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Abstract

Motivated by the literature on preference elicitation and welfare analysis, Chapter
I studies the properties of aggregators of choice datasets into preferences. Novel
normative principles and their theoretical implications are provided. I analyse nu-
merous approaches proposed by the literature in view of the introduced principles.
I also propose and characterize two counting procedures that are foundational for
the analysis.

Motivated by the theoretical framework of the first chapter, in Chapter II, I pro-
pose a novel experimental design to test two normative principles: (1) Informational
Responsiveness guarantees that no choice data is ignored; (2) Revealed Preference
constrains the preference elicitation process to a particular reorganization of data.
These principles are summarized by a method denoted as Counting Reveal Prefer-
ence procedure. I show that approaches founded on this procedure provide more
reliable results in terms of preference relation.

Motivated by the literature on stochastic choice, Chapter III studies the relation
between imperfect discrimination and the transitivity of preferences. I show that
the degree of transitivity depends on the degree of discrimination between pairs
of alternatives. I characterize the notions of Weak, Moderate and Strong stochastic
transitivity. The results allow us to organize a wide range of stochastic models in
accordance with Fechnerian models and imperfect discrimination.
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Introduction

This dissertation comprises three chapters organized as follows: Chapter I and II
study Behavioural Welfare Analysis from a theoretical and empirical point of view.
Throughout these chapters, numerous microeconomic topics are spanned: deter-
ministic and stochastic choice theory, aggregation theory, welfare theory, choice-
elicitation experimental design. Chapter III studies Choice Behaviour under Imper-
fect Discrimination. It spans two topics: stochastic choice theory and order theory.
Chapter I aims to reconcile welfare analysis with non-standard choice behaviour.
It is motivated by the following example: suppose a researcher wants to elicit pref-
erences from a group of individuals’ choices. They may behave inconsistently with
utility maximization. Therefore, the researcher faces the challenge of identifying
a preference relation for each of these individuals. As a further complication be-
haviour is heterogeneous. Namely, each individual violates utility maximization
differently. As a consequence, the researcher has to potentially identify numerous
different (correct) models, one for each individual. The literature has acknowledged
the complexity of this problem and proposed different solutions. An influential ap-
proach is due to Bernheim & Rangel (2009) and suggest to ignore inconsistent data
and apply standard theory on the remaining dataset. This approach highly sim-
plifies the problem, however at a considerable price: the elicited preferences may
be very coarse. I propose a theoretical solution that is a refinement of Bernheim &
Rangel (2009) and that is based on two requirements: an axiom called Informational
Responsiveness and a notion of frequency based on Revealed Preference. I, then,
consider numerous other requirements and completely characterize two notions of
frequency with datasets that may have both multiple observations and missing data.

Chapter Il brings the theoretical results of the first chapter to the data. I design a
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novel choice-elicitation experiment. Two questions, that constitute the premise and
test of my theoretical study, are addressed: do subjects behave consistently with
utility maximization and do they exhibit heterogeneous modes of behaviour? If in-
dividual choices present inconsistencies, do my requirements improve the capacity
of the researcher to elicit preference relations? To both questions the answer is affir-
mative. I find that subjects show high inconsistent behaviour both in Time and Risk
preferences. Furthermore, many different behavioural models are adopted. I find
that even within the same subject, different modes of behaviour are displayed mov-
ing from Time to Risk environments. These findings pose a serious challenge to the
researcher who wants to elicit preferences. However, I show that when the require-
ments studied in Chapter I are satisfied, the preference elicitation capacity increases
significantly. I test the results both indirectly analysing approaches proposed by the
literature and directly creating a novel test for Informational Responsiveness.
Chapter III studies the topic of Imperfect Discrimination in relation to transi-
tivity of preferences and stochastic choice. I study how imperfect discrimination,
namely the inability to distinguish the utility of stimuli, have effects into transitiv-
ity of choices and binary relations. I build on threshold (Aleskerov et al., 2007) and
perturbed models (Fudenberg et al., 2015) to precisely characterize the connection
between imperfect discrimination and transitivity. As the main result, I character-
ize all notions of stochastic transitivity (Weak, Moderate and Strong) using only a
parameter # that measures the degree to which an individual departs from stan-
dard utility maximization. I show that a sufficient condition is related to the trian-
gle inequality. Finally, I provide a connection between deterministic and stochastic

transitivity completing a study initiated by Fishburn (1973).



Chapter 1

Behavioural Welfare Analysis and

Revealed Preference: Theory

1.1 Introduction

In recent years behavioural economics has developed a large number of models in
response to evidence of violations of the standard model of decision-making. This
growing literature raises the problem of selecting behavioural models to analyse
datasets and contribute to policy evaluation. More concretely, imagine a researcher
that possesses a choice dataset from multiple individuals that choose following dif-
ferent behavioural models. For instance, some are perfectly rational, others may face
cost of thinking (Ortoleva, 2013), (Fudenberg et al., 2015), (Frick, 2016), form consid-
eration sets (Manzini & Mariotti, 2014), (Brady & Rehbeck, 2016), use attention filters
(Masatlioglu et al., 2012), (Lleras et al., 2017), (Cattaneo et al., 2018), perception or-
ders (Echenique et al., 2018), checklists (Mandler et al., 2012) or sequential rationales
(Manzini & Mariotti, 2007). The researcher is interested in eliciting individual pref-
erences. Therefore, in each case, she has to identify the correct model and elicit the
preference relation accordingly.

The literature has acknowledged the complexity of the researcher’s task. Some
choices may not be in line with any model at disposal while others may be in
line with more than one. Some individuals may also be endowed with more than

one model and exchange them according to different situations. An influential ap-
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proach, that can be applied irrespectively of the model, and therefore overcome
these difficulties, is due to Bernheim & Rangel (2009). The authors develop a Pareto
relation that cautiously considers x preferred to y if and only if y is never chosen
when x is available. With this in mind, the researcher’s task is simplified. She does
not need to identify the different models. She has only to observe their choices and
apply the above definition. However, the simplification comes at a considerable
price: the elicited preference may be very coarse. This problem has been highlighted
by Rubinstein & Salant (2012) as follows: "The resulting Pareto relation is typically a
coarse binary relation that becomes even more so as the behavioural dataset grows".

Bernheim & Rangel (2009) were aware of the coarseness problem. Therefore,
they propose some reasonable refinements, each accompanied by some drawbacks.
The first proposal is related to the availability of further information. If the re-
searcher possesses data on imperfect information processing or clear mistakes she
can use them to enrich the choices. However, this is not always possible and in-
volves subjective decisions. The second proposal is to carefully consider only part
of the dataset for reasons of (i) simplicity or (ii) frequency. In the first case, the re-
searcher may think that choices from simpler problems (e.g. binary sets) are more
reliable in eliciting preferences. In the second case, she may think that an alternative
that is chosen more often is more probable to be preferred. As the authors notice,
both approaches leave the researcher with the issue of choosing which problems are
simpler or which definition of frequency to choose.

In this chapter, we propose a solution to the researcher’s problem that is a refine-
ment of Bernheim & Rangel (2009) approach. We acknowledge Rubinstein & Salant
(2012) critique and propose a normative principle that guarantees that "more data
lead to finer results".

Our normative principle states that a researcher that aims to rank two alterna-
tives x and y has to use all the relevant evidence about x and y. To formalize, we say
that when she considers x indifferent to y, more choices of x with y available should

turn the judgement in favour of x.1 We call this condition Informational Responsive-

INote that this requirement can be weakened without losing its interpretation. This feature is in
line with Krantz et al. (1971): "One demand is for the axioms to have a direct and easily understood
meaning in terms of empirical operations, so simple that either they are evidently empirically true on
intuitive grounds or it is evident how systematically to test them." In our case, the reader may think
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ness.? A violation would imply that she is not using all relevant data. Notice also
that we are adopting a particular notion of frequency. That is, we consider relevant
only the data that shows one element chosen when the other is also available, as in
standard revealed preference.

But, how can two such simple conditions provide a reliable solution to the com-
plex researcher’s problem? The answer lies in the monotonic connection between
preferences and choices that most models share. Behavioural models are made of
different components (e.g. mistakes, cost of thinking, alternatives attributes, lists of
rationales, perception orders, and many others). However, all of them are mono-
tonic in the underlying preference relation. Even models that seem to depart from
this principle, such as attention models, satisfy the property that x is chosen more
times than y if x is preferred to y and attention and preferences are not too con-
flictual.®> The monotonic component of behavioural models has been highlighted
by Apesteguia & Ballester (2015). The authors show that their approach, that sat-
isfy our conditions, constitutes a reliable solution to the researcher’s problem when
individuals adopt one of a broad family of models summarized by a property that
they call P-Monotonicity.*

We generally define the researcher’s problem as behavioural welfare analysis
(henceforth BWA). More formally, BWA maps individual choices into welfare or-
derings (binary relations) and aims to deal with non-standard patterns of choice.
To relate with the classic literature, standard welfare analysis is the subset of BWA
based on the assumption that choices satisfy the Weak Axiom of Revealed Prefer-
ence [WARP]® and therefore that they are revealed to be maximized by a transi-
tive and complete preference relation (Sen, 1971). In this case, the welfare order-

ing is identified with the maximized preference relation.® The literature has exten-

of requiring more than choice to break the indifference.

2To the best of our knowledge this property has been firstly introduced in voting theory by Goodin
& List (2006) under the denomination of "One Vote Responsiveness".

3For example, in Manzini & Mariotti (2014), if x is preferred to y then in order for y to be chosen
more frequently than x, the attention parameter (salience) of y has to be significantly higher than the
one of x.

4These results are summarized in Proposition 1 and Theorem 1 of Apesteguia & Ballester (2015).

5A non-formal definition of WARP is as follows: If an alternative x is chosen when vy is available
then y is not chosen when x is available.

® An analogous argument can be applied to a stochastic choice that satisfies Independence from
Irrelevant Alternatives (Marschak & Block, 1960), (Luce, 1959). Note that, a stochastic choice function
is a refinement of a standard choice function where for each set we can observe the frequency of choice
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sively documented that individuals violate not only WARP (Echenique et al., 2011)
but also Independence from Irrelevant Alternatives (Tversky & Russo, 1969) and
weaker assumptions such as weak stochastic transitivity (Tversky, 1969) and regu-
larity (Huber et al., 1982), (Iyengar & Kamenica, 2010). Henceforth, we will refer
to each map constituting BWA as welfare methods. Informational Responsiveness,
Revealed Preference, and the other principles (or guidelines) that will be introduced
along the chapter come as restrictions on the welfare methods.

Focusing on Informational Responsiveness, we argue that its desirability as a
necessary condition is related to its weakness, non—triviality,7 and relevance. We
show that some very different welfare methods satisfy this axiom (weakness). How-
ever others do not (non-triviality). In such cases, we show that the violation can
potentially lead to paradoxical results (relevance). Particularly, for a broad family
of stochastic models of choice, Informational Responsiveness is necessary to in-
fer the underlying deterministic utility. As a consequence, some methods that do
not satisfy our requirement, such as (Bernheim & Rangel, 2009) and transitive core
(Nishimura, 2017) fail to infer the utility function of such models no matter how
large the dataset is.

Although, Informational Responsiveness keeps the spotlight; we propose other
normatively appealing axioms. We introduce two continuity requirements: stability
and robustness (note that no necessity is claimed here). In words, if the researcher
judges x to be better than y then a single piece of evidence in favour of y cannot
reverse the judgement (stability) and, if she judges x to be "much" better than y,
then again a single piece of evidence cannot make y either equally good or better
than x (robustness).

Continuity requirements are normatively of particular interest because they high-
light an intrinsic contrast between standard revealed preference analysis and the
widely accepted idea of choice overload (Iyengar & Kamenica, 2010), (Fudenberg
et al., 2015), (Frick, 2016), cost of thinking (Ortoleva, 2013), rational inattention

(Matejka & McKay, 2015) and considerations sets (Manzini & Mariotti, 2014). We

for each alternative.

7We use the term "trivial" in relation to its logic definition. In particular, we intend as "trivial", an
axiom that is satisfied by every method proposed by the literature and therefore always true in the
discipline.
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show how methods based on revealed preference may assign an excess weight on
data from large sets (Section 1.6.2). If these observations are noisier than those from
binary sets then it is unclear how they should be considered in terms of welfare rev-
elation.® In Chapters II this question will be addressed empirically and answered
negatively. Standard revealed preference will be shown to be crucial to elicit prefer-
ences and therefore the continuity requirements, as here defined, to be too demand-
ing.

This chapter locates in the axiomatic approach recently proposed by Nishimura
(2017) and Horan & Sprumont (2016). However, it differs from both of them. From
the former because our primitive are choice observations and not preference rela-
tions. From the latter because, as a novelty, our axioms deal with the problems of
information and continuity. Furthermore, our approach allows for greater flexibility
in the structure of the dataset in terms of both missing data and multiple observa-
tions.

Overall we provide three main theoretical results:

¢ We show that Informational Responsiveness is the key axiom that gives rise to a
class of methods that can infer the deterministic utility underlying i.i.d. Ran-
dom Utility Models (Proposition 1 and 2). The results can be easily generalized

to a broader family of stochastic models.

¢ We provide a characterization of the Counting Choice Method (the best alter-
native is the one chosen most times; the second best is the one chosen second
most times and so on). Although this method seems naive, it constitutes an
important benchmark for our theoretical analysis. Furthermore, even though
counting procedures have been extensively studied a complete characteriza-

tion in the context of choice datasets is a novelty (Theorem 2).

¢ We provide a characterization of the Counting Revealed Preference Method (if
x is chosen when y is available more times than y when x available then x is
better than y) - (Theorem 3). We show that this method has at least two ap-

pealing properties: (1) in certain cases it is equivalent to the Minimum Swaps

8The definition of revealed preference plays a key role in this argument. An approach based only
on binary sets has been proposed by Arrow (1959) and Sen (1971).
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Method (Apesteguia & Ballester, 2015) - (Theorem 1) - which is related to a
well-known computational problem (Dean & Martin, 2015); (2) it can be used
as the foundation for other methods such as Eigenvector Centrality Method or

Transitive Core Method (Nishimura, 2017).

Our second and third results are connected with two axiomatizations of counting
methods in the class of tournament (Rubinstein, 1980) and directed graph (van den
Brink & Gilles, 2003). However, our characterization differs from the above. Firstly,
because it is the first application in the context of choice menus where we show
that a simple monotonicity requirement as in Rubinstein (1980) is not sufficient.’
Secondly, because our definition of welfare methods does not require the resulting
binary relation to be transitive, but only to be complete and reflexive. Dropping
transitivity is necessary to compare the two characterizations given that the revealed
preference relation can easily be cyclic.! Importantly we show that the difference
between our results and Rubinstein (1980) is not due to transitivity since the non-
sufficiency of monotonicity is proven without any reference to transitivity.

The reader, in view of the proposal of Bernheim & Rangel (2009), may see the
dropping of the requirement of acyclicity of the welfare relation as problematic. As
we show, there is a trade-off between the requirement of acyclicity of the revealed
preference relation and the coarseness of the relation itself. In Section 1.6, in partic-
ular, we show how the proposal of Bernheim & Rangel (2009) imposes coarseness
almost everywhere through acyclicity. Differently from the ex-ante imposition of
acyclicity, we provide a series of methods that allows to break the cycles and re-
establish the acyclicity of the welfare relation ex-post. In Chapter II, we will show

that this approach allows for a better elicitation of the welfare relation.

1.1.1 Structure of the Chapter

Section 1.2 introduces the general framework. In Section 1.3, we present Informa-
tional Responsiveness as the main conceptual axiom and argue about its neces-

sity due to its weakness and relevance. In Section 1.4 there is a description of the

9 A tournament is an asymmetric binary relation that can be also described using solely binary sets.
10A classical example: A is chosen from {A, B}, Bis chosen from {B,C} and C is chosen from {A,C}.
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methods analysed in Chapter I and II together with the above mentioned equiva-
lence result between counting revealed preference and the minimum swaps method
(Apesteguia & Ballester, 2015). In Section 1.5 we show the non-triviality of Informa-
tional Responsiveness. Section 1.6 deals with the problem of sensitivity of methods
(continuity requirements). Finally, in Section 1.7 we propose the characterizations
of the two counting procedures: the counting choice method and the counting re-
vealed preference method. Auxiliary results and proofs, where not contained in the

text, are in Appendix A.

1.2 Framework

1.2.1 Dataset

Let X be a finite set of alternatives. Let X’ be the set of all non-empty subsets of X.
Assign to any set S € X a non-negative integer n that denotes the number of times
the set S is observed in the data. The set of observed S—sets is denoted as S,,. A
domain D is the collection of all the S—sets. Formally, D = Jsc y Sn. We denote as
D the set of all possible domains. The domain Dy denotes an empty dataset.

A choice function is then defined as C : D — X s.t. C(S) € S for all non-empty
S € D. Denote €' (D) as the set of choice functions over a given D. For simplicity we
denote Cp any C € (D). Let € be the set of all choice functions over all possible
domains.

A dataset is a tuple (D,C) where D is a domain and C is a choice function defined

over the domain. We define two counting measures:

1. C, is the number of times an element x € X is chosen from any set. Formally,

Cx={SeD:x=C(S)}|.
2. Cyy is the number of times an element x is chosen when vy is available. For-
mally, Cyy = {SeD:x=C(S),yeS}.
1.2.2 Welfare method

Let B(X) be the set of strict total orders defined over X (denoted as P*), let R(X) be

the set of complete, reflexive but not transitive binary relations and 7 (X) the set of
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transitive, reflexive but not complete binary relations (as usual we refer to P as the
asymmetric part and to I as the symmetric part).

A welfare method, or simply a method, maps choice functions into binary rela-
tions. Hence, a method can be defined differently with respect to the class of binary

relations in the codomain. Throughout the chapter, we use three definitions:

1. A method f is a correspondence f : ¢ = B(X) and F is the family of all these
methods. Given a generic method f € F, a choice function C and two elements

x,y € X then if (x,y) € P* € f(C) we write xP7(C)y.

2. A method g is a function g : ¥ — R(X), let’s denote the family of these meth-
ods as G. Given a generic method g, a choice function C € ¢ and two elements
x,y € X then'if (x,y) € R=g(C) , we write xR¢(C)y (we write xPy(C)y for the

asymmetric part and xI(C)y for the symmetric part).

3. Amethod tis a function f : € — T (X). We denote the family of these methods
as 7.

The welfare methods introduced by the literature are covered by these three fam-
ilies 7,G,T. In order to compare them, we define one methodology that will be ex-
tensively used throughout Chapters I and II. If for all C € ¢ and g(C), P, is acyclic,
then we can connect the families of methods F,G in the following way: suppose
R = g(C) such that for x,y € X, (x,y),(y,x) € R then we can rewrite R as two dis-
tinct P, Py € f(C) with (x,y) € P}, (y,x) € P5. In other words, indifferences in R are
broken using two strict total orders Py, P5. If P, is cyclical we adopt the convention
of substituting the cycles with indifferences. Conversely, suppose P}, P; € f(C) such
that (x,y) € P{ and (y,x) € P; then we can rewrite two P}, P; as a single R € g(C)
such that (x,y), (y,x) € R*.

The axioms and definitions in the following sections are defined over a complete
and reflexive binary relation R € g(Cp). By abuse of notation, we will denote RgD (C)
as R¢p; RgDU{S} (C) as Rrus and Rg\{s} (C) as R°P's for a generic set S € D.

It is crucial to remember the reader that the axiom of Completeness plays a de-
cisive role in all the results. However, since it is embedded into the definition of g

methods, it won’t be explicitly recalled in the statements.
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Axiom 1 (Completeness).

For any x,y € X, either xRy or yR1x.

1.3 Informational Responsiveness

This property guarantees that a method that ranks two alternatives x,y € X uses
all the relevant choice observations regarding x and y. In the case of choice-based
welfare analysis it is natural, and hardly questionable, to consider relevant for x,y
at least those observations where x is chosen and y is available or vice versa. This
axiom tests if an observation is "key" to solve indifferences. In other words, if a
method ranks x indifferent to y, then an additional observation carrying x chosen
and y available should make the method rank x better than y. If this does not hap-
pen, we infer that the method is not using that observation!!.

Shortly, given a method g € G and a choice function C, for all x,y € X and D € D:

Axiom 2 (Informational Responsiveness [IR]).
If xI°Py and x = C(S), y € S then xPCrusy. Ifalso S € D then yP s x.

The definition of Informational Responsiveness must care specifically about adding
and removing a piece of information. The necessity is due to the extreme weakness
of the antecedent (xI“Py) that doesn’t allow to guarantee an equivalence. In Ap-
pendix A.1.2, in the proof of Claim 1, we provide a counterexample that shows the

independence of adding and removing data.!?

1.3.1 Weakness and relevance of Informational Responsiveness

We argue that Informational Responsiveness should be a necessary condition for

welfare methods. We show that it has two characteristics that are desirable for a

HThis idea is not new in the literature. In a totally different context, a similar approach has been
used by Dekel et al. (2001) in order to give a definition of "relevant” state of the world.

121t is interesting to see that such a requirement is redundant for an axiom called (Strong) Positive
Responsiveness, which is similar to the one proposed by Rubinstein (1980):

Axiom. If xRy and x = C(S) then xPCrusy,

It is immediate to see the equivalence between this definition and the following: if xR°Py and
y = C(S) then xP sy,
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necessary axiom: weakness and relevance. Namely, it is crucial to avoid paradoxical
results (relevance), but the restriction it imposes on the family of methods is not
strong enough to identify even indisputable welfare relation (weakness, i.e. x al-
ways chosen and y never chosen). This task requires the introduction of two axioms:
Neutrality'® and Choice non-negativeness. The first requires that welfare analysis does
not depend on the label of the alternatives; the second requires that choices are not
negative evidence of the goodness of the alternatives.

Let II(X) be the set of all the permutations 7 : X — X. Then, for all = € T1(X),
define 71(Cp) € (D) as rt(C(S)) := m(C(r~1(S))) forall S € D.

Axiom 3 (Neutrality [NEU]).
xRy if and only if 7t(x)R™(C0) rt(y) for all 7t € TI(X).
Axiom 4 (Choice non-negativeness [CNN]).

If xICPy and x = C(S) then xRPusy. Ifalso S € D then yRP\sx.
If xPPy and x = C(S) then xPCrusy.
If xPCPy, S € S and y = C(S) then xP<P\sy,.

One could note that Choice non-negativeness and Informational Responsiveness
together provide a sort of monotonicity (Positive Responsiveness - Rubinstein (1980))
over the sets S where x = C(S) and y € S. However, we split them for two reasons:
(1) Choice non-negativeness, unlike Informational Responsiveness, is satisfied by
all methods proposed by the literature; (2) Choice non-negativeness doesn’t provide
any insights about the informational capacity of welfare methods.

The role of the monotonicity provided by Informational Responsiveness and
Choice non-negativeness has an important impact on preference elicitation. We
analyse monotonicity more in details in Section 1.8. Here, however, it is interest-
ing to note that several behavioural models proposed by literature can be captured
by our monotonicity assumption as noted by Apesteguia & Ballester (2015). In the

results that follow, we focus on one specific model, however, as we will discuss

1BAs highlighted by Apesteguia & Ballester (2015), Neutrality can be considered trivial in an ab-
stract setting where there is no additional information on the alternatives. In the case where such
information is available (e.g. monetary values, attributes, etc...) one could prefer to treat alternatives
differently.
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in Section 1.4 introducing the counting revealed preference procedure, the results
hold at a higher generality level. Even models that generally do not satisfy our
monotonicity assumption, such as attention models, may be captured if the tension
between preferences and attention parameters is not too high (Manzini & Mariotti,
2014).

To show that Informational Responsiveness avoids paradoxical results we con-
sider a case in which the resulting preference order is indisputable and show that it
can be inferred only by methods that satisfy such property.

Thus, we introduce Random Utility Models with independent and identically
distributed error components as follows. Suppose an individual evaluates the alter-
natives according to a utility function u : X — R . However, at the act of choice this
utility is perturbed by an additive error component such that the choice depends on
the random utility U(x) = u(x) + €(x) where €(x) is continuously distributed. The
probability that x is chosen from a set S € D is Pr[x = argmax,csU(x)].

Furthermore, suppose that the collection of observations is restricted to multiple
observations over a single set S such that D = S,,. We show that given this particular
restriction on the domain, our three axioms can correctly identify the underlying

deterministic utility # and consequently the correct welfare relation.

Proposition 1. Given an i.i.d. RUM, a resulting collection of observations on a domain of
the type D = S,, and a method g that satisfies Informational Responsiveness, Neutrality and

Choice non-negativeness then xRy if and only if u(x) > u(y).

Proof. Since the collection of observations is produced by an i.i.d. RUM, the follow-
ing clearly holds: C, > Cy if and only if u(x) > u(y) when the number of observa-
tions is large. The only if part is trivial. Hence, we will prove only the if part.

Given two generic elements x,y € X we can divide the collection of observations
over the domain D = S, in three disjoint sets with the following cardinality: Cy,
Cy and C; where this latter is defined as: C; = )., [{S € D :z = C(S)}|. First,
focus on this latter set; by Neutrality we have xIPy. Suppose xP‘Py; then take
n(x) =y, m(y) = x and 7(z) = z for all z, then we have yPPx but the collection of
observations hasn’t changed contradicting the definition of method as single-valued

function. Then, take the sets of observations where x,y are chosen. The proof is by
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induction on C, + C;. The inductive base is proved for C, + C, = 2. First suppose
Cx + Cy = 0 then xI“?y by Neutrality. If Cy + C, = 1 and x is chosen, then by In-
formational Responsiveness and Neutrality xP0y. If Cy + C, = 2 and Cy > C, then
xPy by Choice non-negativeness; if Cy = C, then xIPy by Neutrality. Suppose
this statement holds for C; + C;, = n and add an additional observation such that
D=S5,UTand x = C(T) (we don’t need to analyse the case if y = C(T), since the
result would hold by definition of method as a function). Then if C, — C, = 1, xPPy
by Informational Responsiveness and the inductive hypothesis; if Cy — C,>1, then
xPy by Choice non-negativeness and the inductive hypothesis. Finally, if C, = C,
then x1“Py by Neutrality. O

The reader may note that the weakness of Informational Responsiveness comes
not only from the use of Choice non-negativeness and Neutrality but also from the
strong restriction imposed on the domain. This restriction is indeed extremely se-
vere. Hence, a similar result is proven for a larger set of domains at the cost of
requiring the resulting binary relation to be transitive. Nonetheless, a weaker re-
striction has to be maintained. Particularly, a domain D is homogeneous if it assigns
to all S € X the same natural number n. Equivalently, D is homogeneous if any

non-empty subset is observed the same, large enough, number of times.

Proposition 2. Given an i.i.d. RUM, a resulting collection of observations over a homo-
geneous domain and a method g that satisfies Informational Responsiveness, Neutrality,

Choice non-negativeness and Transitivity then xRgy if and only if u(x) > u(y).
Proof. See Appendix A.1.1 O

The following example shows the independence of Transitivity from the other

axioms.

