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Abstract

Text-to-SQL studies how to translate natural language descriptions into SQL

queries. The key challenge is addressing the mismatch between natural language

and SQL queries. To bridge this gap, we propose an SQL intermediate repre-

sentation (IR) called Natural SQL (NatSQL), which makes inferring SQL easier

for models and improves the performance of existing models. We also study

the robustness of existing models in light of schema linking and compositional

generalization.

Specifically, NatSQL preserves the core functionalities of SQL while it sim-

plifies the queries as follows: (1) dispensing with operators and keywords such

as GROUP BY, HAVING, FROM, JOIN ON, which are usually hard to find

counterparts for in the text descriptions; (2) removing the need for nested sub-

queries and set operators; and (3) making schema linking easier by reducing

the required number of schema items. On Spider, a challenging text-to-SQL

benchmark that contains complex and nested SQL queries, NatSQL outperforms

other IRs and significantly improves the performance of several previous SOTA

models. Furthermore, for existing models that do not support executable SQL

generation, NatSQL easily enables them to generate executable SQL queries.

This thesis also discusses the robustness of text-to-SQL models. Recently,

there has been significant progress in studying neural networks to translate

text descriptions into SQL queries. Despite achieving good performance on

some public benchmarks, existing text-to-SQL models typically rely on lexical

matching between words in natural language (NL) questions and tokens in ta-

ble schemas, which may render models vulnerable to attacks that break the

schema linking mechanism. In particular, this thesis introduces Spider-Syn, a

human-curated dataset based on the Spider benchmark for text-to-SQL transla-

tion. NL questions in Spider-Syn were modified from Spider, by replacing their

schema-related words with manually selected synonyms that reflect real-world

question paraphrases. Experiments show that the accuracy dramatically drops

with the elimination of such explicit correspondence between NL questions and

table schemas, even if the synonyms are not adversarially selected to conduct

worst-case adversarial attacks 1. We present two categories of approaches to im-

prove the model robustness. The first category of approaches utilizes additional

synonym annotations for table schemas by modifying the model input, whereas

the second category is based on adversarial training. Experiments illustrate

that both categories of approaches significantly outperform their counterparts

1Following the prior work on adversarial learning, worst-case adversarial attacks refers to
adversarial examples generated by attacking specific models.



without the defense and that the approaches in the first category are more

effective.

Based on the above study results, we further discuss the Exact Match based

Schema Linking (EMSL). EMSL has become standard in text-to-SQL: many

state-of-the-art models employ EMSL, with performance dropping significantly

when the EMSL component is removed. However, we show that EMSL reduces

robustness, rendering models vulnerable to synonym substitution and typos.

Instead of relying on EMSL to make up for deficiencies in question-schema en-

coding, we show that using a pre-trained language model as an encoder can

improve performance without using EMSL, creating a more robust model. We

also study the design choice of the schema linking module, finding that a suit-

able design benefits performance and interpretability. Our experiments show

that better understanding of the schema linking mechanism can improve model

interpretability, robustness and performance.

This thesis finally discusses the text-to-SQL compositional generalization

challenge: neural networks struggle with compositional generalization where

training and test distributions differ. In this thesis, we propose a clause-level

compositional example generation method. We first split the sentences in the

Spider text-to-SQL dataset into sub-sentences, annotating each sub-sentence

with its corresponding SQL clause, resulting in a new dataset Spider-SS. We then

construct a further dataset, Spider-CG, by composing Spider-SS sub-sentences

in different combinations, to test the ability of models to generalize composi-

tionally. Experiments show that existing models suffer significant performance

degradation when evaluated on Spider-CG, even though every sub-sentence is

seen during training. To deal with this problem, we modify a number of state-

of-the-art models to train on the segmented data of Spider-SS, and we show

that this method improves the generalization performance.
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Chapter 1

Introduction

Text-to-SQL. With the development of the Internet, relational databases

have become the mainstream to store large structural data from Internet. The

relational database provides stable storage and convenient query functions for

structural data. Although the relational databases can be efficiently accessed

by skilled programmers via the structured query languages (SQL), a natural

language interfaces to databases (NLDB) can facilitate the databases to be ac-

cessed by users without the knowledge of SQL. Therefore, text-to-SQL, which

aims to translate the natural language (NL) descriptions/questions into SQL,

has attracted attention from both industrial and academic communities. Cur-

rently, most text-to-SQL methods rely on neural networks, primarily based on

the seq2seq [Sutskever et al., 2014] model structure, as for other methods we

discuss in Chapter 3.1. Figure 1.1 shows a standard neural-based text-to-SQL

pipeline.

Encoder

DecoderSELECT name FROM student

SELECT

FROM

id
name
age
country
…

course
student
…

Neural Networks
Schema Tables: course; student; …
Schema Columns: id; name; age; …

Question: Give me the name of the student.

input

output

Figure 1.1: A standard text-to-SQL pipeline
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In this pipeline, the model input is made up of the NL description/question

and related schema tables and columns, while its expected output is the cor-

responding SQL. This pipeline simplifies some modules in the neural network

model, such as word embeddings and attention. This pipeline illustrates that

a successful text-to-SQL model requires the alignment of the NL with schema

tables and columns and with the SQL keywords (SQL structure).

Text-to-SQL Assumption. Text-to-SQL assumes that the database schema

is known, and the NL descriptions/questions inputted by the user must be a

description of data query instructions. Although text-to-SQL is similar to the

Question-Answering (QA) system in which the answer is the SQL query or the

data queried by the SQL, the text-to-SQL does not assume to answer the NL

questions that are not directly related to SQL instructions. Take Table 1.1 as

a database table example. If you want to know whether Lily is older than 18,

the existing text-to-SQL model does not allow directly inputting a question: ‘Is

Lily older than 18?’. SQL is used to access data in databases, not for QA, so

you should input a question to query her age, such as: ‘How old is Lily?’. Then

check if she is over 18 by yourself. You can even ask the text-to-SQL model:

‘What is the nationality of Lily who is older than 18?’. If no nationality data

is returned, it means Lily is under 18, otherwise, she is over 18. To sum up, all

allowable descriptions/questions are querying data from a database.

Student Information Table
Name Age Gender Nationality Phone number
Lily 17 Female UK 079453254
Lucy 18 Female USA 085453254
Jack 18 Male UK 079256354
Tina 19 Female UK 079478412

Table 1.1: A database table containing four student information.

Cross-domain Text-to-SQL. The natural language interfaces to databases

(NLDB) require semantic parsing models output corresponding SQL queries

from the input NL question. If these models only generalize to new questions on

the training domain, the NLDB cannot be adapted quickly to new databases,

so it would not be widely used. Therefore, the model needs to generalize to

new unseen databases with unseen questions. This is cross-domain text-to-SQL

parsing.
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SQL Intermediate Representation. Intermediate Representation (IR) is

the data structure or any language used internally by a compiler or virtual

machine to represent source language [Wikipedia contributors, 2022b]. In par-

ticular, an SQL IR is the language or data structure used internally to represent

the SQL. SQL IR must be accurately converted to SQL and be independent of

databases. SQL IR is usually designed for specific purposes, which are not easy

to achieve with original SQL. For example, SQL IR in text-to-SQL is designed

to bridge the gap between NL and SQL, making text-to-SQL easier to imple-

ment. Figure 1.2 shows a standard text-to-SQL pipeline based on IR, where the

FROM clause in the IR has been removed, and the length of IR is shorter than

that of SQL.

To synthesize SQL queries with more complex structures, IR was widely em-

ployed by the previous state-of-the-art (SOTA) models on the Spider dataset [Wang

et al., 2020, Guo et al., 2019, Yu et al., 2018a, Shi et al., 2021]. Although the

introduction of IR makes the whole pipeline one step longer than that in Fig-

ure 1.1, IR does reduce the difficulty of the model to predict the SQL because

the complexity of IR is always less than or equal to the SQL. The IR to SQL

conversion is determined by rules and does not require training.

Encoder

DecoderSELECT student.name

SELECT student.id
student.name
student.age
course.id
…

Neural Networks

SELECT name FROM student Convert

SQL IR

Schema Tables: course; student; …
Schema Columns: id; name; age; …

Question: Give me the name of the student.

input

output

Figure 1.2: A standard text-to-SQL pipeline with IR

Robust Text-to-SQL Parsing. For a text-to-SQL model to be considered

robust, either the testing error has to be consistent with the training error or the

performance has to be stable (1) after adding some noise (2) after modifying the

text or schema items to its synonym or (3) against compositional generalization.

Adding noise means inserting random characters in the NL question without

changing its meaning. For example, we expected the model to predict the same

SQL in Figure 1.1 when the noise ‘[ ]’ was inserted into the question, such as

‘Give me the name of the [student]’. Similarly, we expected the model could

still predict the same SQL in Figure 1.1 when the question was modified to

‘Give me the name of the highschooler’. If the model had failed to generate the

correct SQL after question modification, i.e., the model failed to recognize the
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‘highschooler’ as a ‘student’, we consider the model to be not robust against

synonym substitution.

A robust text-to-SQL model also must have the ability to generalize com-

positionally. Compositional generalization is the ability to generalize to novel

combinations of the components observed during training. Figure 1.3 presents

the compositional generalization examples of text-to-SQL, where the left side

provides the components in training. The components are sub-sentences and

there are four components in the training set: (a) What is the name and nation

of the singer; (b) who have a song having ‘Hey’ in its name?; (c) What are the

names of the singers; (d) who performed in a concert in 2014?. The right side

of Figure 1.3 presents the compositional examples, where the first example is

the combination of (a) and (c), and the second example is the combination of

(a), (b), and (c). We expected the model trained on the left side example to

correctly predict the new sub-sentence combination examples on the right side.

See Chapter 7 for how to get the components and generate the compositional

examples.

What is the name and nation of the singer

who have a song having 'Hey' in its name?

Question:

Training Examples:

SELECT Name, Country

FROM singer JOIN Concert ON …SQL:

What are the names of the singers

who performed in a concert in 2014?

Question:

SELECT Name

FROM singer JOIN Concert ON …

WHERE Song_Name like '%Hey%'

Example-1:

WHERE Year = 2014

SQL:

Example-2:

What is the name and nation of the singer

who performed in a concert in 2014?
Question:

Evaluation Examples:

SELECT Name, Country

FROM singer JOIN Concert ON …
WHERE Concert.Year = 2014

SQL:

Sub-sentence substitution in Example 1 and 2 2

What is the name and nation of the singer
who have a song having ‘Hey’ in its name and
who performed in a concert in 2014?

Question:

SELECT Name, Country

FROM singer JOIN Concert ON …
WHERE Song_Name like ‘%Hey%‘ AND Year = 2014

SQL:

Example-1 append a sub-sentence from Example-2 2

Figure 1.3: A compositional generalization example in text-to-SQL

Thesis Statement. This thesis studies machine learning models to perform

text-to-SQL parsing, with a focus on SQL IR and model robustness. We claim

that our work has improved model performance and robustness. Furthermore,

we propose two datasets for evaluating model robustness against synonym sub-

stitution and compositional generalization, providing for a future study in text-

to-SQL.

1.1 Thesis Contributions

This thesis has contributed to several aspects of text-to-SQL: SQL interme-

diate representation (Natural SQL), evaluation methods, and improvement of

robustness.
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1.1.1 Natural SQL (NatSQL)

We present Natural SQL (NatSQL), a new SQL intermediate representation (IR)

that offers simplified queries over other IRs, while preserving a high coverage

of SQL structures. More importantly, NatSQL further eliminates the mismatch

between NL and SQL, and can easily support executable SQL generation. Figure

1.4 presents a sample comparison between NatSQL and other IRs. We observe

that there is a mismatch between the NL word ‘and’ and the INTERSECT SQL

keyword. To translate the NL question into a corresponding query, previous

IRs need the models to distinguish whether the word ‘and’ corresponds to

INTERSECT, not required for NatSQL. Among all IRs, NatSQL provides the

simplest and shortest translation, while NatSQL structure also aligns best with

the NL question.

NatSQL preserves the core functionalities of SQL, while simplifying the

queries as follows: (1) dispensing with operators and keywords such as GROUP

BY, HAVING, FROM, JOIN ON, which are usually hard to find counterparts

for in the text descriptions; (2) removing the need for nested subqueries and set

operators, using only one SELECT clause in NatSQL; and (3) making schema

linking easier by reducing the required number of schema items normally not

mentioned in the NL question. The design of NatSQL easily enables executable

SQL generation, which is not naturally supported by other IRs.

We compare NatSQL with SQL and other IRs by incorporating them into

existing open-source neural network models that achieve competitive perfor-

mance on Spider. Our experiments show that NatSQL boosts the performance

of these existing models, and outperforms both SQL and other IRs. In partic-

ular, equipping RATSQL+GAP [Shi et al., 2021] with NatSQL achieves a new

state-of-the-art execution accuracy on the Spider benchmark. These results sug-

gest that to improve the ability of text-to-SQL models to understand and reason

about the NL descriptions, designing IRs to better reveal the correspondence

between NL and query languages is a promising direction.

1.1.2 Evaluating Performance against Synonym Substitu-

tion and Compositional Generalization

The state-of-the-art models have achieved impressive performance on text-to-

SQL tasks (e.g., around 70% accuracy on the Spider test set, even if the model

is tested on databases unseen in training). However, we suspect that such

cross-domain generalization heavily relies on exact lexical matching between

the NL question and the table schema. As shown in Figure 1.5, names of tables

and columns in the SQL query are explicitly stated in the NL question. Such

questions constitute the majority of cross-domain text-to-SQL benchmarks, in-
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Question : : m :

Which film has more than 5 actors and less than 3 in the inventory?

SQL : :
SELECT T1.title FROM film AS T1 JOIN film_actor AS T2 ON T1.film_id = T2.film_id GROUP

BY T1.film_id HAVING count(*) > 5 INTERSECT SELECT T1.title FROM film AS T1 JOIN

inventory AS T2 ON T1.film_id = T2.film_id GROUP BY T1.film_id HAVING count(*) < 3

The IR of RAT-SQL : (Remove the JOIN ON Clause) :
SELECT title FROM film, film_actor GROUP BY film_id HAVING count(*) > 5

INTERSECT SELECT title FROM film, inventory GROUP BY film_id HAVING count(*) < 3

The IR of SyntaxSQL : (Remove the JOIN ON and FROM Clause) :

SELECT film.title GROUP BY film.film_id HAVING count(*) > 5 INTERSECT

SELECT film.title GROUP BY film.film_id HAVING count(*) < 3

SemQL : (Remove the JOIN ON, FROM and GROUP BY Clause. Merge the HAVING and WHERE clause)

SELECT film.title WHERE count(film_actor.*) > 5 INTERSECT

SELECT film.title WHERE count(inventory.*) < 3

NatSQL : (Further remove the set operators based on SemQL) :

SELECT film.title WHERE count(film_actor.*) > 5 and count(inventory.*) < 3

Figure 1.4: A sample question in Spider dataset with corresponding SQL and
IRs.

cluding both Spider and WikiSQL. Although assuming exact lexical matching

is a good starting point for solving the text-to-SQL problem, this assumption

usually does not hold in real-world scenarios. Specifically, it requires that users

have precise knowledge of the table schemas to be included in the SQL query,

which could be tedious for synthesizing complex SQL queries.

We investigate whether state-of-the-art text-to-SQL models preserve good

prediction performance without the assumption of exact lexical matching, where

NL questions use synonyms to refer to tables or columns in SQL queries. We call

such NL questions synonym substitution questions. Although some existing ap-

proaches can automatically generate synonymous substitution examples, these

examples may deviate from real-world scenarios, meaning they may not follow

common human writing styles or may even accidentally become inconsistent

with the annotated SQL query. To provide a reliable benchmark for evaluating

model performance with synonym substitution questions, we introduce Spider-

Syn, a human-curated dataset constructed by modifying NL questions in the

Spider dataset. Specifically, we manually replace the schema annotations in

the NL question with synonyms while the corresponding SQL queries keep un-

changed, as shown in Figure 1.5. We demonstrate that when models are only

trained on the original Spider dataset, they suffer a significant performance drop

on Spider-Syn, even though the Spider-Syn benchmark is not designed to ex-

ploit the worst-case attacks for text-to-SQL models. It is therefore clear that

the performance of these models will suffer with real-world use, particularly in

cross-domain scenarios.
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What is the type of the file named "David CV"? 

What is the type of the document named "David 

CV"?

"document", "users", ……

SELECT document_type FROM documents ……

Spider 
Question:

Spider-Syn 
Question:

Schema 
Annotations:

SQL:

What is the average power for all automobiles
produced before 1980?

What is the average horsepower for all cars

produced before 1980?

"horsepower", "cars data", ……

SELECT avg(horsepower) FROM CARS_DATA ……

Spider 
Question:

Spider-Syn 
Question:

Schema 
Annotations:

SQL:

different different

modified to modified to

modified to

different

Figure 1.5: Sample Spider questions that include the same tokens as the table
schema annotations, and such questions constitute the majority of the Spider
benchmark. In our Spider-Syn benchmark, we replace some schema words in
the NL question with their synonyms, without changing the SQL query to syn-
thesize.

Except for the Spider-Syn, we also propose the Spider-CG dataset to eval-

uate model robustness against compositional generalization. We construct the

Spider-CG (CG stands for compositional generalization) by substituting sub-

sentences with those from other samples or composing two sub-sentences to form

a more complicated sample. For example, the right-side examples in Figure 1.3

belong to the Spider-CG and are automatically generated from the left-side ex-

amples. We demonstrate that when models are trained only on the original

Spider dataset, they suffer a significant performance drop on the Spider-CG,

even though the domain in the training set.

1.1.3 Improvement of Robustness

To improve the robustness of text-to-SQL models against synonym substitution,

we use synonyms of table schema words, either manually annotated or automat-

ically generated when no annotation is available. We investigate two categories

of approaches to incorporate these synonyms. The first category of approaches

modify the schema annotations of the model input so that they align better

with the NL question. No additional training is required for these approaches.

The second category of approaches are based on adversarial training, in which

we augment the training set with NL questions modified through synonym sub-

stitution. Both categories of approaches significantly improve the robustness,

and the first category is effective and requires less computational resources.
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To improve the model generalization ability, we introduce a sub-sentence-

based text-to-SQL training paradigm. This paradigm requires models to en-

code the whole sentence but decode the sub-sentences one by one. Then the

models collect all output SQL clauses to generate the final target SQL query.

This paradigm improves the model generalization ability when evaluated in the

Spider-CG and also improves the performance in the Spider benchmark. The

model based on this paradigm is trained on the Spider-SS, a manually annotated

sub-sentence to the SQL clause dataset.

1.2 Thesis Associated Publications

Portions of the work detailed in this thesis have been presented in national and

international conferences, as follows:

• Yujian Gan, Matthew Purver, and John R. Woodward. A review of cross-

domain text-to-SQL models. In Proceedings of the 1st Conference

of the Asia-Pacific Chapter of the Association for Computational

Linguistics and the 10th International Joint Conference on Nat-

ural Language Processing: Student Research Workshop, Decem-

ber 2020

• Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver, John R. Wood-

ward, John Drake, and Qiaofu Zhang. Natural sql: Making sql easier to

infer from natural language specifications, In Findings of the Associ-

ation for Computational Linguistics: EMNLP 2021

• Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew Purver, John R.

Woodward, Jinxia Xie, and Pengsheng Huang. Towards robustness of

text-to-SQL models against synonym substitution, In Proceedings of

the 59th Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference on Nat-

ural Language Processing, 2021

• Yujian Gan, Xinyun Chen, and Matthew Purver. Exploring underex-

plored limitations of cross-domain text-to-sql generalization. In Pro-

ceedings of the 2020 Conference on Empirical Methods in Nat-

ural Language Processing (EMNLP), 2021

• Yujian Gan, Xinyun Chen, Qiuping Huang, and Matthew Purver. Mea-

suring and improving compositional generalization in text-to-sql via com-

ponent alignment, In Findings of the Association for Computa-

tional Linguistics: NAACL 2022
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• Yujian Gan, Xinyun Chen, and Matthew Purver. Re-appraising the Schema

Linking Mechanism in Text-to-SQL, Under Reviewed

• Yujian Gan and Matthew Purver. Clause-based Modeling for Composi-

tionally Generalizable Text-to-SQL Parsing, Under Reviewed

1.3 Thesis Structure

The thesis is structured as follows:

• Chapter 2. We introduce the background of text-to-SQL from four as-

pects: task description, machine learning methods, key modules for text-

to-SQL, and baseline models.

• Chapter 3. We review previous work on semantic parsing and text-to-

SQL, including text-to-SQL datasets, paradigms, and robustness. This

chapter is based on [Gan et al., 2020].

• Chapter 4. We introduce NatSQL. We first compare the difference be-

tween NatSQL and other IRs. Experiments show that NatSQL improves

the performance of several models and enables them to generate the exe-

cutable SQL. This chapter is based on [Gan et al., 2021c].

• Chapter 5. We evaluate the robustness of text-to-SQL models with re-

gard to synonym substitution. In particular, we introduce Spider-Syn, a

human-curated dataset based on the Spider benchmark for text-to-SQL

translation. Additionally, we present two categories of approaches to im-

prove the model robustness. The first category of approaches uses ad-

ditional synonym annotations for table schemas by modifying the model

input, while the second category is based on adversarial training. We

show that our first approach outperforms adversarial training methods on

Spider-Syn, and achieves competitive performance on worst-case adver-

sarial attacks. This chapter is based on [Gan et al., 2021a].

• Chapter 6. We extend the work of Chapter 5 to evaluate the exact

match based schema linking (EMSL). Inspired by the low robustness of

the model caused by EMSL in Chapter 5, we discuss whether EMSL can

be removed and why previous researchers did not remove it. We found

that EMSL introduces the vulnerability to the text-to-SQL models and

can be replaced by better input encoding. This chapter is based on the

sixth paper listed in Chapter 1.2.
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• Chapter 7. We investigate the robustness of text-to-SQL models to com-

positional generalization. Inspired by the close relationship between Nat-

SQL and NL, we first split the sentences in the Spider text-to-SQL dataset

into sub-sentences, annotating each sub-sentence with its corresponding

NatSQL clause, resulting in a new dataset: Spider-SS. We then construct

a further dataset: Spider-CG, by composing Spider-SS sub-sentences in

different combinations, to test the ability of models to generalize compo-

sitionally. Experiments show that existing models suffer significant per-

formance degradation when evaluated with Spider-CG, even though every

sub-sentence has been seen during training. To deal with this problem, we

modify a number of state-of-the-art models to train on the segmented data

of Spider-SS, and we show that this method improves the generalization

performance. This chapter is based on [Gan et al., 2022].

• Chapter 8. We summarize and discuss future work. We highlight the

findings and contributions with respect to the NatSQL and improvement

of model robustness.
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Chapter 2

Background

Automatic generation of SQL queries from natural language (NL) has been stud-

ied in the literature for a number of years Warren and Pereira [1982], Androut-

sopoulos et al. [1995], Ana-Maria Popescu et al. [2003], Li et al. [2006], Li and

Jagadish [2014], Dong and Lapata [2018], Iacob et al. [2020]. Early works War-

ren and Pereira [1982], Androutsopoulos et al. [1995] focus on template-based or

rule-based method, which cost heavy human engineering toward the goal. Be-

sides, it is difficult to design various templates or rules in advance for different

domains. Because of these shortcomings, current researchers tend to use ma-

chine learning methods. With the availability of large-scale training data and

advances in deep learning, machine learning methods have made great progress

in text-to-SQL parsing. A typical machine learning method for text-to-SQL

parsing is the sequence to sequence (seq2seq) [Sutskever et al., 2014] model,

which automatically learns a mapping function from the input NL question to

the output SQL. The seq2seq based approaches leverage an encoder to encode

the input NL questions together with related table schema into vectors and then

use a grammar-based neural decoder to decode these vectors to generate the tar-

get SQL. Seq2seq provides an end-to-end way for training and has become the

mainstream for text-to-SQL parsing.

In this chapter, we first introduce the text-to-SQL. Then, we provide the ba-

sic Machine Learning methods. Finally, we introduce some text-to-SQL models

used in this thesis.
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2.1 Text-to-SQL

2.1.1 Overview

SQL (Structured Query Language) is a language designed mainly for manag-

ing data stored in a relational database, including querying, adding, updating,

and deleting data [Wikipedia contributors, 2022c]. SQL is widely used in han-

dling structured data, i.e., data incorporating relations among entities and vari-

ables. SQL is designed considering the convenience of data management, where

it can access or modify many records with one single command. Therefore, SQL

is quite different from NL and cannot be easily used by non-professionals.

The SQL for querying data contain several key components: SELECT,

FROM, WHERE, JOIN ON, GROUP BY, HAVING, subqueries, and set oper-

ators. We introduce them one by one below:

• SELECT: The SELECT clause is used to select data from a database

and is an indispensable SQL clause for querying data.

• FROM: The FROM clause is used to specify which database to select,

which is also indispensable. The FROM clause sometimes appears with

the JOIN ON clause when it involves multiple tables.

• WHERE: The WHERE clause contains query conditions, which are used

to filter records. The query condition format is column operator value,

such as age >= 18 representing to filter out the records whose age column

value is less than 18. There are fifteen condition operators: ‘between’, ‘=’,

‘>’, ‘<’, ‘>=’, ‘<=’, ‘! =’, ‘in’, ‘like’, ‘is’, ‘exists’, ‘not in’, ‘not like’, ‘not

between’, and ‘is not ’. The condition value can be a static value, column,

or subquery. A WHERE clause contains one or more conditions connected

by the logical conjunction (‘and ’ and ‘or ’).

• JOIN ON: JOIN ON clause is used to combine rows from two or more

tables, as mentioned in the FROM clause. The combination method can

be conditional, and this condition is written after the ON keyword. The

ON condition format is similar to the WHERE condition.

• GROUP BY: The GROUP BY clause is used in collaboration with the

SELECT clause to group rows having identical values into summary rows.

The GROUP BY clause is often used with aggregate functions. There are

five aggregate functions: ‘count()’, ‘max()’, ‘min()’, ‘sum()’, and ‘avg()’,

which calculates a set of values, and returns a single value.

• HAVING: The HAVING clause is similar to the WHERE clause. Since

the WHERE clause cannot be used with aggregate functions, the HAVING
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clause is added to the SQL. The HAVING condition takes effect after the

GROUP BY, while the WHERE clause is conducted before the GROUP

BY.

• Subquery: The subquery is a full SQL SELECT query embedded in the

main SQL SELECT query. The data returned from a subquery can be

a condition value which means we can use a subquery to replace a static

value in a condition.

• Set Operators: The set operators combine the results of two SQL SE-

LECT queries into a single result. There are three set operators: UNION,

INTERSECT, and EXCEPT, where the UNION returns all distinct rows

selected by either query, the INTERSECT returns all distinct rows se-

lected by both queries, the EXCEPT returns all distinct rows selected by

the first query but not the second.

Text-to-SQL is essential for non-professionals to access the databases. Most

text-to-SQL research focuses on data queries whose SQL starts with the SE-

LECT keyword. Chapter 1 gives a brief text-to-SQL introduction and example,

and we can find that there is a significant difference or mismatch between in-

put (NL and table schema) and output (SQL). For better discussion, the next

section provides a formal problem definition of text-to-SQL parsing.

2.1.2 Task Formulation

Symbol: Description
S Sequence of database schema tokens, which consists of tables, columns and cell values.
T Sequence of table tokens.
C Sequence of column tokens.
V Sequence of cell value tokens.
Q Sequence of question tokens.
t Table token.
c Column token.
v Cell value token.
q Question token.
I Text-to-SQL input, which consists of question and schema.
O Text-to-SQL output, referring to SQL query.

Table 2.1: The notations used in this chapter.

Text-to-SQL [Qin et al., 2022] is to convert an NL question under the

database schema to its corresponding SQL that can be executed in the same

database. Table 2.1 provides formal notation to define task formulation. Exist-

ing text-to-SQL parsing research can be divided into two categories: single-turn

and multi-turn settings. Formally, for the single-turn text-to-SQL parsing, given

an NL question Q and the corresponding database schema S = <T , C,V>, the

goal is to generate a SQL query O. Specifically, the question Q = {q1, q2, ..., qn}
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is a sequence of Q tokens. The database schema consists of table sequence

T = {t1, t2, ..., tn}, table sequence C = {c1, c2, ..., cn}, and cell value sequence

V = {v1, v2, ..., vn}. Each ti stands for a table name that contains one or multi-

ple words. Similarly, Each ci stands for a column name that also contains one

or multiple words. The cell value is the data stored in the database. Each vi

denotes a cell value that contains none or one or multiple words. Sometimes, the

cell values V can be ignored or inaccessible. In this case, the database schema

can be expressed as S = <T , C>. The whole input of the task can be denoted

as I = <Q,S>.

For multi-turn text-to-SQL parsing, it is to repeat the single-turn task several

times, where the NL questions may contain anaphora that refers to objects in

the previous NL questions. Formally, let U = {u1, u2, ..., un} denote a sequence

of single-turn text-to-SQL parsing task with n turns, where Un = (In,On) repre-

sents the n-th parsing task which is the combination of a input In and a output

SQL query On. The input In can be denoted as In = <Qn,S, {u1, ..., un−1}>.

