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Abstract

We study Wilson loops in the three-dimensional N = 6 supersymmetric Chern-Simons

theory recently constructed by Aharony, Bergman, Jafferis and Maldacena, that is conjec-

tured to be dual to type IIA string theory on AdS4×CP
3. We construct loop operators in

the Chern-Simons theory which preserve 1/6 of the supercharges and calculate their expec-

tation value up to 2-loop order at weak coupling. The expectation value at strong coupling

is found by constructing the string theory duals of these operators. For low dimensional

representations these are fundamental strings, for high dimensional representations these

are D2-branes and D6-branes. In support of this identification we demonstrate that these

string theory solutions match the symmetries, charges and the preserved supersymmetries

of their Chern-Simons theory counterparts.

http://arXiv.org/abs/0809.2787v4


1 Introduction

This work focuses on supersymmetric Wilson loop operators in the three-dimensional Chern-

Simons (CS) theory of Aharony, Bergman, Jafferis and Maldacena [1]. This theory is conjec-

tured to represent the low-energy dynamics of N coincident M2-branes at a Zk orbifold of the

transverse R8 space. This in turn has an alternative description as a weakly coupled type IIA

string theory on AdS4 × CP3 (or more generally M-theory on AdS4 × S7/Zk).

There are several reasons to focus on Wilson loop operators. They can be defined in any

gauge theory and in the case of pure Chern-Simons theory, which is topological, they are

the principal observables. While the theory of [1] includes additional matter fields, Wilson

loops are still very natural observables. Furthermore, these operators play an important role

in the AdS/CFT correspondence [2], since they are dual to semiclassical strings in the dual

supergravity background [3,4]. Lastly, in the case of N = 4 supersymmetric Yang-Mills (SYM)

theory in four dimensions, the expectation value of the 1/2 BPS circular Wilson loop is a non-

trivial function of the ’t Hooft coupling λ and the rank of the gauge group N , yet it can be

calculated exactly and matched with string theory [5–7]. It is therefore interesting to see if an

analog observable exists in the 3-dimensional theory.

The supersymmetric Chern-Simons theory has two gauge groups of equal rank N and op-

posite level k and −k. In addition to the gauge fields there are bosonic and fermionic fields CI
and ψI respectively in the bi-fundamental (N, N̄) representation of the gauge groups and their

complex conjugates.

With two gauge groups and this matter content there are quite a few possibilities to construct

gauge-invariant Wilson loop operators. One choice would simply be the standard Wilson loop

operator in one of the gauge groups (with gauge field Aµ or Âµ)

W =
1

N
TrP exp

(
i

∫
Aµdx

µ

)
. (1.1)

Our experience from N = 4 SYM in 4-dimensions suggests that such a Wilson loop is not

supersymmetric, which can be verified by a direct calculation.

In the four dimensional theory a supersymmetric Wilson loop couples also to an adjoint

scalar field [4, 8]. Here there are no adjoint fields, but we can use two bi-fundamental fields to

construct a composite in the adjoint

W =
1

N
TrP exp

∫ (
iAµẋ

µ +
2π

k
|ẋ|M I

JCIC̄
J

)
ds . (1.2)

M I
J is a matrix whose properties will be determined by supersymmetry. This is the Wilson

loop operator we shall focus on.

With the appropriate choice of M I
J , this Wilson loop will turn out to preserve 1/6 of the

supercharges (4 out of 24) when the path of the loop is a straight line or a circle. In the first

case it has a trivial expectation value, but not in the case of the circle, where we calculate it to

2-loop order in the gauge theory and to leading order at strong coupling. For arbitrary shape
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it will not preserve global supersymmetry, but we still expect it to be the natural observable

with a simple description in the string theory dual.

The next section studies the Wilson loop in the gauge theory and the following section does

the same from the string-theory side.

In the course of this work we have learnt that some of our results were independently

obtained by several other groups [9–11].

2 Gauge theory construction

In this section we study the Wilson loop (1.2). We classify the conditions for it to be super-

symmetric, derive the perturbative expression for this Wilson loop and calculate it at two loop

order in an expansion in the ’t Hooft coupling λ = N/k.

2.1 Supersymmetry

The N = 6 CS theory has 12 Poincaré supercharges (QIJ)α = −(QJI)α, where I, J = 1, . . . , 4,

and the spinor index takes the values α = 1, 2. Along with the 12 superconformal supercharges

SIJ , to be discussed below, these make up the 24 supersymmetries of the theory. From [13] we

have the supersymmetry transformations of the bosonic fields of the theory

δCK = (θIJ QIJ)CK = θIJ εIJKLψ̄
L,

δC̄K = (θIJ QIJ) C̄
K = θIJ

(
δKI ψJ − δKJ ψI

)
,

δAµ = (θIJ QIJ)Aµ =
2πi

k
θIJ σµ(CIψJ − CJψI + εIJKLψ̄

KC̄L),

δÂµ = (θIJ QIJ) Âµ =
2πi

k
θIJ σµ(ψJCI − ψICJ + εIJKLC̄

Lψ̄K).

(2.1)

with the Poincaré supersymmetry parameter (θIJ)α. We note the complex conjugation proper-

ties C̄K = (CK)†, ψ̄K = (ψK)† and (θIJ)† = 1
2
εIJKL θ

KL.

Let us then consider the supersymmetry variation of the Wilson loop (1.2) and demand that

it vanishes for a suitable choice of the θIJ . One then finds the following condition

δW ∼ θIJα [−ẋµ σµαβ δPI + |ẋ| δαβMP
I ]Cp (ψJ)β

+ ǫIJKL θ
IJ
α [ẋµ σ

µ
αβ δ

K
P + |ẋ| δαβMK

P ] (ψ̄L)β C̄
P = 0

(2.2)

For a supersymmetric loop both terms in the above have to vanish seperately. Let us then

consider a straight space-like Wilson line in the 1 direction, i.e. xµ(s) = δ1µ s and decompose

the above equation with respect to the projectors P± = 1
2
(1± σ1). We then find from (2.2) the

conditions

θIJ+ (−δPI +MP
I ) + θIJ− (δPI +MP

I ) = 0 , (2.3)

εIJKL θ
IJ
+ (δKP +MK

P ) + εIJKL θ
IJ
− (−δKP +MK

P ) = 0 , (2.4)
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where θIJ± = P±θIJ . To analyze the possible solutions it is simplest to start with one specific

supercharge, parameterized without loss of generality by a non-vanishing θ12
+ . This choice

implies

M =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 , M I

JCIC̄
J = C1C̄

1 + C2C̄
2 − C3C̄

3 − C4C̄
4 . (2.5)

It is simple to see that this choice of M I
J then allows for one more independent non-vanishing

supercharge, parameterized by θ34
− .

This Wilson loop operator is therefore invariant under two out of the 12 Poincaré super-

symmetries, i.e. 1/6 of the super-Poincaré generators are preserved1.

Let us now turn to the 12 super-conformal symmetries (SIJ)α = −(SJI)α. The super-

conformal transformations of the N = 6 CS theory have been constructed recently in [14]. For

the transformations of the bosonic fields the only change with respect to (2.1) is the replacement

θIJ → x · σ ηIJ , while the super-conformal transformations of the fermionic fields receive an

additional contribution. This additional term, however, does not affect the variation of the

Wilson loop operator (1.2) and the super-conformal analogue of the above Wilson line analysis

then results in the simple replacement of θ̄IJ → η̄IJs σ1 in (2.3) and (2.4). Hence, also two of

the 12 super-conformal symmetries are intact and we indeed find that the Wilson line operator

(1.2) is 1/6 BPS.

This analysis is valid for an infinite straight line. Under a conformal transformation a line

will be mapped to a circle, which will therefore posses the same number of supersymmetries.

The conformal transformation mapping the line to the circle mixes the super-Poincaré and

superconformal charges, hence the circular Wilson loop is invariant under a linear combination

of QIJ ± SIJ .

These Wilson loops are invariant also under some bosonic symmetries, part of the SO(4, 1)×
SO(6) symmetry of the vacuum. There is an SL(2,R) × U(1) subgroup of the conformal

group comprised, in the case of the line, of translations along the line P1, dilation D, a special

conformal transformation K1 and a rotation around the line, J . These generators combine with

the supercharges to form the supergroup OSp(2|2) (with a non-compact Sp(2)). In addition

there is an extra SU(2) × SU(2) subgroup of the SO(6) R-symmetry group rotating C1 ↔ C2

and C3 ↔ C4 that leaves M I
J , and hence the Wilson loop, invariant. The supercharges, being in

the antisymmetric representation of the R-symmetry group are neutral under this extra bosonic

symmetry.

