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ABSTRACT 

Few-shot learning has emerged as a novel approach to bioacoustic 

event detection since it is useful when training data is insufficient, 

and the cost of labelling data is high. In this paper, we explore the 

Prototypical Networks for developing a few-shot learning system 

to detect mammal and bird sounds from audio recordings. To en-

hance the deep networks, we use a ResNet-18 variant as the clas-

sifier, which can learn the embedding mapping better with 

stronger architecture. Another method is proposed to focus on do-

main shift problem during learning the embedding by taking ad-

vantage of autoencoders to learn the low-dimensional representa-

tions of input data. A reconstruction loss is added to the training 

loss to perform regularization. We also utilize various data aug-

mentation techniques to boost the performance. Our proposed sys-

tems are evaluated on the validation set of DCASE 2022 task 5 

and improve the F1-score from 29.59% to 47.88%. 

Index Terms— Few-shot learning, sound event detec-

tion, Prototypical Networks, embedding space 

1. INTRODUCTION 

Bioacoustic event detection is the task of recognizing biological 

sound events present in a set of audio recordings and predicting 

their time boundaries [1]. This technology is now benefitting from 

the power of deep learning and becomes an effective way to gain 

information on the activities of animals that reflects human’s im-

pact on the environment [2]. Traditionally, researchers have con-

ducted the work through manually labelling on huge datasets, 

which is consuming both in time and resources [2]. In addition, 

collecting labelled data in some certain animal sounds can be chal-

lenging, and the scarcity of supervised data can lead to poor gen-

eralization and overfitting problem [1].  

To address the data scarcity and reduce the cost of labelling 

data, few-shot learning has been proposed; this approach learns a 

classifier that can recognize new classes with a limited amount of 

labelled data [3]. One applicable advantage of few-shot learning is 

its ability to gain experience from prior similar tasks, so few-shot 

learning can be characterized as a kind of meta-learning [4]. A 

meta-learning algorithm gains experience over a set of learning 

“episodes” and uses this experience to improve its future perfor-

mance for a new task [4]. For N-way-K-shot classification, each 

episode includes N classes with K examples. For the DCASE 2022 

task 5, the first K=5 events are used for the class of interest for 

each test file to detect all the events of this class in the rest of the 

recording [1].  

In recent years, an increasing number of meta-learning ap-

proaches for few-shot learning have been proposed and applied in 

many domains, such as sound event detection, image classification 

and text classification [4]. Among them, the Prototypical Network 

(ProtoNet) proposed by Snell et al. [3] is simple in principle but 

effective in practice. The ProtoNet transforms the input into an 

embedding space where the embeddings are simply clustered to 

the nearest “prototype” [3]. Therefore, it is desirable for the deep 

networks to produce adequate embedded features and calculate a 

useful prototype for each class.  

In this work, we propose two enhanced methods to build a 

stronger ProtoNet. The first method uses a ResNet-18 variant as 

the embedding features extractor, which is capable of learning and 

extracting more advanced features with deeper and wider residual 

networks. The second method merges the ideas from autoencoders 

and ProtoNet to learn low-dimensional representations and to pre-

serve the information contained in original low-level features. We 

also apply various spectrogram augmentation techniques to in-

crease the amount of training data for model generalization. Our 

proposed systems are evaluated on the validation set of DCASE 

2022 task 5 and achieve the best F1-score of 47.88%. 

2. RELATED WORK 

The use of convolutional neural layers allows feature extractor to 

extract complex features that express the raw data in much more 

detail and learn representations more efficiently. However, as the 

layers get deeper, the learned features can deteriorate due to van-

ishing gradient, leading to performance deterioration [5]. For this 

reason, residual networks (ResNets) were proposed and widely 

applied in deep learning tasks [5]. Sharma et al. [6] used a pre-

trained ResNet-50 model for bird song classification, producing 

an accuracy of 97.1%, which was far superior to that of the 

VGG16 model. Soumya et al. [7] improved the ProtoNet using a 

customized ResNet as the feature embedding network for facial 

emotion recognition and proved its capability of extracting minute 

details.  