Example 1. Let Dy, = [{S€ D:z=C(S),x €S,y & S}|. Define the following method:

Fry > Fyx & xRCy

where Fy =6 - Cyxy + Dy with 6 € R*.
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This method satisfies Informational Responsiveness, Neutrality, Choice non-negativeness
but not Transitivity. If & is small then we have yPP x with u(x) > u(y) on a homogeneous
domain. For instance, suppose we observe 60 choices from {x,y}, {y,z}, {x,z}, {x,y,z}.
Furthermore, suppose u(x) =3, u(y) =2, u(z) = 1 and the decision maker follows a stan-
dard Luce Model. Then, the following dataset is observed (note that (n,m) from {x,y}

indicates that x is chosen n times and y is chosen m times):

S | {xyzt Axy}r {yz} {xz}
C(S) | (30,20,10) (36,24) (40,20) (45,15)
Cyy = 66, Cyy = 44, Dyy = 15, Dy = 20. Setting 6 small gives Fy, < Fyy. In this

example, for instance, setting 6 = 0.3: ngCD ngCD ngCD z violating transitivity.

The reader may note that this example relies on a very unusual method. In
fact, the axiom of Transitivity has a limited role in proving the result and can be

substituted for instance by the axiom of Independence:
Axiom 5 (Independence).
Forall S € D if z = C(S) then xR°Py < xRD\sy.

The tight restriction on the domain together with the assumption of choice ob-
servations based on i.i.d. RUMs guarantee that most methods are in fact transitive
on this subspace of 4. An example is the method based on C,,, which is clearly
not transitive over ¢. Importantly, both Bernheim & Rangel (2009) [Theorem 1]
and Apesteguia & Ballester (2015) [Theorem 1] implicitly rely on the restriction of

homogeneous domains.

Corollary 1. Given an i.i.d. RUM, a resulting collection of observations over a homo-
geneous domain and a method g that satisfies Informational Responsiveness, Neutrality,

Choice non-negativeness and Independence then xRgy if and only if u(x) > u(y).

1.4 An overview of methods

This section contains concise descriptions of the methods that will be analysed in
the following sections and in Chapter II. A reader interested in specific results can

skip the section and eventually refer to it at a later time.
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The methods are denoted as follows: CC € G is the counting choice method, CRP
€ G is the counting revealed preference method, SEQ € F is the sequential method (Horan
& Sprumont, 2016), BR € G is the Bernheim, Rangel method (Bernheim & Rangel,
2009), MS € F is the minimum swaps method (Apesteguia & Ballester, 2015), EIG
€ § is the eigenvector centrality method and TC € T is a variation of the transitive core

method (Nishimura, 2017).

Counting choice

For all domain D € D, the counting choice method CC € G is simply defined as

follows:

ngf(’:y if and only if C, > Cy

Counting revealed preference

So far we haven’t assumed neither acyclicity nor transitivity defining the class of
methods G. The reason is that this allows us to apply the counting procedure to the
standard revealed preference relation as a method of type ¢.* Its inclusion in G is
driven by the following arguments: (1) CRP is the foundation for other important
methods such as MS, EIG and TC; (2) the acyclicity of Pgﬁp can itself be empirically
tested and, in Chapter II, we observe that it is almost always satisfied in a laboratory
environment; (3) in a stochastic environment this condition is implied by an axiom
called Item Acyclicity®® which characterizes an important subset of the general family
of Additive Perturbed Utility Models (Fudenberg et al., 2015).

We denote this method as CRP € G. It is then defined as follows:

ngﬁ’{Py if and only if Cyy > Cyx

141 P is cyclic the welfare relation has no maximal elements; therefore it is hard to consider the
counting revealed preference as a good welfare method.

15Consider a stochastic choice rule p as a mapping that assigns a measure p(A) € A(A) to each menu
Ae X. Letx>yif p(x,A) > p(y,A) for some A > x,y and x ~ y if p(x,A) = p(y,A). A stochastic
choice rule p satisfies Item Acyclicity if there exists no sequence (xy,..., %) such that:

X1 ZXpZm o Z Xy - X
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Sequential

The sequential solution SEQ € F has been characterized by Horan & Sprumont
(2016). This method behaves straightforwardly as a function SEQ : ' (X') — B(X).
It works recursively such that w.l.o.g. xpggéy forally € X, if x =C(S) and S =
argmaxg., |S| (note that since D = X we have always S = X); then yPégéz for all
z€ X, withz#xify=C(S\ {x}); then ng‘géw forallw # y,xif z=C(S\ {x,y})
and so on.

If D C X, given a choice function Cp € ¢ (D), the resulting order is defined as
follows: take the set of choice functions C(X) € € that extend Cp to X s.t. C(S) =
C(S) for all S € D. Then, SEQ(Cp) is the intersection of the orderings SEQ(Cyx)
assigned to these choice functions. Clearly, the resulting order could be incomplete.
This extension is suggested by Horan & Sprumont (2016). Along the paper we apply
this extension in the following way: consider the same choice function Cp over an
incomplete domain D C X; then SEQ(Cp) = B C B(X) where B = {P* € B(X) :
P* =SEQ(Cx)}.

Bernheim, Rangel

Bernheim & Rangel (2009) proposed the following method BR € G'°. Forall x,iy € X
and for all D € D, xP§Ry if and only for all S € D s.t. x,y € S we have x = C(S) for
some S and y # C(S) for all S. Otherwise, xlgll{y. This method always maps into
acyclic binary relations if D = X’ - (Bernheim & Rangel, 2009)[Theorem 1]. However
since our domains admit multiple and missing observations, ng{ could be cyclic.
BR can be equivalently defined using the counting revealed preference measure as

follows: xP5y if and only if Cy, > 0 and Cyx = 0. Otherwise, xI§gy.

Minimum swaps

This method has been proposed by Apesteguia & Ballester (2015) and denoted as
MS € F. For all domains D € D, MS(C) is defined as follows:

16More extensively, they say x is strictly unambiguously chosen over y (denote as xPy) if and only if
forall S € Ds.t. x,y €S; y # C(S). This asymmetric binary relation can be either considered as itself,
that would be the coarsest case, or it could be completed by a symmetric component R where ny if
and only if —yPx, this would be the finest case. We are going to refer to this latter case.
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MS(C) = argmind,(C, P*)
PreB(X)

where

ds(C,P*) = SZDHx € S:xP*C(S)}|

Transitive core

This method has been proposed by Nishimura (2017). Here, we introduce a varia-
tion of his proposal, that is a mapping from complete and reflexive binary relations
to transitive but possibly incomplete binary relations. The author wrote: "If she
chooses one alternative on some occasions and another on others, then we reveal
indifference between these two alternatives" (Nishimura, 2017). This approach is
totally in line with Bernheim & Rangel (2009); hence it won't bring novelties with
respect to Informational Responsiveness. For this reason, it seems of more interest
to found his approach on the CRP method (complete and reflexive). Furthermore,
given its construction, it only makes sense if the completeness axiom is discarded
in the codomain. Consequently, the transitive core method, denoted as TC € T, is

defined for all domain D € D and x,y € X as follows:

C C
zRerpX = ZRegpy

xRSy & V zeX

c c
YRegpz = XRegpz

Eigenvector centrality

This method exploits the definition of centrality in networks in order to define an
order of alternatives. The graph is constructed using the CRP method.

The adiacency matrix A = (wxy)xyex is defined as follows:

Cy if Cy>0
Wyy =

with small ¢ > 0. The elements of the main diagonal are all equal to zero. The

eigenvector centrality of x € X, denoted as c%, is:
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where A, is the greatest eigenvalue of the adjacency matrix. Perron-Frobenius
theorem guarantees that ¢ is a positive real number.!”!® Hence, the method EIG € G

is so defined: for all D € D and for all x,y € X we have ngfGy if and only if ¢§ > cj,.

1.4.1 Counting Revealed preference and Minimum Swaps

The connection between CRP and MS has been already noted by Apesteguia &
Ballester (2015).1°

We show that if Pcrp satisfies acyclicity then the transitive closure of Pcgrp is
equivalent to the asymmetric part of the minimum swaps relation Pyis. The argu-
ment exploits the equivalence between minimizing the number of swaps over all the
sets and maximizing the sum of C,, — C, over all the elements given a strict total
order P* € B(X). First, it is straightforward to see that a sum over sets is equivalent

to a sum over elements.

Lemma 1. d,(C,P*) = ¥ |[{x€S: xP*C(S)}| = ¥ [{SeK:y=C(S)xeS,
seD x,yeX
xPry}|

Proof. Trivial. O

By Lemma 1, the number of swaps can be rewritten as:

Z Cyx when xPy
x,yeX

In general the maximum number of swaps is:

7By Perron-Frobenius theorem, the constructed revealed preference digraph gives satisfactory re-
sults only if it is strongly connected. If it is not (i.e. an element is never chosen); one needs to define
a e > 0 s.t. the eigenvector associated with A4, has strictly positive and real components (it happens
only if the adjacency matrix is irreducible; and it is irreducible if the associated digraph is strongly
connected).

8¢ > 0 can be also interpreted as a degree of importance of those elements that are never chosen. If
€ = 0 this would mean that beating those elements is worthless. Suppose, for instance, x = C(x,y,z)
and y = C(x,y), intuitively ngI%y since x beat z. However, if ¢ — 0 then the ranking between x,y

tends to ngIDGy because z becomes more and more irrelevant. Actually, if the digraph d; is already

strongly connected, given the same digraph d, but with € > 0 we have that the lim,_,¢ c$(d2) = 5 (d1).
19 Apesteguia & Ballester (2015) introduced the following property: A collection of observations

satisfies P-Monotonicity if xPy implies Cyy > Cyx. They then established the following result:

Theorem. If a collection of observations satisfies P-Monotonicity, then P is the unique minimum swaps pref-
erence.
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Y {SeK|x=C(S),ye S} +|{SeK|y=C(S), xS} =) Cx+Cp
xyeX xyeX

Let’s define a new measure A(C, P*) that equivalently to the swaps distance de-

fines the degree of similarity between a choice function and an irreflexive order P*:

A(C,P*)= Y [Ciyy—Cp] when xP'y
xyeX

Lemma 2. d;(C,Pj) <ds(C,P;) < A(C,Py) > A(C,Py) forall Pf, Py € B(X).

Proof. The proof is algebraic. Note that, given xP*y:

x,yeX xyeX

Z [Cay — Cpa] — Z Coy = — Z Cyx

x,yeX x,yeX x,yeX
N’
A(C, P¥) ds(C,P*)

Hence, if d;(C, P*) increase by n, then it must be that A(C, P*) decreases by 2n.

Note that, the result is valid for all CP, C? € ¢ (D) since:

D D __ D D
Z ny + ny - Z Cl,xy =+ Cl,yx
x,yeX x,yeX

O]

We now prove the result of Apesteguia & Ballester (2015). In this proof we de-
note Pcgp as the transitive closure of Pcgp. Recall that since MS € F and CRP € G,

the indifferences in Rcrp are broken as described in Section 1.2.
Theorem 1. If Pcrp is acyclic, then xPigpy <> xPysy.

Proof. By Lemma 2, we can run the proof showing that Pcgp maximizes A(C, P*).
In particular, note that if Pcrp is acyclic and xPcrpzPcrpy and xIcrpy, we have that
if xPcrpy then Cyy > Cyyx for all x,y € X. Hence, Pcrp maximizes A(C, Pégp)- In

fact, suppose yPmsx, then by transitivity of Pys, either zPysx or yPysz. Hence,
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since Cyy = Cyx, Cxz > Czy and C; > C,;, we must have that A(C, Pys) < A(C, pCRP),
contradicting the definition of Pyis. Note that the result holds for any sequence of

Zi. OJ

1.5 Non-triviality of Informational Responsiveness

Firstly, we recall the definition of trivial axiom adopted here. We define an axiom
trivial if all the welfare methods proposed by the literature satisfy it. The previous
section allows us to prove the non-triviality of Informational Responsiveness. The
following examples show that neither BR nor SEQ satisfy Informational Respon-

siveness.

Example 2. The following two datasets are observed:

S | {wyzt {xywr {xy}
c(s) | (0,1,0) (1,000 (1,0)

S [{xwzt {xy}
C(S) | (0,1,0) (1,0)

The two dataset differs in only one observation x = C(x,y,w), however in both cases

xlgﬁy, suggesting that the observation x = C(x,y,w) does not produce any information.

Example 3. The following two datasets are observed:

S |{xvyzwy {xyzp {vyw}
C(s) | (0,0,0,1) (0,0,1) (1,0,0)

S | {xyzw} {xyz}
C(S) | (0,0,0,1) (0,0,1)
The two dataset differs in only one observation x = C(x,y,w), however in both cases
xP;}%y and yngéx.

These two examples show that both BR and SEQ fail to satisfy the requirements

for Proposition 1 and 2. Therefore, they fail to infer the underlying utility of i.i.d.
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RUMs even when it is observed on a single set. The reader may verify that both
methods satisfy Choice non-negativeness and Neutrality (trivial axioms); but not
Informational Responsiveness. All the other methods introduced, on the contrary,
satisfy Informational Responsiveness. The verification of this claim is left to the

reader. It is nonetheless instructive to prove it in the case of TC.
Claim 1. TC satisfies Informational Responsiveness.

Proof. First of all we show that ngf{Py implies either (1) xpggy or (2) —ocR%gy and
ﬁyR%x. (1) is by construction: suppose for all z # x the definition is satisfied, take
z = x then ngfu,x by reflexivity and xPCCIE{Py by assumption; if z = y it is immediate
that ﬁng%Px, hence xP-l(-:g Y. (2) can be constructed as follows: suppose xlgl’ipz and
yPgI’{I,z then by definition —ocR%’éy and ﬁyR(T?gx (note that this argument follows also
by Axiom 1, called Prudence, of Nishimura (2017)).

Consequently, xlggy implies xlgﬁp. The converse is true only if the definition is
satisfied for all z € X. But then, if we add one observation where x = C(S) andy € S

we are in case (1). Thus, Informational Responsiveness is satisfied.

O]

A different, stronger, and more naive version of Informational Responsiveness
is not satisfied by MS and TC. We require that if a method ranks x indifferent to y,
then an observation of x chosen, even without y available, should make the method

rank x better than y.

Axiom 6 (Strong Informational Responsiveness).
If xI°y and x = C(S) then xPCpusy and yPr\s .

The following two examples show that both MS and TC fail to satisfy Strong
Informational Responsiveness. In Chapter II, the methods are analysed empirically
and the data show that this property is too strong and methods that satisfy it, such
as CC or EIG, are outperformed by those that satisfy only Informational Respon-
siveness. This argument recalls the importance of standard revealed preference as

presented in the introductory section.
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Example 4. The following two datasets are observed:

S | {vyzt {xy} {vz}
C(S) | (1,0,00 (0,1) (1,0)

S |{xyzh {xy}
c(S) | (1,0,0) (1,0

The two datasets differ from the observation x = C(x,z). From the first dataset: xP*CDzP*CD y

and xPyPyPiPz and yPilP xPisPz. Hence, xPis Ly and y P x. However, from the sec-

D\{z z} D\{x z}

ond dataset also xPy """y and yP x. Hence, Strong Informational Responsiveness

is violated.

Example 5. The following two datasets are observed:

s |y e fwa) |
)| 32 11 1,0

s |y e fwe) |
)| 61y 11 1,0

The two datasets differ from the observation y = C(x,y). From the first dataset yI%CD z
since nglgpy, xPCD RpZ and yI crpZ- From the second dataset, the same welfare relations hold.

Hence, Strong Informational Responsiveness is violated.

1.6 Sensitivity of methods

So far, the proposed conditions have constrained the methods in an informational
way. In this section, we focus on a different feature of methods: sensitivity. We define
two properties that bound the capacity of one observation to influence the welfare

relation.

Axiom 7 (Stability).

If xPCPy then —yPP\sx for all S € D.
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Axiom 8 (Robustness).

If there exists a z s.t. xPCPzPCPy then xPP\sy for all S € D.

1.6.1 Normative Interpretation of the axioms

Stability deals with the excessive sensitivity of the method to choice observations
around the indifference classes. The stated version, limited to a single observation, is
the strongest possible in the context of choice. It asserts that a single choice of y from
a set S € D cannot reverse the judgement from xPPy to yP“Pusx. One can, alterna-
tively, propose weaker versions where the judgement is allowed to be reversed only
if the choice comes from sets that are considered particularly "important”". However,
the reader may note that the level of abstraction limits the definition of "importance”
either to the cardinality of sets or to the element chosen.

Both BR and SEQ methods are stable. Instead both TC and MS are not stable

(the latter example is valid also in the case of EIG).

Example 6. The following two datasets are observed:

S [H{vyzy {vyr {xnz} {yz}
c(S) | (1,0,00 (L1) (01) (1,1)

S [ {xyr {xz) {yz}
c(s) | (L1 (01) (L1)

From the first dataset we have Cy, > Cyx, Cy; = Cyy and Cy, = Cyy. Applying the
definition of transitive core method we obtain foguszP%US y. From the second dataset we
have Cyy = Cyx, Cyz = Cyy and Cy, < Cyy, and by the same principle ZP% P%CD x. Hence,

Stability is violated since the two datasets differs from one observation x = C(x,y,z) .

Example 7. The following two datasets are observed:

S | {vyzr {xnz) {yz)
C(S) | (1,0,0) (0,1) (1,0)
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S [ {xz} {yz}
c(s) | (01) (1,0)

From the first dataset: xPylyPriPz. However, the same method infers yPyP zPul x

from the second dataset, hence Stability is violated.

Robustness reproduces the idea that if the researcher is "strongly" convinced that
x is better than y than a single choice observation cannot turn her judgement into
x indifferent to y. The version of this axiom previously stated translates the idea
of x being "strongly" better than y into the statement: there exists a z # x,y such
that xPCpzPCp y. In the characterization theorems of the last section, this axiom will
be shown to be redundant. However, its interpretation remains relevant because
it asserts a normatively important property of the method that will be analysed
more in detail in the following subsection. As for the previous axioms, the version
proposed can be weakened allowing more alternatives (z;)!_; to be between x and
y tojudge x "strongly" better than y.

Examples 5 and 6 show that TC, MS and EIG violate Robustness. Examples 7

and 8 show that also BR and SEQ are not robust.

Example 8. The following two datasets are observed:

S [ {xyr {xz) {yz}
C(5) | (1,0) (1,0) (1,0)

S | {xy} {yz}

c(s) | (1,0) (1,0)
From the first dataset: xPéICzD yPEEDz and xpglgz. However, from the second dataset:

xlgﬁz violating Robustness.

Example 9. The following two datasets are observed:

S | {wyzt {xy) {xzh {yz}
C(S) | (1,0,0) (1,0) (1,0) (1,0)
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S | H{wyr {nzy {yz}
C(S)| (1,0) (1,0) (1,0)

From the first dataset the sequential method infers xP;g(SyP;gSz. However, from the

second dataset: ng‘gSz and ZP;% violating Robustness.

The violation of Robustness by BR is of crucial importance. The reader may note
that BR violates Robustness irrespectively of the number of elements z in between
x and y and even more strongly, irrespectively of the number of times x and y have
been chosen. In fact, since xPgry if and only if y is never chosen, we have that xIgry
almost surely on the set of all choice functions . As mentioned in the Introduction,
this result shows the excessive cost imposed by the acyclicity of revealed preference
relation. In the next subsection, we discuss the topic of the violation of Robustness
more in details. We show that MS, but also EIG, are also highly not robust, but
crucially the violation does not hold almost surely as the reader will note from the

construction of the counterexample in Example 10.

1.6.2 (Weak) Robustness, large sets and choice overload

As mentioned in the previous section, one can think of a family of weaker versions
of Robustness. In particular, define € as a measure of robustness; then define a se-
quence (z;)¢_, for some € < |X| — 2: if xPz;P... PzcPy then xP“P\sy for all S € D.
In words, less robust axioms require more elements between x and y to guarantee
that the asymmetric relation is preserved. In the introduction, we described Stability
and Robustness as continuity requirements. The reader may note how this defini-
tion resembles the one of ¢ — § continuity. We extensively discuss this intuition in
Appendix A.2.

This new definition allows us to measure the degree of Robustness of welfare
methods. Here, we propose an example that is illuminating with regard to the min-
imum swaps welfare relation. That is, for any ¢, MS is not robust. The origin of this
result is the excessive weight assigned by CRP to large sets. The following example,
which exploits the result of Theorem 1, not only shows that Robustness is violated,

but even more strongly that even Stability is violated.
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Example 10. Let X = {x,y,21,22,23}. The first graph describes CRP on some choice func-

tion C. The second graph is its transitive closure.

y y
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Suppose that following observation y = C(x,z1,22,23,Y) is added to the dataset:
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A comment has to be made concerning an intrinsic problem connected with re-
vealed preference. Methods based on revealed preference tend, by construction, to
attribute a larger weight to observations from larger sets. However, this tendency
seems to be in contrast with the literature of choice overload.?’ For instance, if one
assumes that individuals do more mistakes in large sets, then he can think that the
inference of welfare should be less influenced by such observations. We will empir-

ically test this hypothesis in Chapter II.

1.7 Counting Procedures

In this section, we show how the introduced axioms play a role in characterizing the

two counting procedures CC and CRP.

20Examples of models that produce more inconsistencies in bigger sets are Frick (2016) and Fuden-
berg et al. (2015).
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1.7.1 Counting choice method

Firstly, we characterize the counting choice method [CC]. This characterization has
some similarities with the one proposed by Rubinstein (1980) for scores in tourna-
ments and van den Brink & Gilles (2003) for outdegrees of digraphs. However, we
deal with the higher complexity of a domain of choice menus. For this reason, the
axioms proposed are stronger. Strong Informational Responsiveness and Stability
imply Strong Positive Responsiveness (axiom used by both Rubinstein (1980) and
van den Brink & Gilles (2003)); and this latter is shown to be not sufficient to char-
acterize CC. We refer to Strong Positive Responsiveness as defined in Section 1.2. in

the footnote to the definition of Informational Responsiveness.

Theorem 2. A method g satisfies Stability, Independence, Strong Informational Respon-

siveness and Neutrality if and only if ¢ = CC.

Proof. The only if part is trivial. We prove only the if part.
Step 1 (Induction base).

The proof is by induction over the cardinality (number of non-empty sets in
the domain) of the domain D given a generic choice function Cp. Let’s prove the
statement for |D| = 2. Suppose D = @, we have xI“Poy. In fact, suppose xPoy
then by Neutrality yP™C00)x if 77(x) = y and 71(y) = x; but g : C — R(X) and we
would have two orders R;, R; associated with the same choice function s.t. xP;y
and yP,x, hence by Completeness xI“Poy.2! Suppose D = {S}. If z = C(S) then by
Independence xI“Py and clearly Cy = C,. If x = C(S) then by Strong Informational
Responsiveness xP?y and C, =1, C, = 0. Note that |D| = 1 is not enough for
our purpose. In particular, we have to prove also that Cy = C, = 1 & xI“Py with
|D| = 2 since we need x,y chosen in the domain to make the base general over all

the possible domains.?? So, suppose D = {S,T}. If z = C(T) the result holds by

211f we rewrite the subsequent of Stability as xR°Py, instead of —yP P x; then the role of Neutrality
and Completeness is restricted to implying: D = @ = xICL’@y for all x,y € X. One can eventually
assume this condition as axiom and prove the theorem without using these two axioms.

22In order to see why this last part is necessary, let’s suppose to prove the base for induction using
Strong Positive Responsiveness. Clearly, if |D| =1 the statement is proved to be true. Suppose we
take a domain | D| = 1 where the statement is true and [D U {T}| = n 4- 1. We can prove that C, > Cy
= xPCUy. However, Example 7 provides a method, different from the counting choice method, that
satisfy Strong Positive Responsiveness, Neutrality and Independence but not the last statement. This
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Independence. If x = C(S) = C(T) then by Stability we have —yP‘Px. Suppose, by
Completeness, xI“Py then by Strong Informational Responsiveness we should have
yPCP\Tx contradicting the result at |D| = 1; hence xP*Py with Cy =2 and C, = 0. If
C(S) = x and C(T) = y then we have yP“P\sx and by Stability =xPPy and xPP\Ty
and by Stability —yP“Px; hence by Completeness xI“Py with C, = C, = 1.

Step 2 (C, > C, = xRy).

Suppose |D| = n and the statement holds. Take then |D U{T}| =n + 1. Suppose
that C, = C,. If z = C(T), xI°?Ty by Independence and the inductive hypothesis.
Suppose x = C(T) then if we take out T by inductive hypothesis we have yP*Px and
by Stability —xP0uTy. But then, since Cy = Cy there exists a set S such that y = C(S).
Hence by inductive hypothesis xP“PUT\sy and so —yPPuT x by Stability, which means
by Completeness xI“PuTy.

Suppose Cy > C,. If z = C(T), xP?-7y by Independence and the inductive hy-
pothesis. If x = C(T) then if we take out T, we have two scenarios: if xI°Py then
xPCruty by Strong Informational Responsiveness (note that this is the case when
Cx — Cy = 1). If xPvy (when Cy — C, > 1) then —yP“P'Tx by Stability. However,
suppose by contradiction xIP'Ty, then taking out x = C(T) we should have yP‘Px
contradicting the inductive hypothesis, so by Completeness xProry. 1f y = C(T)
then if we take out T, by inductive hypothesis xP“Py and by Stability —yPCPurx.
However, since C; > C, there exists a set S s.t. x = C(S) and so by the previous
argument xPCpuTy.

O]

Claim 2. Strong Informational Responsiveness and Stability = Strong Positive Respon-

siveness.

Proof. Strong Informational Responsiveness proves Strong Positive Responsiveness
when the antecedent is xI°Py. Suppose xP¢Py; if we add x = C(S) then by Stability it
cannot be yPPusx. Suppose, by Completeness x1“Pusy, then by Strong Informational

Responsiveness we have PP x which contradicts the initial condition xP¢y.

suggest that the strategy of the proof is fallacy in some parts. In fact, if Cy = Cy and we focus on
|D| =1 we do not cover all the choice functions where x or y are chosen. Hence, since the base must
have a universal quantifier, the proof would be incomplete.
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O]

The following examples provide two methods that satisfy Independence, Neu-
trality, Strong Positive Responsiveness (Ny, > Ny,) and Transitivity (Q, > Q,) but

are not the counting choice method.

Example 11. Given two elements x,y € X and a choice function Cp € € (D):

Ny > Nyy <> xRy
where Ny, = Cyy + 0 - |{S:x=C(S),y & S}| with § € (0,1).

Example 12. Given an element x € X and a choice function Cp € € (D):

Qx> Qy& xRCDy
where Qy = Y., |S|.
S:x=C(S)
However, if we restrict the domain on binary sets then Strong Positive Respon-

siveness and Transitivity become sufficient.

Proposition 3 (Theorem 1 - Rubinstein (1980)). Let D be a domain of solely binary
sets. A method g satisfies Strong Positive Responsiveness, Independence, Neutrality and

Transitivity if and only if ¢ = CC.

Proof. See Appendix A.1. O

Independence of the axioms
Stability

s | v oy} {xz) e |
C(S) | (1,0,0) (1,00 (0,2) (2,0)

s |y oy {wz) e ]
C(S) | (1,000 (1,0) (0,1) (2,0)

Following the method proposed in Example 10 and setting 6 = 0.5 we obtain:
Nyy=2> Nyy =1; Nyz = 1.5 < Noy = 2; Ny =2 > Ny, = 1. Hence, xPgyPgPzP<x
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(Transitivity is violated). From the second dataset Ny, =2 > N, =1; Ny, = 1.5 >

y y y

N,y =1, N, =2 > N,;, = 0.5, hence x PSP PCDZ, xPSPz violating Stability since the
y y g Ylg 8 & y

two datasets differ only from one observation z = C(x,z).