Thus far we have discussed space-like Wilson loops. For a straight time-like Wilson loop

we find similar conditions, only that the matrix M will be imaginary. For a straight light-like

line the scalar contribution to (1.2) vanishes, but the loop is still supersymmetric. In this case

it is invariant under half of the super-Poincaré charges and all the super-conformal ones. The

1Note that if the sign of the δK
P terms in (2.4) was the opposite, the choice M I

J = δI
J would preserve half the

supercharges. Alas, this is not the case.
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fact that the scalar coupling is real for a space-like curve, imaginary for a time-like one and

vanishes for a light-like curve is familiar from N = 4 SYM in four dimensions [8].

Given a choice of supercharges it is an interesting question to ask what is the most general

loop preserving it. We saw that the basic Wilson loop (1.2) with the geometry of a line or a

circle preserves four real supercharges. Under this choice of supercharges the matrix M I
J was

fixed, as was the value of ẋµ. So the loop is restricted to be a line in a fixed direction. Parallel

lines will preserve the same super-Poincaré charges, but different superconformal ones.

Thus the choice of four supercharges completely fixes the geometry of the loop. However,

this does not mean that there is only a unique Wilson loop preserving these supercharges, there

are different ones with the same geometry but in different representations of the gauge groups.

In (1.2) we chose one of the gauge groups, but a similar operator exists also in the other

group. In that case instead of CIC̄
J the scalar bilinear will be of the opposite order C̄JCI .

More generally, we can take the Wilson loop to be in any representation of each of the gauge

groups, so the most general Wilson loop will be characterized by a pair of Young tableau for

the representations R and R̂

W±
RR̂

=
1

2

[
TrRPe

R

(iAµẋµ+ 2π
k
|ẋ|MI

JCI C̄
J)ds ± T̂rR̂Pe

R

(iÂµẋµ+ 2π
k
|ẋ|M̄I

J C̄
JCI)ds

]
. (2.6)

This in fact over-counts the number of Wilson loops. Recall that in Chern-Simons theory

there are ’t Hooft vertices which are in the k’th symmetric representation [15, 16]. These are

important to create some of the local gauge invariant states in the theory [1], but they also

affect the Wilson loops. Since they can be added freely, they essentially identify representations

which are related to each-other by multiplication by the k’th symmetric representation. Thus

they reduce the number of distinguished Wilson loop observables to be those given by Young

tableau with fewer than k columns.

Furthermore, it could also be quite difficult to find all of those different Wilson loops in the

supergravity limit. In similar cases (like in orbifolds of N = 4 of SYM) only the Wilson loops

that are symmetric under interchange of the gauge groups have a known simple description. In

this theory the most natural operator of the type (2.6) is the one that is symmetric under the

exchange of the two gauge groups, while exchanging also the representation with its conjugate

(since the matter is in the fundamental - anti-fundamental).

We expect therefore our string theory solutions presented in Section 3 to correspond to this

linear combination of Wilson loops in the two gauge groups. The leading planar contribution

will be a single string, dual to a single-trace Wilson loop (or a multiply wrapped Wilson loop).

For very large representations the planar approximation breaks down and the fundamental

string should be supplanted by D-branes.

2.2 Perturbative calculation

Let us now turn to the perturbative evaluation in λ = N/k of the 1/6 BPS Wilson loop (1.2)

for circular and straight line contours. We shall work in Euclidean space. At leading order in λ
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(a) (b) (c) (d)

Figure 1: The two-loop Feynman diagrams contributing to a circular 〈W 〉. The bold circular

line represents the Wilson loop contour, whereas wiggly lines denote gluon and straight lines

scalar propagators.

the only possible contribution is from a tree-level gluon exchange which is identical to that in

pure CS theory. The result is rather subtle and depends on the “framing” of the Wilson loop,

which is extra information needed to define it beyond the path of the loop (c.f. [17–19]). We will

take a slightly naive approach; since the gluon propagator is proportional to the antisymmetric

epsilon tensor, it vanishes for all loops lying in a plane. This corresponds to zero framing. A

possible additional subtlety arises from the self contraction of the two scalars fields at leading

order. We take them to be defined as normal ordered. Hence there is no contribution at leading

order in λ.

Expanding W to second order we need the one-loop corrected Feynman gauge gluon prop-

agator and the bare scalar propagator calculated in Appendix A (see also [20])

〈Aµ(x)ijAν(y)kl〉 = δikδjl
1

k

[
−iεµνρ(x− y)ρ

2|x− y|3 +
N

k

(
δµν

|x− y|2 − ∂µ∂ν ln |x− y|
)]

,

〈(CI)îi(x) (C̄J)ĵj(y)〉 = δJI δij δîĵ
1

4π|x− y| . (2.7)

At this two-loop order one finds that in the loop-to-loop propagator the propagator of the

composite scalar M I
J C̄

JCI , diagram (b), combines with the one-loop piece of the gauge field

propagator, diagram (a), to give

D[x1(τ1), x2(τ2)] ≡ −N
3

k2

[
ẋ1 · ẋ2 − |ẋ1||ẋ2|

(x1 − x2)2
− ∂τ1∂τ2 ln |x1 − x2|

]
. (2.8)

We would like to point out a subtlety in the last term, which being a total derivative can be

removed by a gauge transformation – albeit a singular one. Depending on the regularization it

may lead to divergences along the loop, as we do not expect divergencies for the supersymmetric

Wilson loop we conclude that it should be dropped. Also note that the scalar contribution is

insensitive to the choice of signs in the ±1 entries of the diagonal M I
J as these come in squares.

One sees that for a straight line this yields a vanishing effective propagator, while for the

circle it gives a constant propagator D = N3/(2k2) somewhat similar to the situation in four

dimensional N = 4 super Yang-Mills. Thus this contribution gives at O(k−2)

1

N

1

2!

∮
dτ1

∮
dτ2

N3

2k2
=
π2N2

k2
. (2.9)

There are two other diagrams contributing at O(k−2). The diagram (c) is the interaction
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between a scalar bilinear CI C̄
J and a gauge field

〈
2

N
Tr

∮
dτ1 dτ2 iẋ

µ
1 |ẋ2|

M I
J

k
Aµ(x1)CIC̄

J(x2)

∫
d3wTr

(
i∂ρCKAρC̄

K − i∂ρC̄
KCKAρ

)
〉

∝
∮
dτ1 dτ2

∫
d3w εµνρ ẋ

µ
1 |ẋ2| (x1 − w)ρ

1

|x1 − w|3|x2 − w|
∂

∂wν
1

|x2 − w| = 0 .

(2.10)

It is zero because the integrand is odd in the third component of w, i.e. the component orthog-

onal to the plane of the circular loop.

The remaining diagram (d) is an interaction of three gauge fields through the Chern-Simons

interaction. This graph appears also in pure Chern-Simons theory and its value depends only

on the topology of the loop. The circle is an “unknot”, for which the result is −N2π2/(6k2) [18].

Putting together the O(k−2) contributions we find

〈W 〉 = 1 +
π2N2

k2
− π2N2

6k2
+ O(k−3) , (2.11)

where we have separated the O(k−2) contribution into two terms, one from the combined

gauge-field and scalar exchange and the second, the topological contribution identical to pure

Chern-Simons.

So far we discussed the Wilson loop in one of the two U(N) factors, but it makes sense

to consider the linear combination of the operators in the two groups (2.6). In particular we

expect the string theory duals to be symmetric under the exchange of the two groups. As

mentioned before, one would be lead to take the Wilson loop in the conjugate representation,

which can be simply expressed as the usual Wilson loop with an overall sign reversed.

The perturbative calculation for the second gauge group is identical to the first up to some

sign changes. The sign of the level k is reversed, which will change the signs of the propagators

and the interaction vertex. The total number of them in all of the graphs of order λ2 is always

even, so that will not create any change. But the overall sign in the Wilson loop is also reversed

which will affect the signs of the graphs where the loop was expanded to odd-order. In our case

there is only one such graph, Fig. 1d. This is the graph that gave the pure CS contribution.

