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—Ya os he dicho, amigo –replicó el cura–, que esto se hace para

entretener nuestros ociosos pensamientos; aśı como se consiente

en las repúblicas bien concertadas que haya juegos de ajedrez, de

pelota y de trucos, para entretener a algunos que ni tienen, ni

deben, ni pueden trabajar, aśı se consiente imprimir y que haya

tales libros, creyendo, como es verdad, que no ha de haber alguno

tan ignorante que tenga por historia verdadera ninguna destos li-

bros.

– Miguel de Cervantes Saavedra, Don Quijote

—I have told you, friend –said the curate– that this is done to

divert our idle thoughts; and as in well-ordered states games of

chess, fives, and billiards are allowed for the diversion of those

who do not care, or are not obliged, or are unable to work, so

books of this kind are allowed to be printed, on the supposition

that, what indeed is the truth, there can be nobody so ignorant as

to take any of them for true stories.

– Miguel de Cervantes Saavedra, Don Quixote
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Abstract

For many years, the study of gravitational scattering amplitudes remained a challeng-

ing task, due to the inadequacy of traditional quantum field theoretic methods to deal

with the increasing complexity of graviton interactions. The relatively low experimen-

tal interest also hindered progress in the field. This paradigm changed drastically with

the discovery of the double copy and the detection of gravitational waves. The dou-

ble copy made the calculation of gravity amplitudes much more efficient, by rendering

them as the ‘square’ of gauge theory amplitudes. In its simplest form, it relates ampli-

tudes from Yang-Mills theory to amplitudes in NS-NS gravity, but the map has been

extended to numerous other theories. The main topic of this thesis is the classical

implications of the double copy. We show how the double copy relations for three-

point amplitudes generate ‘squaring’ relations for classical solutions. This provides a

quantum explanation for some classical double copy relations previously known in the

literature and identifies the properties that make them local in position space. Two of

these known maps, the Weyl and Kerr-Schild double copies, will be studied in detail.

We extend the Weyl double copy to non-twisting type N solutions and explore how

symmetries in electromagnetism map to gravity. Finally, the Kerr-Schild double copy

will allow us to formulate an exact double copy relation between point particle solutions

in electromagnetism and NS-NS gravity.
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support (and showing me around Hamburg) and David for beating me at chess while

pretending it was levelled. I owe all my achievements to my family. Special thanks

to my parents, my brother and my grandparents; I hope I make you proud. Finally, I

want to thank Andrea, my partner, for stubbornly staying by my side these four years.

She encouraged me to pursue this challenge in the first place and gave me the strength

to achieve it.

This work was supported by a Royal Society studentship.

4



Contents

1 Introduction 8

1.1 Colour-kinematics and the double copy . . . . . . . . . . . . . . . . . . . 11

1.1.1 Once upon a time in string theory . . . . . . . . . . . . . . . . . 13

1.1.2 A tree level example . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.3 Colour-kinematics duality and the BCJ double copy . . . . . . . 19

1.1.4 Self-dual double copy . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 The KMOC formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Spinors in electromagnetism and general relativity . . . . . . . . . . . . 25

1.3.1 Fundamentals of the spinor formalism . . . . . . . . . . . . . . . 25

1.3.2 Spinors in electromagnetism . . . . . . . . . . . . . . . . . . . . . 27

1.3.3 Spinors in general relativity . . . . . . . . . . . . . . . . . . . . . 30

1.3.4 Newman-Penrose scalars and peeling theorem . . . . . . . . . . . 32

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Classical point charges from amplitudes 35

2.1 Initial and final states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.1 Coherent final state . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Coulomb potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.1 Classical calculation . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3
√

Kerr dyon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 Deformed amplitude . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.2 Newman-Janis shift . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.3 Duality rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Black holes from the double copy 54

3.1 Generalised curvature and NS-NS fields . . . . . . . . . . . . . . . . . . 56

3.2 Double copy map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Explicit solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 Duality rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.2 Newman-Janis shift . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.3 Comparison with known solutions . . . . . . . . . . . . . . . . . 68

5



CONTENTS 6

3.4 The classical double copy in position space . . . . . . . . . . . . . . . . 69

3.4.1 Weyl double copy . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.2 Kerr-Schild double copy . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 The Weyl double copy 79