Strong Informational Responsiveness

CRP satisfies Stability, Neutrality, Independence but only the weaker version of In-

formational Responsiveness.

c
Cxy 2 Cyx < XRcgpy

Independence

Let Ty, =[{S€D:xeT,y¢T,x#C(T)}|. The following method g is defined:

Note that this method satisfies Stability because a single observation from a set
S € D can increase the score by maximum one. If x = C(S) then |T,|,|T;:| and
Cy, don’t change. Similarly if y = C(S). If z = C(S) and either x,y € Sor x,y € S
the order between x,y is not affected. If x € S and y ¢ S then only |T,,| increases.

However, as the following example shows, Independence is violated:

S |{wyzt {xyt {xzh {yz}
C(S) | (1,0,0) (1,0) (0,2) (2,0)

S |{wyz} {xzp {yz}
C(S) | (1,0,00 (0,2) (2,0)

From the first dataset we infer ngC D yPéE: b zPé(,: Dx, while from the second dataset
zPéE: b ngC Py and ngC Pz. Hence, the observation x = C(x,y) has modified the welfare

relation between y, z violating Independence.
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Neutrality

Vxz#y = [Ci>C & ngDz}

vVx = ngCDy

1.7.2 Counting Revealed Preference method
Additional axiom

It is straightforward to see that the CRP method doesn’t satisfy Strong Informational
Responsiveness. However, it satisfies Informational Responsiveness. But, this is not
the only difference between the two. If it was, then there would be an inclusion
relation between the methods, which is not the case. Hence, the following axiom is

introduced.

Axiom 9 (Connection).
Forall S € Ds.t. {x,y} Z S then xRy <> xRP\sy

The interpretation of this axiom is quite clear. Intuitively it makes Informational
Responsiveness much stronger. In fact, together, they don’t only require that each
set Ss.t. x =C(S) and y € S produce some information about x,y; but they require

that these are the only sets doing that.

Theorem 3. g satisfies Neutrality, Stability, Informational Responsiveness and Connection

if and only if ¢ = CRP.
Proof. See Appendix A.1. O

The reader may note that Independence is implied by the other axioms and so
redundant. It is clearly not true that Connection and Independence are equivalent
under the other axioms. As shown in the subsection about the independence of the
axioms, CC satisfies Neutrality, Informational Responsiveness, Stability, Indepen-

dence but not Connection.

Corollary 2. Neutrality, Connection, Informational Responsiveness and Stability imply

Independence.
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Remark 1. Note that CC and CRP are not nested. In particular, CC satisfies Strong
Informational Responsiveness while CRP does not. Conversely, CRP satisfies Con-
nection while CC does not. Nonetheless, both satisfy Neutrality, Stability, Indepen-

dence and Informational Responsiveness.

Independence of the axioms

The reasoning behind these examples is the same discussed forCC.

Stability

Similarly to Example 10, define the following method:

Quy > Qyx & xRy

where Q,, = v [S].
S:x=C(S),yeS
This method does not satisfy Stability since the value attached to the sets de-

pends on their cardinality:

S {x,y,z,w,t} {xy}
C(S) (1,0,0) (0,2)

S |{wy}
C(s)| (0,2)
From the first dataset Qy, = 5 > Qyx = 4 while from the second dataset Q,, =
0 < ny - 4.
Informational Responsiveness

The following method satisfies Connection, Neutrality and in a vacuous way also

Stability. However, it violates Informational Responsiveness.

xI?y ¥V xyeX
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Connection

CC satisfies Neutrality, Stability and (Strong) Informational Responsiveness, how-

ever it doesn’t satisfy Connection.

Cr>Cy= xRCDy

Neutrality

Vx,z#Yy = [Cy > Coy & xREPZ]

Vx = xP‘ry

1.8 Summary

Figure 1.1 summarizes the characteristics of the methods analysed in Chapter I.

It is important to notice that for reasons of simplicity of exposure, especially in
view of Chapter II, we substitute incompleteness with indifference. These process,
that allows a consistent comparison across methods, can undermine the theoretical
foundations of some of these methods. Particularly, MS and TC are affected; al-
though differently. Both methods satisty IR. However, MS satisfies it even when
indifferences are introduced; while TC does not. Therefore, we treat MS with indif-
ferences and TC with incompleteness. Hence, TC satisfies both transitivity [T] and

quasi-transitivity [QT] ;23 while MS satisfies only QT.

[ NEU CNN IR SIR IND ST ROB CON QT T |
CRE| v V v x v v vV v x x
MS | v/ VvV Vv X X x X X 4/ X
C | v VvV Vv X x x X X
EIG|, v vV VvV Vv x x x RV
cclv v Vv vV VvV VvV x VvV
SEQ | / vVooX X X X X vV VvV

| BR V vVooox o x4y VX Vv X x|

Figure 1.1. Summary of the properties of welfare methods.

23 A binary relation R is quasi-transitivity if the asymmetric part P is transitive (Sen, 1969).
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ST ASIR | SPR ¢ SIR | IR

STANIRACON +H——— CNN+H—— IR =IR"

Figure 1.2. Implication Diagram "Monotonicity"

Figure 1.2 presents an implication diagram that deconstruct the property of mono-
tonicity in observations in order to understand its full implications. We denote
(Strong) Positive Responsiveness as SPR. This axiom is a strong monotonicity ax-
iom in choices and has been defined at footnote 12. We denote IR as IR™ when only
adding observations is considered in the definition.

The diagram is divided into two levels. The first is related to CC. The sim-
ple counting satisfies SPR via ST and SIR. Consequently, it also satisfies CNN. We
highlight how CNN guarantees that we can only focus on adding observations to a
dataset when we define IR. This result can be found as Claim 1 in Appendix A.1.2.
We report a nice counterexample in the absence of CNN. The second level is re-
lated to CRP. As clear from Theorem 3, CRP does not imply SIR, hence also SPR.
However, it implies CNN. In this case, it is easy to prove that CNN is redundant in

Theorem 3, and that CNN is implied by ST, IR and CON.

1.9 Conclusion

In Chapter I, we analyse the problem of a researcher that wants to elicit the prefer-
ences of individuals that have heterogeneous behavioural models. Given the com-
plexity of the task, we propose some simple and normatively appealing properties.
Firstly, we show that a property called Informational Responsiveness has important
empirical implications since it is crucial to infer the underlying utility of a broad
family of stochastic models of choice. Secondly, we propose some "continuity" re-
quirements that constrain the importance of single observations in determining the
elicited preference relation. We analyse all the welfare methods proposed by the
literature in view of the introduced normative principles. Finally, we completely

characterize two counting procedures on datasets with missing data and multiple
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observations. These procedures will be an important theoretical base for the experi-

mental study that will constitute Chapter II.



Chapter 2

Behavioural Welfare Analysis and

Revealed Preference: Experiment

2.1 Introduction

In this Chapter, we test our theoretical contribution using novel experimental data.
The researcher’s problem here is brought to data. We elicit preferences from a group
of 145 subjects and then test if Informational Responsiveness' and standard Re-
vealed Preference constitute a solid base for welfare analysis.

All the difficulties of the researcher problem expressed in Chapter I are present
here. We study two environments: time and risk preferences. Henceforth we re-
fer to the environments as "Time" and "Risk". We observe a high heterogeneity in
behavioural models not only across subjects but also within subjects and across en-
vironments. We do not adopt a model-driven approach because even for our simple
experimental setting the literature has proposed several models, often mutually ex-
clusive, to explain some of the patterns in the data.> Each model provides a different
way to construct a so called "revealed" preference relation. Therefore, as discussed

in length in the previous chapter, we rely on our simplified model-free approach

1We refer to Section 1.3 of Chapter I for an analysis of this axiom.

2The existence of different models that explain similar situations regards, for instance, how indi-
viduals deal with complex choice problems, in particular when the number of alternatives is high.
Both in deterministic and stochastic literature two main lines of models have been developed: (i) (de-
generate) attention models has been developed among many by Masatlioglu et al. (2012), Lleras et al.
(2017), Manzini & Mariotti (2014), Echenique et al. (2018), Cattaneo et al. (2018); (ii) (uniform) attention
models by Frick (2016), Fudenberg et al. (2015).

37
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and test its effectiveness.
We aim particularly to answer the following questions that constitute together

the premise and the testing of our theoretical proposals.

¢ Premise: Do individuals consistently reveal welfare in different choice prob-

lems, e.g. in Time and Risk?

e Test: If not, how should a researcher measure welfare when individuals violate
the Weak Axiom of Revealed Preference? Particularly: is Informational Respon-
siveness effective in discriminating welfare methods? And how important are

revealed preference relations?

To address these questions, we design a new choice elicitation experiment. Sub-
jects are asked to choose from sets that include delayed payment plans (Time) or
lotteries (Risk). As in Manzini et al. (2010) we collect choices regarding four alterna-
tives in every subset. Henceforth we refer to them as MAIN alternatives and to the
subsets as MAIN sets.®> The remaining questions contain either problems of asym-

4 or choice overload.® This structure allows us to test if choices

metric dominance
from sets that are potentially doomed by behavioural effects are relevant to elicit
preferences.

In order to test the capacity of eliciting preferences, at the end of the experiment,
we ask subjects to rank the four MAIN alternatives. We consider this relation as
a benchmark for evaluating how welfare methods perform on the dataset. The re-

liability of the reported preference relation is empirically strong.® In an exercise,

that we call "Identification", we measure the proportion of subjects for whom each

3In Appendix B.1 and B.2 the reader can find descriptions of the alternatives and questions with
particular reference to the MAIN ones.

4 Asymmetric dominance deals with ternary sets where one alternative is clearly dominated by
one of the other while the remaining ones have similar value. In this cases subjects typically show
attraction effect, e.g. Huber et al. (1982) and Natenzon (2019).

SWith choice overload we intend a situation where the number of alternatives in a choice set makes
it difficult for the decision maker to evaluate all of them. An empirical example can be found in
Iyengar & Kamenica (2010).

®The reliability of the reported ranking is confirmed by the following statistics: in time preferences
69 out of 70 rational subjects reported the correct optimal alternative and 61 out of 70 reported correctly
the entire welfare relation. This statistic is repeated in risk preferences with respectively 10 out of 12
subjects reporting the correct optimal alternative and 9 out of 12 the correct welfare relation. Two sub-
jects reported the opposite ranking to the one they rationally employed in their choices. This probable
mistake does not affect our results since every method will clearly fail to identify these subjects.
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welfare method, that relies only on choices, can elicit either the entire reported pref-
erence relation or simply the reported best alternative.

To the best of our knowledge, this is the first paper that compares elicited pref-
erences with a benchmark. The choice of this benchmark requires some discus-
sions. Previous papers, (Bouacida & Martin, 2020), (Manzini et al., 2010), focused
on the properties of the elicited preference relation. However, as discussed in Chap-
ter I, difference methods map into different binary relations, therefore the analysis
of the properties of the resulting binary relations is a biased indicator of their effi-
cacy. Another approach may be to measure two similarity measures: (1) among the
elicited preference relations across methods with the assumption that methods that
report more similar results are more likely to report the true preference; (2) among
choice functions, with the assumption that more similar choice functions should be
mapped into similar preference relations. However, even these two analysis are de-
batable. The first one because methods based on similar assumptions mechanically
elicit more similar preference relation. The second one because it relies on the choice
of the similarity measure on the space of choice functions.

To overcome these difficulties, we decide to use the directly reported preferences
as benchmark. This choice is in line with liking-rating tasks as in Reutskaja et al.
(2011) where they have been used as measures of values, with the only difference
that our liking-rating task is ordinal and not cardinal. Two main issues regard this
choice.

First, there may be some misalignments in the reporting between choices and
preferences also due to the fact that the latter are not incentivized. Incentives are
unlikely to play a role as shown recently by Enke et al. (2021), and are often miss-
ing in liking-rating tasks (Reutskaja et al., 2011). However, we control for possible
effects. In Section 2.3.5, we discard what Fudenberg et al. (2019) called irreducible
error. Namely, those subjects that cannot be identified by any methods because,
for instance, they chose according to one preference relation and reported the exact
opposite. In this way, our analysis on the performance of methods is constrained
on the subjects that show a certain degree of alignment between choices and pref-

erences. Conditional on this set of subjects, the comparison between methods is
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hardly affected by the incentive mechanism.

Second, the reader may ask why the reported preferences should be considered
as the true ones, and why if so, we cannot just elicit preferences asking directly for
them. The first concern is well-posed but it relies on the problem of deciding what is
the "true" preference, which can be answered only by assumption. In fact, the prob-
lem has been generally avoided by the literature. For instance, Bouacida & Martin
(2020) evaluate "goodness" of methods using properties such as: number of cycles
or completeness of the resulting welfare relation. Here we rely on the assumption
that the direct report of the ranking, at the end of the experiment, and when the
information about the alternatives have been processed, creates a credible bench-
mark. Given the tautological nature of the question, we do not argue in favour of its
truthfulness, however it allows to overcome the above mentioned biases that char-
acterize the mere comparison of methods. Finally, note that avoiding the question
(e.g. focusing on the properties of the inferred preferences) would imply implicit
assumptions on the properties of the "true" preferences. The second concern re-
gards the question: "why not asking instead of inferring from choices?". Outside
the experimental setting asking for direct reporting of preferences is not an option
since often only dataset of choices are available. In an experimental setting, we go
back to our previous point on what we believe to be the "true" preference. In Caliari
(2020), we investigate the relationship between the characteristics of the elicited and
reported preferences and a series of observables such as response times, cognitive
abilities, elicited heuristics, etc... In this paper, we open the black box of the decision
process and investigate why people prefer certain objects and why eventually they
reported different ones. Nonetheless, even though these are fundamental questions,
they outside the scope of this Chapter.

Finally, we address questions regarding which choice problem better reveals
preferences and what is the connection between consistency and preference rev-
elation. In doing so, we face the well-known problem of comparing consistency
of choice among different and non-symmetric parts of the dataset.” We solve this

problem by developing a measure of consistency that is robust to the structure of

7See Andreoni et al. (2013) for a survey of the literature.
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the dataset.

2.1.1 Preview of the results

First, we find that a good proportion of subjects never violate WARP in Time (37%).
Conversely, and in line with the literature (Agranov & Ortoleva, 2017), almost no
subjects satisfy WARP in Risk (6%). The average number of violations of WARP re-
flects this finding: the average in Time is 11.26 while in Risk is 24.65 (the difference is
significant with p ~ 0), and robust if we focus only on subjects that violate WARP at
least once. In both environments, subjects are not behaving randomly (the average
number of violations for a random chooser is 56.70).

Second, we observe that methods that satisfy Informational Responsiveness (IR)
outperform the other welfare methods. When asked to uniquely identify the best
reported alternative, the Pareto approach (BR) is outperformed by 30% in Time and
50% in Risk.® When limited to a set identification exercise, more in line with its
conservative approach, it is still outperformed by 15% in Time and 20% in Risk.
These results are robust when we limit ourselves to the sets that contain only the
MAIN alternatives. Similarly, when asked to uniquely identify the entire welfare
relation, the Pareto approach is outperformed by 20% in Time and 25% in Risk.

Third, we compare the identification power of the simple counting (CC), that
satisfy a stronger version of Informational Responsiveness (SIR), with the counting
revealed preference procedure (CRP). We find that the former is outperformed by
6% in Time and 4% in Risk. This suggests on one hand that IR is not sufficient and
that a stronger version could have negative effects; on the other hand, that a notion
of frequency in line with standard revealed preference plays an important role in
the identification process.

Four, we analyse these results using a measure of completeness for models de-
veloped by Fudenberg et al. (2019). The main advantage of this measure is to pro-
vide a power of methods with respect to the most naive and most sophisticated

method. We use Bernheim & Rangel (2009) approach (BR) as most naive method

8These percentages are calculated on the total number of subjects. For example, in Time the method
proposed by Bernheim & Rangel (2009) uniquely identifies the correct best alternative of 59% of the
subjects while the counting revealed preference method of 87%.
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and an optimal weighting algorithm (OW - Section 2.3.5) as most sophisticated one.”
The idea is as follows: subjects that are not identified by OW are considered an ir-
reducible error; while subjects that are identified by BR are considered trivial. We
confirm that methods that satisfy IR and are based on standard revealed preference
are significantly more complete.

Five, we directly test IR. We combine results on preference elicitation from the
optimal weighting algorithm and on consistency of choice from our index of ratio-
nality. We find that, in Time, asymmetric dominance particularly increases incon-
sistency and these sets are the only ones to which the algorithm assigns negative
weights. To all other sets, the algorithm associates positive weights confirming the

importance of IR.

2.1.2 Related Literature

This Chapter firstly relates to the few choice elicitation experiments such as Manzini
et al. (2010) and Barbera & Neme (2017). From those it differs in two main ways: (i)
we collect choices on a much richer set of questions to test how behavioural effects
affect welfare revelation; (ii) we ask subjects to directly report their preference re-
lation. The experiment by (Manzini et al., 2010) has been analysed from a welfare
perspective by Bouacida & Martin (2020), but their analysis is limited to BR meth-
ods and therefore does not focus on the comparison between different methods.
Secondly, our experimental design relates to the literature on stochastic choice and
choice deferral. However, even if our design shares some features with existent ex-
periments, none of the following elicit both choices and preferences, is based on
both time and risk preferences, and collects choices regarding all non-empty sub-
sets of the MAIN alternatives as well as sets with behavioural effects. Some are re-
stricted to binary comparisons: Agranov & Ortoleva (2017), Hey & Carbone (1995),
Danan & Ziegelmeyer (2006), Hey (2001), Cavagnaro & Davis-Stober (2014), Sopher
& Narramore (2000), Chabris et al. (2009). Others collect data only on particular sets:
Harbarugh et al. (2001) elicited choices from 11 different sets with cardinality from

3 to 7; Iyengar & Kamenica (2010) elicited choices from sets of either 3 or 11 gam-

9The optimal weighting algorithm is a data-driven method. We optimally set the weights of the
questions in order to maximize the Identification exercise.



Chapter 2 43

bles; Haynes (2009) collected response times but he elicited choices only from sets
of either 3 or 10 prizes; Iyengar & Lepper (2000) elicited choices from sets of either
6, 24 or 30 alternatives; Sippel (1997) elicited 10 choices from budget sets regarding
8 alternatives.

The index of rationality (Section 2.3.2) based on the perturbation of a data gener-
ating process such as the logit model is connected with the literature on rationality
indexes and power measures. The most prominent example is the Selten measure
(Selten, 1991). Examples of power tests against random behaviours have been pro-
posed by Becker (1962) and Bronars (1987). Our index is robust to the dataset struc-
ture. An example clarifies this statement. Imagine to have a series of datasets of
choices ordered by the number of sets involved; bigger is the dataset and higher
is the probability of making a mistake or violating WARP. Therefore, if we simply
compare the number of mistakes in the different datasets we incur in a clearly biased
comparison. Our proposal allows for these comparisons, solving a problem that is
common to other indexes such as Afriat’s index (Afriat, 1972), minimum number
of observations to remove to rationalize the data (Houtman & Maks, 1985), num-
ber of violations of consistency axioms (Swofford & Whitney, 1987) and (Famulari,
1995), minimum number of swaps (Apesteguia & Ballester, 2015). A comprehensive
review of the literature is offered by Andreoni et al. (2013), and an example of prob-
lematic estimates of violations of consistency can be found in Beatty & Crawford

(2011).

2.1.3 Experimental Hypothesis

Figure 2.1 reports the characteristics of the welfare methods!’ introduced in Chapter
I and constitutes the reference point for the experimental analysis. We test the joint
importance of Informational Responsiveness (IR) and Revealed Preference (RP). For
this latter, we intend that the foundation of the welfare methods is CRP. The reader
may note that on one hand two methods, BR and SEQ, do not satisfy IR with the
former based on RP. On the other hand, CC satisfies IR but it is not based on RP.

In the experimental analysis, we show that these two conditions are both neces-

19Descriptions of the requirements and the welfare methods are explained in detail in Chapter L.
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sary. Together, they guarantee better solutions to the preference elicitation problem.
Furthermore, the variety of methods that satisfy both conditions prove that the re-
searcher has still a high degree of discretion in performing welfare analysis.

The RP assumption requires two comments. Firstly, it contains the trade-off be-
tween the very strong ex-ante acyclicity requirement that BR imposes on CRP and
methods that allow to break cycles in CRP such as MS, TC and EIG, therefore re-
establishing acyclicity ex-post. Secondly, the reader may note that these methods are
differently robust. In particular, as shown in Section 1.6, BR is infinitely nor robust,
while MS, TC and EIG, even if all violate Robustness (and Stability), they do it with
different degrees, with EIG being the less robust among the three. In Section 2.3.4,
we will report a measure of the different degree of continuity of these methods and

their consequences on the empirical results.

NEU CNN IR RP
CRP| v V V
MS | VY
1 (N VANV
BG| v v VY
cl v v Vv X
SEQ | / vVooox X
BR | v v x

Figure 2.1. Properties of welfare methods.

2.2 Experimental design

The experiment follows a standard choice elicitation design, e.g. Manzini et al.
(2010), Barbera & Neme (2017). The complete instructions and screenshots are pre-
sented in the Appendix B.4 and B.5. Subjects received instructions both on screen
and on paper such that they could consult them during the experiment.

The experiment is divided into three parts: (1) Choice elicitation; (2) Question-
naire; (3) Raven Test. The choice elicitation part has 50 questions; half regarding
choice among lotteries (Risk Preference Elicitation) and half regarding choice among
delayed payment plans (Time Preference Elicitation). No question was repeated. At

the beginning of each part, subjects answered three trial questions in order to make
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them familiar with the experimental environment.

For both Time and Risk, the alternatives were divided into two groups: four
MAIN alternatives, which are presented in Table 2.1 and Table 2.2, and some "con-
founding" alternatives that are described in Appendix B.1. Each individual solved
all the 11 choice problems (6 binary, 4 ternary and the quaternary set) involving
the MAIN alternatives, denoted as MAIN sets. The other questions were set in or-
der to obtain particular information about rationality: Monotonicity, Impatience,!!
Stochastic Dominance; and about possible behavioural effects: choice overload,
compromise effect, attraction effect. The structure of the questions is presented in
Appendix B.2. The positions of the alternatives were randomized. The subjects
could face two orders of questions and also we inverted Time and Risk elicitation
such that we had a total of four treatments (Appendix B.2.).12

One of the fundamental feature of the design is the collection of all the non-
empty subsets of the MAIN alternatives with cardinality greater than two. Its im-
portance can be summarized into two motivations: (1) this part of the dataset is
symmetric and therefore allows for immediate comparisons across alternatives and
environments (Time and Risk). Such comparisons are not straightforward as it will
be clear in Section 2.3.3.13 (2) beyond the symmetry, that is also satisfied by the
collection of binary sets, the MAIN sets allow to infer welfare on sets that do not
contain behavioural effects and are also different from the binary sets which are
often considered as benchmark (Manzini et al., 2010), (Agranov & Ortoleva, 2017).
Furthermore, since certain methods such as MS, TC and EIG are based on CRP,
sets with 3 and 4 alternatives provide evidence on the capacity of these methods to
break cycles in the CRP relation.

After the choice elicitation part subjects were asked, non-incentivized, to rank

the four MAIN alternatives. No indifferences were permitted, hence the reported

1By Impatience we intend the violation of discounting models. The term "impatience" has been
used by Fishburn & Rubinstein (1982) to denote Axiom A3.

12Given the high number of questions we apply "structural randomization". Namely, we divide
questions into groups by similarity and then we completely randomize with the constraints that simi-
lar questions could not appear clustered together.

13For, example these comparisons are possible in Multiple Price Lists designs that are common in
the literature of structural estimation of risk and time parameters (Andersson et al., 2016), (Andersen
et al., 2008).
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Table 2.1. List of Main Delayed Payment Plans

ALTERNATIVES MONTHS
0 3 6 9 12
One Shot (0S) 160 0 0 0 0
Decreasing (D) 110 50 25 0 0
Constant (K) 50 50 50 50 0
Increasing (1) 0 15 40 170 0
Table 2.2. List of Main Lotteries
ALTERNATIVES TOKEN PROBABILITIES| EV
Degenerate (D) 50 0 1 0 50
Safe (S) 65 25 0.8 0.2 57
Fifty-Fifty (50) 90 25 05 05 575
Risky (R) 300 5 0.2 0.8 64

welfare relation is always a linear order.!* Subsequently, subjects filled a question-
naire containing questions about the comprehension of the experimental design and
criteria of choice in both Time and Risk. The questionnaire is presented and anal-
ysed in Appendix B.3. Finally, two well-known tests of cognitive abilities were pre-
sented: (i) Frederick Test - (Frederick, 2005); (ii) a selection of ten Raven matrices.
Response times were collected for each question in the choice elicitation part and
the cognitive abilities tests.!

The average reward was about 19 pounds per subject and the experiment lasted
on average 1:15 hours. The reward was measured in Token with an exchange rate of
1:10 for lotteries and 1:20 for delayed payment plans. Subjects received no feedback
about their earnings during the experiment. At the end of the experiment computers
randomly picked from chosen delayed payment plans and lotteries, this latter was
played out, and in the last screen informed subjects of their earnings in each part.

All sessions were conducted at the University of St. Andrews between June

and September 2019. Subjects were recruited voluntarily among undergraduate and

14 A linear order is a complete, transitive and antisymmetric binary relation.
15Since this experiment is part of a larger project, the analysis of cognitive abilities, response times
and structural axioms is treated in a compendium paper (Caliari, 2020).
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postgraduate students. Eleven sessions were run for a total of 145 subjects. No sub-
ject participated in more than one session. The earnings had been paid via bank ac-
count at the end of the experiment and in successive dates in the future as specified
both by the instructions and by the experimenter. The experiment was completely
anonymous and all subjects signed a consent form where they agreed in providing

UK bank account number and sort code.

2.3 Results

2.3.1 CRP and BR

We begin showing the main result of the chapter. Table 2.3 presents the identification
power of CRP and BR as the fraction of subjects for whom the methods can correctly
identify either the reported best element or the entire welfare relation. As mentioned
previously, both methods are founded on standard revealed preference, however
the latter does not satisfy IR. CRP performs significantly better along all dimensions
both in Time and Risk. Notably, BR is a lower bound for the identification since
when a violation is observed data are simply ignored. This means that the difference

is performed on subjects that violate WARP and therefore is not trivial.

Table 2.3. CRP and BR - Identification

TIME RISK
METHODS WRI Ul El WRI Ul El
CRP 0.61 0.87 0.88 0.24 0.59 0.61
BR 0.42 0.59 0.74 0.06 0.14 0.43

NOTES -- CRP is the counting revealed preference method; BR denotes Bernheim & Rangel method.
The numbers represent the fraction of subjects for whom the two welfare methods provide the following
three identification: (1) "WRI" - Welfare Relation Identification and it refers to the unique identification
of the entire reported welfare relation; (2) "UI" - Unique Identification of the reported best element; (3)
"EI" - Expected Identification of the reported best element.

2.3.2 Premise: do individuals consistently reveal welfare?

Figure 2.2 presents the distribution of WARP violations in Time, Risk and random

behaviour.!® For each subject i, WARP violations are determined as the number of

16Two comments on random behaviour. First, given that the questions in Time and Risk were
slightly different, random subjects may have different numbers of violations; however, the difference
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cycles of length 2 in the graph of revealed preference.

WARP; =) Cyy - Cyx
Y

Two observations catch the eye: (i) subjects violate WARP less in Time than in
Risk and the difference in mean is statistically significant (t-test, p = 0.000); (ii) sub-
jects do not behave randomly, again significantly (t-test, p = 0.0000).

The difference is not based only on the presence of a higher number of rational
individuals in Time. If we restrict our test on those subjects that violate WARP
at least once we find that the difference in mean is still highly significant (t-test,
p = 0.0002). This suggests a fundamental difference in the behaviour of the agents
in the two environments.

