is missing

by other methods, which is counter-intuitive. The market factor should be the dom-

inating factor driving asset prices when micro stocks are removed since idiosyncratic

risks have been largely reduced. However, LASSO, Elastic Net and Fama-MacBeth

estimators all fail to identify ‘mkt’ as an important factor, due to the high correlation

between ‘mkt’ and other factors.

Next, we want to compare the out-of-sample performance between various meth-

ods. In particular, we follow a similar procedure to Freyberger et al. (2020) to form

factor-hedged portfolios using a rolling window scheme to predict returns. First of

all, we choose five most prominent factors as in Table 1.3 for the full sample and two

sub-samples, while controlling micro stocks at the 20- and 40-percentile levels. Then

we use a rolling window scheme (rolling window size is 120 months) to evaluate the

performance of the factor-hedged portfolios with each method. Specifically, at the

end of each estimation window, we regress each test asset on factors selected by each

method, but one period lagged. For instance, at time t, we regress each test asset

return from t− 120− 1 to t on selected factors from t− 120− 2 to t− 1, and obtain

β̂. We then forecast each test asset’s next period return (at t + 1) by multiplying β̂

and selected factors at t. We then sort stocks by their predicted returns into decile

portfolios and long the top decile and short the bottom decile. At the next period

(t+1), when returns are realized, we can compute the spread portfolio return. Subse-

quently, we roll the window one period forward and repeat the steps until the end of

period. In the end we compute four moments of the factor-hedged portfolio returns

in the out-of-sample period as well as the Sharpe ratio.

Table 1.4 reports performance scores including the Sharpe ratio and the four

moments of out-of-sample returns using the OWL, LASSO, Elastic Net and Fama-

MacBeth estimators while controlling micro stocks. Panel A suggests that in the full

sample estimation, the OWL estimator produces about 20% higher Sharpe ratio than

other benchmarks. In addition, we find that the skewness and the kurtosis of the OWL

hedged portfolio are much smaller than those of other benchmarks. Fama-MacBeth

estimator typically performs the worst. We reckon that it is severely affected by factor

correlations and estimation result is eroded by weak factors in the second pass Fama-
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Table 1.4. Out-of-sample portfolio performance with a five-factor model

SR Mean Std Skewness Kurtosis

Panel A: full sample estimation

full P20

OWL 1.21 2.17 6.24 -0.07 9.48
LASSO 1.01 2.13 7.30 2.21 31.09
EN 1.04 2.26 7.52 1.71 27.70
FM 0.96 1.96 7.08 2.88 37.37

full P40

OWL 0.90 1.59 6.13 1.39 25.06
LASSO 0.77 1.48 6.62 4.09 57.11
EN 0.82 1.52 6.39 3.17 46.12
FM 0.72 1.41 6.79 3.68 49.89

Panel B: sub-sample estimation (1980:2000)

sub1 P20

OWL 2.10 2.54 4.18 0.10 3.41
LASSO 1.87 2.09 3.87 0.10 3.48
EN 1.87 2.09 3.87 0.10 3.48
FM 1.66 1.92 4.01 0.65 5.45

sub1 P40

OWL 1.35 1.34 3.44 -0.03 4.37
LASSO 1.03 1.13 3.82 0.02 3.67
EN 1.03 1.13 3.82 0.02 3.67
FM 0.75 0.75 3.50 -0.21 5.62

Panel C: sub-sample estimation (2001:2017)

sub2 P20

OWL 2.10 2.43 4.67 1.02 8.72
LASSO 1.91 2.10 3.80 0.16 3.51
EN 1.91 2.10 3.80 0.16 3.51
FM 1.78 1.80 3.49 -0.48 3.82

sub2 P40

OWL 2.11 2.04 3.34 0.62 5.83
LASSO 1.80 1.69 3.27 0.58 6.16
EN 1.69 1.59 3.25 0.37 4.44
FM 1.80 1.75 3.35 0.13 2.91

Note: this table reports the out-of-sample portfolio performance using a rolling window

scheme while controlling micro stocks (P20/P40: only include stocks are larger than 20/40

percentile of the NYSE listed stocks). Factor selection strategies include OWL, LASSO, Elastic Net

(EN), and Fama-MacBeth regression (FM). The upper panel is obtained using the full sample; the

middle and lower panels are obtained using sub-samples.

MacBeth regression (Kleibergen, 2009). In sub-sample estimations, we find that the

Sharpe ratios are typically much higher than that of the full-sample estimation in all

methods we considered. Meanwhile, we find that skewness and kurtosis are signifi-

cantly reduced compared to the full-sample estimation, making the distribution of the

out-of-sample returns more “normal” alike. This trend signals a possible time-varying

nature in prominent factors which drives asset prices.
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1.5 Conclusion

In the zoo of factors, using traditional methods to find factors that provide indepen-

dent information about average returns faces tremendous challenges. In addition, cor-

relations make the matter worse: among 80 anomaly factors we considered, 64% of fac-

tor loadings exhibit correlation coefficients greater than 0.5 (absolute value). However,

factor correlations cause severe complications in the LASSO estimator (Kozak et al.,

2020; Figueiredo and Nowak, 2016) and in the Fama-MacBeth regression (Kleibergen,

2009; Cochrane, 2005). The OWL estimator, on the other hand, permits correlated

variables and achieves correlation identification and sparsity shrinkage simultaneously.

We show that the OWL estimator is a consistent estimator under some regularity con-

ditions, and we derive the grouping conditions for correlated factors. Monte Carlo

experiments confirm the superior performance of the OWL estimator against other

benchmarks, especially when factors are correlated. Empirical analysis shows that

‘liquidity’ related factors play an important role to drive asset prices, meanwhile

sub-sample estimations suggest a shift in economic characteristics and reveal a time-

varying nature in factor selections.

Finally, note that the purpose of this paper is not to find a parsimonious asset

pricing model, but to identify a set of sparse factors, potentially highly correlated, to

explain the cross section of average returns given a certain period. With that in mind,

our procedure is particularly useful for factor investing: OWL can identify correlated

factors that jointly drive stock returns, and can be further utilized to form portfolio

strategies, see Asness et al. (2013) for instance. Meanwhile, we notice that there is

a time-varying trend in prominent factors that drive asset prices, which argues for

a time-varying model to be placed on the future research agenda. Future work can

also extend the statistical theories established in this paper, for instance to derive the

asymptotic properties of the OWL estimator under more general conditions. Further-

more, developing a de-biased version of the OWL estimator is possible following the

recent development of the de-sparsified LASSO estimator as in Van De Geer et al.

(2014) and Kock (2016), which will enable robust inferences.
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1.A Appendix

1.A.1 Technical proofs

1.A.1.1 Proof of Theorem 1.2.1

Proof. By definition the OWL estimator is minimizing the function

b̂ = b̂OWL = arg min
b

1

N
||µR − Cb||22 +

1

N

K∑
i=1

[λ1 + λ2(K − i)]|b|[i],

where |b|[·] denotes the element of the decreasingly ordered vector of |b|, such that

|b|[1] ≥ |b|[2] ≥ ... ≥ |b|[K]. Let b0 be the vector of true values of risk prices, and

µR = Cb0 + ε. According to the “argmin” property, definition of b̂ implies

1

N
||µR−Cb̂||22+

1

N

∑
i

[λ1+λ2(K−i)]|b̂|[i] ≤
1

N
||µR−Cb0||22+

1

N

∑
i

[λ1+λ2(K−i)]|b0|[i].

(1.A.1)

Since ωi = λ1 +λ2(K− i) is in a monotone non-negative cone and ω1 ≥ ω2 ≥ ... ≥ ωK ,

we have

∑
i

[λ1 + λ2(K − i)]|b̂|[i] ≥ ωK ||b̂||1 = λ1||b̂||1,∑
i

[λ1 + λ2(K − i)]|b0|[i] ≤ ω1||b0||1 = [λ1 + λ2(K − 1)]||b0||1.

Together with µR = Cb0 + ε, this implies that (1.A.1) can be simplified as:

1

N
||C(b̂− b0)||22 +

λ1

N
||b̂||1 ≤

2

N
ε′C(b̂− b0) +

1

N
[λ1 + λ2(K − 1)]||b0||1, (1.A.2)

where

2|ε′C(b̂− b0)| ≤
(

max
1≤j≤K

2|ε′C(j)|
)
||b̂− b0||1.

Consider the event
1

N
max

1≤j≤K
2|ε′C(j)| ≤ λ0, (1.A.3)

where λ0 = 2σ

√
t2 + 2 logK

N
by assumption. Then in view of (1.A.3), (1.A.2) can be

bounded as

1

N
||C(b̂− b0)||22 +

λ1

N
||b̂||1 ≤ λ0||b̂− b0||1 +

1

N
[λ1 + λ2(K − 1)]||b0||1. (1.A.4)
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By triangle inequality, ||b̂− b0||1 ≤ ||b̂||1 + ||b0||1. Therefore (1.A.4) can be written as

1

N
||C(b̂− b0)||22 + (

λ1

N
− λ0)||b̂||1 ≤ [λ0 +

λ1 + λ2(K − 1)

N
]||b0||1. (1.A.5)

By assumption of the theorem,
λ1

N
− λ0 ≥ 0 and λ1 = o(N), λ2 = o(N). Hence, we

obtain:
1

N
||C(b̂− b0)||22 ≤ [λ0 +

λ1 + λ2(K − 1)

N
]||b0||1. (1.A.6)

Since Σ̂ =
C ′C

N
, we have

(b̂− b0)′Σ̂(b̂− b0) =
1

N
‖C(b̂− b0)‖2

2 ≤ [λ0 +
λ1 + λ2(K − 1)

N
]||b0||1. (1.A.7)

This completes the proof of (1.12).

We obtained (1.A.7) assuming (1.A.3). Now we compute the probability of in-

equality (1.A.3) to be true.

By assumption λ0 = 2σ

√
t2 + 2 logK

N
, t > 0 and by Assumption 1 and 2, Vj :=

ε′C(j)/
√
Nσ2 v N(0, 1).

Using the Gaussian tail bound, P(|Vj| > x) ≤ 2 exp(−x2/2), we have

P(
1

N
max

1≤j≤K
2|ε′C(j)|) ≥ λ0) = P( max

1≤j≤K
|Vj| >

√
t2 + 2 logK)

≤
K∑
i=1

P(|Vj| >
√
t2 + 2 logK))

≤ 2K exp(−t
2 + 2 logK

2
)

= 2 exp(−t
2

2
).

Consequently, (1.A.3) is valid with probability

p ≥ 1− 2 exp(−t
2

2
).

This completes the proof of (1.11).

Let K be fixed. By Assumption 1, Σ̂ is a positive definite matrix, therefore (b̂ −

b0)′Σ̂(b̂−b0) ≥ Λmin‖b̂−b0‖2
2, where Λmin is the smallest eigenvalue of Σ̂, and Λmin > 0.

Note that as N → ∞, the right-hand-side of (1.12) tends to 0. By assumptions of

the theorem, λ0 = o(1),
λ1

N
= o(1) and

λ2K

N
= o(1). Further if t→∞, (1.A.3) holds
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with probability p→ 1. Then it follows trivially that

‖b̂− b0‖2 → 0.

This completes the proof of the last claim of Theorem 1.2.1. 2

1.A.1.2 Proof of Theorem 1.2.2

Proof. Using the “argmin” property, we have

1

N
||C(b̂− b0)||22 +

1

N
λ1||b̂||1 ≤ λ0||b̂− b0||1 +

1

N
[λ1 + λ2(K − 1)]||b0||1. (1.A.8)

By assumption,
λ1

N
= 2λ0. Then (1.A.8) can be written as

2

N
||C(b̂− b0)||22 +

2

N
λ1||b̂||1 ≤

λ1

N
||b̂− b0||1 +

2

N
[λ1 + λ2(K − 1)]||b0||1. (1.A.9)

Note that

||b̂||1 = ||b̂s0||1 + ||b̂sc0||1 ≥ ||b
0
s0
||1 − ||b̂s0 − b0

s0
||1 + ||b̂sc0||1, (1.A.10)

||b̂− b0||1 = ||b̂s0 − b0
s0
||1 + ||b̂sc0||1. (1.A.11)

Therefore, using (1.A.10) and (1.A.11), (1.A.9) can be written as

2

N
||C(b̂− b0)||22 +

2λ1

N
(||b0

s0
||1 − ||b̂s0 − b0

s0
||1 + ||b̂sc0||1)

≤ λ1

N
(||b̂s0 − b0

s0
||1 + ||b̂sc0 ||1) +

2λ1

N
‖b0‖1 +

2λ2(K − 1)

N
||b0||1. (1.A.12)

Note that ‖b0
s0
‖1 = ‖b0‖1, so (1.A.12) can be written as

2

N
||C(b̂− b0)||22 +

λ1

N
||b̂sc0 ||1 ≤ 3

λ1

N
||b̂s0 − b0

s0
||1 +

2λ2(K − 1)

N
||b0||1. (1.A.13)

By (1.A.11), ||b̂sc0||1 = ||b̂− b0||1 − ||b̂s0 − b0
s0
||1. Utilizing this in (1.A.13), we obtain

2

N
||C(b̂− b0)||22 +

λ1

N
||b̂− b0||1 ≤ 4

λ1

N
||b̂s0 − b0

s0
||1 +

2λ2(K − 1)

N
||b0||1. (1.A.14)

By Assumption 4, the restricted eigenvalue condition states that

φ2
0 := min

s0⊂{1,...,K}
|s0|<K

min
b∈RK\{0}

||bsc0 ||1≤3||bs0 ||1

b′Σ̂b

||bs0||22
> 0,
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which implies that for any b,

φ2
0 ≤

b′Σ̂b

||bs0 ||22
≤ b′Σ̂bS

||bs0||21
,

where S is defined in Assumption 3. Rearranging the above inequality, we have

||bs0||21 ≤ b′Σ̂bS/φ2
0, (1.A.15)

which is called the compatibility condition in Buhlmann and Van de Geer (2011) pp.

106.

Applying (1.A.15) on ||b̂s0 − b0
s0
||1 and using Σ̂ =

C ′C

N
, we have

||b̂s0 − b0
s0
||21 ≤ (b̂− b0)′Σ̂(b̂− b0)S/φ2

0 = ||C(b̂− b0)||22S/(Nφ2
0),

||b̂s0 − b0
s0
||1 ≤ ||C(b̂− b0)||2

√
S/(
√
Nφ0).

Therefore, using inequality 4ab ≤ a2 + 4b2, we obtain

4
λ1

N
||b̂s0 − b0

s0
||1 ≤ 4

(
||C(b̂− b0)||2√

N

)(
λ1

N

√
S

φ0

)
≤ 1

N
||C(b̂− b0)||22 + 4(

λ1

N
)2 S

φ2
0

.

So (1.A.14) can be written as

1

N
||C(b̂− b0)||22 +

λ1

N
||b̂− b0||1 ≤ 4(

λ1

N
)2 S

φ2
0

+
2λ2(K − 1)

N
||b0||1. (1.A.16)

Note that
1

N
||C(b̂ − b0)||22 = (b̂ − b0)′Σ̂(b̂ − b0), so (1.A.16) completes the proof of

(1.15).

By assumption of theorem
λ1

N
= 2λ0 = 4σ

√
t2 + 2 logK

N
and λ2 = O(

S logK

K
).

Therefore, for fixed t or t = O(
√

logK), both two terms on the right hand side of

(1.A.16) are O(
S logK

N
). Hence, (1.A.16) implies

1

N
||C(b̂− b0)||22 = O

(
S logK

N

)
, (1.A.17)

||b̂− b0||1 = O

(
S

√
logK

N

)
. (1.A.18)
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So (1.A.18) proves the first claim of (1.16). Observe that

1

N
||C(b̂− b0)||22 = (b̂− b0)′(Σ̂− Σ)(b̂− b0) + (b̂− b0)′Σ(b̂− b0), (1.A.19)

Notice that

(b̂− b0)′Σ(b̂− b0) ≥ Λ2
min||b̂− b0||22,

where Λmin denotes the smallest eigenvalue of Σ, and Σ is the true value of Σ̂, so

Λmin > 0. Moreover in (1.A.19), it holds

(b̂− b0)′(Σ̂− Σ)(b̂− b0) ≥ −||Σ̂− Σ||∞||b̂− b0||21,

where ||Σ̂ − Σ||∞ := max
1≤i,j≤K

|Σ̂i,j − Σi,j|. Using Lemma 14.12 in Buhlmann and Van

de Geer (2011), we have max
1≤i,j≤K

|Σ̂i,j − Σi,j| = Op(
√

logK
N

). Hence (1.A.17) can be

rewritten as

O

(
S logK

N

)
=

1

N
||C(b̂− b0)||22

≥ Λ2
min‖b̂− b0‖2

2 − ||Σ̂− Σ||∞||b̂− b0||21

≥ Λ2
min||b̂− b0||22 −Op

(
S2

(
logK

N

)3/2
)
.

(1.A.20)

Rearranging it, we have

||b̂− b0||22 ≤
1

Λ2
min

O(
S logK

N
) +

1

Λ2
min

Op

(
S2

(
logK

N

)3/2
)
.

By Assumption 3, S

√
logK

N
= o(1). Together with

1

Λ2
min

= O(1), we obtain

||b̂− b0||22 = Op(
S logK

N
), (1.A.21)

which proves the second claim of (1.16). Lastly, the claim of (1.14) follows using the

same argument as in the proof of Theorem 1.2.1. 2

1.A.1.3 Proof of Theorem 1.2.3

Proof. We can bound

‖b̃− b0‖2 ≤ ‖b̂− b0‖2 + ‖b̃− b̂‖2. (1.A.22)
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By (1.16) of Theorem 1.2.2,

‖b̂− b0‖2 = Op(

√
S logK

N
) = Op(H) = op(1). (1.A.23)

Thus to prove (1.20), it suffices to show ‖b̃− b̂‖2 = op(1). By definition of b̃ in (1.17),

‖b̃− b̂‖2
2 =

K∑
j=1,b0j 6=0

b̂2
j1(|b̂j| < H).

Since b̂2
j ≤ 2(b̂j − b0

j)
2 + 2b0

j
2
, we have

‖b̃− b̂‖2
2 ≤ 2‖b̂− b0‖2

2 + 2IK ,

where IK :=
K∑

j=1,b0j 6=0

(b0
j)

21(|b̂j| < H). It remains to show that

IK = op(1). (1.A.24)

Let M →∞ be a large number and MH → 0. Denote

A1,j = {|b̂j − b0
j | ≥MH},

A2,j = {|b̂j − b0
j | < MH, |b̂j| ≤ H, |b0

j | ≥ (M + 2)H},

A3,j = {|b0
j | < (M + 2)H, b0

j 6= 0}.

Then

{|b̂j| < H, b0
j 6= 0} ⊂ A1,j ∪ A2,j ∪ A3,j.

So

IK ≤
3∑
l=1

K∑
j=1

b0
j

2
1(Al,j)

:= IK,1 + IK,2 + IK,3.

To prove (1.A.24), it suffices to show

IK,l = op(1), for l = 1, 2, 3. (1.A.25)
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By (1.19), maxj |b0
j | ≤ c0 <∞, so

IK,1 ≤ c2
0

K∑
j=1

1(|b̂j − b0
j | ≥MH) ≤ c2

0

K∑
j=1

(b̂j − b0
j)

2

(MH)2

=
1

M2
c2

0

‖b̂− b0‖2
2

H2
=

1

M2
Op(1) = op(1),

as M →∞ by (1.A.23). Notice that A2,j = ∅ is an empty set. Indeed, in A2,j

|b̂j| = |b̂j − b0
j + b0

j | ≥ |b0
j | − |b̂j − b0

j |

≥ (M + 2)H −MH ≥ 2H,

which contradicts |b̂j| < H. Therefore, IK,2 = 0.

Finally, by (1.19) and the definition of A3,j,

IK,3 =
K∑
j=1

b0
j

2
1(|b0

j | < (M + 2)H)

≤
∞∑
j=1

b0
j

2
1(|b0

j | < (M + 2)H)

= op(1) as N →∞,

for any M , because MH → 0. This proves (1.20) and completes the proof of part (a)

of Theorem 1.2.3.

To prove part (b) it suffices to show that

max
j:|b0j |=0

|b̃j| = op(1).

We have

max
j:|b0j |=0

|b̃j| = max
j:|b0j |=0

|b̃j − b0
j | ≤ ‖b̃− b0‖2 = op(1),

by part (a), which completes the proof of part (b).

Now we turn to part (c). Take any j ∈ {1, · · · , K}, and let |b0
j | ≥ ξnH. Then

|b̂j| = |b̂j − b0
j + b0

j | ≥ |b0
j | − |b̂j − b0

j | ≥ |b0
j | − ‖b̂− b0‖∞

≥ ξnH − ‖b̂− b0‖2 = ξnH −Op(H) = (ξn −Op(1))H.
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Therefore, with ξn →∞,

P( min
|b0j |≥ξnH

|b̃j| = 0) = P( min
|b0j |≥ξnH

|b̂j| < H) ≤ P((ξn −Op(1))H < H)→ 0,

which implies (1.22). Here we complete the proof of part (c). 2

1.A.1.4 Proof of Theorem 1.2.4

The proof of Theorem 1.2.4 relies on the Pigou-Dalton transfer principle and the

directional derivative lemma at the minimum of a convex function. It follows using a

similar argument as in Figueiredo and Nowak (2016), except that we are dealing with

both the time-series and cross-sectional dimensions.

Lemma 1.A.1 (Pigou-Dalton transfer principle). Let be given vector x ∈ Rp
+, and

its two components xi, xj are such that xi > xj. Let ε ∈ (0, (xi − xj)/2), zi = xi − ε,

zj = xj + ε, and zk = xk, for k 6= i, j. Set Ωω(x) = ω′x, where ω ∈ Rp
+, and

ω1 ≥ ω2 ≥ · · · ≥ ωp. It holds

Ωω(x)− Ωω(z) ≥ ∆ωε, ∆ω := min
i=1,··· ,p−1

ωi+1 − ωi.

Lemma 1.A.2 (Directional derivative). The directional derivative of function f :

RK → R at x ∈ dom(f), in the direction u ∈ RK is given by

f ′(x, u) = lim
α→0+

[f(x+ αu)− f(x)]/α, α > 0.

If f is a convex function, then x∗ ∈ arg min(f) if and only if f ′(x∗, u) ≥ 0 for any

direction u ∈ RK.

Proof of Theorem 1.2.4 . Denote the objective function in (1.7) as Q(b) :=
1

2
||µR −

Cb||22 + Ωω(b). By definition, b̂ is the minimizer of Q(b), Q(b̂) ≤ Q(b) for all b. Thus

by Lemma 1.A.2, for any u,

Q′(b̂, u) ≥ 0. (1.A.26)

Suppose

σ(fi − fj) <
λ2

||µR||2||σR||2
, (1.A.27)

and assume

b̂i 6= b̂j.

62



We will show a contradiction between the assumption b̂i 6= b̂j and (1.A.27). Without

loss of the generality, assume b̂i > b̂j, i < j. First we define a special direction vector

u = (u1, · · · , uK). Set ui = −1, uj = 1, uk = 0, for k 6= i, j. The directional derivative

of Q at b̂ with such u is

Q′(b̂, u) = lim
α→0+

(
QLα(b̂, u) +RPα(b̂, u)

)
, (1.A.28)

where

QLα(b̂, u) =
||µR − C(b̂+ αu)||22 − ||µR − Cb̂||22

2α
,

RPα(b̂, u) =
Ωω(b̂+ αu)− Ωω(b̂)

α
.

By definition of u, we have −αCu = α(Ci − Cj), where Ci and Cj are the ith and

jth columns of the factor-return covariance matrix C. Hence QLα(b̂, u) can be written

as

QLα(b̂, u) =
||µR − Cb̂+ α(Ci − Cj)||22 − ||µR − Cb̂||22

2α
.

Observe that

QLα(b̂, u) =
||µR − Cb̂||2 + 2α(µR − Cb̂)(Ci − Cj) + α2||Ci − Cj||22 − ||µR − Cb̂||22

2α

→ (µR − Cb̂)(Ci − Cj) as α→ 0.

Applying the Pigou-Dalton transfer principle on RPα(b̂, u) with ε = α, we obtain

−RPα(b̂, u)α = Ωω(b̂)− Ωω(b̂+ αu) ≥ ∆ωα.

So for any α and u,

RPα(b̂, u) ≤ −∆ωα

α
= −∆ω.

By the definition of ω in (1.8), ∆ω = λ2. Therefore, applying the above bound in

(1.A.28), we obtain

Q′(b̂, u) ≤ (µR − Cb̂)(Ci − Cj)−∆ω

= (µR − Cb̂)(Ci − Cj)− λ2.
(1.A.29)

Using Cauchy-Schwarz inequality, we have (µR − Cb̂)(Ci − Cj) ≤ ||µR − Cb̂||2 ||Ci −
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Cj||2. So (1.A.29) becomes

Q′(b̂, u) ≤ ||µR − Cb̂||2 ||Ci − Cj||2 − λ2.

Since µR − Cb̂ is a pricing error, then ||µR − Cb̂||2 < ||µR||2, while by definition

cov(R, fi − fj) = Ci − Cj. Then we have

Q′(b̂, u) < ||µR||2 ||cov(R, fi − fj)||2 − λ2. (1.A.30)

Now we further utilize the covariance inequality. For any n = 1, · · · , N , Rn is the nth

column of the return matrix R, we have

cov(Rn, fi − fj) ≤
√

var(Rn)var(fi − fj) = σRnσ(fi − fj), (1.A.31)

where σRn is the standard deviation of the nth test asset. Apply (1.A.31) in (1.A.30),

we have

Q′(b̂, u) < ||µR||2 ||σRσ(fi − fj)||2 − λ2

= ||µR||2 ||σR||2 σ(fi − fj)− λ2,
(1.A.32)

where σR is a N × 1 vector collecting the standard deviations of N test assets. So

(1.A.32) together with (1.A.27) implies

Q′(b̂, u) < 0,

which violates (1.A.26). Hence there is a contradiction between b̂i 6= b̂j and (1.A.27).

So we must have

b̂i = b̂j,

which completes the proof. 2

1.A.1.5 Proof of corollary 1.2.1

Proof. The proof of corollary 1.2.1 follows the same method as in Appendix 1.A.1.4,

except we choose a special vector for u where we set ui = 1, uj = 1, uk = 0, for

k 6= i, j. The rest of the proof follows trivially. 2
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1.A.2 Solving the OWL optimization problem

This section follows similar arguments in Zeng and Figueiredo (2015) and explains

how to use the proximal gradient descent algorithm to solve the optimization problem

of the OWL estimator. The first subsection introduces the OWL proximal function

which is used to compute the optimizer at each step. The second subsection out-

lines the fast-iterative-soft-thresholding-algorithm (FISTA) used to find the global

optimizer, together with a backtracking line search condition which speeds up com-

putation substantially.

1.A.2.1 OWL proximal function

Denote by b = (b1, · · · , bn)′, x = (x1, · · · , xn)′ column vectors. First we define the

proximal function as

ProxΩω(b) = arg min
x

[
1

2
||x− b||22 + Ωω(x)

]
, Ωω(x) = ω′|x|↓ (1.A.33)

where ω ∈ κ, takes values from a monotone non-negative cone, defined as κ := {v ∈

Rn : v1 ≥ v2 ≥ · · · ≥ vn ≥ 0}, |x|↓ = (|x|[1], |x|[2], · · · , |x|[n])
′ and |x|[1] ≥ |x|[2] ≥ · · · ≥

|x|[n], is the vector of absolute values of elements of vector x, decreasingly ordered.

By the definition of Ωω(b), we have

Ωω(b) = Ωω(|b|), (1.A.34)

where |b| = (|b1|, · · · , |bn|)′. It is easy to show that

||b− sign(b)� |x|||22 ≤ ||b− x||22, (1.A.35)

where sign(b) = (sign(b1), · · · , sign(bn))′ is a function that retrieves signs from a vec-

tor, with elements in {1,−1, 0} and � is a point-wise production operator. Therefore,

(1.A.34) and (1.A.35) imply

ProxΩω(b) = sign(b)� ProxΩω(|b|). (1.A.36)
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Let P be a permutation matrix that orders elements of a vector in decreasing order.

Then permutation matrix has property

||P (x− b)||22 = ||x− b||22, (1.A.37)

and by the definition of Ωω(b),

Ωω(b) = Ωω(Pb). (1.A.38)

So (1.A.37) and (1.A.38) imply that (1.A.36) can be written as

ProxΩω(b) = sign(b)� P ′ ProxΩω(|b|↓), (1.A.39)

where |b|↓ is defined similarly as |x|↓, and P ′ is the transpose of the permutation

matrix, which recovers the order of |b|↓, i.e. P |b| = |b|↓, P ′|b|↓ = |b| and P ′P = I,

where I is the identity matrix.