4.1 Type D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Spinor calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.2 The Plebanski-Demianski metric . . . . . . . . . . . . . . . . . . 84

4.1.3 Tensorial Weyl double copy . . . . . . . . . . . . . . . . . . . . . 85

4.1.4 The Ehlers group and EM duality . . . . . . . . . . . . . . . . . 86

4.2 Type N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Spinor calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.2 Type N vacuum solutions . . . . . . . . . . . . . . . . . . . . . . 94

4.2.3 Non-uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Asymptotic formulation of the Weyl double copy . . . . . . . . . . . . . 99

4.3.1 Weyl double copy in Bondi coordinates . . . . . . . . . . . . . . 101

4.3.2 C-metric and the Liénard-Wiechert solution . . . . . . . . . . . . 107

4.3.3 Asymptotic symmetries and the Weyl double copy . . . . . . . . 112

5 Kerr-Schild double copy 117

5.1 Kerr-Schild spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 JNW as the double copy of Coulomb . . . . . . . . . . . . . . . . . . . . 120

5.2.1 The JNW solution . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.2 Double field theory and the relaxed Kerr-Schild ansatz . . . . . . 123

5.2.3 DFT equations of motion and the single copy . . . . . . . . . . . 126

5.2.4 JNW and Coloumb . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Concluding remarks 131

A Split signature 137

A.1 Spinor conventions in split signature . . . . . . . . . . . . . . . . . . . . 137

A.2 The retarded Green’s function in 1 + 2 dimensions . . . . . . . . . . . . 138

A.3 Analytic continuation of propagators . . . . . . . . . . . . . . . . . . . . 140

A.4 Electromagnetic duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B 2-Spinors in Riemann-Cartan geometries 143

B.1 Contorsion spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.2 Riemann spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



CONTENTS 7

C C-metric in Bondi coordinates 148

C.1 Small mass expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

D Equations of motion in double field theory 154



Chapter 1

Introduction

The field of scattering amplitudes has become one of the most active subjects in theoret-

ical physics. This success came as spinor-helicity and on-shell techniques unveiled con-

strained mathematical structures, drastically reducing the computational work needed

by traditional diagrammatic approaches. Examples of modern on-shell methods are

the BCFW recursion relations [7] and generalised unitarity [8, 9], which provide a sys-

tematic way to cut the amplitudes down to their simplest components. Much of this

progress was driven by the demand for high precision calculations in gauge theory by

particle collider experiments.

Although on-shell techniques were also applicable to gravity theories, they were

more computationally challenging and lacked experiential motivation. This paradigm

changed with the discovery of the colour-kinematics duality and the double copy by

Bern, Carrasco and Johansson (BCJ) [10,11]. They showed that the kinematic factors

of gauge theory amplitudes could be put in a form that satisfies certain algebra-like

relations, in analogy with the colour factors. Amplitudes in this form can then be

‘double copied’ into gravity amplitudes by replacing the colour factors with another set

of kinematic factors. The significance of this discovery arises from the simplification

that comes with computing gravitational amplitudes from (much simpler) gauge theory

amplitudes.

The tree-level relations generated by the BCJ double copy prescription were already

known from string theory. Kawai, Lewellen and Tye (KLT) discovered that tree-level

bosonic closed-string amplitudes could be written as sums of products of tree-level

bosonic open-string amplitudes [12]. More recently, the scattering equation approach

to scattering amplitudes developed by Cachazo, He and Yuang (CHY) has provided

another formalism to make the double copy manifest [13, 14]. In this prescription,

the Parke-Taylor factor of the CHY integrand is replaced with another copy of the

numerator. Although this formulation is often more versatile than the BCJ one, it

harder to implement at higher loops. The different formulations of the double copy

and their vast applications have been recently reviewed in [15–17].

8



CHAPTER 1. INTRODUCTION 9

Despite the progress, some of the central concepts of the double copy remain elusive.

Perhaps one of the most prominent missing pieces is the nature the kinematic algebra.

Its understanding would put colour and kinematics really on the same footing, making

the calculation of numerators much simpler. There has been some progress in this

direction [18,19], and it is well understood in special cases, like in self-dual gravity and

gauge theory [20, 21]. The self-dual theories also exhibit rather explicit double copy

structures at the level of covariant actions [22].

