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In this paper we develop a theory of sequential parametrized motion planning
generalising the approach of parametrized motion planning, which was introduced
recently in [3]. A sequential parametrized motion planning algorithm produced a
motion of the system which is required to visit a prescribed sequence of states, in a
certain order, at specified moments of time. The sequential parametrized algorithms
are universal as the external conditions are not fixed in advance but rather constitute
part of the input of the algorithm. In this article we give a detailed analysis of the
sequential parametrized topological complexity of the Fadell - Neuwirth fibration. In
the language of robotics, sections of the Fadell - Neuwirth fibration are algorithms
for moving multiple robots avoiding collisions with other robots and with obstacles
in the Euclidean space. In the last section of the paper we introduce the new notion
of TC-generating function of a fibration, examine examples and raise some exciting

general questions about its analytic properties.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Autonomously functioning systems in robotics are controlled by motion planning algorithms. Such an
algorithm takes as input the initial and the final states of the system and produces a motion of the system
from the initial to final state, as output. The theory of algorithms for robot motion planning is a very active
field of contemporary robotics and we refer the reader to the monographs [17], [18] for further references.

A topological approach to the robot motion planning problem was developed in [8], [9]; the topological
techniques explained relationships between instabilities occurring in robot motion planning algorithms and

topological features of robots’ configuration spaces.
A new parametrized approach to the theory of motion planning algorithms was suggested recently in [3].

The parametrized algorithms are more universal and flexible, they can function in a variety of situations

involving external conditions which are viewed as parameters and are part of the input of the algorithm.
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A typical situation of this kind arises when we are dealing with collision-free motion of many objects (robots)
moving in the 3-space avoiding a set of obstacles, and the positions of the obstacles are a priori unknown.
This specific problem was analysed in full detail in [3], [4].

In this paper we develop a more general theory of sequential parametrized motion planning algorithms.
In this approach the algorithm produces a motion of the system which is required to visit a prescribed
sequence of states in a certain order. The sequential parametrized algorithms are also universal as the
external conditions are not a priori fixed but constitute a part of the input of the algorithm.

In the first part of this article we develop the theory of sequential parametrized motion planning al-
gorithms while the second part consists of a detailed analysis of the sequential parametrized topological
complexity of the Fadell - Neuwirth fibration. In the language of robotics, the sections of the Fadell -
Neuwirth bundle are exactly the algorithms for moving multiple robots avoiding collisions with each other
and with multiple obstacles in the Euclidean space.

Our results depend on the explicit computations of the cohomology algebras of certain configuration
spaces. We describe these computations in full detail, they employ the classical Leray - Hirsch theorem from
algebraic topology of fibre bundles.

In the last section of the paper we introduce the new notion of a TC-generating function of a fibration,
discuss a few examples, and raise interesting questions about analytic properties of this function.

In a forthcoming publication (which is now in preparation) we shall describe the explicit sequential
parametrized motion planning algorithm for collision free motion of multiple robots in the presence of
multiple obstacles in R%, generalising the ones presented in [12]. These algorithms are optimal as they have
minimal possible topological complexity.

2. Preliminaries

In this section we recall the notions of sectional category and topological complexity; we refer to [1,3,4,
8,13,19,20] for more information.

Sectional category. Let p : E — B be a Hurewicz fibration. The sectional category of p, denoted secat|[p :
E — B or secat(p), is defined as the least non-negative integer k such that there exists an open cover
{Uo,Us,...,Ux} of B with the property that each open set U; admits a continuous section s; : U; — E of
p. We set secat(p) = oo if no finite k with this property exists.

The generalized sectional category of a Hurewicz fibration p : E — B, denoted secaty[p : E — B] or
secaty(p), is defined as the least non-negative integer k such that B admits a partition

B=FUF U..UF,, F,NF;=0 for i#j

with each set F; admitting a continuous section s; : F; — E of p. We set secat,(p) = oo if no such finite &
exists.

It is obvious that secat(p) > secat,(p) in general. However, as was established in [13], in many interesting
situations there is an equality:

2.1 Theorem. Let p : E — B be a Hurewicz fibration with E and B metrizable absolute neighbourhood
retracts (ANRs). Then secat(p) = secat,(p).

In the sequel the term “fibration” will always mean “Hurewicz fibration”, unless otherwise stated explic-
itly.
The following Lemma will be used later in the proofs.
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2.2 Lemma. (A) If for two fibrations p : E — B and p’ : E' — B over the same base B there ezists a
continuous map f shown on the following digram

E'—>E’

then secat(p) > secat(p’).

(B) If a fibration p : E — B can be obtained as a pull-back from another fibration p’ : E' — B’ then
secat(p) < secat(p’).

(C) Suppose that for two fibrations p : E — B and p’ : E' — B’ there exist continuous maps f,g,F,G
shown on the commutative diagram

such that go f : B — B is homotopic to the identity map |ldg : B — B. Then secat(p) < secat(p’).

Proof. Statements (A) and (B) are well-known and follow directly from the definition of sectional category.
Below we give the proof of (C) which uses (A) and (B).

Consider the fibration ¢ : E — B induced by f : B — B’ from p’ : E' — B’. Here E = {(b,¢') €
B x E'; f(b) =p'(e')} and q(b,e’) = b. Then

secat(q) < secat(p’) (1)

by statement (B).
Consider the map G : E — E given by G(b,e') = G(¢€') for (b,e’) € E. Then

(poG) (be') =p(G(e)) = 9@ (¢) = g(f (b)) = ((go ) o @) (b,€)

and thus po G = (go f) o ¢ and using the assumption go f ~ Idg we obtain poG ~q. Let h; : B— Bbea
homotopy with hg = go f and hy = Idg, t € I. Using the homotopy lifting property, we obtain a homotopy
G, : E — E, such that Gy = G and po G, = h; 0 q. The map G; : E — E satisfies po G; = ¢; in other
words, G, appears in the commutative diagram

E

Applying to this diagram statement (A) we obtain the inequality secat(p) < secat(q) which together with
inequality (1) implies secat(p) < secat(p’), as claimed. O

Topological complexity. Let X be a path-connected topological space. Consider the path space X' (i.e. the
space of all continuous maps I = [0,1] — X equipped with compact-open topology) and the fibration
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7: X 5 X xX, a~ («0),a(1)).

The topological complexity TC(X) of X is defined as TC(X) := secat(w), cf. [8]. For information on recent
developments related to the notion of TC(X) we refer the reader to [15], [5].