For any x∗ ∈ κ ⊂ Rn, x ∈ Rn and x∗ = x↓ (i.e., x∗ and x are two vectors having

the same elements but with possibly different ordering of elements), since |b|↓ ∈ κ, we

have |b|′↓x ≤ |b|′↓x∗. Therefore,

1

2
||x− |b|↓||22 + Ωω(x) =

1

2
||x||22 +

1

2
|||b|↓||22 − |b|′↓x+ Ωω(x)

≥ 1

2
||x∗||22 +

1

2
|||b|↓||22 − |b|′↓x∗ + Ωω(x∗)

=
1

2
||x∗ − |b|↓||22 + Ωω(x∗).

Note that ProxΩω(|b|↓) = arg min
x

[
1

2
||x− |b|↓||22 + Ωω(x)

]
, and

1

2
||x∗−|b|↓||22+Ωω(x∗) ≤

1
2
||x−|b|↓||22+Ωω(x). This implies ProxΩω(|b|↓) ∈ κ, and ProxΩω(|b|↓) = arg min

x∈κ
[
1

2
||x−

|b|↓||22 + ω′x]. Completing the square, we have

ProxΩω(|b|↓) = arg min
x∈κ

(
1

2
‖x− |b|↓‖2

2 + ω′x) = arg min
x∈κ

1

2
‖x− (|b|↓ − ω)‖2

2,

which is the projection of (|b|↓−ω) onto κ 21. Then equation (1.A.39) can be written

as

ProxΩω(b) = sign(b)� P ′ Projκ(|b|↓ − ω)), (1.A.40)

21 Computation of the projection onto κ is an isotonic optimization problem and can be obtained
by using the Pool-Adjacent-Violators algorithm in de Leeuw et al. (2009).

66



where Projκ(.) is the projection operator onto κ.

After obtaining (1.A.40), we can employ the iterative soft-thresholding algorithm

to find the global optimizer of (1.7). First, we initialize b(0),22 then repeat

b(k+1) = ProxΩω(b(k) − szk 5 g(b(k))) (1.A.41)

until a stopping criterion is met, where k = 1, 2, 3, ... are steps of iteration, g(b) =

1
2
(µR − Cb)′(µR − Cb) and szk is the step size at the kth iteration.

1.A.2.2 FISTA algorithm

The FISTA-OWL algorithm23 below is based on Zeng and Figueiredo (2015). Fast

computation is achieved by using the backtracking line condition (step 7) and the

acceleration in u (step 12). The backtracking line condition allows large step sizes

if optimizer stays in the right direction, otherwise shrinks step sizes. Steps 11 to 12

accelerate computation by moving the optimizer further towards the global optimizer

at early iterations, while this acceleration diminishes when approaching the global

optimizer.

Algorithm 1: FISTA-OWL

1 Input: µR, C, ω

2 Output: OWL estimator b̂

3 Initialization: b0 = b̂OLS, t0 = t1 = 1, u1 = b0, k = 1, η ∈ (0, 1), τ0 ∈ (0, 1/L)
4 while some stopping criterion not met do
5 τk = τk−1;
6 bk = ProxΩω(uk + τ ∗ C ′ ∗ (µR − Cb))
7 while

1
2
||µR−Cbk||22 > 1

2
||µR−Cuk||22− (bk−uk)′C ′(µR−Cuk) + 1

2τk
||bk−uk||22 do

8 τk = η ∗ τk;
9 bk = ProxΩω(uk + τ ∗ C ′ ∗ (µR − Cb))

10 end

11 tk+1 = (1 +
√

1 + 4t2k)/2

12 uk+1 = bk + tk−1

tk+1
(bk − bk−1)

13 k ← k + 1

14 end
15 Return: bk−1

22For instance, we use the OLS estimate of (1.5) as initialization but it can be any random vector,
which will result in the same global minimizer for b since (1.7) is a convex minimization problem.
However, a good choice of initialization b(0) can reduce computation time greatly.

23In the initialization step of the FISTA-OWL algorithm below, L is a Lipschitz constant.
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1.A.3 Motivating the “restricted eigenvalue condition”

The following lemma motivates the restricted eigenvalue condition. A matrix Σ̂ that

satisfies the restricted eigenvalue condition

φ2
Σ̂

:= min
s0⊂{1,...,K}
|s0|<K

min
b∈RK\{0}

||bsc0 ||1≤3||bs0 ||1

b′Σ̂b

||bs0||22
> 0, (1.A.1)

if it is close to a matrix whose restricted eigenvalues are strictly positive. Let Σ =

E(Σ̂) = E(
C ′C

N
) be the population value of the scaled Gram matrix. Since Σ is a

non-singular matrix, its restricted eigenvalues are strictly positive: φ2
Σ > 0.

Lemma 1.A.3. Let S be the sparsity parameter and δ = max
1≤i,j≤N

|Σi,j − Σ̂i,j|. Let

φ2
Σ̂

and φ2
Σ be defined as in (1.A.1). Then for any vector b ∈ RK\{0} that satisfies

||bsc0||1 ≤ 3||bs0||1, it holds

φ2
Σ̂
> φ2

Σ − 16Sδ.

Proof. It is easy to show that

b′Σb− b′Σ̂b ≤ |b′Σb− b′Σ̂b| = |b′(Σ− Σ̂)b|

≤ ||b||1||(Σ− Σ̂)b||∞ ≤ δ||b||21.

Recall that b = bs0 + bsc0 , so ‖b‖1 ≤ ‖bs0‖1 + ‖bsc0‖1. Together with the assumption

||bsc0||1 ≤ 3||bs0||1, this implies ||b||21 ≤ (||bsc0||1 + ||bs0||1)2 ≤ 16||bs0||21. Hence, we have

b′Σb− b′Σ̂b ≤ 16δ||bs0||21.

Rearranging the above inequality and using the norm property
√
S‖bs0‖2 ≥ ‖bs0‖1,

we have
b′Σ̂b

||bs0||22
≥ b′Σb

||bs0 ||22
− 16Sδ.

By the definition of restricted eigenvalues in (1.A.1), we have

φ2
Σ̂
≥ φ2

Σ − 16Sδ.

2

Lemma 1.A.3 shows that for Σ̂ to satisfy the restricted eigenvalue condition (1.A.1),
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i.e. φ2
Σ̂
> 0, it suffices to show that δ is small enough so that φ2

Σ − 16Sδ > 0, or that

the Gram matrix Σ̂ is close to a positive definite matrix Σ. The following lemma

shows that the “Restricted eigenvalue condition” implies the compatibility condition

(1.A.2) used in Buhlmann and Van de Geer (2011) (pp. 106).

Lemma 1.A.4 (Compatibility condition). Let φ2
0 := φ2

Σ̂
, if the scaled Gram matrix

Σ̂ satisfies (1.A.1), then

||bs0 ||21 ≤ (b′Σ̂b)S/φ2
0. (1.A.2)

Proof. From the definition of restricted eigenvalues, we have

φ2
0 = min

s0∈{1,...,K}
|s0|<K

min
b∈RK\{0}

||bsc0 ||1≤3||bs0 ||1

b′Σ̂b

||bs0 ||22
> 0.

Recall the norm inequality,
√
S‖bs0‖2 ≥ ‖bs0‖1. Hence for any b, it holds

φ2
0 ≤

b′Σ̂b

||bs0 ||22
≤ b′Σ̂bS

||bs0||21
.

Rearranging, we obtain the compatibility condition in Buhlmann and Van de Geer

(2011)

||bs0 ||21 ≤ (b′Σ̂b)S/φ2
0.

2

1.A.4 Robustness check

In this section, we 1) check whether liquidity related factors are robust in explaining

the cross section of asset returns; 2) investigate how small stocks affect estimation

results of priced factors; 3) look into the convergence property of the FISTA-OWL

algorithm; 4) compare estimation errors of all candidate methods using simulated

data.

1.A.4.1 Robustness check with alternative test assets: are ‘liquidity’ fac-

tors robust?

For the first task, we consider three additional types of sorting method for constructing

test portfolios and compare them with the sorting method used in Section 4 to check
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whether liquidity related factors are consistently chosen by OWL. First, we apply the

uni-variate sorting method to sort all non-micro stocks into decile portfolios using each

characteristic, and combine them together to obtain 800 test portfolios. Compared to

the test portfolio in empirical analysis, all characteristics are treated equally. Second,

we consider the bi-variate sorting method, but using all possible combinations of

two out of 80 characteristics, that is 80 × 79/2 = 3160 possibilities. To reduce the

dimension of test portfolios, for each possible combination, we consider the 2 by

2 (instead of 5 by 5) sorting method: we sort stocks into ‘high’ and ‘low’ groups

by each of these two characteristics where the thresholds are the medians of these

characteristics. We then obtain 3160 × 4, total 12640 test portfolios. Third, we

consider a similar method in the empirical analysis, that is singling out ‘size’ as a

common characteristic, and using it with the remaining characteristics to form bi-

variate sorted portfolios; but instead of forming the 5 by 5 portfolios, we form 3 by 3

portfolios.

Figure 1.5a reports the two-stage estimation procedure result using four different

sets of test assets (including the one used in empirical analysis). First, ‘market’ along

with ‘illiquidity’ and ‘standard deviation of dollar volume’ are consistently chosen as

the most important factors to drive asset prices, with ‘illiquidity’ topping the chart

of anomaly factors. Second, the impact of ‘size’ factor (mve) on test assets decreases

colossally once it is not singled out to form bi-variate sorted portfolios. We can

conclude that in ‘type3’ and ‘type4’ where ‘size’ effect tops the chart, it is artificially

caused by portfolio sorting methods. However in empirical analysis (‘type4’), ‘size’ is

not a competing factor. Third, although singling out ‘size’ to form bi-variate sorted

portfolios may alter the ‘size’ effect, it does not alter other factors’ implications:

liquidity related factors are primary factors driving asset prices.

1.A.4.2 Robustness check with micro stocks

For the second task, we use the same sorting method as in the empirical analysis, but

we consider six types of treatment of micro stocks: 1) keep all micro stocks (P00); 2)

remove stocks that are smaller than 10 percentile of NYSE listed stocks (P10); 3-6)

similarly, remove stocks that are smaller than (20-50) percentile of NYSE listed stocks

(P20-P50). We investigate how factors’ implications vary within each scenario.
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(a) Robustness check with test assets
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(b) Robustness check with micro stocks

Figure 1.5. Robustness check
Figure 1.5a reports the absolute value of SDF coefficients estimated by OWL using four types of test

assets. Figure 1.5b reports the OWL estimates with six different treatments of micro stocks.

Figure 1.5b reports the heat map of the estimated risk prices using the OWL

estimator while controlling stock sizes. First, micro stocks alter the market factor’s

interpretation drastically. When micro stocks are all included to form test portfolios,

market factor only plays a moderate role for asset prices; however, liquidity related

factors dominate the chart. Market factor nonetheless consistently becomes the pri-

mary factor to drive asset prices once micro stocks are removed (at P20 and above

levels). Second, liquidity related factors consistently top the chart in driving asset

prices, particularly with the inclusion of small stocks. It shows that small firms face

severe liquidity constraints, and investors demand risk premiums to bear that risk.

Third, to be consistent with the finance literature, we consider the typical 20 per-

centile cut-off level to remove micro stocks. In this case, profitability and growth

related factors, after liquidity related factors, become the second tier of factors that

drive asset prices.
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1.A.4.3 Convergence using FISTA-OWL algorithm

Figure 1.6 shows the convergence of FISTA-OWL with backtracking algorithm (see

Appendix 1.A.2) in the empirical analysis using 81 factors (80 anomaly factors plus

the market factor). Vertical axis shows the distance between the kth estimation and

the optimizer. Horizontal axis shows the number of iterations (steps) until a stopping

criterion is met. Following the machine learning literature (see Zeng and Figueiredo

(2015)), we set a tight stopping criterion which is ||b(k)−b(k−1)||2
||b(k)||2 < 10−6, b(k) is the

OWL estimation of the risk price at the kth iteration. This figure shows that FISTA-

OWL algorithm has a sound convergence property: it converges quickly at the first

1000 steps, then it gradually converges to the optimizer because of a tight stopping

criterion.
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Figure 1.6. Convergence check for the FISTA-OWL algorithm
The stopping criterion is ||b(k)−b(k−1)||2||b(k)||2 < 10−6, where k is the number of iterations and b(k) is the

OWL estimate of risk price at the kth iteration.

1.A.4.4 Monte Carlo Simulation

For the robustness check of Monte Carlo experiments, we repeat simulation experi-

ments in various settings multiple times, and we report the deviation of each estimator

from oracle values.

Figure 1.7a shows the estimation error of each method with multiple repetitions.

We repeat the first experiment five times, in which we consider 90 candidate factors
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(K = 90) and 100 test assets (N = 100).24 First of all, the patterns are consistent

among the repeated exercises. LASSO is the worst performer especially when factors

are correlated. Elastic Net does improve the performance of LASSO when factors are

correlated, while yielding similar results to LASSO when factors are not correlated.

OLS is an unbiased estimator yet it does not produce sparsity. Adaptive LASSO was

influenced by OLS failing to shrink most useless factors to zero but performs the best

in the uncorrelated setting. OWL, by contrast, is the best performer when factors are

correlated, and in the uncorrelated setting, though outperformed by adaptive LASSO,

it is substantially better than LASSO and Elastic Net.

In the second experiment, which represents a typical low-dimensional setting (N =

1000, K = 90, N � K), Figure 1.7b plots the estimation errors of each estimator

with five repetitions. It shows a similar pattern to Figure 1.7a. The OWL estimator

performs the best when factors are correlated. However, in this low-dimensional

world, the adaptive LASSO estimator using OLS estimate as adaptive weight is the

best candidate when factors are not correlated. LASSO and Elastic Net are the worst

performers.

In the third experiment, which represents a high-dimensional setting (N = 70, K =

90, N < K), Figure 1.7c plots estimation errors of each estimator with five repeti-

tions. The best performer is OWL followed by Elastic Net and LASSO. The worst

performer is the adaptive LASSO estimator using the LASSO estimate as the adaptive

weight.

1.A.5 Introduction of LASSO, adaptive LASSO, Elastic Net

and OSCAR

Denote by y a N × 1 vector of responses, by X a N × K data matrix and by β =

(β1, · · · , βK)′ a K × 1 parameter vector. The LASSO (Tibshirani, 1996) estimator

solves the problem

β̂LASSO = arg min
β

[
1

2
||y −Xβ||2 + λ||β||1

]
, (1.A.3)

24We repeat the experiment 5 times and it is for the convenience and clarity of displaying the
figure. Repetitions of large numbers are also available upon request.
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(b) N = 1000,K = 90
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(c) N = 70,K = 90

Figure 1.7. Simulation: estimation errors
This figure shows the estimator error of each method, measured by the distance between the oracle

value and estimators. We repeat the simulation 5 times.
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where ||β||1 =
K∑
i=1

|βi| . The LASSO estimator can shrink the coefficients βi of unim-

portant covariates to zeros. Elastic net (EN) (Zou and Hastie, 2005) method solves

the problem

β̂EN = arg min
β

[
1

2
||y −Xβ||2 + λα||β||1 + λ(1− α)||β||22

]
, (1.A.4)

where ||β||22 =
K∑
i=1

β2
i . Elastic net combines the `1 norm (LASSO) and the `2 norm

(Ridge) penalty together, which stabilizes the LASSO selections of β′is when variables

are correlated. Here, α ∈ (0, 1) is a tuning parameter used to tilt the weight be-

tween the `1− and `2− shrinkage components. Adaptive LASSO (Zou, 2006) method

minimizes the following function

β̂adaLASSO = arg min
β

[
1

2
||y −Xβ||2 + λ

K∑
i=1

1

|β̂i,ada|γ
|βi|

]
, (1.A.5)

where γ > 0 and |β̂i,ada| is an adaptive weight for the ith element in β, which is obtained

through a first-stage estimation and typically based on the OLS estimate when it is

feasible. Variables with small magnitudes in first-stage estimated coefficients (i.e.,

small |β̂i,ada|) receive stronger penalty and γ controls the intensity of penalty for

small parameters. λ controls the overall penalty level. OSCAR (Octagonal shrinkage

and clustering algorithm for regression) (Bondell and Reich, 2008) method solves this

problem

β̂OSCAR = arg min
β

[
1

2
||y −Xβ||2 + λ1||β||1 + λ2

∑
i<j

max{|βi|, |βj|}

]
, (1.A.6)

where
∑
i<j

max{|βi|, |βj|} compares all elements in β pair-wisely and penalizes more

on the larger one. Bondell and Reich (2008) show that OSCAR method encourages

factor clustering when they are correlated.
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Chapter 2

Robust Inference of the

Ordered-Weighted-LASSO

Estimator

2.1 Introduction

Economic and financial research topics related to the LASSO (Tibshirani, 1996) es-

timator have burgeoned and evolved rapidly in the past decade as high-dimensional

big datasets become more available. For some examples, see Feng et al. (2020), Frey-

berger et al. (2020), Kozak et al. (2020) among others. However, as pointed out by

Babii et al. (2019): “...the bulk of machine learning methods assume i.i.d. regressors

and residuals.”. They further argue that time series data are usually correlated and,

as a remedy, they utilize a structured group-LASSO estimator using mixed frequency

time series data.1 Nonetheless, empirical evidence has suggested that correlations

are also commonly observed in the cross-sectional dimension,2 yet we often encounter

insufficient information to impose structural restrictions on cross-sectional covariates.

Consequently, it is not straightforward to implement the group-LASSO method while

the cross-sectional dimension is large and potentially highly correlated. Conversely,

1In particular, each group consists of lagged values of either the dependent variable or a single
explanatory variable, which means in effect, correlations on the time-series dimension are all retained
in separate groups.

2Asness et al. (2013) find negative correlation between value and momentum factors which can be
utilized to achieve superior portfolio performance. Kleibergen (2009) cautions about the collinearity
between factor loadings when implementing a Fama-MacBeth regression.
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we resort to a newly developed machine learning tool, the Ordered-Weighted-LASSO

(OWL) estimator, which is structure-free (needless to define group structures ex ante)

and entirely data-driven to exploit cross-sectional correlations. Figueiredo and Nowak

(2016) demonstrated that the OWL estimator explicitly permits correlations among

covariates and achieves correlation identification and sparsity shrinkage simultane-

ously. Sun (2019) further established the consistency property of the OWL estimator

under i.i.d Gaussian assumptions and applied the OWL estimator to dissect the factor

zoo.

This paper focuses on developing robust inference of the OWL estimator under

more general conditions. First, we relax the usual i.i.d. assumption for regressors and

instead impose less restrictive weak dependence conditions among high dimensional

covariates before we derive the non-asymptotic bounds for the prediction error and

the parameter estimation error. In particular, we assume α−mixing conditions and

potentially fatter (than sub-Gaussian) tails on variables and their distributions. We

leave a free parameter q that controls the fatness of the tail distribution and we

derive the probability measure of the validity of the oracle inequality in relation to q.

Furthermore, we do not rely on an upper bound assumption for any random variable,

which is usually required before implementing a Bernstein type inequality. Instead,

we follow Dendramis et al. (2019) to truncate random variables at a level which will be

specified later to bring together a refined bound for Bernstein type inequality under

strong mixing conditions. In this respect, our theoretical framework requires much less

restrictive assumptions and explicitly allows researchers to investigate cross-sectional

correlations.

Second, following recent development of the de-sparsified LASSO estimator, for in-

stance see Van De Geer et al. (2014), Belloni and Chernozhukov (2012), Kock (2016),

Caner and Kock (2018), Kock and Tang (2019) among others, we extend Figueiredo

and Nowak (2016) and Sun (2019) to develop the de-biased OWL estimator using

the nodewise LASSO technique. The OWL estimator has appealing properties of

grouping together highly correlated variables without pre-specifying any factor struc-

tures. Although Sun (2019) shows that the OWL estimator is consistent under some

regularity conditions, it is biased in small samples. The de-biased OWL estimator

bridges that gap. We show that after bias-correction, it is asymptotically normal and
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we derive the confidence intervals for each parameter.

Empirically, we apply the de-biased OWL estimator on 15 large stocks in the Dow

Jones industrial average index with 80 factors constructed using accounting data. We

implement a portfolio sorting method to obtain our factor zoo library.3 It is worth

stressing that we are not implementing a two-pass Fama-MacBeth type of regression

or a stochastic discount factor (SDF) method4 to identify true factors that drive

asset prices, which are most commonly studied in the cross-sectional asset pricing

literature. Instead, this exercise focuses on forecasting. We implement a simple one-

pass time series regression to predict stock returns directly from lagged values of

factors, which are high dimensional and potentially correlated.5 We are interested in

whether the de-biased OWL estimator can outperform other benchmarks in an out-

of-sample framework in terms of predicting asset returns given a set of test assets.

Empirical evidence suggests that the de-biased OWL estimator yields higher out-of-

sample Sharpe ratios compared to standard LASSO and OLS methods. In addition,

the de-biased OWL estimator illustrates a clear pattern of time-varying nature of

factor selections during different periods, while LASSO and OLS do not show strong

evidence of such pattern.

This paper builds naturally on the active and expanding literature pertaining

to the LASSO estimator, in both the machine learning and empirical asset pricing

literature. Tibshirani (1996) proposes the LASSO estimator that achieves efficient

dimension reduction within a convex optimization problem, which enjoys huge suc-

cess. Since then voluminous research has evolved to broaden the scope of the LASSO

estimator. Yuan and Lin (2006) allow covariates sharing similar characteristics to be

grouped together as a unit and propose the group LASSO estimator that performs

sparse selection among groups. Freyberger et al. (2020) apply the adaptive group

LASSO method to find pervasive firm characteristics to predict stock returns while

Babii et al. (2019) implement the group LASSO estimator with mixed-frequency time

3 In particular, we sort stocks (after removing micro-stocks) from the NYSE, NASDAQ and
AMEX into decile portfolios according to a large number of firm characteristics at each point of
time. For each characteristic we compute the spread returns between the top and bottom decile
portfolios at each point of time.

4See Sun (2019) for an example of implementing the SDF method to find pervasive factors on the
cross-section of stock returns.

5 Nonetheless, the de-biased OWL estimator can also be implemented for the Fama-Macbeth
regression (or SDF method) to identify pricing factors for a universe of stocks.
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series data for nowcasting GDP growth. Belloni and Chernozhukov (2012) and Bel-

loni et al. (2014) propose the three-pass double LASSO estimation method to de-bias

LASSO coefficients of a set of factors that are of primary interest to researchers. Feng

et al. (2020) adopt the double LASSO selection procedure to “tame” the factor zoo.

Zou and Hastie (2005) combine the `1 and `2 norm regularization and propose the elas-

tic net (EN), which stabilizes LASSO coefficients especially when covariates exhibit

correlations. Kozak et al. (2020) employ EN in a Bayesian framework and find that

sparse components can largely explain the cross section of average returns. Bondell

and Reich (2008) propose the octagonal shrinkage and clustering algorithm for regres-

sion (OSCAR) method by exploring the `∞ norm of parameters pair-wisely to achieve

clustered selections when covariates are highly correlated. Zeng and Figueiredo (2015)

and Figueiredo and Nowak (2016) promote the Ordered-Weighted-LASSO (OWL) es-

timator, which is closely related to the SLOPE (Sorted `1 Penalized Estimator) by

Bogdan et al. (2015): both assign a fixed and decreasing weighting vector to penal-

ized coefficients (by contrast, LASSO estimator assigns the same penalty to all coeffi-

cients), with the larger coefficients (absolute value) receiving larger penalty. Bogdan

et al. (2015) continue to specify a normal CDF based (non-linear) design for the

decreasingly ordered weighting vector, before using the false discovery rate (FDR)

to infer significance in the multi-testing framework assuming i.i.d. covariates. On

the other hand, the OWL estimator, although having the same design in the regu-

larization as the SLOPE, differs substantially in the weighting vector specification.

Figueiredo and Nowak (2016) specify a linear weighting vector, and they further find

that, by adopting a linear weighting vector, the OWL estimator encompasses the

OSCAR regularization, which has appealing properties to group together highly cor-

related variables without imposing any structural restrictions ex ante. Van De Geer

et al. (2014) developed the de-sparsified LASSO estimator using the nodewise LASSO

technique, which enables them to find a way to approximate the usually un-invertible

scaled Gram matrix to identify and quantify the bias of the LASSO estimator. The

de-sparsified LASSO estimator enjoys asymptotic normality. Kock (2016), Caner and

Kock (2018) and Kock and Tang (2019) expand the de-sparsified LASSO estimator on

panel data and develop statistical properties under sub-Gaussian assumption. Babii

et al. (2019) extend the nodewise LASSO technique to group-LASSO estimator using
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mixed frequency time-series data. This paper marries the OWL estimator and the

nodewise LASSO technique to propose the de-biased version of the OWL estimator.

Meanwhile, this paper relaxes the usual i.i.d. and sub-Gaussian assumptions to de-

rive (non)asymptotic properties of the estimator. In particular, we allow for weak

dependence (α-mixing) between covariates and fatter (than sub-Gaussian) tails.

In the remainder of this paper, Section 2.2 outlines the OWL estimation framework

and we study its (non)asymptotic properties and further discuss a de-biased version of

the OWL estimator and its asymptotic normality property. Section 2.3 studies Monte

Carlo experiments with various settings in dimensions and correlations. Section 3.4

applies the de-biased OWL estimator on 15 large stocks to find the best predictors

from a factor zoo library constructed from accounting data.

2.2 Model

In this section, we define the Ordered-Weighted-LASSO (OWL) estimator and derive

its theoretical properties under mixing and some other regularity assumptions. Then

we develop the de-biased OWL estimator, and show that it has asymptotically normal

distribution.

Notation

Throughout this paper, X is a n × p matrix, and y is a n × 1 vector. We denote

by Σ̂ =
1

n
X ′X the scaled Gram Matrix of X, while Σ = E(Σ̂) is the expected

(true) value of the scaled Gram matrix. For any x, y ∈ Rn, we denote ‖x‖2 =

(
n∑
i=1

x2
i )

1/2, ‖x‖1 =
n∑
i=1

|xi|, ‖x‖∞ = max1≤i≤n |xi|, ‖x‖0 the cardinality of x, and x� y

the Hadamard (point-wise) production of two vectors. For matrix M ∈ Rn×n,Λmin

and Λmax denote the smallest and largest eigenvalues of M. For two sequences xn and

yn, we write xn � yn if there exist 0 < a ≤ b < ∞, such that ayn ≤ xn ≤ byn and

we write xn . yn if xn ≤ byn for some 0 < b < ∞. For any set s, sc denotes the

complimentary set. For two scalers p and q, p∨ q := max(p, q) and p∧ q := min(p, q).

For any β = {β1, · · · , βp} ∈ Rp, we denote |β|↓ := (|β|[1], |β|[2], · · · , |β|[p])′, where

|β|[1] ≥ |β|[2] ≥ · · · ≥ |β|[p] and |β|[j] is the jth element of |β|↓.
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2.2.1 OWL estimator and the oracle inequality

Consider a linear model

y = Xβ0 + ε, (2.1)

where X := (X1, · · · , Xp) and β0 = (β0
1 , · · · , β0

p)
′. Note that in the high-dimensional

case, we allow p� n and X ′js can be correlated for j = 1, · · · , p. The OWL estimator

β̂ minimizes the objective function

β̂ = arg min
β

[
1

n
||y −Xβ||22 +

1

n
ω′|β|↓

]
, ω′|β|↓ =

p∑
j=1

ωj|β|[j], (2.2)

where ω = (ω1, · · · , ωp)′, ωj = λ1 + λ2(p− j), j = 1, · · · , p and λ1, λ2 ≥ 0 are tuning

parameters.

Zeng and Figueiredo (2015) have shown that the OWL estimator has sparsity

selection and correlation identification properties. In particular, the tuning parameter

λ1 controls the overall level of penalty while λ2 influences the grouping property:

large (small) λ2 encourages (discourages) correlated variables to be grouped together

by assigning them with similar coefficients, see Figueiredo and Nowak (2016) for

a detailed discussion. We want to stress here that we do not impose any factor

structure restrictions in our model, for instance defining groups ex ante to encapsulate

correlated variables. Correlation identification is entirely data-driven. On the other

hand, the OWL penalty term encompasses the LASSO setup. Setting λ2 = 0, the

OWL estimator will collapse to the standard LASSO estimator. A gradient proximal

algorithm can be implemented to solve the optimization problem in (2.2), see Sun

(2019) for technical details.