Since its discovery, the concept of the double copy has been expanded to apply

beyond gauge and gravity amplitudes. We now know that there is a rich web of the-

ories that are related by double copy relations. Also, there are examples of double

copy relations at the level of classical solutions and Lagrangians [23–26]. Therefore,

we can define the double copy as the concept of obtaining amplitudes (or amplitude-

constructible objects) of one theory by combining the kinematic degrees of freedom of

two other theories. For a review on the web of theories related by the double copy, see

[15].

The discovery of the double copy came at a time when some of the attention was

shifting from particle collider experiments to gravitational wave detectors. The de-

tection of gravitational waves [27] created the need for cost-efficient methods to com-

pute template waveforms of gravitational radiation from binary mergers. The precise

perturbative tools of the amplitudes programme are well suited for this task [28–64]

and can be used to compute interaction potentials [28–30], or more general effective

Lagrangians [31–34], which are relevant to compact binary coalescences. In scatter-

ing systems, amplitudes can be used rather directly to evaluate observables of inter-

est [44–46, 65–67], and at least some of these observables may then be analytically

continued to the bound regime [52–54,68].

In these approaches, part of the effort goes into extracting the classical informa-

tion from the quantum amplitudes. To improve this process, it would be desirable to

understand how the double copy manifests itself from a purely classical perspective.

One approach, called classical double copy is to search for relations between classical

solutions of the equations of motion in gauge theory and gravity. The implementa-

tion of these relations is often perturbative, including the first approaches [20, 31, 69],

constructions based on the local symmetries [70–75], use of the worldline formalism

[39, 76–84], and perturbation theory on curved backgrounds [85, 86]. A double copy

for classical observables (rather than solutions to the equations of motion) that follows

more directly from that of scattering amplitudes has been explored with a view to

gravitational phenomenology [28,33,34,36,43–45,51,52,65,87–93], a subject of obvious

interest for gravitational waves astronomy. For other recent alternative approaches see

[94–96]

The perturbative nature of these formulations is expected, given the amplitudes
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origin of the double copy. However, there are also known examples where the classical

double copy applies exactly. The first of them to be discovered was the Kerr-Schild

double copy, which maps stationary Kerr-Schild metrics to solutions of the Maxwell

equations [97].1 The Schwarzschild solution maps to the Coulomb solution, establishing

a relation between the simplest point particle configurations in general relativity and

electromagnetism. Some years later, another exact classical double copy, the Weyl

double copy, was discovered to apply to all vacuum type D spacetimes [99], by rendering

the Weyl spinor as the ‘square’ of a Maxwell spinor. This map was later extended to

non-twisting type N solutions [4] and linearly to more algebraically general spacetimes

using twistors [100–102].

The existence of exact local classical double copies in position space is striking.

Generically, we would expect the amplitudes double copy to generate local perturbative

relations in momentum space. But in position space, the momentum space products

would turn into convolutions (which motivated the convolution double copy [70,74,75,

103–105]). Moreover, although there is evidence that the classical double copy maps

are a consequence of the original BCJ double copy, there has been no direct proof of

their equivalence [3, 5, 37,39,73,88,90,106–108].

The first half of this thesis clarifies some of these questions, following [1,3]. The key

point is the use of 3-point amplitudes to generate the linearised classical field configu-

rations of static point particles in gauge theory and gravity. Then, we show that the

double copy relations of the amplitudes directly imply relations for the classical fields.

These classical double copy relations are naturally formulated in terms of momentum

space spinors. In position space, they involve convolutions and match the convolu-

tional double copy of [70, 74, 75, 103–105]. Moreover, in some cases these convolutions

factorise, yielding known Weyl and Kerr-Schild double copy relations, which can be

promoted to exact statements. This is possible thanks to a property of the scalar po-

tential which is linked to the point-particle nature of the problem. As a result, we prove

that the classical double copy relations for the Kerr-Taub-NUT family follow from the

amplitudes double copy of 3-point amplitudes. Our analysis also indicates that a local

position space exact double copy might not be always possible.