For any r > 2, fix r points 0 < ¢; < tp < -+ < t, < 1 (which we shall call the “time schedule”) and
consider the evaluation map

T X =5 X", ae (a(ty),alts),...,a(t,)), ac X (2)

Typically, one takes t; = (i —1)(r — 1) 1. The r-th sequential topological complezity is defined as TC,(X) :=
secat(m,); this invariant was originally introduced by Rudyak [19]. It is known that TC,.(X) is a homotopy
invariant, it vanishes if and only if the space X is contractible. Moreover, TC,,1(X) > TC,(X). Besides,
TC(X) = TCy(X).

Parametrized topological complexity. For a Hurewicz fibration p : E — B denote by E5 C E' the space of
all paths o : I — E such that poa : I — B is a constant path. Let E% C E x E denote the space of pairs
(e1,e2) € E? satisfying p(e1) = p(e2). Consider the fibration

O:EL 5 EL=ExpE, a~ (a0),a(l)).

The fibre of II is the loop space 2X where X is the fibre of the original fibration p : E — B. The following
notion was introduced in a recent paper [3]:

2.3 Definition. The parametrized topological complexity TC[p : E — B] of the fibration p : E — B is defined
as

TClp: E — B] = secat[Il : E5, — E%].

Parametrized motion planning algorithms are universal and flexible, they are capable to function under
a variety of external conditions which are parametrized by the points of the base B. We refer to [3] for more
detail and examples.

If B C B and E' = p~!(B’) then obviously TC[p : E — B] > TC[p' : E' — B'] where p’ = p|p'. In
particular, restricting to a single fibre we obtain

TC[p: E — B] > TC(X).
3. The concept of sequential parametrized topological complexity

In this section we define a new notion of sequential parametrized topological complexity and establish
its basic properties.
Let p: E — B be a Hurewicz fibration with fibre X. Fix an integer r > 2 and denote

ETB = {(617‘ .. ,er) c E"'; p(el) = ... :p(er)}_
Let EL C ET be as above the space of all paths a : I — E such that poa : I — B is constant. Fix r points
0<ti <te<---<t, <1

in I (for example, one may take t; = (i — 1)(r — 1)~! for ¢ = 1,2,...,r), which will be called the time
schedule. Consider the evaluation map
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I, : EL - E%, TL(a) = (a(ty), alts),. .., at,)). (3)

II, is a Hurewicz fibration, see [4, Appendix], the fibre of II, is (2X)"~!. A section s : Ef — E' of
the fibration II, can be interpreted as a parametrized motion planning algorithm, i.e. as a function which
assigns to every sequence of points (ej,es,...,e,) € E} a continuous path a : I — E (motion of the
system) satisfying a(t;) = e; for every i = 1,2,...,r and such that the path poa : I — B is constant. The
latter condition means that the system moves under constant external conditions (such as positions of the
obstacles).

Typically II, does not admit continuous sections; then the motion planning algorithms are necessarily
discontinuous.

The following definition gives a measure of complexity of sequential parametrized motion planning algo-
rithms. This concept is the main character of this paper.

3.1 Definition. The r-th sequential parametrized topological complexity of the fibration p : E — B, denoted
TC,[p: E — B], is defined as the sectional category of the fibration II,, i.e.

TC,[p: E — B] := secat(IL,). (4)
In more detail, TC,[p : E — B] is the minimal integer k such that there is a open cover {Uy, Us,...,Ux}
of E; with the property that each open set U; admits a continuous section s; : U; — E{; of IL,..
Let B’ C B be a subset and let E/ = p~!(B’) be its preimage, then obviously
TC.[p: E— B]| >TC.[p': E' = B’]
where p’ = p|g/. In particular, taking B’ to be a single point, we obtain
TC,[p: E — B] > TC,(X),

where X is the fibre of p.

3.2 Example. Let p : E — B be a trivial fibration with fibre X, i.e. E = B x X. In this case we have
E} =B x X", EL, = B x X! and the map I, : EL, — E, becomes

I,:Bx X! 5 Bx X", I, =Idg x 7,
where |dg : B — B is the identity map and m, is the fibration (2). Thus we obtain in this example
TC,.[p: E — B] =TC,.(X),

i.e. for the trivial fibration the sequential parametrized topological complexity equals the sequential topo-
logical complexity of the fibre.

3.3 Proposition. Let p : E — B be a principal bundle with a connected topological group G as fibre. Then
TC.[p: E — B] =cat(G"*) = TC,.(G).

Proof. Let 0 < t; <ty < --- < t, < 1 be the fixed time schedule. Denote by P,G C G! the space of paths a
satisfying a(t1) = e where e € G denotes the unit element. Consider the evaluation map 7. : P,G — G™ 1
where 7.(a) = (a(t2), a(ts), ..., a(t;)). We obtain the commutative diagram
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PG x E -~ El,

W:del lnr

G~lxE—> Ef
F/

where F : P0G x E — E5 and F' : G"~! x E — EY; are homeomorphisms given by
F(a,z)(t) = a(t)z, F'(92,93,---,9r,T) = (T, 92T, g3, ..., grT),
where a € PyG, z € E, t € I and g; € G. Thus we have
TC,[p: E — B] = secat(Il,.) = secat(n. x |d) = secat(n.).

Clearly, secat(n.) = cat(G"~!) since PG is contractible. And finally cat(G"~!) = TC,(G), see [1, Theorem
3.5]. O

3.4 Example. As a specific example consider the Hopf fibration p : §% — S? with fibre S'. Applying the
result of the previous Proposition we obtain

TC,[p: 8% = 82| =TC, () =r—-1
for any r > 2.

Alternative descriptions of sequential parametrized topological complexity. Let K be a path-connected
finite CW-complex and let ky, ks, - , k. € K be a collection of r pairwise distinct points of K, where r > 2.
For a Hurewicz fibration p : E — B, consider the space Eg of all continuous maps a : K — E such that
the composition po a : K — B is a constant map. We equip Eg with the compact-open topology induced
from the function space EX. Consider the evaluation map

nk . gk - By, 1E(a) = (a(k)), aks), - - ,a(k,)) for ac EX.
It is known that IIX is a Hurewicz fibration, see Appendix to [4].

3.5 Lemma. For any path-connected finite CW-complex K and a set of pairwise distinct points k, ...k, € K
one has

secat(IIX) = TC,[p: E — B].