At the n-th turn, given an NL question Qn, the corresponding database schema

S, and the historical parsing tasks {u1, ..., un−1}, the goal is to produce a SQL

query O.

2.1.3 Evaluation Metrics

The text-to-SQL tasks generally evaluate the methods by comparing the gener-

ated SQL queries against the ground-truth answers. The exact set match accu-

racy (EM) and execution (EX) [Yu et al., 2018b] accuracy are evaluation metrics

for evaluating the single-turn text-to-SQL. For the multi-turn text-to-SQL, the

evaluation metrics include question match accuracy (QM) and interaction match

accuracy (IM) [Yu et al., 2019b].

Single-turn Text-to-SQL Evaluation

Exact Set Match Accuracy (EM). The exact set match accuracy is calcu-

lated by comparing the clauses (without values) in the predicted SQL query and

the ground-truth SQL query. Before comparison, these two queries are parsed

into normalized SQL clauses such as SELECT, GROUP BY, WHERE, ORDER

BY, etc. The EM gives a positive result to the predicted SQL query only if all

of the SQL clauses are correct by a set comparison as follows:

score(Ô,O) =

{
1, Ô = O
0, Ô ≠ O

where O = {k1, ..., kn} and Ô = {k̂1, ..., k̂n} denote the SQL clause component

sets of the ground-truth SQL query and the predicted query respectively. The k
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here denotes a SQL clause, and n is the number of parsed components. Although

condition values are inside some of the SQL clause k, the EM comparison ignores

these values. Then, the exact set match accuracy is calculated by:

EM =
∑N

i=1 score(Ôi,Oi)
N

where N stands for the total number of samples. EM does not compare the values

and can focus on whether the grammar of the predicted SQL is consistent with

that of ground-truth. However, considering that an NL question may correspond

to multiple SQL queries, the disadvantage of EM is that it cannot give positive

results to the equivalent predictions.

Execution Accuracy (EX). We calculate the EX by comparing the query

data of executing the ground-truth SQL and the predicted SQL query on the

database. Unlike the EM does not need the condition values, to pass the EX,

the predicted SQL must contain the correct condition values. EX gives positive

the result to the predicted query as correct only if the data of executing the

predicted and the ground-truth SQL query are the same:

score(D̂,D) =

{
1, D̂ = D
0, D̂ ≠ D

where D and D̂ denote the data queried by the ground-truth SQL query and the

predicted query, respectively. Similar to EM, we calculate the EX as follows:

EX =
∑N

i=1 score(D̂i,Di)
N

EX also cannot give a positive result to partial equivalent SQL and may generate

positives to incorrect predictions whose queried data from ground-truth SQL is

empty.

Multi-turn Text-to-SQL Evaluation

In a multi-turn text-to-SQL setting, given a total of N samples, there are a total

of A = N ∗R questions where each sample contains R rounds.

Question Match Accuracy (QM). Before calculating the QM, we calculate

the EM score over all questions. We calculate the EM score the same as the

single-turn settings mentioned above. Then we calculate the question match

accuracy as follows: The question match accuracy is calculated as the EM score

over all questions. Its value is 1 for each question only if all predicted SQL

clauses are correct. We first calculate the EM score for each question as follows:

QM =
∑A

i=1 score(Ôi,Oi)
A

where A = N ∗R stands for the total number of questions.
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Interaction Match Accuracy (IM). Similarly, before calculating the IM,

we calculate the EM score first. Then we calculate the score of each interaction

(sample) which is positive only if all the predictions within the interaction are

correct. Formally, the score for each interaction (sample) is calculated by:

interaction score =

 1,
∏R

i=1 score
(
Ôi,Oi

)
= 1

0,
∏R

i=1 score
(
Ôi,Oi

)
= 0

where R denotes the number of turns in each interaction (sample). Then, we

calculate the IM score as follows:

IM =
ΣN

i=1 interaction score i

N

where N denotes the total number of interactions (samples).

2.2 Machine Learning (ML)

Recent years have seen great progress on the text-to-SQL problem [Zhong et al.,

2017, Dong and Lapata, 2018, Yu et al., 2018b, Guo et al., 2019, Bogin et al.,

2019a, Wang et al., 2020], with neural networks having become the de facto

approach. Therefore, we introduce ML approaches we need to know.

ML is the scientific study of algorithms and statistical models that computer

systems use to effectively perform a specific task without using explicit instruc-

tions, relying on patterns and inference instead [Wikipedia-contributors, 2019].

Although there are many ML approaches, we only focus on some of them widely

used by text-to-SQL, including recurrent neural networks (RNNs), the sequence

to sequence (seq2seq) model, transformer, and graph neural networks.

2.2.1 Recurrent Neural Network

Researchers have been studying RNNs since the 1980s [Hopfield, 1982, Rumel-

hart et al., 1986]. An RNN is composed of cells with specific structures. There

are many types of RNN cells and structures. Long short-term memory (LSTM),

as one type of RNN cell, was invented by [Hochreiter and Schmidhuber, 1997]

and it can get good performances in speech recognition [Sak et al., 2014], ma-

chine translation [Sutskever et al., 2014] and other language models [Jozefowicz

et al., 2016]. The bidirectional recurrent neural network (BRNN) as a widely

used RNN structure was introduced to increase the amount of input information

available to the model [Schuster and Paliwal, 1997].

Long Short-Term Memory

Nowadays, the widely used LSTM has a with forget gate (also called ‘keep

gate’) [Gers, 1999] and all references to LSTM in this thesis have such a gate.
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The forget gate can be taught to weaken, even clear, the previous cell state

(memory) in a certain state, so the LSTM can control the long-term memory

through the forget gate.

Bidirectional Recurrent Neural Network

A Bidirectional recurrent neural network (BRNN) is the connection of two RNN

in the opposite direction, as shown in Figure 2.1. There are only two RNN cells

in Figure 2.1: the blue squares A and A′. The output of y is generated by

repeated use of the squares A and A′.

A’

A

A’

A

A’

A

A’

A

h’i h’0

hih0 …

…

X0 X1 X2 Xi…

y0 y1 y2 yi

h’1h’i-1 h’i-2 h’i-3

hi-1h3 h3h1

Figure 2.1: General Structure of Bidirectional Recurrent Neural Networks

Let us suppose the outputs of square A and A′ are yA and yA′ . So the final

output y (shown in the orange circle in Figure 2.1) normally is the concatenation

of yA and yA′ , but you can also define the final y as equal to yA + yA′ .

2.2.2 Sequence to Sequence Learning

Basic Sequence to Sequence Model

Seq2seq learning is an extremely powerful ML model that offers an end-to-

end approach to sequence learning problems that makes minimal assumptions

about sequence structure [Sutskever et al., 2014]. It was widely used in sequence

learning problems such as machine translation [Luong et al., 2015], chat-bot [Qiu

et al., 2017], text-to-SQL [Dong and Lapata, 2018], etc. Figure 2.2 gives an

example of a chat-bot based on a seq2seq model such that the model input is

a sentence from the user and the model output is the reply to the input. The

seq2seq model consists of two parts: an encoder and a decoder. The blue squares

of the encoder and green squares of the decoder in Figure 2.2 can be RNN cells.
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Embedding

How            are             you                ?

EMB EMB EMB EMB

I               am             good           <EOS>

<SOS>

Encoder

Decoder

Figure 2.2: Sequence to Sequence Learning Model

Sequence to Sequence Model with Attention

The attention mechanism was invented by [Luong et al., 2015] and now is widely

used in the seq2seq model. Attention not only improves the performance of

the seq2seq model but also makes the learning results better explained. The

attention mechanism can be considered a key-value process by which different

keys can get different values. The key in here is the (input) hidden state of

decoder cells.

Figure 2.3 gives an example of an attention-based model modified from Fig-

ure 2.2. Intuitively, in the basic seq2seq model without attention, given that the

decoder only gets the h0 generated by the encoder, which represents the whole

sentence, it is more difficult for the decoder to learn how to output correct

results than it is for the attention-based model. Because the attention mecha-

nism tells the seq2seq model what part of the input it should pay attention to

when generating each output, most current seq2seq models contain an attention

structure by default.

Input: h0 a0 <SOS>
Output: word I

Embedding

How            are             you                ?

EMB

I

<SOS>

Encoder

Decoder

h0

Attention

a0

continue

Figure 2.3: The attention-based model modified from Figure 2.2

30



Transformer

Vaswani [2017] proposed the transformer model that only keeps the attention

mechanism dispensing with the RNN, where the transformer still belongs to the

seq2seq encoder-decoder architecture. Unlike RNNs, the attention mechanism

does not process data in order. However, given that the NL order is essential,

the transformer generates position embeddings for every input token. Compared

with RNNs, there are several primary benefits of transformer. The computations

can be performed in parallel, running faster than RNNs. The improvement of

computing speed makes it easier to build large-scale seq2seq models. Finally,

the transformer has a better learning ability for longer sequences than RNNs

because it is not sensitive to the sequence length.

Grammar Decoder

The standard seq2seq decoder output a sequence token. Although it can output

a SQL sequence, the grammar of the output SQL may be incorrect. In order to

be grammatically correct, researchers [Xiao et al., 2016, Cheng et al., 2017a, Yin

and Neubig, 2017a] introduce the grammar decoder to ensure that the output

follows the SQL grammar. The grammar decoder is widely used for complex

text-to-SQL, replacing the original seq2seq decoder, given that the grammar

decoder provides a constraint for the decoding process. Besides text-to-SQL,

the grammar decoder is also a common module for other semantic parsing tasks.

Both the standard seq2seq decoder and grammar decoder generates output

based on probabilities. Without the constraint, each step of the standard de-

coding may generate any SQL keywords. Although a standard decoder with

high accuracy has a higher probability of generating SQL keywords that meet

the grammatical rules, it is still possible to generate the SQL with grammar

errors. The grammar decoder generates the contents following a predefined ab-

stract syntax tree (AST) [Wang et al., 1997] that can be extracted from the

SQL or other programming languages. AST act as a constraint, ensuring the

next decoding step does not generate the grammar error SQL. For example, the

standard decoder may output a WHERE clause following the SELECT clause

without any constraint, as shown in Figure 2.4. This error does not occur with

the grammar decoder because the SQL AST stipulates that the following clause

of SELECT can only be FROM.

2.2.3 Graph Neural Networks

A graph neural network is a class of neural network for processing data best

represented by graph data structures [Scarselli et al., 2009]. They were origi-
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EMB EMB EMB EMB

SELECT name WHERE ……

<SOS>
Standard Decoder

EMB EMB EMB EMB

SELECT name FROM ……

<SOS>
Grammar Decoder

SQL Grammar Error

Figure 2.4: The standard decoder may generate grammar error SQL, but gram-
mar decoder will not.

nally popularized by their use in supervised learning about properties of various

molecules [Gilmer et al., 2017, Wikipedia contributors, 2022a]. In computer

science, a graph is a data structure consisting of two components: nodes (ver-

tices) and edges[Amal Menzli, 2021]. The schema database can be represented

as a graph where the columns and tables are the nodes and the foreign keys are

edges. We can get more edges by defining new relation, such as column-to-table

edges, primary key edges and table-to-table edges. Normally, for text-to-SQL

under single table, there is no need to use graph neural networks. If only one

table, all edges for the columns are equivalent in a graph, meaning that there

are only table-to-column edges. Graph neural networks cannot give different

information or values for equivalent edges, which restricts their use in single

table based text-to-SQL.

Currently, there are some text-to-SQL models using graph neural networks,

such as GNN [Bogin et al., 2019a], Global-GNN [Bogin et al., 2019b], and

LGESQL [Cao et al., 2021]. The GNN represents a schema as a graph and

uses graph neural networks to embed each schema item. The GNN and Global-

GNN are designed by the same author; the difference between them is that the

Global-GNN use a global reasoning module to choose correct ambiguity schema

items. In LGESQL, the graph nodes include both schema items and question

tokens, while nodes in Global-GNN only contain the schema items. Therefore,

the graph in LGESQL can encode the schema items together with the question

words.

2.2.4 Adversarial Training

Adversarial training is the method of the attacks on machine learning mod-

els, and of the defenses against such attacks [Wikipedia contributors, 2022d].

Siva Kumar et al. [2020] exposes the fact that professionals report a dire need

for protection methods of machine learning systems against different types of
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attacks. Most machine learning methods are designed for specific problems,

under the assumption that the training and test data are sampled from the

same distribution. However, this assumption often can be violated in prac-

tices, where users or hackers may purposely supply out-of-distribute data that

violates the assumption. Adversarial training is introduced to avoid this prob-

lem [Szegedy et al., 2013]. There are mainly two steps in adversarial training.

Firstly, adversarial training generates out-of-distribute samples to attack (test)

the trained models. Then it collects the failure samples from the previous step

for re-training the model. The two steps can be repeated several times. With

more and more out-of-distribute samples added to the training set, the trained

model becomes more robust.

2.3 Key Modules for Text-to-SQL

Recent ML-based text-to-SQL models mostly divide the problem into two sub-

tasks: generating SQL keywords and filling the schema items, also named

schema linking.

2.3.1 SQL Keywords Generation

ML-based text-to-SQL models rely on the decoder to generate the SQL Key-

words. The decoder for text-to-SQL can be divided into two categories: sketch-

based methods and generation-based methods [Qin et al., 2022].

The sketch-based methods predefine a class of classifiers to determine whether

to generate a target SQL keyword. There are several models employing the

sketch-based method, such as SQLNet [Xu et al., 2017], TypeSQL [Yu et al.],

SQLova [Wonseok Hwang, Jinyeung Yim, Seunghyun Park, 2019] and Coarse2Fine

[Dong and Lapata, 2018]. For example, SQLNet uses a classifier to determine

that the AGG function is either an empty token or one of the aggregation op-

erators, such as AVG and MIN. Generally, the construction of the sketch may

be different for different models. For example, different from SQLNet, Type-

SQL combines the select-column classifier and the where-column classifier into

a single classifier since their input and output are similar. In the final stage, an

execution-guided [Wang et al., 2018] decoding strategy often be utilized to pre-

vent generating non-executable SQL queries. However, complex SQL generation

tasks require sketch-based methods to define too many classifiers to work, which

is complicated to implement. Thus, the sketch-based approaches are popular on

the simple text-to-SQL task, such as the WikiSQL [Zhong et al., 2017] dataset,

but are rarely used on complex text-to-SQL scenarios, such as the Spider [Yu

et al., 2018b] dataset.
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Recently, researchers employed generation-based approaches to handle the

complex text-to-SQL task, building on the seq2seq model. Some works follow

the standard seq2seq modeling, while others employ the grammar decoder. For

example, Shaw et al. [2021a] and Scholak et al. [2021] leverage the pre-trained

seq2seq model T5 [Raffel et al., 2019] finetuned on the text-to-SQL dataset

for SQL generation. Although T5 neglects the SQL grammar during the de-

coding process, its large-scale pre-training data and big model size ensure the

model’s accuracy. Formally, the T5 decoder follows the standard text genera-

tion process, as shown in Figure 2.2. Since the standard seq2seq models may

not generate SQL queries with correct grammar, some researchers choose the

grammar decoder instead. In particular, the grammar decoder generates the

contents following a predefined abstract syntax tree (AST) [Wang et al., 1997]

that can be extracted from the SQL or other programming languages.

2.3.2 Schema Linking

Schema Linking Definition

To achieve good performance on text-to-SQL tasks, a neural model needs to

correlate natural language queries with the given database schema, and we call

this process as schema linking. Previous work often explicitly designs a module

to perform the schema linking, and we name it as Exact Match based Schema

Linking (EMSL) [Guo et al., 2019, Bogin et al., 2019a, Wang et al., 2020].

Specifically:

• Schema linking is the alignment between the entity references in the

question and the schema columns or tables.

• A schema linking module is a trainable component that learns to per-

form schema linking, based on features that relate word tokens in the

question to schema items.

• A schema linking feature encodes this relational information; e.g., it

can represent the similarity between words in the question and schema

items.

• Exact match based schema linking (EMSL) is a type of schema

linking feature obtained by the exact lexical match between the words in

the question and words in schema items.

Figure 2.5 illustrate the relations between these concepts, where Schema

linking includes everything related to filling the schema items. We discuss the

details of EMSL in Chapter 6.
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schema linking

schema linking feature

EMSL
schema linking 

module

Figure 2.5: The schema linking family.

Schema Linking Construction

In general, schema linking establishes a link between question word tokens and

schema items, where this value/weight guides the text-to-SQL model to choose

the closest schema item. We refer to this value/weight the schema linking value.

Any text-to-SQL model with decent performance needs a schema linking value.

This value can be obtained in many ways, such as calculating the similarity

between encoded question word tokens and schema items or directly obtaining

the value through the EMSL feature.

Some works have implemented EMSL by recognizing the columns and the

tables mentioned in a question before training the model [Guo et al., 2019,

Bogin et al., 2019a, Wang et al., 2020]. It should be noted that Guo et al.

[2019] and Wang et al. [2020] named the EMSL schema linking in their paper

while Bogin et al. [2019a] did not mention this EMSL but implemented it in

the code. EMSL was essential in these models because in the ablation study of

IRNet [Guo et al., 2019] and RATSQL [Wang et al., 2020] based on Spider [Yu

et al., 2018b], removing the EMSL caused the biggest performance decline when

compared with removing other removable modules [Guo et al., 2019, Wang et al.,

2020].

Additionally, the EMSL can be integrated with the database contents, im-

proving the performance of IRNet, RATSQL and GNN models. For example, in

Table 2.2, without inspecting the content of the database, it would be hard to

construct a link between the word houses and the column ‘property type code’,

even by experts, given that the word houses might be a redundant word that

often appears in questions.

Question: What are the names of houses properties?
SQL: SELECT name FROM Properties

WHERE type code = ‘House’

Table 2.2: An example of requirements for database content
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Schema Linking Based on Graph

Figure 2.6 illustrates the challenge of ambiguity in schema linking while ‘model ’

in the question refers to car_names.model rather than model_list.model. Graph

neural networks can give a bigger schema linking value to the car_names.model

than model_list.model because the uniquely matched horsepower column can

propagate its weight through the schema relations (e.g., foreign keys) to the

car_names.model.

The other benefit of using a graph is giving the schema items that are not

mentioned in the question a more significant schema linking value. Examples

are often seen in JOIN ON clauses and subqueries. In Figure 2.6, it is hard to

construct the schema linking from the question to the columns cars_data.id and

cars_names.make_id that appear in the JOIN ON clause of the SQL. The graph

neural networks can construct the schema linking value for these two columns

from the propagation of other linked columns.

edisplcylinders

Natural Language Question:
For the cars with 4 cylinders, which model has the largest horsepower?

Target SQL: 
SELECT T1.model FROM car_names AS T1 
JOIN cars_data AS T2 ON T1.make_id = T2.id 
WHERE T2.cylinders = 4
ORDER BY T2.horsepower DESC LIMIT 1cars_data

id mpg horsepower weight accelerate

model

car_name

make_id make maker

model_list

model_id model maker

car_maker

id full_name

Schema
Question → Column (EMSL)

Question → Table (EMSL)

Column → Column (Foreign Keys)

Figure 2.6: A challenging text-to-SQL example from the Spider dataset.

2.3.3 SQL Intermediate Representation (IR)

SQL IR is a language that bridges the NL and the SQL since the SQL is designed

for accessing the database, not for human communication. Although SQL IR is

not a must, it improves the model in both SQL keyword generation and schema

linking and has been widely used in text-to-SQL models. Using IR, the text-

to-SQL will become text-to-IR-to-SQL, where the original text-to-SQL model

can be directly used in text-to-IR, as shown in Figure 1.2. For a more detailed

introduction to IR, please refer to Chapter 1.

Generally speaking, SQL IR should be designed simpler than SQL, which

means it will dispense with some SQL clauses. The deleted SQL clauses and

their schema items must be generated when converting the SQL IR to SQL,

which ensures that the SQL IR does not lose information. Different clauses

require different generation methods. Take generating the JOIN ON clause as

an example, their schema items tend to be the foreign keys that appear in the

tables in the rest of the SQL clauses.
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Early work on SQL IR tried to use an IR to translate an NL question and

then convert it to SQL queries [Woods, 1978, Li and Jagadish, 2014]. Li et al.

[2014] proposed an IR for SQL called Schema-free SQL, for users who did not

need to know all of the schema information. The IR in SyntaxSQLNet [Yu et al.,

2018a] represents an SQL statement without FROM and JOIN ON clauses.

SemQL [Guo et al., 2019] removes the FROM, JOIN ON and GROUP BY

clauses, and combines the WHERE and HAVING conditions. The IR in Edit-

SQL [Zhang et al., 2019] also combines the WHERE and HAVING conditions

but keeps the GROUP BY clause. IR is also used to improve compositional

generalization in semantic parsing [Herzig et al., 2021a].

Yu et al. [2018a] introduced an SQL IR that dispense with JOIN ON and

FROM clauses. This IR generate full SQL containing JOIN ON clauses in a de-

terministic way by analyzing the schema structure. However, this IR might not

generate the correct JOIN ON clause when there were more than one available

JOIN ON clause or they were facing the self-join.

Guo et al. [2019] further proposed an SQL IR, named SemQL that removes

the GROUP BY clause and merges the HAVING and WHERE clauses. SemQL

reduces the reasoning work from SQL structure generation that does not signifi-

cantly benefit from graph neural networks. However, about 20% of the generated

GROUP BY clauses from SemQL are different from the original, restricting its

performance in exact set match metrics. Although most different GROUP BY

clauses do not affect the accuracy of execution match metrics, SemQL cannot

generate executable SQL in the current version. IR research still has room for

improvement.

Compared to existing IRs for SQL, our NatSQL, introduced in Chapter 4,

has further simplified the SQL language, moving closer towards bridging the

gap between NL descriptions and SQL statements. SemQL is the closest to

NatSQL in the above IRs, where NatSQL can be considered an IR that has

further simplified the structure and improved the coverage by SemQL.

2.4 Text-to-SQL Models Used in the Thesis

We introduce three recent relatively high-performance text-to-SQL models used

in this thesis. They are all open source and can easily be reproduced and

modified. Table 2.3 compares their main design choices.

GNN [Bogin et al., 2019a]

The GNN model is built based on AllenNLP [Gardner et al., 2018] platform.

To our knowledge, the GNN model is the first model for the Spider [Yu et al.,
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Moldes EMSL Extra Schema Encoder W Emb IR
GNN ✓ Graph Neural Networks From Scratch -
IRNet ✓ - GLOVE / BERT SemQL

RATSQL ✓ Relation-Aware Transformer GLOVE / BERT SQL without JOIN ON

Table 2.3: The baseline text-to-SQL models. The three models are based on
the seq2seq structure. The Extra Schema Encoder indicates other encoders
except for the seq2seq encoder. EMSL denotes the exact match based schema
linking. W Emb means word embeddings. From Scratch represents the model
train its word embeddings from scratch. GLOVE [Pennington et al., 2014] and
BERT [Devlin et al., 2019] are two widely used word embeddings.

2018b] complex text-to-SQL task using the graph neural networks to encode

the whole schema database. As discussed in Chapter 2.2.3, the graph is suitable

for representing the complex structure of schema database. The GNN model

is the only one of the three models that learn to generate both SQL without

SQL IR and to generate JOIN ON clauses. JOIN ON clause generation requires

understanding the foreign key relationships between the schema items, while the

graph neural networks can help. GNN uses the generation-based approach to

generate the SQL query, employing a grammar decoder working on the full SQL

AST. Although the authors did not mention the EMSL in their paper, the GNN

model had used it. After that, the authors propose a re-ranking strategy [Bogin

et al., 2019b] to select the best SQL query from the candidates predicted by the

GNN model, improving the overall performance.

IRNet [Guo et al., 2019]

Similar to the GNN model, IRNet is also a generation-based model employing a

grammar decoder and uses the EMSL to construct the schema linking. However,

the IRNet generates SemQL instead of SQL. The SemQL is an SQL IR, briefly

introduced in Chapter 2.3.3. The SemQL can be converted to the final SQL

stably. Experiments show that SemQL can improve several previous text-to-

SQL models. Besides the SemQL, the IRNet is equipped with the BERT [Devlin

et al., 2019] to improve its performance. In schema linking, IRNet employs

ConceptNet [Speer and Havasi, 2012b] to construct extra EMSL features. The

standard EMSL can link words only by exact lexical match, so IRNet assembles

the ConceptNet to extend the EMSL to a synonym match. Although there are

no graph neural networks in IRNet, the overall performance of the IRNet is

better than the GNN model.

RATSQL [Wang et al., 2020]

RATSQL is also a generation-based model using the grammar decoder and

EMSL, and integrates the advantages of the previous two models. In RATSQL,
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you can find SQL IR, graph, and BERT. The SQL IR in RATSQL is pretty

close to the SQL compared to SemQL, only dispensing with JOIN ON clause.

Although it raises the learning difficulty, the SQL IR in RATSQL ensures higher

coverage to the SQL than SemQL. There are no graph neural networks inside

the RATSQL, but it obtains a similar effect to graph neural networks through

relation-aware self-attention layers. RATSQL defines several relations for better

constructing the schema linking, as shown in Figure 2.6 The relation-aware self-

attention layer is based on the transformer architecture, while the GNN and

IRNet model is built on the LSTM. RATSQL with BERT achieves the best

performance compared to the other models by its excellent design and intensive

hyperparameter search. Thus, the RATSQL attracted many follow-up studies

based on itself [Shi et al., 2021, Yu et al., 2021].
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Chapter 3

Related Works

Text-to-SQL is a task to translate the natural language query (input) written

by users into the SQL query (output) automatically. Text-to-SQL is key toward

Natural Language Interface to Database (NLIDB). NLIDB has a long history

that can be traced back to the 1970s [Warren and Pereira, 1982, Androutsopou-

los et al., 1995, Popescu et al., 2004, Li et al., 2006, Iacob et al., 2020]. Most

of the early work focuses on single-domain datasets, including ATIS, GeoQuery

[Iyer et al., 2017], Restaurants [Tang and Mooney, 2000, Ana-Maria Popescu

et al., 2003, Giordani and Moschitti, 2012], Scholar [Iyer et al., 2017], Academic

[Li and Jagadish, 2014], Yelp and IMDB [Yaghmazadeh et al., 2017] and so on.

Finegan-Dollak et al. [2018] shows some models dealing with specific databases

that only learn to match semantic parsing results.

In the remainder of this chapter, we first review the semantic parsing papers.

We then discuss the relevant datasets and literature in text-to-SQL.

3.1 Semantic Parsing

The text-to-SQL is related to the general topic of semantic parsing [Kamath and

Das, 2018]. Semantic parsing is a task to convert a natural language description

to a logical form, where the logical form can be SQL, programming language

and etc. Applications of semantic parsing include text-to-SQL [Zhong et al.,

2017, Yu et al., 2018b], question answering [Berant et al., 2013, Jia and Liang,

2016], machine translation [Andreas et al., 2013], ontology induction [Poon and

Domingos, 2010] and code generation [Rabinovich et al., 2017, Yin and Neubig,

2017b]. The text-to-SQL research has always benefited from the whole semantic

parsing community. For example, some models [Dong and Lapata, 2018, Xie

et al., 2022] can handle several semantic parsing tasks, including the text-to-

SQL.
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Early semantic parsing focus on rule-based methods. For example, Woods

[1973] proposes LUNAR, a syntactic parser, which generates database query

language based on a set of semantic interpretation rules. Most rule-based re-

search was conducted before the 1990s, and a detailed review can be found

from [Androutsopoulos et al., 1995]. Although rule-based methods [Templeton

and Burger, 1983, Hendrix et al., 1978] streamline the flow for a given task, the

inclusion of semantic knowledge and expert-design makes it difficult to adapt

to unseen domains.

After the 1990s, researchers began to pay attention to the statistical method.

These statistical learning approaches [Zettlemoyer and Collins, 2005, 2007, Kwiatkowksi

et al., 2010] are fully supervised using annotated pairs of natural language sen-

tences and logical form. The well-known CHILL [Zelle and Mooney, 1996b]

model is trained on a corpus comprising sentences paired with database queries

and can map subsequent sentences to executable queries. Thompson [2003]

further improve on this method by learning both lexica phrases and meaning

representations. However, these statistical methods require complex annotation

and can work only in a single domain.

At a similar time, there have been many different approaches proposed for

semantic parsing. Poon and Domingos [2009] introduce the first unsupervised

method to learn a semantic parser based on Markov logic. Their method suc-

cessfully extracts a knowledge base from GENIA [Kim et al., 2003] biomedical

corpus and can answer questions based on it. Wong and Mooney [2006] employ

statistical machine translation approaches to semantic parsing and argue that

a parsing task can be viewed as a syntax-based translation task. This model

achieves good performance and is more robust to word order, compared with

existing learning methods under a similar amount of supervision.