The suspicions are confirmed in Figure 2.3 where we show a scatter plot of the
number of WARP violations. As the reader may notice the correlation is very low
and driven mainly by a small fraction of consistent individuals. Given this pre-
liminary evidence, we will treat Time and Risk separately in both consistency and

preference elicitation analysis.

Fraction
2
1

0 20 40 60 80
|| | Time | ] Risk [ ] Random ‘

Figure 2.2. Distribution of the violations of WARP.

is negligible. Second, in order to provide a fair comparison we focus solely on the MAIN alternatives
since they account for the vast majority of subjects’ choices.
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Figure 2.3. Scatter plot of the violations of WARP.

2.3.3 Consistency across the dataset

The first question that we investigate is: do different choice problems imply differ-
ent levels of consistency? An answer will be crucial to draw a connection between
consistency and welfare revelation. We divide the dataset into three parts called
MAIN, AD, and BIG. The MAIN sets have been described in the previous section.
AD refers to four sets doomed by asymmetric dominance, while BIG refers to the
five (six in Risk) sets with more than eight elements.

Unfortunately, a simple comparison of the number of WARP violations across
the dataset does not apply because this measure depends on the number and struc-
ture of the questions under scrutiny. In other words, we face the problem of: "...
comparing the power of potentially different experimental designs. For a given
choice setting, some experimental designs may be more likely to reveal violations of
GARP than others." - Andreoni et al. (2013). The problem can be rephrased as fol-
lows: suppose one subject makes 10 inconsistent choices among 40 binary choices
while another subject makes 10 inconsistent choices among 30 ternary choices. How
can we compare these subjects in terms of consistency?

A standard approach in evaluating consistency of individuals given different

experiments is to compare them with random behaviour - see Becker (1962) and
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Bronars (1987). Some recent applications are Beatty & Crawford (2011) and Echenique
etal. (2011). We address the problem constructing an index of consistency or "power
index". We adopt the approach of perturbing a data generating process to create in-
consistencies and compare the magnitude of the perturbation across domains.

As data generating process we build on the logit model as follows: let A =
{x,y,z,w} be the set of MAIN alternatives ordered by a linear order > and u a
utility function with u(i) = u(j) + 1 with i,j € A being consecutive elements in >.
Note that, only differences in utility are impor’can’c;17 however, the parameter iden-
tification is not invariant to positive affine transformations of u (not cardinal). The

standard logit formula is the following:

eu(x)

Y et (y)
yeEA

p(x,A) =

As in Train (2009)!8 we can modify the logit formula using a scale parameter A
connected to the variance of the unobserved error (a subject who chooses randomly
behaves as if A = co but given our parameters for A ~ 5 we substantially observe

random behaviour); such that the formula becomes:

u(x)

A

p(vA)= —5

e

L et
yeEA

The parameter A can be also interpreted as the cost of acquiring information
regarding the utility of the elements, e.g. Caplin & Dean (2015) and Fudenberg et al.
(2015).

We run a Monte Carlo simulation to estimate the parameter A that match the
average number of violations of WARP that the subjects make in the different part of

the dataset. We only consider the MAIN alternatives since, as presented in Table 2.4

17Since in some part of the dataset the domain is not symmetric, namely some alternatives are more
present than others. We adopt the convention of setting the utility difference of D and I (respectively
S and R) equal to two. This is based on the fact the most of the subjects indicated in the ordinal
ranking that these alternatives are divided by two positions; in particular, either OS = D >~ K = I or
I >~ K> D > OS. We also ignore confounding alternatives since they account for a marginal part of
the choice distribution in any sets where MAIN alternatives are also present.

18 An example of maximum likelihood estimate of the paraemter A can be found in McKelvey &
Palfrey (1995). They show that in a game theoretical experimental (quantal response equilibria) setting
subjects tend, with experience, to make less noisy choices.
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and 2.6, most of the violations, and choices, regard these alternatives.!? Importantly
this is not an estimation exercise (we do not believe that, when aggregated, subjects
can be studied using a logit model). We provide an intuitive index that can be used
for meaningful comparisons across domains. Given the strong assumptions made
we also report the percentage of rational individuals and the standard deviation of
our logit simulations such that the reader may have an idea of how close they are
to the real data. We now present and comment on the consistency analysis in Time

and Risk.

Time

The first part of Table 2.4 shows the mean and standard deviation of the distribution
of WARP violations within different parts of the dataset, as well as the percentage
of rational individuals, namely those with zero violations. In the second part, we
present the logit index. The data show that AD questions present a relatively higher
number of violations (A = 0.787). The difference between BIG (A = 0.555) and MAIN
sets (A = 0.515) is instead very small. To understand the importance of the A mea-
sure, the reader may note that AD sets have both a low number of WARP violations

and a high number of rational subjects.?’

9This result is evidenced by the small difference between the violation in ALL** and ALL datasets.
This assumption is conservative; in fact, in AD or BIG sets the identification of the parameter A is
lower than it would be.

20The simulation in AD and BIG sets ignores dominated alternatives. In the former we focus on four
binary sets of the type {D, I} with the assumption of u(D) — u(I) = 2, or vice versa. The assumption
is based on the reported ranking of the high majority of individuals.
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Table 2.4. WARP Violations I - Time

BIG AD MAIN ALL** ALL
Mean 1.4897 0.8138 1.9586 10.0621 11.2621
Std 1.9189 1.4577 2.9009 14.2099 14.5263
Rational 54% 75% 59% 48% 37%
Logit - A 0.555 0.787 0.515 0.569 -
Logit - std 1.6406 1.3738 2.0355 7.768 -
Logit - Rational 48% 74% 40% 16% -

NOTES -- The mean of WARP violationsis reported for different parts of the dataset: "BIG" denotes sets
with more than 8 elements; "AD" denotes sets with potential asymmetric dominance effect; "MAIN" denotes
the 11 non-empty subsets of the four main alternatives; "ALL" denotes the entire dataset. ALL** refersto
WARP violations in the entire dataset that regard only the four main alternatives. We also report the
following statistics: the information parameter of alogit model that match the data mean, the standard
deviation and percentage of rational subjectsin the resulting distribution.

Table 2.5. WARP Violations II - Time

MAIN/BIG MAIN/AD BIG/AD

Mean 3.2897 1.3724 19172

Std 4.6682 2.5568 2.8052

Rational 56% 73% 56%

Logit - A 0.515 1.062 1.124

L ogit - std 2.8921 2.0696 2.508

L ogit - Rational 34% 66% 59%

NOTES -- The mean of WARP violations is reported between difference
domains: "MAIN/BIG" denotes violations observed between MAIN and
BIG sets; "MAIN/AD" denotes violations between MAIN and AD sets;
"BIG/AD" denotes violations between BIG and AD sets. These numbers
are calculated, for instance, taking the total number of violations on MAIN
and BIG sets and subtracting the violations within the two domains.

Two observations are worth noting. First, higher is the number of sets and worse
is the logit approximation to the data. For instance, on the entire dataset, we should
observe 16% of rational subjects while we observe 48% and the standard deviation
is also significantly higher. Second, the coefficient of variation is everywhere above
one. These observations suggest that there are, at least, two different groups of sub-
jects: one rational and the other irrational. Importantly this latter has been shown
to behave not randomly.

Table 2.5 reports the number of violations of WARP between different domains.

For instance, when x is chosen over y in a MAIN set and y over x in a BIG set. The re-
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sults show that not only the level of rationality is similar within MAIN and BIG sets
(Table 2.4) but also the types of violations are similar (A = 0.515). On the other hand,
AD sets present a different behaviour from both MAIN and BIG sets (resp. A = 1.062
and A = 1.124). Notice that to match the number of WARP violations between AD
sets and the other domains we would require a level of perturbation higher than all
levels within the domains. Furthermore, Table 2.5 confirms the presence of at least
two groups of individuals since the standard deviation of the logit simulations is

everywhere below the standard deviation in the data.

Risk

Table 2.6 reports the results regarding WARP violations within domains in Risk. The
number of violations is, on average, higher than in Time across all the domains and
everywhere significantly (t-test, p = 0.0000 in MAIN, p = 0.015 in AD, p = 0.0000 in
BIG). In this case, the comparison between Time and Risk is meaningful given the
approximate symmetry of the datasets. This evidence suggests that the difference
in behaviour between the two environments is not due to a particular incidence of
behavioural effects. The difference in the shape of the distribution, expressed in
Figure 2.2, is confirmed by the coefficients of variation. If in Time they were ev-
erywhere above one, confirming that left skewness is a common property across
domains, in Risk they are almost everywhere below one, confirming the generality
of the uniform shape of the distribution. Surprisingly, Table 2.6 shows that in BIG
sets (A = 0.756) subjects appear more rational compared to both MAIN (A = 1.009)
and AD sets (A = 1.003).2'?> Data also confirm that when the number of sets in-
creases the percentage of rational subjects becomes higher than the one in the logit

simulation.

2lIn a compendium paper (Caliari, 2020), we report evidence of deliberate randomization as mod-
elled by Cerreia-Vioglio et al. (2019) and reported by Agranov & Ortoleva (2017). Behavioural effects
may reduce the capacity of subjects to deliberately randomize, therefore reducing WARP violations.

22This evidence may be related with attention models such Masatlioglu et al. (2012), Manzini &
Mariotti (2014), Lleras et al. (2017) and Cattaneo et al. (2018), and could confirm previous experiments
such as Iyengar & Kamenica (2010). On the contrary, models that assume more uniform stochastic
choice in BIG sets such as Fudenberg et al. (2015) and Frick (2016) seem to be not backed by the data.
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Table 2.6. WARP Violations I - Risk

BIG AD MAIN ALL** ALL
Mean 4.6690 1.2621 4.9862 21.7172 24.6552
Std 2.8700 1.4955 3.4237 13.6314 14.3170
Rational 15% 54% 14% 8% 6%
Logit - A 0.756 1.003 1.009 0.774 -
Logit - std 2.9899 1.5672 2.6606 9.6465 -
L ogit - Rational 22% 60% 7% 2% -

NOTES -- The mean of WARP violationsis reported for different parts of the dataset: "BIG" denotes sets
with more than 8 elements; "AD" denotes sets with potential asymmetric dominance effect; "MAIN" denotes
the 11 non-emtpy subsets of the four main alternatives, "ALL" denotes the entire dataset. ALL** refersto
WARP violationsin the entire dataset that regard only the four main alternatives. We also report the
following statistics: the information parameter of alogit model that match the data mean, the standard
deviation and percentage of rational subjects in the resulting distribution.

Table 2.7. WARP Violations II - Risk

MAIN/BIG MAIN/AD BIG/AD

Mean 9.0276 2.3241 2.3862

Std 5.9224 2.7267 2.5888

Rational 14% 44% 40%

Logit - A 0.688 1.125 1581

L ogit - std 4.7995 2.2564 2.3141

L ogit - Rational 9% 37% 32%

NOTES -- The mean of WARP violationsis reported between difference
domains: "MAIN/BIG" denotes violations observed between MAIN and
BIG sets; "MAIN/AD" denotes violations between MAIN and AD sets;
"BIG/AD" denotes violations between BIG and AD sets. These numbers
are calculated, for instance, taking the total number of violations on MAIN
and BIG sets and subtracting the violations within the two domains.

Table 2.7 reports a higher similarity in the behaviour of subjects in MAIN and
BIG sets (A = 0.688) compared to both MAIN/AD and BIG/AD sets (resp. A =1.125
and A = 1.581). It is particularly interesting to notice the extremely high logit index
associated with violations between BIG and AD sets. Speculations would lead us
to conjecture that choice overload and asymmetric dominance, although both in the
family of behavioural effects, have very different implications on the consistency of

behaviour in choice among lotteries.
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2.3.4 Identification of reported welfare

This subsection contains the main results of Chapter II. We measure the power of
identification of different welfare methods in both Time and Risk using ALL dataset,
MAIN sets, and BINARY sets. This latter is considered as a benchmark to under-
stand how much information can be extracted from a dataset that does not present
any potential behavioural effect. Two results emerge in both Time and Risk: (1)
methods that satisfy IR performs significantly better than BR; (2) the identification
power of methods that satisfy IR improves when more data are collected. This re-
sult, as expected, is reversed in BR.

Our identification exercise is threefold. Firstly, we uniquely identify the reported
best element. Secondly, since BR is a conservative approach, it is reasonable to imag-
ine that this method performs better in a set identification exercise; namely when
the reported best element is in the set of maximal elements. We assume that a risk-
neutral policy maker has to pick from the set of maximal elements endowed with a
uniform distribution. Given this assumption, we perform an expected identification
exercise. Finally, we uniquely identify the entire reported welfare relation.

Let N be the set of subjects and f;(D) be the preference elicited by the welfare
method f given the choices of subject i over the dataset D. The reported welfare
relation by subject i is denoted as REP;(>). The proportion of correctly identified

subjects given the three approaches is as follows:

¢ Unique Identification [UI]:

#{i € N : max|REP;(>)] = max[f;(D)]}
#N

¢ Expected Identification [EI]:

S
i€ N:max[REP;(>)]€max[f;(D)] #{max[f;(D)]}

#N

e Welfare Relation Identification [WRI]:
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#{ic N:REP;(~) = fi(D)}
#N

Note that, the reported welfare relation is necessarily asymmetric. Hence, meth-
ods that map into linear orders such as SEQ or EIG are theoretically favoured in the
identification of the entire welfare relation. To solve this issue we also investigate
how close methods are to identify reported welfare relation even when these are not
perfectly identified. The similarity of solutions is measured using the sum over all

subjects of:

¢ Symmetric Difference [SD] between the resulting binary relations and the re-
ported order. The symmetric difference A between two binary relations R1, R,

is defined as follows?3:

R1 ARy =(Ry\R2) U(R2\Ry)

* Reverse Asymmetry [RA], denoted here as v/, is defined as the number of
times the asymmetric part of the reported order is reversed. Namely, given

two asymmetric binary relations P; and P»:

P P =[{(xy) € Pr:(y,%) € P2}

Using both measures is crucial. The symmetric difference considers equally the
symmetric and asymmetric part of the binary relation, hence punishing coarse meth-
ods such as BR. The "reverse asymmetry" measure allows us to disentangle those
differences that are in principle worse; namely when a subject reports x better than
y but the method ranks y better than x. This measure punishes particularly methods
that map in linear orders such as EIG and SEQ; while the conservative nature of BR
creates a lowest bound. This analysis, together with the three identification exer-

cises, provides a comprehensive picture of the identification power of each method.

2For instance, let Ry = {(x,y), (v,x), (y,2),(x,z)} and Ry = {(x,y), (v,2), (z,y),(x,2) } we have Ry A
Ry = [{(y,x), ()} =2
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The empirical role of Robustness and Stability

Before introducing the identification results using experimental data, it is impor-
tant to highlight how Robustness [ROB] and Stability [ST] can affect the results. To
understand the issue the reader can refer to the connection that has been drawn
between ROB, ST and continuity (see Appendix A). In particular, we would like to
measure how a method is sensitive to perturbations in the choice space. In order to
do that, we use the above introduced concept of Reverse Asymmetry. We analyse
the set of single-valued choice functions (see Chapter 1 for a formal definition) with
four elements on our MAIN sets. The dimension of this space is of 20736 choice
functions. Then, we adopt a Leave-one-out test for continuity. We eliminate one set
from the dataset and observe how the inference of welfare relations changes. Below

we report the average number of RA per choice function for each method.

BIN TER QUAT
CRP 0 0 0
MS | 0.0187 0.1076 0.2384
TC 0 0.0584 0.1493
EIG | 0.2521 0.6357 1.0729

CC 0 0 0
SEQ X X X
BR 0 0 0

Figure 2.4. Degree of Continuity of methods

From the figure above shows, in line with the theory, that CRP, CC and BR are
stable methods. The remaining methods instead are ranked TC, MS, EIG with the
latter being the most discontinuous. As it will be clear in the next section, higher is
the level of discontinuity and higher is the probability that new information will re-
verse the judgement. Hence, on one hand, in contexts where few inconsistencies are
observed and the behaviour of the subjects is homogeneous across domains (Time
preferences) a discontinuous method may wrongly overestimate rare mistakes. On
the other hand, when more inconsistencies are observed and the behaviour of sub-
jects is less homogeneous a discontinuous method may still be able to provide a

point estimate and to be sensitive to new information (Risk preferences).
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Time

Table 2.8 shows that methods that satisfy IR perform significantly better than BR
both uniquely (= 30%) and in expectation (~ 15%). It is crucial to notice that BR is a
lowest bound in the identification exercise since it identifies only those subjects that
rationally reveal their best element. Therefore, the 30% gap is not trivial because it

is performed on irrational individuals.

Table 2.8. Unique and Expected Identification - Time

UNIQUE EXPECTED
METHODS ALL MAIN  BINARY ALL MAIN  BINARY
a [ CRP 0.87 0.81 0.77 0.88 0.84 0.77
o) MS 0.87 0.81 0.79 0.88 0.85 0.80
32:5 1 EIG 0.87 0.83 0.81 0.87 0.83 0.81
- L TC 0.88 0.81 0.77 0.88 0.83 0.77
x { ccC 0.81 0.83 0.77 0.84 0.86 0.81

[ sEQ - 0.83 - - 0.83 -
21 &Br 0.59 0.67 0.77 0.74 0.79 0.77

ow 0.89 - - 0.89 - -

NOTES -- On the left we show the portion of subjects for whom each method uniquely identify the reported best
element. On the right, the expected portion of subjects for whom each method identify the reported best element. The
measure is expected because for some subjects methods may set identify the best element; in these cases we assume to
pick uniformly from the set of identified elements.

The power of identification for methods that satisfy IR is increasing in the num-
ber of sets in the dataset which suggests that individuals reveal information about
welfare along all the dataset. Only exception is CC. We interpret this as evidence in
favour of the importance of standard revealed preference as a foundation for welfare
methods.

Finally, SEQ performs particularly well; the difference is only 4-6%. The reason
is that the best element of SEQ is the one chosen from the set with all the four MAIN
alternatives. It turns out this choice is a good predictor of the reported best element,

although the two elicitations are not equivalent.
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Table 2.9. Iden. Welfare Relation, SD and RA - Time

WRI SD & RA

ALL MAIN  BINARY ALL MAIN BINARY

METHODS - - - SD RA SD RA SD RA
o [ CRP 0.61 0.57 0.59 180 78 191 73 220 110
% MS 0.62 0.59 0.61 182 82 188 76 218 88
§ =T 0.54 0.60 0.61 222 111 208 104 218 109
- L TC 0.61 0.58 0.59 180 73 188 68 234 71
x { cc 0.54 0.58 0.59 214 91 186 74 218 78
T [ sEQ - 0.60 - - - 194 97 - -
21 &R 0.42 0.50 0.59 264 45 226 54 220 110
ow 0.66 - - 70 8 - - - -

NOTES -- On the left we show the portion of subjects for whom each method uniquely identify the entire reported welfare
relation. On theright, "SD" and "RA" denote respectively symmetric difference and reverse asymmetry.

Table 2.9 reports the identification of the entire welfare relation. We present it
together with symmetric difference and reverse asymmetry measures. We confirm
that methods that satisfy IR perform better than BR by 10-15% when we look at the
left part of Table 2.9, namely the percentage of total subjects that have been uniquely
identified. However, as mentioned before, this observation is not enough to judge
the methods. For instance, the performances of SEQ and EIG are positively biased
by the feature that they map into linear orders. Since the reported preference rela-
tions are linear orders by construction, the probability that this latter are uniquely
identified is higher. As mentioned in the previous subsection, we use SD and RA to
measure the distance between the reported and elicited binary relations.

First, we observe that as theoretically predicted BR provides on one hand a
lower bound on RA given its cautious approach described by its stability and in-
finitely non-robustness. On the other hand, it provides an upper bound on SD given
its coarseness. Considering the other methods in comparison with BR(SD,RA) =
(264,45), we can see that SEQ and EIG are significantly outperformed both in SD
and in RA by both MS and TC.

The monotonicity of the identification power in the size of the dataset is not
straightforward here. However, if we observe the SD of methods that satisfy IR we
notice that it is decreasing for any method apart from EIG and CC. The latter re-

sult confirms the weakness of IR and the necessity of focusing on methods based
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on CRP. The former instead is based on the excessive non-robustness of EIG, and
in particular, the excessive weight that this method poses on observations from BIG
sets, that by construction, induce a higher change in CRP as shown in Figure 2.4.
Furthermore, as we will show in Section 2.3.7, AD sets in Time preferences are not
important to infer the welfare relations, hence when added they may cause a prob-
lem in the inference of non-robust methods. Finally, Binary sets are shown to be
very important and therefore a highly non-robust method such as EIG, may lose

power of identification when less important observations are added.

Risk

Table 2.10 reports the identification results in Risk. Data show that methods that sat-
isfy IR perform significantly better than BR both uniquely (50%) and in expectation
(20%). We also confirm that the power of identification is generally (note that CC is
still an exception) increasing in the size of the dataset.

The choice from the set of MAIN alternatives is again a good predictor of the

reported best element since the loss of SEQ is only 4-8%.

Table 2.10. Unique and Expected Identification - Risk

UNIQUE EXPECTED
METHODS ALL MAIN  BINARY ALL MAIN  BINARY
a [ CRP 0.59 0.52 0.42 0.61 0.59 0.42
% MS 0.59 0.52 0.46 0.61 0.60 0.50
2 1 EIG 0.61 0.61 0.51 0.61 0.61 0.51
- L TC 0.61 0.51 0.42 0.62 0.55 0.42
x { ccC 0.55 0.56 0.42 0.57 0.61 0.50

T [ sEQ - 0.55 - - 0.55 -
2 | BR 0.14 0.25 0.42 0.43 0.49 0.42

ow 0.63 - - 0.63 - -

NOTES -- On the left we show the portion of subjects for whom each method uniquely identify the reported best
element. On the right, the expected portion of subjects for whom each method identify the reported best element. The
measure is expected because for some subjects methods may set identify the best element; in these cases we assume to
pick uniformly from the set of identified elements.

The left part of Table 2.11 again shows that methods that satisfy IR outperform

BR in the entire identification exercise (15-20%). We also confirm that SEQ and EIG
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performances are only apparently good; in fact, when controlled for RA measure,
and normalizing for the RA measure of BR, we see that they perform worse than
MS by respectively 25% and 17%. Looking at the SD we observe that SEQ is clearly
outperformed while EIG performance is relatively superior to the one in Time pref-
erences. We also note that the monotonicity of the identification in the size of the
dataset is confirmed everywhere IR is satisfied, hence also in EIG. This result sug-
gests that AD and BIG sets add very valuable information in this case, and on the
other hand that Binary sets are not as important as they are in Time preference to

predict the reported preference relation. Both these results are confirmed in Section

2.3.7.
Table 2.11. Iden. Welfare Relation, SD and RA - Risk
ENTIRE IDEN. SD & RA

ALL MAIN BINARY ALL MAIN BINARY
METHODS - - - SO RA SO RA SO RA
a [ CRP 0.24 0.19 0.20 436 186 455 168 556 278
?:_) MS 0.24 0.20 0.21 440 190 452 179 569 241
§ ) EIG 0.30 0.27 0.23 446 223 448 224 576 288
- L TC 0.24 0.19 0.20 434 182 446 157 570 184
x { CcC 0.21 0.19 0.20 453 200 452 185 569 218

E [ sEQ - 0.25 - - - 478 239 - -
21 &R 0.06 0.10 020 592 86 545 115 556 278

ow 0.32 - - 421 210 - - - -

NOTES -- On the |eft we show the portion of subjects for whom each method uniquely identify the entire reported welfare
relation. On theright, "SD" and "RA" denote respectively symmetric difference and reverse asymmetry.

2.3.5 Optimal Weighting

So far, we have shown that methods that satisfy Informational Responsiveness and
are based on revealed preference guarantee better performances in the identifica-
tion exercises. From now on, we aim to solve two possible drawbacks. First, the
reader knows only a relative measure of the performance of these methods. Namely,
that they perform better than the alternative ones. However, we aim to provide a
more general measure of performance confronting them with a data-driven welfare

method the we call Optimal Weighting method [OW]. Second, so far we have tested
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IR only indirectly, namely using methods that do or do not satisfy it. OW allows us
to test if IR directly binds for the identification exercises. In words, does a method
that differently weight observations in order to optimize the identification exercise,
assigns strictly positive weights to all observations where x is chosen and y is avail-
able, therefore satisfying IR?

To define OW we divide the dataset in five parts: binary sets [B], ternary sets
[T], quaternary set [Q], sets with asymmetric dominance [AD], big sets [BIG]. For
each part the revealed preference is collected creating, for each x,y € X, a vector
Cyy = (Cffy,ny,C% ,nyD,nyIG). The weights vector is w = (wg, wr, W, WAD, WEIG)-
We define the method OW as follows:

xR8wy if and only if OWy, > OW,,

where OW,,, = lezrwlCiy andT' = {B,T,Q,AD,BIG}.

Weights are calculated optimizing the sum of two measures: (1) expected iden-
tification of maximal element [EI]; (2) unique identification of the entire welfare re-
lation [WRI]. To recall, the former measures the expected number of subjects for
whom the method can identify the reported best element; the latter measures the
number of subjects for whom the method uniquely identify the entire reported wel-

fare relation.?* The optimization problem is as follows:

max EI+ WRI
we[—04,1]°

where for each subject i:

ngy & wW-Cy, >2w-Cyy,

Two main features of the OW method allows us to understand its relevance.
First, the objective function is a distance between the reported and the elicited pref-
erence relations. Therefore, it would be as if we knew the reported relations (data-
driven) and we are trying to get closer to them optimizing on the importance of the
choices made by the individual in different parts of the dataset. Given the generality

of the weighted average adopted, OW will have a better performance compared to

24The optimality problem is performed using different objective functions in Section 2.3.7
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the other methods that are instead not data-driven. Second, the weights attached
to different parts of the dataset may be negative. Consider the following example,
from the MAIN sets, a subject always chooses x when available, y if x is not avail-
able, and in the binary set {z,w} he chooses z. Then, he reports x >y > w > z. In
this case, it may be that since x, y are clearly best, binary sets receive a small negative

weight that guarantees w - z, and does not change the other preferences.

2.3.6 Completeness of the methods

In this section, we compare the identification results of welfare methods with the
data-driven method and refer to the distance between them as the completeness of
the methods. We borrow the term "completeness" from Fudenberg et al. (2019). In
their paper, the authors use machine learning to measure the amount of variation
in the data that a theory can capture. Their notion of completeness aims to an-
swer the following question: "How close is the performance of a given theory to the
best performance that is achievable in the domain?" (Fudenberg et al., 2019). In our
framework, we define completeness, denoted as Com(f) for some welfare method f,

as:

_ e(fL) —e(f)
e(fL) —e(fu)

where ¢(f1) is the proportion of non-identified subjects by the method that de-

Com(f)

fines a lower bound on the domain; (fi;) is the best achievable residual proportion
and ¢(f) is the residual proportion of the model under study. In our framework, we
set fi, = BR and f;; = OW. Table 2.12 shows the completeness of the methods using

ALL sets across different types of identification procedures in both Time and Risk.
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Table 2.12. Completeness of the methods

TIME RISK
METHODS Ul El WRI Ul El WRI

CRP 0.93 0.93 0.79 0.92 0.90 0.69

MS 0.93 0.93 0.83 0.92 0.90 0.69

EIG 0.93 0.86 0.50 0.96 0.90 0.92

TC 0.95 0.93 0.79 0.96 0.95 0.69

CC 0.74 0.66 0.50 0.84 0.70 0.58

SEQ 0.81 0.59 0.75 0.84 0.60 0.73

BR 0.00 0.00 0.00 0.00 0.00 0.00

ow 1.00 1.00 1.00 1.00 1.00 1.00

NOTES -- This table reports the completeness of all methods in cases of unique (Ul), expected (El) and
entire (WRI) identification procedures.