Before we derive the statistical properties for the OWL estimator β̂, we make the

following assumptions which are the foundation for building the theoretical framework

and add novelty to our contributions. Assumption 2.2.1 states restriction on random

variables, including cross-sectional dependence and on tails of their distributions.

Assumption 2.2.2 is a standard requirement for developing asymptotic theory for

LASSO type estimators in high dimensions. Assumption 2.2.3 specifies some rates on

s, n and p required to obtain consistent estimators.

Assumption 2.2.1 (Random variables, Dendramis et al. (2019)).

(a) {Xi,j} and {Xi,jεi}, i = 1, · · · , n, j = 1, · · · , p are α−mixing sequences, which
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are not necessarily stationary. The mixing coefficients have property αk ≤ c∗φ
k, c >

0, 0 < φ < 1, k ≥ 1,

(b) supi,j P(|Xi,j| > a) ≤ c1 exp[−c2a
q] and supi,j P(|Xi,jεi| > a) ≤ c1 exp[−c2a

q] for

all a > 0 , for some q > 0 and c1, c2 > 0 which do not depend on a, i, j,

(c) E(εi|Xi,j) = 0, and max
i,j

E(X4
i,j) <∞.

Assumption 2.2.1(a) relaxes the i.i.d condition which is usually assumed on Xj

in the bulk of LASSO related literature, for instance see Kock (2016), Van De Geer

et al. (2014) and Belloni and Chernozhukov (2012). Instead, we allow variables Xj

to be weakly dependent, i.e. α−mixing. Furthermore, mixing condition permits het-

eroscedasticity which is typically exhibited in empirical data. Assumption 2.2.1(b)

further specifies tail bounds of distributions of Xj and ε. Although we use an expo-

nential type of bound, it allows tails to be fatter than in the sub-Gaussian case. The

tail parameter q controls the fatness of the tails, and it encompasses the sub-Gaussian

tail (q = 2) as a special case. Assumption 2.2.1(c) is a standard assumption stating

that the error term is orthogonal to covariates, in other words {Xi,jεi} is a zero mean

sequence. Note that we do not assume random variables to be bounded which is

typically assumed when implementing a Bernstein type inequality. To this end, our

assumptions are more general and less restrictive than many of those in the literature

which typically consider sub-Gaussian i.i.d. random variables.

Assumption 2.2.2 (Restricted eigenvalue condition on Σ̂, Bickel et al. (2009)).

Let s0 ⊂ {1, · · · , p} be a subset and s := |s0| the cardinality of s0. For β =

{β1, · · · , βp}, denote βs0 := βi1{i ∈ s0, i = 1, · · · , p}, βsc0 := βi1{i /∈ s0, i =

1, · · · , p}, so that β = βs0 +βsc0. We suppose that for all β such that ‖βsc0‖1 ≤ 3‖βs0‖1,

Σ̂ satisfies the restricted eigenvalue condition

φ2
0 = min

s0⊂{1,··· ,p}
s<p

min
β∈Rp\{0}

‖βsc0‖1≤3‖βs0‖1

β′Σ̂β

‖βs0‖2
2

> 0. (2.3)

Assumption 2.2.2 is a cornerstone to many theoretical results related to LASSO

estimation. First of all, it allows us to specify the approximate sparsity condition as

follows: only for a subset s0, the true parameter vector has non-zero values (β0
i 6= 0 :

∀i ∈ s0), while the complement contains only zeros (β0
i = 0 : ∀i /∈ s0). The cardinality

s of such subset s0 does not need to be known ex ante nor its elements, though we
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restrict it so that s� p. The restricted eigenvalue condition implies the compatibility

condition of Buhlmann and Van de Geer (2011) (see below Lemma 2.2.1), which is

an essential element in the proof of Theorem 2.2.1.

Lemma 2.2.1 (Compatibility condition for Σ̂, Buhlmann and Van de Geer (2011)).

If the scaled Gram matrix Σ̂ satisfies the restricted eigenvalue condition in (2.3), then

for any β

‖βs0‖2
1 ≤ (β′Σ̂β)s/φ2

0.

Proof: see Appendix 2.A.1.4

Assumption 2.2.3 (Rates on n, p and s). Denote by s := |s0| the sparsity parameter

indicating the number of non-zero elements in β̂ as in (2.2) and sj the sparsity pa-

rameter in (2.15) by regressing the jth column of X on the remaining columns of X.

For any j ∈ {1, · · · , p}, we assume

(a) (s ∨ sj)
√

log p

n
= o(1),

(b) sj

√
log2 p

n
= o(1).

Assumption 2.2.3 specifies some rates on n, p, s and sj which lead to consistent

estimators. The rate that is required in 2.2.3(a) is rather standard and similar to

that used in Kock (2016) and Van De Geer et al. (2014). The other requirement in

2.2.3(b) is typically weaker than in Kock (2016).

2.2.1.1 Statistical properties

Next, we investigate some statistical properties for the OWL estimator. Theorem 2.2.1

establishes oracle inequality for the prediction error and parameter estimation error.

The probability we obtained is based on the assumption of weak dependence. Its

proof uses Bernstein type inequalities for α−mixing variables obtained in Dendramis

et al. (2019).

Theorem 2.2.1 (Oracle inequality). Suppose Assumption 2.2.1 and 2.2.2 hold. Set

λ0 = κ

√
log p

n
, where κ is a positive constant. Let

λ1

n
= 2λ0 and assume

λ2

n
=

Op(
s log p

np
). Suppose that for some δ > 0, p . nδ.
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1. Let n, p→∞. Then for sufficiently large κ,

1

n
||X(β̂ − β0)||2 . 4λ0

√
s/φ0 + λ0

√
2s‖β0‖1 (2.4)

||β̂ − β0||1 . 8λ0s/φ
2
0 + λ0s‖β0‖1, (2.5)

with probability at least 1 − c′0p−ε → 1, for some ε > 0, where c′0 is a positive

constant which is independent on n and p.

2. Let p be bounded. Then (2.4) and (2.5) hold with probability at least

1− pc0

[
exp(−c

′
1

4
κ2 log p) + exp

(
−c′2

(
κ
√
n log p

2 log2 n

)ζ)]
, (2.6)

where ζ = q/(q + 1) and c0, c
′
1, c
′
2 are some positive constants which are inde-

pendent on n and p.

Proof: see Appendix 2.A.1.1.

Remark 1 Theorem 2.2.1 offers bounds for the prediction error ||X(β̂−β0)||2/n and

parameter estimation error ||β̂ − β0||1 for the OWL estimator under strong mixing

conditions. Once we further incorporate Assumption 2.2.3, we will derive consistency

and the convergence rate for the OWL estimator. See Corollary 2.2.1.

Remark 2 We analyze the probability of (2.4) and (2.5) to hold under two scenarios.

First, when n, p → ∞, we find that those inequalities hold with probability tending

to one once a sufficiently large κ is chosen. Second, when p is fixed, we find that the

probability of (2.4) and (2.5) to hold converges to 1− pc0 exp(−c′′1κ2 log p) as n→∞,

where c0 and c′′1 = c′1/4 are some positive constants which depend only on the mixing

coefficient αk in Assumption 2.2.1. Then we need to select κ sufficiently large to

ensure that pc0 exp(−c′′1κ2 log p) is close to zero.

Remark 3 Our results on the probability measures are obtained under the general

assumption of exponential decaying tails on random variable zi,j := Xi,jεi. If ζ = 2/3

(i.e., q = 2), equation (2.6) encompasses the sub-Gaussian case, which is a frequent

assumption in related literature, see Kock (2016) and Kock and Tang (2019) for

example. In addition, it also accommodates fatter tails, i.e. 0 < q < 2. However,

when both p and n are bounded, the probability of (2.4) and (2.5) to hold depends

also on the tail parameter q. The thinner is the tail of the distribution (i.e., q is
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larger) of the random variable zi,j, the closer the probability in (2.6) is to one.

To this end, we want to emphasize that our results in Theorem 2.2.1 are based

on less restrictive assumptions, where we allow for weak dependence between random

variables X ′js and we further relax the sub-Gaussian tail restriction where we leave a

parameter q that controls the fatness of the tail distributions.

Corollary 2.2.1 (Convergence rate). Suppose Assumption 2.2.3 is satisfied and as-

sume n, p→∞. Then for sufficiently large κ, with probability tending to one,

‖β̂−β0‖2 = Op

(√
s log p

n

)
= op(1), ‖β̂−β0‖1 = Op

(
s

√
log p

n

)
= op(1). (2.7)

Proof: see Appendix 2.A.1.2.

Corollary 2.2.1 establishes the convergence rate in `1 and `2 norm of the OWL

estimator β̂. After specifying some growth rate for n and p in Assumption 2.2.3, we

show that the OWL estimator is consistent.

2.2.1.2 Choice of penalty parameters

It is well recognized that the choice of penalty level has huge impact on the perfor-

mance of LASSO type estimators. In the machine learning literature, cross-validation

is the most commonly implemented method for choosing penalty parameters. How-

ever, cross-validation can be computationally expensive to implement, for instance,

in a recursively estimated application.6 Hence, it would be useful if we can infer an

appropriate penalty level based on the statistical properties of the estimator. Belloni

and Chernozhukov (2012) argue that we should choose a penalty level that is suffi-

ciently large to cancel noises coming from estimation errors (i.e. P(λ0 > 2‖X ′ε‖∞/n)

is large), yet not overly large to write off signals from variables. To achieve that, we

propose the rule of thumb about penalty choice below based on a similar argument to

Belloni et al. (2012) but incorporating our unique setting for random variables (weak

dependence and exponential tails).

6Taking the commonly used 10-fold cross-validation as an example, at each step of the recursive
exercise (for instance, a rolling window estimation procedure) we need to split the sample into 10
folds, while holding one tenth of the sample as testing sample and the remaining as estimation sample
to evaluate and test the model, then swap positions of testing/estimation samples to re-evaluate the
model (10 times). Suppose we have two tuning parameters and we want to search for a best fit in
a 5 × 5 grid, and suppose the rolling window requires T recursive estimations. Then the 10-fold
cross-validation method would require the model to be run 52 ∗ 10 ∗ T times.
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Proposition 2.2.1. Let Assumption 2.2.1 be satisfied, Φ−1(·) denote the inverse of

the standard normal distribution function. We propose the following values for tuning

parameters λ1 and λ2 in (2.2).

λ1

n
=

4√
n
σ∗(1 +

1

log n
)1/2Φ−1(1− α

2p
),

λ2

n
=
λ1

n

√
log p√
n p

, (2.8)

where we evaluate σ∗ recursively similar to Algorithm A.1 in Belloni et al. (2012) and

α is a significance level.

Proof: see Appendix 2.A.1.5.

Note that α is selected to ensure the probability that the penalty is large enough

to cancel out noises is close to one, that is P(λ0 > 2‖X ′ε‖∞/n) ≥ 1− α. So a smaller

value of α will result in a larger penalty level. Proposition 2.2.1 offers a guideline for

penalty choices when cross-validation is too expensive to implement. Equation (2.8)

suggests that the penalty level depends on four elements. First, the noise level σ∗

affects penalty level. Large variance of the error term requires a higher penalty level

to cancel out noises. We evaluate σ∗ recursively: we first evaluate the model and

obtain the residuals while setting σ∗ = 1, then update σ∗ with the empirical residual

variance and re-evaluate the model. Second, large n reduces the penalty level. Note

that the total penalty is determined by λ1/n and λ2/n in (2.2), so large n commands

smaller values for λ1/n and λ2/n. From a different perspective, we can view that

large n leads to smaller variance σ2, which requires less penalty on parameters. Third,

the dimension of covariates p dictates the optimal penalty level. Large p requires a

higher level of penalty to shrink off more irrelevant variables. Fourth, the significant

parameter α affects the penalty level as discussed above.

2.2.2 De-biased OWL estimator

Although Theorem 2.2.1 shows that the OWL estimator is consistent under some

regularity conditions, it is biased in small samples. In this section, we discuss a

bias-corrected version of the OWL estimator using the nodewise LASSO method in-

troduced in Van De Geer et al. (2014). Then we develop the asymptotic normal

approximation result for the de-biased OWL estimator.
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2.2.2.1 Identifying the bias of the OWL estimator

For the convenience of expression, the OWL estimator defined in (2.2) can be written

as

β̂ = arg min
β

[
‖y −Xβ‖2

2/n+ 2ω′|β|↓/n
]
, (2.9)

where we extract 2 out of the weighting vector ω.7 The first order condition of

minimization of (2.9) gives

−X ′(y −Xβ̂)/n+ ω � τ̂ /n = 0, τ̂ =


1 if β̂ > 0

[−1, 1] if β̂ = 0

−1 if β̂ < 0.

(2.10)

where � denotes the point-wise product of two vectors, and τ̂ is the definition of

sub-gradient of |β̂|↓. We further utilize the equality y = Xβ0 + ε and Σ̂ = X ′X/n.

Then (2.10) can be written as

Σ̂(β̂ − β0) + ω � τ̂ /n = X ′ε/n. (2.11)

Since Σ̂ is not invertible when p > n, we are using a relaxed form Θ̂ suggested by Van

De Geer et al. (2014) to approximate the unobservable Σ−1, where Σ is the population

value of Σ̂. Suppose such Θ̂ exists. Then we can write

β̂ − β0 + Θ̂ω � τ̂ /n = Θ̂X ′ε/n−∆/
√
n, (2.12)

∆ =
√
n(Θ̂Σ̂− I)(β̂ − β0), (2.13)

where we will show later that Θ̂X ′ε/n is asymptotically normal and the approximation

error, ∆, is negligible. Then we obtain the de-biased OWL estimator

b̂ = β̂ + Θ̂ω � τ̂ /n = β̂ + Θ̂X ′(Y −Xβ̂)/n, (2.14)

where the second equation holds in view of (2.10). So the bias is identified as b̂ias =

Θ̂ω � τ̂ /n = Θ̂X ′(Y − Xβ̂)/n. In the next subsection, we construct the required

approximation Θ̂.

7Note that ω is exactly pinned down by λ1 and λ2 which can be determined according to (2.8).
So for the convenience of expression, we keep the same notation here for ω.
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2.2.2.2 Construction of Θ̂

We follow Van De Geer et al. (2014) and Kock (2016) and use the nodewise LASSO

technique to obtain Θ̂. First, the nodewise LASSO estimator is defined as

γ̂j = arg min
γ∈Rp−1

(
‖Xj −X−jγ‖2

2/n+ 2λj‖γj‖1

)
, (2.15)

where γ̂j := {γ̂j,k : j, k = 1, · · · , p, k 6= j} ∈ Rp−1 is a row vector of the nodewise

LASSO estimator by regressing Xj (the jth column of matrix X) on X−j (which

denotes the remaining columns of X) with LASSO penalty λj. Define a p× p matrix

Ĉ and a p× p diagonal matrix T̂ 2 as

Ĉ :=


1 −γ̂1,2 · · · −γ̂1,p

−γ̂2,1 1 · · · −γ̂2,p

...
...

. . .
...

−γ̂p,1 −γ̂p,2 · · · 1

 , T̂ 2 := diag(δ̂2
1, δ̂

2
2, · · · , δ̂2

p, ), (2.16)

where for j = 1, · · · , p ,

δ̂2
j = ‖Xj −X−j γ̂j‖2

2/n+ λ‖γ̂j‖1. (2.17)

Then Θ̂ is constructed by setting

Θ̂ := T̂−2Ĉ. (2.18)

For a close consideration of whether Θ̂ is a good approximation of Σ−1, see Appendix

2.A.2.

2.2.2.3 Inference on the de-biased OWL estimator

Denote ΣXε := E[
1

n

n∑
i=1

(X ′iεi)(X
′
iεi)
′], Σ̂Xε :=

1

n

n∑
i=1

[(X ′i ε̂i)(X
′
i ε̂i)
′] and Θ := Σ−1. For

any l ∈ {1, ..., p}, let Θ̂l (Θl) be the lth row of the Θ̂ (Θ) matrix, written as a column

vector.

Theorem 2.2.2. Let b̂ and Θ̂ be defined as in (2.14) and (2.18), respectively. Then
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the following hold:

√
n(b̂− β0) = Θ̂X ′ε/

√
n+ op(1), (2.19)

Θ̂′lX
′ε/
√
n→ N(0,Θ′lΣXεΘl), (2.20)

Furthermore, a uniformly valid point-wise confidence interval based on the t-statistics

for β0
l where l = 1, · · · , p is given by

[b̂l − C(α, Θ̂l, Σ̂Xε), b̂l + C(α, Θ̂l, Σ̂Xε)], (2.21)

where C(α, Θ̂l, Σ̂Xε) = Φ−1(1− α/2)
√

Θ̂′lΣ̂XεΘ̂l/n and α is the confidence level.

Proof: see Appendix 2.A.1.3.

Theorem 2.2.2 arrives at the asymptotic normality property for the de-biased OWL

estimator b̂ and allows uniformly valid test for β0
l (i.e. the confidence interval applies

to all l = 1, · · · , p). The confidence interval is derived through the t-statistics based on

the asymptotically normal property of the de-biased OWL estimator b̂. Alternatively,

a related Wald test can be subsequently developed. However, in this paper, we focus

on the t-statistics and using (2.21) for testing the significance of the de-biased OWL

estimator in our empirical exercises.

Next, we investigate the performance of the de-biased OWL estimator using sim-

ulated data.

2.3 Simulation

This section studies the performance of the de-biased OWL estimator alongside other

benchmark estimations using simulated data. First, let us consider a toy example

of 300 test assets (N = 300) and 20 covariates (K = 20). The oracle (true) values

of the first six coefficient parameters of covariates are non-zeros and the rest are all

zeros. Specifically, we set β0 = {10, 10
2
, 10

3
, ..., 10

6
, 0, 0, ..., 0} ∈ R20. Variables are not

correlated.

Figure 2.1 displays the plots of estimated coefficients using various methods, along-

side the true values (b0, blue line). The shaded area is the confidence interval for the

de-biased OWL estimator. First of all, we find the OWL estimator (red/circle) ex-

hibits good sparse-selection property: it shrinks the coefficients of all useless factors
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Figure 2.1. A toy example
This graph plots the estimated coefficients using OWL and its de-biased version, alongside the true

values (b0, blue line). There are total 20 covariates, the first six (true value) are non-zeros, while

the reminder are zeros. The shaded area is the confidence interval for the de-biased OWL estimator.

Variables are uncorrelated.

to zeros. We also find that the OWL estimates for the non-zero coefficients are all

biased towards zero, which is a common pitfall of many LASSO related estimators

in small samples. On the other hand, we find that the de-biased OWL estimator

(yellow/asterisk) corrects the bias: the bias-corrected estimates are much closer to

the oracle values (blue line), with the oracle values lying inside the confidence interval

(shaded area). On the flip side, the de-biased OWL estimates lose the sparse-selection

property: all those useless factors now have non-zero coefficients using the de-biased

OWL estimator. However, this incorrect de-biasing is bounded by the confidence in-

tervals. We find that the true values (zeros) of the coefficients of these useless factors

lie inside the confidence interval. Hence, we can easily remove those useless factors

by running a t-test. This simple toy example illustrates the nice properties of the

de-biased OWL estimator. Next, we run a sequence of Monte Carlo experiments to

investigate how dimensions of data-set, correlations and other aspects would affect

the performance of the de-biased OWL estimation.

We set the dimension of covariates X such that K = dim(X) ∈ {100, 1000} and

the number of observations N ∈ {60, 800, 1000}. We allow covariates in X to be
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correlated, and their covariance structure is defined as

Corri,j(X) = Σi,j(ρ) = ρ|i−j|, i, j ∈ {1, 2, ..., K}, ρ ∈ {0, 0.3, 0.5, 0.7},

where Corr is the correlation coefficient function. The true oracle value for β is set

to be

β0 = {10,
10

2
,
10

3
, ...,

10

6
, 0, 0, ..., 0} ∈ RK .

The first six elements are non-zeros, and the rest are zeros. The covariates matrix X

and the response y are generated through the following distribution

X = Z ∗ chol(Σ), Z ∼ N(0, 1) ∈ RN×K ,

y = Xβ0 + ε, ε ∼ N(0, 0.01) ∈ RN×1,

where chol(.) is the lower triangle matrix of the Cholesky decomposition. We use

the de-biased OWL estimator to obtain estimated coefficients. The penalty hyper-

parameters of λ1 and λ2 are chosen according to the optimal level discussed in Section

2.2.1.2.

λ1/N = σ̃(1 +
1

logN
)1/2Φ−1(1− α

2K
)/
√
N,

λ2/N =(λ1/N)
√

logK/(
√
NK),

where Φ−1(·) is the inverse of a normal cumulative distribution function and α = 5%.

We set σ̃ = 4σ∗ = 0.01 to gain computation speed.8 We compare the de-biased OWL

estimator with other benchmarks, including the OLS (when it is feasible) and the

LASSO estimators. The number of the Monte Carlo repetition is 500 (rep = 500)

for all set-ups. We report four estimated coefficients of β̂, of which two have the true

value of non-zeros: {β3, β6}, the other two have true values of zeros: {β12, β20}. We

report the performance table of β̂ using the following criteria:

1. Coverage rate for de-biased OWL. We compute the confidence interval of de-

biased OWL according to (2.21). The coverage rate is the rate of the true value

of the parameter included in the confidence interval throughout all Monte Carlo

8We opt for this easy choice of σ∗ to gain computation speed, especially in high-dimensional cases.
The de-biased OWL estimates may be sub-optimal, and a carefully cross-validated choice of σ∗ can
potentially improve the de-biased OWL estimates.
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repetitions. We compute the coverage rate for each of these four parameters.

2. The width of confidence intervals (CI) for the de-biased OWL estimates. We

compute the average width of confidence intervals of de-biased OWL throughout

all Monte Carlo repetitions.

3. MAE (Mean Absolute Errors). We compare the mean absolute estimation

errors between the de-biased OWL, LASSO and OLS estimates. The MAE

for each coefficient j ∈ {3, 6, 12, 20} is defined as MAEj
benchmark =

rep∑
i=1

|βij,0 −

β̂benchmark,ij |/rep, and the average MAE across all coefficients of j ∈ {3, 6, 12, 20}

for each benchmark is defined as MAEbenchmark =
rep∑
i=1

∑
j

|βij,0−β̂
benchmark,i
j |/(4rep).

Table 2.1. Simulation results

Panel A: Coverage rate, CI width and MAE comparison between benchmarks

Coverage rate of dowl Width of CI of dowl Average MAE
β3 β6 β12 β20 β3 β6 β12 β20 dowl ols lasso lasso cv

K = 50, N = 60

ρ = 0 0.9360 0.9350 0.9600 0.9360 0.1016 0.0665 0.0820 0.0942 0.0112 0.0263 0.0819 0.0819
ρ = 0.3 0.9560 0.9300 0.9280 0.9320 0.1316 0.0948 0.1138 0.1424 0.0143 0.0347 0.0657 0.0657
ρ = 0.5 0.9560 0.9320 0.9420 0.9560 0.1209 0.1271 0.2372 0.1142 0.0154 0.0396 0.0894 0.0894
ρ = 0.7 0.9780 0.9780 0.9620 0.9500 0.1857 0.1782 0.1897 0.1504 0.0185 0.0495 0.0663 0.0663

K = 50, N = 1000

ρ = 0 0.9420 0.9480 0.9380 0.9600 0.0129 0.0123 0.0127 0.0121 0.0015 0.0026 0.0689 0.0689
ρ = 0.3 0.9480 0.9600 0.9480 0.9540 0.0139 0.0139 0.0137 0.0137 0.0016 0.0028 0.0813 0.0813
ρ = 0.5 0.9640 0.9380 0.9280 0.9520 0.0158 0.0170 0.0162 0.0161 0.0019 0.0033 0.0758 0.0758
ρ = 0.7 0.9380 0.9600 0.9420 0.9400 0.0214 0.0207 0.0210 0.0211 0.0025 0.0044 0.0755 0.0755

K = 1000, N = 800

ρ = 0 0.9080 0.9340 0.9400 0.9300 0.0939 0.1000 0.0907 0.0726 0.0131 N/A 0.0738 0.0738
ρ = 0.3 0.9460 0.9360 0.9280 0.9460 0.0823 0.0804 0.0996 0.0925 0.0105 N/A 0.0777 0.0777
ρ = 0.5 0.9620 0.9580 0.9460 0.9420 0.0878 0.0889 0.0832 0.0762 0.0096 N/A 0.0806 0.0806
ρ = 0.7 0.9720 0.9400 0.9400 0.9680 0.0756 0.0837 0.0882 0.0840 0.0089 N/A 0.0776 0.0776

Panel B: MAE comparison of each coefficient

MAE dowl MAE ols MAE lasso
β3 β6 β12 β20 β3 β6 β12 β20 β3 β6 β12 β20

K = 50, N = 60

ρ = 0 0.0219 0.0173 0.0019 0.0036 0.0257 0.0243 0.0328 0.0223 0.1645 0.1629 0.0000 0.0000
ρ = 0.3 0.0266 0.0198 0.0048 0.0060 0.0405 0.0277 0.0276 0.0428 0.0562 0.2064 0.0000 0.0000
ρ = 0.5 0.0238 0.0266 0.0082 0.0029 0.0292 0.0313 0.0678 0.0299 0.1857 0.1721 0.0000 0.0000
ρ = 0.7 0.0337 0.0315 0.0043 0.0045 0.0488 0.0572 0.0492 0.0429 0.0576 0.2075 0.0000 0.0000

K = 50, N = 1000

ρ = 0 0.0026 0.0026 0.0005 0.0003 0.0026 0.0026 0.0026 0.0024 0.1403 0.1352 0.0000 0.0000
ρ = 0.3 0.0028 0.0027 0.0004 0.0004 0.0028 0.0027 0.0028 0.0028 0.1445 0.1807 0.0000 0.0000
ρ = 0.5 0.0031 0.0036 0.0007 0.0004 0.0031 0.0036 0.0034 0.0032 0.1017 0.2014 0.0000 0.0000
ρ = 0.7 0.0045 0.0041 0.0007 0.0008 0.0045 0.0041 0.0044 0.0046 0.0603 0.2417 0.0000 0.0000

K = 1000, N = 800

ρ = 0 0.0228 0.0231 0.0033 0.0030 N/A N/A N/A N/A 0.1465 0.1488 0.0000 0.0000
ρ = 0.3 0.0164 0.0182 0.0044 0.0030 N/A N/A N/A N/A 0.1392 0.1717 0.0000 0.0000
ρ = 0.5 0.0157 0.0174 0.0026 0.0027 N/A N/A N/A N/A 0.0995 0.2231 0.0000 0.0000
ρ = 0.7 0.0130 0.0180 0.0032 0.0016 N/A N/A N/A N/A 0.0783 0.2319 0.0000 0.0000
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Panel A of Table 2.1 shows the results of the coverage rate and the confidence in-

terval (CI) width of the de-biased OWL estimator, as well as the average MAE (mean

absolute error) of each method. For the LASSO estimator we consider two methods

for tuning the penalty parameter: one is by a ten-fold cross-validation (lasso cv),

which is widely used in machine learning literature; another one is by specifying the

maximum number of non-zero coefficients we want to obtain.9 We consider three

settings in our experiment about the dimension of the dataset. First, we consider the

case where K = 50, N = 60 (N ≈ K) . Second, we look into the near asymptotic case

where K = 50, N = 1000 (N � K). Third, we investigate the high-dimensional case

where K = 1000, N = 800 (K > N). First of all, we find that the coverage rates of

the de-biased OWL estimates for all cases are above 90%. In particular, the coverage

rate for the near asymptotic case is near the correct size (95%) when correlation is

not too high (ρ < 0.5). Comparing coverage rates with different correlation profiles

within each setting suggests that the coverage rate is typically higher when correlation

is high (ρ = 0.7). However, we find that this is a result of enlarged confidence interval

width rather than improved estimation accuracy. The width of confidence interval

at the near asymptotic case suggests that when the correlation coefficient increases

(ρ increases from 0 to 0.7), the width of confidence interval enlarges, particularly

when ρ changes from 0.5 to 0.7. Meanwhile, an increase in ρ is also associated with a

decrease in estimation accuracy: the average MAE for the de-biased OWL estimate

increases steadily when ρ increases. Also, comparing the average MAE of four coeffi-

cients (β3, β6, β12, β20) between the de-biased OWL, OLS and LASSO estimators, we

find that the de-biased OWL estimate yields the lowest estimation errors in all cases.