More recently, with the advancement of deep learning, the encoder-decoder

structure has become the default solution for semantic parsing. Dong and Lap-

ata [2016] present an attention-enhanced encoder-decoder model for converting

natural language (NL) to logical form tasks without high-quality lexicons and

manually-built templates. This model encodes input NL utterances into vectors

and then uses vectors to generate their logical forms, which follow the seq2seq

pipeline. Similarly, Iyer et al. [2017] present an encoder-decoder model with

global attention to improving a text-to-SQL semantic parser based on user feed-

back. Its binary user feedback can improve parser accuracy over time. Yin and

Neubig [2017a] introduce a grammar decoder for NL to Python code generation,

where this grammar decoder has been used in complex text-to-SQL generation

models [Wang et al., 2020]. Dong and Lapata [2018] propose a structure-aware

neural model decomposing the semantic parsing process into two steps: (1) gen-

erating a rough sketch from NL; (2) generating a final output from both NL
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and the rough sketch. This model employs two encoder-decoder for different

steps and can generate SQL, source code, and logical form from NL. The rough

sketch here can be considered an intermediate representation.

Besides text-to-SQL models, some other semantic parsing models also use

intermediate representation (IR). For example, Cheng et al. [2017b] introduce a

neural semantic parser converting NL descriptions to IR in the form of predicate-

argument structures, which are subsequently mapped to target domains. By

observing the IR generated by the parser, you can gain insight into what the

model has learned Herzig et al. [2021b] study the impact of intermediate repre-

sentations on compositional generalization in semantic parsing models without

changing the model architecture. Experiments show that their proposed IR

improves the model robustness against compositional generalization.

3.2 Question Answering

Question Answering (QA) [Calijorne Soares and Parreiras, 2020, Wang, 2022]

is an important natural language processing (NLP) task, aiming to generate a

corresponding answer to a given question. Text-to-SQL is considered as a table

or database based QA, where the answer is a SQL query or the data queried

from a table or database. For example, search for the keyword tableQA and you

will find many papers about text-to-SQL [Cho et al., 2018, Sun et al., 2020, Jin

et al., 2022]. To now, there are several tableQA datasets have been proposed,

such as WikiTableQuestions [Pasupat and Liang, 2015], MLB [Cho et al., 2018],

and TabMCQ [Jauhar et al., 2016]. In addition to pure tableQA, research on

multi-modal QA over text, tables, and images is starting to draw attention from

the community [Talmor et al., 2021].

Although the tableQA is related to the text-to-SQL, they are different. As

the discussion about the text-to-SQL assumption in Chapter 1, the input of

the text-to-SQL must be directly related to SQL instructions, not any question.

Therefore, some text-to-SQL input can be in non-problem form, such as: ‘Give

the name of students.’. To study the input difference between text-to-SQL and

QA, we analyze the text-to-SQL corpus Spider [Yu et al., 2018b] and the QA cor-

pus NQ [Kwiatkowski et al., 2019]. NQ denotes Natural Questions and contains

323K questions from real users, while Spider contains 10K and is introduced in

Chapter 3.4.1. We first parse the NL questions/descriptions and compare their

part-of-speech tag and dependency tree. We found that only there are only

29% Spider NL descriptions that can find a similar parse tree from parsed NQ

questions. Although Spider is annotated manually, it is still quite different from

the real-world QA question. In the Spider NL descriptions that can not find a

similar parse tree from the NQ, most of them are non-questions or too complex.
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3.3 Natural Language Interface to Database

The text-to-SQL semantic parsing task, also known as Natural Language Inter-

faces to Databases (NLIDB), has attracted much attention from the research

community since the 1970s [Warren and Pereira, 1982, Androutsopoulos et al.,

1995, Popescu et al., 2004, Li et al., 2006, Xu et al., 2017, Yu et al., Dong

and Lapata, 2018, Iacob et al., 2020]. The research history and technical route

of text-to-SQL almost overlap with semantic parsing. Many semantic parsing

methods designed for non text-to-SQL scenarios can also be applied to text-

to-SQL. For example, the grammar decoder [Yin and Neubig, 2017a] proposed

to generate code was later used to generate SQL [Wang et al., 2020]. For the

development history of semantic parsing, please refer to Chapter 3.1.

Text-to-SQL [Qin et al., 2022] is to convert an NL question under the

database schema to its corresponding SQL, where the input includes both the

NL question and database schema while the output is the SQL query. To learn

more about the text-to-SQL task, we can start with the task formulation, evalu-

ation method, methodology, and its corpora. In particular, Chapter 2.1.2 gives

a formal task formulation, and Chapter 2.1.3 describes the exact set match and

execution match metrics widely used for evaluating the text-to-SQL models. As

for the methodology, we discuss it from two perspectives, the model paradigms

in Chapter 3.5 and the key modules in Chapter 2.3. In the remainder of this

chapter, we review the text-to-SQL corpora and research progress on robust

text-to-SQL.

3.4 Text-to-SQL Corpora

Text-to-SQL corpora are essential for learning and evaluating the text-to-SQL

parsers. In the following, the text-to-SQL corpora are categorized into either

single-turn or multi-turn corpora. Table 3.1 roughly compares these corpora.

Since this thesis focuses on the single-turn cross-domain text-to-SQL problem,

we discuss it more.

3.4.1 Single-Turn Text-to-SQL Corpora

GeoQuery [Zelle and Mooney, 1996a]. The GeoQuery comprises 880 NL

questions issued to a database of US geographical facts (denoted as Geobase),

originally in Prolog language. Ana-Maria Popescu et al. [2003] constructed a

relational database for GeoQuery together with SQL queries for a subset of

700 questions. Afterwards, the remaining NL questions are further annotated

by Iyer et al. [2017].
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Dataset Category Cross-domain @Question @DB @Domain
GeoQuery Single-Turn 880 1 1

IMDB Single-Turn 128 1 1
YELP Single-Turn 196 1 1
MAS Single-Turn 131 1 1

WikiSQL Single-Turn ✓ 80654 26521
Spider Single-Turn ✓ 10181 200 138

Cspider Single-Turn ✓ 10181 200 138
Spider-SSP Single-Turn

SparC Multi-Turn ✓ 12726 200 138
CoSQL Multi-Turn ✓ 15598 200 138

Table 3.1: The representative text-to-SQL datasets. DB stands for database.
@ denotes the number of the corresponding units.

IMDB, YELP, MAS. The three corpora are proposed in the same pa-

per [Yaghmazadeh et al., 2017]. Each corpus contains one domain(database)

containing multi tables. They all contain several tables in each database. There

are a total of 131 NL queries in IMDB, 128 in YELP, and 196 in MAS, respec-

tively. The data volume of these three databases is pretty large, all exceeding

1GB.

WikiSQL [Zhong et al., 2017]. The WikiSQL is the first large-scale cross-

domain text-to-SQL dataset. WikiSQL contains 80,654 hand-crafted NL ques-

tion and SQL query pairs along with the corresponding SQL tables. The Wik-

iSQL dataset is more challenging than previous single-domain corpora since the

text-to-SQL parsers should generalize to an unseen domain. However, the SQL

complexity in WikiSQL is limited: its SQL queries only cover a single SELECT

column and aggregation, together with relatively simple selection predicates in

the WHERE clauses, thus lacking in terms of complex SQL queries.

Spider [Yu et al., 2018b]. The Spider dataset is a large-scale cross-domain

text-to-SQL benchmark with complex SQL queries. Spider contains 10,181 NL

descriptions and 5,693 unique corresponding SQL queries belonging to 138 dif-

ferent domains. The Spider dataset is split into 7,000 examples for training,

1,034 for development, and 2,147 for testing. The databases in training, de-

velopment, and testing are different, so it also requires models generalizing to

the unseen domains. Besides, the SQL queries in the Spider dataset can be

divided into four different levels of difficulty: easy, medium, hard, and extra

hard. Experiments on Spider have shown that previous models designed for

WikiSQL suffered a significant performance drop. This thesis focuses on the

Spider benchmark because relatively high generation accuracy has already been

achieved for the WikiSQL benchmark, and the SQL structures in Spider cover
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WikiSQL vs. Spider
Similarities Differences

(1) Both are cross-domain settings (1) SQL queries in Spider are more
without domain knowledge. complex than that in WikiSQL.

(2) There are few synonym substitutions (2) Each Spider database contains
in both schema items. multi tables, but WikiSQL is not.

Table 3.2: Overall comparison between WikiSQL and Spider

all SQL structures in WikiSQL.

CSpider [Min et al., 2019]. The CSpider dataset is a Chinese version of

Spider by translating the original English NL utterances into Chinese. Con-

sistent with Spider, CSpider contains the question-SQL pairs as in the Spider

dataset.

Spider-SSP [Shaw et al., 2021b]. The Spider-SSP is a new train and test

split of the Spider dataset based on the Target Maximum Compound Diver-

gence (TMCD) method. The Spider-SSP can evaluate the compositional gen-

eralization ability of text-to-SQL models. Spider-SSP consists of 3,282 training

instances and 1,094 testing instances. Unlike the Spider, the databases in train-

ing and testing are shared, so it does not require models generalizing to the

unseen domains.

Comparison Between WikiSQL and Spider

This thesis focuses on the Spider text-to-SQL benchmark because it is more

challenging than other datasets and it contains several variants for further stud-

ies, such as CSpider and Spider-SSP. At present, the Spider and WikiSQL are

the two most popular datasets in the text-to-SQL community. Table 3.2 briefly

compares their similarities and differences.

Differences: The most significant difference between WikiSQL and Spider

is that SQL queries in Spider are more complex than in WikiSQL. Table 3.3

presents a complex SQL example from Spider, in which the question seems

conceptually simple but involves several different pieces of database tables and

SQL clauses.

Additionally, the Spider database contains several tables while there is only

one table in the WikiSQL database. The presence of multiple tables introduces

column and table name disambiguation problems to Spider, whereas none ex-

ist in WikiSQL. For example, suppose that the tables ‘student’, ‘course’, and

‘studentship’ all contain a ‘student ID’ column. You would need to choose one

‘student ID’ column from these tables when the question is ‘Show the student ID
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Question: What airports don’t have departing or arriving flights?
SQL: SELECT AirportName FROM Airports

WHERE AirportCode NOT IN (
SELECT SourceAirport FROM Flights UNION
SELECT DestAirport FROM Flights )

Table 3.3: A complex nested SQL with set operator

who choose math’. Multiple tables in Spider also cause the number of columns

to be dozens of times more massive than WikiSQL, which increases the difficulty

of choosing the correct column.

Similarities: Although WikiSQL and Spider are cross-domain settings, most

SQL queries do not need domain knowledge during generation. The domain

knowledge usually is a consensus that only exists in a specific field and will not

be clearly stated in the question. For example, in a restaurant booking scenario

where domain knowledge is needed, the question requires a ‘good restaurant’,

which means its rating star must be higher than 3.5. More domain knowledge

details can be found in Appendix A.

In addition, most sentences use schema annotation words instead of syn-

onyms, allowing the model to locate the schema items through exact word

matching. For example, in Table 3.3, the question rarely uses ‘airplane’ or other

synonyms to replace ‘flight’, given that the schema column word is ‘flight’.

3.4.2 Multi-Turn Text-to-SQL Corpora

SParC [Yu et al., 2019b]. The SParC is a large-scale cross-domain context-

dependent text-to-SQL dataset built on the Spider, using the same databases

as the Spider. Each SParC question sequence is based on a Spider question by

asking inter-related questions. After obtaining the sequential questions, anno-

tators give the SQL query to each question. In total, the SParC contains 4k+

question sequences including 12k+ question-SQL pairs.

CoSQL [Yu et al., 2019a]. The CoSQL dataset is the first large-scale cross-

domain conversational text-to-SQL dataset, containing about 3k dialogues in-

cluding 30k+ turns and 10k+ corresponding SQL queries. The CoSQL follows

the Wizard-of-Oz [Budzianowski et al., 2018] settings, recruiting annotators who

act as DB users and SQL experts respectively to simulate a DB query scenario.

Experiments show that the baseline model performance on CoSQL suggests

plenty of space for improvement.

46



3.5 The Paradigms of Text-to-SQL

There are several text-to-SQL model paradigms, such as (1) using rule-based

methods to generate the SQL query [Androutsopoulos et al., 1995], and (2)

using a re-ranking strategy [Bogin et al., 2019b] to select the best SQL query.

However, the performance of the first method is relatively low, and the second

approach cannot run independently. Therefore, we select representative inde-

pendent high-performance text-to-SQL models, ignoring their removable mod-

ules that improve performance and divide these models into two paradigms, as

shown in Figure 3.1.

Natural Language Question

Encoder

Decoder

Encoder

Classifier1 Classifiern……

Natural Language Question

Select schema itemSelect AGG keywords

SQL Query

Paradigm One (Sketch-Based) Paradigm Two (Generation-Based)

Other components

SQL Query

Figure 3.1: General structure of two text-to-SQL paradigms.

3.5.1 Paradigm One (Sketch-Based Method)

The sketch-based methods predefine a class of classifiers to determine which

schema item or SQL keywords to be generated, as shown in Figure 3.1. We

briefly introduce the sketch-based methods for SQL keyword generation in Chap-

ter 2.3.1. Actually, these methods are also used for selecting the schema items.

In WikiSQL, because the dataset only contains simple SQL, most models

decompose the SQL synthesis into several independent classification sub-tasks.

Each sub-task employs an independent classifier, taking the entire sentence as

input. For example, one classifier would be used to determine which column is

the column in SELECT clause, and another separate classifier to determine

which aggregation function is correct. These models include: SQLNet [Xu

et al., 2017], TypeSQL [Yu et al.], SQLova [Wonseok Hwang, Jinyeung Yim,

Seunghyun Park, 2019], HydraNet [Lyu et al., 2020], X-SQL [He et al., 2019],

Coarse2Fine [Dong and Lapata, 2018] and etc.

However, this paradigm is only effective in simple SQL generation problems

because it requires too many classifiers for complex SQL, leading to a com-
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plex model structure and relatively poor performance [Yu et al., 2018b,a]. For

example, the SQLNet and TypeSQL models designed for WikiSQL have been

transferred to Spider; however, their performance has dropped significantly.

SyntaxSQLNet [Yu et al., 2018a] is the first model designed for Spider and,

based on a similar idea, uses independent modules to predict different clauses.

However, its performance is lower than the later models belonging to Paradigm

two [Guo et al., 2019, Bogin et al., 2019a].

3.5.2 Paradigm Two (Generation-Based Method)

Compared to Paradigm One, the structure of Paradigm Two is pretty concise,

relying on a single decoder to generate the SQL query, as shown in Figure 3.1.

The generation-based method follows seq2seq modeling (introduced in Chap-

ter 2.2.2), generating target SQL during the decoding process. However, the

early seq2seq model cannot work well in text-to-SQL [Yu et al., 2018b]. To solve

this problem, [Xiao et al., 2016, Cheng et al., 2017a, Yin and Neubig, 2017a]

propose grammar decoder to replace standard decoder. Experiments show that

the generation-based method with grammar decoder consistently outperforms

the sketch-based method in the Spider complex text-to-SQL generation bench-

mark [Yu et al., 2018b, Wang et al., 2020, Guo et al., 2019, Bogin et al., 2019a].

However, the grammar decoder is not perfect in concurrently generating

the SQL keywords and schema items. For example, as shown in Table 3.4,

we tested the top models (RATSQL [Wang et al., 2020], IRNet [Guo et al.,

2019], and GNN [Bogin et al., 2019a]) in the Spider leaderboard and all these

models tended to generate wrong predictions, as shown in the table. Because

there is no strong interaction between generating SQL structure (generating the

error ‘avg’ function) and filling the schema item (filling the ‘average’ column).

SQL structure generation depends on sentence analysis while filling the schema

items depends on the similarity between schema items and sentence tokens.

This phenomenon will prevent the generation of a correct SQL when there is a

column named ‘average’ or ‘max’ or ‘min’ in the schema [Gan et al., 2021b].

Question: What is the average salary.
Gold SQL: SELECT average FROM salary

Wrong prediction: SELECT avg(average) FROM salary

Table 3.4: A common prediction error

The IE-SQL [Ma et al., 2020] model brings hope for the grammar decoder

problem. IE-SQL is an information extraction-based text-to-SQL method that

tackles tasks via sequence labeling, relation extraction, and text matching. IE-

SQL first automatically labels questions by analyzing their corresponding SQL,
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then trains a neural model to learn how to label a question without an SQL.

Finally, IE-SQL can synthesize an SQL from the question labels deterministi-

cally. Figure 3.2 illustrates the two generation steps in the IE-SQL. IE-SQL is

also a generation-based model employing an encoder-decoder to generate the

question labels, where the role of the labels is similar to that of intermediate

representation.

Although this approach seems to avoid the problem in Table 3.4, generating

the correct annotation and then synthesizing an SQL from the question label

for Spider requires much more work than WikiSQL might because Spider’s sen-

tences and SQL queries are much more complicated than WikiSQL. The same

name column, which has not appeared in WikiSQL, also restricts applying this

method directly for Spider. While it is difficult to use IE-SQL on Spider, it may

work well by generating labels first and then training a grammar decoder model

with labels.

Natural Language Question: 
What is the average miles per gallon of the cars with 4 cylinders?

What is the average miles per gallon of the cars with 4 cylinders ?
O O O avg COL-1 COL-1 COL-1 O O TABLE O VALUE COL-2 O

‘ SELECT avg( COL-1 ) FROM TABLE WHERE COL-2 = VALUE ’
mpg cars_data cylinder 4

Encoder

Decoder

Figure 3.2: IE-SQL [Ma et al., 2020] model generates the question labels and
then synthesize the target SQL from the labels.

3.6 Robust Text-to-SQL

We discuss robust text-to-SQL from four aspects data, SQL keyword generation,

schema linking, and compositional generalization.

3.6.1 Data

Existing works on improving the robustness of the text-to-SQL model are mainly

through adversarial training and data augmentation. Xiong and Sun [2019]

propose an AugmentGAN model to augment more data for the target domain.

Li et al. [2019] use a sentence shuffling method to augment the single domain

GeoQuery and Restaurants dataset. Radhakrishnan et al. [2020] augment the

WikiSQL [Zhong et al., 2017] dataset with synthetic search-style questions to

improve the robustness of short, colloquial input. Recent work demonstrates

49



that adversarial training with augmented data can improve performance and

robustness of text-to-SQL models [Zhu et al., 2020]. Zeng et al. [2020] introduce

a SpiderUTran dataset that includes original Spider [Yu et al., 2018b] examples

and some untranslatable questions examples. Zeng et al. [2020] also study the

robustness of the text-to-SQL model when the user inputs an untranslatable NL

question.

3.6.2 SQL Keyword Generation

As discussed in Chapter 3.5.2, Gan et al. [2021b] find that the grammar decoder

tends to generate incorrect SQL keywords when there is a column named ‘av-

erage’ or ‘max’ or ‘min’ in the schema. Although the method in IE-SQL can

solve this problem to a certain extent, the current IE-SQL is not suitable for

the complex text-to-SQL task. In addition, Gan et al. [2021b] also introduces

other types of domain knowledge that cause SQL keyword generation errors.

For example, The model cannot understand that there should be different order

keywords for age and birthday when sorting from old to young, e.g., DESC used

for age and ASC used for birthday. Experiments show that the introduction of

external knowledge can alleviate these problems.

3.6.3 Schema Linking

Schema linking, introduced in Chapter 2.3.2, is a key module for models to

generate correct schema items. So if the schema linking is destroyed, the model

robustness will be affected. Guo et al. [2019] and Wang et al. [2020] conducted

an ablation study on exact match based schema linking (EMSL), respectively,

and the results showed that removing the EMSL would lead to the greatest

decrease in model performance. These studies have influenced many follow-up

works using EMSL [Cai et al., 2021, Xu et al., 2021, Lei et al., 2020, Yu et al.,

2021, Shi et al., 2021]. However, we found that once the model uses EMSL, it

becomes reliant on it, and pretrained language models can replace EMSL and

make the model more robust, see Chapter 6.

In addition to discussing schema linking in the paper as part of the model [Guo

et al., 2019, Bogin et al., 2019a, Wang et al., 2020, Chen et al., 2020a, Cao

et al., 2021], some works have focused on the schema linking. Lei et al. [2020]

demonstrated that more accurate schema linking conclusively leads to better

text-to-SQL parsing performance. To support further schema linking studies,

Lei et al. [2020] and Taniguchi et al. [2021] invested human resources into an-

notating schema linking corpus.

50



3.6.4 Compositional Generalization

Compositional generalization is the ability to generalize to novel combinations

of the components observed during training. Compositional generalization is a

basic capability of human beings, but neural network models have been proven to

lack these capabilities. Figure 1.3 gives a compositional generalization example

in text-to-SQL, discussed in Robust Text-to-SQL Parsing of Chapter 1.

Compositional generalization for semantic parsing has garnered a great deal

of attention [Finegan-Dollak et al., 2018, Oren et al., 2020, Furrer et al., 2020,

Conklin et al., 2021]. Most prior works on text-to-SQL tasks focus on the

cross-domain generalization, which mainly assess how the models generalize

the domain knowledge to new database schemas [Suhr et al., 2020, Gan et al.,

2021b]. Oren et al. [2020] study the compositional split in several text-to-

SQL dataset Finegan-Dollak et al. [2018], and find some factors to improve

generalization performance. Besides, Shaw et al. [2021b] introduced Target

Maximum Compound Divergence (TMCD) splits for studying compositional

generalization in semantic parsing, where they aimed to maximize the divergence

of SQL compounds, that are one or multi SQL clauses, between the training and

test sets. The TMCD split only ensures that the NL question word atom and

its corresponding SQL compounds appear in the training set and do not care

about its semantic form. The TMCD split also requires that the SQL queries

in the test set be as different as possible from the training set. For example,

the TMCD split requires model learning ‘Give me the name of the student who

is the oldest ’ can predict the ‘Give me the name of the oldest student ’ because

the SQL compounds in testing appear in training.

Besides the research devoted to text-to-SQL, the research on the composi-

tional generalization of semantic parsing also brings inspiration. Furrer et al.

[2020] investigate state-of-the-art techniques and architectures to assess their ef-

fectiveness in improving compositional generalization in semantic parsing tasks.

Yin et al. [2021] described a span-level supervised attention loss that would

improve compositional generalization in semantic parsers. Herzig and Berant

[2021] proposed SpanBasedSP, a parser that could predict a span tree over an

input utterance, dramatically improving performance on splits that required

compositional generalization. Chen et al. [2020b] proposed the neural-symbolic

stack machine, which could integrate a symbolic stack machine into a seq2seq

generation framework, learning a neural network as the controller to operate

the machine.
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Chapter 4

Natural SQL (NatSQL)

In Chapter 3, we reviewed different SQL IRs and how these IRs bridge the

mismatch between NL and SQL [Guo et al., 2019]. However, previous IRs are

too complicated or have limited coverage of SQL structures. Besides, although

the existing IRs eliminate part of the mismatch between intent expressed in

NL and the implementation details in SQL, some mismatches can be further

eliminated by improving the IR.

In this chapter, we present Natural SQL (NatSQL), a new intermediate rep-

resentation that offers simplified queries over other IRs, while preserving a high

coverage of SQL structures. More importantly, NatSQL further eliminates the

mismatch between NL and SQL, and can easily support executable SQL gen-

eration. Figure 1.4 presents a sample comparison between NatSQL and other

IRs. We observe that there is a mismatch between the NL word ‘and’ and the

INTERSECT SQL keyword, since in another similar question shown in Figure

4.6, the ‘and’ no longer corresponds to the INTERSECT keyword. To trans-

late the NL question into a corresponding query, previous IRs need the models

to distinguish whether the word ‘and’ corresponds to INTERSECT, this is

not required for NatSQL. Among all IRs, NatSQL provides the simplest and

shortest translation, while the NatSQL structure also aligns best with the NL

question.

NatSQL preserves the core functionalities of SQL, while simplifying the

queries as follows: (1) dispensing with operators and keywords such as GROUP

BY, HAVING, FROM, JOIN ON, which are usually hard to find counterparts

for in the text descriptions; (2) removing the need for nested subqueries and set

operators, using only one SELECT clause in NatSQL; and (3) making schema

linking easier by reducing the required number of schema items that are nor-

mally not mentioned in the NL question. The design of NatSQL easily enables

executable SQL generation, which is not naturally supported by other IRs.
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We compare NatSQL with SQL and other IRs by incorporating them into

existing open-source neural network models that achieve competitive perfor-

mance on Spider. Our experiments show that NatSQL boosts the performance

of these existing models, and outperforms both SQL and other IRs. In partic-

ular, equipping RAT-SQL+GAP with NatSQL achieves a new state-of-the-art

execution accuracy on the Spider benchmark. These results suggest that to im-

prove the ability of text-to-SQL models to understand and reason about the NL

descriptions, designing IRs to better reveal the correspondence between natural

language (NL) and query languages is a promising direction.

This chapter is based on [Gan et al., 2021c]. Our contributions in this chapter

are as follows:

• We propose a SQL IR named NatSQL to bridge the gap between NL and

SQL better.

• We modify several models to fit the NatSQL and attain performance im-

provement.

• We evaluate the performance of IRs on the different text-to-SQL models.

Experiments show that NatSQL outperforms other IRs.

4.1 Two Steps Toward Text-to-SQL with IR

The ML-based text-to-SQL models mostly divide the problem into two sub-

tasks: generating SQL keywords (blue character in Figure 1.4) and filling the

schema items (black character in Figure 1.4), also named schema linking. When

the text-to-SQL models use IR, the change from text-to-SQL to text-to-IR can

be done without modifying the model structure. For related discussion, please

refer to Chapter 2.3.3. We investigate how we can design an IR to improve both

SQL keyword generation and schema item generation.

4.1.1 Generating SQL Keywords

Neural text-to-SQL models usually generate the SQL keywords according to

the similarity linking scores between the hidden state from the question and the

production rule embeddings. For example, in Figure 1.4, we conjecture a good

text-to-SQL model should be able to give a higher linking score between the

word ‘less’ and the SQL ‘<’ keyword.

However, SQL is designed for effectively querying relational databases, not

for representing the meaning of NL questions. Hence, there inevitably exists a

mismatch between intents expressed in natural language and the implementation

details in SQL [Guo et al., 2019]. For example, in Figure 1.4, the GROUP BY
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and JOIN ON clauses are not mentioned in the question. One solution is to use

an IR to remove the SQL clauses that are hard to predict. Experiments show

that the SemQL IR can improve the accuracy of previous models [Guo et al.,

2019].

4.1.2 Generating Schema Items

Text-to-SQL models usually generate the schema items according to the sim-

ilarity linking scores between tokens in the question and database schemas.

Intuitively, a model is supposed to predict higher scores to schema items that

are mentioned in the question. To achieve this goal, some existing neural net-

works implement a schema linking mechanism, by recognizing the tables and

columns mentioned in a question [Guo et al., 2019, Bogin et al., 2019a, Wang

et al., 2020].

Schema linking is essential for text-to-SQL tasks. As shown in the ablation

study of IRNet [Guo et al., 2019] and RAT-SQL [Wang et al., 2020], removing

the schema linking results in a dramatic decrease in performance. The impor-

tance of schema linking raises a question about generating schema items not

mentioned in the question. Some models use graph neural networks to find

these unmentioned schema items, and some models delete unmentioned schema

items based on the IR; e.g., in Figure 1.4, the IRs remove the JOIN ON and

GROUP BY clauses with the unmentioned schema items.

4.2 NatSQL

In this section, we present the detail of NatSQL. NatSQL is an SQL intermedi-

ate representation that simplifies the SQL structure and makes schema linking

easier.

4.2.1 Assumption

We design NatSQL on an assumption: when users use natural language to query

the database, the NL descriptions are: the required data and the query condi-

tions. Based on this assumption, we think it is possible to design an SQL IR that

only needs two different clauses corresponding to the required data and query

conditions, respectively. We found that the required data only corresponds to

the SELECT clause of SQL, and the remaining SQL clauses correspond to query

conditions. In particular, WHERE is obviously the simplest and most impor-

tant clause among these conditional clauses. Therefore, we started to study how

to combine the functions of all other clauses into the WHERE clause and found

it can be done. However, when incorporating ORDER BY into the WHERE
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NatSQL = SELECT , Column , { ‘,’ Column } ,
[ WHERE W Cond ] ,
[ ORDER BY Order By ] ;

Column = Agg Col | Table Col ;

Agg Col = Agg Fun , ‘(’ Table Col , ‘)’ ;

Agg Fun = ‘avg ’ | ‘count ’ | ‘max ’ | ‘min’ | ‘sum’ ;

Table Col = TABLE NAME , ‘.’ , COLUMN NAME
| TABLE NAME , ‘.’ , ∗ ;

W Cond = [Conjunct], Condition , { Conjunct Condition } ;

Condition = Cond L , W Oper , Cond R ,

[ ‘and’ , NUMBER ] ;

Conjunct = ‘and ’ | ‘or ’ | ‘except ’ | ‘intersect ’

| ‘union’ | ‘sub’ ;

W Oper = ‘between’ | ‘=’ | ‘>’ | ‘<’ | ‘>=’
| ‘<=’ | ‘! =’ | ‘in’ | ‘like’ | ‘is’
| ‘exists’ | ‘not in’ | ‘not like’
| ‘not between’ | ‘is not ’ | ‘join’ ;

Cond R = NUMBER | STRING | Column ;
Cond L = Column | “@” ;

Order By = Column , [ DESC | ASC ] ,
[ LIMIT , NUMBER ]

Table 4.1: The main grammar of NatSQL. Here we highlight the differences of
production rules from SQL.

clause, we found it to be not elegant, so we decided to retain two conditional

clauses: WHERE and ORDER BY. Finally, we propose the NatSQL, an SQL

IR with only the SELECT, WHERE, and ORDER BY clauses. We believe that

SQL IR should not seek to cover all forms of SQL in the text-to-SQL scenarios,

otherwise it is better to use SQL directly. In a text-to-SQL process, we are

happy with the NatSQL converted to an equivalent SQL that is not the same

as the target one.