Therefore at the 2-loop order if we consider the two possible linear combinations of the loops

in the two gauge groups in the fundamental and anti-fundamental representations, the sum of

the two will not include the CS term and the difference will include only the CS contribution2.

For the 1/2 BPS circular Wilson loop in N = 4 in four-dimensions the gauge field and scalar

propagators combined to a constant, similar to what we have found here at order λ2. In four

dimensions the interactions also cancel and the full answer is given by summing over the free

constant propagators, i.e. a zero-dimensional Gaussian matrix model [5, 6]. In that case the

result in the planar approximation can be expressed in terms of a Bessel function

〈WN=4〉planar ∼
2√
λ
I1(

√
λ) =

{
1 + 1

8
λ+ . . . for λ≪ 1

e
√
λ for λ≫ 1

(2.12)

2The possibility for such a cancelation was first observed in [11], though for a somewhat different construction.

See also [12]
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Figure 2: Some examples of higher level N-gon tree graphs.

In the case at hand it is clear that interactions do contribute. For one, the constant prop-

agator D = N3/(2k2) emerged from the sum of the one-loop corrected gluon self-energy and

the tree-level scalar exchange (2.8). Furthermore independent of that we also found the result

of pure Chern-Simons. Another novel feature is that the tree-level graphs do not only have

ladder structure. Rather, there will be in general tree level graphs of N-gon topology due to

the biscalar coupling in the loop, see figure 2.

Let us also note that in the case of N = 4 SYM in four dimensions there are other BPS

Wilson loops preserving fewer supercharges whose perturbative expansions are rather compli-

cated and do include interacting graphs. Still there is some evidence that they are given by the

same answer as the circular Wilson loop (2.12), only with a rescaled coupling [23–26].

While there is no strong evidence for a simple cancelation, we still find it conceivable that the

1/6 BPS circular Wilson loop will also have an exact perturbative result that can be resummed

to all orders, like the supersymmetric Wilson loops in four-dimensions. If indeed so, then to

get a match with the string theory result in the next section the coupling in the analogeous

matrix model result (2.12) would certainly have to be renormalized in some way.

3 String theory description

The three-dimensional N = 6 CS theory is conjectured to be dual to M-theory on AdS4×S7/Zk.

To understand the action of the Zk orbifold, one should write S7 as a circle fibration over

complex projective space CP3, where the orbifold acts on the fiber (see (3.6) below). For large

k the radius of this “M-theory circle” becomes small, so the theory can be described in terms

of type IIA string theory on AdS4 × CP3 with string-frame metric

ds2 =
R3

4k

(
ds2

AdS4
+ 4ds2

CP3

)
. (3.1)

We choose in this paper to work in the string theory picture, but all the solutions we describe

below should also have an uplift to the full M-theory.

For the AdS4 part we may use the global Lorentzian metric

ds2
AdS4

= − cosh2 ρ dt2 + dρ2 + sinh2 ρ
(
dθ2 + sin2 θ dψ2

)
. (3.2)
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or as foliated by AdS2 slices

ds2
AdS4

= du2 + cosh2 u ds2
AdS2

+ sinh2 u dφ2 .

ds2
AdS2

=

{
dρ2 − cosh2 ρ dt2 , appropriate for a time-like line,

dρ2 + sinh2 ρ dψ2 , appropriate for a space-like circular loop.

(3.3)

The metric on CP3 can be written in terms of four complex projective coordinates zi as

ds2
CP3 =

1

ρ2

4∑

i=1

dzi dz̄i −
1

ρ4

∣∣∣∣
4∑

i=1

zi dz̄i

∣∣∣∣
2

, ρ2 =
4∑

i=1

|zi|2 . (3.4)

In the following we choose a specific representations in terms of angular coordinates (used

also in [27, 21]). We start by parametrizing S7 ⊂ C4 as

z1 = cos
α

2
cos

ϑ1

2
ei(2ϕ1+χ+ζ)/4 ,

z2 = cos
α

2
sin

ϑ1

2
ei(−2ϕ1+χ+ζ)/4 ,

z3 = sin
α

2
cos

ϑ2

2
ei(2ϕ2−χ+ζ)/4 ,

z4 = sin
α

2
sin

ϑ2

2
ei(−2ϕ2−χ+ζ)/4 ,

(3.5)

The metric on S7 is then given by

ds2
S7 =

1

4

[
dα2 + cos2 α

2
(dϑ2

1 + sin2 ϑ2
1 dϕ

2
1) + sin2 α

2
(dϑ2

2 + sin2 ϑ2
2 dϕ

2
2)

+ sin2 α

2
cos2 α

2
(dχ+ cosϑ1 dϕ1 − cosϑ2 dϕ2)

2 +
1

4
(dζ + A)2

]
, (3.6)

A =cosα dχ+ 2 cos2 α

2
cosϑ1 dϕ1 + 2 sin2 α

2
cos ϑ2 dϕ2 . (3.7)

The angle ζ appears only in the last term and if we drop it we end up with the metric on CP3

ds2
CP3 =

1

4

[
dα2 + cos2 α

2
(dϑ2

1 + sin2 ϑ2
1 dϕ

2
1) + sin2 α

2
(dϑ2

2 + sin2 ϑ2
2 dϕ

2
2)

+ sin2 α

2
cos2 α

2
(dχ+ cos ϑ1 dϕ1 − cosϑ2 dϕ2)

2

]
.

(3.8)

The ranges of the angles are 0 ≤ α, ϑ1, ϑ2 ≤ π, 0 ≤ ϕ1, ϕ2 ≤ 2π and 0 ≤ χ ≤ 4π.

In addition to the metric, the supergravity background has the dilaton, and the 2-form and

4-form field strengths from the Ramond-Ramond (RR) sector

e2Φ =
R3

k3
, F4 =

3

8
R3 dΩAdS4

, F2 =
k

4
dA . (3.9)

Here dΩAdS4
is the volume form on AdS4 and F2 is proportional to the Kähler form on CP3.
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To write down the general D-brane action in this background one also needs the potentials

for these forms. The one-form potential is, up to gauge transformations

C1 =
k

4
A , (3.10)

With A defined in (3.7).

C3, the three-form potential for F4 will actually not play a role in our current calculations,

but we write it down for completeness. The forms are defined in principle only up to a gauge

choice, but since C3 involves the non-compact directions and it may couple to branes that

approach the boundary of space, one should impose a proper asymptotic behavior on it. It

seems like the analog of choosing Fefferman-Graham coordinates [28] is to take the 3-form to not

have any component in the du direction in the coordinate systems in (3.3). Such a prescription

indeed gave the correct result in N = 4 SYM in four dimensions [29]3. We therefore have for

the three-form potential

C3 =
1

8
R3 cosh3 u×

{
cosh ρ dt ∧ dρ ∧ dφ , appropriate for a time-like line

sinh ρ dψ ∧ dρ ∧ dφ , appropriate for a space-like circular loop.

(3.11)

The dual of F4 is proportional to the volume form on CP3

F6 = ⋆F4 =
3R6

28k
sin3 α sinϑ1 sinϑ2 dα ∧ dϑ1 ∧ dϑ2 ∧ dχ ∧ dϕ1 ∧ dϕ2 . (3.12)

The five-form potential for F6 can then be written as

C5 = − R6

28k
(sin2 α cosα + 2 cosα− 2) sinϑ1 sinϑ2 dϑ1 ∧ dϑ2 ∧ dχ ∧ dϕ1 ∧ dϕ2 . (3.13)

Here we chose a gauge that is regular at α = 0. Reversing the sign on the −2 term in the

parentheses gives the gauge that is regular at α = π.

The relation between the parameters of the string background and of the field theory are

(for α′ = 1)

R3

4k
= π

√
2N

k
= π

√
2λ . (3.14)

3.1 Fundamental string

In the strong coupling description of N = 4 SYM in terms of type IIB string theory on

AdS5 × S5, a Wilson loop in the fundamental representation is given by a fundamental string

ending along the path of the loop on the boundary of space. We expect this property to extend

from N = 4 in four dimensions to our Wilson loops in the 3-dimensional CS theory.

In N = 4 SYM the natural Wilson loop carries an SO(6) vector index, representing its

position on S5, the analog for CP3 would be the fundamental representation of SU(4), though

3See a more detailed discussion in [30].
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we saw that the 1/6 BPS Wilson loop couples to two scalars, one in the 4 representation and

the other in the 4̄ with a matrix M I
J . This matrix breaks SU(4) → SU(2)×SU(2), so the string

theory dual should not be localized at a point on CP
3 (which would break SU(4) → U(3)) but

rather smeared along a CP1.