Panel B of Table 2.1 gives a detailed illustration of MAE comparison between

benchmarks for each coefficient. We find that the OLS estimator is good at estimating

β3 and β6 because the OLS estimator is unbiased. However, the OLS estimation error

is large when estimating β12 and β20 when their true values are zeros. The performance

of the LASSO estimator is the opposite: it correctly shrinks β12 and β20 to zeros (in

which case there is no estimation error for β12 and β20) but the LASSO estimates for β3

and β6 are biased, and the estimation errors are large compared to the OLS estimates.

9We specify the maximum number of non-zero coefficients as ten to ensure sparse selection. After
evaluation, we find both methods for choosing the LASSO penalty parameter tend to yield the same
result.
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The de-biased OWL estimate combines the merits of the OLS and LASSO estimators:

it achieves unbiased estimation for the non-zero coefficients but also shrinks zero

coefficients. In the cases where K = 50 (the OLS estimator is feasible), the de-biased

OWL estimates for β3 and β6 are very close to the OLS estimates, especially in the

near asymptotic case. Meanwhile, the de-biased OWL estimates for β12 and β20 are

close to LASSO estimates, performing sparsity shrinkage for useless covariates (whose

true coefficients are zeros). In the high-dimensional case where K = 1000, we find

that the MAE of the de-biased OWL estimates are substantially smaller than those

of the LASSO estimates while the OLS estimates become infeasible.

This Monte Carlo experiment shows that, in both the low- and high-dimensional

cases, the de-biased OWL estimator delivers unbiased estimation for useful covariates

(whose true coefficients are non-zeros) as good as the OLS estimator while shrinking

off useless covariates almost as good as the LASSO estimator.

2.4 Empirical application on factor investing

In this section, we apply the de-biased OWL method to predict stock returns using

firm-characteristic based factors. We first introduce the dataset and the empirical

method before conducting the empirical analysis.

2.4.1 Data and empirical method

We use the U.S. stock data from the Center for Research in Security Prices (CRSP)

and Compustat database, both downloaded from the Wharton Research Data Ser-

vice. The data spans January 1980 to December 2017, totalling 456 months on all

NYSE, AMEX and NASDAQ listed common stocks. Risk-free rate and market re-

turns are downloaded from Kenneth French’s on-line data library.10 For predicting

stock returns, we use a factor library which contains 80 anomaly factors constructed

using characteristic-sorted portfolios. More details of constructing those anomaly fac-

tors can be found in Sun (2019). We consider 30 stocks in the Dow Jones Industrial

Average index as test assets while deleting stocks having any missing data between

January 1980 and December 2017, which leaves 15 stocks as test assets. We then use

10https : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html
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these characteristic-based factors to predict stock returns for each of those 15 stocks.

Suppose we use the lagged factor returns to predict individual stock return. The

predicted return of any stock i at time t is

R̂i
t+1 =ftβ̃t, β̃t ∈ {β̃dOWL

t , β̃OWL
t , β̃LASSOt , β̃OLSt }, (2.22)

β̃dOWL
t =β̃OWL

t + Θ̂(Ri
t − ft−1β̃

OWL
t )/n, (2.23)

β̃OWL
t = arg min

β
‖Ri

t − ft−1β‖2
2 + Ω(β), (2.24)

β̃LASSOt = arg min
β
‖Ri

t − ft−1β‖2
2 + λ‖β‖1, (2.25)

β̃OLSt = arg min
β
‖Ri

t − ft−1β‖2
2, (2.26)

where β̃t includes the de-biased OWL (‘dOWL’) estimator as well as benchmarks such

as the OWL, OLS and LASSO estimators. Θ̂ is constructed in (2.18). β̃OWL
t is the

OWL estimator in (2.2) and β̃dOWL
t is the de-biased OWL estimator in (2.14). λ is a

hyper parameter for the LASSO estimator and we use two methods to determine its

value: either by a 10-fold cross-validation (CV) method or restricting its maximum

non-zero coefficients to ten (DFmax = 10) to ensure sparsity.

2.4.2 A stock-by-stock analysis

In this subsection, we look at each stock and find which factors are the best predictors

using the full sample estimation. However, it is worth stressing that our target here

is to predict stock returns using a potentially large number of predictors. Since our

approach is stock-specific, the selected factors for each stock should not be interpreted

as cross-sectionally valid true factors. Cross-sectional stock returns are typically in-

vestigated through the Fama-MacBeth regression method or the SDF method, see Sun

(2019) for more details on dissecting the factor zoo for cross-sectional asset returns.

Figure 2.2 shows the contour plot of the estimated de-biased OWL coefficients

(absolute value).11 The vertical axis lists all the factors considered in the factor

library and the horizontal axis shows 15 stocks as test assets. The left panel displays

the estimated coefficient before testing, while the right panel displays the contour

11Note that we excluded ‘betasq’ in the factor library because the correlation coefficient between
‘beta’ and ‘betasq’ is more than 0.9. Including both of them in the factor zoo leads to serious
estimation problems for OLS and LASSO estimators. For that reason, we exclude ‘betasq’ from the
factor library.
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Contour of de-biased OWL coefficients (abs)
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Contour of de-biased OWL coefficients (abs) after testing, alpha=0.05
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Figure 2.2. Contour plot of the de-biased OWL estimator of factor loadings
The left panel is before testing and the right panel is after testing. Yellow areas represent higher

values, blue areas represent lower values and blank areas are zeros.

plot of the de-biased OWL estimate after removing insignificant ones by applying

the confidence interval in (2.21) at a significance level α = 5%. We first find that

‘sales’ related factors are typically selected as strong predictors for many stocks, while

‘profitability’ and ‘investment’ related factors form the second tier of strong predictors

for stocks returns. The right panel confirms that most of those strong predictors

are significant while many other minor predictors are removed after applying the

confidence interval. Meanwhile, it also suggests that some stocks, for instance ‘KO’

and ‘MMM’, are sensitive to only very few (less than five) factors in our factor library,

while others like ‘J&J’ and ‘DIS’ have many (more than ten) significant predictors.

Next we choose a random stock, for instance ‘DIS’, to compare the estimation

results using different methods. Figure 2.3 shows the plot of estimated coefficients

using the de-biased OWL (blue), OWL (red), LASSO (yellow, with DFmax = 10),
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LASSO CV (purple, with 10-fold cross validation) and OLS (green) estimators. The

grey area displays the confidence intervals for the de-biased OWL estimator at a

significance level α = 5%.

Figure 2.3. Estimated factor loadings of ‘DIS’
This figure plot the estimated factor loadings using the de-biased OWL, OWL, LASSO and OLS

estimators. The shaded area is the confidence interval for the de-biased OWL estimator.

Figure 2.3 shows that the OWL estimator yields very similar results to the LASSO

estimator (with maximum number of non-zero coefficients restricted to ten to ensure

sparsity) for the sparsity property, i.e., they both shrink many factors’ coefficients to

zeros, yet they differ in some of the survival factors (i.e., factors having non-zero esti-

mated coefficients). Meanwhile, the estimated coefficients of survival factors of both

the OWL and the LASSO (yellow) estimators are very close zero, which is caused

by an inward bias pulling the coefficients towards zeros. The cross validated LASSO

estimator yields very similar results to the OLS estimator. Cross validation method

suggests all factors are useful to predict stock returns and thus shrink no factors and

yield almost the same result as the OLS estimator. The de-biased OWL estimator

corrects that bias for the OWL estimator. We find that after bias-correction, the

de-biased OWL estimate displays a similar trend to the OLS estimator, although the

magnitude of estimated coefficients varies on some factors compared to the OLS es-

timator. Meanwhile, the de-biased OWL estimator loses the sparsity property (i.e.

no factors receive zero coefficients for the de-biased OWL estimator), but we find

that many of those factors receiving zero coefficients in the OWL estimation are in-
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significant in the de-biased OWL estimation after applying the confidence intervals.

In addition, to preserve the sparsity property of the OWL estimator while correct-

ing the bias for survival factors, we can selectively de-bias these estimated non-zero

coefficients of the OWL estimator.

2.5 Conclusion

In high dimensional datasets where covariates exhibit high correlations, Zou and

Hastie (2005) and Figueiredo and Nowak (2016) have shown that the LASSO estima-

tor performs poorly. Figueiredo and Nowak (2016) introduced the Ordered-Weighted-

LASSO (OWL) estimator which is specifically tailored to deal with correlations be-

tween covariates. Sun (2019) introduced the OWL estimator to dissect the factor

zoo for the cross sectional asset returns and further developed asymptotic proper-

ties for the OWL estimator. Although Sun (2019) shows that the OWL estimator is

consistent, it is biased in small samples. This paper extends Figueiredo and Nowak

(2016) and Sun (2019) to study the (non)asymptotic properties of the OWL estimator

with less restrictive assumptions and further proposes a bias-corrected version of the

OWL estimator. Monte Carlo experiments show that, in both the low- and high-

dimensional settings, the de-biased OWL estimator delivers unbiased estimation for

useful covariates as good as the OLS estimator, while shrinking off useless covariates

almost as good as the LASSO estimator. In the empirical analysis, we implement

the de-biased OWL estimation to predict returns for 15 stocks from the Dow Jones

Industrial Average index using 80 factors. We find some ‘sales’, ‘profitability’ and

‘investment’ related factors are strong predictors for many stock returns.
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2.A Appendix

2.A.1 Technical proofs

2.A.1.1 Proof of Theorem 2.2.1

Proof. The proof of Theorem 2.2.1 consists of two parts. In the first part we derive the

oracle inequality (2.4) and (2.5) under the event E, which will be specified below in

(2.A.4). In the second part we will derive the probability of this event P(E) to be true.

Part I. According to the “argmin” property,

1

n
||y −Xβ̂||22 +

1

n

p∑
j=1

ωj|β̂|[j] ≤
1

n
||y −Xβ0||22 +

1

n

p∑
j=1

ωj|β0|[j]. (2.A.1)

Since (ω1, · · · , ωp)′ where ωj = λ1 + λ2(p − j), j = {1, · · · , p} is in a monotone

non-negative cone, so ω1 ≥ ω2 ≥ ... ≥ ωp. Then we have

p∑
j=1

ωj|β̂|[j] ≥ ωp||β̂||1 = λ1||β̂||1,

p∑
j=1

ωj|β0|[j] ≤ ω1||β0||1 = [λ1 + λ2(p− 1)]||β0||1.

Together with y = Xβ0 + ε, this implies that (2.A.1) can be simplified as follow:

1

n
||ε−X(β̂ − β0)||22 +

1

n
ωp||β̂||1 ≤

1

n
||ε||22 +

1

n
ω1||β0||1 (2.A.2)

1

n
||X(β̂ − β0)||22 +

λ1

n
||β̂||1 ≤

2

n
ε′X(β̂ − β0) +

1

n
[λ1 + λ2(p− 1)]||β0||1. (2.A.3)

Note that ε′X(β̂ − β0) ≤ ‖ε′X‖∞||β̂ − β0||1. Let λ0 > 0 and consider an event

E :=

{
1

n
‖ε′X‖∞ ≤

λ0

2

}
, (2.A.4)

where λ0 = κ

√
log p

n
, where κ > 0 is a constant. Then in view of (2.A.4), (2.A.3) can

be bounded as

1

n
||X(β̂ − β0)||22 +

λ1

n
||β̂||1 ≤ λ0||β̂ − β0||1 +

1

n
[λ1 + λ2(p− 1)]||β0||1. (2.A.5)
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By assumption of the theorem,
λ1

n
= 2λ0. So we obtain

1

n
||X(β̂ − β0)||22 +

λ1

n
||β̂||1 ≤

λ1

2n
||β̂ − β0||1 +

1

n
[λ1 + λ2(p− 1)]||β0||1. (2.A.6)

By the definition of s0, β̂ = β̂s0 + β̂sc0 . Utilizing the triangle inequality ‖a‖1 + ‖b‖1 ≥

‖a+ b‖1 for any vector a and b, we obtain

||β̂||1 = ||β̂s0||1 + ||β̂sc0||1 ≥ ||β
0
s0
||1 − ||β̂s0 − β0

s0
||1 + ||β̂sc0||1, (2.A.7)

||β̂ − β0||1 = ||β̂s0 − β0
s0
||1 + ||β̂sc0||1. (2.A.8)

Therefore, using (2.A.7) and (2.A.8), (2.A.6) can be written as

2

n
||X(β̂ − β0)||22 +

2λ1

n
(||β0

s0
||1 − ||β̂s0 − β0

s0
||1 + ||β̂sc0||1)

≤ λ1

n
(||β̂s0 − β0

s0
||1 + ||β̂sc0||1) +

2

n
[λ1 + λ2(p− 1)]||β0||1. (2.A.9)

Note that ‖β0
s0
‖1 = ‖β0‖1, so (2.A.9) can be written as

2

n
||X(β̂ − β0)||22 +

λ1

n
||β̂sc0||1 ≤

3λ1

n
||β̂s0 − β0

s0
||1 +

2λ2(p− 1)

n
||β0||1. (2.A.10)

By (2.A.8), ||β̂sc0||1 = ||β̂ − β0||1 − ||β̂s0 − β0
s0
||1. Utilizing this in (2.A.10), we obtain

2

n
||X(β̂ − β0)||22 +

λ1

n
||β̂ − β0||1 ≤

4λ1

n
||β̂s0 − β0

s0
||1 +

2λ2(p− 1)

n
||β0||1. (2.A.11)

Utilizing the compatibility condition ‖βs0‖2
1 ≤ (β′Σ̂β)s/φ2

0 given in Lemma 2.2.1 on

||β̂s0 − β0
s0
||1 and using definition Σ̂ =

X ′X

n
, we obtain

||β̂s0 − β0
s0
||21 ≤ (β̂ − β0)′Σ̂(β̂ − β0)s/Φ2

0 = ‖X(β̂ − β0)‖2
2s/(nΦ2

0),

||β̂s0 − β0
s0
||1 ≤ ‖X(β̂ − β0)‖2

√
s/(
√
nΦ0).

(2.A.12)

Therefore, applying inequality 4ab ≤ a2 + 4b2, we obtain

4λ1

n
||β̂s0 − β0

s0
||1 ≤ 4

(
‖X(β̂ − β0)‖2√

n

)(
λ1

n

√
s

Φ0

)
≤ 1

n
‖X(β̂ − β0)‖2

2 + 4(
λ1

n
)2 s

Φ2
0

.
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So (2.A.11) can be written as

1

n
||X(β̂ − β0)||22 +

λ1

n
||β̂ − β0||1 ≤ 4(

λ1

n
)2 s

Φ2
0

+
2λ2(p− 1)

n
||β0||1. (2.A.13)

By assumption of the theorem,
λ1

n
= 2λ0 �

√
log p

n
, and

λ2

n
.

s log p

np
� sλ2

0

p
.

Therefore, (2.A.13) can be written as

1

n
||X(β̂ − β0)||22 + 2λ0||β̂ − β0||1 . 16λ2

0s/Φ
2
0 + 2λ2

0s‖β0‖1. (2.A.14)

Using
√
a2 + b2 ≤ a+ b, for all a, b > 0, (2.A.14) implies

1

n
||X(β̂ − β0)||2 . 4λ0

√
s/Φ0 + λ0

√
2s‖β0‖1, (2.A.15)

||β̂ − β0||1 . 8λ0s/Φ
2
0 + λ0s‖β0‖1. (2.A.16)

This shows that (2.4) and (2.5) in Theorem 2.2.1 are valid, assuming that (2.A.4)

holds.

Part II. Next we calculate P(E). We have

P(Ec) = P(
1

n
‖X ′ε‖∞ >

λ0

2
) = P(

1

n
max
j=1,··· ,p

|
n∑
i=1

Xi,jεi| >
λ0

2
)

≤
p∑
j=1

P(
1√
n

n∑
i=1

|Xi,jεi| >
λ0

√
n

2
) = p max

j=1,··· ,p
P(

1√
n

n∑
i=1

|Xi,jεi| >
λ0

√
n

2
).

(2.A.17)

By Assumption 2.2.1, sequence zi,j := Xi,jεi, i = 1, · · · , n, j = 1, · · · , p is α−mixing

with exponential decaying mixing coefficients, and

P(|zi,j| ≥ a) ≤ c1 exp(−c2a
q), a, q > 0,

for all i and j. It also has zero-mean, i.e. E(zi,j) = 0. Thus, by Lemma 1 in Dendramis

et al. (2019), for all j = 1, · · · , p,

P

(
1√
n

∣∣∣∣∣
n∑
i=1

zi,j

∣∣∣∣∣ ≥ ξ

)
≤ c0

[
exp(−c′1ξ2) + exp

(
−c′2

(
ξ
√
n

log2 n

)ζ)]
,

where ζ = q/(q + 1) and constants c0, c
′
1, c
′
2 do not depend on ξ, i and j.
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Note that λ0 = κ
√

log p/n. Setting ξ = λ0

√
n/2 = κ

√
log p/2, we obtain

pP(
1√
n
|zi,j| >

λ0

√
n

2
) ≤ pc0 exp(−c′1(

κ

2
)2 log p) + pc0 exp(−c′2(

κ
√
n log p

2 log2 n
)ζ)

:= rp + r′p,n.

(2.A.18)

Now we consider two cases of different rates of p and n.

Case 1: n, p→∞.

Selecting κ > 0, such that c′1(κ/2)2 > 1 + ε for some small number ε > 0, we obtain

rp ≤ pc0 exp[−(1 + ε) log p] = c0p
−ε → 0, as p→∞. (2.A.19)

By Assumption p = O(nδ) for some δ > 0, we have n1/4 ≥ p1/(4δ). Also, n1/4 > 2 log2 n

as n→∞. Then

c′2(
κ
√
n log p

2 log2 n
)ζ ≥ c′2(κp1/(4δ)

√
log p)ζ > (1 + ε) log p, as p→∞. (2.A.20)

Therefore, equation (2.A.19) and (2.A.20) imply that

r′p,n ≤ rp → 0, as n, p→∞.

Then by (2.A.17) and (2.A.18), we obtain

P(Ec) = rp + r′p,n ≤ 2rp ≤ 2c0p
−ε,

P(E) = 1− P(Ec) ≥ 1− c′0p−ε → 1, as n, p→∞,
(2.A.21)

where c′0 = 2c0. This proves the first probability claim in part one of Theorem 2.2.1.

Case 2: p is bounded.

In this case, log p is also bounded, then rp and r′p,n in (2.A.18) can be bounded as

rp = pc0 exp(−c
′
1

4
κ2 log p), r′p,n = pc0 exp

(
−c′2

(
κ
√
n log p

2 log2 n

)ζ)
.

Therefore,

P(E) = 1− P(Ec) = 1− pc0

[
exp(−c

′
1

4
κ2 log p) + exp

(
−c′2

(
κ
√
n log p

2 log2 n

)ζ)]
,

(2.A.22)

102



which complete the proof of Theorem 2.2.1.

2

2.A.1.2 Proof of corollary 2.2.1

Proof. Note that λ0 = κ
√

log p/n, where κ > 0 is a tuning parameter. By (2.5) in

Theorem 2.2.1 and Assumption 2.2.3(a), it follows naturally that

‖β̂ − β0‖1 = Op(s

√
log p

n
) = op(1), (2.A.23)

which proves the second claim of (2.7). Utilizing Σ̂ = X ′X/n, we obtain

‖X(β̂ − β0)‖2
2/n = (β̂ − β0)′Σ̂(β̂ − β0)

= (β̂ − β0)′(Σ̂− Σ)(β̂ − β0) + (β̂ − β0)′Σ(β̂ − β0).
(2.A.24)

Note that Σ = E(Σ̂) is non-singular, so

(β̂ − β0)′Σ(β̂ − β0) ≥ Λ2
min‖β̂ − β0‖2

2,

where Λmin is the smallest eigenvalue of Σ, and Λmin > 0. Moreover, the first part of

the r.h.s of (2.A.24) has the following property:

(β̂ − β0)′(Σ̂− Σ)(β̂ − β0) ≥ −‖Σ̂− Σ‖∞‖β̂ − β0‖2
1,

where ‖Σ̂ − Σ‖∞ := max1≤i,j≤p |Σ̂i,j − Σi,j|. Using lemma 14.12 in Buhlmann and

Van de Geer (2011), we have max1≤i,j≤p |Σ̂i,j − Σi,j| = Op(
√

log p/n). Together with

‖β̂ − β0‖1 = Op(s
√

log p/n) obtained in (2.A.23), this implies that (2.A.24) can be

bounded as

1

n
‖X(β̂ − β0)‖2

2 = (β̂ − β0)′Σ(β̂ − β0) + (β̂ − β0)′(Σ̂− Σ)(β̂ − β0)

≥ Λ2
min‖β̂ − β0‖2

2 − ‖Σ̂− Σ0‖∞‖β̂ − β0‖2
1

≥ Λ2
min‖β̂ − β0‖2

2 −Op

(
s2

(
log p

n

)3/2
)
.

(2.A.25)

Note that λ0 �
√

log p/n. So by (2.4) we obtain

1

n
‖X(β̂ − β0)‖2

2 = Op

(
s log p

n

)
. (2.A.26)
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Plugging (2.A.26) into (2.A.25) and rearranging (2.A.25), we obtain

‖β̂ − β0‖2
2 ≤

1

Λ2
min

Op

(
s log p

n

)
+

1

Λ2
min

Op

(
s2

(
log p

n

)3/2
)
,

where Op

(
s2

(
log p

n

)3/2
)

= Op

(
s log p

n

)
Op

(
s

√
log p

n

)
. Note that Λmin ≥ a > 0

where a is a constant, hence
1

Λ2
min

= O(1). Then by Assumption 2.2.3, we obtain

‖β̂ − β0‖2
2 = op(1), (2.A.27)

which proves the first claim of (2.7). Also, by Theorem 2.2.1 part one, (2.A.23) and

(2.A.27) hold with probability tending to one. This completes the proof. 2

2.A.1.3 Proof of Theorem 2.2.2

Proof. By the definition of b̂ in (2.14) and by extracting
√
n from (2.12), it is easy to

show that
√
n(b̂− β0) = Θ̂X ′ε/

√
n−∆,

where ∆ is defined in (2.13). Then to prove (2.19), it suffices to show that

∆ = op(1). (2.A.28)

Let Xi be a 1× p vector and denote

Σ̂Xε =
1

n

n∑
i=1

[(X ′i ε̂i)(X
′
i ε̂i)
′] . (2.A.29)

To show (2.20) and (2.A.28), it suffices to prove that for any l = 1, 2, · · · , p such that

t =

√
n(b̂l − β0

l )√
Θ̂′lΣ̂XεΘ̂l

=
Θ̂lX

′ε/
√
n√

Θ̂′lΣ̂XεΘ̂l

+
−∆√

Θ̂′lΣ̂XεΘ̂l

:= t1 + t2,

where t1 is asymptotically normal and t2 = op(1).

Step 1: we will show that t1 is asymptotically normal. Let

t∗1 =
Θ′lX

′ε/
√
n√

Θ′lΣXεΘl

=

Θ′l
n∑
i=1

X ′iεi/
√
n√

Θ′lΣXεΘl

,
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where ΣXε = E[
1

n

n∑
i=1

(X ′iεi)(X
′
iεi)
′]. We assume in Theorem 2.2.2 that X ′iεi is a

stationary sequence, then ΣXε = E[(X ′1ε1)(X ′1ε1)′] = Var(X ′1ε1) > 0. By Assumption

2.2.1 and the definition of ΣXε, we have

E

[
Θ′lX

′ε/
√
n√

Θ′lΣXεΘl

]
= E

Θ′l
n∑
i=1

X ′iεi/
√
n√

Θ′lΣXεΘl

 = 0,

and

E

[
Θ′lX

′ε/
√
n√

Θ′lΣXεΘl

]2

= E

Θ′l
1
n

n∑
i=1

(X ′iεi)(X
′
iεi)
′Θl

Θ′lΣXεΘl

 = 1,

where Θ′lΣXεΘl is bounded away from zero. Indeed, since ΣXε is a symmetric positive

definite matrix, it can be decomposed such that

Θ′lΣXεΘl = Θ′lP
′eig(ΣXε)PΘl ≥ Λmin(ΣXε)‖Θl‖2

2 > 0, (2.A.30)

where eig(ΣXε) is the diagonal matrix that collects the eigenvalues of ΣXε, and P

is an orthonormal matrix. Because Λmin(ΣXε) ≥ a > 0 where a is a constant and

‖Θl‖2
2 > 0, so Θ′lΣXεΘl > 0. Then by Theorem 24.6 and Corollary 24.7 in Davidson

(1994), Θ′lX
′ε/
√
n→ N(0,ΘlΣXεΘ

′
l), or t∗1 → N(0, 1).

Next we will show that

|Θ̂′lΣ̂XεΘ̂l −Θ′lΣXεΘl| = op(1). (2.A.31)

Set

Σ̃Xε =
1

n

n∑
i=1

[(X ′iεi)(X
′
iεi)
′] . (2.A.32)

Then

|Θ̂′lΣ̂XεΘ̂l −Θ′lΣXεΘl| ≤ |Θ̂′lΣ̂XεΘ̂l − Θ̂′lΣXεΘ̂l|+ |Θ̂′lΣXεΘ̂l −Θ′lΣXεΘl|

≤ |Θ̂′lΣ̂XεΘ̂l − Θ̂′lΣ̃XεΘ̂l|+ |Θ̂′lΣ̃XεΘ̂l − Θ̂′lΣXεΘ̂l|

+ |Θ̂′lΣXεΘ̂l −Θ′lΣXεΘl|

= (I) + (II) + (III).

(2.A.33)
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For (I), we have

|Θ̂′lΣ̂XεΘ̂l − Θ̂′lΣ̃XεΘ̂l| ≤ ‖Σ̂Xε − Σ̃Xε‖∞‖Θ̂l‖2
1.

Note that ε̂i = εi +Xi(β
0 − β̂). Plugging ε̂i into Σ̂Xε − Σ̃Xε, we obtain

Σ̂Xε − Σ̃Xε =
1

n

n∑
i=1

[
[X ′i(εi +Xi(β

0 − β̂)][X ′i(εi +Xi(β
0 − β̂)]′

]
− 1

n

n∑
i=1

[(X ′iεi)(X
′
iεi)
′]

=
1

n

n∑
i=1

X ′iXi(β
0 − β̂)[X ′iXi(β

0 − β̂)]′ +
1

n

n∑
i=1

X ′iεi[X
′
iXi(β

0 − β̂)]′

+
1

n

n∑
i=1

[X ′iXi(β
0 − β̂)](X ′iεi)

′

=(i) + (ii) + (iii).

Next, we will show that ‖(i)‖∞ = Op(s
√

log p/n), ‖(ii)‖∞ = Op(
√
s log p/n) and

‖(iii)‖∞ = Op(
√
s log p/n). First of all, for (i), we have

‖ 1

n

n∑
i=1

X ′iXi(β̂ − β0)[X ′iXi(β̂ − β0)]′‖∞ =‖ 1

n

n∑
i=1

X ′iXi(β̂ − β0)(β̂ − β0)′X ′iXi‖∞

≤ 1

n

n∑
i=1

‖X ′iXiX
′
iXi‖∞‖β̂ − β0‖2

1

≤max
j

1

n

n∑
i=1

X4
i,j ‖β̂ − β0‖2

1,

(2.A.34)

where j = 1, · · · , p. By Assumption 2.2.1, P(|Xi,j| > a) ≤ c1 exp(−c2a
q). Set

Yi,j = X4
i,j, then P(|Yi,j| > a) = P(|Xi,j| > a1/4) ≤ c1 exp(−c2a

q/4). So X4
i,j also has ex-

ponential tail bound (with a different parameter). Then by (2.A.17) and (2.A.21), for

all j = 1, · · · , p, we have P(|n−1
n∑
i=1

X4
i,j −E(X4

i,j)| > λ0/2) ≤ c′0p
−ε → 0 as n, p→∞,

where c′0 is a positive constant and ε > 0 is a small number. Note that λ0 �
√

log p/n.

Hence |n−1
n∑
i=1

X4
i,j −E(X4

i,j)| = Op(
√

log p/n) with probability tending to one. Then

by Assumption 2.2.1, E(X4
i,j) < ∞, and by Assumption 2.2.3,

√
log p/n = op(1), so

we have |n−1
n∑
i=1

X4
i | ≤ |n−1

n∑
i=1

X4
i,j−E(X4

i,j)|+ |E(X4
i,j)| = op(1)+Op(1) = Op(1). By

(2.7) we have ‖β̂−β0‖1 = Op(s
√

log p/n) with probability tending to one. Therefore,

we have ‖(i)‖∞ = Op(s
√

log p/n) with probability tending to one.
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For (ii), we have

‖ 1

n

n∑
i=1

X ′iεi[X
′
iXi(β

0 − β̂)]′‖∞ = ‖ 1

n

n∑
i=1

X ′iεiXi‖∞[Xi(β
0 − β̂)]′

≤ 1

n
‖

n∑
i=1

X ′iXiX
′
iXiε

2
i ‖1/2
∞ (

n∑
i=1

[Xi(β
0 − β̂)]2)1/2

≤(
1

n
max
j

n∑
i=1

X4
i,jε

2
i )

1/2(
1

n
‖Xi(β

0 − β̂)‖2
2)1/2

≤(
1

n
max
j

n∑
i=1

X4
i,jε

2
i )

1/2(
1

n
‖X(β0 − β̂)‖2).