4.2.2 Overview

Table 4.1 presents the grammar specification of NatSQL defined in extended

Backus-Naur form (EBNF) [Scowen, 1993]. The lowercase symbols in a single

quotation and the capital symbols are terminal, while other symbols are nonter-

minal. The curly bracket represents that symbols inside it appear zero to multi

times. The square bracket denotes that symbols inside it appear zero or one

time. The symbols separated by the ‘|’ are juxtaposed, and any one of them can

substitute the symbol on the left of the ‘=’ symbol. To better understand the

production rules, Figure 4.1 presents an example of NatSQL with its grammar
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symbols.

NatSQL only retains the SELECT, WHERE and ORDER BY clauses from

SQL, dispensing with other clauses such as GROUP BY, HAVING, FROM,

JOIN ON, set operators and subqueries. Symbols in capital italics or in a

single quotation are keywords of SQL and NatSQL, and other capital symbols

represent special meanings, where ‘TABLE NAME’ and ‘COLUMN NAME’ are

defined for databases, and ‘NUMBER’ and ‘STRING’ represent the data types.

Except for the deleted clauses, the differences between NatSQL and SQL are

underlined in Table 4.1. NatSQL implements the function of the deleted clauses

by adding new keywords and allowing conjunct to appear before the WHERE

condition. In terms of language format, NatSQL does not add new clauses, and

can retain deleted clauses as needed.

The main design principle of NatSQL is to simplify the structure of SQL

and bring its grammar closer to natural language. Considering the example in

Figure 1.4, the set operator ‘INTERSECT ’, used to combine SELECT state-

ments, is never mentioned in the question. INTERSECT is introduced in SQL

to allow the combination of the results of multiple functions. Such implemen-

tation details, however, are rarely considered by end users and therefore rarely

mentioned in questions [Guo et al., 2019].

SELECT count(visitor.*) WHERE @ NOT IN visit.* and museum.open_year >  2010

Column

W_Cond

Condition Condition

Cond_L Cond_LCond_R Cond_R

Table_Col Table_ColTable_ColW_Oper W_OperConjunct

Figure 4.1: An example of NatSQL corresponding to the grammar symbols in
Table 4.1

4.2.3 Overall Comparison

Starting from SyntaxSQLNet [Yu et al., 2018a], several types of IR have been

developed for text-to-SQL models on the Spider dataset. The main limitation

of SyntaxSQLNet is that it removes the FROM and JOIN ON clauses, which

may result in the failure to find the correct table when converted to SQL. For

example, in Figure 1.4, SyntaxSQLNet IR misses the inventory table, thus it

cannot generate the correct JOIN ON clause that appears in the original SQL.

The IR for RAT-SQL [Wang et al., 2020] is mostly close to SQL, and it avoids

missing tables since it only removes the JOIN ON clause from SQL. Zhong et al.

[2020b] and Lee [2019] also utilize an IR that is similar to the IR in RAT-SQL

and SyntaxSQLNet.
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Guo et al. [2019] introduced SemQL, an intermediate language, to facilitate

SQL prediction. As with NatSQL, SemQL removes the keywords FROM, JOIN

ON, GROUP BY, HAVING from SQL. Although SemQL and NatSQL remove

both FROM and JOIN ON clauses, SemQL and NatSQL avoid missing a table

by moving the table into the ‘*’ column. NatSQL improves on SemQL in the

following ways:

(1) Compatible with a wider range of SQL queries than SemQL.

(2) Simplify the structure of queries with set operators, i.e., INTERSECT,

UNION, and EXCEPT, denoted as IUE hereafter.

(3) Eliminate nested subqueries.

(4) Reduce the number of schema items to predict.

(5) NatSQL uses the same keywords and syntax as SQL, which makes it easier

to read and expand than SemQL.

There are four examples in Figure 1.4, 4.2, 4.3 and 4.4 demonstrating the dif-

ferences between SQL, SemQL, and NatSQL statements representing the same

natural language question.

4.2.4 Scalability of NatSQL

We take an SQL query with multiple tables as an example. In Figure 4.2, since

the SemQL misses the has pet table, SemQL cannot be converted to the target

SQL, indicating that SemQL is not compatible with this type of SQL query. The

SyntaxSQLNet IR is also not compatible, but the RAT-SQL IR can convert this

query appropriately.

While both SemQL and NatSQL completely remove all FROM and JOIN

ON clauses, NatSQL introduces a new WHERE condition operator join for

these unremovable JOIN ON clauses, as shown in Figure 4.2. With this extra

WHERE condition, NatSQL can be converted to the target SQL. Alternatively,

you could use the NatSQL augmented with FROM clause version. We recom-

mend the original version since its experimental result is better and the sub-

question ‘who have a pet’ looks like a WHERE condition. We modify this

example in Table 4.2 to illustrate why it looks like a WHERE condition. Usu-

ally, NatSQL does not need the join operator for generating JOIN ON clause,

such as the ‘Ques 2 ’ in Table 4.2, except in cases when it cannot infer the correct

JOIN ON clause from other clauses.

NatSQLG. Since each database has different compatibility with SQL, we al-

low NatSQL to retain the deleted clauses as needed. NatSQLG is NatSQL

augmented with GROUP BY, which improves the compatibility in the SQLite

database where the Spider benchmark is built on.
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Question : : :

Find the name of students who have a pet

SQL : :

SELECT T1.name FROM student AS T1

JOIN has_pet AS T2 ON T1.stuid=T2.stuid

SemQL : :

SELECT student.name

NatSQL : (Original) :

SELECT student.name WHERE @ join has_pet.*

NatSQL : (Extend FROM clause) :

SELECT student.name FROM student, has_pet

Figure 4.2: An example about the scalability and readability of NatSQL.

Ques 1: Find ... who have a pet.
NatSQL: ... WHERE @ join has pet.*
Ques 2: Find ... who have two pet.

NatSQL: ... WHERE count(has pet.*) = 2

Table 4.2: A modified example based on Figure 4.2

4.2.5 NatSQL for SQL Keyword Generation

By simplifying the set operators and nested subqueries, NatSQL improves text-

to-SQL models.

Simplifying Queries with Set Operators

It is typically hard to generate queries with IUE (INTERSECT, UNION, and

EXCEPT ) set operators for text-to-SQL models, where the corresponding F1

score is usually the lowest among all breakdown metrics on the Spider bench-

mark [Guo et al., 2019, Bogin et al., 2019a, Wang et al., 2020]. The main reason

is that the related questions are generally longer and more complicated, while

the mismatch between NL and SQL queries further increases the prediction

difficulty, as discussed in Section 4.1.1.

Figure 4.3 compares the SQL queries corresponding to two similar problems.

The second question in Figure 4.3 contains an extra condition: ‘more than 1 room’.

This extra condition changes the structure of the entire SQL query. Although

IRs have been widely used for complex SQL, enthusiasts of end-to-end models

expect the text-to-SQL model to automatically distinguish whether the word
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Question : :
Find names of properties that are houses
or apartments?

SQL : (Almost the same as Other IRs)

SELECT name FROM Properties WHERE
code = "House" OR code = "Apartment"

NatSQL : :

SELECT name FROM Properties WHERE

code = “House” OR code = "Apartment”

Question : : :
Find names of properties that are houses
or apartments with more than 1 room?

SQL : (Almost the same as Other IRs)

SELECT name FROM prop WHERE code = 
"House" UNION SELECT name FROM prop
WHERE code = "Apartment" AND room > 1

NatSQL : :

SELECT prop.name WHERE prop.code = 
“House” OR prop.code = "Apartment" AND
prop.room > 1

Figure 4.3: An example about the mismatch between NL and IUE set operators.

token ‘or’ in Figure 4.3 corresponds to UNION or OR keyword. However,

most models cannot do that and would generate a OR clause for both ques-

tions. This example is similar to the comparison between Figure 1.4 and Figure

4.6 discussed in the beginning of this chapter.

NatSQL bridges this gap by unifying them into a simple OR operator that

will be converted to a UNION clause when it cannot concatenate its following

conditions. The reasons for the failure to concatenate conditions include: (1) the

precedence of the following conditions is higher (e.g., the precedence of AND is

higher than OR); (2) the two conditions cannot be connected, or they are disjoint

such as the example in Figure 1.4. The ‘count(film actor.*)>5 ’ condition cannot

be connected with the ‘count(inventory.*)<3 ’ condition because they belong to

different tables. Based on the same rules, NatSQL can simplify the SQL with

INTERSECT (example is shown in Figure 1.4) and EXCEPT. As to the case

that the set operator itself represents part of a condition, NatSQL allows them

to follow the WHERE keyword. As illustrated in Table 4.3, this type of SQL is

mainly related to the EXCEPT operator.

The NatSQL prediction work in Table 4.3 is easier than others. NatSQL
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here only needs to predict the ‘cartoon’ table, instead of predicting the ‘car-

toon.channel ’ column. Predicting a table is easier than predicting a column

because the premise of finding the correct column is to find the correct table. Be-

sides, many models incorrectly output ‘cartoon.id ’ instead of ‘cartoon.channel ’

because the annotation of ‘cartoon.id ’ is the same as‘tv channel.id ’ column.

Ques Find the id of tv channels that do not play any cartoon
SQL SELECT id FROM tv channel EXCEPT

SELECT channel FROM cartoon
SemQL SELECT tv channel.id EXCEPT

SELECT cartoon.channel
NatSQL SELECT tv channel.id WHERE except cartoon.*

Table 4.3: An example of none WHERE conditions before the IUE.

In addition to the conditions mentioned above that cannot be concatenated,

Table 4.4 present one more example. These two conditions can not concatenate

because one WHERE condition can not concatenate a HAVING condition by

a OR operator.

Ques Which film is rented at a fee of 0.99 or has less
than 3 in the inventory?

SemQL SELECT film.title WHERE film.rental rate = 0.99
UNION
SELECT film.title WHERE count(inventory.*)< 3

NatSQL SELECT film.title WHERE film.rental rate = 0.99
OR count(inventory.*)< 3

Table 4.4: An example modified from that in Figure 5.

Eliminating Nested Subqueries

Since the subqueries in both NatSQL and SemQL only appear in WHERE

conditions, only one column in the SELECT clause of a subquery is required.

NatSQL keeps this SELECT column in ‘Cond R’ (right column of WHERE

conditions) instead of a whole SELECT clause. Since this meets the WHERE

condition format, NatSQL can remove the brackets and subqueries from SQL,

as shown in Figure 4.4.

4.2.6 How NatSQL Help Schema Item Generation

NatSQL helps schema item generation by reducing the number of schema items

that need to be predicted. For example, in Figure 4.4, without an in-depth
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Question : : :

Find the number of visitors who did

not visit any museum opened after 

2010.

SQL : :

SELECT count(*) FROM visitor WHERE

id NOT IN ( SELECT t2.visitor_id

FROM museum AS t1 JOIN visit AS

t2 ON t1.Museum_ID = t2.Museum_ID

WHERE t1.open_year > 2010 )

SemQL : :

SELECT count(visitor.*) WHERE visitor.

id NOT IN ( SELECT visit.visitor_id

WHERE museum.open_year > 2010 )

NatSQL : :

SELECT count(visitor.*) WHERE @ NOT IN

visit.* and museum.open_year  >  2010

@ is a placeholder

t2.visitor_idid

.visitor_idid

It is hard to construct schema linking for column
‘id’, because the question doesn’t mention it:

Figure 4.4: A sample question in Spider dataset with corresponding SQL,
SemQL and NatSQL queries.

analysis of the database schema, by looking at the natural language description

itself, it is difficult to infer the grey shaded columns in SQL and SemQL (in this

example, they are column ‘id ’ in table ‘visitor ’ and column ‘visitor id ’ in table

‘visit ’). We cannot build a schema linking for these columns, even though the

schema linking is important to boost performance as discussed in Section 4.1.2.

NatSQL solves this problem by replacing some of the columns with a table

only or @, where @ is a placeholder of NatSQL. We can find that all columns

of NatSQL in Figure 4.4 are mentioned in the question. Specifically, NatSQL

uses @ to replace the ‘visitor.id ’ and uses ‘visit.* ’ to replace ‘visit.visitor id ’.

@ is a placeholder in NatSQL that only appears in ‘Cond L’, which denotes

that we need to infer a column to replace it. The ‘*’ keyword does not appear

in the WHERE condition without an aggregation function, so NatSQL uses it

to represent a table. With this table, we can infer the correct column in the

target SQL to replace the @ and ‘table.* ’ according to Algorithm 1.
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Algorithm 1 Infer columns to replace the @ and table.* in NatSQL

Input: t list ▷ All tables before @, which include the table ‘visitor’ in Figure
4.4

table r ▷ The table next to the @, which is the table ‘visit’ in Figure
4.4
Output: Two columns to replace the @ and table.*

1: for Every table in t list do
2: if There is foreign key relationship between table and table r then
3: return These two foreign key columns

4: for Every table in t list do
5: if There are columns with the same name in both table and table r then
6: return The same name columns
7: return Their primary keys

4.3 Generate SQL From NatSQL

NatSQL is similar to SQL while their SELECT and ORDER BY clauses are

the same. But we still need to generate SQL from NatSQL since the NatSQL

cannot be run by database systems.

4.3.1 Generate HAVING

NatSQL combine the HAVING and WHERE condition into the HAVING clause

because, unlike HAVING condition, the SQL WHERE condition does not use

aggregate functions in its ‘Cond L’. Therefore, we can restore the HAVING

conditions by collecting all conditions whose ‘Cond L’ use aggregate functions,

while the remaining conditions are SQL HAVING conditions.

4.3.2 Generate GROUP BY

In most case, the column in GROUP BY should appear in the SELECT clause

which makes the query more reasonable. For example, in the question “Show

average salary on each group.”, if you only show the average salary without the

group information, you have no idea the average salary belongs to which group.

NatSQL generate the GROUP BY clause by copying the SELECT columns

without an aggregate function to the GROUP BY clause. We need to generate

GROUP BY clause from NatSQL in one of the following circumstance:

• There are columns with and without aggregate functions that appear in

the SELECT clause.

• There are HAVING conditions in the SQL generated from NatSQL.

• There are columns with aggregate functions that appear in the ORDER

BY clause.
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4.3.3 Generate FROM and JOIN ON

NatSQL does not support generating all types of FROM and JOIN ON clause.

We discuss them separately.

Supported Types

For the simplest FROM followed by a single table without JOIN ON, NatSQL

can be well compatible. For JOIN ON, NatSQL supports the most common

type, i.e., use the foreign key relationship to build the ON conditions. Since

every column in NatSQL contains a table name, including the ‘∗’ column, we

can infer the correct FROM and JOIN ON clause from the used tables by a

heuristic search.

For example, here is a NatSQL: “SELECT A.a WHERE C.c = ‘V’” which

contains table A and C in it. We assume that we can search the foreign key

relationships from all tables and then find a path starting from A or C to C or

A. We may find that column A.b is the foreign key reference to column B.b,

and column B.c is the foreign key reference to column C.c. Now, we can infer

the path is “FROM A JOIN B ON A.b = B.b JOIN C ON B.c = C.c”. But

if we cannot find a path starting from A or C to C or A, we cannot infer the

runnable SQL from the previous NatSQL. The solution is that we should also

search a list of possible JOIN ON relationships that the database developers

must manually create.

However, if column A.b and A.bb are both the foreign keys reference to

column B.b, there are two available ON conditions: “A.b = B.b” and “A.bb =

B.b”. NatSQL-to-SQL will choose the condition mentioned by the question, i.e.,

whether the question mentions A.b or A.bb column. If both columns are not

mentioned, we can only choose one randomly, which may be wrong. Otherwise,

we can move the ON condition into the NatSQL WHERE condition, which is

“SELECT A.a WHERE C.c = ‘V’ and A.b = B.b”.

Unsupported Types

In addition to the possible incompatibility caused by multiple feasible foreign

key relationships for ON condition, NatSQL is not compatible with the following

three circumstances:

• Self connection, such as: FROM A JOIN A ON A.a = A.b.

• The operator in ON condition is not “=”, such as: FROM A JOIN B ON

A.a > B.b.

• subquery substitute for a table name after FROM or JOIN.
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4.3.4 Generate Subquery

NatSQL is not compatible with subqueries appearing in the FROM clause but

is compatible with subqueries appearing in WHERE and HAVING conditions.

Since NatSQL combines the WHERE and HAVING conditions, all subqueries in

NatSQL only appear in its WHERE conditions. NatSQL removes the brackets

from SQL, so the structure of generated SQL is determined according to the

order of conditions of NatSQL and NatSQL only supports the one or two nested

subqueries (subquery and sub-subquery), which can cover most of the existing

text-to-SQL dataset [Finegan-Dollak et al., 2018].

SELECT Clause in Subquery

Since the subqueries in NatSQL only need one SELECT column, we make it

meet the WHERE condition format. Here is an example:

NatSQL: SELECT station.long WHERE station.id NOT IN max(status.id)

SQL: SELECT long FROM station WHERE id NOT IN ( SELECT

max(id) FROM status)
Since station.id column in the NatSQL can be inferred from the primary and

foreign key relationship between table station and status, the station.id column

can be removed and replaced with a placeholder @:

NatSQL: SELECT station.long WHERE @ NOT IN max(status.id)

ORDER BY Clause in Subquery

To the best of our knowledge, ORDER BY without LIMIT is useless in the

subquery of most SQL, because the order of return data from subquery does

not affect the result of conditional judgment in the query. However ORDER

BY with LIMIT is useful in a subquery. NatSQL only supports the ORDER

BY plus LIMIT 1 for its subquery, which can cover most subqueries with OR-

DER BY in the Spider dataset. To avoid conflict with the ORDER BY in

non-subquery, the ORDER BY plus LIMIT 1 in the subquery is written as

a conditional form. For example, “ORDER BY age DESC LIMIT 1” is

written as “age = max(age)” for a subquery. If ASC replaces the DESC, the

“min” will replace the “max” function. Notice that this condition is similar to

the example in the last section whose condition is converted into a subquery.

To be converted into ORDER BY, the following rules should be followed:

• The “W Oper” (where operator) must be ‘=’.

• The two columns in the condition right and left must be the same.
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• The “Cond R” must contain an aggregate function which is “max” or

“min”.

• The “connector” before the condition must be “and” or “or”.

• This condition must be the end of a subquery.

We define a ORDER BY as a conditional form whose function is the same as

the representation of a subquery in NatSQL. For example, “ORDER BY with

LIMIT 1 ” can be rewritten to a subquery “WHERE a = ( SELECT max(a)

... )”. For better understanding, here are some NatSQL examples and their

corresponding SQL to illustrate the NatSQL conversion rules.

1.NatSQL: ... WHERE b.age = max(c.age) and c.sale = max(c.sale)

1.SQL: ... WHERE age = ( SELECT max(age) FROM c ORDER BY

sale DESC LIMIT 1)

2.NatSQL: ... WHERE b.age = max(c.age) and c.sale in max(c.sale)

2.SQL: ... WHERE age = ( SELECT max(age) FROM c) and sale in (

SELECT max(sale) FROM c)

3.NatSQL: ... WHERE b.age = max(c.age) and c.sale = max(d.sale)

3.SQL: ... WHERE age = ( SELECT max(age) FROM c) and sale = (

SELECT max(sale) FROM d)

4.NatSQL: ... WHERE b.age = max(c.age) and c.sale = max(c.sale) and c.age

> 10

4.SQL: ... WHERE age = ( SELECT max(age) FROM c) and sale = (

SELECT max(sale) FROM c WHERE c.age > 10 )

Begin and End of a Subquery

A subquery starts from the “Cond R” in a WHERE condition when “Cond R”

is a “Col Literal” and when it will not be translated into ORDER BY and

JOIN ON clause as mentioned above. A subquery ends before a new subquery

or ends with the NatSQL. A sub-subquery starts after the keyword “sub”, and

ends before a new subquery or a new sub-subquery, or end with the NatSQL.

Figure 4.5 shows two examples.

The rule is that when a subquery begins, all the subsequent conditions belong

to it until the end of a subquery. So the NatSQL in Figure 4.5 can be translated

into the following queries.

.. WHERE age = ( SELECT max(age) FROM t WHERE sale > 10 ) or

age = ( SELECT min(age) FROM t WHERE sale < 10 )
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Figure 4.5: Two Examples of The Begin and End of a Subquery

.. WHERE age = ( SELECT max(age) FROM t WHERE sale >

(SELECT avg(sale) FROM t WHERE sale < 10)) or age = (SELECT

min(age) FROM t)

Order of WHERE Condition in NatSQL

To simplify SQL, NatSQL removes the brackets which define the structure of

a query. To achieve the same structure, NatSQL infers brackets by new key-

word “sub” and by identifying the begin and end of a subquery. However, the

conditions of subquery need to be placed behind conditions of non-subquery.

Fortunately, almost all conditions of subqueries are placed at the end of a query

in the original Spider dataset, we think it may due to that subqueries are usu-

ally generated by more complex questions that need to be described by longer

sentences with clauses. English is used to putting clauses that are usually con-

verted into a subquery on the end of a sentence. Table 4.5 is an example of how

the order affects the results.

We have considered adding a new condition connector to mark the end of a

subquery. If we add it, this issue disappears. However, since the cases affected

by this problem are just 6/7000 and 2/1034 in the training and development

set of the Spider (there are only 0.1% examples with WHERE condition before

a subquery in the Spider dataset such as NatSQL 2 in table 4.5). So we de-

cided to ignore this problem now and reorder the WHERE condition to avoid it.

Keyword Sub

The keyword “sub” is designed for sub-subqueries and a sub-subquery must start

after “sub”. “sub” is a condition connector that only connects a sub-subquery

whose form is the same as subqueries. Apart from having to start after “sub”,

other rules of sub-subqueries are consistent with subqueries. Here is an example.
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NatSQL: SELECT stadium.name WHERE stadium.name not in sta-
dium.name and concert.year = 2014

SQL: SELECT name FROM stadium WHERE stadium.name not in
( SELECT stadium.name FROM concert JOIN stadium ON
concert.stadium id = stadium.stadium id WHERE concert.year
= 2014 )

NatSQL: SELECT stadium.name WHERE concert.year = 2014 and sta-
dium.name not in stadium.name

SQL: SELECT stadium.name FROM concert JOIN stadium ON
concert.stadium id = stadium.stadium id WHERE concert.year
= 2014 and stadium.name not in ( SELECT name FROM sta-
dium )

Table 4.5: How different order of WHERE conditions affects NatSQL

Question : : :

Which film is rented at a fee of 0.99 

and has less than 3 in the inventory?

NatSQL : : :

SELECT film.title WHERE film.rental_rate 

= 0.99 and count(inventory.*) < 3

Question : :

Which film has less than 3 in the 
inventory and is rented at a fee of 0.99 ?

NatSQL : :

SELECT film.title WHERE count(inventory.*)

< 3 and film.rental_rate = 0.99  

SQL:                                                                                                                         :
SELECT T1.title FROM film AS T1 JOIN inventory AS T2 ON T1.film_id = T2.film_id WHERE

rental_rate = 0.99 GROUP BY T1.film_id HAVING count(*) < 3

Convert to the same SQL

Figure 4.6: Fill the values in order of appearance (see more discussion in Ap-
pendix B).

NatSQL: ... WHERE b.age = max(c.age) sub c.sale = max(c.sale)

SQL: ... WHERE age = ( SELECT max(age) FROM c WHERE sale

= ( SELECT max(sale) FROM c))

4.3.5 Executable SQL Generation

Many previous text-to-SQL models [Guo et al., 2019, Wang et al., 2020, Bogin

et al., 2019a] only focus on the Spider exact match accuracy, i.e., they only

generate the SQL queries without condition values. These queries are not ex-

ecutable until filling in the condition values. However, it is not easy to fill in

the values correctly. On the one hand, there are too many possible condition

value slots that need to be searched. The slots can appear in: WHERE clause,

WHERE clause in a subquery, WHERE clause after set operators, HAVING

clause, etc. On the other hand, when there are multiple value slots, it is easier

to confuse where to fill. For example, in Figure 4.6, the two different questions

correspond to the same SQL query, making it hard to copy the right values from

the question to SQL.
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Because the condition value slots of NatSQL only appear in the WHERE

clause, generating condition values becomes much easier, as shown in Figure 4.6.

Unlike the models [Lin et al., 2020, Rubin and Berant, 2021] trained to copy

the values from questions to SQL queries, NatSQL simply copies the possible

values (numbers or database cell values) from questions to SQL in the order of

appearance without training. This feature enables the models designed only for

the Spider exact match metrics to generate executable SQL.

Training data is the key to ensuring that different questions in Figure 4.6

will be converted to different NatSQL. Firstly, in the dataset, for SQL with

multiple WHERE conditions, the order of the conditions is mostly consistent

with the question. Secondly, the NatSQL further expands this type of training

data. For example, the NatSQL queries in Figure 1.4, 4.3, 4.4 contain more

WHERE conditions than SQL and other IRs, and these conditions appear in

the order they are mentioned. These training data make it possible for models

to generate different NatSQL according to the different questions in Figure 4.6.

4.4 Limitations of NatSQL

NatSQL removes multiple clauses from SQL that are actually used for special

purposes, which means some SQL inevitably cannot be represented by Nat-

SQL. Since there are many equivalent SQL queries, for many unsupported SQL

examples, NatSQL can achieve the same functionality by converting to their

equivalent format. However, equivalent SQL queries cannot get a positive re-

sult in exact set match metrics, introduced in Chapter 2.1.3. The previous

sections have partially discussed the limitation of NatSQL due to the deletion

of a specific clause. We summarize these limitations here.

JOIN ON. Chapter 4.3.3 discusses three types of JOIN ON clauses incom-

patible with NatSQL: (1) self-connection; (2) JOIN ON condition without =

operator; (3) FROM or JOIN a subquery. The first type can be solved by

extending the WHERE condition, similar to the ‘join’ operator introduced in

Chapter 4.2.4. NatSQL cannot generate SQL of the second type, but it can

generate SQL with the same functionality by moving the JOIN ON condition to

the WHERE clause. In a text-to-SQL process, we are happy with the NatSQL

converted to an equivalent SQL that is not the same as the target one. For the

third case, there are too few relevant samples for evaluation. As the samples in

the Spider, NatSQL can be compatible.

GROUP BY. In the Sqlserver database, the schema item in the GROUP

BY clause must appear in the SELECT clause. Therefore, we can generate the
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GROUP BY clause based on analyzing the SELECT clause, as discussed in

Chapter 4.3.2. However, other databases have no restrictions on the GROUP

BY, which may result in a failure to generate the GROUP BY clause. The

main error in the current NatSQL to SQL conversion also comes from not being

able to generate the correct GROUP BY. We recommend using the NatSQLG

toward a better coverage.

IUE Set Operators. Chapter 4.2.5 discusses how to generate the IUE set

operators from NatSQL. Current NatSQL only supports one set operator in

the SQL query. Besides, NatSQL assumes that the SELECT clauses in the

SQL queries connected by IUE set operators are the same or primary and for-

eign key relationships. In addition to the above two cases, NatSQL is basically

compatible with other SQL with IUE, through direct or equivalent format, un-

less extremely complex SQL. Since there are few SQL with IUE in the current

datasets and no extremely complex SQL, we may miss some compatibility issues.

Subqueries. Chapter 4.3.4 discusses how to generate the subqueries from

NatSQL. Currently known NatSQL cannot support subqueries below sub-subqueries,

where the sub-subquery is supported by NatSQL keyword sub. As discussed in

Chapter 4.3.4, it is useless to sort the subquery results, so NatSQL can only

generate its equivalent format. If the subquery is not at the end of an SQL, Nat-

SQL needs to change the subquery position, which is also an equivalent format.

Finally, when the subquery needs to attain the maximum and minimum values,

and the main query needs to sort the final results, NatSQL can only achieve the

same functionality in an equivalent format. Similar to the IUE set operators,

we may miss some compatibility issues due to the few SQL with Subqueries in

the current datasets.

4.5 Experiments

4.5.1 Experimental Setup

We evaluate NatSQL on the Spider benchmark [Yu et al., 2018b]. There are

7000, 1034 and 2147 samples for training, development and testing respectively,

where 206 databases are split into 146 for training, 20 for development and 40

for testing.

We first evaluate the gold NatSQL and other IRs using the exact (set) match

and execution match metrics in [Yu et al., 2018b]. Exact (set) match measures

whether the predicted query without condition values as a whole is equivalent to

the gold query. Execution match measures whether the execution result of the
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Language Exact Match Execution Match

SQL 100% 100%
SemQL 86.2% Unsupported

IR(RAT-SQL) 97.7% 97.1%
NatSQL 93.3% 95.3%

NatSQLG 96.2% 96.5%

Table 4.6: The comparison between gold IRs on Spider development set.

Ques: Find students whose age is 10 or 16.