The domain of applicability of the exact double copy prescriptions is interesting both

from the point of view of scattering amplitudes and general relativity. In the second

half of the thesis, we will show that non-twisting type N solutions with vanishing

twist present exact Weyl double copy relations [4]. A technical limitation of some

of the classical notions of the double copy is that they can not accommodate the

1 Some caution is required when referring to classical double copy prescriptions. Despite being called
double copies, they often work best as single-copy procedures. That is, extracting two copies of a gauge
theory solution from a gravity solution. This is particularly limiting in the Kerr-Schild prescription,
where the relation only works for specific choices of gauge. Also, not all gauge theories solutions can
double copy in this manner. The necessary conditions for a Maxwell solution to constitute the single
copy of a Kerr-Schild metrics are known in four dimensions [98].
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dilaton and axion fields present in the quantum formulation. To overcome this, we

generalise the Kerr-Schild double copy in the context of Double Field Theory (DFT) to

implement the complete and exact double copy of the Coulomb potential [5]. The result,

which was hinted at linearised level by the 3-point amplitudes and other perturbative

methods [39, 73, 106], is the spherically symmetric Einstein-dilaton solution found by

Janis, Newman and Winicour (JNW) [109].2

The remainder of this introduction will be devoted to reviewing some topics that

will be needed for the main chapters of this thesis.

1.1 Colour-kinematics and the double copy

The colour-kinematics duality and the double copy were perhaps two of the most re-

markable surprises in theoretical physics in recent times. This section will review its

origins, which date back to the eighties, and equip the reader with the necessary back-

ground for the following chapters. But before we start, it is worth pausing to properly

motivate why a duality between gauge theory and gravity is such an outstanding and

desirable resource.

Let us start from the simplest gauge theory, pure Yang-Mills (YM):

S = −1

4

∫
ddx Tr(FµνFµν) . (1.1)

The field strength tensor is defined in terms of the gauge potential Aaµ as

F aµν = ∂µA
a
ν − ∂ν Aaµ + g fabcAbµA

c
ν , (1.2)

where g is the coupling constant and fabc the structure constants of the gauge algebra.

Using standard quantum field theory, one can read off the Feynman rules

2Although this solution is often called JNW, it was first discovered by Fisher [110] and then inde-
pendently rediscovered by Janis–Newman–Winicour [109] and Wyman [111].
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1, µ

2, ν

3, ρ

∼ g fa1a2a3 [ηµν(p1 − p2)ρ + cyclic] ,

∼ − i ηµν δ
ab

p2
,

a, µ b, νp

1, µ

2, ν 3, ρ

∼ −i g2 [fa1a2bfa3a4b(ηµρηνσ − ηµσηνρ)
+fa1a3bfa2a4b(ηµνηρσ − ηµσηνρ)
+fa1a4bfa2a3b(ηµνηρσ − ηµρηνσ)] ,

4, σ

where we have chosen Feynman gauge. We are using a mostly-plus signature for the

Minkowski metric ηµν . These compact rules are all the information needed to write

any Feynman diagram integrand in YM theory.

The simplicity of the YM Feynman rules contrasts with the infinite list of vertices

in gravity. To illustrate this complexity, consider the Einstein-Hilbert Lagrangian

S =
1

16πGN

∫
ddx

√
|g|R , (1.3)

which describes the dynamics of pure Einstein gravity, GN being Newton’s constant.

In the weak-field limit, we can expand the metric as a perturbation around Minkowski,

gµν = ηµν + κhµν , where κ is the gravitational coupling constant, which is related to

Newton’s constant via κ2 = 32πGN . Now, in contrast to YM, (1.3) contains vertices

with arbitrarily many external legs. Another difference is that the presence of two

indices implies that the structure of the individual vertices is much more elaborate. In

de Donder gauge, the 3-point vertex was famously derived by DeWitt [112]

∼ i κ Sym

[
− 1

2
P3 (p1 · p2ηµρηνληστ )− 1

2
P6 (p1νp1ληµρηστ )

+
1

2
P3 (p1 · p2ηµνηρληστ ) + P6 (p1 · p2ηµρηνσηλτ )

+ 2P3 (p1νp1τηµρηλσ)− P3 (p1λp2µηρνηστ )

+ P3 (p1σp2τηµνηρλ) + P6 (p1σp1τηµνηρλ)

+ 2P6 (p1νp2τηλµηρσ) + 2P3 (p1νp2µηλσητρ)

− 2P3 (p1 · p2ηρνηλσητµ)

]
,

1, µρ

2, νλ

3, στ
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where the operator Sym symmetrises in each pair of graviton indices (µ, ρ), (ν, λ) and

(τ, σ). The operator Pi symmetrises over legs, generating i terms. The complexity

of this expression compared to the YM vertex is evident. Even more so when the

symmetrisations are done explicitly, resulting in an explosion of terms.