By (2.4) and Assumption 2.2.3, we have ‖n−1X(β̂− β0)‖2 = Op(
√

(s log p)/n). Since

both Xi,j and εi are α−mixing and have exponential tail distributions, then following

a similar argument as in (i) and using (2.A.17) and (2.A.21), for any j = 1, · · · , p,

we have n−1
n∑
i=1

X4
i,jε

2
i = Op(

√
log p/n) + Op(1) = op(1) + Op(1) = Op(1). Therefore,

‖(ii)‖∞ = Op(
√
s log p/n). For (iii), it is easy to show that (iii) = (ii)′, so ‖(iii)‖∞ =

Op(
√
s log p/n).

Then by Lemma 2.A.3 below, ‖Θ̂l‖1 = Op(
√
sl) and by Assumption 2.2.3, we

obtain

(I) = Op

(
s

√
log p

n

)
Op(sl) +Op

(√
s log p

n

)
Op(sl) = op(1).

For (II), we have

|Θ̂′lΣ̃XεΘ̂l − Θ̂′lΣXεΘ̂l| ≤ ‖Σ̃Xε − ΣXε‖∞‖Θ̂l‖2
1,

where

‖Σ̃Xε − ΣXε‖∞ =

∥∥∥∥∥ 1

n

n∑
i=1

(X ′iεi)(X
′
iεi)
′ − E[

1

n

n∑
i=1

(X ′iεi)(X
′
iεi)
′]

∥∥∥∥∥
∞

.

SinceX ′iεi is α−mixing and has exponential tail distribution, by (2.A.17) and (2.A.21),

‖Σ̃Xε − ΣXε‖∞ = Op(
√

log p/n) with probability tending to one. Therefore, by as-

sumption 2.2.3, we obtain (II) = Op(
√

log p/n) Op(sl) = op(1).

For (III), by Lemma 3.1 in the supplement material of Van De Geer et al. (2014),

|Θ̂′lΣXεΘ̂l −Θ′lΣXεΘl| ≤ ‖ΣXε‖∞‖Θ̂l −Θl‖2
1 + 2‖ΣXεΘl‖2‖Θ̂l −Θl‖2,

where, by Lemma 2.A.3, ‖Θ̂l−Θl‖1 = Op(sl
√

log p/n) and ‖Θ̂l−Θl‖2 = Op(
√
sl log p/n).
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Furthermore, note that ΣXε and Θ := Σ−1 are symmetric positive definite matrices,

and their smallest eigenvalues are strictly greater than zero and their largest eigen-

values are bounded above. Therefore,

‖ΣXε‖∞ ≤‖ΣXε‖2 = Λmax(ΣXε) = Op(1),

‖ΣXεΘl‖∞ ≤‖ΣXε‖∞‖Θl‖∞ ≤ Op(1)‖Θ‖2 = Op(1)Λmax(Θ) = Op(1)/Λmin(Σ) = Op(1).

Thus, by Assumption 2.2.3, we obtain that (III) = Op(s
2
l log p/n)+Op(

√
sl log p/n) =

op(1). Therefore, in equation (2.A.33) we have

|Θ̂′lΣ̂XεΘ̂l −Θ′lΣXεΘl| ≤ (I) + (II) + (III) = op(1).

Next, we will show that

|Θ̂′lX ′ε/
√
n−Θ′lX

′ε/
√
n| = op(1). (2.A.35)

By Lemma 2.A.3, ‖Θ̂l − Θl‖1 = Op(sl
√

log p/n) and by (2.A.17) and (2.A.21),

‖X ′ε/n‖∞ = Op(
√

log p/n). Then by Assumption 2.2.3, equation (2.A.35) can be

written as

|Θ̂′lX ′ε/
√
n−Θ′lX

′ε/
√
n| ≤‖Θ̂l −Θl‖1‖

X ′ε

n
‖∞
√
n

=Op(sl

√
log p

n
)Op(

√
log p

n
)
√
n = Op(

sl log p√
n

) = op(1),

with probability tending to one, which completes the proof of (2.20).

Step 2: now we will show that t2 = op(1). Note that for any l = 1, · · · , p,

‖∆‖∞ = ‖
√
n(Θ̂Σ̂− I)(β̂ − β0)‖∞ ≤

√
nmax

l
‖Σ̂Θ̂l − el‖∞‖β̂ − β0‖1,

where Θ̂l is the lth row of Θ̂ written as a column vector and el is a p×1 column vector

where the lth element is one, while elsewhere being zeros. By Lemma 5.3 in Van De

Geer et al. (2014), 1/δ̂2
l = Op(1) where δ̂2

l is defined as in (2.17), and by (2.A.49), we

obtain

‖∆‖∞ ≤
√
n
λl

δ̂2
l

Op(s

√
log p

n
) =
√
nOp(

√
log p

n
)Op(s

√
log p

n
) = Op(

s log p√
n

) = op(1).

We have shown that |Θ̂′lΣ̂XεΘ̂l−Θ′lΣXεΘl| = op(1) and by (2.A.30), |Θ′lΣXεΘl| ≥ a > 0
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where a is a constant. Using triangle inequality |Θ̂′lΣ̂XεΘ̂l−Θ′lΣXεΘl| ≥ |Θ′lΣXεΘl| −

|Θ̂′lΣ̂XεΘ̂l|, we obtain |Θ̂′lΣ̂XεΘ̂l| ≥ a− op(1) > 0. Therefore,

t2 =
−∆√

Θ̂′lΣ̂XεΘ̂l

=
−
√
n(Θ̂′lΣ̂Xε − el)(β̂ − β0)√

Θ̂′lΣ̂XεΘ̂l

= op(1),

which proves (2.A.28). 2

2.A.1.4 Proof of Lemma 2.2.1

Proof. The restricted eigenvalue condition for Σ̂ in (2.3) implies that

0 < φ2
0 ≤

β′Σ̂β

‖βs0‖2
2

≤ β′Σ̂βs

‖βs0‖2
1

,

where for the second inequality we utilize the norm inequality
√
s‖βs0‖2 ≥ ‖βs0‖1.

Rearranging the above inequality, we have

‖βs0‖2
1 ≤ (β′Σ̂β)s/φ2

0,

which completes the proof. 2

2.A.1.5 Proof of Proposition 2.2.1

Proof. We utilize the self-normalized sum properties in Lemma 2.A.2 under weak

dependence to bound tuning parameters λ1 and λ2. To choose appropriate values for

tuning parameters such that the penalty level is large enough to cancel out noises

from estimation errors, we need to ensure that P(‖X ′ε‖∞/n ≤ λ0/2) is close to one.

Or equivalently we want to show that

P(‖X ′ε‖∞/n > λ0/2) ≤ α, (2.A.36)

where α is a small positive number. First, suppose that all X ′i,js are normalized, such

that for all j = 1, . . . , p,
1

n

n∑
i=1

X2
i,jε

2
i → σ2 as n → ∞. Let G denote an event such

that G =

{
max
j≤p
| 1
n

n∑
i=1

X2
i,jε

2
i − σ2| ≤ σ2

log n

}
. Suppose that when n → ∞, P(G) → 1,

and on G,
1

n

n∑
i=1

X2
i,jε

2
i ≤ (1 + 1/ log n)σ2. The definition of G ensures that

1

n

n∑
i=1

X2
i ε

2
i

converges to σ2 at the rate of log n. Then, utilizing the union bound in (2.A.36), we
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have

P(‖X ′ε‖∞/n > λ0/2) ≤ P(‖X ′ε‖∞/n > λ0/2, G) + P(GC) (2.A.37)

= P(max
j
| 1
n

n∑
i=1

Xi,jεi| >
λ0

2
, G) + P(GC) (2.A.38)

≤ p P

(
| 1
n

n∑
i=1

Xi,jεi| > λ0/2, G

)
+ P(GC) ≤ α. (2.A.39)

Note that on G, we have

(
1

n

n∑
i=1

X2
i ε

2
i

)1/2

≥ (1 + 1/ log n)1/2σ. So (2.A.39) can be

written as

P(‖X ′ε‖∞/n > λ0/2) ≤ p P




| 1
n

n∑
i=1

Xi,jεi|(
1
n

n∑
i=1

X2
i,jε

2
i

)1/2
>

λ0

2σ(1 + 1/ log n)1/2

 ∩G
+ P(GC)

(2.A.40)

≤ 2p P


n∑
i=1

Xi,jεi/
√
n(

n∑
i=1

X2
i,jε

2
i /n

)1/2
>

λ0

√
n

2σ(1 + 1/ log n)1/2

+ o(1)

(2.A.41)

≤ α. (2.A.42)

Applying the self-normalization theorem of Chen et al. (2016) given in Lemma 2.A.2

below on (2.A.41) gives

P


n∑
i=1

Xi,jεi/
√
n(

n∑
i=1

X2
i,jε

2
i /n

)1/2
>

λ0

√
n

2σ(1 + 1/ log n)1/2

→ 1− Φ

(
λ0

√
n

2σ(1 + 1/ log n)1/2

)
.

Together with (2.A.42), this implies

2p

[
1− Φ

(
λ0

√
n

2σ(1 + 1/ log n)1/2

)]
≤ α− o(1),

λ0 ≥
2σ√
n

(1 +
1

log n
)1/2Φ−1(1− α

2p
).

(2.A.43)

Since λ1/n = 2λ0, we obtain the first part of (2.8). Also, since λ2/n = Op(s log p/(np))

and

√
log p√
n
� λ1/n, and we assume that s is small relative to p, so we approximate
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s
√

log p√
n
≈ λ1/n, which gives the second part of (2.8). However, σ is unknown. We

implement a recursive procedure to evaluate the unknown variance following Algo-

rithm A.1 in Belloni et al. (2012). In particular, we first set σ = 1 to evaluate the

penalized regression and get a preliminary empirical variance σ̂2. Then we refine the

estimation result using the updated empirical variance for σ. We repeat this exercise

K times to get the final estimate.12 2

2.A.1.6 Auxiliary lemmas

Lemma 2.A.1 (Dendramis et al. (2019), Lemma 1). Let {X}n be a sequence that

satisfies Assumption 2.2.1. Then

P

(
1√
n

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ ξ

)
≤ c0

[
exp(−c1ξ

2) + exp

(
−c2

(
ξ
√
n

log2 n

)s)]
,

where s = q/(q + 1), and constants c0, c1, c2 do not depend on ξ and i.

Proof: see Dendramis et al. (2019).

Lemma 2.A.2 (Chen et al. (2016), Theorem 4.1). Let weekly dependent random

variable Xi be zero-mean, i.e. E(Xi) = 0. Write Sk,m =
k+m∑
i=k+1

Xi. Suppose for a

positive constant c, E(S2
k,m) ≥ c2m for any k ≥ 0, m ≥ 1. Let m1 > m2 > 0,

m∗ = m1 +m2, k = bn/m∗c. 13 For 1 ≤ j ≤ k, denote Hj,1 = {i : (j−1)m∗+1 ≤ i ≤

(j− 1)m∗+m1} and Hj,2 = {i : (j− 1)m∗+m1 + 1 ≤ i ≤ jm∗}. Define Yj :=
∑

i∈Hj,1

Xi

and Wn :=
k∑
j=1

Yj/(
k∑
j=1

Y 2
j )1/2. Then

P(Wn ≥ t)

1− Φ(t)
→ 1,

uniformly in 0 ≤ t ≤ o(n1/8).

Proof: see Chen et al. (2016).

12For instance in Belloni et al. (2012), K = 15.
13We use b·c to denote the integer part of a floating number.
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2.A.2 Θ̂ as approximation of Σ−1

In this section, we closely follow Van De Geer et al. (2014) and Kock (2016) to check

whether Θ̂ is a good approximation of Σ−1. The first order condition of (2.15) implies

X ′−j(Xj −X−j γ̂j)/n = λj τ̂j. (2.A.44)

Note that γ̂′jλj τ̂j = λj‖γ̂j‖1. Then left-multiplying γ̂′j on both sides of (2.A.44) implies

γ̂′jX
′
−j(Xj −X−j γ̂j)/n = λj‖γ̂j‖1. (2.A.45)

Therefore, plugging the above equation into (2.17), we have

δ̂2
j =

1

n
(Xj −X−j γ̂j)′(Xj −X−j γ̂j) +

1

n
γ̂′jX

′
−j(Xj −X−j γ̂j)

=
1

n
[(Xj −X−j γ̂j)′ + γ̂′jX

′
−j](Xj −X−j γ̂j)

=
1

n
X ′j(Xj −X−j γ̂j).

(2.A.46)

By definition of Ĉj (jth row of matrix Ĉ) in (2.16), we have Xj −X−j γ̂j = XĈj, and

by the definition of Θ̂j = Ĉj/δ̂
2
j in (2.18), equation (2.A.46) becomes

δ̂2
j =

1

n
X ′jXĈj, or

1

n
X ′jXΘ̂j = 1. (2.A.47)

where Θ̂j is the jth row of Θ̂ written as a column vector. Thus we can see that Θ̂ is

a good approximation of the inverse of the Gram matrix Σ̂ := X ′X/n.

Next, we look into the approximation error ‖Θ̂Σ̂ − I‖∞, or specifically the jth

column of the approximation error, which is ‖Σ̂Θ̂j − ej‖∞ for all j = 1, · · · , p, where

ej is the jth column of the identity matrix. By the definition of τ̂ in (2.10), ‖τ̂‖∞ ≤ 1.

Taking the norm on both sides of (2.A.44) and using Θ̂j = Ĉj/δ̂
2
j , we obtain

‖X ′−j(Xj −X−j γ̂j)‖∞/n = ‖X ′−jXĈj‖∞ = ‖λj τ̂j‖∞,

‖X ′−jXΘ̂j‖∞/n = λj‖τ̂j‖∞/δ̂2 ≤ λj/δ̂
2
j .

(2.A.48)

By the definition of X−j and Σ̂ := X ′X/n and by (2.A.47), we have ‖X ′−jXΘ̂j‖∞ =

‖Σ̂Θ̂j − ej‖∞. Thus (2.A.48) can be written as

‖Σ̂Θ̂j − ej‖∞ ≤ λj/δ̂
2
j . (2.A.49)
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Next, we formally investigate the asymptotic properties of Θ̂.

Asymptotic properties of Θ̂

Let Θ denote the population value of Θ̂ such that Θ := E(Θ̂) := Σ−1. First, parti-

tioning Σ−1 into the first element and the remaining ones gives

 Σ1,1 Σ1,−1

Σ−1,1 Σ−1,−1

−1

=

(

Θ1,1︷ ︸︸ ︷
Σ1,1 − Σ1,−1Σ−1

−1,−1Σ−1,1)−1

Θ1,−1︷ ︸︸ ︷
−Θ1,1Σ1,−1Σ−1

−1,−1

−Σ−1
−1,−1Σ−1,1Θ1,1 (Σ−1,−1 − Σ−1,1Σ−1

1,1Σ1,−1)−1

 ,

where ‘−1’ indicates all the rows (columns) excluding the first row (column). More

generally, for the jth row and column of Θ, we can write

Θj,j = (Σj,j − Σj,−jΣ
−1
−j,−jΣ−j,j)

−1, Θj,−j = −Θj,jΣj,−jΣ
−1
−j,−j. (2.A.50)

Denote γj the population value of γ̂j. Then

γj := arg min
γ

1

n

n∑
i=1

E(Xi,j −X ′i,−jγ)2.

Then the first order condition of the above equation implies,

γj = [
1

n

n∑
i=1

E(X ′i,−jXi,−j)]
−1[

1

n

n∑
i=1

E(X ′i,−jXi,j)] = Σ−1
−j,−jΣ−j,j. (2.A.51)

Thus, (2.A.50) and (2.A.51) implies that Θj,−j = −Θj,jγ
′
j. Denoting δ2

j the population

value of δ̂2
j and utilizing (2.A.51), we obtain

δ2
j = E[

1

n

n∑
i=1

E(Xi,j −X ′i,−jγj)2]

= Σj,j + Σj,−jΣ
−1
−j,−jΣ−j,j − 2Σj,−jΣ

−1
−j,−jΣ−j,j

= Σj,j − Σj,−jΣ
−1
−j,−jΣ−j,j =

1

Θj,j

,

where the last equality comes from (2.A.50). Therefore, Θj,j = 1/δ2
j and Θj,−j =

−γ′j/δ̂j2. Then it follows that Θ = T−2C, where C is the population value of Ĉ in

(2.16) (by replacing γ̂j with γj) and T 2 is the population value of T̂ 2 in (2.16) (by

replacing δ̂2
j with δ2

j ).

Formally, the following lemma derives the rate of the approximation Θ̂j and the

true value Θj.
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Lemma 2.A.3. Suppose Assumption 2.2.1 and 2.2.2 hold, then

‖Θ̂j −Θj‖1 = Op(sj

√
log p

n
),

‖Θ̂j −Θj‖2 = Op(

√
sj log p

n
),

‖Θj‖1 = O(
√
sj),

‖Θ̂j‖1 = Op(
√
sj).

Proof of Lemma 2.A.3. First, we consider |δ̂2
j − δ2

j |. From (2.A.46) we have δ̂2
j =

X ′j(Xj −X−j γ̂j)/n. Suppose Xj = X−jγj + ηj and Xj = X−j γ̂j + η̂j, where ηj and η̂j

are residuals. Then we obtain that δ̂2
j = X ′j η̂j/n and η̂j = X−j(γj− γ̂j) +ηj. Plugging

Xj and η̂j into δ̂2
j gives

δ̂2
j =

1

n
(X−j γ̂j + η̂j)

′[X−j(γj − γ̂j) + ηj]

=
1

n
γ′jX

′
−jX−j(γj − γ̂j) +

1

n
γ′jX−jηj +

1

n
η′jX

′
−j(γj − γ̂j) +

1

n
η′jηj.

(2.A.52)

Therefore, we obtain

|δ̂2
j − δ2

j | ≤ |
1

n
η′jηj − δ2

j |+ |
1

n
η′jX

′
−j(γj − γ̂j)|+ |

1

n
γ′jX−jηj|+ |

1

n
γ′jX

′
−jX−j(γj − γ̂j)|

:= I + II + III + IV.

(2.A.53)

For (I), note that δj = E(Xj −X−jγj) = E(ηj). We assume η2
j is α−mixing with

exponential decaying mixing coefficients as in Assumption 2.2.1. Then by (2.A.17)

and (2.A.21), we obtain | 1√
n

n∑
i=1

η2
i,j − Eη2

i,j| = Op(1). Therefore,

| 1
n
η′jηj − δ2

j | = |
1

n

n∑
i=1

η2
i,j − Eη2

i,j| = Op(
1√
n

). (2.A.54)

For (II), we have

| 1
n
η′jX

′
−j(γj − γ̂j)| ≤

1

n
‖η′jX−j‖∞‖γj − γ̂j‖1, (2.A.55)

where
1

n
‖η′jX−j‖∞ = max

k∈{1,··· ,p}\{j}
| 1
n

n∑
i=1

Xi,kηi,j|. Note that Xi,kηi,j is α−mixing with
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exponential decaying tail distribution. Then by (2.A.17) and (2.A.21), we obtain

1

n
‖η′jX−j‖∞ = Op(

√
log p/n). (2.A.56)

Together with ‖γj − γ̂j‖1 = Op(sj
√

log p/n), (2.A.55) can be bounded

| 1
n
η′jX

′
−j(γj − γ̂j)| = Op(

√
log p

n
)Op(sj

√
log p

n
) = Op(

sj log p

n
). (2.A.57)

For (III), we have

| 1
n
γ′jX−jηj| ≤ ‖

1

n
X ′−jηj‖∞‖γj‖1. (2.A.58)

Note that Xj = X−jγj + ηj. we can bound Σj,j as

E(X ′jXj) = Σj,j ≥ E[(X−jγj)
′X−jγj] = γ′jΣ−j,−jγj ≥ Λ2

min‖γj‖2
2, (2.A.59)

where Λmin is the smallest eigenvalue of Σ−j,−j (i.e., removing jth row and column from

Σ gives Σ−j,−j). Since Σ is a symmetric positive definite matrix, so Λmin ≥ a > 0, thus

1/Λ2
min = O(1). Then the above inequality implies that ‖γj‖2 ≤

√
Σj,j/Λmin. Further

utilizing the norm inequality ‖γj‖1 ≤
√
sj‖γj‖2, we obtain ‖γj‖1 ≤

√
sjΣj,j/Λmin.

Therefore, by (2.A.56), inequality (2.A.58) can be bounded as

| 1
n
γ′jX−jηj| = Op(

√
log p

n
)Op(
√
sj) = Op(

√
sj log p

n
).

For (IV ), the first order condition of nodewise LASSO in (2.A.44) implies

λj τ̂j +
1

n
X ′−jX−j γ̂j −

1

n
X ′−jXj = 0.

Plugging Xj = X−jγj + ηj into the above equation gives

1

n
X ′−jX−j(γj − γ̂j) = λj τ̂j −

1

n
X ′−jηj.

By (2.A.56) and λj �
√

log p/n, ‖τ̂j‖∞ ≤ 1, we obtain

‖ 1

n
X ′−jX−j(γj − γ̂j)‖∞ ≤ ‖

1

n
X ′−jηj‖∞ + λj‖τ̂j‖∞ = Op(

√
log p

n
).

Note that by (2.A.59), ‖γj‖2 = O(1). Then using the norm inequality, we have
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‖γj‖1 ≤
√
sj‖γj‖2 = O(

√
sj). Therefore, (IV ) can be bounded as

| 1
n
γ′jX

′
−jX−j(γj − γ̂j)| ≤ ‖

1

n
X ′−jX−j(γj − γ̂j)‖∞‖γj‖1 = Op(

√
sj log p

n
). (2.A.60)

Note that maxj(sj log p/n) = o(1), thus for any j = 1, · · · , p, sj log p/n ≤
√
sj log p/n.

Therefore, we have

|δ̂2
j − δ2

j | = Op(

√
sj log p

n
).

By Lemma 5.3 in Van De Geer et al. (2014), we have
1

δ̂2
j

= Op(1) and
1

δ2
j

= O(1).

Then it follows ∣∣∣∣∣ 1

δ̂2
j

− 1

δ2
j

∣∣∣∣∣ ≤ |δ̂2
j − δ2

j |
δ̂2
j δ

2
j

= Op(

√
sj log p

n
).

Then, by the definition of Θ̂ and Ĉ in (2.18) and (2.16), we obtain

‖Θ̂j −Θj‖1 = ‖Ĉj
δ̂2
j

− Cj
δ2
j

‖1 = ‖1− γ̂j
δ̂2
j

− 1− γj
δ2
j

‖1

≤ ‖ 1

δ̂2
j

− 1

δ2
j

‖1 + ‖ γ̂j
δ̂2
j

− γj

δ̂2
j

+
γj

δ̂2
j

− γj
δ2
j

‖1

≤ ‖ 1

δ̂2
j

− 1

δ2
j

‖1 + ‖ 1

δ̂2
j

‖1‖γ̂j − γj‖1 + ‖γj‖1‖
1

δ̂2
j

− 1

δ2
j

‖1

= Op(

√
sj log p

n
) +Op(1)Op(sj

√
log p

n
) +Op(

√
sj)Op(

√
sj log p

n
)

= Op(sj

√
log p

n
).

(2.A.61)

Next, we will bound ‖Θ̂j −Θj‖2. Note that ‖γ̂j − γj‖2 = Op(
√
sj log p/n) and ‖ 1

δ̂2
j

−

1

δ2
j

‖2 = ‖ 1

δ̂2
j

− 1

δ2
j

‖1 and ‖ 1

δ̂2
j

‖2 = ‖ 1

δ̂2
j

‖1 since they are both scalars. Similarly to

(2.A.61) we have

‖Θ̂j −Θj‖2 ≤ ‖
1

δ̂2
j

− 1

δ2
j

‖2 + ‖ 1

δ̂2
j

‖2‖γ̂j − γj‖2 + ‖γj‖2‖
1

δ̂2
j

− 1

δ2
j

‖2

= Op(

√
sj log p

n
) +Op(1)Op(

√
sj log p

n
) +Op(1)Op(

√
sj log p

n
)

= Op(

√
sj log p

n
).
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Next, by the definition of Θ and
√

log p/n = op(1), we obtain

‖Θj‖1 ≤ ‖
1

δ2
j

‖1‖Cj‖1 ≤ ‖
1

δ2
j

‖1 + ‖ 1

δ2
j

‖1‖γj‖1 = O(
√
sj),

‖Θ̂j‖1 ≤ ‖Θ̂j −Θj‖1 + ‖Θj‖1 = Op(sj

√
log p

n
) +O(

√
sj) = Op(

√
sj),

which completes the proof of Lemma 2.A.3. 2
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Chapter 3

Portfolio Selection with Machine

Learning: Sparsity, Correlation and

Constraints

3.1 Introduction

The mean variance efficient portfolio theory (MVE), put forward by Markowitz (1952),

is a milestone in finance literature. However, despite its theoretical elegance, MVE

performs poorly out-of-sample due to difficulties in precisely estimating two important

ingredients in the optimization problem: the expected asset returns and covariances.

Jagannathan and Ma (2003) argue that [... the estimation error in the sample mean

is so large that nothing much is lost in ignoring the mean altogether when no further

information about the population mean. (pp.1652-1653)], and Michaud (1989) sug-

gests that the MVE portfolio optimization problem is actually “error maximization”

in practice. Although many efforts have been made to improve the performance of

optimized portfolio strategies,1 DeMiguel et al. (2009b) demonstrate that the simple

1/N strategy (i.e. all assets are equally weighted) outperforms 14 other optimized

portfolio strategies, making this non-optimized naive diversification strategy a com-

petitive benchmark in comparing portfolio selection strategies. This paper builds

upon and extends the norm constrained optimization strategy by DeMiguel et al.

(2009a) and Fastrich et al. (2015) while incorporating stock correlation considered

1See Section 3.2 for a detailed discussion.
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in DeMiguel et al. (2014). However, our method differs in several ways. First, we

introduce a newly developed machine learning tool - the Ordered-Weighted-LASSO

(OWL) estimation method, which encompasses the LASSO norm constraint consid-

ered in DeMiguel et al. (2009a). The OWL estimator is tailored for estimating and

identifying correlated variables while the LASSO estimator is often criticized for lack-

ing robustness in correlated data, see Figueiredo and Nowak (2016) and Kozak et al.

(2020) for example. Second, DeMiguel et al. (2014) find that asset correlation is im-

portant for portfolio performance and they implement a VAR(1) model to harness

the lagged correlations between asset returns. However, contemporaneous correla-

tions, which are important for cross-sectional asset allocations (i.e. ‘stock picking’),

are left unexploited. On the other hand, the OWL estimation method specifically

exploits contemporaneous correlations between assets. Third, our optimization prob-

lem embeds a novel norm constraint as well as allowing investors to impose additional

weight constraints based on their beliefs. For example, investors can set up an upper

and/or lower bound of the investment weight for each asset based on their prior beliefs.

We develop efficient algorithms that achieve fast convergence for such optimization

problem.

Empirically, we test our strategies in five asset classes. First, we consider the Fama-

French 25 (FF25) portfolios because of their popularity as test assets in the finance

literature and because sorted portfolios are less prone to large variations in returns

compared to individual stocks. Second, we consider the S&P 500 (SP500) stocks with

daily return frequency and we rebalance our hedge portfolio either weekly or monthly.

Third, we also consider the S&P 100 (SP100) stocks with monthly return frequency

and we rebalance our hedge portfolio monthly.2 S&P 500 and S&P 100 stocks are

usually the largest stocks in the market. To test our strategies on small and medium

stocks, we adopt the randomly selected stocks approach, similar to Jagannathan and

Ma (2003) and DeMiguel et al. (2009b): in April each year, we randomly select 500

stocks for daily return series (and 100 stocks for monthly return series) which have

no missing data in the past 3 years (10 years for monthly return series) and in the

next 1 year. The randomly selected 500 stocks with daily returns and 100 stocks with

2We require an invertible sample covariance matrix as an input in our optimization problem, thus
we need the time series dimension larger than the cross-sectional dimension to obtain a non-singular
covariance matrix.
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monthly returns consist of our fourth and fifth test assets classes.