SQL 1: ... WHERE age = 10 or age = 16
NatSQL 1: ... WHERE age = 10 or age = 16

SQL 2: ... WHERE age = 10 UNION
... WHERE age = 16

NatSQL 2: ... WHERE age = 10 union age = 16

Table 4.7: Equivalent SQL queries with its NatSQL

predicted query from the database is the same as the gold query. For the details

of exact (set) match and execution match, please refer to Chapter 2.1.3. We then

evaluate NatSQL and other IRs using existing open-source models that provide

competitive performance on Spider: (1) GNN [Bogin et al., 2019a]; (2) IRNet

[Guo et al., 2019]; (3) RAT-SQL [Wang et al., 2020]; (4) RAT-SQL+GAP [Shi

et al., 2021]. Although some of these models are not designed for the generation

of executable SQL queries, with the approach discussed in Section 4.3.5, we

utilize NatSQL to generate executable SQL and evaluate the execution match

performance.

4.5.2 Comparison Between IRs

Gold IRs

In Table 4.6, we present the exact match and execution match accuracies of the

gold IRs on the Spider development set, where the metrics are defined by Yu

et al. [2018b] for the Spider benchmark.

We observe that NatSQL can be converted to more gold SQL than SemQL,

because NatSQL can handle the unremovable JOIN ON clauses, as discussed

in Section 4.2.4. Such SQL queries comprise around 5% of the entire Spider

dataset. Other performance improvement comes from the fact that NatSQL

is more compatible with subqueries and that its capability to generate SQL is

better. More importantly, SemQL is designed only for the exact match metrics

of Spider, and cannot directly be used to generate executable SQL.
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Component F1 Component F1

select 0.997 where 0.969
group 0.879 order 0.996
and/or 0.998 IUE 0.900

keywords 0.989

Table 4.8: Partial matching F1 score of NatSQL on the Spider development set.

The IR of RAT-SQL is the most similar to SQL and thus has the highest

coverage among all IRs. However, NatSQLG further simplifies the queries with

only 0.6% execution accuracy degradation, whilst enabling better model pre-

diction performance. NatSQLG outperforms NatSQL when comparing the gold

queries, but the gap is small when they are utilized by models.

The result in the training set is close to that in the development set. It should

be noted that the exact match accuracy will slightly vary in different NatSQL

versions. The accuracy depends on the attitude towards equivalent SQL queries.

Table 4.7 presents two equivalent SQL queries with their corresponding NatSQL

queries. Considering that UNION is not mentioned in the question, we prefer to

sacrifice the exact match accuracy for a more succinct NatSQL representation,

i.e., we will use the first NatSQL query in Table 4.7 to represent the second SQL,

even though it can not be converted into the second SQL query. Although our

preference slightly affects the exact match accuracy in the Spider benchmark,

it brings greater potential and convenience when outside Spider.

Gold NatSQL Error Analysis

Table 4.8 presents the F1 score of NatSQL for different SQL components. We

observe that the main errors come from GROUP BY and IUE matching. Al-

though NatSQL cannot be converted to all gold GROUP BY clauses, most of

these errors don’t affect the execution results. The IUE errors occur because

NatSQL only supports one IUE operator per query.

Some other errors are due to the limitation of the exact match evaluation

method when evaluating the JOIN ON clause of subqueries and sub-subqueries.

Specifically, when the FROM and JOIN in a generated subquery is not iden-

tical to the gold SQL, the Spider evaluation scheme considers it to be wrong.

For example, the following two SQL statements have the same semantic mean-

ing, but they are recognized as different by the Spider exact match evaluation

method, thus results in an exact match error.

... col in ( SELECT col FROM T1 JOIN T2 ... )

... col in ( SELECT col FROM T2 JOIN T1 ... )
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NatSQL Coverage for Different Text-to-SQL Datasets

Along with the Spider, Yu et al. [2018b] also provides NL question and SQL pairs

extracted from other text-to-SQL datasets, which can be used to evaluate the

coverage of NatSQL. However, the database in some datasets has limited data,

which leads to the different SQL queries getting positive results by obtaining

the same none data return. Therefore, it is not suitable to use the execution

match here. Table 4.9 presents the exact match accuracy of gold NatSQL in

four text-to-SQL datasets. In particular, since WikiSQL only contains simple

SQL queries, NatSQL can be compatible with the entire dataset. Different

from WikiSQL, examples of NatSQL incompatibility appear in other datasets.

In GeoQuery, the main problem in NatSQL is unsupported the too complex

subqueries. In IMDB, MAS, and MAS, the self join connection causes major

incompatibility issues.

Dataset Exact Match
GeoQuery 90.0%

IMDB 93.6%
YELP 82.9%
MAS 90.4%

WikiSQL 100%

Table 4.9: NatSQL coverage for different text-to-SQL datasets that are intro-
duced in Chapter 3.4.1

IRs for Prediction

Table 4.10 presents the exact match accuracy of four models with SemQL, its

default IR (or SQL), and NatSQL separately. We observe that NatSQL consis-

tently outperforms SemQL with all of these model architectures, including IR-

Net. Note that the original Spider dataset additionally includes 1,659 training

samples from 6 earlier text-to-SQL benchmarks (Academic, GeoQuery, IMDB,

Restaurants, Scholar and Yelp), which were used to train models with SemQL in

the IRNet. To provide a fair comparison with other baselines, we didn’t include

these additional samples for all models in our evaluation, thus our presented re-

sult for IRNet+SemQL (51.8%) is lower than the number reported in the IRNet

paper (53.2%).

Note that SemQL causes performance decline for RAT-SQL. We hypothesize

that this is because the exact match accuracy of the gold SemQL is only 86.2%.

With the improvement of model architectures, such a gap will affect the predic-

tion accuracy more negatively. Although the accuracy of gold RAT-SQL IR is

higher than that of NatSQL, NatSQL still outperforms the original RAT-SQL
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Approach Exact Execution

GNN + SQL 47.5%
GNN + SemQL 51.6%
GNN + NatSQL 53.8% 58.0%
IRNet + SemQL 51.8%
IRNet + NatSQL 52.9% 52.6%
RAT-SQL + IR(RAT-SQL) 62.7%
RAT-SQL + SemQL 58.4%
RAT-SQL + NatSQL 64.4% 66.7%
RAT-SQL + NatSQLG 65.2% 67.3%
extend BERT:
RAT-SQL + IR(RAT-SQL) 69.5%
RAT-SQL + NatSQL 71.7% 72.8%
RAT-SQL + NatSQLG 72.1% 73.0%
extend GAP:
RAT-SQL + IR(RAT-SQL) 71.8%
RAT-SQL + NatSQL 73.7% 74.6%
RAT-SQL + NatSQLG 73.7% 75.0%

Table 4.10: Exact and execution match accuracy on Spider development set.

model, and NatSQLG slightly improves the performance over NatSQL.

Meanwhile, NatSQL helps these models generate executable SQL queries.

Execution match accuracy improves with the improvement of the exact match,

and most execution match accuracy is better than that of exact match. The

execution match accuracy of IRNet is slightly lower than the exact match, be-

cause the IRNet does not predict the DISTINCT keyword while the exact match

metric does not check this aspect.

Breakdown results. Based on the complexity of the SQL, the examples in

Spider are classified into four types: easy, medium, hard, and extra hard.

We provide a breakdown comparison on the Spider development set, as shown

in Table 4.11. The improvement brought by NatSQL mainly comes from the

extra hard SQL, which demonstrate an average 4.74% absolute improvement

across these models. This improvement is in line with the design of NatSQL,

i.e., most extra hard SQL queries contain set operators or subqueries, while

NatSQL has simplified these components. Since easy and medium SQL queries

categorized in the Spider dataset are more similar to NatSQL queries, it is

expected that the improvement on simple SQL is less significant. However, we

still observe that NatSQL consistently increases the accuracy on most samples

of different difficulty levels.
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Approach Easy Medium Hard Extra

GNN + SemQL 68.5% 58.9% 36.8% 24.1%
GNN + NatSQL 72.0% 58.0% 42.0% 28.2%
IRNet + SemQL 69.8% 53.0% 46.0% 30.1%
IRNet + NatSQL 70.6% 54.1% 46.0% 32.5%
RAT-SQL + IR(RAT-SQL) 80.4% 63.9% 55.7% 40.6%
RAT-SQL + NatSQLG 82.4% 65.0% 59.2% 46.5%
extend BERT:
RAT-SQL + IR(RAT-SQL) 86.4% 73.6% 62.1% 42.9%
RAT-SQL + NatSQLG 88.4% 76.6% 62.6% 46.4%
extend GAP:
RAT-SQL + IR(RAT-SQL) 88.3% 74.0% 64.4% 44.0%
RAT-SQL + NatSQLG 91.6% 75.2% 65.5% 51.8%

Table 4.11: Exact match accuracy by difficulty on Spider development set.

4.5.3 Overall Performance Analysis

First, we present the exact and execution match accuracy of our approach ap-

plied to RAT-SQL augmented with GAP in Table 4.12, where we compare with

various baselines at the top of the Spider leaderboard. By incorporating Nat-

SQL into the RAT-SQL model with GAP, we demonstrate that our approach

achieves a new state-of-the-art on Spider execution benchmark, surpassing its

best counterparts by 2.2% absolute improvement.

Considering that the gap between dev and test in exact match is larger than

that in execution match, we speculate that there are two reasons why our exact

match accuracy has dropped by 1% compared to RAT-SQL+GAP. From the

complexity breakdown accuracy between dev and test, we observe that the main

performance degradation comes from the extra hard SQL queries. Since there

are many subqueries in extra hard SQL queries, some limitations of the Spider

exact match evaluation process (discussed in Chapter 4.5.2) may have a negative

effect on our prediction results. On the other hand, some degradation may come

from equivalent SQL queries. As we discuss in Section 4.5.2 and Table 4.7, it

is not mandatory to keep the NatSQL queries consistent with the original SQL

queries. As a result, the model trained by NatSQL may output equivalent SQL

queries that do not match exactly but that get the same query result. Therefore,

our evaluation shows that NatSQL is more suitable for generating executable

SQL queries.

4.6 Summary

In this chapter, we propose NatSQL, a new SQL intermediate representation

that reduces the difficulty of schema linking and simplifies the SQL structure.
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Approach Exact Execution

IRNet + BERT [Guo et al., 2019] 54.7% –
RATSQL + BERT [Wang et al., 2020] 65.6% –
BRIDGE v2 + BERT(ensemble) [Lin et al., 2020] 67.5% 68.3%
COMBINE (Anonymous) 67.7% 68.2%
SmBoP + GraPPa [Rubin and Berant, 2021] 69.5% 71.1%
RATSQL + GAP [Shi et al., 2021] 69.7% –
DT-Fixup SQL-SP + RoBERTa (Anonymous) 70.9% –
RAT-SQL + GAP + NatSQLG (Ours) 68.7% 73.3%

Table 4.12: Results on Spider test set, compared to other models at the top of
the leaderboard.

By incorporating NatSQL into existing neural models for text-to-SQL genera-

tion, we show that NatSQL is easier to infer from natural language specification

than the full-fledged SQL and other intermediate representation languages. Fur-

thermore, NatSQL enables existing models to easily generate executable SQL

queries without modifying their architecture. Experimental results on the chal-

lenging Spider benchmark demonstrate that NatSQL consistently improves the

prediction performance of several neural network architectures and achieves the

state-of-the-art, showing the effectiveness of our approach.
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Chapter 5

Text-to-SQL Robustness

against Synonym

Substitution

In Chapter 4, we introduce the NatSQL and improve the previous state-of-

the-art models achieving around 70% accuracy on the Spider test set, even if

the model is tested on databases unseen during training. However, we suspect

that such cross-domain generalization heavily relies on the exact lexical match-

ing between the NL question and the table schema. As shown in Figure 1.5,

names of tables and columns in the SQL query are explicitly stated in the NL

question. Such questions constitute the majority of cross-domain text-to-SQL

benchmarks, including both Spider and WikiSQL. Although assuming exact

lexical matching is a good starting point to solving the text-to-SQL problem,

this assumption usually does not hold in real-world scenarios. Specifically, it

requires that users have precise knowledge of the table schemas to be included

in the SQL query, which could be tedious for synthesizing complex SQL queries.

In this chapter, we investigate whether state-of-the-art text-to-SQL models

preserve good prediction performance without the assumption of exact lexical

matching, where NL questions use synonyms to refer to tables or columns in SQL

queries. We call such NL questions synonym substitution questions. Although

some existing approaches can automatically generate synonymous substitution

examples, these examples may deviate from real-world scenarios, e.g., they may

not follow common human writing styles, or even accidentally becomes incon-

sistent with the annotated SQL query. To provide a reliable benchmark for

evaluating model performance on synonym substitution questions, we introduce

Spider-Syn, a human-curated dataset constructed by modifying NL questions in
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the Spider dataset. Specifically, we replace the schema annotations in the NL

question with synonyms, manually selected so as not to change the correspond-

ing SQL query, as shown in Figure 1.5. We demonstrate that when models are

only trained on the original Spider dataset, they suffer a significant performance

drop on Spider-Syn, even though the Spider-Syn benchmark is not constructed

to exploit the worst-case attacks for text-to-SQL models. It is therefore clear

that the performance of these models will suffer in real-world use, particularly

in cross-domain scenarios.

To improve the robustness of text-to-SQL models, we utilize synonyms of

table schema words, which are either manually annotated, or automatically

generated when no annotation is available. We investigate two categories of

approaches to incorporate these synonyms. The first category of approaches

modify the schema annotations of the model input, so that they align better

with the NL question. No additional training is required for these approaches.

The second category of approaches are based on adversarial training, where we

augment the training set with NL questions modified by synonym substitution.

Both categories of approaches significantly improve the robustness, and the first

category is both effective and requires less computational resources.

This chapter is based on [Gan et al., 2021a]. Our contributions in this

chapter are as follows:

• We conduct a comprehensive study to evaluate the robustness of text-to-

SQL models against synonym substitution.

• Besides worst-case adversarial attacks, we further introduce Spider-Syn, a

human-curated dataset built upon Spider, to evaluate synonym substitu-

tion for real-world question paraphrases.

• We propose a simple yet effective approach to utilize multiple schema

annotations, without the need of additional training. We show that our

approach outperforms adversarial training methods on Spider-Syn, and

achieves competitive performance on worst-case adversarial attacks.

5.1 Spider-Syn Dataset

5.1.1 Overview

We construct the Spider-Syn benchmark by manually modifying NL questions in

the Spider dataset using synonym substitution. The purpose of building Spider-

Syn is to simulate the scenario where users do not call the exact schema words

in the utterances, e.g., users may not have the knowledge of table schemas. In

particular, we focus on synonym substitution for words related to databases,
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"France", "Germany" ……

What is the average, minimum, and maximum 
age for all French singers?

SELECT avg(age) ,  min(age) ,  max(age) 

FROM singer WHERE country  =  'France'

Spider 
Question:

Cell Values in 
Country Column: 

SQL:

"dog", "cat" ……

How many dog pets are raised by female

students?

SELECT ...... WHERE student.sex  =  'F' AND 

pet.pettype  =  'dog'

Spider 
Question:

Cell Values in 
Pet Type Column: 

SQL:

How many puppy pets are raised by female
students?

Spider-Syn 
Question:

Spider Example:

Spider-Syn Example:

"F", "M" ……Cell Values in 
Sex Column: 

different

modified to

different

different

Figure 5.1: Synonym substitution occurs in cell value words in both Spider and
Spider-Syn.

including table schemas and cell values. Consistent with Spider, Spider-Syn

contains 7000 training and 1034 development examples, but Spider-Syn does

not contain a test set since the Spider test set is not public. Figure 1.5 presents

two examples in Spider-Syn and how they are modified from Spider.

5.1.2 Conduct Principle

The goal of constructing the Spider-Syn dataset is not to perform worst-case

adversarial attacks against existing text-to-SQL models, but to investigate the

model robustness for paraphrasing schema-related words, which is particularly

important when users do not have the knowledge of table schemas. We carefully

select the synonyms to replace the original text to ensure that new words will

not cause ambiguity in some domains. For example, the word ‘country ’ can

often be used to replace the word ‘nationality ’. However, we did not replace it

in the domain whose ‘country ’ means people’s ‘born country ’ different from its

other schema item, ‘nationality ’. Besides, some synonym substitutions are only

valid in the specific domain. For example, the word ‘number ’ and ‘code’ are

not generally synonymous, but ‘flight number ’ can be replaced by ‘flight code’

in the aviation domain.

Most synonym substitutions use relatively common words1 to replace the

1According to 20,000 most common English words in https://github.com/first20hours/

google-10000-english.
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Schema
Annotations:

Schema
Annotations:

Spider Examples:

SQL: SELECT name FROM teacher ……

SQL: SELECT id FROM highschooler EXCEPT……

"teacher", "name ",  ……,

"high schooler",  "friend",  ……,

What are the names of people who teach math 

courses ?

Show ids of all students who do not have any 

friends.

What is the name and capacity of the stadium with 
the most concerts?

"capacity", "stadium", ……

Spider-Syn Example:

Spider
Question:

Schema
Annotations:

SQL: SELECT name , capacity FROM ……

different

different

different

What is the name and number of seats of the 
stadium with the most concerts?

Spider-Syn  
Question:

modified to

Spider
Question:

Spider
Question:

Figure 5.2: Samples of replacing the original words or phrases by synonymous
phrases.

schema item words. Besides, we denote ‘id ’, ‘age’, ‘name’, and ‘year ’ as reserved

words, which are the most standard words to represent their meanings. Under

this principle, we keep some original Spider examples unchanged in Spider-Syn.

Our synonym substitution does not guarantee that the modified NL question

has the exact same meaning as the original question, but guarantees that its

corresponding SQL is consistent. In Figure 5.1, Spider-Syn replaces the cell

value word ‘dog ’ with ‘puppy ’. Although puppy is only a subset of dog, the

corresponding SQL for the Spider-Syn question should still use the word ‘dog ’

instead of the word ‘puppy ’ because there is only dog type in the database and

no puppy type. Similar reasoning is needed to infer that the word ‘female’

corresponds to ‘F ’ in Figure 5.1.

In some cases, words are replaced by synonymous phrases (rather than single

words), as shown in Figure 5.2. Besides, some substitutions are also based on

the database contents. For example, a column ‘location’ of the database ‘em-

ployee hire evaluation’ in Spider only stores city names as cell values. Without

knowing the table schema, users are more likely to call ‘city ’ instead of ‘location’

in their NL questions.

To summarize, we construct Spider-Syn with the following principles:

• Spider-Syn is not constructed to exploit the worst-case adversarial attacks,

but to represent real-world use scenarios; it therefore uses only relatively
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Original Substituted  by Times

country
State 11

nation 35

city town 11

head leader 2

greatest percentage of most 1

population
number of people 13

number of residents 15

……

World Domain

Figure 5.3: Examples of synonym substitutions in the ‘world’ domain from
Spider-Syn.

common words as substitutions.

• We conduct synonym substitution only for words related to schema items

and cell values.

• Synonym substitution includes both single words and phrases with multi-

ple words.

5.1.3 Annotation Steps

Before annotation, we first separate original Spider samples based on their do-

mains. For each domain, we only utilize synonyms that are suitable for that do-

main. We recruit four graduate students major in computer science to annotate

the dataset manually. They are trained with a detailed annotation guideline,

principles, and some samples. One is allowed to start after his trial samples are

approved by the whole team.

As synonyms can be freely chosen by annotators, standard inter-annotator

agreement metrics are not sufficient to confirm the data quality. Instead, we

conduct the quality control with two rounds of review. The first round is the

cross-review between annotations. We require the annotators to discuss their

disagreed annotations and come up with a final result out of consensus. To

improve the work efficiency, we extract all synonym substitutions as a report

without the NL questions from the annotated data, as shown in Figure 5.3.

Then, the annotators do not have to go through the NL questions one by one.

The second round of review is similar to the first round but is done by native

English speakers.
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5.1.4 Dataset Statistics

In Spider-Syn, 5672 questions are modified compared to the original Spider

dataset. In 5634 cases the schema item words are modified, with the cell value

words modified in only 27 cases.We use 273 synonymous words and 189 synony-

mous phrases to replace approximately 492 different words or phrases in these

questions. In all Spider-Syn examples, there is an average of 0.997 change per

question and 7.7 words or phrases modified per domain.

Besides, Spider-Syn keeps 2201 and 161 original Spider questions in the

training and development set, respectively. In the modification between the

training and development sets, 52 modified words or phrases were the same,

accounting for 35% of the modification in the development set.

5.2 Defense Approaches

We present two categories of approaches for improving model robustness to

synonym substitution. We first introduce our multiple annotation selection

approach, which could utilize multiple annotations for one schema item. Then

we present an adversarial training method based on analysis of the NL question

and domain information.

5.2.1 Multi-Annotation Selection (MAS)

The synonym substitution problem emerges when users do not call the exact

names in table schemas to query the database. Therefore, one defense against

synonym substitution is utilizing multiple annotation words to represent the

table schema, so that the schema linking mechanism is still effective. For ex-

ample, for a database table with the name ‘country ’, we annotate additional

table names with similar meanings, e.g., ‘nation’, ‘State’, etc. In this way, we

explicitly inform the text-to-SQL models that all these words refer to the same

table, thus the table should be called in the SQL query when the NL question

includes any of the annotated words.

We design a simple yet effective mechanism to incorporate multiple annota-

tion words, called multiple-annotation selection (MAS). For each schema item,

we check whether any annotations appear in the NL question, and we select such

annotations as the model input. When no annotation appears in the question,

we select the default schema annotation, i.e., the same as the original Spider

dataset. In this way, we could utilize multiple schema annotations simultane-

ously, without changing the model input format.

The main advantage of this method is that it does not require additional

training, and could apply to existing models trained without synonym substitu-
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[CLS] Which           's name has the substring ' Ha ' ? [SEP] 

How many heads of the departments are older than 56 ? [SEP]
[CLS] Which 's name has the substring ' Ha ' ? [SEP] 

Which  chief 's name has the substring ' Ha ' ? Which  rain 's name has the substring ' Ha ' ?

BERT-Attack

chief brain

head
head

Input with domain information： Input without domain information：

BERT-Attack

Figure 5.4: Input the BERT-Attack with and without domain information.

tion questions. Annotating multiple schema words could be done automatically

or manually, and we compare them in Section 5.3.

5.2.2 Adversarial Training

Motivated by the idea of adversarial training that can improve the robustness of

machine learning models against adversarial attacks [Madry et al., 2018, Morris

et al., 2020], we implement adversarial training using the current open-source

SOTA model RAT-SQL [Wang et al., 2020]. We use the BERT-Attack model [Li

et al., 2020] to generate adversarial examples, and implement the entire training

process based on the TextAttack framework [Morris et al., 2020]. TextAttack

provides 82 pre-trained models, including word-level LSTM, word-level CNN,

BERT-Attack, and other pre-trained Transformer-based models.

We follow the standard adversarial training pipeline that iteratively gener-

ates adversarial examples, and trains the model on the dataset augmented with

these adversarial examples. When generating adversarial examples for training,

we aim to generate samples that align with the Spider-Syn principles, rather

than arbitrary adversarial perturbations. We describe the details of adversarial

example generation below.

Generating Adversarial Examples

We choose BERT-Attack to generate the adversarial examples. Different from

other word substitution methods [Mrkšić et al., 2016, Ebrahimi et al., 2018,

Wei and Zou, 2019], BERT-Attack model considers the entire NL question when

generating words for synonym substitution. Such a sentence-based method can

generate different synonyms for the same word in different context. For example,

the word ‘head ’ in ‘the head of a department ’ and ‘the head of a body ’ should

correspond to different synonyms. Making such distinctions requires an analysis

of the entire sentence, since the keywords’ positions may not be close, such as

that the word ‘head ’ and ‘department ’ are not close in ‘Give me the info of heads

whose name is Mike in each department ’.
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In addition to the original question, we add extra domain information into

the BERT-Attack model, as shown in Figure 5.4. Without the domain informa-

tion, on the right side of the Figure 5.4, the BERT-Attack model conjectures

the word ‘head ’ represent the head of a body, since there are multiple feasible

interpretations for the word ‘head ’ if you only look at the question. To elim-

inate the ambiguity, we feed questions with its domain information into the

BERT-Attack model, as shown on the left side of the Figure 5.4.

Instead of using schema annotations, we select several other questions from

the same domain as domain information. These questions should contain the

schema item words we plan to replace, and other distinct schema item words in

the same domain. The benefits of using sentences instead of schema annotations

as domain information include: 1) avoiding many unrelated schema annotations,

which could include hundreds of words; 2) the sentence format is closer to the

pre-training data of BERT. As shown on the left side of the Figure 5.4, our

method improves the quality of data generation.

Since we focuses on the synonym substitution of schema item words, we

make two additional constraints to limit the generation of adversarial examples:

1) only words about schema items and cell values can be replaced; and 2) do not

replace the reserved words discussed in Section 5.1.2. These constraints make

sure that the adversarial examples only perform the synonym substitution for

words related to database tables.

5.3 Experiments

5.3.1 Experimental Setup

We compare our approaches against baseline methods on both the Spider [Yu

et al., 2018b] and Spider-Syn development sets. As discussed in Section 5.1.1, the

Spider test set is not publicly accessible, and thus Spider-Syn does not contain

a test set. Both Spider and Spider-Syn contain 7000 training and 1034 devel-

opment samples respectively, where there are 146 databases for training and 20

for development. The SQL queries and schema annotations between Spider and

Spider-Syn are the same; the difference is that the questions in Spider-Syn are

modified from Spider by synonym substitution. Models are evaluated using the

official exact matching accuracy metric of Spider.

We first evaluate open-source models that reach competitive performance

on Spider: GNN [Bogin et al., 2019a], IRNet [Guo et al., 2019] and RAT-SQL

[Wang et al., 2020], on the Spider-Syn development set. We then evaluate our

approaches with RAT-SQL+BERT model (denoted as RAT-SQLB) on both

Spider-Syn and Spider development set.
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We examine the robustness of following approaches for synonym substitu-

tion:

• SPR: Indicate that the model is trained on the Spider dataset.

• SPRSYN: Indicate that the model is trained on the Spider-Syn dataset .

• SPRSPR&SYN: Indicate that the model is trained on both Spider and

Spider-Syn datasets.

• ADVBERT: To improve the robustness of text-to-SQL models, we use

adversarial training methods to deal with synonym substitution. This

variant means that we use BERT-Attack following the design introduced

in Section 5.2.2. Note that we only use the Spider dataset for adversarial

training.

• ADVGLOVE: To demonstrate the effectiveness of our ADVBERT method,

we also evaluate a simpler adversarial training method based on the near-

est GLOVE word vector [Pennington et al., 2014, Mrkšić et al., 2016].

This method only considers the meaning of a single word, dispensing with

domain information and question context.

• ManualMAS: MAS stands for ‘multi-annotation selection’, as intro-

duced in Section 5.2.1. ManualMAS means that we collect multiple an-

notations of schema item words, which are synonyms used in Spider-Syn.

Afterward, MAS selects the appropriate annotation for each schema item

as the model input.

• AutoMAS: In contrast to ManualMAS, in AutoMAS we collect mul-

tiple annotations based on the nearest GLOVE word vector, as used in

ADVGLOVE. In this way, compared to ManualMAS, there are much more

synonyms to be selected from for AutoMAS. Both ManualMAS and Au-

toMAS are to demonstrate the effectiveness of MAS in an ideal case. This

experimental design principle is similar to evaluating adversarially trained

models on the same adversarial attack used for training, which aims to

show the generalization to in-distribution test samples.

5.3.2 Results of Models Trained on Spider

Table 5.1 presents the exact matching accuracy of models trained on the Spider

training set, and we evaluate them on development sets of Spider and Spider-

Syn. Although Spider-Syn is not designed to exploit the worst-case attacks

of text-to-SQL models, compared to Spider, the performance of all models has

clearly dropped by about 20% to 30% on Spider-Syn. Using BERT for input em-

bedding suffers less performance degradation than models without BERT, but
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model Spider Spider-Syn

GNN + SPR [Bogin et al., 2019a] 48.5% 23.6%
IRNet + SPR [Guo et al., 2019] 53.2% 28.4%
RAT-SQL + SPR [Wang et al., 2020] 62.7% 33.6%
RAT-SQLB + SPR [Wang et al., 2020] 69.7% 48.2%

Table 5.1: Exact match accuracy on the Spider and Spider-Syn development
set, where models are trained on the original Spider training set.

SQL Component Spider Spider-Syn

SELECT 0.910 0.699
SELECT (no AGG) 0.926 0.712
WHERE 0.772 0.715
WHERE (no OP) 0.824 0.757
GROUP BY (no HAVING) 0.846 0.575
GROUP BY 0.816 0.553
ORDER BY 0.831 0.768
AND/OR 0.979 0.977
IUE 0.550 0.344
KEYWORDS 0.897 0.876

Table 5.2: F1 scores of component matching of RAT-SQLB+SPR on develop-
ment sets.

the drop is still significant. These experiments demonstrate that training on

Spider alone is insufficient for achieving good performance on synonym substi-

tutions, because the Spider dataset only contains a few questions with synonym

substitution.