Still, if the scalar couplings are constant along the loop, we can forget about the CP3

part of the σ-model and focus on AdS4. Any known string solution found in AdS5 which can

be embedded within an AdS4 subspace is immediately a solution for this theory. So, many

results that were derived for Wilson loops in N = 4 SYM are valid also for our Wilson loops

in N = 6 CS. For example the expressions for the anti-parallel lines (“quark - anti-quark

potential” [3, 4]) and for the light-like cusp [31] are exactly the same in the planar limit up to

the change λN=4 → 2π2λCS. A similar result for the cusp anomalous dimension was obtained

from rotating strings in [1].

In this paper we focus on supersymmetric configurations of straight lines or circles. The

analog of the straight line on the S2 × R boundary of global AdS4 (3.2) is a pair of anti-

parallel lines at antipodal points on S2 (or in the coordinate system (3.3) one sets u = 0). The

string solution describing them is an AdS2 subspace spanned by the coordinates ρ and t. After

subtracting a divergence, the resulting action vanishes, meaning that the expectation value of

the Wilson loop is unity.

To describe the circular Wilson loop one could use the Poincaré patch metric, as was done

in [32, 8], or use global AdS4 and for simplicity take the circle to wrap a big circle on S2, i.e.

θ = π/2 at constant time t (or u = 0 in the metric (3.3)). The string solution will now be a

Euclidean AdS2 section spanned by ρ and ψ. The action is proportional to the area

Sstring, cl. =
R3

8πk

∫ 2π

0

dψ

∫ ρ0

0

dρ sinh ρ = π
√

2λ (cosh ρ0 − 1) . (3.15)

Here ρ0 is a cutoff near the boundary of AdS2 (which is also at the boundary of AdS4) and

we expect the divergent term to be removed by a boundary term as in [8]. Using the standard

AdS/CFT dictionary we derive

〈W 〉string ∼ eπ
√

2λ . (3.16)

As mentioned before, this string would not be localized on CP3, but has to be smeared

on a CP1. This can be the sphere parameterized by ϑ1 and ϕ1 at α = 0 in the coordinate

system (3.8). As mentioned before, in the string theory picture there isn’t a simple way of

distinguishing between the two gauge groups. We expect this string (as well as the D-branes

discussed below) to correspond to a linear combination of Wilson loops which is symmetric

under the exchange of the two gauge groups. Note that this is also the combination in the

gauge theory where the pure Chern-Simons term at order λ2 dropped out.

The uplift of this string solution to M-theory is straight forward.
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3.2 D2-brane

In N = 4 SYM in four dimensions a Wilson loop in a low dimensional representation is well

represented at strong coupling by a free string in AdS5 × S5. For representations of dimension

of order N a better description is in terms of D3-branes (the symmetric representation) or D5-

branes (antisymmetric) [3,29,33–37]. This is the Wilson loop version of a giant-graviton [38–40],

sometimes also referred to as “giant Wilson loop.” For even higher dimensional representations

the branes back-react on the geometry and one instead finds “bubbling geometries” [41–46].

In this subsection we present a D2-brane solution that is a possible candidate for a dual

of Wilson loops. In the next subsection we present a D6-brane solution. In support of the

identification with Wilson loop operators are their symmetries, their charges, classical action,

and the supercharges they preserve.

Since the Wilson loop has an SL(2,R) symmetry we expect the D2-brane to have an AdS2

factor, which will be inside AdS4. The third world-volume direction will be compact — a circle.

We therefore take as world-volume coordinates ρ, t from (3.2) (or alternatively ρ and t, or ρ

and ψ from (3.3) with u = 0) and a third world-volume coordinate τ of period 2π.

We have found a few different solutions to the equations of motion of the D2-brane with

this circle made of the φ circle at non-zero u in AdS4 (3.3) and/or a circle inside CP3 similar

to those of [47]. While the experience from AdS5 × S5 might lead one to suspect that the dual

of the Wilson loop in the symmetric representation should have the circle inside AdS4, these

solutions have a different gauge-theory interpretation [48]. The most likely candidate for a dual

of the Wilson loop has the circle inside CP3.

Since our Wilson loops have an SU(2)× SU(2) symmetry which acts by rotating z1 into z2
and z3 into z4, it is natural to take the circle to be in the χ direction, i.e. χ = −2τ (recall that

χ has period 4π and the choice of sign seems to be dictated by suspersymmetry). We would

still need to set its location in terms of the other angles ϑ1, ϕ1, ϑ2, ϕ2 and α. For now we

take all of them to be constants, which seems to be a consistent ansatz. At the end, in order

to restore the SU(2) × SU(2) symmetry (and the correct supersymmetry) we will smear the

brane over the ϑ1, ϑ2, ϕ1 and ϕ2 directions.

The action includes the Dirac-Born-Infeld (DBI) piece and the Wess-Zumino (WZ) coupling

SD2 = TD2

∫
e−Φ

√
det(g + 2πα′F ) + TD2

∫ [
P [C3] + 2πiα′P [C1] ∧ F

]
. (3.17)

Here g is the induced metric and F is the intrinsic field strength on the world-volume. To

describe a Wilson loop, which carries electric charge the component Ftρ = E cosh ρ will be

non-zero, in the Lorentzian case. For the dual of the space-like circular loop, which is the case

we work out in detail, it will instead be Fψρ = E sinh ρ. Being that it represents an electric field

and that the signature is Euclidean, it is imaginary. P [C3] is the pullback of the RR three-form

potential, which vanishes on our configuration and P [C1] is the pullback of the one-form. The

last term comes with an i again due to the fact that we are in Euclidean signature.

After fixing all the other angles, the angles α and χ/2 parameterize an S2 of radius 1/2.

The field-strength F2 in (3.9) is that of k/2 Dirac monopoles, but the one-form (3.10) with A
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as in (3.7) is singular at both α = 0 and α = π. Instead we take

C1 =
k

4
(cosα− 1) dχ , (3.18)

which is regular at α = 0. The same expression with (cosα + 1) will be regular at α = π.

Plugging our ansatz in we find

SD2 =
TD2R

3

8

∫
dρ dψ dτ sinh ρ

[
sinα

√
1 + β2E2 − iβE(cosα− 1)

]
, (3.19)

with β = 8πk/R3 =
√

2/λ (setting α′ = 1). and note that we are using conventions where the

D2-brane tension is TD2 = 1/4π2.

The equation of motion for α allows it to be an arbitrary constant but gives the relation

iβE = − cosα . (3.20)

The gauge field is a cyclic variable and the flux through the brane is proportional to the

conjugate momentum

p = −4πi
δL
δF

=
k

2
. (3.21)

Now we wish to evaluate the action on this classical solution. As is explained in [29], the

action as it stands does not give the correct classical value, since it is a functional of the electric

field and one should take a Legendre transform to replace E by p. The result is

SL.T, classical = Sclasical − pE =
R3

8

∫
dρ sinh ρ =

k

2
π
√

2λ(cosh ρ0 − 1) (3.22)

Once we remove the divergence from large ρ, we see that this solution agrees with that of k/2

fundamental strings.

The charge and action agree exactly with that of k/2 fundamental strings, while the angle

α is completely arbitrary. To see if there are solutions with |p| < k/2 it is useful to consider

the Legendre transform before solving the equations of motion. The action in terms of p is

SL.T. = SD2 − pE =
TD2R

3

8

∫
dρ dψ dτ sinh ρ

√

p2 +
k

2p2
(k − 2p)(1 − cosα) . (3.23)

The equation of motion for α gives

(k − 2p) sinα = 0 , SL.T, classical = −p . (3.24)

So either the solution has p = k/2 and arbitrary α or sinα = 0 and p is arbitrary. The first

case is the solution presented before, while in the second it is not justified to use the D2-brane

description, since it is singular, and a better description is in terms of p fundamental strings.

Note that the two gauge choices for C1 change the string charge by k, meaning that the

charge is defined only modulo k. This is in agreement with the expectation from the gauge
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theory, where the k-th symmetric representation is analogous to the trivial one by the inclusion

of an ’t Hooft vertex.