In addition, most few-shot learning methods can suffer from 

domain shift problems during learning the embedding [8]. Since 

the embedding is only learned from the seen classes, when per-

forming testing with the unseen classes, the embedding features 

are likely to be shifted due to the bias of the seen classes used for 

training [8]. Sometimes it can make the query data points far away 

from the correct corresponding unseen class prototypes, thus af-

fecting the accuracy of the k-NN search. An effective Semantic 

Autoencoder (SAE) [8] is proposed to solve this problem by add-

ing a reconstruction constraint to learn the low-dimensional rep-

resentation. Moreover, Liu et al. [9] improved the SAE using 

graph structure and another L2-norm constraint, which preserves 



Detection and Classification of Acoustic Scenes and Events 2022  03-04 November 2022, Nancy, France 
  

the intrinsic data structure and has more discriminating power. In-

spired by the ideas of above works, we enhance the ProtoNet for 

the few-shot bioacoustic event detection. 

3. METHOD 

This section introduces our methods developed upon the baseline 

system, including model design and data augmentation. First, we 

present a modified version of ResNet-18 used as a feature embed-

ding network. After that, we describe how to combine autoencod-

ers to perform data reconstruction from embeddings for better 

generalization to new unseen classes. Finally, we describe spec-

trogram augmentation techniques to boost the system's perfor-

mance. 

3.1. ResNet-based prototypical network 

For the task of detecting bird and mammal sounds, it is important 

for the embedding module to extract adequate features since the 

sound samples are often too short and imperceptible to detect and 

distinguish them. However, the embedding module of the original 

ProtoNet only consists of four Conv blocks. If we use the original 

ProtoNet with multiple Conv blocks to learn the sound’s features, 

it is prone to encounter gradient vanishing problems, which re-

duces the quality of the embeddings.  

We thus choose residual networks as the embedding encoder, 

which can avoid the vanishing gradients thanks to skip connec-

tions. The skip connections add the output from a preceding layer 

to a later layer, allowing information to get fast-forwarded and go 

deeper with less deterioration [6]. Another salient feature of Res-

Nets is the use of batch normalization (BN) to normalize the input 

of the activation function of the previous layer, which helps miti-

gate the covariate shift problem [6].  

Our implementation is based on the ResNet-18. We modify 

the network to obtain a less deep model which only has 3 residual 

blocks to fit the size of the features. Each residual block contains 

3 convolution layers using a kernel size of 3 × 3, followed by a 

batch normalization and a Leaky ReLU activation. Importantly, a 

shortcut with a 1 × 1 convolutional layer is added over the 3 layers. 

The architecture of our residual network is shown in Table 1, while 

Table 2 shows the architecture of the original embedding module, 

which provides a comparison.  

Table 1. Architecture of the presented residual network 

Encoder Residual Block 

Layers Channels Layers Kernel 

Conv2D+ BN +ReLU 16 Conv2D+ BN +ReLU 3 × 3 

Residual Block 64 Conv2D+ BN +ReLU 3 × 3 

Residual Block 128 Conv2D+ BN  3 × 3 

Residual Block 64 
Shortcut: Conv 

2D+BN 
1 × 1 

Adaptive  

AvgPooling+SoftMax 
- 

ReLU+MaxPool-

ing+Dropout 
1 × 1 

Table 2. Architecture of original encoder and Conv block 

Encoder Conv Block 

Layers Channels Layers Kernel Size 

Conv Block 64 Conv2D 3 × 3 

Conv Block 64 BatchNorm - 

Conv Block 64 ReLU - 

Conv Block 64 Max pool 2 × 2 

 

 

3.2. Combination of Autoencoder and ProtoNet 

To overcome the domain shift problems described in Section 2, 

we enhance the network based on the encoder-decoder paradigm. 

The encoder compresses the spectrograms of input data into an 

embedding space while the decoder reconstructs the expected 

original input features from the embedding space [10]. The output 

of the decoder is then compared with the original input features. 

This additional reconstruction task imposes a new constraint in 

learning the input features that guarantees the embedding features 

preserve more distinctive information contained in the original in-

put features [8]. Therefore, it is effective in mitigating the domain 

shift problem. Although the appearance of features changes from 

seen classes to unseen classes, the demand for a more truthful re-

construction of the input features is unchanged; thus, the embed-

ding function is generalizable across seen and unseen domains [8]. 