To obtain a better understanding of prediction results, we compare the F1

scores of RAT-SQLB+SPR on different SQL components on both the Spider

and Spider-Syn development set. As shown in Table 5.2, the performance degra-

dation mainly comes from the components including schema items, while the

decline in the ‘KEYWORDS ’ and the ‘AND/OR’ that do not include schema

items is marginal. This observation is consistent with the design of Spider-Syn,

which focuses on the substitution of schema item words.

5.3.3 Comparison of Different Approaches

Table 5.3 presents the results of RAT-SQLB trained with different approaches.

We focus on RAT-SQLB since it achieves the best performance on both Spi-

der and Spider-Syn, as shown in Table 5.1. Our MAS approaches significantly

improve the performance on Spider-Syn, with only 1-2% performance degrada-

tion on the Spider. With ManualMAS, we see an accuracy of 62.6%, which
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Approach Spider Spider-Syn

SPR 69.7% 48.2%
SPRSYN 67.8% 59.9%
SPRSPR&SYN 68.1% 58.0%
ADVGLOVE 48.7% 27.7%
ADVBERT 68.7% 58.5%
SPR + ManualMAS 67.4% 62.6%
SPR + AutoMAS 68.7% 56.0%

Table 5.3: Exact match accuracy on the Spider and Spider-Syn development
set. All approaches use the RAT-SQLB model.

Approach ADVGLOVE ADVBERT

SPR 38.0% 48.8%
SPRSYN 49.6% 54.9%
SPRSPR&SYN 47.7% 55.7%
ADVGLOVE 29.7% 33.8%
ADVBERT 55.7% 59.2%
SPR + ManualMAS 34.2% 44.5%
SPR + AutoMAS 61.2% 52.5%

Table 5.4: Exact match accuracy on the worst-case development sets generated
by ADVGLOVE and ADVBERT. All approaches use the RAT-SQLB model.

outperforms all other approaches evaluated on Spider-Syn.

We compare the result of RAT-SQLB trained on Spider (SPR) as a baseline

with other approaches. RAT-SQLB trained on Spider-Syn (SPRSYN) obtains

11.7% accuracy improvement when evaluated on Spider-Syn, while only suf-

fers 1.9% accuracy drop when evaluated on Spider. Meanwhile, our adversarial

training method based on BERT-Attack (ADVBERT) improves the accuracy by

10.3% on Spider-Syn. We observe that ADVBERT performs much better than

adversarial training based on GLOVE (ADVGLOVE), and we provide more

explanation in Section 5.3.4. Both of our multiple annotation methods (Man-

ualMAS and AutoMAS) improve the baseline model evaluated on Spider-Syn.

The performance of ManualMAS is better because the synonyms in ManualMAS

are exactly the same as the synonym substitution in Spider-Syn. We discuss

more results about multi-annotation selection in Section 5.3.5.

5.3.4 Evaluation on Adversarial Attacks

Observing the dramatic performance drop on Spider-Syn, we then study the

model robustness under worst-case attacks. We use the adversarial examples
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Approach Spider Spider-Syn ADVGLOVE ADVBERT

SPR 69.7% 48.2% 38.0% 48.8%
SPR + ManualMAS 67.4% 62.6% 34.2% 44.5%
SPR + AutoMAS 68.7% 56.0% 61.2% 52.5%
SPRSYN 67.8% 59.9% 49.6% 54.9%
SPRSYN + ManualMAS 65.7% 62.9% 47.8% 52.1%
SPRSYN + AutoMAS 67.0% 61.7% 63.3% 54.4%
SPR&SPRSYN 68.1% 58.0% 47.7% 55.7%
SPR&SPRSYN + ManualMAS 65.6% 59.5% 46.9% 51.7%
SPR&SPRSYN + AutoMAS 66.8% 57.5% 61.0% 55.7%
ADVBERT 68.7% 58.5% 55.7% 59.2%
ADVBERT + ManualMAS 66.7% 62.2% 53.4% 56.7%
ADVBERT + AutoMAS 67.5% 59.6% 62.4% 58.0%

Table 5.5: Ablation study results using RAT-SQLB.

generation module in ADVGLOVE and ADVBERT to attack the RAT-SQLB+SPR

to generate two worst-case development sets.

Table 5.4 presents the results on two worst-case development sets. The

ADVGLOVE and ADVBERT attacks cause the accuracy of RAT-SQLB+SPR to

drop by 31.7% and 20.9%, respectively. RAT-SQLB+SPR+AutoMAS achieve

the best performance on defending the ADVGLOVE attack. Because the annota-

tions in AutoMAS cover the synonym substitutions generated by ADVGLOVE.

The relation between AutoMAS and ADVGLOVE is similar to that between

ManualMAS and Spider-Syn. Similarly, ManualMAS helps RAT-SQLB+SPR

get the best accuracy as shown in Table 5.3.

As to ADVBERT attack, RAT-SQLB+ADVBERT outperforms other ap-

proaches. This result is not surprising, because RAT-SQLB+ADVBERT is

trained based on defense ADVBERT attack. However, why does RAT-SQLB
+ ADVGLOVE perform so poorly in defending ADVGLOVE attack?

We conjecture that this is because the word embedding from BERT is based

on the context: if you replace a word with a so-called synonym that is irrelevant

to the context, BERT may give this synonym a vector with low similarity to

the original. In the first example of Table 5.6, ADVGLOVE replaces the word

‘courses’ with ‘trajectory ’. We observe that, based on the cosine similarity of

BERT embedding, the schema item most similar to ‘trajectory ’ changes from

‘courses’ to ‘grade conversion’. This problem does not appear in the Spider-

Syn and ADVBERT examples, and some ADVGLOVE examples do not have

this problem, such as the second example in Table 5.6. Some examples reward

the model for finding the schema item that is most similar to the question token,

while others penalize this pattern, which causes the model to fail to learn. Thus

the model with ADVGLOVE neither defends against ADVGLOVE attack nor

even obtains good performance on the Spider.
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Spider: Which courses are taught on days MTW?
Spider-Syn: Which curriculum are taught on days MTW?
ADVGLOVE: Which trajectory are taught on jour MTW ?
ADVBERT: Which classes are taught on times MTW ?

Spider: Show the name and phone for customers with a mailshot
with outcome code ‘No Response’

Spider-Syn: Show the name and telephone for clients with a mailshot
with outcome code ‘No Response’.

ADVGLOVE: Show the name and telephones for customers with a mailshot
with outcome code ‘No Response’.

ADVBERT: Show the name and telephone for customers with a mailbox
with result code ‘No Response’.

Table 5.6: Two questions in Spider with corresponding versions of Spider-Syn,
ADVGLOVE and ADVBERT.

5.3.5 Ablation Study

To analyze the individual contribution of our proposed techniques, we have run

some additional experiments and show their results in Table 5.5. Specifically,

we use RAT-SQLB+SPR, RAT-SQLB+SPRSYN, RAT-SQLB+SPRSPR&SYN,

and RAT-SQLB+ADVBERT as base models, then we apply different schema

annotation methods to these model and evaluate their performance in different

development sets. Note that all base models use the Spider original schema

annotations.

First, for all base models, we found that MAS consistently improves the

model performance when questions are modified by synonym substitution. Specif-

ically, when evaluating on Spider-Syn, using ManualMAS achieves the best

performance, because the ManualMAS contains the synonym substitutions of

Spider-Syn. Meanwhile, when evaluating on worst-case adversarial attacks, Au-

toMAS mostly outperforms ManualMAS. Considering that the AutoMAS is

automatically generated, AutoMAS would be a simple and efficient way to im-

prove the robustness of text-to-SQL models.

5.3.6 Further Discussion on MAS

ManualMAS utilizes the same synonym annotations on Spider-Syn, the same

relationship as AutoMAS with ADVGLOVE, and we design this mechanism

to demonstrate the effectiveness of MAS in an ideal case. By showing the

superior performance of ManualMAS on Spider-Syn, we confirm that the failure

of existing models on Spider-Syn is largely because they rely on the lexical

correspondence, and MAS improves the performance by repairing the lexical

link. Besides, MAS has the following advantages:
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Approach Spider Spider-Syn ADVGLOVE ADVBERT

GNN 48.5% 23.6% 25.4% 28.9%
GNN + ManualMAS 44.0% 38.2% 22.9% 26.2%
GNN + AutoMAS 44.0% 29.5% 39.8% 31.8%
IRNet 53.2% 28.4% 26.4% 29.0%
IRNet + ManualMAS 49.7% 39.3% 24.0% 27.2%
IRNet + AutoMAS 53.1% 35.1% 44.3% 35.6%

Table 5.7: Evaluation on the combination of MAS with GNN and IRNet respec-
tively.

• Compared to adversarial training, MAS does not need any additional

training. Therefore, by including different annotations for MAS, the same

pre-trained model could be applied to application scenarios with different

requirements of robustness to synonym substitutions.

• MAS could also be combined with existing defenses, e.g., on adversarially

trained models, as shown in our evaluation.

We add the evaluation on the combination of MAS with GNN and IRNet

respectively, shown in Table 5.7. The conclusions are similar to RAT-SQL: (1)

MAS significantly improves the performance on Spider-Syn, and ManualMAS

achieves the best performance. (2) AutoMAS also considerably improves the

performance on adversarial attacks.

5.4 Summary

This chapter introduce Spider-Syn, a human-curated dataset based on the Spi-

der benchmark for evaluating the robustness of text-to-SQL models for synonym

substitution. We found that the performance of previous text-to-SQL models

drop dramatically on Spider-Syn, as well as other adversarial attacks performing

the synonym substitution. We design two categories of approaches to improve

the model robustness, i.e., multi-anotation selection and adversarial training,

and demonstrate the effectiveness of our approaches.
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Chapter 6

Re-appraising the Schema

Linking Mechanism in

Text-to-SQL

In Chapter 5, we study the text-to-SQL models against synonym substitution

on schema item words, and experiments show that the performance of existing

models drops significantly. To address this challenge, we propose two methods

to improve the robustness of the model. We believe that the research of the

previous chapter is the destruction and repair of the schema linking mechanism.

In this chapter, we further discuss the schema linking mechanism in text-to-SQL.

For definitions of schema linking related terms, see Chapter 2.3.2.

Figure 6.1 presents an example of schema linking and the EMSL feature

matrix. Most previous work relies on this exact lexical matching to obtain

schema linking features. Following the work of [Krishnamurthy et al., 2017,

Guo et al., 2019, Bogin et al., 2019a], EMSL is used in many subsequent works

[Wang et al., 2020, Cai et al., 2021, Xu et al., 2021, Lei et al., 2020, Yu et al.,

2021, Shi et al., 2021] and has been shown to be effective. For example, the

ablation study in [Guo et al., 2019] shows that removing the schema linking

module incurs the most significant performance decrease.

Although EMSL has been widely used and helps models obtain the state-of-

the-art performance on some text-to-SQL benchmarks [Yu et al., 2018b, Zhong

et al., 2017], in this chapter, we show that EMSL renders models vulnerable to

noise in the input, particularly synonym substitution and typos. We then inves-

tigate whether text-to-SQL models can preserve good prediction performance

without EMSL. Previous ablation studies [Guo et al., 2019, Wang et al., 2020]

claiming the necessity of the schema linking module were conducted without
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pretrained language models (PLMs) such as BERT. In fact, we find that when

a pretrained language model is used, removing EMSL has very little impact

on the performance of the model. This observation is consistent for different

model architectures and training schemes, such as RATSQL [Wang et al., 2020],

GNN [Bogin et al., 2019a], and GAP [Shi et al., 2021].

We evaluate the models in three settings: the original Spider benchmark

without input noise [Yu et al., 2018b], synonym substitution [Gan et al., 2021a],

and a new typo injection setting. Results show that the use of a pretrained lan-

guage model can provide the same performance benefit as EMSL, while achiev-

ing better robustness against synonym substitution and typos. Removing EMSL

also allows the model to obtain better results when training with synonym sub-

stitution samples. We also show that MAS (Multi-Annotation Selection) [Gan

et al., 2021a], a method designed to improve model robustness with EMSL, can

also improve models without EMSL. In conclusion, we demonstrate that with

pretrained language models, EMSL is no longer a necessary building block of

text-to-SQL models.

The EMSL and pretrained language models work for the schema linking

module that learns a schema linking score to decide which schema item to be

selected. There are two design choices for this score: the first sees it as a direct

relation between the question and schema items [Bogin et al., 2019a]; while the

second considers the question and schema items together [Wang et al., 2020].

Experiments show that the first design is more interpretable and can improve

the performance of the RATSQL+GAP+NatSQL [Gan et al., 2021c] model close

to the state-of-the-art model.

6.1 Schema Linking

Following SQLNet [Xu et al., 2017], most text-to-SQL models generate the SQL

structure first, and then fill in the schema items [Gan et al., 2020]. Schema

linking is needed in this workflow to locate the schema items from the question.

Prior works show that models without schema linking perform poorly on text-

to-SQL tasks, such as the sequence-to-sequence model [Yu et al., 2018b].1

6.1.1 Schema Linking Feature

Figure 6.1 presents an example of schema linking features. The word ‘singers’

in the question exactly matches (modulo stemming) the schema table name

‘singer’, giving feature value 1. It does not match the table ‘concert’, giving

1Note that prior works often use the phrase schema linking in different ways; it may refer
to the schema linking feature or module or both.

91



How many singers do we have

SELECT Count(*) FROM Singer

Question:

SQL:

Schema linking features

How many singers do we have

singer 0 0 1 0 0 0

concert 0 0 0 0 0 0

singer in
concert 0 0 0.33 0 0 0

… …

singer id 0 0 0.5 0 0 0

… …

Schema linking

Schema
tables

Schema
columns

Figure 6.1: An example of schema linking and exact match based schema linking
(EMSL) feature matrix.

value 0; and matches one of the three words in ‘singer in concert’, giving value

0.33. This type of schema linking feature (EMSL) based on exact lexical match-

ing is the most common [Guo et al., 2019, Bogin et al., 2019a, Wang et al., 2020,

Cai et al., 2021, Xu et al., 2021, Lei et al., 2020, Yu et al., 2021, Shi et al., 2021].

Some papers may not mention this exact matching explicitly, but it can be found

in their published code. Implementation details vary; for example, some works

add ConceptNet [Speer and Havasi, 2012a] to get more linking features [Guo

et al., 2019, Tan et al., 2021].

EMSL is often taken to be essential: ablation studies show that remov-

ing EMSL causes the biggest performance decline compared to removing other

removable modules [Guo et al., 2019, Wang et al., 2020]. Wang et al. [2020] con-

sider that the representations produced by vanilla self-attention were insensitive

to textual matches even though their initial representations were identical, i.e.,

the EMSL is needed for textual matches. However, we argue that a well-designed

encoder can solve this problem, and note that the feature values in Figure 6.1

are equal to the average dot product results when using lemma one-hot embed-

dings, which means a proper embedding can replace EMSL. We discuss details

in Section 6.2.3.

6.1.2 Schema Linking Module

We believe that a text-to-SQL model with good performance can ignore the

schema linking feature, but it must include a schema linking module. While
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implementation details of such models differ, the common factor is the calcula-

tion of a similarity score between each question word and schema item: correct

schema items should obtain higher similarity scores.

One difficulty in calculating the similarity scores is how to represent a schema

item containing multiple words. For example, we need a proper vector to rep-

resent the singer in concert table in Figure 6.1, so that it has a higher score

when calculating similarity with the words singer or concert in a question. If

we cannot find such a vector, we need EMSL as the similarity score, e.g., use

the 0.33 in Figure 6.1 to represent the similarity between singer in concert table

and word singer in the question.

Schema linking modules output an attention score from computing the schema

linking feature and word embeddings. There are currently two attention mech-

anism designs. The first calculates a score that relates the question on one side,

to the schema items on the other; this assumes that all the schema informa-

tion we need is available in the question. This second approach assumes the

opposite: as schema items may be implicit [Guo et al., 2019], the attention be-

tween one schema item and others is needed, and it therefore takes question and

schema items together as input to produce the score. Section 6.3.6 discusses the

differences between the two designs in the form of illustration.

6.2 Case Study

In this section, we conduct an ablation study on EMSL using different mod-

els, including GNN [Bogin et al., 2019a], IRNet [Guo et al., 2019], and RAT-

SQL [Wang et al., 2020]. We then conduct a more detailed examination using

RATSQL, which is the most competitive model architecture. We did not choose

the SOTA models [Cao et al., 2021, Hui et al., 2022] in our case study because

they build a graph relying on the EMSL. Removing the EMSL will break their

graph neural networks, which is one of their main contributions.

6.2.1 Ablation Study on EMSL

Table 6.1 presents the ablation study results of three base models. The results

of RATSQL here are different from that of [Wang et al., 2020] because Wang

et al. [2020] remove the cell value linking first and then EMSL. According to the

magnitude of the decline, our results are similar to theirs. According to [Wang

et al., 2020, Guo et al., 2019], they observe the biggest performance degradation

by removing EMSL. Since then, EMSL has become a necessary module for most

researchers to build text-to-SQL models.

We want to challenge this view and carry out the comparative experiment
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Model Exact Match Acc

GNN 47.6%
GNN w/o EMSL 24.9%
IRNet 48.5%
IRNet w/o EMSL 40.5%
RATSQL 62.7%
RATSQL w/o EMSL 51.9%

Table 6.1: Accuracy of three based models ablations on the development set.
EMSL means schema linking feature based on the exact lexical match. The
IRNet results are copied from the original paper [Guo et al., 2019], while others
are conducted by ourselves.

Model Exact Match Acc

GNN+BERT 49.3%
GNN+BERT w/o EMSL 47.1%
RATSQL+BERT 69.7%
RATSQL+BERT w/o EMSL 69.3%
RATSQL+GAP 71.8%
RATSQL+GAP w/o EMSL 71.7%

Table 6.2: Accuracy of three models with PLM ablations on the development
set. The GAP [Shi et al., 2021] is a pretrained model based on RoBERTa [Liu
et al., 2019]

in Table 6.2. Comparing Table 6.1 and Table 6.2, it can be found that PLMs

compensate for the function of EMSL, i.e., the performance in Table 6.2 is less

degraded than that in Table 6.1 after removing EMSL.

From another perspective, BERT and its subsequent pretrained language

model significantly improve the performance of models that do not use EMSL,

which explains why some models can achieve higher performance improvements

through BERT. For example, EditSQL [Zhang et al., 2019] does not use EMSL,

while it obtains the highest performance improvement by extending BERT, as

shown on the Spider leaderboard 2.

6.2.2 BERT vs GLOVE

The base RATSQL uses GLOVE [Pennington et al., 2014] for word embedding.

There are two main reasons why BERT [Devlin et al., 2019] is better than

GLOVE at schema linking. The first reason is that BERT can better deal with

out-of-vocabulary words. BERT converts these words into subwords, so BERT

makes sure different word is represented by a unique vector. However, GLOVE

2https://yale-lily.github.io/spider
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cannot handle out of vocabulary words. Researchers generally replace them

with a custom unknown (UNK) word vector. Suppose there are multiple words

outside the GLOVE vocabulary in one schema. In that case, it is equivalent

to multiple schema items being annotated as UNK, which will cause the model

without EMSL to be unable to distinguish different schema items due to the

same word vector.

The second reason is that GLOVE is not as good as BERT in the face of

schema items containing multi-words. As opposed to static embeddings pro-

vided by GLOVE, BERT provides dynamic lexical representations generated

by analyzing the context. Take the bandmate id column in the Spider dataset

as an example. The cosine of the vectors for the two words bandmate and id

in GLOVE is negative, which means if we sum these two vectors together to

represent the bandmate id column, the sum vector will inevitably lose some

information. The word vector output by BERT is calculated based on the con-

text, so although adjacent words may be unrelated in word meaning, their word

vectors will still be highly correlated. Figure 6.2, generated by the bertviz [Vig,

2019], presents the BERT head view of attention patterns in the one transformer

layer where the word bandmate clearly links to the word id.

Figure 6.2: The BERT head view of attention patterns of word bandmate and
id in the one transformer layer.

6.2.3 RATSQL Encoder

The text-to-SQL encoder is part of the schema linking module. As discussed in

Section 6.1.2, we expect that the correct schema item vectors obtained from the
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v0      v1       v2        v3      v4      v5

How many singers do we have

Question Encoder

v6 v7 v8

Table   Encoder
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VHow Vmany Vsinger …… Vhave Vsinger Vconcert Vsinger Vin Vconcert Vname …

How many singer do we have   singer   concert   singer in concert    name   ….
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v6 v7
AVG

v8

Column   Encoder

……

v…

v0 v1 v2 v5

Original RATSQL Encoder:

Our Modified RATSQL Encoder:

name

v9

v9V3-4 V…

Figure 6.3: The original RATSQL encoder structure and our modified version.

encoder are as close to the question vector as possible. The SQL cares about

which schema item to use instead of the words in the schema item. Therefore,

unlike keeping every question word vector, only one vector is used to present

the schema item even if it contains multiple words. Since both the encoder me-

chanics and content style are different between question and schema, RATSQL

uses different encoders to encode the question and schema separately, as shown

in the upper part of Figure 6.3. These three encoders are based on biLSTM and

have similar structure and size.

We believe that the shortcoming of the original RATSQL design is the use

of three encoders. For example, in the initial state, the parameters of the three

encoders are different. Therefore, even though the word ‘singers’ appears in

the question, the vector v6 initially generated by the table encoder is probably

irrelevant to all vectors output by the sentence encoder. It does not matter

when using EMSL for both training and evaluation because we can link the v6

to v2 through EMSL. However, when without EMSL, it requires the v6 from the

table encoder must close to the vectors from the question encoder, which is more

challenging to train than using only one encoder, as shown in the lower part of

Figure 6.3. Since the output of our modification is the same as the original, it

can be easily replaced and connected to the subsequent modules.

In the lower part of Figure 6.3, our modification is inspired by several text-

to-SQL models with BERT, including RATSQL+BERT [Wang et al., 2020, Guo

et al., 2019, Zhang et al., 2019]. In our modification, RATSQL uses only the

BERT encoder instead of the three encoders. We believe using three encoders

is one of the main reasons why the base RATSQL performance significantly

drops when removing EMSL. For the convenience of discussion, we named our

modified RATSQL as RATSQLO, where O means one encoder.
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RATSQLO uses only one encoder whose structure and size are the same as

the original question encoder. For the schema item representation, RATSQL

takes the hidden state after all the words of the entire schema item are encoded,

while RATSQLO takes the average of all word encodings. The advantage of

the RATSQLO is that v6, v8, and v2 initially have a certain similarity, which

benefits the schema linking in both single and multi words. Besides, RATSQLO

deal with words outside the GLOVE vocabulary better than RATSQL. Suppose

the word concert and stadium are outside the GLOVE vocabulary, the v7 and v9

output from RATSQL table encoder will be the same since their inputs are the

same UNK vector. However, the RATSQLO encoder (BiLSTM) output different

vectors for v7 and v9 because the contents before and after the word concert and

stadium are different. In this way, even if there are multiple UNK words, the

RATSQLO encoding vector will be different.

Expressed in simpler terms, an encoder maps an input vector to a new vector

space based on non-linear changes. Therefore, the v2 and v8 in Figure 6.3

would be significantly different if outputted from different encoders, making

them hard to obtain a high similarity score. In RATSQLO, the two vsinger

are generated by the same encoder, so they are inherently similar. Besides, the

v8 in RATSQLO is calculated by an average function as linear change, so v8

can keep similar to the v2. The BERT is based on a unique encoder similar to

RATSQLO, which makes it easier to construct the schema linking without the

EMSL.

6.3 Experiment

6.3.1 Generating Typos

To evaluate robustness against typos, we randomly insert a letter into the correct

schema annotation word. (This is enough to break EMSL, so we do not also

modify the question words). We generated three typo development sets, named

Spider-T1 to Spider-T3. The typos in Spider-T1 are generated by randomly

inserting a letter at any position except the end. In contrast, Spider-T2 appends

a random letter at the end of the schema annotation words. We examine these

separately: the BERT tokenizer may be able to split Spider-T2 typos into a

correct word and a suffix, but is less likely to split the Spider-T1 typos well.

We convert every schema annotation word in Spider-T1 and T2 to typos when

word length is greater than five letters; typos are generally more likely to occur

in longer words, and words with more than five letters account for about 40%

of the dataset. Spider-T3 is then the same as Spider-T1, but only converts the

most frequent schema item words to typos. While Spider-T1 and T2 simulate
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Number of errors Number of example with errors
Approach Multi words Single word UNK word Multi words Single word UNK word

RATSQL 118 57 13 112 (10.8%) 54 (5.2%) 12 (1.2%)
RATSQL w/o EMSL 178 107 33 170 (16.4%) 93 (9.0%) 30 (2.9%)
RATSQLO 136 51 11 125 (12.1%) 50 (4.8%) 11 (1.1%)
RATSQLO w/o EMSL 152 63 15 141 (13.6%) 59 (5.7%) 14 (1.4%)
RATSQLB 55 38 - 53 (5.1%) 37 (3.6%) -
RATSQLB w/o EMSL 65 34 - 65 (6.3%) 34 (3.3%) -

Table 6.3: Statistics of the types of error column predictions of different models
evaluated on the Spider development set. The larger the number, the worse the
performance.

the impact of large numbers of typos in extreme cases, Spider-T3 evaluates the

impact of a more realistic, smaller number of typos.

Model Spider

RATSQL 62.7%
RATSQL w/o EMSL 51.9%
RATSQLO 62.2%
RATSQLO w/o EMSL 58.4%

Table 6.4: Accuracy of two RATSQL ablations on the development set.

6.3.2 Experimental Setup

We evaluate the previous state-of-the-art models on Spider [Yu et al., 2018b],

Spider-T, and Spider-Syn [Gan et al., 2021a] datasets. All experiments were

performed on a machine with an Intel i5 9600 3.1GHz processor and a 24GB

RTX3090 GPU. Since the Spider test set is not publicly accessible and Spider-

Syn and Spider-T do not contain test sets, our evaluation is based on the de-

velopment sets. The Spider-Syn benchmark contains three development sets:

Spider-Syn, ADVBERT, and ADVGLOVE, for evaluating model robustness against

synonym substitution. Therefore, we have the following evaluation sets:

• Spider: The original Spider development set with 1,034 examples.

• Spider-T1, T2 and T3: Three typo development sets with 1,034 exam-

ples respectively, discussed in Section 6.3.1.

• Spider-Syn: The human-curated development set built upon Spider, for

evaluating synonym substitution in real-world question paraphrases.

• ADVBERT: The set of adversarial examples generated by BERT-Attack [Li

et al., 2020].

• ADVGLOVE: The set of adversarial examples generated using the nearest

GLOVE word vector [Pennington et al., 2014, Mrkšić et al., 2016].
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Approach Spider Spider-T1 Spider-T2 Spider-T3 Spider-Syn ADVGLOVE ADVBERT

RATSQL 62.7% 23.9% 26.4% 51.2% 33.9% 30.9% 37.1%
RATSQL w/o EMSL 51.9% 20.8% 21.7% 44.1% 39.1% 38.1% 40.9%
RATSQLO 62.2% 22.8% 25.7% 51.6% 32.1% 32.7% 36.3%
RATSQLO w/o EMSL 58.4% 20.8% 23.3% 51.5% 42.6% 38.6% 43.8%

RATSQLB 69.7% 30.9% 54.8% 63.2% 48.2% 38.0% 48.8%
RATSQLB w/o EMSL 69.3% 32.3% 66.2% 63.0% 52.7% 45.4% 54.3%
RATSQLBS 68.1% 33.6% 58.1% 62.7% 58.0% 47.7% 55.7%
RATSQLBS w/o EMSL 69.7% 38.1% 66.4% 65.0% 60.4% 51.0% 58.8%
RATSQLG 71.8% 48.1% 64.6% 68.0% 54.6% 46.6% 54.8%
RATSQLG w/o EMSL 71.7% 53.4% 67.6% 68.6% 58.7% 49.4% 57.3%

Table 6.5: Exact match accuracy on original (Spider), typos (Spider-T1 to T3),
and synonym substitution (Spider-Syn, ADVGLOVE, and ADVBERT) develop-
ment sets.

Our evaluation is based on the exact match metric defined in the original

Spider benchmark. This metric measures whether the syntax tree of the pre-

dicted query without condition values is the same as that of the gold query.

Our experiment setting is consistent with the ablation study in Section 6.2.1.

Following the case study in Section 6.2, we evaluate different variants of the

RATSQL model:

• RATSQL: The base RATSQL+GLOVE model trained on Spider using

EMSL in training and evaluation [Wang et al., 2020].

• RATSQLO: Our modified RATSQL+GLOVE model trained on Spider

using EMSL in training and evaluation, discussed in Section 6.2.3.

• RATSQLB: The RATSQL+BERT model trained on Spider using EMSL

in training and evaluation. (Note that RATSQLO+BERT is just RAT-

SQL+BERT: using BERT means that the BERT encoder will replace all

encoders in Figure 6.3).

• RATSQLBS: RATSQL+BERT trained on Spider-Syn using EMSL [Gan

et al., 2021a].

• RATSQLG: RATSQL+GAP trained on Spider using EMSL [Shi et al.,

2021].

• w/o EMSL: Models do not use EMSL in training and evaluation, con-

sistent with Tables 6.1 and 6.2.