It seems like the only regular configuration describes k/2 coincident Wilson loops (or a Wil-

son loop in the k/2 symmetric representation). We found singular solutions for other charges,

but it is possible that our ansatz was too restrictive and that there are other regular solutions

for arbitrary charges. We note here that also in AdS5 × S5, while there are many explicit

solutions for giant gravitons with fewer than 16 supercharges (see e.g. [49]), only one class is

known for 1/4 BPS Wilson loops [50], so it is not too surprising if we cannot classify all possible

D-branes dual to the 1/6 BPS Wilson loops in the three-dimensional theory.

Furthermore note that usually the D-brane description of gauge theory operators is valid

for representations of order N . The type IIA description is valid though for large λ = N/k, so

a symmetric representation, whose dimension is capped by k, cannot approach N . This may

explain why we find a regular solution only at the maximal value of p.

3.3 D6-brane

The D2-brane solution seems to correspond to a Wilson loop in the symmetric representation,

similar to the D3-brane in AdS5×S5. There a Wilson loop in the anti-symmetric representation

was described by a D5-brane, and the analog in our case is a D6-brane. We present the solution

here.

This D6-brane will wrap a 5-dimensional submanifold of CP3, which we choose to have

explicit SU(2) × SU(2) symmetry, as does the gauge theory operator.

Like the string and the D2-brane, the D6-brane will span an AdS2 ⊂ AdS4. As usual, for

the time-like Wilson line on antipodal points on S2 it is parameterized by ρ and t, while for

the circular loop it is parameterized by ρ and ψ. Inside CP3 it will extend in the χ, ϑ1, ϕ1, ϑ2

and ϕ2 directions at constant α. We also turn on an electric flux proportional to the volume

form on AdS2, so either F = E cosh ρ dt ∧ dρ, or F = E sinh ρ dψ ∧ dρ.
The straight-line case will give a zero answer while the circle should give a non-trivial result.

Due to that and the fact that the calculations are essentially identical, we write here the details

for the case of the circle.

The action for this brane will include the DBI piece, as usual, and the Wess-Zumino term

coupling the pullback of C5 (3.13) to the world-volume field strength Fψρ = E sinh ρ

SD6 = TD6

∫ [
e−Φ

√
det(g + 2πα′F ) + 2πiP [C5] ∧ F

]
. (3.25)

Plugging in our ansatz we find

SD6 =
R9TD6

210k2

∫
sinh ρ sinϑ1 sinϑ2

[
sin3 α

√
1 + β2E2 − iβE

(
(sin2 α + 2) cosα− 2

)]
. (3.26)

Here β = 8πk/R3 =
√

2/λ and TD6 = 1/(2π)6.
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Integrating over the five remaining coordinates on CP3 gives a factor of 26π3 and we are left

with an effective theory on AdS2. Now the equation of motion for α fixes the value of E

iβE = − cosα . (3.27)

The string charge carried by the D6-brane is the conjugate to the gauge field

p = −i δS
δE

=
π3R9TD6β

8k2
(1 − cosα) =

N

2
(1 − cosα) , (3.28)

where we used that N = R6/(32π2k). The value of p ranges between 0 and N , where the

appearance of N is a manifestation of the “stringy exclusion principle,” and is an indication

that this D-brane represents Wilson loops in anti-symmetric representations.

Now we evaluate the classical action by performing a Legendre transform, replacing the

electric field with its conjugate p. We also integrate over AdS2 which gives a divergent answer,

but whose regularized area is −2π

SL.T. = S − ipE = −π
4R9TD6

8k2
sin2 α = −π

√
2λ

p (N − p)

N
. (3.29)

This is indeed symmetric under p ↔ N − p, as should be the case of the antisymmetric

representation. Also for small p it agrees with the result of p fundamental strings.

This construction is very similar to the D5-brane in AdS5 × S5 but some of the details are

different. Here the relation between the charge p and the angle α is trigonometric, while in the

other case it is transcendental. Also the final answer (3.29) is much simpler in this case. Note

that the Gaussian matrix model reproduced the D5-brane result, so any modification of it to

match the Wilson loop in N = 6 CS should reproduce (3.29), once the relevant limit is taken

(including non-planar corrections).

3.4 Supersymmetry

We turn now to checking the number of supersymmetries preserved by our string and D-brane

solutions. We work in this section in Lorentzian signature and take the Wilson loop (and

resulting AdS2 surfaces) to be timelike.

As a first step one needs to choose a set of elfbeine and find the Killing spinors. This is

done in Appendix B, where the Killing spinors of M-theory on AdS4 × S7 in our coordinate

system are found to be

e
α
4
(γ̂γ4−γ7♮)e

ϑ1

4
(γ̂γ5−γ8♮)e

ϑ2

4
(γ79+γ46)e−

ξ1
2
γ̂γ♮e−

ξ2
2
γ58e−

ξ3
2
γ47e−

ξ4
2
γ69e

ρ
2
γ̂γ1e

t
2
γ̂γ0e

θ
2
γ12e

φ
2
γ23ǫ0 = Mǫ0 ,

(3.30)

ǫ0 is a constant 32-component spinor and the Dirac matrices satisfy γ0123456789♮ = 1.

The angles ξi are the phases of z1, z2, z3, z4 from (3.5)

ξ1 =
2ϕ1 + χ+ ζ

4
, ξ2 =

−2ϕ1 + χ + ζ

4
, ξ3 =

2ϕ2 − χ+ ζ

4
, ξ4 =

−2ϕ2 − χ+ ζ

4
.

(3.31)
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Here ζ is the fiber direction on which the Zk orbifold acts.

To see which Killing spinors survive the orbifolding, we write the spinor ǫ0 in a basis which

diagonalizes

iγ̂γ♮ǫ0 = s1ǫ0 , iγ58ǫ0 = s2ǫ0 , iγ47ǫ0 = s3ǫ0 , iγ69ǫ0 = s4ǫ0 . (3.32)

All the si take values ±1 and by our conventions on the product of all the Dirac matrices, the

number of negative eigenvalues is even. Now consider a shift along the ζ circle, which changes

all the angles by ξi → ξi + δ/4, the Killing spinors transform as

Mǫ0 → Mei
δ
8
(s1+s2+s3+s4)ǫ0 . (3.33)

This transformation is a symmetry of the Killing spinor when two of the si eigenvalues are

positive and two negative and not when they all have the same sign (unless δ is an integer

multiple of 4π). Note that on S7 the radius of the ζ circle is 8π, so the Zk orbifold of S7 is

given by taking δ = 8π/k. The allowed values of the si are therefore

(s1, s2, s3, s4) ∈
{

(+,+,−,−), (+,−,+,−), (+,−,−,+),

(−,+,+,−), (−,+,−,+), (−,−,+,+)

}
(3.34)

Each configuration represents four supercharges, so the orbifolding breaks 1/4 of the super-

charges (except for k = 1, 2) and leaves 24 unbroken supersymmetries.

3.4.1 Fundamental string

Let us look now at the supersymmetries preserved by the string solution in Section 3.1. The

string solution spans the ρ and t coordinates at some fixed values of the angles θ and φ (which

we set to zero for simplicity).

The supersymmetry condition for the fundamental string is4

(1 − Γ)M ǫ0 = 0 with Γ =
1

LΓtργ♮ = γ01♮ . (3.35)

It is simple to rewrite the equation after multiplying from the left by M−1. Setting α = 0

we have

M−1 ΓM = Γ

(
cos2 ϑ1

2
+ cos

ϑ1

2
sin

ϑ1

2
eξ1γ̂γ♮+ξ2γ58(γ̂γ5 − γ8♮) − sin2 ϑ1

2
γ̂γ58♮

)
(3.36)

At the point ϑ1 = 0 we get the projector equation

(1 − Γ)ǫ0 = 0 (3.37)

Note that Γ is an independent operator which commutes with γ47, γ58, γ69 and γ̂γ♮, so it will

break half the supersymmetries. A localized string solution will therefore preserve 12 out of

the 24 supercharges.

4We denote Γµ := ea
µ γa where ea

µ is the elfbein with µ a curved and a a tangent space index.
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As mentioned above, we expect the dual of the 1/6 BPS Wilson loop to be a string smeared

along a CP1 subspace of CP3. This is given by taking arbitrary ϑ1, ξ1 and ξ2 at α = 0. We can

see that if we impose the condition

(γ̂γ5 − γ8♮)ǫ0 = 0 , (3.38)

then together with (3.37) this will guarantee that the equation (1 − Γ)ǫ = 0 is satisfied at any

point with α = 0.