Since BR and OW are respectively lower and upper bound for our identifica-
tion analysis they take respectively value zero and one. Methods that satisfy IR and
are based on the revealed preference approach have generally higher completeness
than other methods. Note that, even though we do not report completeness for the
measures of symmetric difference and reverse asymmetry in the entire identifica-
tion approach, that favours SEQ over other methods, there always exists at least
a method among those that satisfy IR and are based on revealed preference that is

more complete than SEQ.

2.3.7 A direct test of Informational Responsiveness

We propose a direct test for IR that exploits the data-driven method OW. We focus
on the family of methods that are weighted sums of CRP, depending perhaps on
the sets in which the choice has been observed. If each choice receives a strictly
positive weight independently from the set where the choice happened then IR is
satisfied.?® In this sense, our construction of OW allows us to test whether IR binds
in an optimal identification problem.

We generalize our previous analysis where the convention was to optimize the
sum of expected identification of the reported best element and unique identifi-

cation of the entire welfare relation. In this section, we report results based on

2This implication is immediate. See Meyer & Mongin (1995) for a comprehensive study of affine
aggregation.
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six different objective functions. Before introducing them, some clarifications are
needed. First, the optimization problem described in Section 2.3.5 may clearly have
non unique results. Namely, there may be multiple set of weights that optimize the
objective function. In such cases, we report the minimum and maximum weights
for each part of the dataset such that there exists a system of weights that solve the
optimization problem. Importantly, this does not imply that any vector of weights
that is in the Cartesian Product of the intervals guarantees optimal identification.
Second, as it may be clear from the example about negative weights at Section 2.3.5,
if choices from a particular set are irrelevant then this set may receive positive, neg-
ative or a zero weight without changing the result. This observation has important
consequences in the interpretation of the results. For instance, in Table 2.13 and Ta-
ble 2.14, AD sets receive both negative and positive weights ([—0.2,1] in Time and
[—0.2,0.9] in Risk) when we try to optimize on the identification of the best element
(UI and EI). This is due to the fact that only two alternatives, in Time and Risk,
are represented in AD sets and often these alternatives are not reported and cho-
sen as best alternatives. Therefore, from this interval we cannot conclude anything
about the importance of AD sets in eliciting preferences and we need to focus on the

weights assigned to AD sets under the remaining four objective functions.

Time

Table 2.13 shows the intervals of weights that guarantee optimality for the six dif-
ferent objective functions. For completeness of information, we split the MAIN sets

into three parts: Binary sets, Ternary sets, and Quaternary set.
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Table 2.13. Optimal Weights - Time

TIME
IDENTIFICATIONS BIN TER QUA BIG AD
ul [0.6,1] [0.2,1] [0.1,0.2] [0.6,1] [-0.2,1]
El [0.6,1] [0.2,1] [0.1,0.2] [0.6,1] [-0.2,1]
WRI [0.2,0.9] [0.31] [0.3.1] [0.4,1] [-0.2,-0.1]
SD [0.5,0.8] [0.6,1] [0.4,0.8] [0.4,0.7] 0.2
SD & RA 06 0.6 06 0.6 0.2
El & WRI 0.9 1 0.4 0.8 -0.2

NOTES -- The table contains intervals of weights that optimize the identification of different objectives. "UI" and "EI"
denote respectively unique and expected identification of the best element; "WRI" denotes entire welfare relation
identification; "SD" and "RA" denote respectively minimization of the sum of symmetric difference and [two times]
reverse asymmetry against the reported welfare relation; "El & WRI" denotes the sum of El and WRI. Thislatter isthe one
used along the paper to define OW.

We observe that strictly positive weights are associated to any part of the dataset
apart from AD sets. This latter is found to be irrelevant in the identification of the
reported best element (weights can be negative, zero, or positive), while they have
negative weights when we identify the entire welfare relation. As above mentioned,
the first result is expected, while the second result is somewhat surprising since it
shows that subjects wrongly reveal their welfare in this part of the dataset. Nonethe-
less, it confirms the findings of Section 2.3.3, where we show that subjects are not
only more irrational in these sets (Table 2.4); but also they have a different behaviour
(Table 2.5) if compared to MAIN and BIG sets.

We also find that binary sets are particularly important throughout all the possi-
ble objective functions. This explains both the relatively good performance of meth-
ods on these sets (Table 2.8) and the fact that the identification power of EIG de-
creases in the size of the sets as observed in Table 2.9. This is due to the high weight

put to bigger sets by the EIG method.

Risk

Table 2.14 shows that, in Risk, IR binds everywhere since strictly positive weights
are attached to any domain. There are two exceptions. Firstly, AD sets are irrele-
vant when we focus only on the reported best element, but again this observation

is not relevant from an empirical perspective. However, in the remaining cases, AD
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sets receive strictly positive weights, differently from Time, showing that in Risk
behavioural effects such as attraction effect and compromise effect seem not to un-

dermine the elicitation of preferences.

Table 2.14. Optimal Weights - Risk

RISK
IDENTIFICATIONS BIN TER QUA BIG AD
ul [-0.2,0] [0.4,0.7] [0.7,1] [05,0.9] [-0.2,0.9]
El -0.1 [0.3,0.8] [05,1] [0.4,0.9] [-0.2,0.9]
WRI [0.2,0.7] [0.4,1] [0.81] [0.3,0.8] [0.31]
SD 0.4 0.4 1 03 0.4
SD & RA 05 [0.4,0.5] [0.81] [0.4,0.5] [0.4,0.5]
El & WRI [0.1,0.3] [0.4,0.5] [0.8,1] [0.4,0.6] [0.3,0.6]

NOTES -- The table contains intervals of weights that optimize the identification of different objectives. "UI" and "EI"
denote respectively unique and expected identification of the best element; "WRI" denotes entire welfare relation
identification; "SD" and "RA" denote respectively minimization of the sum of symmetric difference and [two times]
reverse asymmetry against the reported welfare relation; "El & WRI" denotes the sum of El and WRI. This|atter isthe one
used along the paper to define OW.

Secondly, when we focus only on the identification of the reported best element
we observe that binary sets receive weakly negative weights. These weights are
also strictly positive but close to zero in the other cases. This confirms the findings
of previous sections. In fact, in Table 2.10 we find that methods perform poorly
on binary sets. We also found (Table 2.11) that the EIG method has an increasing
identification power in the size of the sets. And again in Table 2.11 we find that,
throughout all methods, the differential of both symmetric difference and reverse
asymmetry between binary sets, MAIN and ALL datasets is positive and significant.

The low importance of binary sets is striking. Especially, if we compare the
weights associated with BIG sets where supposedly we should observe choice over-
load effect. This seems to suggest that, in Risk, the irrational behaviour in MAIN

sets is mostly driven by binary sets.?®

2.4 Conclusion

Using a novel experimental design, we test the hypothesis that Informational Re-

sponsiveness and Revealed Preference are necessary conditions for behavioural wel-

26This evidence suggests further research on attention in choice among gambles and it is in line with
stochastic models such as Manzini & Mariotti (2014) and Cattaneo et al. (2018).
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fare analysis. Firstly, we show that individuals repeatedly violate the Weak Axiom
of Revealed Preference both in time and risk preferences. We develop a new in-
dex of rationality and show that inconsistency is a general phenomenon, namely
it is common to sets with different cardinality and with or without behavioural ef-
fects. Secondly, we find that welfare methods that satisfy Informational Responsive-
ness and are based on a Revealed Preference approach perform significantly better
in identifying both the best reported element and the entire reported welfare rela-
tion. The results are strong in both time and risk preferences and in any part of
the dataset. We show that these welfare methods are more complete theories in the
sense of Fudenberg et al. (2019). Finally, using an optimal weighting algorithm we
directly test Informational Responsiveness. We show that subjects reveal welfare in
all parts of the dataset. Therefore, we argue that welfare analysis should not ignore
data doomed by behavioural effects but only eventually give different weights to
such observations. Our analysis does not solve the elicitation problem entirely. The
researcher’s problem, though much simplified, still requires a correct evaluation of

these welfare weights.
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Imperfect Discrimination and

Stochastic Transitivity

3.1 Introduction

Imperfect discrimination is a widely studied feature of human cognition. In choice
theory, it forms the behavioural foundations of deterministic models such as Luce’s
semiorder (Luce, 1956)! and stochastic models such as the Fechnerian model (Thur-
stone, 1927).2

In this Chapter, we analyse the behavioural consequences of imperfect discrim-
ination when it is allowed to vary with the alternatives under scrutiny. As an illus-
trative example, we refer to the so-called "similarity hypothesis" (Tversky & Russo,
1969). The authors conjecture that more similar alternatives are easier to compare,
and therefore, keeping fixed the utility of the alternatives, higher the similarity and
easier is the choice of the best alternative. Tversky (1972) describes this idea in the
famous Paris-Rome example. He imagines a decision maker than has to choose be-
tween a trip to Paris [P], a trip to Rome [R] and a trip to Paris with $1 bonus [P+].
He notices that a decision maker may find hard to decide between P or P+ and R,

but he would not have any doubts when deciding between P+ and P. Choice situ-

Luce (1956): "The nontransitiveness of indifference must be recognized and explained on any
theory of choice, and the only explanation that seems to work is based on the imperfect powers of
discrimination of the human mind whereby inequalities become recognizable only when of sufficient
magnitude."

2McFadden (1980) wrote, referring to Thurstone (1927): "To accommodate the demonstrated inabil-
ity of individuals to discriminate perfectly... utility is a random function."

69
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ations of this kind induce particular properties of the resulting choices in both the
deterministic and stochastic environment.

More specifically, we show that different notions of transitivity of preferences
can be characterized using the idea of imperfect discrimination. In the previous
example, assume a decision maker prefers P+ to P but he is uncertain of his prefer-
ences (e.g. incomplete preference) between P and R. Assume also that there exists a
measure of discrimination that can be interpreted as the uncertainty regarding the
utility of the alternatives. One result from the deterministic choice literature states
that if the uncertainty between P+, R is smaller than the sum of the uncertainties be-
tween P+, P, and P, R then the preference relation is transitive - (Nakamura, 2002).
Assuming no imperfect discrimination between P+ and P, it becomes easy to ex-
plain a situation in which the only clear preference is between P+ and P (e.g. the
uncertainty regarding the difference in utility between P+, P and R is high). If, for
example, the decision maker prefers P to R, then he will also prefer P+ to R due to
the transitivity property.

Our main result is to generalize the above example to the stochastic choice liter-
ature. We provide a complete characterization of all the main notions of stochastic
transitivity: Weak [WST], Moderate [MST] and Strong [SST]. These conditions are
pervasive in the literature of stochastic choice models. The table below shows the

connection between a series of models and each stochastic transitivity property.
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Models that may violate WST

Random Utility models
Attribute Rule
Random Consideration Set Rule
Random Consideration Choice Set Rule
Dual Random Utility model
Deliberate Randomization

Focus, then compare

Models that satisfy WST

Marschak & Block (1960)

Gul et al. (2014)

Manzini & Mariotti (2014)

Brady & Rehbeck (2016)

Manzini & Mariotti (2018)

Cerreia-Vioglio et al. (2019)

Ravid & Stevenson (2019)

Item Invariant Additive Perturbed Utility

Gradual Pairwise Comparison Rule

Models that satisfy MST

Fudenberg et al. (2014)

Dutta (2020)

Tversky EBA
Menu Invariant Additive Perturbed Utility
Single-Crossing Random Utility Model
Moderate Utility

Bayesian Probit

Models that satisfy SST

Tversky (1972)
Fudenberg et al. (2014)
Apesteguia et al. (2017)

He & Natenzon (2018)

Natenzon (2019

Fechnerian Model
Luce model
Simple scalable model
Additive Perturbed Utility

Symmetric Random Utility Model

Thurstone (1927) - Debreu (1958)

Luce (1959)

Tversky & Russo (1969)

Fudenberg et al. (2015)

Marschak & Block (1960)

We model imperfect discrimination as a property of pairs of alternatives in both
a deterministic and stochastic model. We refer to the former as Binary Threshold

model and to the latter as Binary Additive Perturbed Utility model. According to
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the former, the chosen elements from a binary set of alternatives {x,y} C A are de-

termined as follows:

c({xy}) ={xe{xy}:uly) —u(x) <e(vy)}

where u is a utility function and e: A x A — R7 is a threshold function. In the
stochastic model the probability distributions over binary sets are determined as

follows:

p({x,y}) = argmax Y u(z)p(z) —y(x,y)-c(p(2))
preA({xy}) ze{x,y}

where again u is a utility function, c is a strictly convex function,and 7: A x A —
R+ represents imperfect discrimination between pairs of alternatives.® Both ¢ and
1 are symmetric.

Some preliminary comments. Intuitively, the BAPU model can be seen as a re-
finement of the BT model in the sense that a stochastic choice function resulting
from BAPU contains more information about both utility and imperfect discrimina-
tion than the choice correspondence resulting from BT. We will show this connec-
tion relying on the properties that characterize the two models. The literature had
already started to build this connection even though it went often unnoticed. The
BT model is equivalent to the maximization of an acyclic binary relation (Aleskerov
et al., 2007, Theorem 4.1). The BAPU model is instead characterized by a stochastic
choice function satisfying WST (Fudenberg et al., 2014).# The reader may not seen
an immediate bridge between the two models. However, the connection will be
made explicit in Section 3.4.2 via the completion of the results of Fishburn (1973).
For instance, limited to the above mentioned, Fishburn (1973) showed that WST is
the stochastic analogue of acyclicity.®

Our main results are twofold. First, we show that € and # are metrics if and only

3The assumption of strict positivity of  is assumed to provide a connection to Fechnerian models
as described in Section 3.4.1, however it is not necessary for the main results in Section 3.3 to hold.

“The result is an immediate corollary of (Fudenberg et al., 2014, Proposition 8). The reader may
note that our model enriched with 7 is equivalent to the Item Invariant model of Fudenberg et al.
(2014) restricted to binary sets. The restriction of c4 to #(A) in binary sets is without loss of generality.

SMore precisely, the property is called Acyclic Stochastic Transitivity [AST], which is equivalent to
WST under the assumption of antisymmetry that will be described at the end of Section 3.2, and if all
binary sets are observed.
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if deterministic choices are outcomes of the maximization of a transitive binary re-
lation and stochastic choices satisfy MST (Theorem 1 and 2). Second, ¢ and 7 are
not metrics (the triangle inequality is violated) at particular triples of alternatives if
and only if deterministic choices are outcomes of the maximization of a binary rela-
tion that satisfies a new property called Lower Negative Transitivity, and stochastic
choices violate SST at the considered triples (Theorem 3 and 4). These results to-

gether provide a complete characterization of all notions of transitivity.

3.1.1 Related Literature

This Chapter is related to the deterministic choice literature on Threshold mod-
els: such authors include, among many, Luce (1956), Fishburn (1970) and, more
recently, Frick (2016) and Dziewulski (2018). A comprehensive survey is provided
by Aleskerov et al. (2007). Importantly, Theorem 1 has been proved using a contra-
diction argument by Nakamura (2002). In the conclusion of the paper, the author
wrote: "It remains an open problem to give a constructive proof, which may also
answer the question of whether arbitrary posets have quasi-metric threshold repre-
sentations." We address part of the author’s conclusion by providing a constructive
proof for finite posets.

Regarding the stochastic choice literature, this Chapter relates mainly to Fu-
denberg et al. (2015), who characterize Additive Perturbed Utility models (APUs).°
However, these models have also been studied by, among many, Machina (1985) and
Mattsson & Weibull (2002) and they are the foundation of rational inattention liter-
ature (Matejka & McKay, 2015). Theorem 2 is new, albeit connected with a recent
paper by He & Natenzon (2018).

Finally, this Chapter contributes to the literature on the connection between de-
terministic and stochastic choice theory. This topic requires a brief comment. The
link between the two environments is far from straightforward. It seems natural to
think that the only difference between deterministic and stochastic choice functions

is the presence of probabilities, and that the former is a degenerate case of the latter

®In the published version, Fudenberg et al. (2015) only focus on APUs. Our model would be the
restriction of theirs on binary sets if #(x,y) = 1 for all x,y. However, in the unpublished version,
Fudenberg et al. (2014) characterize an extension of APUs, called Item Invariant APUs. Our model is
a restriction of Item Invariant APUs on binary sets.
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as in (Fudenberg et al., 2015, Proposition 6), in several results by Dasgupta & Pat-
tanaik (2007) and as stated among others by Kalai et al. (2002), Gul & Pesendorfer
(2006), and Cerreia-Vioglio et al. (2019). However, this is not the case as shown by
Fishburn (1978) and Ok & Tserenjigmid (2019). The key distinction is related to what
is considered as a relevant comparison. In the deterministic case, the only comparison
that matters is the worst possible comparison.” Conversely, in the stochastic case,
all comparisons matter as it is clear from the Beethoven/Debussy example (Debreu,
1960) and the Red/Blue Bus example (McFadden, 1974). In this Chapter, we focus
on binary sets where the two interpretations are clearly equivalent and we complete
the connection between the two environments initiated by Fishburn (1973). A gen-
eralization of our results to sets with higher cardinality is still, to the best of our

knowledge, an unsolved problem.8

3.2 Preliminaries

Let A be a finite set of alternatives, A, the set of all binary subsets of A and A; , the
set of all singletons and binary subsets of A. A binary (set-valued) choice function is
amapping ¢ : A» — Ay with ¢(B) C B for all B € A;. The following binary relation

is defined starting from a primitive c:

x=cyexcc(ny) &y éc(xy)

The binary relation >, is asymmetric, and so irreflexive. It is also possibly in-
complete. If x,y € ¢(x,y) then x .y and y #. x. This binary relation over pairs is
foundational in the literature of deterministic choice theory, e.g. (Sen, 1971), (Arrow,
1959).

A binary stochastic choice rule is a mapping p: A x A, — [0,1] such that p(x, A) +
p(y,A)=1forallx,y € A€ Ay and p(z,A) =0 for all z ¢ A. With a common abuse
of notation, we write p(x,y) to denote the probability that x is chosen from {x,y},

and p({x,y}) to denote the entire probability distribution.

7In other words, if there exists an element x that is noticeably better than the element y, then y is
never chosen when x is available, regardless of the other alternatives available.
8We see Fudenberg et al. (2014) and Fosgerau et al. (2017) as possible starting point for this problem.
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Our results are based on two specific models of "just noticeable difference". The
Binary Threshold models and Binary Additive Perturbed Utility models are defined

as follows:

Definition 1. Let u: A — R be a utility function and ¢ : A x A — R*" be a threshold
function. We say (u,€) is a Binary Threshold Representation [BT] of a choice function c if

forall x,y € A:

c{ryh) ={relnyt | Ayeixy) |uly) —ulx) >elxy)} (3.1)

Given the above definition, the following holds: x . y if and only if u(x) —

u(y) >e(x,y), and [x ¥y Ay #c x] if and only if |u(x) —u(y)| <e(x,y).

Definition 2. Let u: A — R be a utility function, ¢ be C' on (0,1), a strictly convex

function with lin(l) c'(p)=—coandn: Ax A— R+, Wesay (u,c,n) is a Binary Additive
pP—

Perturbed Utility Representation [BAPU] for a stochastic choice rule p if for all x,y € A:

p({xy}) = argmax ) u(z)p(z) —n(xy) - c(p(z)) (3.2)
peA{xy}) ze{x,y}

The existence of the above representations is characterized by restrictions on
>¢ and p. In particular, a choice function ¢ has a BT representation if and only
if >~ is acyclic - Aleskerov et al. (2007). A stochastic choice rule p has a BAPU
representation if and only if p satisfies Weak Stochastic Transitivity [WST].1

The definition of BAPU needs two brief comments. First, in order to coherently
match our analysis of Section 3.4.2 related to Fishburn (1973), we assume that u(x) #
u(y) for all x,y € A with x # y. This assumption does not modify the generality of
the model but simply rules out the case of p(x,y) = 0.5. Second, the constraint
Ilgig[\) c’(p) = —oo guarantees p to be non-degenerate. This assumption allows us to
consider BAPU as equivalent to Fechnerian models. Similarly, we assume 7(x,y) to

be strictly positive for all x # y. This constraint will have the effect of allowing ¢ to

9A binary relation > is acyclic if for any integer k, x1 >c x - -+ >¢ x; implies x1 # xy.
10A stochastic choice rule p satisfies Weak Stochastic Transitivity if for all x,,z € A:

p(x,y) >05 & p(y,z) >05 = p(x,z)>05
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be a quasi-metric'!, namely two different alternatives may have zero distance, while
1 will be a metric, namely none of the alternatives have 7(x,y) = 0. The reader may
note that the results hold if this constraint is relaxed in both directions, however in

stochastic choice degenerate probabilities would be introduced.

3.3 Main results

This section contains the main results of the Chapter. The results rely only on ¢ :

AxA—RTandy: A x A— RTT satisfying or violating the triangle inequality.

Theorem 1. A choice function c has a BT representation where € is a quasi-metric if and

only if the associated binary relation . is transitive.

Proof. The proof is constructive and presented in Appendix C.2.1. Here we present
a description of the main steps of the proof. Firstly, we define the utility of an alter-
native x as the number of elements that are not strictly preferred to x. Secondly, we
construct a weighted directed graph where the weights are defined as the difference
in utility between the alternatives. We then show that the minimum weighted path
0(x,y) constitutes a quasi-metric. The final step involves scaling down 6(x,y) using
a parameter y € [0,1). In fact, note that for any v € [0,1), u(x) — u(y) > v - 6(x,y)
guarantees that - is represented. Hence, the remaining challenge is to find <y such
that for all x,y € X such that x ¥ yand y % x, u(x) —u(y) < -6(x,y). The problem

of finding * is shown to be the solution of the following maximization problem:

argmax 71/[(9(;) — u(y)

X,YEA:[XF YAy #x] 5(X,y)
O

The application of the triangle inequality is confirmed by the result on Addi-
tive Perturbed Utility models. The restriction on p, as in He & Natenzon (2018), is

Moderate Stochastic Transitivity*.

The assumptions on the function ¢ are relaxed so as to be a quasi-metric, see Monjardet (1980). This
relaxation does not change the nature of the result. A quasi-metric is a function d: A x A — [0,00)
that satisfies the following axioms: (1) d(x,x) = 0 "minimality"; (2) d(x,y) = d(y,x) "symmetry"; (3)
d(x,z) <d(x,y) + d(y,z) for all x,y,z € A "triangle inequality". To be a metric, d has to satisfy also
d(x,y) =0 & x =y "identity of indiscernibles".
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Definition 3. A stochastic choice rule p satisfies Moderate Stochastic Transitivity* [MST*]

if for all x,y,z € A either of the following holds:
(i) p(x,y) >05 & p(y,z) >05 = p(x,z)>min[p(x,y),p(y z)]

(ii) p(x,z) =p(x,y) =py,z)

The reader may note that this property allows for the situation: p(x,y) = p(x,z) >

p(y,z); but it rules out the situation: p(x,y) > p(x,z) = p(y,z).

Theorem 2. A stochastic choice rule p has a BAPU representation where 1 is a metric if

and only if it satisfies MIST*.
Proof. See Appendix C.2.2. O

For the next theorems we need to introduce a new deterministic property. We
call this property Lower Negative Transitivity. First, we state some preliminaries.
Suppose a finite set of alternatives A is weakly ordered'? by a binary relation >>.
However, the decision maker has imperfect discrimination and does not observe
the weak order >. Instead, he has a second binary relation > that reveals if an
alternative is "surely" better than another. We say that >> preserves > if x = y implies

x >y for all x,y € A.!® Dual to the weak order >> is a complete preorder >.14

Definition 4. A binary relation > on a weakly ordered set (A,>>>), preserved by >, satisfies
Lower Negative Transitivity [LNT] at x,y,z if x > y > z and x > z implies either x > y or

Y-z

The definition requires two short comments. First, notice that we rule out the
possibility that x >y and y > x. Hence, x > y > z implies z }* x, y * x and z }* . Sec-
ond, if x > z then we interpret this as x being "surely" better than z. The requirement
that either x > y or y > z can be interpreted as follows: when the decision maker can
discriminate between x,z then he can also discriminate between either x,y or y,z.

The consequent result for Binary Threshold models is the following:

12A weak order > is an asymmetric and negatively transitive binary relation.

13This approach has been studied by, among many, Fishburn (1999), Aleskerov et al. (2007), Ok &
Nishimura (2018).

14A complete preorder I is a reflexive, complete and transitive binary relation. Due to the finiteness
of A, such a binary relation has a numerical representation.
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Theorem 3. Let a choice function ¢ have a BT representation. There exists a function €,
such that for all x,y,z € A with u(x) > u(y) > u(z), e(x,z) > e(x,y) + €(y,z) if and only

if the associated binary relation . satisfies LNT at x,y,z.

Proof. See Appendix C.2.3. O

This result connects violations of the triangle inequality with a new notion of
transitivity. We can provide the same result using Additive Pertubed Utility models

and a restriction on p called Strong Stochastic Transitivity*.

Definition 5. A stochastic choice rule p satisfies Strong Stochastic Transitivity* [SST*] if
forall x,y,z € A both of the following hold:

@) p(xy) >05 & p(y,z) >05 = plx,z) > max(p(x,y),p(y,2z)]
(ii) It cannot be that p(x,z) = p(x,y) = p(y,2)

Theorem 4. Let a stochastic choice rule p have a BAPU representation. There exists a
function y, such that forall x,y,z € Awithu(x) >u(y) > u(z); n(x,z) >n(x,y) +1(y,z)
if and only if p violates SST* at x,y,z € A.

Proof. The proof is constructive and presented in Appendix C.2.4. Here, we present
the main steps of the sufficiency part which is the more involving. As in Theorem
1, we first assign a utility to each alternative simply using the ranking created by
p(x,y) that exists since WST is satisfied. Secondly, we rank couples of alternatives
{x,y} using again p(x,y). Each couple now is assigned a strictly positive number
f(I) that is a function of their position [ in the ranking. The number f(I) will be
then multiplied by the difference in utility to form 5 (x,y) = f(I)|u(x) — u(y)|. The
remaining and more involving passage is to show that f(!) is the solution of a par-
ticular difference equation, that when the initial condition is defined as f(1) =1 and

f(2) =2 becomes:

14+2(n—2)+ f(I)

flE+1) = 1+ (n-2)

The remaining step consists in constructing a continuous and differentiable cost
function c(p). This step is rather simple and described in the proof of Theorem 2 in

Appendix C.2.2.
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This constructive proof generalize one step of the proof of ?. The authors con-
struct one particular f(I) that turns out to satisfy a similar version of the above

difference equation that guarantee that triangle is satisfied instead of violated. = [J

Theorem 4 requires a brief comment. The restriction on the stochastic choice
rule p is not a general violation of SST*. To illustrate this, suppose that for all triples
apart from x,y,z the stochastic choice rule p satisfies SST*. Then, since this latter is
defined for all triples, we generically say p violates SST*. Theorem 4 states that in
this case we can construct a function 7 that violates the triangle inequality exactly
at those triples where SST* is violated, while it satisfies the triangle inequality in
all other triples. This is a fundamental difference from Theorem 2, which states that
there exists a 77 that satisfies the triangle inequality for all triples. A similar reasoning
connects Theorem 1 and 3. Hence, the reader may refer to LNT and violation of SST*

as local properties.