• ManualMAS [Gan et al., 2021a]: Schema annotations include synonyms

used in Spider-Syn.

• AutoMAS [Gan et al., 2021a]: Schema annotations include synonyms

generated according to the nearest GLOVE word vector.
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Approach Spider Spider-Syn ADVGLOVE ADVBERT

RATSQLB + ManualMAS 67.4% 62.6% 34.2% 44.5%
RATSQLB + ManualMAS w/o EMSL 68.6% 58.9% 43.6% 53.1%
RATSQLB + AutoMAS 68.7% 56.0% 61.2% 52.5%
RATSQLB + AutoMAS w/o EMSL 68.9% 55.3% 62.1% 54.7%
RATSQLBS + ManualMAS 65.6% 59.5% 46.9% 51.7%
RATSQLBS + ManualMAS w/o EMSL 68.7% 61.7% 50.3% 58.8%
RATSQLBS + AutoMAS 66.8% 57.5% 61.0% 55.7%
RATSQLBS + AutoMAS w/o EMSL 69.2% 59.4% 63.2% 59.0%

Table 6.6: Evaluation on the combination of MAS with RATSQLB and
RATSQLBS respectively.

6.3.3 Evaluation on Spider

Table 6.4 presents the exact matching accuracy of models trained on the Spider

training set. It is clear that our RATSQLO significantly improves the without-

EMSL performance. Tables 6.4 and 6.2 illustrate that the EMSL can be replaced

by better encoding. The performance of RATSQL is slightly better than that

of RATSQLO, because Guo et al. [2019] conducted 100 time hyperparameter

search to optimize the RATSQL while we did not do that. Therefore, when we

modify the model structure, it may cause a slight performance degradation.

Error Analysis Table 6.3 presents the error type statistics in the error column

prediction. We count the prediction errors of single words, multiple words, and

words outside the GLOVE vocabulary (UNK word) when the predicted SQL

structure is correct. As BERT does not share GLOVE’s vocabulary limitations,

the UNK entry for RATSQLB is empty. Random initialization means that

model results after each training may vary slightly, so we only focus on the

more salient features.

Although the results of RATSQL and RATSQLO are similar, RATSQLO

consistently outperforms RATSQL in three error types when EMSL is removed;

this supports the view we discuss in Section 6.2.3. More importantly, the single-

word performance of RATSQLO without EMSL is close to that of RATSQL and

RATSQLO. As discussed in Section 6.2.2, the representation ability on multi-

word of GLOVE is worse than that of BERT. The results support this view

where the performance of RATSQLO and RATSQL on multi-word is worse

than that on single-word. When replacing the GLOVE with BERT, due to

the improvement of its multi-word representation ability, the performance of

RATSQLB with and without EMSL are close in single and multiple words.

From the right side of Table 6.3, it can also be found that the BERT brings

around 5% absolute improvement on multi-word, while that on single-word is

only 2%.
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6.3.4 Robustness Evaluation

Typo Results Table 6.5 presents the robustness evaluation results on several

datasets. For typos, GLOVE will treat them as UNK words, so the RATSQL

and RATSQLO cannot obtain good performance on Spider-T1 and T2 due to

too many UNK words. The RATSQLO without EMSL significantly outper-

forms the RATSQL without EMSL in Spider-T3, which is another evidence

that the RATSQLO is better in handling UNK words. After using PLMs, the

performance on typos has been significantly improved, especially on Spider-T2.

Spider-T3 contains only a few typos, i.e., it is close to the Spider to some extent.

Thus, the T3 result characteristics are close to Spider, i.e., their performance

gap between with and without EMSL is close. With the increase of typos, the

performance gap will be expanded, where the model+PLM without EMSL will

be better.

More Typos Besides generating typos by inserting a letter, we also generate

typos by deleting a letter and swapping the letter position, named the generated

development set Spider-T4 and Spider-T5, respectively. Like Spider-T1 and

T2, here we only convert the words whose length is greater than five letters to

typos. Table 6.7 presents the exact match accuracy on Spider-T4 and Spider-

T5 development sets. Since PLM handles typos in Spider-T4 and T5 similar

to Spider-T1, their evaluation results are also similar. Besides, we observe

that the results of models using GLOVE in Spider-T4 are the best, followed

by in T5, then in T2, and finally in T1. To understand this phenomenon, we

found that although the number of generated typos is the same among these

datasets, Spider-T1 has the most GLOVE UNK words, followed by T2, then

T5, and T4 contains the least UNK words. It can be seen that in the case

of fewer UNK words, the model+GLOVE can generate better encoding so that

the model+GLOVE without EMSL surpasses that with EMSL in Spider-T4 and

T5.

Synonym Substitution Results Gan et al. [2021a] propose three develop-

ment sets for evaluating the robustness of text-to-SQL models against synonym

substitution, including: Spider-Syn, ADVBERT, and ADVGLOVE. Table 6.5

shows that models without EMSL consistently outperform those with EMSL

when evaluated against Spider-Syn, ADVGLOVE and ADVBERT. When using

PLMs, RATSQLB and RATSQLG without EMSL show a huge performance im-

provement on these three development sets with only a tiny performance loss on

Spider. RATSQLO without EMSL consistently outperforms RATSQL without

EMSL, which means a reasonable design can reduce reliance on EMSL. Unlike
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Approach Spider-T4 Spider-T5

RATSQL 29.0% 28.6%
RATSQL w/o EMSL 32.8% 30.1%
RATSQLO 27.6% 26.5%
RATSQLO w/o EMSL 34.5% 31.2%

RATSQLB 34.9% 32.6%
RATSQLB w/o EMSL 38.8% 35.0%
RATSQLBS 35.6% 32.6%
RATSQLBS w/o EMSL 40.3% 38.2%
RATSQLG 46.7% 46.8%
RATSQLG w/o EMSL 50.6% 50.7%

Table 6.7: Exact match accuracy on Spider-T4 and Spider-T5 development sets.

other models, the RATSQLBS without EMSL outperforms that with EMSL in

all evaluation sets.

MAS Results Gan et al. [2021a] also propose a MAS method to improve the

robustness of text-to-SQL models. MAS provides multiple annotations to repair

the breaking of EMSL due to synonym substitutions. Although we advocate not

relying on EMSL, MAS can still improve the performance of models without

EMSL, as shown in Table 6.6. Comparing the data in Table 6.5 and Table 6.6,

ManualMAS improves the performance of RATSQLB and RATSQLBS with and

without EMSL on Spider-Syn development set since the ManualMAS provide

synonym annotations appearing in the Spider-Syn. In the same way, AutoMAS

has also improved their performance on ADVGLOVE. Experimental results show

that although MAS is designed to repair EMSL, it is still effective for models

without EMSL. Besides, based on MAS, the overall performance of the model

without EMSL is still better than that with EMSL. In general, even though

EMSL is not used, a reasonable annotation is still essential to the text-to-SQL

problem.

6.3.5 Further Discussion on EMSL

The text-to-SQL model can quickly locate the correct schema items through

EMSL, but this advantage will cause the models to not work properly when

EMSL fails. To better understand the impact of EMSL on text-to-SQL models,

we present the question-table attention 3 extracted from RATSQLB with and

without EMSL in Figure 6.4. In the first example, we can see that the alignment

3It is named m2t align mat in the code: https://github.com/microsoft/rat-sql/blob/

master/ratsql/models/spider/spider_enc_modules.py
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Que: For each stadium , how many concerts play there ?
Error: Failed to predict the implicit ‘stadium name’ column.
Que: What is the degree summary name that has the most

number of students enrolled ?
Error: Generate a redundant ‘student enrolment courses’ table.
Que: Which language is the most popular on the Asia continent ?
Error: Failed to predict the implicit ‘country’ table.

Table 6.8: These error predictions are outputted from the RATSQLG with
the first design choice while using the original (2nd) design choice can predict
correctly.

Model Spider

RATSQL1
G 70.2%

RATSQL2
G 71.8%

RATSQL2
G with NatSQL [Gan et al., 2021c] 73.7%

LGESQL + ELECTRA [Cao et al., 2021] 75.1%
RATSQL1

G with NatSQL 75.5%
S2SQL [Hui et al., 2022] (Current SOTA) 76.4%

Table 6.9: Accuracy of RATSQLG with different schema linking design choices
on the Spider development set. The superscript number of RATSQLG indicate
the design choice. The results are compared with the top two models in the
Spider leaderboard.

score between table singer and question word singer is the biggest, while we can

not observe a clear connection between other tables and question word singer.

However, when removing the EMSL in the second example, the alignment score

between table singer and question word singer drop clearly, and the connection

between other tables and question word singer becomes clear. It can be seen

that under other conditions unchanged, only removing EMSL has a considerable

impact on the model trained with EMSL.

The third example is extracted from RATSQLB without EMSL. Different

from the RATSQLB with EMSL, the singer table has a high alignment score

not only with the word singer but also with the whole sentence. Since the

loss function only calculates whether the output schema items are correct, the

model does not care which question word the correct schema item is linked to.

Therefore, the attention of the RATSQLB without EMSL is quite different from

that with EMSL. The significant difference of the trained models may be one of

the reasons why the overall performance of RATSQLBS without EMSL is better

than that with EMSL. Because the training data in RATSQLBS contain many

synonym substitution examples, and these examples do not have EMSL features,

it requires the model to find a balance between states shown in examples 1 and
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Ex 2: RATSQL+BERT, trained with EMSL, run without EMSL:

Ex 1: RATSQL+BERT, trained with EMSL, run with EMSL:

Ex 3: RATSQL+BERT, trained without EMSL, run without EMSL:

Figure 6.4: Examples of the question-table attention. The darker the color,
the greater the attention score. The first two examples are extracted from
RATSQLB , while the last one is from RATSQLB without EMSL. Each attention
subgraph represents the attention between only one table schema and other
words.

3 of Figure 6.4, which increases the difficulty of training.

6.3.6 Schema Linking Module Design Choices

As discussed in Section 6.1.2, there are two design choices for the schema linking

module, where the original RATSQL chose the second one. We modify the RAT-

SQL schema linking module according to the first design, which observes that

the performance has dropped slightly. Error analysis shows that the RATSQL

with the first design tends to use the schema items mentioned in the question

and is not so good at dealing with the implicit schema items. Table 6.8 presents

some error predictions from RATSQLG with the first schema linking module

design.

Although the performance of the first design choice is slightly worse, we

found that its schema linking performance is not inferior. The accuracy of the

SELECT clause is the best way to measure the schema linking performance be-

104



cause every SQL contains at least one SELECT clause that only contains schema

items. The SELECT accuracy of the first design choice is slightly (0.4%) better

than the second one, which inspired us that the first one is likely to perform

well if removing the implicit schema items. Fortunately, we found NatSQL,

an SQL intermediate representation, that removes many implicit schema items

from the SQL, making it closer to the natural language [Gan et al., 2021c].

Experiments show that the performance of RATSQLG+NatSQL using the first

design is better than using the second one. Table 6.9 gives a detailed perfor-

mance comparison, from which it can be found that by replacing the design, the

RATSQLG+NatSQL is improved to the second place, evaluated on the devel-

opment set, which is close to the current SOTA model. It should be noted that

RATSQLG+NatSQL does not use the complex graph neural network as S2SQL

and LGESQL, nor does it use the ELECTRA, which is shown to be better

than GAP [Clark et al., 2020, Cao et al., 2021, Hui et al., 2022]. In particu-

lar, S2SQL is a text-to-SQL model injecting syntax to a question-schema graph

encoder for text-to-SQL parsing. LGESQL is also a text-to-SQL model employ-

ing the 1-hop edge features with a line graph in text-to-SQL. ELECTRA is a

pre-trained language model similar to the BERT. Unlike the masked-language

modeling (MLM) pre-training in BERT, ELECTRA is pre-trained based on ‘re-

placed token detection’ and obtains better performance than BERT in many

tasks.

In addition, the first design is more interpretable because it would cause

the model to infer the correct schema item from the question. So, you can see

which part of the question is related to each selected schema item. Based on

the second design, it is sometimes difficult to explain why the specific schema

item is chosen due to the presence of some other schema items.

Attention Visualization of Different Schema linking Module Design

Choices Figure 6.5 presents the attention weight of schema tables and illus-

trates why the first design choice is more interpretable. The SQL for the question

in Figure 6.5 is ‘SELECT T1.City FROM Airports AS T1 JOIN Flights AS

T2 ON T1.AirportCode = T2.DestAirport GROUP BY T1.City ORDER BY

count(*) DESC LIMIT 1’. So, the table ‘airports’ and ‘flights’ are needed. Al-

though models under both design choices predict this example correctly, their

attention scores are quite different. We observe that the attention under the

first design can locate the proper question words. However, the attention of the

table ‘flights’ can not locate any question words when using the second design

choice, which is difficult to explain why the ‘flights’ table was selected instead

of the ‘airlines’ table with similar attention. It should be noted that the ‘flights’

table is mentioned implicitly, but it does not prevent the first design choice from
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Figure 6.5: The attention weight of the schema table under different schema
linking module design choices. The darker the color, the greater the attention
score.

giving it the proper attention.

6.4 Summary

In this chapter, we study the mechanism of schema linking in detail and im-

prove the model robustness, performance, and interpretability based on a bet-

ter understanding of schema linking. Specifically, we demonstrate that with

the presence of pretrained language models, EMSL is no longer a necessary

building block to ensure a high performance on text-to-SQL benchmarks. We

observe that when EMSL is used, models become overly reliant on it, making

them vulnerable to attacks that break the exact-match assumptions of EMSL.

On the other hand, we study the different schema linking module designs and

found that a direct relation between the question and schema items is more

interpretable and works well with intermediate representation SQL.
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Chapter 7

Text-to-SQL Robustness

against Compositional

Generalization

In Chapter 6, we study the robustness and interpretability of schema linking.

Besides the schema linking, compositional generalization also affects the robust-

ness of the neural text-to-SQL models. Neural models in supervised learning

settings show good performance on data drawn from the training distribution.

However, generalization performance can be poor on out-of-distribution (OOD)

samples [Finegan-Dollak et al., 2018, Suhr et al., 2020, Kaushik et al., 2020,

Sagawa et al., 2020]. It might be the case even when the new samples are com-

posed of known constituents; e.g., on the SCAN dataset [Lake and Baroni, 2018],

many models give incorrect predictions for the input “jump twice and walk”,

even when “jump twice”, “walk”, and “walk twice” are seen during training.

This (often lacking) ability to generalize to novel combinations of elements ob-

served during training is referred to as compositional generalization.

Previous work on compositional generalization in text-to-SQL focuses on

query split. For example, Shaw et al. [2021b] propose TMCD split based on SQL

atoms and compounds analysis and question split based on length. Finegan-

Dollak et al. [2018] proposes a query template-based split with word substitution

that was much more challenging than the question split. However, these splits

are limited by the dataset content, making it difficult to construct a challenging

benchmark while ensuring that every question phrase (sub-sentence) appears in

the training set.

Previous works [Chen et al., 2020b, Wang et al., 2021, Liu et al., 2020] im-

prove generalization by enhancing the model’s component awareness. Similarly,
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What type of pet is the youngest animal, and 

how much does it weigh?

SELECT PetType , Weight FROM Pets
ORDER BY Pet_Age LIMIT 1

Sentence:

SQL:

What type of petSubSentence:

Spider Example:

Spider-SS Example:

SELECT Pets.PettypeNatSQL:

, and how much does it weigh?SubSentence:

SELECT Pets.Weight NatSQL:

is the youngest animalSubSentence:

ORDER BY Pets.Pet_Age
LIMIT 1

NatSQL:

Figure 7.1: A natural language sentence in the original Spider benchmark is
split into three sub-sentences in Spider-SS, where each sub-sentence has a cor-
responding NatSQL clause.

Yin et al. [2021] and Herzig and Berant [2021] propose span-based semantic

parsers that predict a sub-program over an utterance span. However, these

works are based on datasets where component alignment is relatively easy to

achieve; but for more complex text-to-SQL, their methods cannot be used di-

rectly. For example, as shown in the lower part of Figure 7.1, to align the

sub-sentence with the sub-SQL, the algorithm needs to know that ‘youngest ’

corresponds to ‘age’, and ‘weigh’ corresponds to ‘weight’. For small or single-

domain settings, such an alignment algorithm can be built by establishing rules;

however, there is currently no simple and feasible alignment method for large

complex cross-domain text-to-SQL, as in e.g. the Spider benchmark [Yu et al.,

2018b].

In this chapter, we first introduce a new dataset, Spider-SS (SS stands for

sub-sentence), derived from Spider [Yu et al., 2018b]; Figure 7.1 compares the

two. To build Spider-SS, we first design a sentence split algorithm to split every

Spider sentence into several sub-sentences until indivisible. Next, we annotate

every sub-sentence with its corresponding SQL clause, reducing the difficulty of

this task by using the intermediate representation language NatSQL [Gan et al.,

2021c], which is simpler and syntactically aligns better with natural language

(NL). Spider-SS thus provides a new resource for designing models with better

generalization capabilities without designing a complex alignment algorithm.

Furthermore, it can also be used as a benchmark for evaluating future alignment

algorithms. To our knowledge, this is the first sub-sentence-based text-to-SQL

dataset.
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What is the name and nation of the singerSubSentence:

Spider-SS :

SELECT Singer.Name

SELECT Singer.Country
NatSQL:

What are the names of the singersSubSentence:

SELECT Singer.NameNatSQL:

who have a song having 'Hey' in its name?SubSentence:

WHERE Concert.Song_Name like '%Hey%'NatSQL:

Example-1:

who performed in a concert in 2014?SubSentence:

WHERE Concert.Year = 2014NatSQL:

Example-2:

What is the name and nation of the singer
who performed in a concert in 2014?

Sentence:

Spider-CG :

SELECT Singer.Name, Singer.Country

WHERE Concert.Year = 2014
NatSQL:

Subset-1: sub-sentence substitution in Example 1 and 2 2

What is the name and nation of the singer

who have a song having ‘Hey’ in its name and
who performed in a concert in 2014?

Sentence:

SELECT Singer.Name, Singer.Country

WHERE Concert.Song_Name like '%Hey%‘
AND Concert.Year = 2014

NatSQL:

Subset-2: Example-1 append a sub-sentence from Example-2

Figure 7.2: Two Spider-CG samples generated by: (1) substituting the sub-
sentence with one from another example; or (2) composing sub-sentences from
2 examples in Spider-SS.

Our annotated Spider-SS provides us with sub-sentences paired with NatSQL

clauses, which serve as our elements. Based on Spider-SS, we then construct

a further dataset Spider-CG (CG stands for compositional generalization), by

substituting sub-sentences with those from other samples, or composing two

sub-sentences to form a more complicated sample. Spider-CG contains two

subsets; Figure 7.2 shows one example for each. The first subset contains 23,569

examples generated by substituting sub-sentences. Since substitution does not

increase the complexity of the NL questions, we consider most data in this

subset would be close to the original, i.e., belonging to in-distribution. The

second subset contains 22,030 examples generated by appending sub-sentences.

Because NL questions in the second subset are longer than the original data, we

consider them more complex than the original data, i.e., belonging to OOD. We

demonstrate that when models are trained only on the original Spider dataset,

they suffer a significant performance drop on the second OOD subset of Spider-

CG, even though the domain appears in the training set.

To improve the generalization performance of text-to-SQL models, we mod-
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ify several previous state-of-the-art models so that they can be applied to the

Spider-SS dataset, with the model trained sub-sentence by sub-sentence. This

modification obtains more than 7.8% accuracy improvement on the OOD subset

of Spider-CG.

This chapter is based on [Gan et al., 2022]. Our contributions in this chapter

are as follows:

• Besides the sentence split algorithm, we introduce Spider-SS, a human-

curated sub-sentence-based text-to-SQL dataset built upon the Spider

benchmark, by splitting its NL questions into sub-sentences.

• We introduce the Spider-CG benchmark for measuring the compositional

generalization performance of text-to-SQL models.

• We show that text-to-SQL models can be adapted to sub-sentence-based

training, improving their generalization performance.

7.1 Spider-SS

7.1.1 Overview

Figure 7.1 presents a comparison between Spider and Spider-SS. Unlike Spider,

which annotates a whole SQL query to an entire sentence, Spider-SS annotates

the SQL clauses to sub-sentences. Spider-SS uses NatSQL [Gan et al., 2021c]

instead of SQL for annotation, because it is sometimes difficult to annotate

the sub-sentences with corresponding SQL clauses due to the SQL language de-

sign. The Spider-SS provides a combination algorithm that collects all NatSQL

clauses and then generates the NatSQL query, where the NatSQL query can be

converted into an SQL query.

The purpose of building Spider-SS is to attain clause-level text-to-SQL data

avoiding the need for an alignment algorithm that is hard to build based on the

complex large cross-domain text-to-SQL dataset, e.g., Spider benchmark. Be-

sides, we can generate more complex examples through different combination of

clauses from Spider-SS. Consistent with Spider, Spider-SS contains 7000 train-

ing and 1034 development examples, but Spider-SS does not contain a test set

since the Spider test set is not public. There are two steps to build Spider-SS.

First, design a sentence split algorithm to cut the sentence into sub-sentences,

and then manually annotate the NatSQL clause corresponding to each sub-

sentence.
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Show with reurn

Show cites | with singers | whose age is or above 20 and | reurn their name?

andcites their name?
dobj

conj
cc dobj

prep

whose agesingers

dobj

is or above 20

relcl

nsubj

Question Split

Pattern Generating and Matching

*      COL     IN      TABLE             *       COL  *  or    GR   NUM and         *         *      COL

Question Unifying

Show cites with singers | whose age at least 20 and | reurn their name?

Show cites with singers | whose age is or above 20 and | reurn their name?

Figure 7.3: Dependency structure of a sentence and how to split this sentence
into three sub-sentences.

7.1.2 Sentence Split Algorithm

We build our sentence split algorithm upon the NL dependency parser spaCy 1,

which provides the grammatical structure of a sentence. Basically, we split

the sentence with the following dependencies: prep, relcl, advcl, acl, nsubj,

npadvmod, csubj, nsubjpass and conj. According to [de Marnee and Manning,

2016], these dependencies help us separate the main clause, subordinate clauses,

and modifiers. Figure 7.3 shows the dependency structure of a sentence and

how to split this sentence into three sub-sentences. However, not every sentence

would be split since there are some non-splittable sentences, such as the third

example in Figure 7.4, with the same annotation as the Spider dataset. Although

this method can separate sentences well in most cases, due to the variability of

natural language, some examples cannot be perfectly split. If you are concerned

about the performance of models on non-splittable sentences, you can add the

original Spider data for training.

To address the remaining issues in sentence split, we design some refinement

steps tailored to text-to-SQL applications. For example, when the phase of a

schema column or table is accidentally divided into two sub-sentences, these two

sub-sentences are automatically concatenated. Besides, when there is only one

word in a sub-sentence, the corresponding split should also be undone.

We sampled 500 examples from the Spider-SS development set to evaluate

the acceptability of splitting results manually, and only < 3% of the splitting

results are unsatisfactory. For example, in the splitting results of the first ex-

ample in Figure 7.4, the last two sub-sentences should be combined to corre-

spond to “ORDER BY Customer.Email Address, Customer.Phone Number

1https://github.com/explosion/spaCy
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SubSentence:

Spider-SS :

SELECT Customers.Email_Address
SELECT Customers.Phone_Number

NatSQL:

List the total number of horses on farmsSubSentence:

SELECT Farm.Total_HorsesNatSQL:

ordered by email addressSubSentence:

ORDER BY Customers.Email_Address ASCNatSQL:

Example-1: Use the “extra” keyword.                         d
to compensate for split errors d

in ascending order.SubSentence:

ORDER BY Farm.Total_Horses ASCNatSQL:

Example-2: Columns that are not mentioned in the d
sub-sentence are specifically annotated

Who advises student 1004?SubSentence:

SELECT Student.Advisor

WHERE Student.StuID = 2014
NatSQL:

Example-3: Some sentences cannot be split d

NO MENTIONED

Find the emails and phone numbers of all the 
customers,

and phone numbers.SubSentence:

EXTRA Customers.Phone_NumberNatSQL:

Figure 7.4: Spider-SS examples in three special cases.

ASC ”. In this example, we did not simply give an “ORDER BY Cus-

tomer.Phone Number ASC ” to the last sub-sentence, because it does not

mention anything related to “ORDER BY ”. Here, we introduce “extra”,

a new NatSQL keyword designed for the Spider-SS dataset, indicating that this

sub-sentence mentions a column that temporarily does not fit in any other Nat-

SQL clauses. When combining NatSQL clauses into the final NatSQL query, the

combining algorithm determines the final position for the “extra” column based

on the clauses before and after. Note that even if there is a small proportion of

unsatisfactory splitting results, as long as the model trained on Spider-SS can

give the correct output according to the input sub-sentence, the quality of the

sub-sentences itself does not strongly affect the model utility.

7.1.3 Data Annotation

When we get the split results from the last step, we can start data annota-

tion. We give precise annotations based on the sub-sentence content, such as

the “extra” column annotation discussed in the last subsection. Besides, if the

description of the schema column is missing in the sub-sentence, we will give

the schema column an additional “NO MENTIONED” mark. For example, in

the second example of Figure 7.4, the “in ascending order” sub-sentence does

not mention the “Farm.Total Horses” column. Therefore, we add a “NO MEN-
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TIONED” mark for it. For those sub-sentences that do not mention anything

related to the query, we give a “NONE” mark, representing there are no NatSQL

clauses.

Since the annotation is carried out according to the sub-sentence content, the

equivalent SQL that is more consistent with the sub-sentence will be preferred to

the original SQL. Similarly, if the original SQL annotation is wrong, we correct

it according to the content.

We annotate the sub-sentence using NatSQL instead of SQL, where NatSQL

is an intermediate representation of SQL, only keeping the SELECT, WHERE,

and ORDER BY clauses from SQL. Since some sub-sentences need to be an-

notated with GROUP BY clause, we choose the version of NatSQL augmented

with GROUP BY. We did not use SQL directly because it is difficult to anno-

tate in some cases, such as the SQL example in Figure 7.5. The difficulty is

that there are two SELECT clauses in this SQL query, but none of the sub-

sentences seem to correspond to two SELECT clauses. In addition, considering

that the two WHERE conditions correspond to different SELECT clauses, the

annotation work based on SQL is far more difficult to complete. As shown in

Figure 7.5, we can use NatSQL to complete the annotation quickly, while the

NatSQL can be converted back to the target SQL.

We build an annotation tool to show the sub-sentence and sub-SQL split

from a question-NatSQL pair. During annotation, the annotators select the

corresponding sub-SQL for sub-sentences. In rare cases, if there is no suitable

sub-SQL, the annotators would write a new one, such as the example-1 in Fig-

ure7.4. We recruit two graduate students major in computer science to annotate

the dataset manually. They are trained with a detailed annotation guideline and

some samples. One is allowed to start after his trial samples are approved by the

whole team. Each example is annotated twice. If the annotations are different,

the final annotation will be decided by a discussion. If two annotators discuss

and conclude that one of the annotations is wrong and the other is correct,

the correct annotation is retained. Otherwise, the authors will annotate this

example if no such conclusion can be drawn.

7.2 Spider-CG

7.2.1 Overview

Spider-CG is a synthetic dataset, which is generated by recombining the sub-

sentences of Spider-SS. There are two recombination methods. The first is sub-

sentence substitution between different examples, and the other is to append a

sub-sentence into another sentence. To facilitate the follow-up discussion, we
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What are the locations that have both tracks 

with more than 90000 seats, and tracks with 
fewer than 70000 seats?

Sentence:

A sentence and its corresponding SQL and NatSQL:

SELECT Location FROM Track WHERE seating

>  90000 
INTERSECT SELECT Location FROM Track

WHERE seating  <  70000

SQL:

Spider-SS :

SELECT Track.Location

WHERE Track. Seating >  90000 
AND Track.Seating <  70000

NatSQL:

We can think about how to correctly annotate
the INTERSECT clause if using the SQL query

What are the locationsSubSentence:

SELECT Track.LocationNatSQL:

that have both tracks with more than 90000 
seats,

SubSentence:

WHERE Track. Seating >  90000 NatSQL:

and tracks with fewer than 70000 seats?SubSentence:

AND Track.Seating <  70000NatSQL:

Figure 7.5: It is difficult to annotate if using the SQL instead of NatSQL.

named the Spider-CG subset generated by the sub-sentence substitution method

CG-SUB, and the other named CG-APP where CG denotes Spider-CG, SUB

stands for substitution, and APP represents append.

In CG-SUB, there are 20,686 examples generated from the Spider-SS training

set, while 2,883 examples are generated from the development set. In CG-APP,

examples generated from training and development sets are 18,793 and 3,237,

respectively. Therefore, the Spider-CG contains 45,599 examples, around six

times the Spider dataset. We can further append sub-sentences to the CG-SUB

examples if more data is needed.