Proof. Let 0 <t; <ty <---<t,. <1 bea given time schedule used in the definition of the map II, = 1'[,{
given by (3). Since K is path-connected we may find a continuous map « : I — K with «(¢;) = k; for all
t=1,2,...,7. We obtain a continuous map F, : Eg — E]I3 acting by the formula F,(a) = ao+. It is easy
to see that the following diagram commutes
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Using statement (A) of Lemma 2.2 we obtain
TC.[p: E — B] = secat(I1}) < secat(ITX).

To obtain the inverse inequality note that any locally finite CW-complex is metrisable. Applying Tietze
extension theorem we can find continuous functions ¥1,...,%, : K — [0,1] such that 9;(k;) = 6;5, ie.
¥;(k;) equals 1 for j =i and it equals 0 for j # i. The function f = min{1,Y ;¢ - ¥;} : K — [0,1] has
the property that f(k;) = t; for every ¢« = 1,2,...,r. We obtain a continuous map F' : EL — EX, where
F'(B) = Bo f, B € EL, which appears in the commutative diagram

EL EX
EjR

By Lemma 2.2 this implies the opposite inequality secat(ITX) < secat(IIZ) and completes the proof. O

The following proposition is an analogue of [3, Proposition 4.7].
3.6 Proposition. Let E and B be metrisable separable ANRs and let p : E — B be a locally trivial fibration.
Then the sequential parametrized topological complezity TC,.[p : E — B] equals the smallest integer n such
that E admits a partition
EE=FOL]F1L]...L]Fn, FiﬂFj=(D fO’f‘?:?éj,
with the property that on each set F; there exists a continuous section s; : F; — EL of I,.. In other words,

TC.[p: E — B] = secat,[II, : Ef, — Ej].

Proof. From the results of [2, Chapter IV] it follows that the fibre X of p : E — B is ANR and hence X" is

also ANR. Now, E7} is the total space of the locally trivial fibration E; — B with fibre X”. Thus, applying

[2, Chapter IV, Theorem 10.5], we obtain that the space E} is ANR. Using [3, Proposition 4.7] we see that
L is ANR. Finally, using Theorem 2.1, we conclude that TC,[p: E — B] = secaty[Il, : E, — E}]. O

4. Fibrewise homotopy invariance

4.1 Proposition. Let p: E — B and p' : E' — B be two fibrations and let f : E — E' and g : E' — E be
two continuous maps such the following diagram commutes

E'<—E’

N

i.e.p=p'of andp’' = pog. If the map go f : E — E is fibrewise homotopic to the identity map |dg : E — E
then

TCJp: E— B]<TC,.[p : E' = BJ.
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Proof. Denote by f" : E, — E; the map given by f7(ey,...,e,.) = (f(e1),..., f(e;)) and by f/ : EL — E}
the map given by fI(v)(t) = f(v(t)) for v € EL and t € I. One defines similarly the maps g" : Efy — E%
and g’ : E/f — EL. This gives the commutative diagram

fI I
EL Bl 2~ EL

nrl ln; lnr

T T T
E% —>fr E% —>gr E%,

in which g" o f” ~ Idgy,. Applying statement (C) of Lemma 2.2 we obtain

TC.[p: E — B] = secat[Il, : E5 — E%]
< secat[Il’. : E}f — EJ}

=TC.[p):E'— B|. O
Proposition 4.1 obviously implies the following property of TC,[p: E — B:
4.2 Corollary. If fibrations p: E — B and p’ : E' — B are fibrewise homotopy equivalent then
TC.[p: E— B]=TC,.[p': E' = B].
5. Further properties of TC,.[p : E — B]
Next we consider products of fibrations:

5.1 Proposition. Let p; : E1 — By and p2 : E2 — By be two fibrations where the spaces E1, Eo, B1, By are
metrisable. Then for any r > 2 we have

TCT[pl X p2: Fi1 x Ey = By X BQ] < TCr[pl B — Bl] +TCT[p2 1By — Bg].

Proof. The proof is essentially identical to the proof of [3, Proposition 6.1] where it is done for the case
r=2. 0

5.2 Proposition. Let p1 : E1 — B and p2 : E2 — B be two fibrations where the spaces E1,FEs, B are
metrisable. Consider the fibration p : E — B where E = E1 Xp E2 = {(e1,e2) € E1 X Ey | p1(e1) = p2(e2)}
and p(e1,ez) = p(e1) = p(e2). Then

TCilp: E— B] < TC,[p1: E1 = B]+ TC,[p2 : E2 — B].
Proof. Viewing B as the diagonal of B x B gives
TClp: E— B]| <TC,[p1 X p2: E1 x E2 — B X B].
Combining this inequality with the result of Proposition 5.1 completes the proof. O
5.3 Lemma. For any fibration p : E — B one has

TC,y1lp: E— B] > TC,.[p: E — BJ.
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Proof. We shall apply Lemma 3.5 and consider the interval K = [0, 2] and the time schedule 0 < t; < t5 <
-+ <t <1 and the additional point ¢,+1 = 2. We have the following diagram

;7 F K G I
Ep Ep Ep
nrl lnﬁil ln,

1
R

where f acts by the formula f(ej,ez,...,e.) = (e1,€a,...,€r,€,) and F sends a path y: [ — E, v € EL,
to the path 7 : K = [0,2] — E where 7|1 = 7 and ¥(t) = (1) for any ¢ € [1,2]. The vertical maps are
evaluations at the points ¢1,...,t, and at the points t1,...,t,,t,+1, for II,, and Hfﬂ correspondingly. The
map G is the restriction, it maps a: K — E to ay : I — E. Similarly, the map g : Eg“ — E7 is given by
(e1y...,€er,er41) > (€1,...,€r). The diagram commutes and besides the composition go f : E — Ej is
the identity map. Applying statement (C) of Lemma 2.2 we obtain

TC,[p: E — B] = secat[Il, : E — E}]
< secat[llX ; : EX — ELM
=TCruifp: E— B]. O
6. Upper and lower bounds for TC,.[p : E — B]

In this section we give upper and lower bound for sequential parametrized topological complexity.