3.3.1 Summary

Theorems 2 and 4 are summarized in Figure 3.1. A similar diagram can be drawn
for deterministic choice using properties of .. The choices of p(x,y) and p(y,z) are

arbitrary. The axis describes p(x,z):
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1 —

} v, (x,z) <n(xy) +1(y,z)

p(y,z) T+ SST*
I (x,z) <n(xy) +n(y,z)
I n(x,z) > n(xy) +1(y,z)

p(x,y) + MST*

p(x,z)

v, n(x,z) > n(x,y) +1(y,z)

0.5+ WST*

A BAPU representation.

Figure 3.1. Characterization of stochastic transitivity using triangle inequality.

Let’s show the implications of the results in view of the Paris-Rome example. As-
sume u(P+) =2.1, u(P) =2 and u(R) =1, and (P+,P) =0, #(P,R) = y(P+,R) = 1.
Assume also that the cost function is c¢(p) = plog p (Shannon Entropy). The resulting
stochastic choice function is p(P+,P) =1, p(P+,P) = 0.75, p(P,R) = 0.73. Note that
MST* is satisfied and # satisfies triangle inequality (note also that # is non-negative
in this example and the result still holds but we observe degenerate probabilities). If
we perturb 77(P+,R) £ € with € > 0 small, we either violate or strictly satisfy triangle
inequality. However, p(P+,R) is either 0.74 or 0.76, hence MST* is still satisfied. This
shows that if the stochastic choice function satisfy MST* but violates SST*, we can
construct 7 such that triangle inequality is either satisfied or violated as discussed

in Theorem 2 and 4.

3.4 Related Literature

3.4.1 Fechnerian Model

Our results create a connection with a series of stochastic binary models, among
which the most famous is the Fechnerian model. This model is defined as follows,

given a utility function # and a strictly increasing function F:



Chapter 3 81

p(xy) = Flu(x) —u(y)]

The model has been axiomatized firstly by Debreu (1958). More recently, Fu-
denberg et al. (2015) proved an equivalence result with Additive Perturbed Utility

models.

Proposition 1. A stochastic choice rule p has a BAPU representation with y(x,y) =1 for

all x,y € A if and only if it has a Fechnerian representation.'®

A more general model, based on a distance function d, has been proposed by
He & Natenzon (2018). The model, which we refer to as "HN representation”, is as

follows:

oo

The authors prove that this model is completely characterized by MST*. There-

fore, the next corollary immediately follows:

Corollary 1. A stochastic choice rule p has a BAPU representation where 1 is a metric if

and only if it has a HN representation.

3.4.2 Fishburn (1973)

Our analysis of BT and BAPU representations suggests a connection between deter-
ministic and stochastic notions of transitivity. This problem has been firstly studied
by Fishburn (1973). We build on his framework to complete the analysis and pro-
vide the reader with a full picture of this connection. If we let the stochastic choice
rule p be primitive, we construct the following binary relation for any parameter

ue0.5,1):

=un={(xy) € Ax A:p(x,y) > u}

Note that the binary relation =, is symmetric for some x,y € A if and only if

15This result is a restatement of Proposition 1 - Fudenberg et al. (2015).
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p(x,y) = 0.5. Whenever p(x,y) > 0.5, for all € [0.5,1) we can focus on the asym-
metric part of =, which we denote as - .

It is important to note that >, has not been assumed to be negatively transitive
in Section 3.2. Hence, its symmetric part may describe indifference and most prob-
ably incompleteness. On the other hand, ~ u covers only an indifference relation, or
equivalently a case where u(x) = u(y). Similar reasoning can be generalized to cases
of equalities within p as noticed by Fishburn (1973). When equalities are ruled out,
or p(x,y) # p(w,z) for all x,y,z, w € X, the following properties are equivalent to the
ones described in previous sections: AST < WST, PST < MST* and SST < SST*.
When one discards the measure zero set of equalities in p a clear bridge between the

stochastic and deterministic worlds on binary sets arises.

Definition 6. A stochastic choice rule p satisfies Acyclic Stochastic Transitivity [AST] if

for any integer k and x1,xz,...,xx € A:

[p(a1,a2) > 05 & p(az,a3) >05 & ... & p(ay_1,am)>05] = p(ay,a,)>05

Definition 7. A stochastic choice rule p satisfies Partial Stochastic Transitivity [PST] if for

all x,y,z € A:

p(x,y) >05 & p(y,z) >05 = p(x,z) >min[p(x,y),p(y,z)]

Definition 8. A stochastic choice rule p satisfies Strong Stochastic Transitivity [SST] if for

all x,y,z € A:

p(x,y) >05 & p(y,z) >05 = p(x,z) >max[p(x,y)p(y2)]

Equivalence Results

AST and PST have been already connected to deterministic properties by Fishburn
(1973). In particular, he proved that for all u € [0.5,1), > is acyclic if and only if
p satisfies AST; and >, is transitive if and only if p satisfies PST. No equivalence

result has been provided for SST; in other words, there is no deterministic version
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of transitivity that has been shown to provide SST for all 4 € [0.5,1). Some reason-
ings suggest that negative transitivity'® can play a role; however, it has almost no
explanatory power in stochastic terms, as was already noticed by Fishburn (1973).
In particular, commenting on his Lemma 5b, he wrote about negative transitivity:
"... when NST [Negative Stochastic "l"ransitivi’fy]17 holds, it requires a fair number of
equalities within p. This may be viewed as further evidence of the general inappli-
cability of NST."

Our proposal to solve this problem is related to the concept of imperfect dis-
crimination, and it has been anticipated with the introduction of LNT. We assume
the existence of what Ok & Nishimura (2018) refer to as "preference structure". Say
that (A,>) is a weakly ordered set and > is a binary relation that is preserved by
> as defined in Section 3.3. The dual of >> is again denoted as >. We define one

new property called Higher Negative Transitivity.

Definition 9. A binary relation - on a weakly ordered set (A,>>>), preserved by >>, satisfies
Higher Negative Transitivity [HNT] if for all x,y,z € A such that x > y > z we have: (1)

x >y implies either x = z or z > y and (2) y > z implies either x > z or y > x.

This property, together with LNT, enables us to provide a characterization of SST
in terms of deterministic properties, and to complete the analysis initiated by Fish-
burn (1973). Note that the two properties are defined differently. HNT is defined for
all x,y,z € A, while LNT is defined locally. The reasoning behind this definitions is

contained in the following propositions.

Proposition 2. A stochastic choice rule p either violates SST or satisfies it with equality at

x,y,z € A ifand only if in the same alternatives -, satisfies LNT for all u € [0.5,1).

Proof. Suppose -, violates LNT for some y; then it must be that p(x,z) > u while
p(x,y) < pand p(y,z) < u; but then SST is satisfied with inequality. Suppose SST is

satisfied with inequality; then set u = p(x,z) — € and LNT is violated. O

16 A binary relation > is negatively transitive if for all x,y,z € A: x # y and y # z implies x ¥ z. It
can be equivalently stated as: x > z implies either x > y or y > z.

17Negative Stochastic Transitivity was defined as: p(x,z) > 0.5 = max[p(x,y),p(y,z)] > p(x,z). It
was shown to be equivalent to > satisfying Negative Transitivity [NT]. Hence, for all x,y,z € A,if x # y
and y  z then x ¥ z.
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Proposition 3. A stochastic choice rule p satisfies SST if and only if =, satisfies HNT for
all € [0.5,1).

Proof. Suppose -, violates HNT, then either p(x,y) or p(y,z) are strictly greater

than p(x,z) violating SST. Suppose SST is violated, then set

u=max[p(x,y),p(y,z)] —¢

for a small € > 0, and HNT is violated. O

Before summarizing the results in an implication diagram, we describe in a re-
mark what are the connections between transitivity and the two new properties LNT

and HNT.

Remark 2. Since transitivity is equivalent to PST, it is implied by HNT, which in fact
is equivalent to SST. Instead, LNT and transitivity are not connected. For instance,
x = y > z violates transitivity, but not LNT; x > z satisfies transitivity but violates
LNT. Similarly, if p satisfies only AST, then - satisfies LNT but not transitivity; while

if p satisfies SST with inequality, then > satisfies transitivity but not LNT.

We are now ready to complete part of the implication diagram initiated by Fish-
burn (1973). We will denote the special case where SST is satisfied with equality
as SST~, and the case where it is violated with inequality or satisfied with equality
as SST. Hence, it must be that SST~ = SST A SST. All the results of this section
are summarized in the diagram below, and show a perfect symmetry between the

deterministic and stochastic versions of transitivity.



Chapter 3 85

NT ——— HNT! T A

N\

HNT A LNT ——— LNT —— HNT V LNT

SST™ SST + PST | AST

N

SST A SST ! SST ! SST v SST

Figure 3.2. Implication Diagram for the results of Section 3.4.2.

3.5 Conclusion

This Chapter provides a new characterization of stochastic transitivity related to the
well-known concept of imperfect discrimination. As the main message, we show
that in Fechnerian models, triangle inequality and transitivity are closely connected.
This notion allows us to organize a wide range of stochastic models in accordance
with a very general version of Fechnerian models. Furthermore, given that all the
proofs are constructive, we provide simple algorithms to construct both the utility

function and imperfect discrimination parameter.
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Appendix to Chapter 1

A.1 Minor Results and Remaining proofs

A.1.1 Proof of Proposition 2

By transitivity, completeness of R and the finiteness of X; we can make use of a
result from Krantz et al. (1971): there exists a real-valued function ¢ on X such that
for all x,y € X; xRy if and only if ¢(x) > ¢(y).

A corollary of this result goes as follows: let ¢ : X — R"~!, where |X| = 1, be
a vector valued function and ¢(x), be the value assigned to x when compared to
z. Then, by the previous result, ¢(x). = ¢(x), for all y,z # x. The proof is triv-
ial. Suppose the above is false; then we may have ¢(x), > ¢(v). > ¢(z), violating
transitivity.

Given two generic elements x,y we can partition the collection of observations
in eight sets with the following cardinalities: Cy,, Cy» have already been defined;
Cyry={S€D:x=C(S),y ¢S}| and similarly C,,_,; B= By, =By = |{S€ D
z=C(S);x,y€S}; Dy =|{S€D:2=C(S),x € S,y ¢ S}| and similarly D; E =
Exy=En=|{S€D:z=C(S);x,y € S}|.

Let’s first focus on B and E. On these collection of observations, Neutrality
implies xIPy. Suppose u(x) > u(y), then Cy_, > Cy,_». By induction, suppose
Cx,—y + Cy,—x = 1 such that x = C(S), then by Choice non-negativeness xR0y. Sup-
pose the hypothesis holds for Cy,—, + C,,—x = n, and take C,, + C,» =n +1

(note that in both cases Cy,—, > C,,—x). Suppose by contradiction that yP“0x. Then,

86
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if we remove one observation where x is chosen, Choice non-negativeness is vio-
lated. Hence, xR“Py. Similarly, Cy, > C,, implies xRPy by Informational Respon-
siveness, Choice non-negativeness and Neutrality. Note that u(x) > u(y) implies
Cy,—y > Cy,_xand Cyy > Cyyx doesn’t hold for a generic domain D. However, it holds
for a homogeneous domain.

To complete the proof we need to extend the argument to Dy, and D,,. How-
ever, note that u(x) > u(y) implies D, > D, and there are no constraints on how
such observations should influence the ranking between x,y since a third element
is chosen. Hence, a method that associate a positive value to the observations
of the type Dyy, Dy could led to u(x) > u(y) and yPx. However, by the corol-
lary of Krantz et al. (1971) result, which is based on Transitivity, we can focus on
Dy =%, {S€D:z=C(S),x € S}| instead of Dy,. In other words, the value
assigned by a method to the observation z = C(S), x € S, y ¢ S must be equal to
the one assigned to y = C(S), x € S, z € S.; otherwise this could potentially lead
to cycles. Hence, suppose by contradiction that u(x) > u(y) and yRPx. It must
be that the value attached to observations in Dy is positive, since Dy, > D,. How-
ever, we proved that xPCPy over the collections of observations with cardinalities
Cx,—y, Cy,—x,Cxy, Cyx, B, E. Suppose we add an observation of the type x = C(S),
y € S. Clearly, D, increase by a positive value. However, since we assumed yR0x
then Choice non-negativeness is violated. In words, these axioms allow a method
to attach a positive value to observations of the type D,, however this value must
be smaller than the value attached to observations of the type C,, as clear from the

following example.

Example 1. Take X = {x,y}, u(x) > u(y) and a method g such that:
xR§y < H, > H,

where Hy =a-Cy+b-Dywithb=2>a=1.

S | {xy} S | {xy}
c(s) | (5,5) C(S) | (6,5)
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From the first dataset we infer Hy = 15 and Hy = 15 and so xIPy; from the second
dataset we infer Hy = 16 and H, = 17 and so yP“Px violating Choice non-negativeness

(and in this case also Informational Responsiveness).

A.1.2 Some auxiliary facts about Counting Procedures.

The reader may have observed that when the restrictions of Theorem 2 apply, adding
information implies removing information in the definition of (Strong) Informa-
tional Responsiveness. Hence, this latter could be, in principle, omitted by the defi-

nition.

Claim 1. If a method g satisfies Choice non-negativeness then the second consequent in the

definition of Informational Responsiveness can be omitted.

Proof. Suppose by contradiction that if xI°°y and x = C(S) then xR“?\sy. Then, if
xI°P\sy, we immediately contradict Informational Responsiveness in its first conse-
quent. If xPCP\sy, then Choice Non-Negativeness is violated.

More interesting than the trivial proof is an example that shows the indepen-
dence of adding and removing data. Let xP*?y when |D| < 2 and xR“Py if and
only if C; > C, when |D| > 2. Moreover, CC holds for all other z # x,y. Notice that
this method violates Neutrality and Choice non-negativeness. However, it satisfies
Informational Responsiveness in its first consequent since it does vacuously when
|D| < 2. However, it violates Informational Responsiveness in its second conse-
quent. Let x = C(S) and y = ¢(T), then xI®Py. If S is removed then x PPy violating

the second consequent. O

In Section 1.6 we introduced Robustness as an appealing characteristic of welfare
methods. We also claimed that it is redundant in proving Theorem 2 since it is im-
plied by the collection of other axioms. This result can be shown easily as a corollary

of Theorem 2, using the transitivity property of the counting choice method.

Corollary 1 (Theorem 2). Independence, Neutrality, Stability and Strong Informational

Responsiveness imply Robustness

Proof. Suppose, by contradiction, xP°2zPPy and yRP\sx. If yPP\sx then Stability

is contradicted. Suppose yIP\sx. If z = C(S) then Independence is contradicted. If
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y = C(S) then Strong Informational Responsiveness is contradicted. If x = C(S) then
we exploit the transitivity property of Cy > Cy. In fact, by Independence zPCP\sy; by

Stability either xI Co\sz or xPP\sz, and in both cases transitivity is contradicted. O

A.1.3 Proof of Proposition 3

Similarly to the others, the proof is by induction on the cardinality of the domain.

If |D| = 0 then xI°Py by Neutrality and Completeness. Suppose |D| =1 if x =
C(S) then xP‘ry by Strong Positive Responsiveness. If z = C(S) then xI“Py by
Independence.

Suppose |D| =2 and C, = C, then:

e if x = C(x,y), y = C(x,y) then xI°?y by Neutrality.

e if x = C(x,y), y = C(y,z) then suppose xP‘Py. If we add z = C(x,z) we
have xP“ruixzly by Independence. So, the possible results by Transitivity are
xPCDU{x,z}yPCDU{x,z}Z or zPCpuixz) xPCDu{x,z}y or xICDU{x,z}ZPCDU{x,z}y or xPCDu{x/z}ZPCDU{x,z}y.
However, take the permutation 77(x) =y, 71(y) = z and 7(z) = x. The choice
function is preserved while the binary relations are not. Hence, we have a

contradiction, implying xI“Py.

e ifx=C(x,z),y=C(y,w). Then, take (x) =y, m(y) = x, m(z) =wand t(w) =

z and by the same argument as before xIPy.

Now, suppose |D| = 1, assume the statement is true and take |[D U {T}| =n + 1.
Suppose Cyx > Cy then if x or y are chosen from T, xPPuTy by Strong Positive Re-
sponsiveness and the inductive hypothesis. If z is chosen, x Py by Independence
and the inductive hypothesis.

Suppose C, = C, and z = C(T) then the results holds by Independence. If y or
x is chosen then xP‘Py (or yPPx) by the inductive hypothesis. Hence, suppose
by contradiction that yPP'Tx, then there exists a set T such that x is chosen since
Cy = Cy. Hence, by the inductive hypothesis, Strong Positive Responsiveness is

violated since xP‘Py.
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A.1.4 Proof of Theorem 3

Let |D| = 0, then by Neutrality and Completeness xI?y. Let D = {S} and z =
C(S). If either x ¢ S or y € S or both then xI“Py by Connection. If x,y € S then by
Neutrality xI°Py. Suppose that x = C(S); if y & S then xI°?y by Connection. If y € S
then xPPy by Informational Responsiveness. Take D = {S,T}. If z = C(T) and
Cxy = Cyx = 0 then xI°?y by Connection and Neutrality; if Cy, = 1 then xP“Py again
by Connection and Neutrality. Let x = C(T); if Cy, = 2 then —yP“Px by Stability;
suppose xI°Py then it should be yP*P\7x by Informational Responsiveness, but this
contradicts the premise; hence xPPy. If Cy, = Cyy = 1 then xI“Py by Stability and
Completeness.

Suppose the result holds for |D| = n and take |D U T| = n + 1. If Cyy = Cy» and
x = C(T) then x‘ruTy by Stability and Completeness. If z = C(T) then the results
holds by either Connection or Neutrality. If C, — Cyx = 1 then xPPTy by Informa-
tional Responsiveness and the inductive hypothesis. If Cy, — Cyx > 1 then —yPc0ury
by Stability and the inductive hypothesis. Suppose xIPTy, then removing x = C(T)

it should be yP“Px contradicting the inductive hypothesis, hence xProTy.

A.2 Comments on Additivity and Continuity

A.21 Continuity

Our axioms are defined over an abstract setting. In this appendix section we anal-
yse the problem from a different perspective. The rationale for this analysis is that
Stability reminds closely Bolzano’s theorem (which is the equivalent of intermediate
value theorem around zero). However, to draw this connection we need to endow
domain and codomain with a metric topology.

A method is a map from a set of choice functions to a set of binary relations. If
we focus on CC we can alternatively see it as a map that assigns to any alternative
a non-negative integer. In this case, we can endow the set of non-negative integers
with the metric |x — y| for all x,y € Z. Since a method maps to a set of binary
relations, we then write xPScy if and only if Cy — C, > 0 and xI&cy if and only if

Cy—Cy=0.
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It is less straightforward to endow the space of choice functions ¢ with a metric.
However, we can define a metric between two choice functions C;,C; € € using
the symmetric distance (Klamler, 2008): d(C;,C;) = ng‘A(Ci(S)’Cj(Sm = where
|A(Ci(S),C;(S)) = [(Ci(S) UC;(S)) \ (Ci(S) NCi(S))|. Klamler (2008) proposes this
distance restricted to a fix domain D. We generalize it allowing D to change while
keeping the choice function C fixed. In this case we can just take the symmetric
difference among domains. Hence, for all D1,D; € D, A(D1,D;) = |(D; U Dy) \
(D1 N Dy)|. Itis easy to verify that for a fixed domain D C X and for any three
choice functions CiD,C]DClD € ¢(D):

d(CP,CP) >0

d(CP,cP) =
d(CRCD) - d(CjD,cP>
d(CP,CP) < d(CP,CP) +d(CP,CP).

mlnCD#C d(CD, C]D) =2
On the other hand, if for a fixed choice function C € ¥, and for any three domains

D,D*,D' € D:

CP,cP)y=d(CP",CP)

cP,cP'y < d(cP,cP’) +d(cP”,cP') 1

minpp-d(CP,CP") =1

A welfare method is now a function between metric spaces. We recall the general

definition of €,J continuity:

Definition. A function f : R — R is continuous at p € R if for any € > 0 there exists 6 > 0

s.t. forall x € Rif |p— x| < dthen |f(p) — f(x)] <e.

In this classical definition, we can set a § as function of x and € can be any number

TLet’s take Dq,Dy,D3 € X: d(Dl,D3) = |(D1 \ D3) U (D3 \ Dl)‘ Given D, we have Dq \ D3 =
(D1\ (D2UDj3)) U((Dy N D2) \ D3). So, show that (D1 \ D3) U (D3 \ D1) C (D1 \ D2) U (D, \ D1) U
(D2 \ D3) U (D3 \ Dy):

[(D1\ (D2UD3))U((DyND2)\ D3)]U[(D3\ (D1 UD;))U((D2nD3)\ Dy)] € [(Dy\ (D2UD3))U
((D1ND3)\ D)]U[(Dy\ (D1 UD3)) U((D1NDy)\ D3)]U[(Dy \ (D1 UD3)) U ((D2ND3)\ Dp)]U
[(D3\ (D1 UDy)) U ((D1ND;3)\ Dy)]

In fact, note that [(Dy \ D2) U (D2 \ D1) U (D2 \ D3) U (D3 \ D2)]\ [(D1 \ D3) U (D3 \ D1)] = ((D1 N
D3)\ Do) U (D, \ (D1 UD3))U (D2 \ (D1 UD3)) U ((D1ND3)\ Dy)
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however small. In the discrete case, both § and € have some bounds. We rely on
Johnsonbaugh (1998), who introduces an intermediate value theorem for integer-

valued functions with a definition of continuity where § = ¢ = 1:

Definition. Let f an integer-valued function defined on the integers in [m,n]. Suppose
(as the equivalent of a continuity assumption) that |f(i) — f(i+1)| <1form <i < n. If

f(m)f(n) <O, then f(x) = 0 for some integer x in (m,n).

For example, if we focus on CC, continuity is based on a "marginal change" §
in the domain which is ming-od(C;,C;) = 1. Since the codomain is the set of non-
negative integers with the metric |x — y|, the minimum change greater than zero is
€ = 1. Hence, the counting choice method, CC: (¢'(D),d) — (Z,| - |), can be charac-
terized using Neutrality, Strong Informational Responsiveness, Independence and
(1-1)-Continuity.

In general, the definition of Continuity depends on the distance defined on the
space of choice functions. This distance is primitive and, in fact, using Stability
we assume the marginal change to be 6 = |D| — |D \ {S}|. However, the reader
may imagine a different J that changes with respect to the cardinality of the set
involved in the marginal change. In principle, one could consider a bigger set more
important than a smaller one. Once ¢ is defined, then € will describe the "degree" of
continuity of the function. For instance, if € = 2, then CC would be continuous
among intervals of 2, while into an interval of 2 it could move discontinuously.
Therefore, we can interpret the level of € as a measure of robustness in the following

way: if xPz1 P... PzcPy then xP“\sy.

A2.2 Additivity

In this appendix section, we comment on a second framework that may be of in-
terest: conjoint measurement. When we think about a function that ranks the alter-
natives, it could be of some interest to think of it as a function that extracts some
information about the importance of each alternative from each set. This definition
is in line with the literature of conjoint measurement where each set is considered
as an attribute of the alternative importance. Krantz et al. (1971) shows that given a

product space, there exists an additive conjoint representation only if R, is rational,
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independent and solvable. We refer the reader to Krantz et al. (1971) for the result
and definitions.

The reader may note that CC clearly admits an additive conjoint representation.
An interesting exercise is to verify if other methods such as MS and EIG have such
representation. The task is quite straightforward since the independent condition is

necessary.

Definition. A preference relation R is independent if (x;,x_;)Rq(yi, x_;) is equivalent to

xiRgyi foralli€ {1,2,...,n}.

The conjoint representation over the product space can be described using a
function F given a choice function C and a list of sets S. F(C(S;))sep is F : XIP| —
%'X| while the function of a single element is F, : X IDl s %. Then if additivity holds,
we would have F,(C(S;))sep = ¢x(C(S1)) + - - - + ¢x(C(Sn)) for some function ¢.

Our examples will make use of x1. g Py via the following trick: take a permutation
7t as defined in Chapter 1 such that 77(x) =y, 1(y) = x and 71(z) = z for all z # x,y;
then use Neutrality to provide the contradiction. The counterexamples that involve
MS and EIG will make this trick clear.

Take the choice function: C(x,y) = x, C(x,y,z) =y, C(x,z) = z. The swaps
solution here suggests yPI\C,I%x. By Neutrality the permutation 7t produces xPISI%y.
Let’s now add C(x,z) = z on both the choice functions. In the original choice func-
tion we still have yPISIDSU{X’Z}x, but in the one after the permutation we have xIygy.
This suggests that the new set is helping y in some way. But then by Krantz’s in-
dependence we should have fo,l{g’Z}x only over z = C(x,z) which is a contradic-
tion. Hence, the preference relation resulted from MS is not independent into the
choice function and so there exists no additive conjoint representation such that
Ec(C(Si))sek = Fy(C(Si))sek € xRpmsy.

The same can be proved for the EIG method. Take the following choice function:
C(x,z) =x, C(w,y) = w. Here, ngIDGy and given a permutation 77, by Neutrality,
yPSIDGx. Let’s now add other two choices, namely C(w,y) = w and C(z,w,y) = z.

. . . . C w, .
Here, in the first choice function we have xPEIDGU{ Y }’{Z’W}y, but in the second one we

c
have xIg; """y, This suggests that the two new choices help x over . But, EIG

doesn’t discriminate between two elements if they are never chosen; even though
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they are beaten a different number of times. Hence, F,(C(w,y) =w,C(z,w,y) =z) =

Fy(C(w,y) = w,C(z,w,y) = z); which contradicts the independence condition.
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Appendix to Chapter 2

B.1 Alternatives

We start presenting the rationale behind the parametrization of delayed payment
plans and lotteries. A drawback of the experiments of Manzini et al. (2010) and
Barbera & Neme (2017) was that some alternatives were dominated if the decision
maker happened to be a discounter. This problem led to a very high number of
rational subjects and therefore a low level of heterogeneity in preferences.
Following Agranov & Ortoleva (2017), we construct the MAIN alternatives with
no clear domination. We run a pilot experiment in the game theory classes of the
Queen Mary University of London to confirm the presence of heterogeneity in pref-

erences.

95



Appendix 96

B.1.1 Time

Table B.1. List of Delayed Payment Plans

MONTHS
ALTERNATIVES 0 3 6 9 12
ONE SHOT (09) 160 0 0 0 0
M (OS) 140 0 0 0 0
Im(09) 0 160 0 0 0
DECREASING (D) 110 50 25 0 0
M (D) 100 40 10 0 0
Im(D) 0 110 50 25 0
CONSTANT (K) 50 50 50 50 0
M (K) 40 40 40 40 0
Im(K) 0 50 50 50 50
INCREASING (1) 0 15 40 170 0
M(1) 0 10 20 160 0
Im(1) 0 0 15 40 170
NEUTRAL
Neul 15 55 30 20 5
Neu2 5 20 30 55 15

NOTE -- The amounts are described in Token. The exchange rate was fixed at 20:1 pounds. The confounding
alternatives are divided in: (1) "M" or Monotonicity Dominated; (2) "Im" or Impatience Dominated. The first
is obvious; the second regards sequence of payments with the same total summation but paid three months
later.