The equation (3.38) is identical to the requirement s1 = s2 (3.32). Therefore out of the

six allowed eigenvalue combinations of the si in (3.34) only two survive: (+,+,−,−) and

(−,−,+,+). Together with (3.37) this means that four supercharges are preserved, as was

found also in the gauge theory calculation.

3.4.2 D2-brane

The supersymmetries preserved by a D2-brane are determined by solving the following equation

on the D2-brane solution

Γ ǫ = ǫ , (3.39)

where ǫ = M ǫ0 is the Killing spinor of the background, and where Γ for our D2-brane solution

is given by (see e.g. [51])

Γ =
1

LDBI
(
Γ(3) + 2πα′Ftρ Γ(1)γ♮

)
. (3.40)

Here

Γ(3) = Γµ1µ2µ3

∂xµ1

∂σ1

∂xµ2

∂σ2

∂xµ3

∂σ3
, (3.41)

is the pullback of the curved space-time Dirac matrices in all world-volume directions and

Γ(1) is the same, excluding the directions of the field strength Ftρ. Plugging in our choice of

coordinates and the details of the solution discussed in Section 3.2 we find

Γ(3) = −R
3

16
cosh ρ sinα γ017 ,

2πα′FtρΓ
(1) =

R3

16
cosh ρ sinα cosα γ7 ,

LDBI =
R3

16
cosh ρ sin2 α .

(3.42)

And we therefore find that (3.39) reads

(
γ01 + cosα γ♮

)
γ7 ǫ = − sinα ǫ. (3.43)

While we expect the D2-brane dual to the Wilson loop to be smeared over the directions

parameterized by ϑ1, ϕ1, ϑ2 and vp2, we start by considering a brane localized at the point

where all these angles vanish. With ϑ1 = ϑ2 = ϕ1 = ϕ2 = 0 the Killing spinor is greatly

simplified

ǫ|ϑ1=ϑ2=ϕ1=ϕ2=0 = e
α
4
(γ̂γ4−γ7♮)e−

χ
4
(s1+s2)e

ρ
2
γ̂γ1e

t
2
γ̂γ0ǫ0 , (3.44)
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where we remind the reader that the si are c-numbers obeying s1 + s2 + s3 + s4 = 0. We then

rewrite (3.43) in a suggestive manner

eαγ7♮ ǫ = γ01♮ ǫ . (3.45)

Next we note that γ̂γ0 and γ̂γ1 commute with both γ7♮ and γ01♮, and therefore the ρ and t

terms from the Killing spinor trivially cancel.

Then, multiplying from the left by e−
α
4
(γ̂γ4−γ7♮) and commuting it though γ01♮ we find the

following dependence on the angle α

eαγ7♮ ǫ0 = e−
α
2
(γ̂γ4−γ7♮) γ01♮ ǫ0 (3.46)

It is now clear that in order to solve (3.43) the following two conditions must be imposed upon

ǫ0,

γ̂γ4 ǫ0 = −γ7♮ ǫ0, γ01♮ ǫ0 = ǫ0. (3.47)

Since iγ̂γ♮ ǫ0 = s1 ǫ0 and iγ47 ǫ0 = s3 ǫ0, we see that the first of these two conditions is that

s1 = −s3, while the second condition, as we saw previously for the fundamental string, acts

independently to halve the supersymmetries. Out of the six possible signs of the si in (3.34),

the condition s1 = −s3 chooses four: (+,+,−,−), (+,−,−,+), (−,+,+,−), and (−,−,+,+).

Recall that each choice corresponds to 4 supersymmetries, all of which are halved by γ01♮ ǫ0 = ǫ0.

We have therefore a total of 8 out of 24 supersymmetries preserved, i.e. the D2-brane at fixed

ϑ1, ϑ2, ϕ1 and ϑ2 is 1/3 BPS.

A D2-brane localized at any other point will also preserve eight supercharges, we want to

check which ones are shared by all of them. Consider then a D2-brane at the point ϑ1 = π and

ϑ2 = ϕ1 = ϕ2 = 0. In this case the Killing spinor is

ǫ|ϑ1=π, ϑ2=ϕ1=ϕ2=0 = e
α
4
(γ̂γ4−γ7♮)e

π
4
(γ̂γ5−γ8♮)e−

χ
4
(s1+s2)e

ρ
2
γ̂γ1e

t
2
γ̂γ0ǫ0 . (3.48)

Using relations like

e−
π
4
γ̂γ5e

α
4
γ̂γ4e

π
4
γ̂γ5 = e−

α
4
γ45 , and e

π
4
γ8♮e−

α
4
γ7♮e−

π
4
γ8♮ = e−

α
4
γ78 , (3.49)

transforms the projector equation to the form of (3.46) with the replacements γ̂γ4 → −γ45,

γ7♮ → γ78, and γ01♮ → s1s2γ01♮ so the equation is solved for ǫ0 satisfying

γ45 ǫ0 = γ78 ǫ0, s1s2γ01♮ ǫ0 = ǫ0. (3.50)

The first condition is analogous to imposing s2 = −s3 and leaves the sign choices (+,+,−,−),

(−,+,−,+), (+,−,+,−), and (−,−,+,+). The second condition is a modification of the

usual one (γ01♮ − 1)ǫ0 = 0 for states with s1 6= s2.

Together with the previous condition, s1 = −s3, for the D2-brane at ϑ1 = 0, this leaves only

the two configurations (+,+,−,−) and (−,−,+,+). Now also s1 = s2, so the second condition

in (3.50) agrees with that in (3.46) giving a total of four real supercharges. These are the same

supercharges preserved by the fundamental string after it was smeared on CP1.
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A similar analysis can be done at any other value of the angles ϑ1, ϑ2, ϕ1 and ϑ2, but it is

rather involved. A simpler route to the proof is to impose on the Killing spinor the conditions

s1 = s2 = −s3 = −s4 which eliminates from the Killing spinor all dependence on these angles

ǫ = e−
α
2
γ7♮e−

χ
2
s1e

ρ
2
γ̂γ1e

t
2
γ̂γ0ǫ0 . (3.51)

Commuting the Dirac matrices in the projector equation (3.45) through we find that after

imposing (γ01♮ − 1)ǫ0 = 0, the projector equation is satisfied.

We conclude that after smearing the D2-brane, we end up with a configuration which is

1/6-BPS, like the Wilson loop operators in the gauge theory.

3.4.3 D6-brane

The supersymmetry projector associated to the D6-brane is Γ ǫ = ǫ, where now (see e.g. [51])

Γ =
1

LDBI
(
Γ(7) + 2πα′ Ftρ Γ(5)γ♮

)
, Γ(7) = Γµ1...µ7

∂xµ1

∂σ1
. . .

∂xµ7

∂σ7
. (3.52)

Γ(5) again is the same as Γ(7), excluding the directions of the field strength Ftρ. Plugging in our

choice of coordinates and the details of the solution presented in Section 3.3, we find

(
γ01 + cosα γ♮

)
γ56789 ǫ = sinα ǫ. (3.53)

The form of this projector is quite easy to understand. Γ(7), Γ(5) and the Lagrangian share the

same volume element on CP3 and with the field-strength also that of AdS2. Then the remaining

factors come from βE = − cosα and a factor of
√

1 − β2E2 = sinα in the DBI Lagrangian.

The equation is very similar to that in the D2-brane case. It needs to be checked for all

values of ϑ1, ϕ1, ϑ2, ϕ2 and χ. One first chooses a pair of points and verifies that the same

conditions as for the fundamental string and the D2-brane are necessary at those two points.

Then we can use these conditions, in particular s1 = s2 = −s3 = −s4 = ±1 to express the

Killing spinor as (3.51)

ǫ = e−
α
2
γ7♮e−

χ
2
s1e

ρ
2
γ̂γ1e

t
2
γ̂γ0ǫ0 . (3.54)

Now we rewrite (3.53) as

e−α γ56789♮ ǫ = eαγ7♮ ǫ = γ01♮ ǫ . (3.55)

Since γ̂γ0 and γ̂γ1 commute with γ7♮, γ69, γ58, and γ01♮, the ρ and t terms from the Killing

spinor trivially cancel. We are left with

e
α
2
γ7♮ ǫ0 = γ01♮ e

−α
2
γ7♮ ǫ0 (3.56)

The alpha dependence drops since γ01♮ anti-commutes with γ7♮, so finally we are left with

the condtion γ01♮ ǫ0 = ǫ0. We have therefore found that the D6-brane preserves the same

supersymmetries of the smeared fundamental string the D2-branes and of the Wilson loop

operator.
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4 Discussion

In this paper we studied supersymmetric Wilson loops in the N = 6 Chern-Simons theory

constructed by Aharony et al. [1]. The natural Wilson loop observable couples to a bi-linear

of the scalar fields and we studied the simplest such loops, with the geometry of a line or a

circle both in the gauge theory (at order λ2) and at strong coupling using fundamental strings,

D2-branes and D6-branes in AdS4 × CP3.