Inspired by AutoProtoNet proposed by Sandoval-Segura et 

al.[11], we use the 4 original sequential convolution blocks for the 

encoder and 4 sequential transpose convolution blocks for the de-

coder. The transpose convolution blocks are utilized to reproduce 

the high-dimensional low-level features by deconvolutional oper-

ations. The detail of these blocks is displayed in Table 2. Each 

convolutional block consists of a Conv2D layer, a Batch Normal-

ization, a ReLU activation and followed by a Max Pooling layer 

with pool-size of 2×2. Each transpose convolutional block is 

made up of a transpose layer, a Batch Normalization layer, and a 

Conv2D layer and followed by a ReLU activation.  

Table 2. Components of Conv Block and Transpose Conv 

Block 

Conv Block Transpose Conv Block 

Layers Kernel Size Layers Kernel Size 

Conv2D 3 × 3 
Conv2D 

Transpose 

2 × 2, 

stride 2 

BatchNorm - BatchNorm - 

ReLU - Conv2D 3 × 3 

Max pool 2 × 2 ReLU - 

    
 

 

Figure 1: Overview of the forward pass through the autoen-

coder model 

The training procedure of the autoencoder model is based 

upon the original training framework presented by Snell et al [3]. 

The main improvement is that we tailor the training loop with a 

reconstruction loss to regularize the embedding features and pur-

pose it to preserve more useful details. The overview of the for-

ward pass through the autoencoder is shown in Figure 1.  

In the new training framework, the support data 𝑥𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 

query data 𝑥𝑞𝑢𝑒𝑟𝑦  are randomly sampled from the current episode 

in form of 5 classes with 5 examples. They are then passed 

through the encoder and decoder to produce a reconstruction set 

Encoder       Decoder 

𝑥𝑖ෝ  

  
𝑥𝑖 = ቂ

𝑥𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑥𝑞𝑢𝑒𝑟𝑦
ቃ 

 

𝐿𝑅 = 𝑀𝑆𝐸(𝑥𝑖 , 𝑥𝑖ෝ ) 

  
𝐹𝜃 

𝜃𝑖 = 𝐴(𝜃, 𝑥𝑠𝑢𝑝𝑝𝑜𝑟𝑡) 
𝐿𝐶 = 𝑁𝐿𝐿(𝐹𝜃𝑖

, 𝑥𝑞𝑢𝑒𝑟𝑦) 𝐿 =  𝐿𝐶  + 𝐿𝑅 
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𝑥𝑖ෝ  . This reconstruction set is then compared with the original in-

put features 𝑥𝑖 using mean square error (MSE) loss [11], defined 

as:  

 𝑀𝑆𝐸 =   (𝑥𝑖 − 𝑥𝑖ෝ  )2. (1) 

The finetuning algorithm A computes a set of prototypes 𝑝𝑘 

for each class 𝑘 by computing the class-wise mean of embedded 

support examples and updates the model’s parameters [3], and 

both are contained in 𝜃𝑖 . Eq. (2) defines the computation of pro-

totypes:   

 
𝑝𝑘 =  

1

|𝑆𝑘|
 ∑ 𝐹𝜃

𝑥∈𝑆𝑘

(𝑥), 
(2) 

where the 𝑆𝑘 denotes the set of support samples for class 𝑘 and 𝑥 

denotes the embeddings of class k.  

 Given the Euclidean distance function 𝑑 and a set of query 

sound samples, the ProtoNet produces a probability distribution 

over classes for a query sample 𝑥 belonging to true class 𝑘 by Eq. 

(3) [3]. Then the training proceeds by minimizing the negative 

log-likelihood (NLL) of the true class 𝑘 by Eq. (4). Finally, the 

classification loss 𝐿𝐶 and the reconstruction loss  𝐿𝑅 are summed 

to jointly optimize the training.  