We adopt an out-of-sample procedure to compare and test each strategy. At each

point of time, we use a rolling window to estimate each stock’s weight (portfolio’s

weight in the FF25 universe) to invest for the next period, then we roll the training

sample forward until the next rebalancing point and compute hedge portfolio return

and turnovers. Turnover is the change in portfolio weights right before and after

rebalancing. In the end, we obtain a sequence of out-of-sample returns and portfolio

weights, from which we can compute the out-of-sample Sharpe ratio and turnovers.

Notably, transaction cost, which is a monotonically increasing function of turnovers,

is an important consideration for investors. So we also consider a transaction cost

adjusted Sharpe ratio (TCadjSR), which will be one of our main comparison criteria.

We also introduce the model confidence set (MCS) method of Hansen et al. (2011)

to compare each strategy. Sharpe ratio, formulated as the ratio between mean return

and portfolio risk (i.e. standard deviation of portfolio returns), is often dominated by

the portfolio risk component when mean returns are small. The MCS method answers

this question: which strategy offers statistically the best out-of-sample returns, while

portfolio risk controls the confidence band?

Our empirical findings complement some existing literature and shed light on new

perspectives of portfolio selection theory. First and foremost, DeMiguel et al. (2009b)

show that the naive 1/N strategy outperforms 14 optimization-based strategies. Our

method bridges the gap between the naive diversification strategy and a well-defined

optimization framework. We demonstrate that asset correlations play important role

in our optimization method. Together with hyper parameters λ1 and λ2 they jointly

determine portfolio positions: λ1 controls the overall sparsity of the asset selection,

which is a similar role to the LASSO norm constraint in DeMiguel et al. (2009a); λ2

controls the sensitivity to correlations. Large λ2 encourages weights-clustering (i.e.,

stocks will be assigned with similar weights), thus portfolio weight will be close to

the equal weighted position. We rigorously compare the 1/N strategy and our OWL

related strategies and find that OWL related strategies consistently outperform the

1/N strategy in all asset classes, in terms of Sharpe ratio, turnover and mean returns.

It is a remarkable discovery, since in the related literature, we can find hardly any

strategy that can outperform the 1/N strategy by both the Sharpe ratio and the
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turnover criteria, see DeMiguel et al. (2009b) for example. Therefore, we argue that

the OWL optimization method serves as an enhancement to the naive 1/N strategy:

OWL related strategies obtain near-equal-weighted positions within an optimization

framework, where dedicated parameters control model sensitivity to asset correlations

and sparsity.

Second, OWL related strategies perform better in large stocks than small stocks

and in monthly returns than daily returns. Using Fama-French 25 portfolios and

the Standard & Poor 100 stocks with monthly returns, we find that OWL related

strategies outperform other candidate strategies in terms of the Sharpe ratio and

transaction cost adjusted returns. However, we also find the performance of OWL

related strategies is less effective using randomly selected 500 stocks. A stylized fact is

that large stocks with monthly returns exhibit higher cross-sectional correlation than

smaller or daily returns. This empirical finding confirms that the crucial ingredient in

our optimization method is stock correlation: OWL related strategies do well when

assets are correlated.

Third, the Mean Variance Efficient portfolio (MVE) performs poorly due to exces-

sive estimation errors in expected returns and asset covariance matrix. However, the

OWL embedded MVE (MVE-OWL) strategy together with weight constraints pro-

duces sizable Sharpe ratio and low turnovers. The MCS test confirms that the MVE-

OWL strategy produces significantly larger portfolio returns than all other strategies

using FF25 as test assets. This finding challenges some common stances in the ex-

isting literature. Because the sample mean return is such a noisy approximation of

the expected return, many researchers find it is better just to focus on the portfolio

risk and optimizing the minimum variance portfolio. Our finding suggests that it is

possible to optimize the MVE portfolio with sample mean if we further impose the

OWL norm constraint and additional weight constraints.

The rest of this paper is organized as follows. Section 3.2 reviews related literature.

Section 3.3.1 outlines some popular methodologies employed for portfolio optimization

problems, which are also used as benchmarks in our empirical analysis. Sections 3.3.2 -

3.3.3 introduce the OWL shrinkage method and discuss its statistical properties before

devising an ADMM algorithm to solve the OWL optimization problem with multiple

constraints. Section 3.4 applies OWL based portfolio strategies on five different asset
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classes and compares them with other benchmarks.

3.2 Literature review

This paper naturally builds on a strand of literature devoted to exploring the portfo-

lio optimization theory. Since the groundbreaking work of Markowitz (1952), modern

portfolio theory has evolved rapidly. However, Markowitz’s portfolio theory has long

been criticized for working poorly empirically, because one needs to obtain the ex-ante

expected returns and covariances of stock returns, which are difficult to be estimated

with precision. Michaud (1989) looks into the “Markowitz optimization enigma” and

finds that the mean variance optimization is in fact “error maximization”. DeMiguel

et al. (2009b) study the simple equal weighted strategy and find it outperforms 14

other optimization based strategies. They argue that estimation error in the expected

asset return or covariances erodes any gains from optimization. Kan and Zhou (2007)

show that using the sample analogs for the expected returns and covariance matrix

can lead to very poor out-of-sample performance due to parameter uncertainty. They

suggest that holding the tangent portfolio and the risk free asset is not optimal, though

holding some other risky portfolios will help reduce the portfolio risk caused by pa-

rameter uncertainty. Ledoit and Wolf (2003) propose a shrinkage based estimation

method for the covariance matrix. They suggest that shrinking the sample covariance

matrix linearly towards a target matrix (for example the identity matrix) will im-

prove the out-of-sample performance of the minimum variance portfolio. Ledoit and

Wolf (2017) propose a non-linear version of shrinkage estimator for the covariance

matrix which shows better performance than the linear version. Jagannathan and

Ma (2003) suggest no-short-sale constraint on all stocks and find significant gains in

out-of-sample Sharpe ratio for the minimum variance portfolio. They argue that such

constraint helps reduce the upward biased estimation errors in the variance-covariance

matrix. DeMiguel et al. (2014) show that stocks are correlated, and by implementing

a VAR(1) model they obtain substantial gains in portfolio performance. DeMiguel

et al. (2020) consider a portfolio optimization problem by selecting a large number of

firm characteristics while embedding the transaction cost in their object function.

This paper is also related to a new and fast growing field which uses machine
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learning techniques for portfolio optimization problems. DeMiguel et al. (2009a)

propose norm constraints on portfolio weights for the minimum variance portfolio.

In particular, they consider separately the LASSO and Ridge penalties on portfolio

weights and find significant improvement on the out-of-sample Sharpe ratio of the

minimum variance portfolio. Ao et al. (2018) combine the unconstrained regression

with LASSO penalty and achieve superior portfolio performance. Inspired by the

adaptive LASSO in Zou (2006), Fastrich et al. (2015) incorporate the financial infor-

mation into the adaptive weights to determine the portfolio composition. Figueiredo

and Nowak (2016) study the ordered and weighted LASSO estimator and show that

it has appealing property of clustering correlated variables by assigning them with

similar coefficients.

This paper is closely related to DeMiguel et al. (2014) and DeMiguel et al. (2009a).

However, our portfolio optimization method differs in several ways. First, we en-

deavor to exploit the contemporaneous correlation between stocks instead of serial

correlations considered in DeMiguel et al. (2014). Therefore, our strategies are more

relevant to “stock-picking” investors. Second, we propose a novel norm constraint

on the portfolio weights which encompasses the LASSO norm constraint in DeMiguel

et al. (2009a), and our novel norm constraint can specifically exploit contemporane-

ous stock correlations. Third, we devise efficient algorithms that enable investors to

incorporate their prior beliefs into the optimization problem (i.e., investors can set

upper/lower bound on the weight of each individual asset based on prior beliefs).

3.3 Methodology

We first consider a simple case of the OWL shrinkage method in the portfolio op-

timization problem where no constraints are imposed on the weights of individual

stocks. Then we further impose constraints on portfolio weights for the portfolio

optimization problem.

3.3.1 Setup

Consider N assets in the investment universe. Denote by Rt the returns of N assets

in the excess of risk-free rate at time t. Denote by µ (N × 1) and Σ (N × N) the
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population mean and population variance-covariance matrix of N asset returns, while

µ̂ and Σ̂ are their sample estimates. An investor, according to Markowitz (1952)’s

classical portfolio theory, aims to maximize the risk-adjusted portfolio returns, or

equivalently:

min
w

(γ
2
w′Σw − µ′w

)
s.t. w′e = 1

(3.1)

where γ is a scalar that represents the investor’s absolute risk aversion, w is the N×1

weighting vector of N assets, also referred to as positions, and e is a column vector

of ones. The closed-form solution of the above optimization problem is w =
1

γ
Σ−1µ.

However, Σ and µ are unobservable. Typically, we use the sample analogs µ̂ and Σ̂

in the above equation, which gives

wMVE =
1

γ
Σ̂−1µ̂. (3.2)

Michaud (1989), DeMiguel et al. (2009b) and Jagannathan and Ma (2003) have

pointed out that the sample analogs of µ and Σ are subject to large estimation er-

rors. In particular, the estimation of the expected asset returns (µ) proves to be extra

challenging. In fact, the estimation error (of µ) is so large that it offsets all gains

from optimization (DeMiguel et al., 2009b). So in practice, focusing on the mini-

mum variance (minVar) portfolio proves to have better out-of-sample results than the

mean-variance efficient (MVE) portfolio. In this regard, the optimal weights for the

minimum variance portfolio are obtained by optimizing (3.1) while setting µ = 0, that

is

wminV ar =
Σ̂−1e

e′Σ̂−1e
, (3.3)

where we use the sample analog for Σ. For the estimation error in the sample covari-

ance matrix, shrinkage estimator proves to be a useful remedy. For instance, Ledoit

and Wolf (2003) propose to shrink the sample covariance matrix towards a target

matrix. They suggest the following estimator

Σ̂LW03 = δΣ̂ + (1− δ)Σ̂target, (3.4)
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where δ ∈ (0, 1) is a shrinkage intensity parameter and Σ̂target is a target estimator,

which can be, for example, the identify matrix.

DeMiguel et al. (2009a) show that imposing norm constraints on portfolio weights

to shrink them towards zeros substantially improves the out-of-sample Sharpe ratio

of the hedged portfolios.3 They suggest the following norm shrinkage methods

min
w

(γ
2
w′Σw − µ′w + λ||w||1

)
, (3.5)

or

min
w

(γ
2
w′Σw − µ′w + λ||w||22

)
, (3.6)

where

||w||1 =
N∑
i=1

|wi|, ||w||22 =
N∑
i=1

w2
i ,

and λ is a shrinkage intensity parameter. Shrinkage method in (3.5) is broadly known

as LASSO shrinkage, which produces sparse estimator for w, while (3.6) is referred

to as Ridge shrinkage, which shrinks all elements in w towards zero.

Jagannathan and Ma (2003) find that imposing no-short-sale constraints on port-

folio weights helps to improve out-of-sample Sharpe ratio. They propose the following

constraint in addition to (3.1):

wi ≥ 0, for all i ∈ {1, ..., N}. (3.7)

They argue that imposing this constraint leads to substantial reduction of extreme

negative positions of stocks which are caused by upward biased estimation of variances.

In addition, DeMiguel et al. (2014) reveal that stock correlations matter for port-

folio construction. They propose a vector-autoregressive (VAR) model to capture

stocks’ serial correlations and find that VAR-based portfolios outperform traditional

unconditional portfolios. To fix ideas, let us assume that the vector of asset return

Rt follows a VAR(1) process,

Rt+1 = a+BRt + εt+1, (3.8)

where a is a N × 1 vector of intercepts, B is a N × N matrix of parameters, and

3We set µ = 0 for the minimum variance portfolio. Otherwise, we are optimizing the mean-
variance efficient portfolio.
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εt is the i.i.d. error term. However, equation (3.8) is a reduced model, which sug-

gests that tomorrow’s expected stock returns depend linearly on today’s return. The

linear dependence is characterized by the coefficient matrix B, which describes the

lagged cross-sectional and serial dependence. On the other hand, contemporaneous

correlations between stocks are left unexplained.

This paper builds on and extends DeMiguel et al. (2009a) and DeMiguel et al.

(2014). We introduce a newly developed machine learning tool, the ordered and

weighted LASSO (OWL), which (1) encompasses the LASSO shrinkage method in

DeMiguel et al. (2009a); (2) exploits contemporaneous correlations between stocks

(not reduced model), drawing a distinctive line between our portfolio optimization

approach and that in DeMiguel et al. (2014); (3) enables adopting bespoke constraints

on portfolio weights if investors have prior beliefs.4 We devise efficient algorithms to

solve the OWL optimization problem with/without additional constraints on portfolio

weights.

3.3.2 The OWL shrinkage method

We follow the idea of DeMiguel et al. (2009a) to add a penalty term in the object

function f(w), which measures the loss given portfolio weight w. The optimization

problem can be written as

ŵ = arg min
w

f(w) + Ωω(w), Ωω(w) = ω′|w|↓, (3.9)

where ω is a pre-specified weighting vector which will be specified in (3.11) below. w

is a vector of stock weights (positions) and |w|↓ is the vector that stores the absolute

value of stock weights, decreasingly ordered by its magnitude. Both ω and |w|↓ take

values in a monotone non-negative cone κ, which is defined as κ := {x ∈ RN :

x1 ≥ x2 ≥ ... ≥ xN ≥ 0}. f(w) can be any continuously differentiable function of

w. However, in this paper we focus on the mean-variance efficient portfolio (or the

minimum variance portfolio if we set µ = 0), which corresponds to

f(w) =
γ

2
w′Σw − µ′w. (3.10)

4Prior beliefs could come from investors’ exclusive information, or an existing trading strategy.
In that respect, it can be used as an improvement/refinement of any existing strategies.
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We further specify ω to have a linear weighting structure

ωi = λ1 + (N − i)λ2, (3.11)

where λ1 and λ2 are two hyper parameters which pin down ω, and the values of λ1

and λ2 are determined through cross validation.5 In order to solve the optimization

problem in (3.9) - (3.11), we use the proximal descent algorithm, more details about

this algorithm can be found in Sun (2019).

Next, we discuss some econometric properties of the OWL shrinkage method.

Lemma 3.3.1. Suppose that the pre-specified weighting vector ω of the OWL shrink-

age method is defined in (3.11). If λ2 is set to be zero, then the OWL shrinkage

method is equivalent to the LASSO shrinkage as in (3.5), or equivalently

λ‖w‖1 = Ωω(w).

Proof: see Appendix 3.A.2.3.

Lemma 3.3.1 shows that the OWL shrinkage method encompasses the LASSO

shrinkage method used by DeMiguel et al. (2009a). Furthermore, once we adopt a

linear weighting scheme for ω as in (3.11), the OWL shrinkage method is linked to the

OSCAR regularization introduced in Bondell and Reich (2008), which has appealing

properties of clustering correlated features. The OSCAR regularization unit is defined

as

ΩOSCAR(w) = λ1||w||1 + λ2

∑
i<j

max{|wi|, |wj|}, (3.12)

which is a combination of the LASSO regularization (`1 norm) unit and a pair-wise

`∞ norm unit.

Lemma 3.3.2. Suppose that the pre-specified weighting vector ω of the OWL shrink-

age method is defined in (3.11). Then the OWL shrinkage method is equivalent to the

5In particular, we set a grid value of λ1 and λ2. Then, at each point on the grid, we split the
sample into 5 folds, using 4 folds to evaluate the model and obtain the estimated parameters. Then
we use the other 1 fold as out-of-sample to evaluate the Mean Square Forecast Errors (MSE). We
rotate each fold as the out-of-sample fold, and compute the average MSE. We repeat these procedures
on each grid, and compare the average MSE for each point on the grid. The one receiving the smallest
average MSE will determine the hyper parameter values.

127



LASSO

OWL

grouping

sparsity

Figure 3.1. Geometric interpretation of the atomic norm of LASSO and OWL
regularization

OSCAR shrinkage method as in (3.12), or equivalently

ΩOSCAR(w) = Ωω(w).

Proof: see Appendix 3.A.2.4.

Lemma 3.3.2 shows that by adopting a linear decreasing weighting scheme for ω

as in (3.11), the OWL shrinkage method is equivalent to the OSCAR regularization,

which has property of clustering correlated variables. However, the OWL shrinkage

is a more general method than the OSCAR regularization. For instance, by adopting

a non-linear (for instance, the inverse of the normal cumulative distribution function)

weighting scheme for ω, the OWL shrinkage method is equivalent to the SLOPE esti-

mator proposed by Bogdan et al. (2015), which is widely used in multiple testing. In

the scope of this paper, we restrict the weighting vector ω as defined in (3.11) because

of the clustering property offered by the OSCAR regularization and our objective of

exploiting the contemporaneous correlations between stocks. To gain some impression

of how the OWL shrinkage method achieves sparse selection and correlation identi-

fication simultaneously, we first look at the geometric interpretation of the atomic

norm of Ωω(w) in Figure 3.1.

Figure 3.1 depicts the atomic norm of OWL and LASSO regularization in a two-

dimensional space. We can see that the atomic norm of LASSO has all vertices on
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axes, which encourages sparse selection of variables. On the other hand, the atomic

norm of the OWL regularization is octagonally shaped, having vertices on both axes

and the ±45 degree lines. The former (vertices on axes) encourages sparse selection

and the latter (vertices on the ±45 degree lines) encourages variable grouping.6

The geometric interpretation offers a ballpark explanation of how the OWL shrink-

age achieves both sparse selection and correlation identification (grouping) simulta-

neously. Next, we formally investigate some econometric properties for the OWL

shrinkage method. There is a rich literature in finance focusing on the sparse se-

lection property offered by LASSO type of estimators, see DeMiguel et al. (2020,

2009a), Fastrich et al. (2015) and Chinco et al. (2019) for example. The OWL shrink-

age method encompasses and shares similar sparse-selection-properties of the LASSO

estimator, and see Sun (2019) for a formal investigation of the asymptotic property of

the OWL estimator. For this reason we focus on investigating the grouping property

in this paper. Theorem 3.3.1 and 3.3.2 below state the conditions that need to be

satisfied to have the grouping property.

Theorem 3.3.1. Let Σi. and Σj. denote the ith and jth columns of the variance-

covariance matrix and λ2 be the parameter defined as in (3.11). Suppose the loss

function is defined as in (3.10) while setting µ = 0 (i.e. minimum variance portfolio).

If

‖Σi. − Σj.‖2 < λ2,

then ŵi = ŵj, where ŵi and ŵj are obtained by optimizing (3.9).

Proof: see Appendix 3.A.2.1.

Theorem 3.3.1 shows that in the minimum variance portfolio optimization prob-

lem, if two assets are highly correlated, i.e. ‖Σi.−Σj.‖2 is small, then they will receive

the same positions ŵi = ŵj. We regard this property as grouping. The tuning param-

eter λ2 plays an active role in influencing the grouping property: a larger λ2 means

the atomic norm of the OWL regularization in Figure 3.1 is more pointy, i.e. the

6Sparse selection means the vertices on axes will assign one variable zero coefficient and another
non-zero (in this 2-dimensional space), thus performing sparse selection. The variable assigned with
zero coefficient is shrunk off. Variable grouping means variables exhibiting high correlations will be
assigned with the same or similar coefficients. The vertices on the ±45 degree lines will dictate the
tangent point with the contour from the un-regularized solutions, which give the same or similar
coefficients to both variables.
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vertices on the ±45 degree lines extend further out, and hence it encourages more

grouping.

Theorem 3.3.2. Let Σi. and Σj. be defined as in Theorem 3.3.1. Denote by µi, µj

the expected returns of the ith and jth asset. Let γ represent investor’s risk aversion

level. Suppose the loss function is defined as in (3.10) (i.e. mean-variance efficient

portfolio). If

γ‖Σi. − Σj.‖2 + |µi − µj| < λ2,

then ŵi = ŵj, where ŵi and ŵj are obtained by optimizing (3.9).

Proof: see Appendix 3.A.2.2

Theorem 3.3.2 extends Theorem 3.3.1 into a mean-variance efficient portfolio op-

timization problem where investors care about both risks and expected returns. We

find that, compared to the minimum variance portfolio, both the difference in the

expected returns |µi − µj| and correlation with other assets ‖Σi. − Σj.‖2 influence

the grouping property: if two assets have similar expected returns and are similarly

correlated with other assets (i.e. |µi − µj| and ‖Σi. − Σj.‖2 are small), then they are

likely to be grouped together (i.e. ŵi ≈ ŵj). The risk aversion parameter γ can be

viewed as a scaling parameter adjusting weights between the risk component and the

expected return component. Also, large λ2 encourages grouping.

It is worth stressing that we derive the grouping property using the population

values of the variance-covariance matrix Σ and the expected returns µ, which are

unobservable and difficult to estimate with precision. However, the proof of Theorem

3.3.1 and 3.3.2 does not depend on the asymptotic properties of Σ or µ. In other

words, we arrive at those results only using properties of the OWL regularization,

and those results are also applicable to Σ̂ and µ̂, which are sample analogs of Σ and

µ. It is well known that large estimation errors in those sample analogs erode any

gains in optimization. In the next subsection, we set out to constrain portfolio weights

while using these sample analogs µ̂ and σ̂ to mitigate estimation errors.
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3.3.3 The OWL optimization problem and the ADMM algo-

rithm

Let us consider a more common problem, where investors have some prior information

on stocks. For instance, an investor may hold positive opinions on some specific stocks

while negative on others, thus she may want to impose some bounds constraints on

those stocks. To generalize those constraints, we impose the following inequality

lb � w � ub, (3.13)

where lb (ub) is a lower (upper) bound for the vector of portfolio weights w. For any

x, y ∈ RN , x � y implies xi ≤ yi, for all i ∈ {1, ..., N}. However, the optimization

problem of (3.9) with constraint (3.13) is challenging to solve with gradient descent

algorithm, which is commonly used in machine learning algorithms. Hence, we intro-

duce a newly developed ADMM (Alternating Direction Method of Multiplier, Boyd

et al. (2010)) algorithm to solve this constrained optimization problem. The outline

of the algorithm is the following: equation (3.9) consists of two components, one is

f(w) which is differentiable with respect to w, another is Ωω(w) which is not differ-

entiable with respect to w. In order to make computation easier and tangible, we

introduce a new variable v, and replace it with w in the undifferentiable component

Ωω(w), so that we can optimize each component separately. In addition, we impose

an extra constraint that these two random variables are equal w = v. For this reason,

this algorithm is named “alternating direction method of multiplier”. Therefore, the

constrained OWL optimization problem can be written as

min
w,v∈RN

[γ
2
w′Σ̂w − µ̂′w + Ωω(v)

]
, (3.14)

s.t. w = v, (3.15)

w′e = 1, (3.16)

w � lb, (3.17)

w � ub, (3.18)

where Ωω(v) = ω′|v|↓ defined similarly as in (3.9), Σ̂ and µ̂ are sample analogs of

Σ and µ, and e is a column vector of ones. For the technical details of the ADMM
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algorithm, see Appendix 3.A.1.

3.4 Empirical Analysis

In this section, we apply the OWL shrinkage method with or without additional

constraints on portfolio weights and compare them with other portfolio strategies

in the literature. We consider five different asset classes with daily and/or monthly

returns. The variety in characteristics of these asset classes summarizes the pros and

cons of each strategy which we will discuss in details later.

In Section 3.4.1, we first introduce the data (five asset classes) and all candidate

strategies. Section 3.4.2 explains the empirical method we employ to compare strate-

gies and Section 3.4.3 outlines the comparison criterion we use for ranking strategies.

To test the significance of difference in Sharpe ratios, we employ a bootstrap based

Sharpe ratio test by Ledoit and Wolf (2008). To test which strategies statistically

produce higher returns, we use the model confidence set (MCS) test by Hansen et al.

(2011).

3.4.1 Data

We first consider the Fama French 25 portfolios (FF25) from July 1927 to December

2017.7 FF25 is obtained by sorting stocks into five by five tranches according to their

size and book-to-market ratio. The return of each tranche is the average returns of

a large number of stocks allocated to the tranche sharing similar characteristics (size

and book-to-market ratio in this case). Since returns of these tranches are averaged

returns of many stocks, they are less prone to large variations caused by idiosyncratic

risks.

We then consider the S&P 500 stocks with daily returns (SP500d), from 1st Jan-

uary 1978 to 31st December 2017 and the S&P 100 stocks with monthly returns

(SP100m) from January 1978 to December 2017. Stock return data are obtained

from the CRSP stock return files from Wharton Research Data Services.

While S&P 500 and S&P 100 stocks are typically the largest stocks in the market,

7Data is downloaded from Kenneth French’s website at
http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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to investigate stocks with medium or small sizes, we follow DeMiguel et al. (2009a)

and Jagannathan and Ma (2003) to consider the randomly selected 500 stocks from

the CRSP daily return file (CRSP500d). We also conduct a similar procedure to

randomly select 100 stocks from the CRSP monthly return file (CRSP100m).

(a) SP500d (b) SP100m

(c) CRSP500d (d) CRSP100m

Figure 3.2. Correlation coefficient matrices of four asset classes
Note: yellow and deep blue indicate high correlation, while green indicating low correlation.

Figure 3.2 shows the correlation coefficient matrices of SP500d, SP100m, CRSP500d

and CRSP100m stocks, respectively. We observe that SP500d returns exhibit higher

correlations than the randomly selected CRSP500d returns. Similarly, we observe that

the SP100m exhibit higher correlations than CRSP100m returns. These patterns may

reflect the fact that large stocks are less prone to idiosyncratic noises and more affected

by market-wide common factors than small stocks, so large stocks exhibit higher cor-

relations than small stocks. Meanwhile, we also observe that, by comparing the left

panels and right panels in Figure 3.2, monthly returns shows higher correlations than

daily returns. This can be characterized as the Epps effect (Epps, 1979): the sample

correlation tends to be biased towards zero when the sampling frequency progressively

shrinks.

Next, Table 3.1 lists all considered candidate strategies. First, we consider the
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Table 3.1. Candidate strategies

Abbreviation Strategies Source

EW (1/N) equal weighted DeMiguel et al. (2009b)
minVar minimum variance portfolio N/A
minVar-JM minVar with no-short-sale constraint Jagannathan and Ma (2003)
minVar-LW minVar with Ledoit-Wolf shrinkage Ledoit and Wolf (2003)
minVa-OWL OWL shrinkage on minVar New Proposal
minVar-OWL-Pos OWL shrinkage with no-short-sale constraint New Proposal
minVar-OWL-bounds OWL shrinkage with bounds constraints New Proposal
minVar-LW-OWL OWL with LW shrinkage on Cov matrix New Proposal
minVar-hard-OWL OWL with hard-thresholding for Cov matrix New Proposal
MVE-OWL-Pos OWL shrinkage with no-short-sale constraint on MVE New Proposal
MVE-OWL-bounds OWL shrinkage with bounds constraints on MVE New Proposal

equal weighted (EW, also known as 1/N) strategy which has attracted great attention

after DeMiguel et al. (2009b) showing that this non-optimized naive diversification

strategy achieves superior out-of-sample performance against other optimized ones.

We also consider the no-short-sale constraint on the minimum variance portfolio by

Jagannathan and Ma (2003) and the linear shrinkage method by Ledoit and Wolf

(2003) in our candidate strategies. In the newly proposed OWL shrinkage methods, we

focus on the “minVar-OWL” method which implements the OWL shrinkage method

on the minimum variance portfolio without additional constraints. The rest are some

enhanced OWL strategies. For instance, “Pos” indicates that we further impose a

no-short-sale constraint on stock weights. “Bounds” indicates that we impose upper

and lower bounds for each stock. In this case, since we do not hold any additional

information about each stock in our exercise, we blindly impose a bound constraint

between -5% and 30% for all stocks. “Hard” indicates a hard-thresholding method

for estimating the covariance matrix as in Bickel and Levina (2008) and Dendramis

et al. (2019).

Next, we set out to conduct out-of-sample based empirical methods to implement

each strategy and compare their performances using various criteria.

3.4.2 Empirical methods

For the FF25 asset class, since returns are sorted portfolio returns, we have balanced

panel data, which is convenient for our analysis. We choose a rolling window size,

say five years (60 months). At time t, we use the recent 60 months (from t − 59 to

t) data to estimate the model with each strategy and obtain the weighting vector for

the next period. At the beginning of t + 1 we invest in each 25 portfolios according
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to the weighting vector we obtained at time t. Then, at the end of t + 1, returns

will be realized, so we can compute the returns for the hedge portfolio. Next, we roll

the window one month forward (from t− 58 to t+ 1) to estimate the weight for next

month’s investment.