In the maximally supersymmetric theory in four dimensions the circular Wilson loop has a

non-trivial expression which can be matched between the gauge theory and string theory by

an exact interpolating function. It would be interesting to see if such results apply also here,

though the basic Wilson loop observable preserves 1/6 of the supercharges, not 1/2.

It is a rather puzzling fact that the natural Wilson loops preserve only four supercharges.

A fundamental string ending along a straight line on the boundary of AdS4 and localized

on CP3 preserves 12 supercharges. In order to match with the gauge theory observable and

its SU(2) × SU(2) symmetry we smeared the string over a CP1, and it indeed broke the

supersymmetry down to 1/6. But the question remains what is the gauge theory dual to a

localized fundamental string.

We comment below on some possibilities to construct such operators, but will not pursue

them here further.

The Wilson loop (1.2) preserves 4 supercharges which match with 4 out of the 12 super-

charges preserved by the localized fundamental string, but it breaks the other 8. Those other

eight supercharges will not annihilate this loop, but transform it into a different loop and by

repeated action one can generate a full multiplet of Wilson loops. This multiplet is closed under

the action of all the required 12 supercharges, so the state created by integrating over all those

Wilson loops with flat measure will necessarily preserve these 12 supercharges.

This is a standard way of enhancing symmetry, by integrating over the zero modes of the

broken symmetry. It is guaranteed to give an object with at least the desired symmetry, but

it might also lead to a trivial operator, the identity or 0. It would be interesting to construct

this operator explicitly and study its properties.

Let us point out here another possible construction of a supersymmetric Wilson loop. Con-

sider the purely bosonic operator (1.1) with the holonomy in both of the gauge groups and in

opposite representations. Such a Wilson loop may be writen schematically as

W = TrP exp

(
i

∫
(Aµ − Âµ)dx

µ

)
. (4.1)

The relative sign was put in by hand to represent the fact that if the first group is in the

fundamental representation the second one is in the anti-fundamental, and hence the gauge

fields act on the fields from the right, rather than the left.

A naive tree-level calculation of the supersymmetry variation of this loop will show that it

is invariant under all the supersymmetries, the variation of Â canceling that of A after taking

the trace. We do not expect this to extend beyond the tree level, and indeed the expectation
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value of this loop will suffer from divergences at order λ2. But it is possible that this loop will

become supersymmetric once augmented with the correct scalar insertions.

One can also use this operator to construct open Wilson loops, by putting a bi-fundamental

field, say CI at one end and an adjoint field C̄J at the other. Furthermore, one can start the

open Wilson-loop at one CI and then continue to insert more CI fields along its path. After

each scalar field the representation of the Wilson loop will change (to a product representation

of the fundamental-antifundamental). Because the operator (CI)
k is gauge invariant (with the

inclusion of an ’t Hooft vertex), after k insertions, the Wilson loop can end.

These are two ways of constructing open Wilson loops. While we don’t expect a loop of

finite extent to be supersymmetric, one can consider the infinite line with a distribution of bi-

fundamental scalar field insertions. With an appropriate choice of scalars (the simplest being all

identical), the same naive argument would lead one to conclude that this Wilson loop preserves

some supersymmetries. We leave a closer examination of those Wilson loops to the future.
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A N = 6, d = 3 super Cherns-Simons-matter action and

Feynman rules

Here we summarize the action and conventions for the perturbative computations. The field

content consists of two U(N) gauge fields (Aµ)ij and (Âµ)̂iĵ , the complex fields (CI)îi and

(C̄I )̂ii as well as the fermions (ψI )̂ii and (ψ̄I)îi in the (N, N̄) and (N̄,N) of U(N) respectively,

I = 1, 2, 3, 4 is the SU(4)R index. We employ the covariant gauge fixing function ∂µA
µ for both

gauge fields and have two sets of ghosts (c̄, c) and (¯̂c, ĉ). We work with the Euclidian space

action (see [52, 1, 53])

SCS = −i k
4π

∫
d3x εµνρ

[
Tr (Aµ∂νAρ +

2

3
AµAνAρ) − Tr (Âµ∂νÂρ +

2

3
ÂµÂνÂρ)

]

Sgf =
k

4π

∫
d3x

[ 1

ξ
Tr (∂µA

µ)2 + Tr (∂µc̄ Dµc) −
1

ξ
Tr (∂µÂ

µ)2 + Tr (∂µ¯̂cDµĉ)
]

SMatter =

∫
d3x

[
Tr (DµCI D

µC̄I) + iTr (ψ̄I D/ ψI)
]

+ Sint (A.1)
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Here Sint are the sextic scalar potential and ψ2C2 Yukawa type potentials spelled out in [1].

The matter covariant derivatives are defined as

DµCI = ∂µCI + i(Aµ CI − CI Âµ)

DµC̄
I = ∂µC̄

I − i(C̄I Aµ − Âµ C̄I)

DµψI = ∂µψI + i(Âµ ψI − ψI Aµ)

Dµψ̄
I = ∂µψ̄

I − i(ψ̄I Âµ − Aµ ψ̄
I) .

(A.2)

From this we read off the momentum space propagators

〈(Aµ)ij(p) (Aν)kl(−p)〉0 =
2π

k
δil δjk

[
εµνρ p

ρ + ξ
pµpν
p2

] 1

p2

〈(Âµ)ij(p) (Âµ)kl(−p)〉0 = −2π

k
δil δjk

[
εµνρ p

ρ + ξ
pµpν
p2

] 1

p2

(A.3)

〈(c)ij(p) (c̄)kl(−p)〉0 =
2π

k
δil δjk

1

p2

〈(ĉ)ij(p) (¯̂c)kl(−p)〉0 = −2π

k
δil δjk

1

p2

(A.4)

〈(CI)îi(p) (C̄J)ĵj(−p)〉0 = δJI δij δîĵ
1

p2

〈(ψI )̂ii(p) (ψ̄J)jĵ(−p)〉0 = −δJI δij δîĵ
1

p/

(A.5)

We also note the relevant Fourier transformations to configuration space:
[
δµν
p

− pµpν
p3

]

d=3

→ δµν
2π2 x2

− 1

4π2
∂µ∂ν log x2 ,

[
1

p2

]

d=3

→ 1

4π

1

x
(A.6)

A.1 The gluon self-energy

The one-loop correction to the gluon self energy from gluon and ghost contributions is known

to vanish (see e.g. [52]). We here evaluate the matter contribution.

For bosons in the loop there are two graphs to consider, the four-valent bubble vanishes in

dimensional regularization. The other graph comes from expanding the cubic vertex to second

order from e−SMatter :
〈
( iTr (Aµ CI ∂µC̄

I − ∂µCIC̄
IAµ)) ( iTr (Aµ CI ∂µC̄

I − ∂µCIC̄
IAµ))

〉
(A.7)

Contracting, Fourier transforming and amputating the gluon legs yields the self-energy contri-

bution

Π(B)
µν (p) = N δII

∫
d3k

(2π)3

(2k + p)µ(2k + p)ν
k2 (p+ k)2

. (A.8)

This is to be contracted with two gluon propagators (we use Landau gauge ξ = 0 from now on)

to get the one-loop corrected gluon propagator

G(B,1)
µν (p) =

(
2π

k

)2
εµρκp

κ

p2
Π

(B)
ρλ (p)

ελνδp
δ

p2
, (A.9)
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In this expression we see that the term in the integral proportional to pν in (A.8) drops out.