𝑝𝜃(𝑦 = 𝑘|𝑥) =  
exp(−𝑑(𝐹𝜃(𝑥), 𝑝𝑘))

∑ exp𝑘′ (−𝑑(𝐹𝜃(𝑥), 𝑝𝑘′))
  (3) 

 

𝐿(𝜃) =  −𝑙𝑜𝑔 𝑝𝜃(𝑦 = 𝑘|𝑥). (4) 

3.3. Data augmentation 

In order to increase the diversity of data and the generaliza-

tion ability of the model, we use SpecAugment [12] as the 

data augmentation technique. It essentially consists of three 

transformations: time warping, frequency masking, and 

time masking. Specifically, they modify a spectrogram by 

warping it in the time direction with a distance factor, mask-

ing blocks of consecutive frequency channels, and masking 

blocks of time steps, respectively [12]. In our case, we warp 

the feature to the left by 0.5 s and mask one block of one 

frequency mel bin and one block of 10 time steps. We 

choose these values according to the size of the time-fre-

quency representation, which is appropriate to produce the 

diversity of the training data. If the values are too large or 

small, the augmented features could be very different from 

the originals or not changing enough; thus, the model is un-

able to achieve improved performance.  

 

Figure 2: Example of spectrogram augmentation: orginial 

spectrogram (left) and augmented spectrogram with SpecAug-

ment (right). 

4. EXPERIMENTS 

4.1. Dataset 

The DCASE 2022 challenge provides a development set which is 

predefined as a training set and validation set. They were acquired 

from multiple bioacoustic sources, including sounds of worldwide 

birds, spotted hyenas, jackdaws, meerkats, and wetlands birds [1]. 

As a result, the sounds can be long or very short across the subsets; 

the sampling rate of each audio varies from 6 kHz to 44 kHz [1]. 

The training set consists of 174 audio recordings, 47 classes and 

14,229 event instances. In addition, multi-class annotations are 

provided for the training set with positive, negative, and unknown; 

we only extracted and made use of the positive event instances for 

training. The validation set consists of 18 audio recordings, 5 clas-

ses and 1,077 positive event instances [1]. 

4.2. Data pre-processing 

Mel-spectrogram.  All audio files in both the training set and val-

idation set were first resampled to a sampling rate of 22,050 Hz. 

The audio files were then transformed to Mel-spectrograms with 

128 Mel bins using an FFT size of 1024 samples and a hop size 

of 256 samples. The librosa library was employed for this purpose. 

Afterwards, spectrogram images of size F × T where F=17 by 

T=128 were used as inputs.  

PCEN. PCEN has been proposed to normalize a time-frequency 

representation by performing automatic gain control, followed by 

nonlinear compression [13]. Former research used PCEN to miti-

gate the effects of background noise, demonstrating its effective-

ness as a preprocessing step prior to convolutional methods in 

sound event detection [13]. Bioacoustic data recorded in the wild 

often have multiple sound sources and uncleaned background. 

Therefore, we utilized PCEN to reduce noise presented in the 

Mel-spectrograms and improve robustness to channel distortion. 

4.3. Training  

Prototypical networks adopt an episodic training procedure where 

in each episode, a mini batch is randomly sampled from the train-

ing data [4]. A subset of mini batch was used as the support set 

and the remaining is used as query set. The models were trained 

with 2,000 episodes and 5 classes in each minibatch with the 

Adam optimizer and the learning rate of 0.001. Euclidean distance 

was selected as the metric that measures the distance between 

query samples to a prototype. 

4.4. Post-processing 

The preliminary experiments confirms that the task of detecting 

bioacoustics events from nature is challenging; most classification 

methods can produce a large number of false-positive predictions, 

substantially reducing the model’s F1-score [14]. Therefore, we 

applied post-processing to the outputs to remove possible false 

positives. Specifically, we removed the predictions that were 

shorter than 20% of the average duration calculated by the first 5 

shots for each audio file. It was because participants were ex-

pected to treat the task as a 5-shot setting. 
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Table 3. Comparison of models using different classifier and feature. The best results are highlighted in boldface. 