6.1 Proposition. Let p: E — B be a locally trivial fibration with fiber X, where E, B, X are CW-complezes.
Assume that the fiber X is k-connected, where k > 0. Then

hdim(ER) + 1 T dimX +dimB + 1

TClp: B— Bl < 2= < —— . (5)

Proof. Since X is k-connected, the loop space QX is (k — 1)-connected and hence the space (Q2X) ! is
also (k — 1)-connected. Thus, the fibre of the fibration II, : E5, — E7, is (k — 1)-connected and applying
Theorem 5 from [20] we obtain:

hdim(Eg) +1

TC,[p: E — B] = secat(Il,) < Pl ) (6)

where hdim(E%) denotes homotopical dimension of E}, i.e. the minimal dimension of a CW-complex ho-
motopy equivalent to E7,

hdim(E%3) := min{dim Z| Z is a CW-complex homotopy equivalent to E3}.
Clearly, hdim(E%) < dim(E%). The space E} is the total space of a locally trivial fibration with base B
and fibre X". Hence, dim(E%) < dim(X") 4+ dimB = r - dimX + dimB. Combining this with (6), we obtain
(5). O

Below we shall use the following classical result of A.S. Schwarz [20]:
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6.2 Lemma. For any fibrationp : E — B and coefficient ring R, if there exist cohomology classes uy,- -+ ,uy €
ker[p* : H*(B; R) — H*(E; R)] such that their cup-product is nonzero, uy U---Uwug # 0 € H*(B; R), then
secat(p) > k.

The following Proposition gives a simple and powerful lower bound for sequential parametrized topological
complexity.

6.3 Proposition. For a fibration p : E — B, consider the diagonal map A : E — Ep where A(e) =
(e,e,--- ,e), and the induced by A homomorphism in cohomology A* : H*(E%; R) — H*(E; R) with coeffi-
cients in a ring R. If there exist cohomology classes
Uy, ,uk € ker[A* : H*(Eg; R) - H*(E; R)]
such that
upU---Uug #0 € H(Ep; R)
then TC,.[p: E — B| > k.

Proof. Define the map c¢: E — EL where c(e)(t) = e is the constant path. Note that the map ¢ : E — EL
is a homotopy equivalence. Besides, the following diagram commutes

c Eé
}\\ A
B

E

E

and thus, ker[II* : H*(E%; R) — H*(EL; R)] = ker[A* : H*(E%; R) — H*(E; R)]. The result now follows
from Lemma 6.2 and from the definition TC,[p: E — B] = secat(Il,). O

7. Cohomology algebras of certain configuration spaces

In this section we present auxiliary results about cohomology algebras of relevant configuration spaces
which will be used later in this paper for computing the sequential parametrized topological complexity of
the Fadell - Neuwirth fibration.

All cohomology groups will be understood as having the integers as coefficients although the symbol Z
will be skipped from the notations.

We start with the following well-known fact, see [6, Chapter V, Theorem 4.2]:

7.1 Lemma. The integral cohomology ring H*(F(R?, m+n)) contains (d—1)-dimensional cohomology classes
wij, where 1 < i < j < m + n, which multiplicatively generate H*(F(R%,m + n)) and satisfy the following
defining relations

(Wij)2 =0 and wjpw), =wij(wjp —wip) forall i <j<p.

The cohomology class w;; arises as follows. For 1 < ¢ < j < m 4+ n, mapping a configuration
(U1, s Umsn) € F(R?, m + n) to the unit vector

Ui — Uj

I e gi-t
[[ui — ujl| ’
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defines a continuous map ¢;; : F(R?,m +n) — S, and the class
d—1 d
wij € H(F(R%, m +n))
is defined by w;; = ¢;;(v) where v € H¥~!(5%7!) is the fundamental class.

Below we shall denote by E the configuration space E = F(R% n+m). A point of E will be understood
as a configuration

(01,024 30m, 21,225+ 2n)
where the first m points 01,09, ..., 0,, represent “obstacles”while the last n points z1, 2, . .., 2, represent
“robots”. The map
p: F(RY, m+n) — F(RY m), (7
where
P(01,00, ... 0my 21,22y« -y 2n) = (01,02, ...,0m),

is known as the Fadell - Neuwirth fibration. This map was introduced in [7] where the authors showed that
p is a locally trivial fibration. The fibre of p over a configuration O,, = {o1,...,0,} € F(R%,m) is the
space X = F(R? — O,,,n), the configuration space of n pairwise distinct points lying in the complement of
the set O, = {01,...,0n} of m fixed obstacles.

We plan to use Lemma 6.3 to obtain lower bounds for the topological complexity, and for this reason
our first task will be to calculate the integral cohomology ring of the space Ej. Here E denotes the space
E = F(R? m+n) and B denotes the space B = F(R?,m) and p : E — B is the Fadell - Neuwirth fibration
(7); hence E7, is the space of r-tuples (eq, es,...,e,) € E satisfying p(e1) = p(e2) = - - - = p(e,). Explicitly,
a point of the space E; can be viewed as a configuration

1 .1 1 .2 2 2 L T
(01,02,"'Om,Zl,ZQ,"'Zn,Zl,Z2,-'-,Zn,"~,21,22,"',Zn) (8)
of m 4 rn points 0;, 2, € R* (for i =1,2,...,m, j=1,2,...,nand l = 1,2,...,r), such that

(1) 0; # oy for i #14,
(2) oiaézéforlgigm,lgjgnandlglg'r,

(3) 2k # 2L, for j # j'.
The following statement is a generalisation of Proposition 9.2 from [3].

7.2 Proposition. The integral cohomology ring H*(E}) contains cohomology classes wzl-j of degree d — 1,
where 1 <i<j<m+n and 1 <1 <r, satisfying the relations

(a) w§j=wé;for1§i<j§mandlglgl’gr,

(b) (wf-j)2 =0fori<jandl1<I<r,

Lol — ol (ol 1 L

(¢) wipws, = wi;(wj, —wjp) fori<j<pand 1<I<r.

Proof. For 1 <[ <r, consider the projection map q; : Ez — E which acts as follows: the configuration (8)
is mapped into
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(u1,Ug, ..., Umyn) € E = F(RY,m +n)

where

2k for i>m.

1—m

0; for i<m,
u; =

Using Lemma 7.1 and the cohomology classes w;; € H 4-1(E), we define
(@) (wij) = wi; € H*(Ep).
Relations (a), (b), (c) are obviously satisfied. This completes the proof. O

For 1 <i < j < m we shall denote the class w!; € H*"!(E}) simply by w;;; this is justified because of
the relation (a) above.