Performing the integral in (A.8) in dimensional regularization yields a finite result. Contracting

with the two ε-tensors we find

G(B,1)
µν (p) =

(
2π

k

)2
N δII
16

1

p

(
δµν −

pµpν
p2

)
. (A.10)

Turning to the fermionic contributions to the loop we need to contract

〈
( iTr (ψ̄I iA/ ψI ) ( iTr (ψ̄I iA/ ψI )

〉
(A.11)

yielding

Π(F )
µν (p) = −N δII

∫
d3k

(2π3)

tr(γµ (p/+ k/) γν k/)

k2 (p+ k)2
. (A.12)

We note

tr(γµp/γνk/) = 2 (−δµν p · k + kµpν + pµkν) , (A.13)

where the last two terms vanish upon contraction with the epsilon tensors of the attached

gluon propagators. This leaves the p · k term. Upon using a Feynman parameter α, only the

momentum shift of k → k − (1 − α)p will survive integration. This gives

2NδII δµν

∫
d3k

(2π)3

∫ 1

0

dα
−p2(1 − α)

[k2 + α(1 − α)p2]2
= −2NδII δµν

pπ3/2Γ(1/2)

(2π)3

∫ 1

0

dα

√
1 − α

α
=

−NδII δµνp
8

(A.14)

We must also consider the term:

tr(γµk/γνk/) = 2 (−δµν k · k + 2kµkν) . (A.15)

Upon shifting the momentum k as above we obtain

−2δµν
[
k2 + (1 − α)2p2

]
+ 4

[
kµkν + (1 − α)2pµpν

]
→ −2δµν

[
k2

3
+ (1 − α)2p2

]
(A.16)

where we have symmetrized the kµkν integral, and removed the pµpν term as it is killed by

epsilon contractions. Integrating over k we find

−2NδII
δµν

(2π)3

∫ 1

0

dα
[
−1

3
δµν

3

2
π3/2Γ(−1/2)

√
α(1 − α)p− δµν

(1 − α)3/2

√
α

π3/2Γ(1/2)p
]

=
NδII δµνp

16
(A.17)

We therefore have

G(F,1)
µν (p) =

(
2π

k

)2
N δaa
16

1

p

(
δµν −

pµpν
p2

)
, (A.18)

and so the combined bosonic and fermionic matter contributions yield

G(1)
µν (p) = G(B,1)

µν (p) +G(F,1)
µν (p) =

(
2π

k

)2
1

8

N δaa
p

(
δµν −

pµpν
p2

)
. (A.19)
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B Killing spinors

In this appendix we derive an explicit form for the Killing spinors in the coordinate system

where the metric on AdS4 is (3.2)

ds2
AdS4

= R2
[
dρ2 − cosh2 ρ dt2 + sinh2 ρ

(
dθ2 + sin2 θ dφ2

)]
. (B.1)

and the metric on S7 is given by (3.6)

ds2
S7 =

R2

4

[
dα2 + cos2 α

2
(dϑ2

1 + sin2 ϑ2
1 dϕ

2
1) + sin2 α

2
(dϑ2

2 + sin2 ϑ2
2 dϕ

2
2)

+ sin2 α

2
cos2 α

2
(dχ+ cosϑ1 dϕ1 − cosϑ2 dϕ2)

2

+

(
dζ

2
+ cos2 α

2
cosϑ1 dϕ1 + sin2 α

2
cosϑ2 dϕ2 +

cosα

2
dχ

)2
]
.

(B.2)

We take the elfbeine to be

e0 =
R

2
cosh ρ dt , e1 =

R

2
dρ , e2 =

R

2
sinh ρ dθ , e3 =

R

2
sinh ρ sin θ dφ ,

e4 =
R

2
dα, e5 =

R

2
cos

α

2
dϑ1, e6 =

R

2
sin

α

2
dϑ2,

e7 =
R

2
cos

α

2
sin

α

2

(
cosϑ1 dϕ1 − cosϑ2 dϕ2 + dχ

)
,

e8 =
R

2
cos

α

2
sinϑ1 dϕ1, e9 =

R

2
sin

α

2
sinϑ2 dϕ2 ,

e♮ = −R
4

(
dζ + 2 cos2 α

2
cos ϑ1 dϕ1 + 2 sin2 α

2
cosϑ2 dϕ2 + cosα dχ

)
.

(B.3)

To find the relevant Killing spinor equation for this background we look at the supersym-

metry transformation of the gravitino

δΨµ = Dµǫ−
1

288

(
Γ νλρσ
µ − 8δνµΓ

λρσ
)
Fνλρσǫ , Dµǫ = ∂µǫ+

1

4
ωabµ γabǫ . (B.4)

The 4-form corresponding to the AdS4×S7 solution is Fνλρσ = 6 ενλρσ, where the epsilon symbol

is the volume form on AdS4 (so the indices take the values 0, 1, 2, 3). Plugging this into the

variation above one finds the Killing spinor equation

Dµǫ =
1

2
γ̂γµǫ (B.5)

where µ runs over all 11 coordinates, and γ̂ = γ0123. Note that small γ have tangent-space

indices while capital Γ carry curved-space indices. Calculating the spin-connection for our

chosen elfbeine, we find the following explicit Killing spinor equations

∂tǫ =
1

2
γ̂γ1 e

ρ γ̂γ0ǫ ,

∂ρǫ =
1

2
γ̂γ1ǫ ,

∂θǫ =
1

2
γ12 e

−ρ γ̂γ1ǫ .

∂φǫ =
1

2
(coth ρ γ13 + cos θ γ23 + sinh ρ sin θ γ̂γ3) ǫ = 0 ,

(B.6)
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and

∂αǫ =
1

4
(γ̂γ4 − γ7♮)ǫ ,

∂ϑ1
ǫ =

1

4

(
γ̂γ5 e

−α
2
γ̂γ4 − γ8♮ e

α
2
γ7♮

)
ǫ ,

∂ϑ2
ǫ =

1

4

(
γ46 e

−α
2
γ̂γ4 + γ79 e

α
2
γ7♮

)
ǫ ,

∂ϕ1
ǫ =

1

4

(
cos ϑ1 γ58 − cosϑ1 γ̂γ♮ e

α
2
(γ7♮−γ̂γ4) + sinϑ1

(
γ̂γ8 e

−α
2
γ̂γ4 + γ5♮ e

α
2
γ7♮

))
ǫ ,

∂ϕ2
ǫ =

1

4

(
cos ϑ2 γ69 − cosϑ2 γ47 e

α
2
(γ7♮−γ̂γ4) + sinϑ2

(
γ49 e

−α
2
γ̂γ4 + γ67 e

α
2
γ7♮

))
ǫ ,

∂χǫ =
1

8

(
(γ47 − γ̂γ♮)e

−αγ̂γ4 + γ69 − γ58

)
ǫ ,

∂ζǫ = − 1

8
(γ58 + γ69 + γ47 + γ̂γ♮)ǫ .

(B.7)

These equations are solved by the following Killing spinor

e
α
4
(γ̂γ4−γ7♮)e

ϑ1

4
(γ̂γ5−γ8♮)e

ϑ2

4
(γ79+γ46)e−

ξ1
2
γ̂γ♮e−

ξ2
2
γ58e−

ξ3
2
γ47e−

ξ4
2
γ69e

ρ
2
γ̂γ1e

t
2
γ̂γ0e

θ
2
γ12e

φ
2
γ23ǫ0 = Mǫ0 ,

(B.8)

where the ξi are given by

ξ1 =
2ϕ1 + χ+ ζ

4
, ξ2 =

−2ϕ1 + χ + ζ

4
, ξ3 =

2ϕ2 − χ+ ζ

4
, ξ4 =

−2ϕ2 − χ+ ζ

4
.

(B.9)

In (B.8) ǫ0 is a constant 32-component spinor and the Dirac matrices were chosen such that

γ0123456789♮ = 1. A similar calculation in a different coordinate system was done in [54].

One may also consider the AdS4 in terms of AdS2 slices (3.3)

ds2 = du2 + cosh2 u
(
− cosh2 ρ dt2 + dρ2

)
+ sinh2 u dφ2, (B.10)

a vierbein basis being given by

e0 =
R

2
cosh u cosh ρ dt, e1 =

R

2
cosh u dρ, e2 =

R

2
du, e3 =

R

2
sinh u dφ, (B.11)

leading to the following spin connection

ω01 = sinh ρ dt, ω02 = sinh u cosh ρ dt, ω12 = sinh u dρ, ω23 = − cosh u dφ. (B.12)

In these coordinates the final four factors in the Killing spinor in (B.8) are replaced by

e
u
2
γ̂γ2e

φ
2
γ23e

ρ
2
γ̂γ1e

t
2
γ̂γ0 . (B.13)
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