Model components  Validation set scores (%) Subset F1-score (%) 

Exp No. Classifer Feature F1-score Precision Recall HB ME PB 

1 CNN (Baseline) PCEN 29.59 36.34 24.96 / / / 

2 ResNet PCEN 45.64 48.34 43.22 50.00 57.14 26.18 
3 Autoencoder PCEN 37.94 38.95 36.97 44.53 52.05 25.68 

4 CNN PCEN+Augment 37.16 42.09 33.26 38.86 72.01 15.33 

5 ResNet PCEN+Augment 47.88 52.11 44.30 53.45 50.98 17.65 

6 Autoencoder PCEN+Augment 47.61 50.18 45.34 52.68 53.10 22.44 

5. RESULTS AND DISCUSSIONS 

We conducted several ablation experiments on the validation set 

to verify the effectiveness of the components and tricks in our 

proposed models. To further investigate the capabilities of our 

models, we computed the F1-score for three difference subsets. 

The experiments results are shown in Table 3. The brief infor-

mation about each subset is as follows: the HB subset records 

the mosquito’s events that are very long with low noise; the ME 

subset contains the sounds of meerkats that are short with low 

noise; the PB subset records the bird flight calls that are very 

short and unclear with high noise.  

5.1. Effects of using ResNets 

From the results of Experiments 1 and 2, it can be seen that the 

ResNet model outperforms the baseline CNN and achieves a no-

ticeable improvement of over 15%. It is primarily due to the 

ResNet's deep architecture, which has many more parameters to 

capture the features better, allowing the learned features to fit 

the input data better. In addition, the residual networks make use 

of skip connections, enabling the model to carry gradients to a 

very deep layer. It also allows the model optimally tuning the 

number of the layers during training, so that the model parame-

ters can be updated more optimally. However, since it adopts a 

complex networks architecture, the computation and memory 

cost increase intensively. To compare the model complexity, we 

measure the number of trainable parameters for different models 

as shown in Table 4. Compared to CNN with 112k parameters, 

the number of parameters for ResNet has grown significantly to 

724k, and the number of parameters for the autoencoder is 

roughly twice that of the CNN. 

Table 4. The number of parameters for different models 

Model Parameters 

CNN (Baseline) 111,936 

ResNet 724,096 

Autoencoder 272,717 

5.2. Effects of adding reconstruction loss 

As shown by the results of Experiments 1, 2 and 3, the autoen-

coder model also improves the performance but with a slightly 

lower gain compared to that of the ResNet model. By adding a 

reconstruction loss, it is likely that the autoencoder model can 

learn the high-level low-dimensional representation and pre-

serve more useful details, resulting in a better generalization to 

unseen classes for few-shot learning task. However, the recon-

struction loss is served as a constraint during learning, so its in-

fluence is limited. Making an embedding classifier to learn the 

representation of the input data in a fundamentally different way 

is more meaningful and challenging. That could be the reason 

why the ResNet model outperforms the autoencoder in this case.  

5.3. Effects of data augmentation  

Applying SpecAugment has been the popular choice for sound 

event detection. When training data is unbalanced and insuffi-

cient, it has shown to be effective. Overall, this technique also 

workes well for our systems. Despite being augmented by Spe-

cAugment, the performance of detecting the very short bird 

sounds in PB subset decreases. The reason could be that since 

the masking and warping were randomly applied from a uniform 

distribution over the value of factors, the blocks and warping 

steps could be too excessive in some cases. This could lead to 

some useful information in the minor sounds being masked, or 

even the augmented features became quite different from the 

originals, thus preventing the networks from learning.  It gets 

even worse under high-noise conditions.  Furthermore, the 

model trained on CNN and augmented data was observed to 

achieve much higher results for the ME subset than other ap-

proaches. This is because ResNet and autoencoder have many 

more parameters to optimize, likely leading to overfitting the 

training set. In contrast, the CNN with a simple architecture is 

just capable of generalizing better to ME data. 

6. CONCLUSION 

In this paper, we present two solutions to enhance Prototypical 

Networks for the task of bioacoustics sound event. We show a 

list of ablation studies and discussed the effects of each compo-

nent or trick used in our systems. Overall, using ResNets and 

autoencoder (or construction loss) contribute to learn a more ad-

equate embedding space and boost the model’s performance. 

Joining with data augmentation techniques, our enhanced mod-

els achieve the best F1-score of 47.88%, which improves over 

the baseline by a large margin.  

Our studies also imply that it is challenging to detect the 

very short and unclear bioacoustics sound events. This can be 

an important subject to be explored in the future work. Recent 

research show that model adaptation is an effective solution to 

improve the general robustness of SED method [15]. 
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