We shall introduce notations for the classes which arise as the cup-products of the classes wﬁj. Forp>1
consider two sequences of integers I = (41,42, - ,ip) and J = (j1,J2,- - , Jp) Where iy, js € {1,2,...,m+n}
for s = 1,2,...,p. We shall say that the sequence J is increasing if either p = 1 or j; < jo < -+ < Jp.
Besides, we shall write I < J if iy < js forall s =1,2,...,p.

A pair of sequences I < J of length p as above determines the cohomology class

l U l d—1
Wiy = Wiy Wiy, Wi, € HTVP(Ep)
for any [ = 1,2,...,r. Note that the order of the factors is important in the case when the dimension d is

even. Because of the property (a) of Proposition 7.2 this class is independent of | assuming that j, < m;
for this reason, if j, < m, we shall denote wh; simply by wy ;.
For formal reasons we shall allow p = 0. In this case the symbol w!; will denote the unit 1 € H°(E}).
The next result is a generalisation of [3, Proposition 9.3] where the case r = 2 was studied.

7.3 Proposition. An additive basis of H*(E7,) is formed by the following set of cohomology classes
w”w}ljlwih cewp g € HY(E) with I1<J and I; <J;, 9)
where:

(i) the sequences J,Jy,Ja,- - J,. are increasing,
(ii) the sequence J takes values in {2,3,--- ,m},
(iii) the sequences Jy,Ja,. .., J, take values in {m +1,---m+n}.

Proof. Recall our notations: E = F(RY,m +n), B = F(R%,m) and p : E — B is the Fadell - Neuwirth
fibration (7). Consider the fibration

pr: Eg — B where p,(e1,...,e.) =pler) =---=p(er).

Its fibre over a configuration O,, = (01,...,0m) € B is X", the Cartesian product of r copies of the space
X, where X = F(R? — Oy, n).

We shall apply Leray-Hirsch theorem to the fibration p, : E; — B. The classes w;; with ¢ < j < m
originate from the base of this fibration. Moreover, from Lemma 7.1 it follows that a free additive basis of
H*(B) forms the set of the classes wry where I < J run over all sequences of elements of the set {1,2,...,m}
such that the sequence J = (j1, j2, ..., jp) is increasing.
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Next consider the classes of the form
1 2
WHLLWE, Wiy, € HY(ER),

with increasing sequences J1, Ja, . . ., J, satisfying (iii) above. Using the known results about the cohomology
algebras of configuration spaces (see [6], Chapter V, Theorems 4.2 and 4.3) as well as the Kufineth theorem,
we see that the restrictions of the family of these classes onto the fiber X" form a free basis in the cohomology
of the fiber H*(X").

Hence, Leray-Hirsch theorem [16] is applicable and we obtain that a free basis of the cohomology H*(E')
is given by the set of classes described in the statement of Proposition 7.3. This completes the proof. O

Proposition 7.3 implies:
7.4 Corollary. Consider two basis elements o, f € H*(Ep)

_ 1 2 r _ 1 2 r
O =WrWr, W, W, ond B =wp W Wiy Wi

r

satisfying the properties (i), (ii), (iii) of Proposition 7.3. The product
a-p € H"(Ep)

is another basis element up to sign (and hence is nonzero) if the sequences J and J' are disjoint and for
every k =1,2,...,r the sequences Jy, and J;, are disjoint.

There is a one-to-one correspondence between increasing sequences and subsets; this explains the meaning
of the term “disjoint” applied to two increasing sequences.

Next we consider the situation when the product of basis elements is not a basis element but rather a
linear combination of basis elements.

Let J = (j1,J2,---,Jp) be an increasing sequence of positive integers, where p > 2, and let j be an integer
satisfying j, < j. Our goal is to represent the product

w;'lj“’;'zj . .wépj € HPU-U(EY), 1=1,...,r

as a linear combination of the basis elements of Proposition 7.3.

We say that a sequence I = (iy,142,...,i,) With p > 2 is a J-modification if i, = j; and for s =2,3,...,p
each number i, equals either i,_; or j,. An increasing sequence of length p has 2P~! modifications. For
example, for p = 3 the sequence J = (j1, j2, j3) has the following 4 modifications

(41, J2,J3)s (J1,J1,33), (J1,92,32)s (d1,31,51)- (10)

For a J-modification I we shall denote by 7(I) the number of repetitions in I. For instance, the numbers
of repetitions of the modifications (10) are 0, 1, 1, 2 correspondingly.

The following statement is equivalent to Proposition 3.5 from [4]. Lemma 9.5 from [3] gives the answer
in a recurrent form.

7.5 Lemma. For a sequence j1 < j2 < -+ < jp < j of positive integers, where p > 2, denote
J = (J1,J2y- -+ Jp) and J = (j2,J3,- -, Jp,J). In the cohomology algebra H*(E}) associated to the Fadell -
Neuwirth fibration, one has the following relation

wé'ljwj'zj e w;pj = Z(_l)r(n“&]’, (11)
I
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where I runs over 2P~ J-modifications and 1 = 1,2,...,r.

Proof. First note that for any J-modification I one has I < J’ and hence the terms in the RHS of (11)
make sense. We shall use induction in p. For p = 2 the statement of Lemma 7.5 is

wj'ljwé'zj = w§1j2w§2]' - w;lij;lj’

which is the familiar 3-term relation, see Proposition 7.2, statement (c). The first term on the right cor-
responds to the sequence I = (j1,72) and the second term corresponds to I = (ji,j1); the latter has one
repetition and appears with the minus sign.

Suppose now that Lemma 7.5 is true for all sequences J of length p. Consider an increasing sequence J =
(j1,725 - - -, Jp+1) of length p+1 and an integer j satisfying j > jp+1. Denote by K = (j1, jo, - - ., jp) the short-
ened sequence and let I = (i1,42,...,%,) be a modification of K. As in (11), denote K’ = (j2, j3, - -, Jps J)-
Consider the product

1 ! o ! /A
WIK' Wy, 115 = WirjaWings + - - Wiy, _15,Wip5 " Wipyad
—_ [, 1 1 o [ o
- [wiljzwizja t ‘wip—ljp] wipjp+1 [wjp+1j wipj]
— bt
=wn.y I,J’
where It = (i1,...,%p, jp+1) and Iz = (i1,...,4p,%p) are the only two modifications of J extending I. The

equality of the second line is obtained by applying the relation (c) of Proposition 7.2. Note that r(I1) = r(I)
and 7(I2) = r(I1) + 1 which is consistent with the minus sign. Thus, we see that Lemma follows by
induction. O

Since each term in the RHS of (11) is a + multiple of a basis element we obtain:

7.6 Corollary. Any basis element (9) which appears with nonzero coefficient in the decomposition of the

monomial
Lo 1 . . . .
Wj, jWigj - - - Wy 5, where  j1 <ja <--- < jp <, (12)
contains a factor of the form w;-sj, where s € {1,2,...,p}. Moreover,
l 1 l 1
Wi152Wi1gs * Wi, Wi g

is the only basis element in the decomposition of (12) which contains the factor wj-l je

Consider the diagonal map
A:E— Ep, Ae)=(ee,...,e), e€E.