Table B.1 presents the comprehensive list of delayed payment plans. We use a quasi-
displays a present bias for § < 1. Among many Benhabib et al. (2010) find that in an
experimental setting subjects display a significant present bias?. We set = 0.9 such

that the following preferences arise for different levels of -:

ISee Laibson (1997) or Phelps & Pollak (1968) for a review of quasi-hyperbolic discounting. Note
the following difference in modelling discount utility:

* Exponential Discounting: v(xo,...xt) = Y=g 12, B'u(xs);
* Quasi-Hyperbolic Discounting: v(xo,...xt) = u(x0) + Y s—12, . Y u(xs);
* Hyperbolic Discounting: v(xg,...xt) = Y4—912, . [[T=01.2,.. v(t)]u(xt).

ZBenhabib et al. (2010) use a slightly different specification with fixed cost to represent the present
bias.
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Discount rate Preference — (-)
098 <y <1 I-K>D>O0OS
0.982 < ¥ <0.985 I-D>K>O0S
0.974 < v <0.982 D>~K>I>0S
0.965 < v <£0.974 D>~K>O0S>1

0.926 < vy <0.965 D>~0S>~Kx>1

0<v<0926 OS>~D>K>1

The construction is meant to penalise the two simple alternatives, OS and K.
The former is either first or second best for ¢ < 0.965, which would imply an an-
nual discount rate of about 0.65; while the latter is never a first-best alternative. This
choice has been driven by the necessity of avoiding "simplicity seeking" heuristics as
observed by Iyengar & Kamenica (2010). Conversely, the main difference between
D and I payment plans is the present bias, which is a feature of quasi-hyperbolic
discounting. In fact, without present bias we should observe I chosen by most indi-
viduals since, in an exponential model, it is the best element for any annual discount
rate bigger than 0.974. The exponential model maintains the feature that K and OS
are never the best alternatives. This reveals that any choice of these two payment
plans in a set with all alternatives available is due to (i) heuristics; (ii) exceptionally
low discount rate; (iii) negative or non-monotone time preferences that would need

the more complex hyperbolic discounting model to be encountered.
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B.1.2 Risk
Table B.2. List of Lotteries
ALTERNATIVES TOKEN PROBABILITIES ‘ EV ‘ SD
DEGENERATE (D) 50 0 1 0 50 0
F1(D) 45 0 1 0 45 0
F2(D) 50 0 0.95 0.05 475 10.9
So(D) 51 0 0.95 0.05 48.45 11.12
SAFE (9) 65 25 0.8 0.2 57 16
F1(S) 60 20 08 0.2 52 16
F2(9) 65 25 0.75 0.25 55 17.32
So(S) 70 15 07 03 535 252
FIFTY-FIFTY (50) 95 20 05 0.5 575 375
Sim 100 0 05 0.5 50 50
F2(50) 95 20 0.45 0.55 53.75 37.31
So(50) 110 20 0.4 0.6 56 44.09
RISKY (R) 300 5 0.2 0.8 64 118
F1(R) 250 5 0.2 0.8 54 98
F2(R) 300 5 0.15 0.85 4925 105.34
So(R) 500 5 0.1 09 545 1485

NOTES -- The amounts are described in Token. The exchange rate was fixed at 10:1 pounds. The confounding alternatives are
divided in: (1) "F1" and "F2" - First Order Stochastically Dominated; (2) "So" - Second Order Stochastically Dominated; (3) Sim -
SIMPLE. This latter was created to check for "simplicity seeking” heuristics connected to simple numbers.

Table B.2 presents the comprehensive list of lotteries. The parametrization follows a

CRRA utility function with parameter 7y such that the following preferences arise:

Risk parameter Preference — (>)

- 0<y<0.1 R > 50/50 = S = D _
01<9y<02 S >50/50 - R >D
02<9<0.6 S >~ 50/50 - D = R
06<vy<19 S > D > 50/50 >~ R

=19 D >~ S > 50/50 -~ R |

Some evidence about estimation of risk aversion parameters in laboratory (Bom-
bardini & Trebbi, 2012), (Harrison & Rutstrom, 2008), (Soltani et al., 2012) and on

field (Kim & Lee, 2012) seem to suggest that in binary sets S, 50/50 and R should



Appendix 99

obtain a substantial amount of choices since v > 1 has been rarely observed, es-
pecially in laboratory experiments. R has been designed to attract risk neutral in-
dividuals, while 50/50 has been slightly penalised against S due to the fact that it
could be chosen using simplicity seeking heuristics (Iyengar & Kamenica, 2010). In
general, the amount of token in the three non-degenerate lotteries has been set in
order to avoid simple amounts such as (10, 100 or 1000) and make the calculation
of expected values not straightforward. Finally, the SIMPLE lottery (100,0) with 50
percent probability has been created to test the robustness of the simplicity seek-
ing argument. Notice also that Second Order Stochastically Dominated alternatives
have a smaller mean than the MAIN alternatives. This was to guarantee a suffi-
cient choice of MAIN alternatives as well as highlight subjects with risk-seeking

behaviour.

B.2 Order of Questions

Another drawback of previous experimental designs was the absence of confound-
ing alternatives. This is a crucial feature of our design since it allows us to observe
violations of structural axioms such as monotonicity or impatience and to reduce
the learning effect. The construction of the questions is based on the literature re-
garding the order effect. A survey can be found in Day et al. (1987). They identify

four factors as sources of order effects:

1. Discovered preference hypothesis (Plott, 1993) and Institutional learning.
The first refers to respondents that, when faced with new decisions in unfa-
miliar environments, exhibit significant randomness in initial decisions. The
second is related to the fact that respondents may have never experienced a

lab experiment and surely they have never experienced the present design;

2. Fatigue: respondents may get tired of the choice task, especially if it is re-
peated many times. Hence they could exhibit higher randomness in later

tasks;

3. Starting point effect: Respondents may create a reference point in some choice

task and based subsequent choices on that.
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Table B.3. List of Questions - Time

QUESTIONS ALTERNATIVES
1 r oS D
2 0s K
3 0s I
4 D K
5 '\AA D |
6 A= K |
7 0s D K
N
8 0s D I
9 0s K I
10 D K I
11 L os D K |
12 D) | M(D)
13 A D I M(l)
14 D D | Im(D)
15 L D I Im(1)
16 Im(0S) Im(D) Im(K) Im(l)
17 M(©OS) M[D) MK) M()
18 Neul  Neu2
19 M(OS) M(D) Neul Neuw
20 ImKK) Im() Neul Neu2
21 D I M(D) M() ImD) Im(l) Neul Neu2
22 B 0s D K | M(@©OS) M(D) M(K) M() Neul Neuw
23 | 0s D K I ImOS) ImD) ImK) Im(l) Neul Neu2
24 G D | M(©OS) M(K) ImOS) Im(K) Neul Neu2
25 0s D K | M@©OS) M(D) M(K) M) ImOS) ImD) Im(K) Im(l)
Table B.4. List of Questions - Risk
QUESTIONS ALTERNATIVES
1 r D S
2 D 50
3 D R
4 S 50
5 M S R
A
6 P 50 R
7 D S 50
N
8 D S R
9 D 50 R
10 S 50 R
11 L D S 50 R
12 S R F1(S)
13 A S R So(9
14 D S R F1(R)
15 S R So(R)
16 F2(D) F2(S) So(50)
17 F2(D) F2(R) So(50)
18 F2(S) F2(50) F2(R)
19 F2(50) Sim
20 D S 50 R So(D) So(S) So(50) So(R) FI(D) F1(50)
21 B D S 50 R So(D) So(S) So(50) So(R)
22 | D S 50 R F2(D) F2(S) F2(50) F2(R)
23 G Sim S 50 R So(D) So(S) So(50) So(R)
24 Sim R s 50 D SoD) SoS So(R)
25 D s 50 R F1D) FLS) FL50 FLR) Sm F2(R)

In order to reduce the magnitude of the first two effects, we construct confound-

ing alternatives, as described in Appendix B.1. We also avoid that subjects create
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an immediate knowledge of the MAIN alternatives designing a heterogenous list of
questions. This design feature has been previously exploited by Badescu & Weiss
(1987) and suggested by Charness et al. (2012). As described in Table B.3 and B.4, the
questions are divided into three main domains: MAIN, AD and BIG. The remaining
questions are neutral questions.

As suggested in Carlsson et al. (2012) and Ladenburg & Olsen (2008), we in-
clude three trial questions before each part of the experiment in order to reduce in-
stitutional learning. These questions have irrelevant alternatives and different num-
bers of alternatives as to not affect the preferences of individuals or create reference
points.

Fatigue is not a major issue. Numerous studies find no or small differences in
preferences due to fatigue in experiments with a sequence of identical choice prob-
lems (Carlsson et al., 2012) (note that our choice problems are not identical). We set
the number of questions to 50, more or less in line with the literature: Agranov &
Ortoleva (2017) asked 70 questions, Cavagnaro & Davis-Stober (2014) 120 questions,
Manzini et al. (2010) 22 questions, Barberd & Neme (2017) 16 questions. However,
the first two experiments involved pairs of lotteries and so they have a simpler de-
sign compared to our experiment; while the second two experiments lasted only 15

to 30 minutes which is much less than usual experiments in the field.
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Table B.5. List of Orders

TIME RISK
ORDER 1 ORDER 2 ORDER 1 ORDER 2
21 24 23 21
14 14 13 13
1 4 1 4
23 16 20 24
10 3 10 3
13 13 14 14
3 1 3 1
19 17 16 18
7 8 7 8
22 22 22 22
2 10 2 10
18 18 19 19
11 11 11 11
20 19 17 16
15 15 15 15
9 9 9 9
25 25 25 25
8 6 8 6
17 23 18 20
4 2 4 2
12 12 12 12
16 7 24 7
6 20 6 17
5 5 5 5
24 21 21 23

In Table B.5 we present the four orders that have been used. The construction
of the two orders, both in Time and Risk, has followed a structural randomization.
Namely, we divided the alternatives in the four similarity groups shown in Table B.3
and B.4. Then, we randomized the positions in order to avoid, as much as possible,
similar questions to arise consecutively. In order to test for reference points and,
more generally order effects, we fixed the position of certain questions (e.g. number
11) while for others we inverted positions (e.g. number 21 and 24).

In Table B.6 we present the descriptive statistics related to the four possible treat-

ments for WARP violations in the MAIN sets:
1. Order 1 & Time/Risk;
2. Order 1 & Risk/Time;

3. Order 2 & Time/Risk;
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4. Order 2 & Risk/Time.

Table B.6. WARP Main Sets - Treatments

TIME RISK
M ean Std. Dev. M ean Std. Dev.
Treatment 1 1.8333 2.7826 5.0555 3.8689
Treatment 2 2.7179 3.6343 5.5128 3.4859
Treatment 3 1.5333 2.1613 3.7667 2.9088
Treatment 4 1.6500 2.6365 5.3250 3.1896

NOTES -- In Time no difference in the mean among Treatmentsis statistically significant.
In Risk the 3rd Treatment has less violations than the 1st and 4th with significance at 5%.

B.3 Questionnaire

In order to have more insights into the understanding of the experiment, we con-
ducted a non-incentivized questionnaire. In the first part, summarized in Table B.7,
subjects were asked to agree or disagree with some statements. We find that over-
all subjects show both a good understanding of the experimental design and of the
instructions. They also report signals of learning effect expressed both in terms of
preference learning and quicker response times. The reward has been considered

overall a significant contribution of their daily budget.
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Table B.7. Questionnaire 1

QUESTIONS MEAN SD
1 | got a good under standing of overall experlment flncentlv&& how 1550 0.600
to choose, nature of the alternatives)" .
5 Theinstructions and explanatloqs pr0\'/|ded .ha\'/e been enough to 1.366 0.622
under stand experiment's duties” .
3 Theclarity of_my preferenceson the athrnan\‘/‘esmproved 1993 0.961
during the cour se of the experiment” .
4 Thetimerequired for choosing hasre:ﬂuced during the cour se of 1931 1.045
the experiment"”.
5 Themoney | earn through participating in thisexperiment isa 2 462 1167

substantial contribution to my daily budget"

NOTE - Subjects could reply to this statement choosing one of the following: "Strongly Agree”, "Agree", "Neutra",
"Disagree", "Strongly Disagree”. The answers have been matched to numbers from 1 to 5; where 1 is " Strongly
Agree" and 5is"Strongly Disagree".

In the second part of the questionnaire (Table B.8), subjects were asked to reply
with a "Yes" or "No" to a series of questions about the structure of the experiment
and their behaviour. Overall they accepted the idea that some questions were more
difficult than others and they indicated the high number of alternatives as to the
main source of complexity. Strangely, but comprehensively, most of the subjects had
the impression that some questions were repeated even though it was not the case.
They overall confirm to have read all alternatives before choosing; importantly note
that reading and paying attention sometimes do not overlap. Finally, they confirm
the presence of reference point effects.

Questions 6 and 7 focus on the reasoning of subjects. About half of the subjects
report risk neutrality via the use of the "highest expected value" criterion; while

about two thirds report patience via the use of the "highest summation" criterion.
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Table B.8. Questionnaire 2

QUESTIONS YES NO

" Did you find that some questions were mor e difficult than

others?" 123 22

"1f yes, what featuresdid play a main rolein making these
2 questions more difficult?" [YES - High number of alternatives] - 92 53
[NO - Complexity of some alter natives]

3 " Do you think some questions wer e asked multiple times?" 133 12
4 Did you alwaysread all the_aJter"natlves carefully before 118 27
choosing?
5 " Did you base some decisions on previous choices?" 123 22
"In case of lotteries, in general, did you calculate the expected
6 value and choose according to the " highest expected value" 75 70

criterion?"

In case of delayed payment plans, in general, did you calculatethe
7 summation of the plan and choose according to the " highest 97 48
summation™ criterion?

NOTE - Question 2 wasn't given to subjects asa Y ES/INO; but here it has been trandated into Y ES/NO to ease the
Table representation.
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B.4 Instructions

Figure B.1. General Instructions

General Instructions

This is an experiment in the economics of decision-making and in particular risk and time attitudes of individuals.

Notice there is no RIGHT or WRONG answer for any of these questions. We are interested in studying your
preferences.

The tasks are extremely simple and if you make good decisions you may earn a considerable amount of money that
will be paid to you by direct debit at the end of the experiment and at particular times in the future.

The currency in this experiment is called tokens.

The experiment should last at maximum 1:30 hour even though more probably around 1 hour. It is divided in four
parts:

1. Part 1: 25 Questions;
2. Part 2: 25 Questions;
3. Questionnaire

4, Test

At the end of experiment, the computer will randomly choose on question for each part of the experiment and pay
your choice. In case of Lottery the computer will also play out the Lottery according to the respective probabilities.

Your total earning from the experiment will consist of the sum of three components:

1. One Choice from Part 1;
2. One Choice from Part 2;
3. A participation fee of £ 5.

Notice:

There is no time constraint for any question;

Before each part of the experiment you will complete a three questions trial in order to make you fully
understand which kind of questions you are going to answer. The alternatives in the trial questions do not have
sense and will not be considered in the calculation of your reward.

After you click the “OK” button, there might be a short delay before the next question appears, due to the
software. Please be patient.

At the end of PART 1 the screen “BREAK” will appear. Please remain sit and wait. During the break you are not
allowed to speak with anyone. You will receive the instructions for PART 2 and the experiment will restart.
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Figure B.2. Specific Instructions I

Specific Instructions

Instructions are visualized on the screen before each Part of the Experiment. This is the paper version. You can keep it
and revise it in case you have doubts about the experiment.

The exchange rate for this part of the experiment is:

20 Token=£1

In this part, you will choose among Delayed Payment Plans. The following screen shows a delayed payment plan:

150 Token 0 35 20 § 0

o Option A
o Months 0 3 6 9 12

Monms |

A delayed payment plan is described in two ways:

A histogram, on the left, allows to visualize the number of tokens paid at different months;
A table in which Token and Months are written.

This delayed payment plan allows you to win 35 Tokens in 3 months, 20 Tokens in 6 months and 5 Tokens in 9 months.

On the right you can see a Button to select. If you click on “Option A” you select this Delayed Payment Plan and a black
frame will appear.

A Token ] 5 20 5 0
1 Option A

2 M. Months 0 3 6 [ 12

You can change your choice even after you have selected one. When you are sure of your choice you can click the
Button “OK” in the Right-Bottom part of the screen (see below). Once you clicked “OK” your decision is recorded and
you cannot change it.

Notice:

Questions may have a different number of alternatives to choose from;
Delayed Payment Plans may different both in Token and in Time of Payments.
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Figure B.3. Specific Instructions II

Specific Instructions

Instructions are visualized on the screen before each Part of the Experiment. This is the paper version. You can keep it
and revise it in case you have doubts about the experiment.

The exchange rate for this part of the experiment is:

10 Token=£1

In this part, you will choose among Lotteries. The following screen shows a lottery:

Token ‘ 2 &
Option A

Probabilities 50% 50%

A lottery is described in two ways:

A pie, on the left, allows to visualize the probabilities to win;
A table in which Token and Probabilities are written.

This lottery allows you to win 2 Token with 50% probability and 5 Token with 50% probability.

On the right you can see a Button to select. If you click on “Option A” you select this Lottery and a black frame will
appear.

Token 2 5
Optioa A

Probabilitias 50% 50%.

You can change your choice even after you have selected one. When you are sure of your choice you can click the
Button “OK” in the Right-Bottom part of the screen (see below). Once you clicked “OK” your decision is recorded and
you cannot change it.

oK I
Notice:

Questions may have a different number of alternatives to choose from;
Lotteries may different both in Token and in Probabilities.
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B.5 Screens

Figure B.4. Screen Lotteries

Token 100 o Token 65 25
Option A Option E
50% 50% 80% 20%
Token 500 5 Token 105 20
Option B Option F
10% 90% Probabilities. 40% 60%
Token ) 15 Token 51 0
Option C Option G
Probabilities 0% 30% Probabilities 9% 5%
Token %0 2% Token 300 5
Option D Option H
Probabilities 50% 50% 20% 80%
Token Token
180, 180,
1501 Token 0 0 15 40 170 1501 Token 5 20 30 55 15
120 120
= Option A = Option E
32 Months o 3 6 9 12 32 Months o 3 6 9 12
= 0 3 6 9 12 15 = 0 3 6 9 12 15
Montns Montns
Token Token
180 1
150 Token | 15 55 30 20 5 150 Token | 110 50 2% 0 0
120 120
:‘ﬂ’ Option B :‘ﬂ’ Option F
38 __._-_-____ Months. 0 3 6 9 12 32 Months. 0 3 6 9 12
E 6 2 15 5 0 3 5 9 1 15
Months Months
Token Token
180, 180,
1501 Token 0 15 40 170 0 1501 Token 0 10 20 160 []
120 120
= Option C = Option G
32 Months o 3 6 9 12 32 Months o 3 6 9 12
50 3 8 9 1 15 5 0 3 5 9 1 15
Montns Montns
Token Token
180 1
150 Token | 100 0 10 0 0 150 Token | 0 10 50 % 0
120 120
SZ Option D SZ Option H
32 Months o 3 6 9 12 32 Months o 3 6 9 12
5 0 3 8 9 1 15 5 0 3 5 9 1 15
Months Months
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Appendix to Chapter 3

C.1 Additional results

C.1.1 More on Higher, Lower Negative Transitivity and Strong Stochastic

Transitivity.

This section helps to clarify the two new deterministic versions of transitivity that
we introduced: LNT and HNT. So far we proved that LNT neither implies nor is im-
plied by transitivity; while HNT is stronger than transitivity. Interestingly, a binary
relation that satisfies this property is a special case of semiorder. In fact, it satisfies

both strong intervality and semitransitivity.

Definition. A binary relation > satisfies strong intervality [SI] if x > y and z > w implies

x >=worz>yforall x,y,z,w.

Definition. A binary relation > satisfies semitransivity [ST] if x = y and y > z implies

x >=worw >z forall x,y,z,w.
Proposition. If - satisfies HNT then it satisfies SI.

Proof. Suppose by contradiction that x >y, z > w, x ¥ w and z # y. If w =y, the
contradiction arise from x > y and x ¥ y. If w = z, HNT is violated since x > y, x  z
and z # y. If w = x, transitivity is violated since z > x > y but z ¥ y.

Conversely, let x >y, z = w and x > w. Sl is satisfied but not HNT. O

Proposition. If > satisfies HNT then it satisfies ST.

111
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Proof. Suppose by contradiction that x > vy, y > z, x # w and w  z. If either w = x
or w = z then transitivity is violated since x # z and if w = y again the contradiction
arise from x > y and x i y.

Conversely, let x > y then ST is satisfied but not HNT. O

Note that, HNT and LNT are not exactly properties of a binary relation. They are
properties of a tuple (>,>>), with >> that preserves >. Formally, x > y implies x >y
for all x,y. Fishburn (1999) shows that a function satisfying this latter property can
be constructed on any set endowed with an acyclic binary relation >. It is therefore
not surprising that x > y > z, x  z satisfies LNT but not transitivity and that a
binary relation satisfies either LNT or HNT if and only if it is acyclic.

One can notice that HNT characterizes a binary relation that is stronger than both
interval order and semiorder. This condition is respected in stochastic choice. The
reader may verify in Fishburn (1973) that SST is stronger of both Interval Stochastic
Transitivity (IST) and J-Stochastic Transitivity (JST) that together characterize >, to
be a semiorder for all y € [0.5,1), while only IST characterizes > u to be an interval
order for all i € [0.5,1). The definition of >~ can be found in Section 3.4.2 of Chapter
3.

C.1.2 Relaxing Antisymmetry

In Section 3.3 we introduced two properties MST* and SST* that are modifications
of the well-known MST and SST. Here, we generalize this modification to WST that

is traditionally defined as follows:

Definition. A stochastic choice rule p satisfies Weak Stochastic Transitivity [WST] if for

all x,y,z € A:

p(x,y) & p(y,z) >05 = p(x,z)>05

This property is equivalent to the existence of a utility function u such that
u(x) > u(y) if and only if p(x,y) > 0.5 and u(x) = u(y) if and only if p(x,y) = 0.5.
Marschak & Block (1960) presents a comprehensive analysis of WST. We now define

a modification of the property.
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Definition. A stochastic choice rule p satisfies Weak Stochastic Transitivity* [WST*] if for

all x,y,z € A:

N[ =

p(xy) & p(y,z) & p(xz) >
and either of the following holds:
(1) min[p(x,y),p(y,2)] =3 = p(xz)>minlp(x,y),p(y,2)]

(2) p(x,z) =p(x,y) = p(v,2)

The following result states that if AST is satisfied then the two above properties

are equivalent.
Proposition. A stochastic choice rule p satisfies WST if and only if it satisfies WST*.
Proof. Let AST be satisfied.. The following cases are possible:

(i) p(x,y) =p(y,z) = p(x,z) = 0.5. Both WST and WST* are not violated;

(i) p(xy) & p(x,z) >0.5and p(y,z) =0.5. WST and WST* are both not violated;

(iii) p(x,y) > p(y,z) = p(x,z) =0.5. Both WST and WST* are violated since u(x) =
u(z) = u(y) < u(x) and condition (1) of WST* is violated. Note that AST is not

violated.

(iv) p(x,y) & p(y,z) > 0.5 and p(x,z) = 0.5. Both WST and WST* are violated.

Again, AST is satisfied.

) p(x,y) & p(y,z) & p(x,z) > 0.5. Both WST and WST* are satisfied.

C.2 Proofs

C.2.1 Proof of Theorem 1

Necessity: Suppose ¢ satisfies triangle inequality and take x,y,z € A. Let x > y and

y > z then:
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u(x) —u(y) > e(x,y)
u(y) —u(z) > e(y,z)

Combining the two inequalities and using triangle inequality:

u(x) —u(z) >e(x,y) +e(y,z)
u(x) —u(z) > e(x,z)

hence x > z and transitivity is satisfied.

Sufficiency: The proof is constructive and it is divided into five steps.
Step 3.

We first construct a utility function such that x > y implies u(x) > u(y). Let
u(x)=[{te At} x}|

By x > y and transitivity of > we have {t € A:t>x} C {t € A:t > y} since
if an element ¢ is preferred to x, by transitivity it is also preferred to y. Hence, the
completements of these sets have an opposite subset relation: {t € A:t ¥ x} D {t €

At # y}, which implies u(x) > u(y).l.
Step 4.

From this step on, we construct the quasi-metric. First, let d(x,y) be the shortest
path metric of the transitive graph G of the partial order . This metric has the

following characteristics:
lL.x=y=dxy =1

2. xfyAyFx]=dxy)>1

3. d(x,y) > 2 implies that there exists a sequence (x1,...x;,) such that:

X1 > X2 <X3 X4 > X = Xp41

IThis step has been highlighted also by Fishburn (1999)
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where 7 is even.

Point (1), (2) are immediate. Let’s prove point (3):

Suppose d(x,y) = 2 then there exists an element z such that either (i) x >z, y > z
or (ii) z > x, z > y. Clearly, if x > z > y then by transitivity x > y but then d(x,y) = 1.

(i) - Suppose we want to increase d(x,y) then take a w: if w > x (or w > y) by
transitivity w > z and d(x,y) = 2. If z > w then d(x,y) is not influenced.

(ii) - Again take a w: if w > z then by transitivity w > x, w > y and d(x,y) = 2. If
z > w then d(x,y) is not influenced.

Hence, we need two elements z,w such that x >z, w > z and w > y given
d(x,y) = 3. Following this idea we can increase d(x,y) = n — 1 where n is the cardi-

nality of A.
Step 5.

The shortest path metric proposed in Step 2 needs to be refined. We trans-
form the graph G into an undirected weighted graph. For any edge e = (x,y)
of the undirected graph corresponding to the directed graph G define a weight
w(e) = |u(x) —u(y)|. Define P(x,y) as a path from x to y and define a weight
w[P(x,y)]= Y w(e). Let é(x,y) be the minimum weighted path from x to y.
Since > is nofcecpcgfgf))lete, it can be that there is no path between two elements x,y. If
this is the case we set 6(x,y) = n* where n* = rr;gxé(x,y) + e with & > 0. This choice
respects the finiteness of J and it is in line with the usual convention of setting the

distance between two unconnected node as infinite. By Monjardet (1980) we have

that 6(x,y) is a quasi-metric. This result is straightforward:
@) o(x,x) =0;
(i) 6(x,y) =4(y,x) since the graph is undirected;

(iii) 6(x,z) <d(x,y) + 6(y,z). To see this suppose y is on the Minimum Weighted
Path between x,z then by definition §(x,y) + 6(y,z) = é(x,z). If y is not on
the Minimum Weighted Path then by definition é(x,z) < d(x,y) + é(y,z) oth-
erwise minimality would be violated. Finally, if x,z are not connected there

exists no y such that both x,y are connected and vy, z are connected. This means
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thatif x,y are not connected §(x,y) = (x,z) and by positivity é(y,z) > 0, hence

triangle inequality is satisfied.

Step 6.

Now, we need to prove that > has a BT representation. First, we prove that
x >y implies u(x) — u(y) > - d(x,y) for all v € [0,1). This is immediate. By Step
1 we have u(x) > u(y). By definition, é(x,y) = u(x) — u(y). Hence, u(x) — u(y) >

7 - [u(x) —u(y)| for any v € [0,1).
Step 7.

Finally, we have to prove that [x % y Ay % x| implies u(x) —u(y) < -d(x,y) for
some 7y € (0,1].

Suppose w.l.o.g. that u(x) > u(y) and let’s prove by induction over the shortest
path d(x,y) as defined in Step 2 from x to y.

By Step 2, we start analysing the case d(x,y) = 2. We have two cases: (i) x > z,
y>=zand (i) z > x,z > y.