The simple comparison between the Feynman rules of YM and Einstein gravity is

enough to show how the diagrammatic expansion, which is tractable at lower orders

in YM, becomes practically unapproachable in gravity. This is symptomatic of an

apparent leap in complexity from gauge theory to gravity. However, something striking

happens when all the redundant (gauge) information is removed from the graviton

vertex. If we assume that the legs are on-shell physical states with polarisation matrices

satisfying3

pi µ ε
µν
i = 0 , ε

[µν]
i = 0 , εµi µ = 0 , (1.4)

the vertex simplifies to

∼ −i κ
[
(p1 − p2)σηµν + cyclic

][
(p1 − p2)τηρλ + cyclic

]
.

1, µρ

2, νλ

3, στ

The similarities with the YM vertex are striking. Up to constant factors, the on-shell

3-point graviton vertex resembles a gluon vertex where the structure constants have

been replaced by another factor of the kinematic variables. The lesson to learn is that

taking all off-shell information from gravity might expose structures similar to the ones

found in gauge theory. Although the 3-point case is very constrained by symmetries,

this simple example motivates hopes for a more general and rigorous relationship. We

will now review the steps that were taken in that direction, starting from the KLT

relations in string theory and concluding with the BCJ formulation of the double copy.

1.1.1 Once upon a time in string theory

The first evidence of a hidden relation between gravitational and gauge theory am-

plitudes appeared in the context of string theory. Kawai, Lewellen and Tye (KLT)

discovered in 1986 that any closed string tree amplitude can be written as the sum

of products of two open string tree amplitudes [12]. Instead of reviewing the general

proof, let us illustrate the KLT relations with a simple four-point example.

In a closed string tree amplitude, the external states are represented by operator

insertions on a Riemann sphere. The worldsheet SL(2,C) symmetry allows us to fix

the location of three of the insertions. The location of the remaining insertion must

3 We use standard (anti)symmetrisation conventions, e.g. F[µν] = 1
2

(Fµν − Fνµ).
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be integrated over the Riemann sphere. In bosonic string theory, the simplest case

is when all four operator insertions are tachyon states. The result is the celebrated

Virasoro-Shapiro amplitude M(s, t, u) which is, up to overall constant factors [113],

M(s, t, u) ∼ Γ(−1− α′s) Γ(−1− α′t) Γ(−1− α′u)

Γ(2 + α′s) Γ(2 + α′t) Γ(2 + α′u)
. (1.5)

We have chosen the closed string Regge slope normalisation α′closed = 4α′ , where α′closed

is the closed string inverse tension. The Mandelstam variables have been defined as

s = −(p1 + p2)2 , t = −(p1 + p4)2 , u = −(p1 + p3)2 . (1.6)

The open string counterpart is the Veneziano amplitude, where the open string

tachyon insertions are located at the boundary of a disk. As in the closed string

case, we can fix the location of three of the insertions based on symmetry grounds.

However, now the insertions have a well-defined ordering which must be taken into

account when fixing the insertions and integrating over the remaining variable. As a

result, the complete amplitude is the sum over inequivalent orderings. For the ordering

cyclic(1, 2, 3, 4), the partial amplitude is

A(s, t) ∼ Γ(−1− α′s) Γ(−1− α′t)
Γ(2 + α′u)

, (1.7)

with α′open = α′. The normalisation convention has been chosen such that

s+ t+ u = 4m2 = − 4

α′
(1.8)

both for the open and closed string tachyons.

There is a simple relation between (1.5) and (1.7). Using the identity

Γ(a) Γ(1− a) =
sin(π a)

π
, (1.9)

it is not hard to show that the Virasoro-Shapiro amplitude can be written as the product

of two – differently ordered – Veneziano amplitudes,

M(s, t, u) =
sin(π α′ s)

πα′
A(s, t)A(s, u) . (1.10)

In fact, it was shown that similar expressions hold for all higher-point tree amplitudes

and all string modes [12].