7.7 Lemma. The kernel of the homomorphism A* : H*(ER) — H*(E) contains the cohomology classes of
the form

Wl — .
Proof. This follows directly from the definition of the classes w! ;; compare the proof of Proposition 9.4 from
3. O
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8. Sequential parametrized topological complexity of the Fadell-Neuwirth bundle; the odd-dimensional
case

Our goal is to compute the sequential parametrized topological complexity of the Fadell - Neuwirth
bundle. As we shall see, the answers in the cases of odd and even dimension d are slightly different. When
d is odd the cohomology algebra has only classes of even degree and is therefore commutative; in the case
when d is even the cohomology algebra is skew-commutative which imposes major distinction in treating
these two cases.

The main result of this section is:

8.1 Theorem. For any odd d > 3, and for any n > 1, m > 2 and r > 2, the sequential parametrized
topological complezity of the Fadell - Nevwirth bundle (7) equals rn +m — 1.

This result was obtained in (3] for 7 = 2. Note that the special case of d = 3 is most important for
robotics applications.

As in the previous section, we shall denote the Fadell - Neuwirth bundle (7) by p : E — B for short; this
convention will be in force in this and in the following sections.

We start with the following statement which is valid without imposing restriction on the parity of the
dimension d > 3. Note that for d = 2 we shall have a stronger upper bound in §9.

8.2 Proposition. For any d > 3 and m > 2 one has
TCp: E— Bl <rn+m-—1.

Proof. The space E}; is (d — 2)-connected and in particular it is simply connected (since d > 3). By
Proposition 7.3 the top dimension with nonzero cohomology is (rn+m —1)(d — 1). Hence the homotopical
dimension of the configuration space hdim(E7%) equals (rn+m — 1)(d — 1). Here we use the well-known fact
that the homotopical dimension of a simply connected space with torsion free integral cohomology equals
its cohomological dimension. The fibre X = F(R? — O,,,,n) of the Fadell - Neuwirth bundle p : E — B is
(d — 2)-connected. Applying Proposition 6.1 we obtain

1

TCr[pE—)B] <rn+m—1+m,

which is equivalent to our statement. 0O
To complete the proof of Theorem 8.1 we only need to establish the lower bound:
8.3 Proposition. For any odd d > 3 and m > 2 one has
TC.[p:E—B]>rn+m—1.

Note that the assumption of this Proposition that the dimension d is odd is essential as Proposition 8.3
is false for d even, see below.

Proof. We shall use Lemma 6.3 and Propositions 7.2 and 7.3 and Lemma 7.7.
Consider the cohomology classes

m

z = H(wil(m—{—l) — Wim+t1)) € Hm=DE-D(ER),
=2
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m+n m+n
T2 = H (w%j _w%j)2 = -2 H w}jw%j € H>™D(Ep),
j=m+1 j=m+1
T  m+n
=] II (i, -wiy) e B0 (Ey).
=3 j=m+1

Each of these classes is a product of elements of the kernel of the homomorphism A* : H*(E}) — H*(E),
by Lemma 7.7. Proposition 8.3 would follow once we show that the product

T1T2X3 ?,'é 0 e H*(Eg)

is nonzero. By Proposition 7.3, the product z;z2z3 is a linear combination of the basis cohomology classes
and it is nonzero if at least one coefficient in this decomposition does not vanish.
According to [3], cf. page 248, the product z;z, contains the basis element

WroaWiwiy € HEm DD (E) (13)
with a nonzero coefficient; here
Iy =(1,2,2,...,2), Jo=(2,3,...,m),
and
I=(1,1,...,1), I'=(2,1,1,...,1), J=(m+1,m+2,...,m+n),

with |Ih| = |Jo| =m — 1 and |I| = |I'| = |J| = n.

The product representing z3 can be expanded into a sum. This sum contains the class [[;_, wlI s and each
of the other terms contains a factor of type w%j. Since obviously m1z2w%j = 0, we obtain that the product
x122x3 contains the basis element

I
1 2 l
Wigdo " Wiy "Wrrg -~ ku
1=3

with a nonzero coefficient. Hence z12223 # 0 is nonzero. This completes the proof of Proposition 8.3. O

8.4 Remark. The lower bound estimate of Proposition 8.3 fails to work in the case when the dimension d
of the ambient Euclidean space is even. Indeed, then the classes wﬁj have odd degree (which equals d — 1)
and the square of any class of odd degree vanishes (since the cohomology algebra H*(E}) with integral
coefficients is torsion free). Thus, in the case of even dimension d the product z, vanishes. In the following
section we shall suggest a different estimate for d even.

9. Sequential parametrized topological complexity of the Fadell-Neuwirth bundle; the even-dimensional
case

In this section we give a lower bound for TC,[p : E — B] for the Fadell - Neuwirth bundle (7) in the
case when the dimension d of the Euclidean space R? is even. We also prove a matching upper bound for
the planar case d = 2. Such an upper bound can be obtained for any even d by a totally different method;
this material will be presented in another publication.

First we establish the following lower bound which is valid for any d regardless of its parity.
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9.1 Proposition. For any d > 2, r > 2 and m > 2, the sequential parametrized topological complezity of the
Fadell - Neuwirth bundle satisfies

TC.[p: E— B]>rn+m—2. (14)

Proof. As an illustration, consider first the special case m = 2 and n = 1, i.e. the situation when we have
one robot and two obstacles. Then the product of r classes

T

(Wés - w§3) : H(wis - w%3) (15)
1=2

lying in the kernel of A* contains the basis element
T
l
Wéa : H Wi3 (16)
1=2

with a nonzero coefficient. Indeed, (15) equals (w3s —w33) - [[[}_, wis — wis - @] where a is a polynomial in
the classes w!, with [ € {2,...,r}. Opening the brackets gives

T T
1

wag - lels — Wiy - lels — WyaWiz @ + Whwiza.
=2 =2

Here the second and the third terms are the sums of basis elements each containing the factor wi2 and hence
distinct from (16). The basis elements of the fourth term all contain the factor wi; and therefore are also
distinct from (16). Thus, (15) is nonzero and Lemma 6.3 gives the desired lower bound in the case m = 2,
n=1.