For SP500d, we first find all stocks that have been in SP500 index at least once

between January 1978 and December 2017, total 1439 stocks. Then we implement

a rolling window scheme, with rolling window size equal to 750 working days, ap-

proximately 3 years. In each rolling window, we remove stocks having missing data,

which typically leaves 500 to 700 stocks in the investment universe in each rolling

window. We then perform various portfolio selection strategies, and get weights for

stocks which constitute next period’s investment amount. We consider two rebalance

frequencies, weekly or monthly. When the rebalance period is met, we compute the

portfolio’s return and turnover. Then we move forward to the next rolling window

and repeat these steps until the end of out-of-sample period. We follow a similar pro-

cedure for the SP100m dataset except we rebalance only monthly and use a rolling

window size of 10 years (120 months).

For CRSP500d, we follow DeMiguel et al. (2009a)’s procedure. In April each year,

we randomly choose 500 stocks that have no missing data for the past 10 years as

well as the following one year. Then in each rolling window, with window size equal

to 750 working days, we estimate weights using various strategies. We also consider

rebalancing portfolios weekly or monthly. At each rebalance point, we compute OOS

portfolio returns and turnovers. At the end of the out-of-sample period we can com-

pute out-of-sample returns, standard deviation, Sharpe ratio and turnovers. We follow

a similar procedure for CRSP100m, except the rolling window size is 10 years (120

months), and rebalance monthly only.

3.4.3 Out-of-sample comparison

To compare our OWL based strategies with other existing ones in the literature, we

consider the following criteria: (1) the out-of-sample Sharpe ratio (SR), (2) portfolio

turnovers (transaction cost), (3) transaction cost adjusted Sharpe ratios (TCadjSR),

(4) transaction cost adjusted portfolio returns (TCadjR). We follow the methodology

of DeMiguel et al. (2009a) to construct the first two criteria. We add the third criterion
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because the first two criteria look at Sharpe ratio and turnover separately, which leads

to (on many occasions) contradictory preferences: one strategy that delivers higher SR

usually entails higher turnover (transaction cost), and vice verse. TCadjSR allows one

to look into and compare strategies in a complete fashion. In addition, Sharpe ratio

comparison is usually dominated by its variance component and, by definition, the

minVar portfolio typically delivers much lower portfolio risk than the MVE portfolio.

Hence, we introduce the fourth criterion, the model confidence set (MCS) of Hansen

et al. (2011). MCS compares TCadjR and puts all strategies that significantly produce

the highest returns in a set while portfolio risk controls the confidence level. More

details about the MCS method are included in Section 3.4.5. We argue that looking

at the criteria three and four together gives a more completed profile of portfolio

performance.

To fix ideas, let rt = (r1,t, r2,t, · · · , rN,t)′ denote the vector of N asset returns in

excess of the risk-free rate rf,t at time t and wt denote the vector storing portfolio

weights of N assets at time t. For the monthly dataset, we choose a rolling window size

τ = 120 months, where τ � T and T is the total number of time series observations.

We set the rebalancing frequency as monthly (q = 1 month). For the daily data

set, we choose a rolling window size of three calendar years ( about 756 time series

observations) and rebalance either weekly (q = 5 days) or monthly (q = 21 days).

At time t, we estimate portfolio weights wt using data from t − τ + 1 to t for each

strategy. wt will be the investment amount at the beginning of time t+1 and we hold

this position until the next rebalancing point t+ q. At time t+ q, before rebalancing

we need to compute the weight before rebalance. The weight of each asset changes

between the beginning and the end of time t due to the price fluctuation. We re-

calculate the weight at the end of time t using new stock prices and call it the “weight

before rebalance” (wt+). Then at the beginning of time t + 1 we invest according to

the new weight (wt+1) obtained at the end of time t. The difference between them

(|wt+1−wt+ |) is the turnover. More specifically, we compute the summation of absolute

value of this difference at each point of time, then take the average across time. Then,

we consider the following comparison criteria. For strategy i, the standard deviation
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of the out-of-sample return is

σ̂i =

√
1

|Υ|
∑
t∈Υ

(
wit
′
rt+q − µ̂i

)2
, (3.19)

where µ̂i =
1

|Υ|
∑
t∈Υ

wit
′
rt+q is the mean of OOS returns and t ∈ Υ := {x | {x =

τ, τ + q, τ + 2q, · · · } ∩ {x ≤ T − q}}. |Υ| denotes the cardinality of the set Υ which

represents the number of times rebalancing portfolio. The Sharpe ratio of portfolio

strategy i is

SRi =
µ̂i

σ̂i
, (3.20)

and the turnover of portfolio strategy i is defined as

TOi =
1

|Υ|
∑
t∈Υ

N∑
j=1

(
|wij,t+q − wij,t+|

)
, (3.21)

where wt+ indicates the weight before rebalancing due to price fluctuation between

two consecutive rebalancing points, and wij,t+ is the jth element in wit+ for portfolio

strategy i, where j ∈ {1, 2, · · · , N}. Hence, |wij,t+q − wij,t+| measures the change in

portfolio weight for asset j at rebalancing point t+ q, and TO measures the average

weight change for all t ∈ Υ. Therefore, the transaction cost adjusted Sharpe ratio for

portfolio strategy i is defined as

TCadjSRi =
µ̂i − TCi

σ̂i
, (3.22)

where

TCi = TOi ∗ |Υ| ∗ cost per transaction (3.23)

denotes the transaction cost. Recall that |Υ| is the cardinality of the set Υ, measuring

the total number of times investors rebalance their portfolios. Rebalancing frequency

q directly affects |Υ|: higher frequency of rebalancing (i.e. smaller q) will result in

larger |Υ|, thus greater transaction cost. cost per transaction can be interpreted as

per US dollar transaction cost to trade stocks. In line with DeMiguel et al. (2013),

we set cost per transaction = 50 basis points. Finally, the transaction cost adjusted

returns for portfolio strategy i are defined as

TCadjRi
t = wit

′
rt+q − TCi. (3.24)
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Note that t ∈ Υ is a subscript indicating each rebalancing point. For Sharpe ratio

comparison, we further utilize a Sharpe ratio test devised by Ledoit and Wolf (2008) to

reveal whether Sharpe ratios are statistically different between portfolio strategies by

pair-wise comparison. Specifically, we implement a circular block bootstrap method,

which is robust to correlated returns.8 Let µi (µj) denote the mean (excess) return

and σi (σj) denote the standard deviation for strategy i (j). The null hypothesis is

H0 :
µi
σi
− µj
σj

= 0. (3.25)

3.4.4 Empirical results

In this subsection, we compare the criteria described above for all strategies listed in

Table 3.1 and discuss their implications. We also provide robustness check for the

OWL-ADMM algorithm and we illustrate detailed weight distributions for each asset

class using various portfolio strategies in Appendix 3.A.4.

3.4.4.1 Fama-French 25 portfolios

Table 3.2. OOS scores using FF25

SR σ̂ TO µ̂(annualized) TC TCadjSR

EW 0.7271 0.0549 0.0172 0.1384 0.0010 0.7216
minVar 0.9785 0.0401 0.7558 0.1358 0.0453 0.6518
minVar-JM 0.8020 0.0425 0.0678 0.1182 0.0041 0.7744
minVar-LW 0.8613 0.0425 0.2952 0.1268 0.0177 0.7410
minVar-OWL 0.7727 0.0484 0.0278 0.1295 0.0017 0.7627
minVar-OWL-Pos 0.7323 0.0544 0.0172 0.1379 0.0010 0.7268
minVar-OWL-bounds 0.7299 0.0549 0.0178 0.1389 0.0011 0.7243
minVar-hard-OWL 0.0141 0.4128 9.8011 0.0202 0.5881 -0.3971
minVar-LW-OWL 0.7739 0.0483 0.0295 0.1295 0.0018 0.7633
MVE-OWL-Pos 0.7344 0.0547 0.0147 0.1391 0.0009 0.7298
MVE-OWL-bounds 0.7311 0.0551 0.0163 0.1395 0.0010 0.7260

Note: this table reports performance scores for various strategies using Fam-French 25 portfolios.

The transaction cost is calibrated to be 50 base points for trading 1 US dollar.

Table 3.2 reports the out-of-sample performance scores using various criteria in-

cluding the Sharpe ratio, standard deviation, turnover, (annualized) mean returns,

transaction cost and transaction cost adjusted Sharpe ratios for each trading strat-

egy. We find that the plain minVar strategy achieves highest OOS Sharpe ratio and

8We download the code from https : //www.econ.uzh.ch/en/people/faculty/wolf/publications
and we compute the two-sides p-values with 1000 (B=1000) bootstrap random draws and block size
sets to be 5 (b=5).
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lowest standard deviation. This may be because the FF25 portfolios are less prone to

idiosyncratic noises and hence less prone to estimation errors in the sample covariance

matrix compared to other asset classes. Moreover, the FF25 portfolios have relatively

small cross-sectional dimension but have large time-series dimension. This helps to

obtain a relatively precise estimate of the covariance matrix, which is crucial in our

optimization problems. Meanwhile, the minVar-JM and minVar-LW also do well in

achieving high Sharpe ratios. On the other hand, the minVar strategy, although it

produces high Sharpe ratio, suffers from high turnovers. The EW strategy produces

the smallest turnovers, closely followed by some OWL related strategies. Note that

we calibrate the cost of trading stocks worth one US dollar to be 50 basis points, and

this can be viewed as a scaling parameter to tilting weights between Sharpe ratio and

the transaction cost; a higher value on this parameter will favor strategies with low

transaction cost. By looking at the transaction cost adjusted Sharpe ratio, we find

that the plain minVar strategy is outperformed by many other competitors. Notably,

the mean-variance efficient (MVE) portfolio typically performs poorly, but once regu-

larized by OWL and further imposing (no-short-sale or bounds) constraints, the MVE

portfolio achieves sizeable Sharpe ratio and low transaction cost. It is worth stressing

that some of those transaction cost adjusted Sharpe ratios are very similar. To see the

significance in their performance, we run a bootstrap based test outlined in Section

3.4.3.

Table 3.3. Pairwise Sharpe ratio test using FF25

1 2 3 4 5 6 7 8 9 10 11

EW 1 N/A
minVar 2 0.0190 N/A
minVar-JM 3 0.1089 0.0470 N/A
minVar-LW 4 0.2537 0.1029 0.5135 N/A
minVar-OWL 5 0.2298 0.0470 0.5554 0.4306 N/A
minVar-OWL-Pos 6 0.0150 0.0220 0.1399 0.2957 0.2498 N/A
minVar-OWL-bounds 7 0.0160 0.0190 0.1239 0.2488 0.2358 0.0140 N/A
minVar-hard-OWL 8 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 N/A
minVar-LW-OWL 9 0.2398 0.0490 0.5704 0.4605 0.8641 0.2787 0.2627 0.0010 N/A
MVE-OWL-Pos 10 0.0010 0.0300 0.1518 0.2567 0.2907 0.2368 0.0050 0.0010 0.3227 N/A
MVE-OWL-bounds 11 0.0010 0.0230 0.1129 0.2587 0.2687 0.4346 0.2777 0.0010 0.2767 0.0010 N/A

Note: this table reports the p-values of the pairwise Sharpe ratio tests in Ledoit and Wolf (2008)

using the Fama-French 25 portfolios. If p-value is great than 5%, then we do not reject the

hypothesis that these two strategies yield the same (TC adjusted) Sharpe ratio.

Table 3.3 reports the p-values of the pair-wise comparison of Sharpe ratios be-

tween any two strategies using the Fama-French 25 portfolios. First of all, we find
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that the minVar-OWL strategy is not statistically different from the Equal weighted,

minVar-JM, and minVar-LW strategies which exhibit high Sharpe ratios in Table 3.2.

Similarly, this insignificance also appears after comparing minVar-JM, minVar-LW,

and equal weighted strategies, indicating these strategies are not significantly different

in producing Sharpe ratios.

3.4.4.2 SP500 daily returns

Table 3.4. OOS scores using SP500

Panel A: SP500 daily returns with weekly rebalancing

SR σ̂ TO µ̂(annualized) TC TCadjSR
EW 1.0046 0.0244 0.0314 0.1771 0.0082 0.9584
minVar 0.5338 0.0540 12.9184 0.2079 3.3588 -8.0889
minVar-JM 1.5831 0.0143 0.0849 0.1629 0.0221 1.3684
minVar-LW 1.3914 0.0130 0.6057 0.1306 0.1575 -0.2866
minVar-OWL 1.0568 0.0227 0.0306 0.1728 0.0080 1.0082
minVar-OWL-Pos 1.0216 0.0238 0.0310 0.1756 0.0080 0.9748
minVar-OWL-bounds 1.0128 0.0240 0.0319 0.1751 0.0083 0.9649
minVar-hard-OWL 1.0656 0.0223 0.0309 0.1717 0.0080 1.0158
minVar-LW-OWL 1.0513 0.0227 0.0305 0.1722 0.0079 1.0030
MVE-OWL-Pos 0.9811 0.0257 0.0561 0.1815 0.0146 0.9023
MVE-OWL-bounds 0.9913 0.0244 0.0266 0.1742 0.0069 0.9520

Panel B: SP500 daily returns with monthly rebalancing

SR σ̂ TO µ̂(annualized) TC TCadjSR
EW 1.0399 0.0484 0.0684 0.1745 0.0041 1.0154
minVar 0.6107 0.0831 22.3297 0.1758 1.3398 -4.0433
minVar-JM 1.5013 0.0318 0.2021 0.1654 0.0121 1.3912
minVar-LW 1.3267 0.0288 1.3261 0.1326 0.0796 0.5306
minVar-OWL 1.0850 0.0455 0.0673 0.1711 0.0040 1.0594
minVar-OWL-Pos 1.0552 0.0474 0.0676 0.1732 0.0041 1.0305
minVar-OWL-bounds 1.0472 0.0476 0.0681 0.1726 0.0041 1.0223
minVar-hard-OWL 1.0888 0.0450 0.0684 0.1699 0.0041 1.0624
minVar-LW-OWL 1.0798 0.0456 0.0669 0.1705 0.0040 1.0544
MVE-OWL-Pos 1.0694 0.0494 0.1138 0.1829 0.0068 1.0294
MVE-OWL-bounds 1.0568 0.0473 0.0560 0.1733 0.0034 1.0363

Note: this table reports performance scores for various strategies using the Standard & Poor

500 stocks daily returns with weekly or monthly rebalancing frequency. The transaction cost is

calibrated to be 50 base points for trading 1 US dollar.

Table 3.4 reports performance scores for various strategies using the S&P 500

daily returns with weekly or monthly rebalancing frequency. The transaction cost

is calibrated to be 50 basis points for trading one US dollar of stocks. First of all,

we find when using individual stocks as test assets, particularly if using daily return

series, estimation errors in the sample covariance matrix become more evident: by

looking into SR and σ̂, the plain minVar strategy becomes inferior to many com-
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petitors, resulting from elevated estimation error in the sample covariance matrix.

Then, by looking into turnovers, we find that the equal weighted strategy and some

OWL related strategies (particularly for the MVE-OWL-bounds strategy) produce

the smallest turnovers. It is worth stressing that we find that the “minVar-OWL”

outperforms the equal weighted strategy in both Sharpe ratio and turnovers, with

either weekly or monthly rebalancing frequency, which is a remarkable finding as it is

difficult to find a strategy that outperforms the equal weighted strategy in both Sharpe

ratio and turnovers. Next, we compare Sharpe ratios between strategies pairwisely

and test for significance.

Table 3.5. Sharpe ratio test using SP500d

Panel A: SP500 daily returns with weekly rebalancing

1 2 3 4 5 6 7 8 9 10 11
EW 1 N/A
minVar 2 0.0330 N/A
minVar-JM 3 0.0010 0.0010 N/A
minVar-LW 4 0.0709 0.0010 0.2308 N/A
minVar-OWL 5 0.0150 0.0250 0.0010 0.1059 N/A
minVar-OWL-Pos 6 0.0030 0.0320 0.0010 0.0899 0.0160 N/A
minVar-OWL-bounds 7 0.0100 0.0230 0.0020 0.0729 0.0110 0.0030 N/A
minVar-hard-OWL 8 0.0110 0.0140 0.0010 0.1079 0.0989 0.0150 0.0140 N/A
minVar-LW-OWL 9 0.0160 0.0180 0.0030 0.0929 0.0010 0.0340 0.0230 0.0290 N/A
MVE-OWL-Pos 10 0.6174 0.0500 0.0010 0.0679 0.1678 0.3956 0.5095 0.1049 0.1848 N/A
MVE-OWL-bounds 11 0.5884 0.0370 0.0010 0.0559 0.0340 0.2118 0.3556 0.0240 0.0440 0.7193 N/A

Panel B: SP500 daily reurns with monthly rebalancing

1 2 3 4 5 6 7 8 9 10 11
EW 1 N/A
minVar 2 0.1059 N/A
minVar-JM 3 0.0080 0.0070 N/A
minVar-LW 4 0.2757 0.0030 0.2977 N/A
minVar-OWL 5 0.0899 0.0939 0.0110 0.3387 N/A
minVar-OWL-Pos 6 0.0829 0.0989 0.0090 0.2977 0.1119 N/A
minVar-OWL-bounds 7 0.0999 0.0909 0.0090 0.2817 0.1009 0.0669 N/A
minVar-hard-OWL 8 0.1149 0.0929 0.0160 0.3107 0.4835 0.1439 0.1059 N/A
minVar-LW-OWL 9 0.1189 0.0839 0.0060 0.3347 0.0020 0.1578 0.1149 0.1159 N/A
MVE-OWL-Pos 10 0.7033 0.0919 0.0180 0.3427 0.8861 0.8771 0.7612 0.8332 0.8881 N/A
MVE-OWL-bounds 11 0.6484 0.1089 0.0080 0.3057 0.5604 0.9700 0.7972 0.5235 0.6374 0.7722 N/A

Note: this table reports p-values of pair-wise Sharpe ratio test according to Ledoit and Wolf (2008)

using SP500d returns. The rebalancing frequency in Panel A is weekly, and in Panel B is monthly.

Table 3.5 reports the p-values of the Sharpe ratio test outlined in Section 3.4.3

using SP500 stocks with daily returns. The pairwise comparison suggests that the

minVar-OWL strategy is statistically outperforming the equal weighted strategy with

weekly rebalancing frequency, while insignificant for the monthly rebalancing fre-

quency. Meanwhile, we find that for the SP500d returns, the best performing strate-

gies in terms of Sharpe ratios are minVar-JM and minVar-LW and their superior
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performance against other strategies is significant suggested by the Sharpe ratio test.

Next, we set out to test the SP100 stocks with monthly returns, which exhibit higher

correlations between stock returns compared to SP500d stocks.

3.4.4.3 SP100 monthly returns

Table 3.6. OOS scores using SP100m

SR σ̂ TO µ̂(annualized) TC TCadjSR

EW 0.9233 0.0460 0.0571 0.1472 0.0034 0.9018
minVar 0.0624 0.0851 4.4201 0.0184 0.2652 -0.8371
minVar-JM 1.0065 0.0345 0.1140 0.1203 0.0068 0.9493
minVar-LW 0.8537 0.0359 0.2974 0.1061 0.0178 0.7102
minVar-OWL 0.9811 0.0420 0.0555 0.1426 0.0033 0.9582
minVar-OWL-Pos 0.9418 0.0444 0.0566 0.1448 0.0034 0.9197
minVar-OWL-bounds 0.9257 0.0461 0.0572 0.1477 0.0034 0.9042
minVar-hard-OWL 0.9862 0.0415 0.0565 0.1419 0.0034 0.9626
minVar-LW-OWL 0.9633 0.0425 0.0546 0.1417 0.0033 0.9411
MVE-OWL-Pos 0.9302 0.0451 0.0581 0.1452 0.0035 0.9079
MVE-OWL-bounds 0.9293 0.0458 0.0516 0.1475 0.0031 0.9098

Note: this table reports performance scores for various strategies using the Standard & Poor 100

stocks with monthly returns and rebalanced monthly. The transaction cost is calibrated to be 50

base points for trading 1 US dollar.

Table 3.6 reports performance scores using Standard & Poor 100 stocks with

monthly returns, and we rebalance the portfolio monthly. First of all, we find that

minVar-OWL and some other OWL related strategies consistently outperform the

equal weighted strategy in terms of the Sharpe ratio and turnovers. The MVE-OWL-

bounds strategy yields the smallest turnover while the turnover of the minVar-JM

strategy doubles that of OWL related strategies. Second, the raw Sharpe ratio (i.e.

not adjusted by transaction cost) of the minVar-JM strategy tops the ranking, and

it is closely followed by OWL related strategies. However, after being adjusted by

transaction cost, the minVar-OWL and minVar-hard-OWL strategies top the rank-

ing. Third, by comparing Table 3.6 and Table 3.4, we find that the performance of

OWL related strategies has improved, and we reckon that is because SP100 stocks

with monthly returns exhibit higher correlation between stocks which is a desirable

property for the OWL shrinkage method to work well. Next, we apply the Sharpe

ratio test in Section 3.4.3 to check the significance between strategies.

Table 3.7 reveals that the performance between the minVar-OWL strategy and

the minVar-JM, minVar-LW strategies is not significantly different. However, it has
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Table 3.7. Sharpe ratio test using SP100m

1 2 3 4 5 6 7 8 9 10 11

EW 1 N/A
minVar 2 0.0020 N/A
minVar-JM 3 0.5195 0.0010 N/A
minVar-LW 4 0.7982 0.0010 0.3526 N/A
minVar-OWL 5 0.0030 0.0010 0.8202 0.6074 N/A
minVar-OWL-Pos 6 0.0050 0.0020 0.6084 0.7123 0.0010 N/A
minVar-OWL-bounds 7 0.0040 0.0030 0.5105 0.7822 0.0040 0.0060 N/A
minVar-hard-OWL 8 0.0040 0.0010 0.8551 0.5844 0.2577 0.0090 0.0060 N/A
minVar-LW-OWL 9 0.0320 0.0020 0.7233 0.6454 0.0010 0.1019 0.0280 0.0020 N/A
MVE-OWL-Pos 10 0.8911 0.0030 0.5634 0.7802 0.2997 0.8062 0.9141 0.2687 0.0030 N/A
MVE-OWL-bounds 11 0.4575 0.0050 0.5205 0.7862 0.0110 0.1998 0.6204 0.0170 0.1099 0.9740 N/A

Note: this table reports the p-values of the Sharpe ratio test according to Ledoit and Wolf (2008)

using the SP100 monthly returns.

statistically higher Sharpe ratios than that of the equal weighted strategy.

It is worth stressing that our main target is to draw attention to the comparison

between the minVar-OWL strategy and the equal weighted strategy. They receive

very similar weight distributions, but we show that the minVar-OWL strategy out-

performs the equal weighted strategy in both Sharpe ratio and turnover. In appendix

3.A.4.3, we show (3-dimensional) graphs that illustrate the weight distribution for

some strategies and find that the minVar-OWL strategy has a very similar distri-

bution to the equal weighted strategy. This near-equal-weighted weight distribution

is caused by the grouping property as discussed in Section 3.3.2. We further find

the superior performance in Sharpe ratio against the equal weighted strategy is in-

deed statistically significant after applying a bootstrap based test outlined in Section

3.4.3. Similar exercises are applied and tested on the CRSP500d stock returns and

CRSP100m stock returns. We put those empirical results in Appendix 3.A.4.2.

So far, we have focused our comparison criteria on Sharpe ratios and turnovers

(transaction cost). We find that the minVar-JM strategy delivers impressive Sharpe

ratios, although in the SP100m and FF25 asset classes its Sharpe ratio is not signif-

icantly different from the minVar-OWL strategy after running a Sharpe ratio test.

On the other hand, the minVar-OWL strategy and other OWL related strategies

consistently yield the smallest turnovers.

In addition, we stress that we developed a flexible algorithm that can incorpo-

rate bespoke weight constraints on individual stocks in the optimization problem.

However, in our empirical analysis, we applied (blindly) a -5% to 30% bound for all

stocks, since we do not hold any further information on individual stocks. Thus,
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the bound-constrained OWL strategies can potentially do better if more information

about individual stocks becomes available.

Although the Sharpe ratio incorporates both the mean portfolio returns and port-

folio risk in its formula, it is often dominated by the portfolio risk component when

portfolio returns are small. Alternatively, we use the model confidence set (MCS)

method to compare strategies: it includes all the best performing strategies in a set

where the average portfolio returns are the highest, while using the portfolio risk to

control the confidence band of this set.

3.4.5 Model confidence set for comparing transaction cost

adjusted returns

Hansen et al. (2011) propose the model confidence set (MCS) to compare loss se-

quences of candidate models and put the best candidates in a “confidence set”. MCS

avoids comparing models pairwisely, which often leads to inconclusive decisions. In-

stead, MCS enables us to compare multiple models while returning a set that in-

cludes all (single or multiple) best performing models. In our application, we want

to compare out-of-sample portfolio returns. We want to answer this question: which

strategies produce the highest returns while taking account of transaction cost, where

portfolio risk controls the confidence band for including the best candidates in a set?

To fix ideas, let M0 denote a set of finite candidate models (i.e. M0 collects all

candidate models) and M be the active model confidence set with size m9. Denote

by Li,t the loss function of model i at time t.10 Then,

dij,t = Li,t − Lj,t, ∀i, j ∈M0, (3.26)

is the loss difference function between model i and j at time t. Then, we denote

µij = E(dij,t),

d̄ij = n−1

n∑
t=1

dij,t,
(3.27)

9We set M = M0 at the beginning, then run a series of tests to remove inferior models from the
active set M . In the end, what are left in the active set M will be the final model confidence set.

10The MCS compares models using a loss function of each model. Since returns are “gains” rather
than “losses”, we use the negative values of returns to measure each strategy’s “loss”.
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where µij is the expected value of the loss difference between model i and j, and d̄ij

is the sample analogy of µij. Denote

d̄i· ≡ m−1
∑
j∈M

d̄ij, (3.28)

where m is the cardinality of set M , and M is the active set which collects models

that need to be tested. d̄i· is the average loss difference sequence of model i with all

models left in the active set M . Then, the model confidence set is defined as

M∗ ≡ {i ∈M0 : µij ≤ 0 ∀j ∈M0}. (3.29)

A detailed testing procedure of MCS is included in Appendix 3.A.3.

Table 3.8. MCS test for transaction cost adjusted returns

FF25 SP500d, w SP500d, m SP100m CRSP500d, w CRSP500d, m CRSP100m

EW 0.0020 0.4210 0.4650 0.0040 0.0000 0.8620 0.4170
minVar 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
minVar-JM 0.0000 0.0050 0.0010 0.0040 0.0000 0.0000 0.4070
minVar-hard-OWL 0.0000 0.0130 0.0080 0.0040 0.0000 0.0070 1.0000
minVar-LW 0.0000 0.0000 0.0000 0.0040 0.8270 1.0000 0.4070
minVar-LW-OWL 0.0000 1.0000 1.0000 0.8930 0.0000 0.0040 0.3430
minVar-OWL 0.0000 0.0130 0.0080 0.0040 0.0000 0.0000 0.4070
minVar-OWL-bounds 0.0000 0.0050 0.0010 0.0040 0.0000 0.0000 0.4170
minVar-OWL-Pos 0.0000 0.4210 0.4650 0.0040 1.0000 0.8860 0.4170
MVE-OWL-bounds 1.0000 0.0000 0.5520 1.0000 0.0000 0.0000 0.0000
MVE-OWL-Pos 0.0840 0.0050 0.0000 0.0040 0.0000 0.0000 0.4070

Note: this table reports the p-values of the MCS test. It compares transaction cost adjusted

returns using various strategies and using different asset classes. We consider both weekly (‘w’)

and monthly (‘m’) rebalancing frequencies for daily returns. If p-value is greater than 5%, then the

corresponding strategy will be included in the MCS.

Table 3.8 reports the p-values of the MCS test. It compares transaction cost

adjusted returns of various strategies within each asset class. We consider both weekly

and monthly rebalancing frequencies for daily returns. If p-value is greater than 5%,

then the corresponding strategy will be included in the MCS.

First of all, we notice that the equal weighted strategy has been included in the

MCS four times, confirming that the naive 1/N strategy performs well in terms of

producing sizeable returns. On the other hand, we find that the minVar-OWL-Pos

strategy (OWL regularized minimum variance portfolio with no-short-sale constraint)

has been included in the MCS fives times, which makes it the only strategy that has

been included in the MCS more often than the equal weighted strategy.