In particular, the massless modes of the closed string amplitude are a graviton,

dilaton φ and a two-form B-field (or Kalb-Ramond field, dual to a scalar axion in four

dimensions). At low energies, the string length approaches zero (α′ → 0) and string
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Figure 1.1: Three of the four Feynman diagrams contributing to the YM tree-level 4-point
amplitude. The diagrams correspond to the s, t and u channels respectively. The remaining
diagram is the contact term generated by the 4-point vertex.

theory approaches quantum field theory. In this limit, the effective dynamics of the

massless modes is captured by the Einstein frame action [114,115]

S =
2

κ2

∫
ddx
√
|g|
(
R− 4κ2

d− 2
∇µφ∇µφ−

κ2

12
e−

8κφ
d−2 HµνρH

µνρ

)
, (1.11)

where H = dB. This gravitational theory is often referred to as NS-NS gravity or N = 0

supergravity. Similarly, the α′ → 0 limit of the bosonic open string massless modes is

pure Yang-Mills (1.1) [116]. Consequently, the generalisation of (1.10) implies a relation

between tree-level gravity amplitudes and colour-ordered Yang-Mills amplitudes,

Mtree
4 (1, 2, 3, 4) =

(κ
2

)2
sAtree(1, 2, 3, 4)Atree(1, 2, 4, 3) . (1.12)

Although this is a 4-point example of a field theory KLT relation, they can be gener-

alised to arbitrarily many external legs. The main limitation of the KLT relations is

that they do not extend to loop level. In order to achieve a loop level gauge-gravity

amplitude relation, first we will understand how the tree-level KLT relations arise from

the point of view of quantum field theory.

1.1.2 A tree level example

Although the KLT relations were first discovered in the context of string theory, they

can also be derived using quantum field theory methods alone, as it was done for the

3-point vertex at the beginning of the section. The derivation of the 4-point relation

(1.12) from quantum field theory will provide more insights for the general double copy.

In QFT, the tree-level 4-point amplitude in YM can be computed easily using the

Feynman rules given at the beginning of the section. One needs to consider only four

diagrams; the three two-vertex diagrams of figure 1.1 plus the contact term of the

four-point vertex. The contribution of the s-channel diagram to the amplitude is

∼ i g2 f
a1a2bfa3a4b

s
[(ε1 · ε2) pµ1 + 2(ε1 · p2)εµ2 − (1↔ 2)]

[(ε3 · ε4) p3µ + 2(ε3 · p4)ε4µ − (3↔ 4)] ,
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where we have used the on-shell conditions p2
i = 0 and the gauge choice εi ·pi = 0. The

t and u channels can be obtained by applying the leg permutations 1 → 2 → 3 → 1

and 1→ 3→ 2→ 1 respectively.

The contact term yields

∼ −i g2

[
cs
(
(ε1 · ε3)(ε2 · ε4)− (ε1 · ε4)(ε2 · ε3)

)
+ ct

(
(ε1 · ε2)(ε3 · ε4)− (ε1 · ε3)(ε2 · ε4)

)
+ cu

(
(ε1 · ε4)(ε2 · ε3)− (ε1 · ε2)(ε3 · ε4)

)]
where we have defined the colour factors

cs = fa1a2b fa3a4b , ct = fa1a4b fa2a3b , cu = −fa1a3b fa2a4b . (1.13)

Notice that the three colour factors are related by the Jacobi identity of the gauge

algebra

cs + ct + cu = fa1a2b fa3a4b + fa2a3b fa1a4b + fa3a1b fa2a4b = 0 . (1.14)

Adding all the contributions and collecting the terms with the same colour factors,

the complete 4-point tree amplitude can be written as

iAtree
4 = g2

(cs ns
s

+
ct nt
t

+
cu nu
u

)
. (1.15)

The coefficients ni are called kinematic factors, in analogy with the colour factors, be-

cause they contain the kinematic information of each channel. The s-channel kinematic

factor is

ns = [(ε1 · ε2) pµ1 + 2(ε1 · p2)εµ2 − (1↔ 2)][(ε3 · ε4) p3µ + 2(ε3 · p4)ε4µ − (3↔ 4)]

− s
(
(ε1 · ε3)(ε2 · ε4)− (ε1 · ε4)(ε2 · ε3)