Returning to the general case, consider the following three cohomology classes z1,z2,23 € H*(E}R),
where

m
T = H(wil(m+1) — Wimi1)) € Hm=DED (B,
=2
m+n
T2 = H (Wj—1); — Wij—1);) € H DD (ER),
Jj=m+2
r  m+4n
zg =] [I @ —wlj) € B0 D(EY).

1=2j=m+1

Note that in the case when n = 1 the class x5 is not defined; however, the arguments below show that in
the case n = 1 the class z1x3 (which is the product of 7 +m — 2 classes lying in the kernel of A*) is nonzero.

Each of the classes 1, zs, x3 is the product of elements of the kernel of A*, see Lemma 7.7, and the total
number of the factors is rn + m — 2. Hence, by Lemma 6.3, our statement (14) will follow once we know
that the product z,z.23 # 0 € H*(E7) is nonzero.

Consider the following sequences

Iy =(2,2,...,2), where |Ip| =m —2,
Jo=(3,4,...,m), where |Jo| =m — 2,
I=(1,1,...,1), where |I| =n,

K=02m+1m+2,....m+n—1), where |K|=n,
J=m+1m+2,...,m+n), where |J| = n.
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We claim that the basis element

1 2 3 s
Wiy JoWK gWrgWrg - - -Wr g (17)

appears in the decomposition of the product z;z2x3 with a nonzero coefficient.
In the special case n =1 the class (17) has the form

™

Wo3Woyq . .. Wom * w%(mﬂ) . Hwi(m+1) (18)
=2

Consider the basis elements which appear in the decomposition of the class z1. For m = 2 the class x;
equals wi; — w3, and for m > 2 we can write

SEDIR(| EHN | a] 19

RC[m] i€ER i€ERC

where R runs over all subsets (including R = 0) of the set [m] = {2,3,...,m} and R® denotes the complement

[m] — R. The terms of (19) are basis elements for m = 2; for m > 2 they can be decomposed into basis

elements using Lemma 7.5. For example, taking R = [m| and applying Lemma 7.5 we find that one of the

2™=2 basis elements which appear in the decomposition of the product [];~, wil(m +1) is the class

Wa3Wa4 - - - WomWa = Wy, JoWa . (20)
23W24 2mWo(m+1) ToJo%2(m+1)

This class clearly is a factor of (17). For m > 2 each other basis elements in the decomposition of
[TiZ2 w4 1) has a factor of type wj,, ;) with 2 < i < m, see Corollary 7.6.
Note also the basic elements of the form

2 2
W23W24 - - - W2(m—1)WemWh(m41) = WIoJoWi(m+1) where 2<k<m, (21)

which arise in the basic element decomposition of the summand of (19) with R = 0.
The basis element decomposition of x5 is given by

Yo T whon, - I wfimns |- (22)
S

JjES jES®

where S runs over all subsets S C {m +2,m + 3,...,m + n}, including S = (). The symbol S°¢ denotes the
complement {m +2,m +3,...,m+n} —S. Taking S = {m+2,m +3,...,m + n} in (22) gives the class
wjc s, Without the factor w;( , which is a factor of (17). Note that the missing factor w;(m +1) appears in
(20).

The basis element decomposition of the class x3 is given by

m+1)

1 2 3 r
E + Wi, WLTWI T, - - WILT (23)
To,..., Ty

where T, T3, . .., T, run over subsets of the set {m+1,m+2, ..., m+n} such that every two of these sets cover
{m+1,m+2,...,m+n} and T1 = U}_,T; where Ty stands for the complement {m+1, m+2,...,m+n}-T;.
We identify the subsets of {m + 1,m + 2,...,m + n} with increasing sequences in the obvious way. The
sequences Iy, I, ..., I, in (23) all have the form (1,1,...,1). Taking in (23) T = T3 = --- =T, = J gives
the class w?;w}; ... w7, which is a factor of (17).
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We have seen that the class (17) appears as a product of specific basis elements in the decomposition of
z1, 2 and z3. We show below that the class (17) appears only with the set of choices indicated above and
hence it cannot be cancelled.

Firstly, we note that only x3 involves terms wﬁj with [ > 3 and j > m + 1. Therefore the only choice
T3 =Ty=---=T,=J in (23) may possibly lead to (17).

Secondly, the basis elements in the decompositions of z2 and z3 have no factors wfj with j < m. Hence
the factor wy, s, of (17) may only arise from the basis elements of the decomposition of z;. It is clear that this
may happen either when R = [m] with (20) corresponding to the modification (2,2, ...,2) of the sequence
(2,3,...,m), or with R = 0, see above. Any basis element of z; distinct from (20) has either a factor of
type wl 1y With 3 <4 < m or a factor of type wi(m +1) with 2 < k < m. Such factors do not appear in

i(m+1)

(17). If the set T3 in (23) contains m + 1 then we could have the factor

Witmt 1)W1 (mt1) = T (Witmt1) — Wimt1))

with the factor wy; missing in (17). Similarly, the set 75 might contain m + 1 leading to the product

Wﬁ(m+1)wf(m+1) = iwlk(wz(m+1) - w%(m+1))

with the factor wix being absent in (17). Thus, we see that (20) is the only basis element of the decomposition
of z; which can contribute into (17).

Comparing (22) and (17) and using Corollary 7.4 we see that the only basis element of the sum (22)
with S = {m +2,m +3,...,m + n} can contribute into (17). This basis element, together with the factor
Wy 1)s BIVES Wi .

Finally, examining (23), we see that the only way obtaining (17) is by taking T = J and hence T} = 0,
since, as we established earlier, one must have T3 =--- =T, = J and T} = U;=2ch.