(i) -if u(x) = u(y) then we can write the inequality as u(x) — u(z) + u(y) —u(z) >
0. Since u(x) > u(z) and u(y) > u(z) the inequality is strict and for all v € [0,1) the
inequality y - 6(x,y) > 0 is satisfied.

If u(x) > u(y) then the inequality is u(x) — u(z) + u(y) — u(z) > u(x) — u(y) but
2u(y) > 2u(z) and the inequality is strict. Hence, there exists a v € (0,1) such that

the weak inequality is satisfied. The value of vy is:

1>v>

u(x
u(x) +u(y) —2u(z)
(ii) - if u(x) = u(y) by the same argument as before, for all ¥ € (0,1) we have that
v [2u(z) —u(x) —u(y)] > 0.
If u(x) > u(y) then there exists a v € (0,1) such that the inequality is satisfied

and the value is:

R ()

= 2u(z) — u(x) —u(y) "
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By definition of 6(x,y) if there exist two elements z, t such that conditions (i) and
(i) are satisfied then we select the minimum path. Furthermore, again by definition
of 4, 6(x,y) is minimized and so <y is maximized for each x,y. However, this is
not enough, in fact in order to satisfy triangle inequality for all x,y € A we have to
multiply d(x,y) by the same parameter 7. The selection is found maximizing among
alternatives:

N u(x) —u(y)

Y = argmax
XYEA: X FYNYFx] (S(XIJ/)

This condition guarantees that if 7* is selected by x,y then [x % y Ay # x| implies
[r # t At 1] for all other 7, t € A.
Suppose the result holds for d(x,y) = n and let d(x,y) = n + 1. By Step 2, there

is a sequence (x1,...,X,42) such that:

X1 > X2 < X3 > X4 > Xpp1 = Xpn42

The inequality that must be satisfied is:

u(xr) —u(xny2) <Y u(x) — u(x))

ij
where i is odd, j is even and i, are consecutive numbers.
If n + 2 is even then the inequality is immediately satisfied. If n + 2 is odd then

the inequality is:

0 < —u(xy) +u(xs) —u(xp) +u(xsz) —u(xg) +u(xs)...u(xp42) — u(xy41)

if the condition holds for d(x,y) = n then the inequality is reduced to:

0 < u(xnt2) — u(xnt1) + u(xns2) — u(xnt1)

which clearly holds strictly since u(x,42) > u(x,41).

Hence, we have proved that the representation holds with e(x,y) = v* - §(x,y)
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for all x,y € A. Clearly, ¢(x,y) maintain all the properties of 4(x,y) and it is therefore

a quasi-metric.

C.2.2 Proof of Theorem 2

Necessity: Let u(x) > u(y) > u(z) and suppose by contradiction that:

p(x,z) <min[p(x,y),p(y,z)]

and it is not the case that p(x,y) = p(y,z) = p(x,z).

Since ¢’ is strictly increasing in p, given four real numbers Ay, Ay, piq, 2 € R
(p(x,2)) + A1 =c'(p(x,y))
(p(x,2)) +m = (p(y,2))
c(p(z,x)) = A2 =c'(p(y,x))

(p(z,x)) —p2 = (p(z,y))

By definition, the following holds:

oy (P(0Y)) = €y (P(Y, X)) + ¢4y 1 (P(y,2) — €,y (P(2,Y) =

= oy (P(%,2)) = €y 1y (P(2,X))

and

n(x,y) - [ (p(xy) = (p(y, )] +1(y,2) - ['(p(y,2) — ' (p(z.y))] =

=1(x,2) - [c(p(x,2)) = '(p(z,%))]

Substituting, we obtain:

[7(x,y) +1(y,2)] - [ (p(x,2)) = ' (p(z, )] +1(x,y) - (A +2A2) +11(y,2) - (11 + p2) =
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=1(x,2) - [ (p(x,2)) = '(p(z,%))]

If the inequality is strict then 17 (x,z) > 1(x,y) + 1 (y,z) violating triangle inequal-

ity. If p(x,y) = p(x,z) < p(y,z) or p(y,z) = p(x,z) < p(x,y) again triangle inequality

is violated.

Sufficiency: Let MST* be satisfied. By Theorem 1 of He & Natenzon (2018): there
exists a moderate utility representation, namely a utility function u and a distance
metric d such that for any x,y,z,w € A (note that their proof is constructive):

p(xy) = p(z,w) < u(z)(; yu)(y) = ”(Z)é,iﬁgw)

We construct a strictly increasing function F that maps the probabilities into the

numerical representation given by u,d such that:

_ u(x) —uy)
Fren)l = =40

_ u(z) —u(w)
Flrz o)l = =0

The construction uses a piecewise linear function F on the interval [0.5,1). First
let F(0.5) = 0. Then, for all x,y € A define an interval [p(x,y) — ¢, p(x,y) + €] with e
sufficiently small such that the interval does not overlap with any other intervals.

Let Flp(x,y) — €] = ”(22;;‘)@) —dand F[p(x,y) +¢| = %,yu)(y) + ¢ again with &

- . wx)—u(y) ¢ ulx)-u(y)
sufficiently small such that no interval ay) J, Axy)

+ 6| overlaps with
other intervals.

Take four elements x,y,z,w € A such that p(x,y) > p(z,w) and the probabilities
are immediate successors. For all p € [p(z,w) + ¢, p(x,y) — €] define the following

linear function F passing through the points above defined:

F(p) — Flp(zw) +¢] p—Ip(zw) +¢

Flp(x,y) —el = Flp(zw) +¢]  p(xy) —e—[p(z,w) +¢
The same function is defined for intervals [0.5,p(z,w) — €] and [p(x,y) +¢,1)

where p(z,w) and p(x,y) are respectively the minimum and maximum probabilities.



Appendix 120

Finally, for all x,y € A in the interval (p(x,y) —¢, p(x,y) +¢) define another linear

function F:

F(p) — Flp(x,y) — ¢ _ p—Iplxy) —¢

Flp(x,y) +e¢] = Flp(x,y) —¢l  p(xy) +e—[p(xy) — ¢

which can be rewritten as:

_ u(x) —u(y)
F(p)=p—p(xy) + Ty

Clearly, we have lim,_, ., F(p) = ”(2;’5)@ ). By the existence of the limit in
p(x,y) for all x,y € A, F is also differentiable in the relevant finite points p(x,y).
Also F is strictly increasing on [0.5,1) and bounded by finiteness of u and strict
positivity of d, hence F is integrable.

Let a cost function be c(p) = [ 5 F(t)dt. By the First Fundamental Theorem of
Calculus, ¢/(p) = F(p).

Finally, we can use u, d from He and Natenzon (2018) and c just defined to write

a maximization problem:

max u(x)p(x,y) +u(y)[1 - p(x,y)] —d(x,y)c(p(x,y))
p(xy)

which can be rewritten (dividing everything by d(x,y) > 0) as:

w —uly)] | w®
%a}ﬁp(x,y) A7) +d(x,y) (p(x,y))
By the FOCs we have:
ulx) —uly)

=c(p(x,
iy (p(x.y))
This proves that MST* implies the existence of a BAPU representation where 7
is a metric.
C.2.3 Proof of Theorem 3

Necessity: Let u(x) —u(z) > &(x,z). By the violation of triangle inequality, u(x) —

u(y) + u(y) — u(z) > e(x,y) + €(y,z) which implies either u(x) — u(y) > e(x,y) or
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u(y) —u(z) > ey, 2).

Sufficiency: Using Theorem 2.5 and Theorem 4.1 by Aleskerov et al. (2007) the
following results hold: the existence of a BT representation if and only if - is acyclic
if and only if there exists a weak order > such that x > y implies x > y. Namely,
> preserves . Therefore, (A,>>) is a weakly ordered set. We can define LNT on
(A,>). We now need to construct a function ¢ that violates triangle inequality (or
satisfy it with equality) wherever LNT is satisfied at some x,y,z € A.

If x = ylete(x,y) = |u(x) — u(y)| — o for some small ¢ > 0. If [x ¥ y Ay i x] let

e(x,y) = |u(x) — u(y)|. The binary relation is represented:
1. x > yimplies u(x) —u(y) > e(x,y);
2. [x fy Ay x| implies u(x) — u(y) = e(x,y).

We have to prove that ¢ violates triangle inequality when u(x) > u(y) > u(z).
Note that |u(x) — u(y)| + |u(y) — u(z)| = |u(x) — u(z)|. Also, forall x,y € A, u(x) =
u(y) implies x ¥ y and vice versa; but the converse is not true. For instance, let
x>y, y > zbutx ¥ z. One can see that x > y > z preserves >, hence u(x) > u(z).

By LNT the following cases are possible:

(i) if x =z, x> yand y > z then: |u(x) —u(z)| —o =¢(x,z) > e(x,y) +e(y,z) =

|u(x) —u(z)| —20;

(i) if x = zand x > y then: |u(x) —u(z)| — o =¢(x,z) = e(x,y) + e(y,z) = |u(x) —

u(z)| —o;

(iii) if x = y and y > z then: |u(x) — u(z)| = e(x,z) > e(x,y) +e(y,z) = |u(x) —
u(z)| —20;

(iv) if x =y then: |u(x) —u(z)| =¢(x,z) > e(x,y) +e(y,z) = |u(x) —u(z)| — o;

(v) if == @ then e(x,z) = e(x,y) + ¢(y,z).

C.2.4 Proof of Theorem 4

Necessity Letu(x) > u(y) > u(z) and suppose by contradiction that:
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p(x,z) > max[p(x,y),p(y,z)]

Since ¢’ is increasing in p, given four real numbers Ay, Ay, 1, s € Rt

c'(p(x,2)) = M =c'(p(x,y))
c'(p(x,2)) — 1 =c'(p(y,2))
c'(p(z,x)) + A2 =c'(p(y,x))
c'(p(z,x)) + p2=c'(p(z,y))

Following the same approach that we used in Theorem 2 we obtain:

[7(x,y) +1(y,2)] - [ (p(x,2)) = ' (p(z, )] = (x,y) - (M +A2) = 5(y,2) - (1 + p2) =

=1(x,2) - [ (p(x,2)) — ' (p(z,%))]

hence: 17(x,z) < n(x,y) + n(y,z) satisfies triangle inequality.
Note that if either p(x,z) = p(x,y) > p(y,z) or p(x,z) = p(y,z) > p(x,y). Then

we have A = Ay = 0 but yq, 42 > 0 (or vice versa) and the result still holds.

Sufficiency This part requires a construction similar to the one in He & Natenzon
(2018). The utility function is taken from their construction: WST is satisfied; hence
we let x > y if and only if p(x,y) > 0.5, obtaining a linear order. Since A is finite,
there exists a utility function u : A — {1,2,...,|X|} such that x > y if and only if
u(x) > u(y).

Let Y = A; be the set of binary subsets of A and let m be the cardinality of the
set {|p(x,y) —0.5| > 0:{x,y} € Y}. Partition the set Y in m disjoint sets such that
{x,y} € Y; and {z,w} € Y; with i > j if p(z,w) > p(x,y) > 0.5. Let (D;)!", be a
sequence of strictly positive numbers that is attached to the sequence of sets (Y;)!" ;.

The distance between x,y when {x,y} € Y; is defined as follows:
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1(x,y) = Dilu(x) — u(y)|

Take three elements x,y,z such that u(x) > u(y) > u(z), with {x,y} € Y;, {y,z} €

Y;and {x,z} €], then:

n(xy) +1y,z) —n(x,z) =
= Di|u(x) — u(y)| + Djlu(y) — u(z)| — Dylu(x) — u(y) +u(y) —u(z)| =
= (Di — Dy)|u(x) —u(y)| + (D; — Dy)|u(y) — u(z)|

We will construct the sequence (D;)!" , recursively. Note that we want triangle

inequality to be (weakly) violated:

(Di = Di)|u(x) — u(y)| + (Dj — Di)|u(y) —u(z)| <0

(Dy = Di)|u(x) = u(y)| = (Dj — Di)|u(y) — u(z)]

Given the above inequality we need to identify the worst case scenario. Namely,
the case that, when satisfied, guarantees that the inequality is satisfied in all other
cases. We argue that the worst case scenario is when utilities are u(x) = n, u(y) =
n—1, u(z) =1 (where n = |A|). Probabilities are such that p(y,z) is minimum,
therefore D; is maximum; p(x,z) < p(x,y) and these latter are immediate successor.

To verify that this is the worst case scenario note the following two facts:

¢ The LHS is strictly increasing in D; — D;; hence for them being immediate
successor is the worst case. In fact, the LHS is increasing in D), while RHS is
decreasing in D), hence when this term is minimum, D; = f(I 4+ 1), it is the

worst case;

e The LHS is decreasing in u(y), while the RHS is increasing in u(y) therefore

when u(y) is maximum, u(y) = n — 1, it is again the worst case.

Note also that m is bounded above by (5) which is the number of binary subsets
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of a set with cardinality n. We can thus rewrite the above inequality in order to
find the function f that maps the sequence {1,...7,...,m} into positive real numbers

giving us the desired sequence (D;)" ;:

n

041) = fOlIu) ~ w2 7 (3) ) =10+ D) lutw) - utz)
ran=fanz |1((5)) - s+ v|m-2)

We assume that this inequality is satisfied with equality at the worst case sce-
nario. Therefore it becomes a simple difference equation. To solve it, we need to
define the initial conditions; or in other words the first step. For instance, let f(I) =1

and f(I +1) =2 for I = 1. Solving the worst case scenario with equality becomes:

() e
()t

f (1) can be recursively constructed for any I > 3. Solving the equation:

FU+1) - (1) = Li+z—f(z+1) (n—2)

1+2(n—2)+ f(1)

fl+1) = 1+ (n—2)

Now we verify that triangle inequality is always violated when Strong Stochastic

Transitivity* is violated:

(i) If either p(y,z) > p(x,z) = p(x,y) or p(x,y) > p(x,z) = p(y,z); D, = D; > D;
or D; = D; > D;and 5(x,y) +1(y,z) — n(x,z) <0;

(i) If either p(x,y) > p(y,z) > p(x,z) or p(y,z) > p(x,y) > p(x,z); D; > D; > D;
or D; > D; > D;and 5(x,y) +11(y,z) — n(x,z) <0;
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(iii) Ifeither p(y,z) > p(x,z) > p(x,z) or p(x,y) > p(x,z) > p(y,z) then again n(x,y) +

1(y,z) — n(x,z) <0, where the equality is satisfied in the worst case scenarios.

If triangle inequality is violated then it is satisfied in the two opposite directions,
namely 7(z,x) + 1(x,y) — n(z,y) > 0and n(y,z) +1(z,x) — (y,x) > 0. We need to

verify that these conditions are met when SST* is satisfied:

1(z,x) +1(x,y) = 1(y,2) = (Di+ Dp)|u(x) = u(y)| + (D = Dj)[u(y) —u(z)| >0

n(y,2) +1(zx) = n(y,x) = (D = Di)[u(x) — u(y)| + (Dy + Dj)|u(y) — u(z)| >0

since D; > D; and D; > D;.

Now, let p(x,y) > p(z,w) with {x,y} € Y;and {z,w} € Y;:

wp) —uly) 1 1 u(z) —uw)
n(x,y) D; = D; 1n(z,w)

Let p(x,y) = p(z,w) with {x,y},{z,w} € Y;:

u(x) —u(y) 1 1 u(z) — u(w)

n(xy)  Di Di y(zw)
To complete the proof a cost function can be constructed as in Theorem 2 in order

to provide the BAPU representation.

C.3 The special case of 3 elements

Theorem.
(i) Let |A| = 3; the result in Theorem 2 holds for every strictly convex, C! cost function;
(ii) If |A| > 3, the result at (i) does not hold.

Proof. - (i)
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Let ¢ be any strictly convex, C! function with lim, o c(p) = —c0. We have that ¢’
is strictly increasing in p. Therefore ¢’(p(x,y)) > ¢’(p(y,x)) if and only if p(x,y) >
p(y,x).

We need to prove that there exists a u and # such that this latter is a metric and p
is the outcome of a perturbed maximization problem. This proposition is equivalent
to the existence of solutions for a system inequalities.

In order to prove the compatibility of such system we can rely on Motkin theo-

rem of alternatives; Dantzig (1963):

Theorem (Motzkin’s Theorem). Let A, B, C be given matrices with A being non vacuous.

Then one and only one of the following is feasible.

o There exists x such that Ax >0, Bx =20, Cx =0.

* There exists 7t,u,7y such that AT + BTy + CTy =0, 7 > 0and u = 0.

where > means semi-positive and = means non-negative.

By Weak Stochastic Transitivity, and and assuming p(x,y) # 0.5 for all x,y, we
can define a linear order over the elements of X such that u(x) > u(y) if and only if
p(x,y) > 05. Let u =(1,2,3...,n) where u(x) =1 if x is the worst element and
u(x) = n if it is the best element. So, take w.l.o.g. three consecutive elements
x,y,z € A such that u(x) > u(y) > u(z) and let Moderate Stochastic Transitivity be
satisfied. For simplicity, let ¢ (p(x,y)) — ¢ (p(y,x)) = a, ¢ (p(v,2)) — ¢ (p(z,y)) = ¢
and ¢ (p(x,2z)) — ¢ (p(z,x)) = b. Then the system is as follows:

10 0] [y
Ax = 010 n(y/z) >0

0 01 n(x,z)

Bx={1 1 —1] n(y,z) | =0
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n(x,y)
Cx = [ a ¢ —b ] n(y,z) | =0

1(x,z)

From the dual system we obtain:

_mtm, _ Mt S
T = a P c ’ - b
Hence we obtain three equations:
[C — El]]/ll = —c71 t+am [b — a]yl = —bTL’l — ars [b - C]]il = —bTL’z — CT(3

Note that the RHS of the last two equations is weakly negative since 7t > 0 and
a,b,c > 0. By Moderate Stochastic Transitivity if either b > a or b > c, the LHS of one
of the last two equations is positive and the system has no solution. Suppose b = ¢
and a > b then 7, = 713 = 0 and by definition 71y > 0 but set 1 > 0 appropriately
and the system has solution. If b = c and b > a then 71, = 713 = 0, 717 > 0 and since
b,c > 0 the system has no solution. Finally,if b=cand b =athen my = m =3 =0
violating semi-positivity and the system has no solutions.

Finally, note that if b = a = ¢ = k then by FOCs we have:

u(x) —u(y) =n(xy)k
u(y) —u(z) =n(y,2)k
u(x) —u(z) =n(x,z)k

since u(x) —u(z) = u(x) —u(y) + u(y) — u(z):

u(x) —u(y)  u(y) —u(z) _ u(x) —uy)

e BT B e

substituting we obtain
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nxyk n(y.2)k _ n(xyk

n(x,z) = n(xz) 5y

and so

n(xy) +ny,z) =n(x,z)

Proof. - (ii)

The following is a counterexample with |A| = 4 and the cost function being the

Shannon Entropy.
p(x,y) = p(z,w) =0.75 p(x,z) = p(y,w) =0.99
p(x,w) =0.76 p(y,z) =0.6

MST* is satisfied since:
p(x,z) >min[p(x,y), p(v,z)) p(y,w) >min[p(y,z),p(z,w)]

p(x,w) >min[p(x,y),p(y,w)] p(x,w) > min[p(x,z),p(z,w)]

Solving the model we obtain, among all, the following triangle inequalities:

[u(x) —u(z)]/4.59511 + [u(z) — u(w)]/1.0986 > [u(x) — u(w)]/1.15267

[u(x) —u(y)]/1.0986 + [u(y) — u(w)]/4.59511 > [u(x) — u(w)]/1.15267

Since u(x) and u(w) are the max and the min, let u(x) = 100 and u(w) = 0.

[100 — u(z)] /4.59511 + [1(z)]/1.0986 > [100] /1.15267

[100 — u(y)]/1.0986 + [u(y)]/4.59511 > [100] /1.15267



Appendix 129

By the first inequality we have that u(z) must be very close to 100 (u(z) >
93.835...). By the second inequality u(y) must be very close to zero (1(y) < 6.165...).
However since p(y,z) = 0.6 we must have that u(y) > u(z) proving the contradic-

tion.

C.4 Examples

C.4.1 Deterministic Examples

This is an example that applies the constructive proof of Theorem 1 to provide a
BT representation of a transitive binary relation. Consider the following graph of a
transitive relation:

X7 «——— X8

X1 — Xp

=
al

X9

The resulting matrix of utilities, where forall x € A, u(x) = [{t € A: t ¥ x}|is:

X1 X2 X3 X4 X5 Xg X7 X§8 X9

u/ 8 7 3 6 8 7 6 8 7
The resulting weighted graph (weights are difference in utilities):

X7 — 2 — X8

XN—1—x 2 1
N | |
5 4 %5 X9
NI 5227 |
X3 =3 — X4 1
\ ~
411 |

\x6
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Following Step 5 of the proof of Theorem 1, we solve for

: u(x) —u(y)

7" = argmax

X, YEA X FYAYFx] 5(3(,]/)
where 6(x,y) is the minimum weighted path between x,y. The maximum is
reached between xg and x3 with y* = g. Hence, if we multiply the above weights
for any ¢ € (%,1) we can represent the partial order as a BT representation. For
instance, let’s v = 0.6 the following graph arises. The reader may confirm that the

binary relation is in fact represented.

X7 — 12— X8

X1 — 0.6 — X2 1.2 0.6
N | |
3 \2.4 =% X9
| 3—127 |
X3 @M i 0.6
2406 |
— %g

C.4.2 Stochastic Examples

These are two examples that apply the constructive proof of Theorem 2 and 4. In
particular, we start with two stochastic choice functions and construct a utility func-
tion, which is common to the two proofs, and then a function # that is a metric in the
first case, while it violates Triangle Inequality in the second at exactly those triples

that violate Strong Stochastic Transitivity.

Example 1. We have the following stochastic choice function p:

A | {xyt A{xzd {xw} A{yz} {yw}  {zw}
p(A) | (0.8,02) (0.7,03) (0.8,02) (08,02) (0.85,0.15) (0.9,0.1)

* The utilities are u(x) =4, u(y) =3, u(z) =2, u(w) =1;

* The set of binary sets is partitioned in four subsets: Y1 = {{z,w}}, Yo = {{y,w}},
Ys = {{x v} v,z {x 0}y and Y = {22}
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Theorem 2 - Construction

A [{xy} {xz} {xw} {yz} {yw} {zw}
n(A)| 3 18 9 3 2 0

Note that Moderate Stochastic Transitivity* is violated in the triple (x,y,z) and (x,y,w):
n(xy) +1y,z) —n(x,z) =—-12 n(xy) +n(y,w) —n(xw)=—4

1n(x,z) +1(z,w) —n(x,w) =9 n(,z) +n(zw) —n(y,w) =1

Theorem 4 - Construction

A H{xyt {xz} {xw} {yz} {yw} {zw}
n(A)| 233 5 7 233 4 1

Note that Strong Stochastic Transitivity* is always violated:
n(xy) +1(y,2) —n(xz) = -0.33 1(xy) +n(y,w) —1(x,w) = —0.66

1(x,z) +1(z,w) —n(x,w) = -1 1(y,z) +n(z,w) —1(y,w) = —0.66

Example 2. We have the following stochastic choice function p:

A {x,y} {x,z} {x,w} {v,z} {y,w} {z w}
p(A) | (0.75,025) (0.99,0.01) (0.76,0.24) (0.6,0.4) (0.99,0.01) (0.75,0.25)

* The utilities are u(x) =4, u(y) =3, u(z) =2, u(w) =1;

® The set of binary sets is partitioned in four subsets: Y1 = {{x,z},{y,w}}, Yo =
{xw}}, Vs = {{xy} {zwt} and Yo = {{y,z}};

Theorem 2 - Construction

A |{xy} {xz} {xw} {yz} {yw} {zw}
n(A)| 3 0 3 9 0 3

Note that Moderate Stochastic Transitivity* is always satisfied:
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n(xy) +1y,z) —n(xz) =12 n(x,y) +n(y,w) —n(x,w) =0
n(x,z) +n(z,w) —n(x,w) =0 n(y,z) +n(z,w) —n(y,w) =12

Theorem 4 - Construction

A oyt {xnzd {xw} {yz} {yw} {zw}
n(A) | 2.33 2 6 25 2 233

Note that Strong Stochastic Transitivity* is violated in the triple (x,y,w) and (x,z,w):

n(x,y) +n(y,z) —n(x,z) =2.833 n(x,y) +n(y,w) —n(x,w) =—1,66

n(x,z) +1(z,w) —n(x,w) = -1,66 n1(y,z) +1(z,w) —n(y,w) =2.833

C.5 Tversky & Russo (1969)

In Section 3.4.1 in Chapter 3, we connected Additive Perturbed Utility models to

Fechnerian models. Here, we treat the case of Tversky & Russo (1969) model:

p(x,y) = Flu(x),u(y)]

where F is strictly increasing in u(x) and strictly decreasing in u(y). This model

is completely characterized by a property called (Strict) Strong Stochastic Transitiv-
ity:

Definition. A stochastic choice rule p satisfies (Strict) Strong Stochastic Transitivity [SSST]
if forall x,y,z € A:

pxy) >% & p(y,2) >% = plxz) >maxp(xy),p(y,2)]

Note that this property is the strongest introduced so far but it is similar to Strong
Stochastic Transitivity*. Even if it is not directly connected with Additive Perturbed
Utility models, a simple condition on 7 guarantees this model to be satisfied. The

proof is straightforward. It is nonetheless interesting the counterexample that shows
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how the restriction imposed on 7 is stronger than the model of Tversky & Russo

(1969).

Proposition 1. Let a stochastic choice rule p has a BAPU representation. Take x,y,z € A
such that u(x) > u(y) > u(z); there exists a function n such that y(x,y),n(y,z) > n(x,z)

only if at x,y,z € A, p satisfies (Strict) Strong Stochastic Transitivity.

Proof. By u(x) > u(y) > u(z) it must be:

n(x,z) - [c'(p(x,2)) = ' (p(z,%)] > n(xy) - [ (p(x,y) — ' (p(y,x))]

and by 77(x,z) < 1(x,y):

c'(p(x,2)) = c'(p(z,x)) > ' (p(x,y)) = ' (p(y,x))

that gives p(x,z) > p(x,y).

Note that if, by contradiction, p(x,z) = p(x,y) then by FOCs we have u(x) —
uly) = 1 (p(xy) — ¢ (plr))] < 12 (p(x,2) — ¢ (p(z,%))] = u(x) -
u(z). Hence, n(x,z) > 1(y,z).

Conversely, let c(p) be the Shannon Entropy and let p(x,y) = p(y,z) = 0.69 <
p(x,z) = 0.7 so that SSST is satisfied. Then, ¢’(p(x,y)) — ' (p(y,x)) = ' (p(y,z)) —

c'(p(z,y)) = 0.8 and ¢'(p(x,z)) — ’(p(z,x)) = 0.84 but then the following system
should have a solution with 17(x,y),1(y,z) > 1(x,z):

u(x) —u(y) =0.8n(x,y)

u(x) —u(z) =0.847n(x,z)

u(y) —u(z) =0.8n(y,z)

This can be rewritten as

0.8[n(x,y) +1(y,z)] = 0.841(x,2)

let 7(x,y) =7n(x,z) + a1 and 1 (y,z) = n(x,z) + ap for some ay,ap > 0 then:
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08 n(x,z)
0.84 25(x,z)+a;+as

(1.6 —0.84)1(x,z) = —0.8(a1 + az)

that has clearly no solution for ay,a; > 0 and 77(x,z) > 0.
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