We also notice that the MVE-OWL-bound and MVE-OWL-Pos strategies per-
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forms particularly well with the Fama-French portfolios. The OWL shrinkage method

with further constraints on portfolio weights helps to utilize the optimization gains

from the mean variance efficient portfolio. We reckon this is because sorted portfolio

returns are less prone to idiosyncratic noises and thus the sample estimate of ex-

pected asset return and asset covariances are less biased compared to individual stock

returns. Also, for the FF25 asset class, large T and small N (i.e. large in time series

dimension and small in cross sectional dimension compared to other asset classes)

help to improve the precision of the sample estimate of the covariance matrix.

Meanwhile, the minVar-JM strategy, which performs well when using Sharpe ratio

as comparison criterion, performs poorly if we use MCS to compare portfolio returns:

the minVar-JM strategy has been included in MCS only once, indicating that the

minVar-JM strategy produces significantly lower returns than other strategies using

various test assets. We find that the MCS for CRSP100m asset class (which consists of

100 randomly selected (usually small) stocks from the CRSP dataset ) includes many

(9 out of 11) candidate strategies, which is caused by large variations in out-of-sample

returns for each strategy using this asset class.

3.5 Conclusion

In this paper, we introduce the OWL shrinkage method for efficient portfolio con-

struction problems. The OWL shrinkage method encompasses the LASSO shrinkage

setup and exploits contemporaneous correlations between stocks, thereby extending

the LASSO shrinkage method in DeMiguel et al. (2009a) and the VAR(1) model in

DeMiguel et al. (2014). We develop an efficient algorithm that incorporates the OWL

shrinkage method together with bespoke constraints on individual stocks if prior in-

formation is available. We apply our OWL portfolio strategies on five asset classes

and find that the OWL shrinkage method outperforms other benchmarks when stocks

exhibit high correlations. DeMiguel et al. (2009b) compare the naive 1/N portfolio

strategy with the other 14 optimization-based strategies, finding superb out-of-sample

performance in the naive 1/N portfolio. In this paper, we bridge the gap between the

naive 1/N portfolio strategy and an optimization based method: our OWL optimiza-

tion problem yields similar portfolio weights to the 1/N portfolio strategy due to the
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grouping property, yet our OWL based portfolio strategies outperform the 1/N strat-

egy in terms of Sharpe ratios and turnovers. A bootstrap based Sharpe ratio test by

Ledoit and Wolf (2008) also confirms that this difference in Sharpe ratio is significant.
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3.A Appendix

3.A.1 ADMM algorithm to solve the constrained OWL op-

timization problem

Boyd et al. (2010) proposed a general optimization algorithm which utilizes the aug-

mented Lagrangian function and can decompose a complex optimization problem into

two parts which share different characteristics in computational complexity. This al-

gorithm optimizes these two parts separately and in an orderly fashion, hence gains

the name of “alternating directions”.

3.A.1.1 Augmented Lagrangian

First, define the augmented Lagrangian of the optimization problem (3.14) - (3.18) as

`ρ(w, v, α, β, θ, ξ) =
γ

2
w′Σ̂w − µ̂′w + Ωω(v) + α′(w − v) + β(w′e− 1)

+ θ′(lb− w) + ξ′(w − ub) +
ρ

2
(||w − v||22 + (w′e− 1)2

+ ||lb− w||22 + ||w − ub||22),

(3.A.1)

where α, β, θ and ξ are Lagrangian multipliers, ρ is a parameter to control penalty

and e is a column vector of ones. The ADMM algorithm consists of these updates for

each step:

wk+1 = arg min
w

`ρ(w, v
k, αk, βk, θk, ξk), (3.A.2)

wk+1
i = lbi; if wk+1

i < lbi ∀ i = 1, 2, ..., N, (3.A.3)

wk+1
i = ubi; if wk+1

i > ubi ∀ i = 1, 2, ..., N, (3.A.4)

vk+1 = arg min
v

`ρ(w
k+1, v, αk, βk, θk, ξk), (3.A.5)

αk+1 = αk + ρ(wk+1 − vk+1), (3.A.6)

βk+1 = βk + ρ(e′wk+1 − 1), (3.A.7)
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θk+1 = θk + ρ(lb− wk+1), (3.A.8)

θk+1
i = 0; if lbi − wk+1

i < 0 ∀ i = 1, 2, ..., N, (3.A.9)

ξk+1 = ξk + ρ(wk+1 − ub), (3.A.10)

ξk+1
i = 0; if wk+1

i − ubi < 0 ∀ i = 1, 2, ..., N, (3.A.11)

where k is a superscript indicating the step number. We refer to equations (3.A.3)

and (3.A.4) as primal feasibility conditions, and equations (3.A.9) and (3.A.11) as

complementary slackness conditions. Moreover, (3.A.2) can be simplified as

wk+1 = arg min
w

`ρ(w, v
k, αk, βk, θk, ξk)

= arg min
w

[γ
2
w′Σ̂w − µ̂′w + αk

′
(w − vk) + βk(e′w − 1) + θk

′
(lb− w) + ξk

′
(w − ub)

+
ρ

2
(||w − vk||22 + (w′e− 1)2 + ||lb− w||22 + ||w − ub||22)

]
= arg min

w

[γ
2
w′Σ̂w − (µ̂− αk − βke+ θk − ξk)′w

+
ρ

2
(||w − vk||22 + (w′e− 1)2 + ||lb− w||22 + ||w − ub||22))

]
= arg min

w

[
1

2
w′(γΣ̂ + ρ(3I + ee′))w − (µ̂− αk − βke+ θk − ξk

+ ρ(vk + e− lb− ub))′w
]

= (γΣ̂ + ρ(3I + ee′))−1(µ̂− αk − βke+ θk − ξk + ρ(vk + e− lb− ub)).

Meanwhile, equation (3.A.5) can be simplified as

vk+1 = arg min
v

[
ρ

2
||v − wk+1 − 1

ρ
αk||22 + Ωω(v)

]
= proxΩ(wk+1 +

1

ρ
αk),

where proxΩ(.) is a proximal function for the OWL shrinkage method. Discussion of

how to find a minimizer of the proximal function proxΩ(.) can be found in Appendix

1.A.2.

3.A.1.2 Optimality conditions

Suppose w∗ and v∗ are optimizers of the optimization problem (3.14) - (3.18). Then,

the optimality conditions of (3.A.1) consist of the primal feasibility and the dual
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feasibility conditions. The primal feasibility concerns the following conditions

w∗ − v∗ = 0, (3.A.12)

w∗′e− 1 = 0, (3.A.13)

w∗ � lb, (3.A.14)

w∗ � ub. (3.A.15)

Equations (3.A.2) and (3.A.5) command the dual feasibility condition, which requires

5f(w∗) + α∗ + β∗e− θ∗ + ξ∗ = 0, (3.A.16)

5Ω(v∗)− α∗ = 0, (3.A.17)

where f(w) = γ
2
w′Σ̂w − µ̂′w. By equation (3.A.5), vk+1 minimizes the function

`ρ(w
k+1, v, αk, βk, θk, ξk) w.r.t v, so we have

0 = 5`ρ(vk+1) = 5Ω(vk+1)− αk − ρ(wk+1 − vk+1) = 5Ω(vk+1)− αk+1,

which makes (3.A.17) hold automatically. Similarly, by (3.A.2), wk+1 minimizes the

function `ρ(w, v
k, αk, βk, θk, ξk) w.r.t w, so we obtain

0 = 5f(wk+1) + αk + βke− θk + ξk + ρ(wk+1 − vk)

+ ρ(wk+1′e− 1)e− ρ(lb− wk+1) + ρ(wk+1 − ub)

= 5f(wk+1) + αk+1 + βk+1e− θk+1 + ξk+1 + ρ(vk+1 − vk).

Rearranging the above equation gives

5f(wk+1) + αk+1 + βk+1e− θk+1 + ξk+1 = −ρ(vk+1 − vk) := sk+1,

where we denote sk+1 := −ρ(vk+1−vk) as the dual residual at step k+1, because sk+1

is the deviation from a dual feasibility condition in (3.A.16). Similarly, the primal

residual at step k w.r.t the primal feasibility conditions in (3.A.12) and (3.A.13) is

defined as

||rk||2 =

√
||wk − vk||2 + (wk ′e− 1)2.
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3.A.1.3 Stopping criterion and the penalty parameter ρ

The stopping criterion for k suggested by Boyd et al. (2010) is such that k satisfies

||rk||2 ≤ εpri and ||sk||2 ≤ εdual,

εpri =
√
Nεabs + εrel max{||wk||2, ||vk||2},

εdual =
√
Tεabs + εrel||αk + βke||2,

where εrel and εabs are calibrated to be 0.001.

Boyd et al. (2010) also argues that allowing ρ to change along steps makes com-

putation more efficient and suggests the following scheme for the values of ρ:

ρk+1 =


τρk if ||rk||2 > η||sk||2 ,

ρk/τ if ||sk||2 > η||rk||2 ,

ρk otherwise ,

where η, τ > 1 are two tuning parameters, which are calibrated such that η = 10,

τ = 2 in our exercise.

3.A.2 Technical proofs

3.A.2.1 Proof of Theorem 3.3.1

Proof. The proof of Theorem 3.3.1 relies on the Pigou-Dalton transfer principle and

the directional derivative lemma at the minimum of a convex function. It follows using

a similar argument as in Figueiredo and Nowak (2016), except that we are dealing

with different loss functions.

Lemma 3.A.1 (Pigou-Dalton transfer principle). Let be given vector x ∈ Rp
+, and

its two components xi, xj are such that xi > xj. Let ε ∈ (0, (xi − xj)/2), zi = xi − ε,

zj = xj + ε, and zk = xk, for k 6= i, j. Set Ωω(x) = ω′x, where ω ∈ Rp
+, and

ω1 ≥ ω2 ≥ · · · ≥ ωp. Then it holds

Ωω(x)− Ωω(z) ≥ ∆ωε, ∆ω := min
i=1,··· ,p−1

(ωi+1 − ωi).

Lemma 3.A.2 (Directional derivative). The directional derivative of function f :
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RK → R at x ∈ dom(f), in the direction ξ ∈ RK is given by

f ′(x, ξ) = lim
α→0+

[f(x+ αξ)− f(x)]/α, α > 0.

If f is a convex function, then x∗ ∈ arg min(f) if and only if f ′(x∗, ξ) ≥ 0 for any

direction ξ ∈ RK.

Denote the objective function as Q(w) = 1
2
w′Σw + Ωω(w). By definition, if ŵ is

the minimizer, then Q(ŵ) ≤ Q(w) for all w. Thus by Lemma 3.A.2, for any ξ ∈ RN ,

Q′(ŵ, ξ) ≥ 0. (3.A.18)

Recall that Σi. and Σj. denote the ith and jth columns of the N×N variance-covariance

matrix Σ. Suppose

‖Σi. − Σj.‖2 < λ2, (3.A.19)

and assume ŵi 6= ŵj. We will show contradiction between assumption ŵi 6= ŵj and

(3.A.18). Without loss of generality, assume ŵi > ŵj, i < j. First we define a special

directional vector ξ = (ξ1, ξ2, · · · , ξN)′. Set ξi = 1, ξj = −1 and ξk = 0 for all k 6= i, j.

The directional derivative of Q at ŵ with such ξ is

Q′(ŵ, ξ) = lim
α→0+

(QLα(ŵ, ξ) +RPα(ŵ, ξ)) , (3.A.20)

where

QLα(ŵ, ξ) =
(ŵ + αξ)′Σ(ŵ + αξ)− ŵΣŵ

2α

=
αŵ′Σξ + αξ′Σŵ + α2ξ′Σξ

2α
,

(3.A.21)

and

RPα(ŵ, ξ) =
Ωω(ŵ + αξ)− Ωω(ŵ)

α
. (3.A.22)

Note that Σ′ = Σ and ŵ′Σξ is a scaler, so we have ŵ′Σξ = ξ′Σŵ. Then it follows

lim
α→0+

QLα(ŵ, ξ) = ŵ′Σξ = trace(ŵ′Σξ) = trace(ξŵ′Σ). (3.A.23)

Observe that ξŵ′ is a N × N matrix with ith row as ŵ′, jth row as −ŵ′ and the
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remaining rows are filled with zeros. Then we have

lim
α→0+

QLα(ŵ, ξ) = trace(ξŵ′Σ) = ŵ′(Σi. − Σj.), (3.A.24)

where Σi. and Σj. are the ith and jth columns of Σ.

Applying the Pigou-Dalton transfer principle on RPα(ŵ, ξ) with ε = α, we obtain

−RPα(ŵ, ξ)α = Ωω(ŵ)− Ωω(ŵ + αξ) ≥ ∆ωα. (3.A.25)

So for any α and ξ,

RPα(ŵ, ξ) ≤ −∆ωα

α
= −∆ω.

By the definition of ω in (3.11), ∆ω = λ2. Therefore, applying the above bound in

(3.A.20), we obtain

Q′(ŵ, ξ) ≤ ŵ′(Σi. − Σj.)−∆ω

= ŵ′(Σi. − Σj.)− λ2.
(3.A.26)

Using Cauchy-Schwarz inequality, we have

ŵ′(Σi. − Σj.) ≤ ‖ŵ‖2‖Σi. − Σj.‖2 ≤ ‖ŵ‖1‖Σi. − Σj.‖2 = ‖Σi. − Σj.‖2,

so (3.A.26) becomes

Q′(ŵ, ξ) ≤ ‖Σi. − Σj.‖2 − λ2. (3.A.27)

Then, (3.A.27) together with (3.A.19) implies

Q′(ŵ, ξ) < 0,

which violates (3.A.18). Hence, there is a contradiction between ŵi 6= ŵj and (3.A.19).

So we must have

ŵi = ŵj,

which completes the proof. 2

153



3.A.2.2 Proof of Theorem 3.3.2

Proof. The proof of Theorem 3.3.2 is similar to Theorem 3.3.1, except we have a

different objective function, that is

Q(w) =
γ

2
w′Σw − µ′w + Ωω(w),

where γ is investors’ risk aversion level and µ is the vector of expected returns. Fol-

lowing similar procedures as in the proof of Theorem 3.3.1 and by Lemma 3.A.2, we

have that for any ξ ∈ RN ,

Q′(ŵ, ξ) ≥ 0. (3.A.28)

Suppose

γ‖Σi. − Σj.‖2 + |µi − µj| < λ2 (3.A.29)

and assume ŵi 6= ŵj. Without loss of generality, assume ŵi > ŵj, i < j. Define a

special directional vector ξ = (ξ1, ξ2, · · · , ξN)′. Set ξi = 1, ξj = −1 and ξk = 0 for all

k 6= i, j. The directional derivative of Q at ŵ with such ξ is

Q′(ŵ, ξ) = lim
α→0+

(QLα(ŵ, ξ) +RPα(ŵ, ξ)) , (3.A.30)

where

QLα(ŵ, ξ) =
γ
2
[(ŵ + αξ)′Σ(ŵ + αξ)− ŵΣŵ]− µ′(ŵ + αξ) + µ′ŵ

α

=
γ
2
(αŵ′Σξ + αξ′Σŵ + α2ξ′Σξ)− αµ′ξ

α
,

(3.A.31)

and

RPα(ŵ, ξ) =
Ωω(ŵ + αξ)− Ωω(ŵ)

α
. (3.A.32)

Note that Σ′ = Σ and ŵ′Σξ is a scalar, so we have ŵ′Σξ = ξ′Σŵ. Then it follows

lim
α→0+

QLα(ŵ, ξ) = γŵ′Σξ − µ′ξ, (3.A.33)

where γŵ′Σξ = trace(γŵ′Σξ) = γ trace(ξŵ′Σ). Observe that ξŵ′ is a N × N matrix

with ith row as ŵ, jth row as −ŵ′ and the remaining rows are filled with zeros. Then

we have

lim
α→0+

QLα(ŵ, ξ) = γ trace(ξŵ′Σ)− µ′ξ = γŵ′(Σi. − Σj.)− µ′ξ, (3.A.34)
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where Σi. and Σj. are the ith and jth columns of Σ.

Similarly to the procedures we used to handle RPα(ŵ, ξ) in the proof of Theorem

3.3.1, we can obtain

RPα(ŵ, ξ) ≤ −λ2.

Therefore,

Q′(ŵ, ξ) ≤ γŵ′(Σi. − Σj.)− µ′ξ − λ2. (3.A.35)

Using Cauchy-Schwarz inequality, we have

ŵ′(Σi. − Σj.) ≤ ‖ŵ‖2‖Σi. − Σj.‖2 ≤ ‖ŵ‖1‖Σi. − Σj.‖2 = ‖Σi. − Σj.‖2,

Observe that µ′ξ = µi − µj ≥ −|µi − µj|, so (3.A.35) becomes

Q′(ŵ, ξ) ≤ γ‖Σi. − Σj.‖2 + |µi − µj| − λ2. (3.A.36)

Then (3.A.36) together with (3.A.29) implies

Q′(ŵ, ξ) < 0,

which violates (3.A.28). Hence, there is a contradiction between ŵi 6= ŵj and (3.A.29).

So we must have

ŵi = ŵj,

which completes the proof. 2

3.A.2.3 Proof of Lemma 3.3.1

Proof. If λ2 = 0, then ω = (λ1, λ1, ..., λ1)′ ∈ RN . So we have

Ωω(w) = ω′|w|↓ = λ1e
′|w|↓ = λ1‖w‖1,

where e is a column vector of ones. If we set λ1 = λ, then Ωω(w) = λ‖w‖1 which

completes the proof. 2

3.A.2.4 Proof of Lemma 3.3.2

Proof. Note that |w|↓ = (|w|[1], |w|[2], · · · , |w|[N ])
′ reorders the elements in vector |w| =

(|w1|, |w2|, · · · , |wN |)′ decreasingly according to the absolute value of each element.

155



Denote by |wj| and |w|[j] the jth element of |w| and |w|↓, respectively. So we have

|w|[1] > |w|[2] > · · · > |w|[N ]. Then by the definition of the OSCAR penalty term, we

obtain

ΩOSCAR(w) = λ1||w||1 + λ2

∑
1≤i<j≤N

max{|wi|, |wj|}

=
N∑
i=1

[λ1 + λ2(N − i)] |w|[i]

= ω′|w|↓ = Ωω(w),

which completes the proof. 2

3.A.3 MCS testing procedure

The MCS (model confidence set, Hansen et al. (2011)) testing procedure consists of

the following steps:

1. Initialize the active model confidence set M ← M0, where M0 contains all

candidate models.

2. Compute the t-statistics for any pairwise loss difference sequences and the av-

erage t-statistics for each model:

tij =
d̄ij√

V̂ar(d̄ij)
and ti· =

d̄i·√
V̂ar(d̄i·)

, for all i, j ∈M. (3.A.37)

3. Find the model with the largest t-statistic

Tmax,M = max
i∈M

ti· (3.A.38)

and test whether Tmax,M is significantly different from zero.

4. If Tmax,M is statistically different (greater) than zero, eliminate this model from

the model confidence set, and go back to step 1 while removing this model from

set M . Repeat this procedure until Tmax,M is not significantly different from

zero. What remains in M will be the model confidence set.

156



3.A.4 Robustness check

3.A.4.1 Convergence of OWL-ADMM algorithm

Figure 3.3. Convergence check for ADMM algorithm using SP500 stocks

Figure 3.3 shows the convergence diagram for the OWL-ADMM algorithm used to

solve the optimization problem in (3.14) - (3.18) using SP500 daily returns. Left panel

shows the distance (i.e. the `2 norm of two vectors) of the estimated portfolio weights

at each step to the final optimizer. Compared to other algorithms, such as gradient

descent, ADMM offers a much faster convergence speed. The right panel shows the

individual stock’s weights at each step until convergence. Each colored line represents

one stock, and note that we initialize the portfolio weights as equal weighted at the

beginning. We find that the ADMM algorithm is fast to find the optimizer, typically

requiring less than 10 steps.

3.A.4.2 Empirical application using randomly selected stocks from CRSP

dataset

Panels A and B in Table 3.9 report the OOS performance scores using 500 randomly

selected stocks with daily returns from the CRSP dataset and Panels A and B in Table

3.10 report the p-values of the Sharpe ratio test by comparing portfolio strategies pair-

wisely. We find that the OWL related strategies consistently offer smaller turnovers

(transaction costs) than minVar-JM and minVar-LW strategies, and the minVar-OWL
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Table 3.9. OOS score using CRSP500d and CRSP100m

Panel A: CRSP500 daily returns with weekly rebalancing

SR σ̂ TO µ̂(annualized) TC TCadjSR
EW 1.0491 0.0244 0.0000 0.1844 0.0000 1.0491
minVar 1.4801 0.0125 0.6168 0.1337 0.1604 -0.2954
minVar-JM 1.8328 0.0114 0.0699 0.1512 0.0182 1.6124
minVar-LW 1.5108 0.0108 0.2054 0.1182 0.0534 0.8280
minVar-OWL 1.1281 0.0229 0.0027 0.1860 0.0007 1.1239
minVar-OWL-Pos 1.0687 0.0238 0.0018 0.1838 0.0005 1.0661
minVar-OWL-bounds 1.0588 0.0239 0.0107 0.1822 0.0028 1.0425
minVar-hard-OWL 1.1203 0.0228 0.0026 0.1843 0.0007 1.1161
minVar-LW-OWL 1.1049 0.0230 0.0023 0.1830 0.0006 1.1013
MVE-OWL-Pos 0.9150 0.0256 0.0644 0.1690 0.0167 0.8244
MVE-OWL-bounds 0.9797 0.0241 0.0280 0.1706 0.0073 0.9379

Panel B: CRSP500 daily return with monthly rebalancing

SR σ̂ TO µ̂(annualized) TC TCadjSR
EW 0.8525 0.0547 0.0000 0.1616 0.0000 0.8525
minVar 1.3888 0.0295 1.2631 0.1417 0.0758 0.6463
minVar-JM 1.4227 0.0302 0.1576 0.1488 0.0095 1.3322
minVar-LW 1.4136 0.0270 0.4481 0.1323 0.0269 1.1262
minVar-OWL 0.8887 0.0528 0.0071 0.1627 0.0004 0.8864
minVar-OWL-Pos 0.8664 0.0538 0.0026 0.1615 0.0002 0.8655
minVar-OWL-bounds 0.8591 0.0537 0.0108 0.1599 0.0006 0.8556
minVar-hard-OWL 0.8857 0.0527 0.0070 0.1616 0.0004 0.8834
minVar-LW-OWL 0.8778 0.0528 0.0061 0.1605 0.0004 0.8757
MVE-OWL-Pos 0.7724 0.0586 0.1240 0.1569 0.0074 0.7358
MVE-OWL-bounds 0.8136 0.0549 0.0529 0.1548 0.0032 0.7969

Panel C: CRSP100 monthly return with monthly rebalancing

SR σ̂ TO µ̂(annualized) TC TCadjSR
EW 0.8533 0.0505 0.0794 0.1492 0.0048 0.8261
minVar 0.4439 0.0640 1.6118 0.0985 0.0967 0.0079
minVar-JM 1.2616 0.0334 0.1102 0.1458 0.0066 1.2044
minVar-LW 1.0283 0.0346 0.1623 0.1232 0.0097 0.9470
minVar-OWL 0.8954 0.0435 0.0801 0.1348 0.0048 0.8634
minVar-OWL-Pos 0.8819 0.0480 0.0769 0.1467 0.0046 0.8542
minVar-OWL-bounds 0.8698 0.0490 0.0778 0.1476 0.0047 0.8423
minVar-hard-OWL 0.9094 0.0429 0.0861 0.1350 0.0052 0.8746
minVar-LW-OWL 0.8808 0.0444 0.0793 0.1354 0.0048 0.8499
MVE-OWL-Pos 0.7168 0.0542 0.0814 0.1346 0.0049 0.6908
MVE-OWL-bounds 0.7720 0.0513 0.0661 0.1371 0.0040 0.7497

Note: this table reports performance scores for various strategies using randomly selected 500 stocks

(Panel A and B, daily returns) and 100 stocks (Panel C, monthly returns) from CRSP and rebalanced

weekly or monthly. The transaction cost is calibrated to be 50 base points for trading 1 US dollar.

strategy consistently and significantly outperforms the equal weighted strategy in

terms of Sharpe ratio. Panel C in Table 3.9 and 3.10 report the OOS scores and p-

values of Sharpe ratio tests using 100 randomly selected stocks with monthly returns

from the CRSP data-set. These results confirm the previous findings that OWL
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Table 3.10. Sharpe ratio test using CRSP500d and CRSP100m

Panel A: CRSP 500 daily returns, weekly rebalancing

1 2 3 4 5 6 7 8 9 10 11
EW 1 N/A
minVar 2 0.0240 N/A
minVar-JM 3 0.0010 0.0370 N/A
minVar-LW 4 0.0400 0.8192 0.0559 N/A
minVar-OWL 5 0.0150 0.0699 0.0010 0.0859 N/A
minVar-OWL-Pos 6 0.0010 0.0310 0.0010 0.0519 0.0300 N/A
minVar-OWL-bounds 7 0.0010 0.0280 0.0010 0.0400 0.0160 0.0010 N/A
minVar-hard-OWL 8 0.0240 0.0450 0.0010 0.0959 0.0010 0.0619 0.0230 N/A
minVar-LW-OWL 9 0.0509 0.0559 0.0010 0.0719 0.0010 0.1868 0.1049 0.0010 N/A
MVE-OWL-Pos 10 0.0020 0.0070 0.0010 0.0120 0.0010 0.0010 0.0030 0.0020 0.0020 N/A
MVE-OWL-bounds 11 0.0030 0.0080 0.0010 0.0250 0.0010 0.0010 0.0010 0.0010 0.0010 0.0090 N/A

Panel B: CRSP 500 daily returns, monthly rebalancing

1 2 3 4 5 6 7 8 9 10 11
EW 1 N/A
minVar 2 0.0160 N/A
minVar-JM 3 0.0140 0.7782 N/A
minVar-LW 4 0.0549 0.8352 0.9590 N/A
minVar-OWL 5 0.2488 0.0320 0.0120 0.0819 N/A
minVar-OWL-Pos 6 0.0100 0.0210 0.0120 0.0679 0.4266 N/A
minVar-OWL-bounds 7 0.0210 0.0180 0.0090 0.0679 0.2957 0.0040 N/A
minVar-hard-OWL 8 0.2488 0.0310 0.0070 0.0679 0.0330 0.4745 0.3467 N/A
minVar-LW-OWL 9 0.3906 0.0220 0.0140 0.0689 0.0030 0.6623 0.4745 0.0050 N/A
MVE-OWL-Pos 10 0.1259 0.0110 0.0050 0.0390 0.0779 0.0929 0.0959 0.1069 0.1099 N/A
MVE-OWL-bounds 11 0.1309 0.0210 0.0040 0.0629 0.0849 0.0719 0.0999 0.1009 0.1259 0.1459 N/A

Panel C: CRSP 100 monthly returns, monthly rebalancing

1 2 3 4 5 6 7 8 9 10 11
EW 1 N/A
minVar 2 0.0689 N/A
minVar-JM 3 0.0030 0.0010 N/A
minVar-LW 4 0.4226 0.0060 0.0889 N/A
minVar-OWL 5 0.4915 0.0519 0.0090 0.5345 N/A
minVar-OWL-Pos 6 0.0260 0.0719 0.0030 0.4955 0.8012 N/A
minVar-OWL-bounds 7 0.0140 0.0829 0.0070 0.4675 0.7023 0.0210 N/A
minVar-hard-OWL 8 0.4226 0.0420 0.0110 0.5534 0.2567 0.6683 0.5834 N/A
minVar-LW-OWL 9 0.6583 0.0569 0.0030 0.4655 0.4266 0.9910 0.8611 0.1429 N/A
MVE-OWL-Pos 10 0.0060 0.2098 0.0010 0.1768 0.0440 0.0070 0.0030 0.0350 0.0500 N/A
MVE-OWL-bounds 11 0.0160 0.1648 0.0020 0.2498 0.0859 0.0050 0.0080 0.0599 0.1189 0.0110 N/A

Note: this table reports the p-values of Sharpe ratio test according to Ledoit and Wolf (2008) using

randomly selected 500 stocks (with daily returns) and 100 stocks (with monthly returns) from

CRSP data-set.

related strategies consistently and significantly outperform equal weighted strategy.

3.A.4.3 Plot of the out-of-sample portfolio weights distribution

We provide a diagnostic check on out-of-sample stock positions of each portfolio strat-

egy. Figures 3.4 and 3.5 plot the 3-dimensional weights distribution in the OOS period

for each asset. Restricted to limited space here, we only list a few strategies and only

for the Fama-French 25 portfolios. More results are available upon request.
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(a) minVar-OWL

(b) minVar-OWL-Pos

(c) minVar-OWL-bounds

Figure 3.4. Weight distribution of various strategies using FF25
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Plot of OOS weights surface
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Figure 3.5. Weight distribution of various strategies using FF25
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