Thus, the basis element (17) appears in the decomposition of the product z1z2z3 with a nonzero coefficient
and hence zzox3 # 0. This completes the proof. O

Next we state the main result of this section:

9.2 Theorem. For any m > 2, n > 1 and r > 2, the r-th sequential parametrized topological complexity of
the Fadell-Neuwirth bundle in the plane is given by

TC.[p: F(R?,n+m) = F(R?,m)] = rn+m — 2.
Proof. Proposition 9.1 gives the lower bound. In the proof below we establish the upper bound. We shall
adopt the method developed in [4]. As in [4], we identify R? with the set of complex numbers C and for
any s > 3 consider the homeomorphism

hs: F(C,s) - F(C ~{0,1},s —2) x F(C,2)

given by

Uz — U] Ug — U Us — UL
hs(ug, ug, ..., ug) = (( . ) ,(ul,uz)) ,

u2—u1’u2—u1’ ’Uz—ul

where u; € C, u; # u; for i # j. Thus, using the algebraic structure of complex numbers we may split the
configuration space into a product. We have the following commutative diagram
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hntm
F(C,n+m) —"= F(C~{0,1},n+m —2) x F(C,2)

pl qu.d

F(C,m) F(C ~{0,1},m —2) x F(C,2)

hm

where p is the Fadell - Neuwirth fibration, g is analogue of the Fadell - Neuwirth bundle for the plane with
points 0,1 removed and with m — 2 obstacles, and Id is the identity map. In the case when m = 2 we shall
consider the space F(C \ {0,1},m — 2) as consisting of a single point; then the diagram above will make
sense for m = 2 (two obstacles only) as well.

Noting that TC,[ld : F(C,2) — F(C,2)] = 0 and applying Proposition 5.1 we obtain

TC,.[p: F(C,n+m) — F(C,m)] <TC,[¢g: E' = B],

where E' = F(C~\{0,1},n+m—2) and B’ = F(C~\{0,1},m—2). The fibre of the fibration ¢ : E — B’ is the
configuration space F(C \ O,,n), which is connected and has homotopical dimension n. The homotopical
dimension of the base F(C \ {0,1}, m — 2) is m — 2. Proposition 6.1 gives TC,[¢: E' = B'| <rn+m —2.
Hence,

TC[p: F(C,n+m) = F(C,m)] <rn+m—2.
This completes the proof. O

9.3 Remark. Theorems 8.1 and 9.2 leave unanswered the question about the sequential parametrized topo-
logical complexity for the Fadell - Neuwirth bundle for d > 4 even. The upper bound of Proposition 8.2 and
the lower bound of Proposition 9.1 specify the answer with indeterminacy one. In a forthcoming publication
we shall extend the upper bound rn +m — 2 for any d > 2 even. We shall employ the method which was
briefly described in [12], §7 for the case r = 2.

10. TC-generating function and rationality

10.1. Definition 3.1 associates with each fibration p : £ — B an infinite sequence of integer numerical
invariants,

TCp: E—B|, TCp:E—B], ..., TClp:E—B], ... (24)
In order to understand the global behaviour of the sequence (24), it can be organised into a generating
function
F(t)=)Y TCrulp: E— B]-t, (25)
r>1

which we shall call the TC-generating function of the fibration p : E — B. Various analytic properties of the
generating function F(t) reflect asymptotic behaviour of the sequence (24) and topological structure of the
fibration p : E — B. Rationality of the generating function (25) would mean existence of a linear recurrence
relation between the integers (24) representing sequential parametrized topological complexities for various
values of r.

10.2 Lemma. The TC-generating function (25) depends only on the fiberwise homotopy type of the fibration
p:E— B.
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Proof. This is equivalent to Corollary 4.2. 0O

10.3. In paper [11] the authors introduced the TC-generating function

Fx(t) =Y TCrpa(X) -t (26)

r>1

associating with a finite path-connected CW-complex X a formal power series (26). The paper [11] contains
many examples when this power series can be explicitly computed and in all these examples Fx(t) is
representable by a rational function of the form

A B
+ —— +p(t), where p(t) isa polynomial. (27)

O=ap i

This property of Fx(t) is equivalent to the recurrence relation
TC,1(X)=TC.(X)+ A

valid for all sufficiently large r; we refer to [10] for more detail. In many examples the principal residue A
in (27) equals the Lusternik - Schnirelmann category,

A = cat(X). (28)

These examples lead to the Rationality Question of [11]: for which finite CW-complezes the formal power
series (26) represents a rational function of the form (27) with the top residue equal the Lusternik -
Schnirelmann category (28)?

10.4. In the subsequent paper [10] the authors analysed a class of CW-complexes violating the Ganea
conjecture and found examples X such that the TC-generating function (26) is a rational function of the
form (27) although the top residue A is distinct from cat(X).

10.5. Next we mention a few examples when the generating function (25) can be computed.

Firstly, suppose that p : E — B is the trivial fibration with path-connected fibre X. Then the generating
function (25) equals Fx (t).

Secondly, consider the Hopf bundle p : $* — S2. Then, according to Proposition 3.3, we have

TCryi[p: 8® = 8% = TCr41(S') = cat((§*)") =7 forany r>1.

Therefore, the TC-generating function of the Hopf bundle equals

. t _ 1 1
Dt =g T Ao ioh

r>1
In this case the principal residue equals A = 1 = cat(S?).

Exactly the same answer for the TC-generating function can be obtained in the case of a more general
Hopf bundle p : $?"+! — CP".

10.6. Consider now the TC-generating function of the Fadell - Neuwirth bundle p : F(R%, m+n) — F(R%,m)
which was analysed in this paper. We start with the case when the dimension d is odd. Then we have the
TC-generating function
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Ft) =Y [r+n+m—1]-t" = (1ft)2+";:t1—n—m+1.

r=1
It is a rational function of the form (27) with the principal residue

A=n=cat(F(R? - O,,,n))
equal category of the fibre. Using Theorem 1.3 from [14] we may write the TC-generating function of the

fiber X = F(R? — O,,,n) (for any d > 2) as follows

Fx(t)=n- ;(r F) = # —n. (29)

The TC-generating function of the Fadell - Neuwirth bundle is slightly different in the case when d = 2:

FO = Ylo+ntm=2- = o + T —nmmr2,

r=1

In this case the power series represents a rational function of form (27) and the principal residue equals the
Lusternik - Schnirelmann category of the fibre.

We see that for the Fadell - Neuwirth bundle the TC-generating functions of the bundle and of the fiber
have the same principal residue and their difference has a simple pole at ¢ = 1. This suggests the following
general question:

How the TC-generating functions of a fibration p : E — B and of its fibre X are related? More specifically
we may ask: For which fibrations p : E — B the differences

TCrti[p: E— B]|—-TC.p: E— B] and TC.[p: E— B]-TC.(X)
are eventually constant? This stabilisation happens in the case of the Fadell - Neuwirth fibration.
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