7.2.2 Generation Algorithm

According to Algorithm 2, we can generate the CG-SUB and CG-APP based

on compositional elements. Each element contains one or more sub-sentences

with corresponding NatSQL clauses from Spider-SS, where these NatSQL can

only be WHERE or ORDER BY clauses. Thus, Algorithm 2 only substitute

and append the WHERE and ORDER BY clauses, and does not modify the

SELECT clause. We collect the sub-sentences for compositional elements by

scanning all sub-sentence from start to end or from end to start and stopping
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Algorithm 2 Generate CG-SUB and CG-APP dataset in a certain domain

Input: e list ▷ All compositional elements in a domain
Output: cg sub and cg app ▷ CG-SUB and CG-APP dataset in a certain

domain

1: for Every element1 in e list do
2: for Every element2 in e list do
3: if element1 != element2 then
4: if element1.can be substituted by( element2 ) then
5: cg sub.append( element1.generate substitution example(

element2 ) )

6: if element1.can append( element2 ) then
7: cg app.append( element1.generate appending example(

element2 ) )

8: return cg sub, cg app

Ques Show the name of employees
named Mark Young ?

SQL SELECT name FROM employee
WHERE name = ‘Mark Young’

Table 7.1: One acceptable but not perfect examples in the Spider-CG.

when encountering clauses except WHERE and ORDER BY. For example, we

generate a compositional element containing the last two sub-sentences of the

Spider-SS example in Figure 7.5. In contrast, no element is extracted from the

example in Figure 7.1. It should be noted that elements in a domain cannot be

used in another because the schema items are different. So as many domains as

there are, it needs to run Algorithm 2 as many times.

To ensure that the generated Spider-CG sentence contains the required infor-

mation, the compositional element needs to contain all the information needed

to derive the target NatSQL clause. Thus some sub-sentence can not be a

compositional element, such as the last sub-sentence of examples 1 and 2 in

Figure 7.4. Among them, example 1 misses ORDER BY information; example

2 misses Total Horses column information. In contrast, the sub-sentence of the

two Spider-SS examples in Figure 7.2 contains the required information and can

be compositional elements. So, we can filter out the sub-sentences containing

the “NO MENTIONED” and “extra” label, and collect the rest as compositional

elements.

The ‘can be substituted by ’ and ‘can append ’ function in Algorithm 2 are

used to ensure that the generated sentences are reasonable. For the convenience

of discussion, we refer to them as ‘sub’ and ‘app’ functions for short. These two

functions examine the generated sentences from complexity, logic and coherence.
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Complexity checks are used to limit the complexity of the generated exam-

ples to no more complex than the upper bound of the Spider dataset. On the

NatSQL side, both functions do not allow the generated NatSQL containing:

1) more than one subqueries; 2) more than one HAVING condition; 3) more

than three WHERE conditions; 4) more than one ORDER BY clause; 5) new

conditions for a subquery. On the NL side, since the substitution did not clearly

increase the sentence complexity, only the ‘app’ function performs the NL com-

plexity checks to restrict the number of sub-sentence to less than 4.

Logic checks are used to prevent generating contradictory examples. First,

logic checks filter out examples with repeated WHERE conditions. Then, it

filters out examples whose WHERE condition negates the query content, e.g.,

what is name of student that do not have any student. Finally, since the GROUP

BY clause is often expressed implicitly, substituting or appending elements

containing the GROUP BY clause may introduce logical errors. Thus, logic

checks require the GROUP BY clauses to be the same if they exist.

Coherence checks are used to ensure that the expression of the generated

sentence is coherent. As discussed in Section 7.1.2, we separate a sentence into

main clause, subordinate clauses, and modifiers. The main clause expresses

what you want to query, i.e., corresponding to the SELECT clause. Subor-

dinate clauses and modifiers are restrictions on the query, i.e., corresponding

to WHERE and ORDER BY clauses. Therefore, compositional elements only

contain subordinate clauses and modifiers. The way to ensure the coherence of

sentences by sub function is to require the substitution sub-sentences modify

the same noun. Suppose the schema table of the NatSQL in a compositional

element appears in advance. In that case, we consider its sub-sentence modifies

the table noun because repeating a known object 2 can only be a further modifi-

cation. However, if the schema table has not appeared before, we consider that

the sub-sentence modifies its previous word since a subordinate clause usually

comes immediately after the noun it describes.

There is a high similarity between the app and sub function, but the in-

spection between the substituted elements is changed to the inspection between

the new element and the last element in the original sentence. Therefore, the

appended sub-sentence must modify the same noun as the last sub-sentence.

If a compositional element passes the app function, we use the word ‘and ’ or

‘or ’ to connect it where the word ‘or ’ can only connect a WHERE condition.

Table 7.2 discuss some examples for ease of understanding.

2A table is usually an object whose attributes are its columns in relational databases.
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Spider sentence:
Show name for all singers ordered by age from the oldest to the youngest.
How many concerts are there in year 2014 or 2015?

Generate new sentence by appending:
Show name for all singers ordered by age from the oldest to the youngest and in year 2014 or 2015?

Coherence checks:
Failed to pass the coherence checks due to the modified noun of the two sub-sentences being different.
In the same way, the ‘Show name for all singers in year 2014 or 2015? ’ can not pass.
Spider sentence:
Show name for all singers ordered by age from the oldest to the youngest.
What is the nation of the singer who have a song having ’ Hey ’ in its name?

Generate new sentence by appending:
What is ... who have a song having ’ Hey ’ in its name and ordered by age from the oldest to the youngest.

Coherence checks:
Pass the coherence checks.
In the same way, the ‘what is ... singer ordered by age from the oldest to the youngest .’ also pass.

Spider sentence:
What are the titles of the books whose writer is not ’Elaine Lee’?
List the writers who have written more than one book.

Generate new sentence by appending:
What are the titles of the books whose writer is not ’Elaine Lee’ and who have written more than one book.

Coherence checks:
Failed to pass the coherence checks due to the modified noun of the two sub-sentences being different.
In the same way, the ‘What are the titles of the books who have written more than one book.? ’ can not pass.
Spider sentence:
List the writers who have written more than one book.
Show writers who have published a book with price more than 40.

Generate new sentence by appending and substituting:
List the writers who have written more than one book and who have published a book with price more than 40.
List the writers who have written more than one book or who have published a book with price more than 40 .
Show writers who have published a book with price more than 40 and who have written more than one book .
Show writers who have published a book with price more than 40 or who have written more than one book.
List the writers who have written more than one book.
Show writers who have written more than one book.

Coherence checks:
All these sentence pass the coherence checks.

Table 7.2: Some examples of successful or unsuccessful passing the coherence
checks.

7.2.3 Quality Evaluation

We consider that the quality of a text-to-SQL sentence is determined by two

criteria: containing the required information and being reasonable. The ‘infor-

mation’ criterion requires a sentence that contains all the information needed

to derive the target NatSQL. The ‘reasonable’ criterion requires a sentence that

is logically correct and whose representation is fluent and easy to understand.

We randomly sampled 2000 examples from the Spider-CG dataset, around 99%

of which are acceptable, i.e., they meet the two criteria. The evaluation is

conducted manually by a computer science graduate with good knowledge of

text-to-SQL. However, these acceptable examples do not mean that there are

no grammatical errors and they may be meaningless. We give one acceptable

but not perfect examples in Table 7.1, where the sentence is meaningless be-

cause the content it wants to query is the condition it gave. Besides, there

are around 5% NatSQL queries in these acceptable examples that can not be

converted to the correct SQL. This problem can be solved by a well-designed
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List name of student who is older than ten

sub-sentence-1:d
List name of student

0 1 2 3 4 5 6 7 8

sub-sentence-2:d
who is older than ten

Encoder

V0V1V2V3V4V5V6V7V8Encoder Vectors:

Decoder

WHERE Student.Age > 10

Figure 7.6: A example of encoding the whole sentence but decoding only the
sub-sentence.

database schema or updating the NatSQL conversion function in the future.

7.3 Model

Existing text-to-SQL models input a sentence and output the corresponding

SQL query. So the easiest way to think of using the Spider-SS dataset is to

train the model where inputting sub-sentence and outputting the corresponding

NatSQL clauses. However, this method is not workable because it will lose some

essential schema information. For example, if you only look at the third sub-

sentence in Figure 7.1, you do not know whether it enquires about the weight

of pets or people.

In order to take into account the context and the sub-sentence data of Spider-

SS, we propose that a seq2seq model can encode the whole sentence but decode

only the sub-sentence. Figure 7.6 presents the workflow of encoding the whole

sentence but only decoding the sub-sentence of ‘who is older than ten’ and

outputting the corresponding NatSQL clause. Based on this modification, a

seq2seq text-to-SQL model can be adapted to the Spider-SS. Although previous

span-based semantic parsers [Yin et al., 2021, Herzig and Berant, 2021] can

work with aligned annotations based on the Spider-SS dataset, none of them are

designed for complex text-to-SQL problems. Our modification idea is similar in

principle to the span-based semantic parsers, but we did not change the existing

model according to the span-based because our modification idea has a smaller

workload.
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List name of student who is older than ten

0:3

Input:

SELECT Student.Name

Expect Output:

Example 1:

List name of student who is older than ten
4:8

Input:

WHERE Student.Age > 10

Expect Output:

Example 2:

……
Example n:

Figure 7.7: A Spider-SS example is split into two examples for training and
evaluation.

In general, we can make the seq2seq-based text-to-SQL models adapt to the

Spider-SS in three steps. (1) Data preprocess. Split the Spider-SS examples by

sub-sentence. For example, the example in Figure 7.6 is split to two examples

shown in Figure 7.7. (2) Model modification. After data preprocessing, there

are two input data for a model. The first input is an entire question that

directly goes to the encoder. The second input is the sub-sentence indexes,

which are used to select the encoder output, as shown in Figure 7.6. (3) Output

combination. Since the model output may be only a clause, not a complete

NatSQL query, we generate the final NatSQL query after the model outputting

all NatSQL clauses.

7.4 Experiment

7.4.1 Experimental Setup

Dataset. We evaluate the previous state-of-the-art models on the Spider-CG

and Spider [Yu et al., 2018b] datasets. Since the Spider test set is not publicly

accessible, Spider-CG does not contain a test set. As discussed in Section 7.2.1,

we divide the Spider-CG into two subsets: CG-SUB and CG-APP. Therefore,

there are five evaluation sets:
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• SpiderD: the original Spider development set with 1,034 examples for

cross-domain in-distribution text-to-SQL evaluation.

• CG-SUBT: the CG-SUB training set, containing 20,686 examples gener-

ated from Spider-SS training set by substituting sub-sentences. CG-SUBT

can be used for in-domain in-distribution text-to-SQL evaluation.

• CG-SUBD: the CG-SUB development set containing 2,883 examples for

cross-domain in-distribution text-to-SQL evaluation.

• CG-APPT: the CG-APP training set, containing 18,793 examples gener-

ated from Spider-SS training set by appending sub-sentences. CG-APPT

can be used for in-domain out-of-distribution 3 text-to-SQL evaluation.

• CG-APPD: the CG-APP development set containing 3,237 examples for

cross-domain out-of-distribution text-to-SQL evaluation.

Our evaluation is based on the exact match metric defined in the original

Spider benchmark. The exact match metric measures whether the syntax tree

of the predicted query without condition values is the same as that of the gold

query. All models are only trained on 7000 Spider or Spider-SS training exam-

ples.

Models. We evaluate the following open-source models that reach competitive

performance on Spider:

• GNN: The GNN [Bogin et al., 2019a] model using the GLOVE [Penning-

ton et al., 2014] embeddings.

• RATSQL: The RATSQL [Wang et al., 2020] model using the GLOVE

embeddings.

• RATSQLB: The RATSQL model using the BERT [Devlin et al., 2019]

embeddings.

• RATSQLG: The RATSQL model using the GAP [Shi et al., 2021] em-

beddings.

• (N): This subscript indicates that the model use NatSQL instead of SQL.

• (S): This subscript indicates that the model is modified according to Sec-

tion 7.3 and trained on Spider-SS. Besides, since Spider-SS is annotated by

NatSQL, this subscript also indicates that the model uses NatSQL instead

of SQL.
3Out-of-distribution means that the difficulty distribution is different from the Spider; see

Table 7.4. Section 7.2.2 discusses the removal of overly complex examples to ensure that
Spider-CG’s SQL does not exceed the complexity upper bound of the Spider.
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Dataset Exact Match Execution Match

Training Set 90.7% 93.3%
Development Set 94.8% 95.2%

Table 7.3: Use exact match and execution match metrics to evaluate the differ-
ence between the SQL in Spider and the SQL generated by NatSQL in Spider-SS.

Dataset easy medium hard extra

SpiderD 24.1% 43.1% 16.8% 16.1%
CG-SUBT 28.6% 38.0% 21.1% 12.3%
CG-SUBD 37.6% 38.4% 12.0% 12.0%
CG-APPT 3.3% 31.4% 26.0% 39.3%
CG-APPD 2.4% 44.3% 22.9% 30.4%

Table 7.4: The difficulty distribution of five different evaluation sets.

Implementations. All experiments were performed on a machine with an

Intel i5 9600 3.1GHz processor and a 24GB RTX3090 GPU. All models keep

their original hyperparameters except the RATSQLB(S). RATSQLB(S) cannot

converge on the original parameters until we reduce the learning rate of model

from 7.444e-04 to 1e-04 and raise the learning rate of BERT from 3e-06 to 1e-05.

We did not conduct a hyperparameter search, so the model trained on Spider-SS

may improve performance through other parameters.

7.4.2 Dataset Analysis

Spider-SS. Table 7.3 presents the difference between the SQL in Spider and

the SQL generated by NatSQL in Spider-SS. Our evaluation results are lower

than the original NatSQL dataset [Gan et al., 2021c] because the Spider-SS uses

equivalent SQL and corrects some errors, as discussed in Section 7.1.3. Some

equivalent and corrected SQL cannot get positive results in exact match metric

and execution match. Therefore, the model trained on Spider-SS may not be

ideal for chasing the Spider benchmark, especially based on the exact match

metric. Similarly, the RATSQLG extending NatSQL had achieved a previous

SOTA result in the execution match of the Spider test set but get a worse result

than the original in the exact match [Gan et al., 2021c]. Thus, we recommend

using NatSQL-based datasets to evaluate models trained on NatSQL.

Spider-CG. Table 7.4 presents the difficulty distribution of five different eval-

uation sets. The difficulty criteria are defined by Spider benchmark, including

easy, medium, hard and extra hard. Experiments show that the more difficult

the SQL is, the more difficult it is to predict correctly [Wang et al., 2020, Shi
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Dataset Deviation <= 1 Deviation <= 2

CG-SUBT 93.2% 94.4%
CG-SUBD 92.9% 94.1%
CG-APPT 86.0% 90.4%
CG-APPD 88.9% 92.6%

Table 7.5: The similarity between sub-sentences in Spider-SS and Spider-CG
generated by the same split algorithm under the deviation of one or two tokens.

et al., 2021, Gan et al., 2021c]. It can be found from Table 7.4 that the difficulty

distribution of CG-SUBT and CG-SUBD is similar to that of SpiderD. The sim-

ilar distributions among CG-SUBT, CG-SUBD, and SpiderD support our view

that the examples generated by the substitution method are in-distribution.

On the other hand, the difficulty distributions of CG-APPT and CG-APPD

are obviously different from that of SpiderD. Due to appending the sub-sentence,

the NL and SQL in CG-APP become more complex, where the proportion of

SQL in extra hard increased significantly, while easy was the opposite.

7.4.3 Sentence Split Algorithm Evaluation

We generate the Spider-CG based on the combination of Spider-SS sub-sentences

split by the algorithm introduced in Section 7.1.2. We can reuse this algorithm

to split the sentence in Spider-CG and then compare the splitting results with

the Spider-SS sub-sentences to evaluate the stability of the splitting algorithm.

We consider that a deviation of one or two tokens in the splitting result is

acceptable. For example, in Figure 7.1, we consider that putting the comma of

the third sub-sentence into the second sub-sentence does not change the meaning

of sub-sentences, same for moving both the comma and the word ‘and’.

Table 7.5 presents the similarity between sub-sentences in Spider-SS and

Spider-CG, which are generated by the same split algorithm under the devia-

tion of one or two words. The similarity exceeds 90% in all evaluation set when

two deviation words are allowed. Considering that the model trained on the

Spider-SS does not require consistent split results, as discussed in Section 7.1.2,

the similarity results of the splitting algorithm are good enough. The similarity

of CG-SUB is higher than that of CG-APP, which means the more complex the

sentence, the greater the challenge to the algorithm. Although the algorithm

has been refined on the training set, the similarity between training and devel-

opment in CG-SUB and CG-APP is close, showing that the algorithm performs

consistently for sentences in unseen domains. In summary, we consider that as

long as the sentences are not more complex than CG-APP, the algorithm can

be used stably in other text-to-SQL datasets.
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Approach SpiderD CG-SUBT CG-SUBD CG-APPT CG-APPD

RATSQLG 72.7% 80.9% 70.3% 45.2% 44.2%
RATSQLG(N) 73.9% 90.2% 75.0% 67.8% 60.5%

RATSQLG(S) 74.5% 91.4% 76.7% 82.5% 68.3%

RATSQLB 72.0% 79.5% 72.0% 45.1% 47.2%
RATSQLB(N) 72.1% 83.2% 69.4% 54.6% 53.1%

RATSQLB(S) 71.9% 91.0% 72.6% 79.8% 61.5%

RATSQL(N) 63.2% 79.1% 60.7% 40.6% 34.5%

RATSQL(S) 64.7% 88.8% 63.3% 72.1% 44.1%

GNN(N) 54.4% 67.3% 57.5% 30.4% 25.1%

GNN(S) 49.3% 71.9% 51.8% 52.1% 34.6%

Table 7.6: Exact match accuracy on evaluation sets.

7.4.4 Model Results

Table 7.6 presents the exact match accuracy on the five different evaluation sets.

In the two OOD datasets, CG-APPT and CG-APPD, the performance of all

models has dropped by about 10% to 30%. However, the models trained on

Spider-SS significantly outperform those trained on Spider when evaluated on

the OOD datasets. We use the sentence split algorithm to split every sentence

before inputting the models with subscript (S). Although the split sub-sentences

are not completely consistent with those seen during training, it did not pre-

vent the models with subscript (S) from getting good performance, i.e., the

RATSQLG(S) consistently outperforms all other models on all evaluation sets.

These results demonstrate that the sub-sentence-based method can improve the

generalization performance. The limitation is that the method may not be com-

patible with the original model, e.g., original hyperparameters in RATSQLB(S)
are not workable, and the performance of GNN on the SpiderD and CG-SUBD

is degraded.

Each model has a close result between the unseen SpiderD and CG-SUBD,

indicating that from the perspective of the model, the synthetic sentences are

pretty similar to NL. Therefore, we believe the performance on CG-SUBD can

be generalized to the real world. Moreover, considering that the algorithms

for generating CG-SUBD and CG-APPD are close (see Section 7.2.2), we can

further speculate that the synthetic sentences of CG-APPD are also close to

natural language.

The models with NatSQL is significantly better than that without NatSQL

when evaluated on Spider-CG. One of the reasons is that the training data

of Spider and Spider-SS are about 10% different, which leads to the perfor-

mance degradation in the model trained on Spider when evaluated on the SQL

generated by the NatSQL of Spider-SS, and vice versa. On the other hand,

experiments in [Gan et al., 2021c] show that NatSQL improve the model perfor-
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mance in extra hard SQL. Therefore, RATSQLG(N) and RATSQLB(N) suffer

less performance degradation in CG-APPT and CG-APPD than RATSQLG
and RATSQLB.

7.5 Summary

We introduce Spider-SS and Spider-CG for measuring compositional general-

ization of text-to-SQL models. Specifically, Spider-SS is a human-curated sub-

sentence-based text-to-SQL dataset built upon the Spider benchmark. Spider-

CG is a synthetic text-to-SQL dataset constructed by substituting and append-

ing sub-sentences of different samples, so that the training and test sets consist

of different compositions of sub-sentences. We found that the performance of

previous text-to-SQL models drop dramatically on the Spider-CG OOD subset,

while modifying the models to fit the segmented data of Spider-SS improves

compositional generalization performance.
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Chapter 8

Conclusions

In this thesis, we studied text-to-SQL from two perspectives; performance and

robustness. To this end, we improved model performance by introducing the

NatSQL that bridges the mismatch between natural language (NL) and SQL.

Additionally, we found that the robustness of the model is poor when breaking

the schema linking or requiring generalization to more complex compositional

examples.

The intermediate representation (NatSQL) was used almost exclusively through-

out the whole thesis. In Chapter 4, we introduce NatSQL, a new SQL IR that

reduces the difficulty of schema linking and simplifies the SQL structure. Nat-

SQL improves the performance of several baseline models and helps them gen-

erate the executable SQL. In Chapter 5, experiments on NatSQL show that the

interpretable schema linking module works better with NatSQL because Nat-

SQL removes many implicit schema items. In Chapter 6, we use NatSQL to

build the sub-sentence-based Spider-SS dataset since it is difficult to annotate

using SQL.

For robustness, Chapter 5 studies the model robustness against synonym

substitution on schema item words. We tested several text-to-SQL models, and

they failed to handle the synonym substitution. We propose MAS and ad-

versarial training methods to improve model robustness against the synonym

substitution. The synonym substitution can be considered to have broken the

schema linking. Thus, Chapter 6 studied the text-to-SQL schema linking and

found that previous models rely on the EMSL. We argue that the EMSL is

not the icing on the cake, but it is the one that introduces the vulnerability,

and it can be replaced by better input encoding. In Chapter 6, we study the

model’s robustness against compositional generalization. Again, we found the

existing models unable to generate correct SQL for the more complex composi-

tional question, even though all sub-sentences have been seen during training.
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We modified these models to learn the sub-sentences, not the whole question,

which improved their compositional generalization ability. We highlight that

compositional generalization in text-to-SQL requires compositional parsers.

8.1 Future Directions

We conclude this thesis with a brief discussion of future directions for research

on text-to-SQL.

Text-to-SQL Benchmarks. The WikiSQL and Spider are large-scale cross-

domain text-to-SQL benchmarks and have been widely used. The main differ-

ence between them is that the schema structure and SQL are more complex

in the Spider. However, we can further complicate the Spider examples to

construct a more challenging benchmark. For example, we can add examples

requiring more complex reasoning, such as basic mathematical operations. Ad-

ditionally, the new benchmark can further improve the evaluation metrics. The

Spider benchmark provides two metrics for evaluation. The first metric is ex-

act match that measures whether the predicted query without both condition

values and JOIN ON clause as a whole is equivalent to the gold query. How-

ever, JOIN ON is essential when there are several possible JOIN ON paths.

Besides, the Spider exact match metric cannot correctly evaluate the sub-query

and equivalent SQL. Thus, Zhong et al. [2020a] further studies the equivalent

SQL evaluation based on the original Spider exact match metric, but there is

still room for improvement.

The second metric is execution match, which measures whether the exe-

cution result of the predicted query from the database is the same as the gold

query. Currently, this metric simply checks whether the returned data is strictly

consistent, but this design is not thoughtful enough. For example, if the user

queries data but does not require its returned order, the different order results

would be negative. In addition, the current metric does not allow returning more

column data than the users expect; if, for example, the user wants the student’s

age, the metric would give a negative to the return data containing the student’s

name and age. In general, a more complex cross-domain text-to-SQL dataset

with a more reasonable metric is worth researching.

Intermediate Representation. NatSQL cannot cover all SQL and is de-

signed based on the Spider benchmark. With the further complexity of SQL

and the database structure, the current NatSQL seems insufficient. For exam-

ple, the NatSQL does not contain a JOIN ON clause. If the JOIN ON clause is

to become more complex than the examples in the Spider, it will be necessary
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to design a more powerful IR. On the other hand, a new database paradigm can

be proposed from the perspective of Natural Language Interface to Database

(NLIDB) to restrict the complexity of the schema database. For example, the

new paradigm can require that columns with the same meaning be labeled in the

same group when creating a database, which makes it easier for IR to generate

JOIN ON clause.

At present, we have completed the conversion from NatSQL to SQL, but

not from SQL to NatSQL. SQL to NatSQL is a lot more complicated than the

reverse. For example, the two NatSQL queries in Table 8.1 can be converted to

the same SQL, which means that it is difficult to determine which NatSQL is the

target query for SQL to NatSQL conversion. The SQL to NatSQL conversion

requires NL analysis. It can be inferred from the NL content of ‘the most

concerts’ that we should select the first NatSQL query containing the ‘ORDER

BY count(concert.*) DESC LIMIT 1’ clause. Therefore, it is an interesting

future direction for studying the SQL to NatSQL conversion.

NL: What is the name and capacity of the stadium with the most
concerts after 2013?

SQL: SELECT T2.name , T2.capacity FROM concert AS T1 JOIN
stadium AS T2 ON T1.stadium id = T2.stadium id WHERE
T1.year >= 2014 GROUP BY T2.stadium id ORDER BY
count(*) DESC LIMIT 1

NatSQL: SELECT stadium.name , stadium.capacity WHERE T1.year
>= 2014 ORDER BY count(concert.*) DESC LIMIT 1

NatSQL: SELECT stadium.name , stadium.capacity WHERE T1.year
>= 2014 ORDER BY count(stadium.*) DESC LIMIT 1

Table 8.1: The two NatSQL queries can be converted to the same SQL query.

Text-to-SQL Model. Most existing text-to-SQL models do not care about

the correctness in the JOIN ON clause because the Spider exact match metric

does not check it. As discussed above, it is important to generate the correct

JOIN ON clause. The difficulty in generating a correct JOIN ON clause is

that most JOIN ON clauses are implicitly expressed in the question. A model

with JOIN ON clause generation and reasoning ability is important for complex

text-to-SQL problems.

Conversely, the phrase-based (sub-sentence-based) text-to-SQL model is also

worth studying. Our experiments on Spider-CG have shown that models adapt-

ing to the Spider-SS can improve their compositional generalization ability.

However, the original model is not designed based on sub-sentences. We believe

the community would benefit from a newly designed phrase-based text-to-SQL

model. We have submitted a paper related to this direction.
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Understanding Domain knowledge. Gan et al. [2021b] studied the domain

knowledge in cross-domain text-to-SQL, and they found that existing models

do not understand domain knowledge. However, this work does not provide

any solution to help the model understand the domain knowledge. We believe

understanding the domain knowledge is essential for models to generalize to

unseen domains.

Handling Large-scale Database. The database in current benchmarks is

usually small-scale, containing less than twenty columns and rows. The small-

scale database makes schema linking relatively easy and meets the input length

limitation of many pre-trained language models, such as BERT. Besides, fewer

data rows make it easy to scan the entire database to establish cell value linking.

However, in the real-world scenario, the database usually consists of thousands

of rows and columns, which raises a new challenge to existing neural text-to-

SQL models. In particular, the challenges include: (1) for a long sequence of

table schemas, how to encode it and how to construct a proper schema linking?

(2) for tons of data, how to efficiently construct a cell value linking without

scanning the entire database?

8.2 Software and Data

We release the following datasets and code related to this thesis:

• NatSQL: https://github.com/ygan/NatSQL. We released the NatSQL query

for Spider benchmarks and the NatSQL to SQL conversion code;

• RATSQL+NatSQL model (available upon request). This code was mod-

ified from the original RATSQL and can be used for studying how to

modify the existing models adapting to the NatSQL;

• Spider-Syn: https://github.com/ygan/Spider-Syn. We released the Spider-

Syn dataset for evaluating the synonym substitution. We also released the

code for automatically generating the synonym substitution examples;

• Analysis of schema linking: It includes code of RATSQLO and Spider-T1

to SPider-T3 datasets (the code and datasets are yet not accessible to

facilitate double-blind reviewing);

• Spider-SS: https://github.com/ygan/SpiderSS-SpiderCG. We released the

Spider-SS dataset for studying sub-sentence-based text-to-SQL;
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• Spider-CG: https://github.com/ygan/SpiderSS-SpiderCG. We provided the

preprocessed Spider-CG for ease of use. Alternately, you could generate

it from Spider-SS based on our released code.
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Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gašić, Lina M.
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Appendix A

Domain Konwledge

A domain means a certain type of application scenarios; for example, the Spider

benchmark includes various distinct domains such as geography and university.

Cross-domain text-to-SQL research aims to build a text-to-SQL model that can

generate correct SQL queries and generalize to different domains. Therefore,

one main challenge of cross-domain text-to-SQL generalization is to understand

different knowledge required by different domains. For example, the university

domain usually needs the knowledge of different job titles and genders, while

the geography domain emphasizes more on the knowledge of places instead of

people.

Different SQL databases could require very different domain knowledge.

As shown in [Suhr et al., 2020], the state-of-the-art models on Spider achieve

much worse performance on earlier SQL benchmarks such as ATIS and Geo-

Query [Iyer et al., 2017, Zelle and Mooney, 1996a]. However, we argue that

the failure of generalization is expected to some extent, because without see-

ing in-domain examples, some domain knowledge required by these datasets

is even hard to infer for experienced programmers. For example, we asked

five computer science graduate students to write the SQL query for the ques-

tion ‘how many major cities are there?’ in GeoQuery, but none of them

gave the correct answer. This question requires the domain knowledge that

major means ‘population > 150000’, which is hard to infer without looking

at GeoQuery training set. Therefore, while acquiring general-purpose domain

knowledge is also important, we believe that the failure of generalization to

questions requiring similar domain knowledge to the training set could be more

problematic, which motivates our design of Spider-DK benchmark.
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