)
,

(1.16)

and the remaining kinematic factors can be again obtained by the permutations 1 →
2→ 3→ 1 for the t−channel and 1→ 3→ 2→ 1 for the u-channel. Remarkably, this

set of numerator factors has the striking property of exhibiting a Jacobi-like relation

ns + nt + nu = 0 . (1.17)

Notice that there is no a priori reason for this to be the case. This apparent coincidence

constitutes a hint of a duality between colour and kinematics. As we shall see, this

duality is the ingredient we need to transform a gauge theory amplitude into a gravity

amplitude. Intuitively, one needs to relate a gauge field, which has a colour index

and a rank-one polarisation vector, to a graviton field with a rank-two polarisation

matrix and no colour indices. The existence of a colour-kinematics duality suggests that
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colour factors can be replaced by kinematic factors, effectively replacing a colour index

with another kinematic index. This argument motivates us to consider the tentative

amplitude

iMtree
4 = −

(κ
2

)2
(
n2
s

s
+
n2
t

t
+
n2
u

u

)
. (1.18)

Now, all the numerators have exactly two powers of every polarisation vector. Hence,

we can promote the polarisation vectors to traceless polarisation matrices for graviton

states: εµi ε
ν
i → εµνi . However, for this to be a valid on-shell gravitational amplitude, it

must be gauge invariant.

In gauge theory, gauge invariance implies that amplitudes must remain be unchanged

under εi → εi + pi. In (1.15), only the kinematic factors transform non-trivially.

Without loss of generality, we decide to apply the gauge transformation to the fourth

leg, ε4 → ε4 + p4,

ns → ns + s [(ε1 · ε2)(ε3 · p1 − ε3 · p2) + cyclic(1, 2, 3)]

= ns + s α(1, 2, 3) .
(1.19)

The kinematic function α(1, 2, 3) is invariant under cyclic permutations of (1, 2, 3).

Hence, applying the gauge transformation to (1.15),

δAtree = g2 (cs α(1, 2, 3) + ct α(2, 3, 1) + cu α(3, 1, 2)) = (cs + ct + cu)α(1, 2, 3) = 0 ,

(1.20)

which vanishes due to the Jacobi identity (1.14), indicating that the amplitude is indeed

gauge invariant.

We can now check the gauge invariance of (1.18). In linearised general relativity, a

linearised diffeomorphism ξ transforms the graviton field as

hµν → hµν + ∂µξν + ∂νξµ , (1.21)

which implies that the polarisation tensor transforms according to

εi µν → εi µν + εi µ pi ν + εi ν pi µ . (1.22)

When this transformation is applied to the fourth external leg of (1.18), the result is

iMtree
4 → iMtree

4 − 2(ns + nt + nu)α(1, 2, 3) . (1.23)

Consequently, (1.18) is gauge invariant provided that the kinematic Jacobi identity

(1.17) is satisfied.

The map that we have obtained from doubling the kinematic factors is equivalent

to the KLT relation that we obtained from the string amplitudes. In fact, (1.18) is
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equivalent to (1.12). To prove it, first we need to compute the colour-ordered YM

amplitudes.

The identification of colour-ordered partial amplitudes relies on the decomposition

of the colour factors in terms of single traces of gauge algebra generators.4 For example,

cs = fa1a2b fa3a4b ∝ Tr ([T a1 , T a2 ] [T a3 , T a4 ]) , (1.24)

which can be expanded as

Tr ([T a1 , T a2 ] [T a3 , T a4 ]) = Tr(T a1 T a2 T a3 T a4)− Tr(T a1 T a2 T a4 T a3)

− Tr(T a2 T a1 T a3 T a4) + Tr(T a2 T a1 T a4 T a3) .
(1.25)

Similar expansions can be obtained for ct and cu. Then, the full amplitude takes the

form

Atree = g2

(
Tr(T a1 T a2 T a3 T a4)Atree(1, 2, 3, 4) + perms of (2,3,4)

)
, (1.26)

where

Atree(1, 2, 3, 4) =
ns
s
− nt

t
(1.27)

is the colour-ordered partial amplitude with cyclic ordering (1,2,3,4). To obtain the

cyclic ordering (1, 2, 4, 3) we apply the permutation 1→ 3→ 2→ 1. This permutation

transforms ns → nu, nt → ns, s→ u and t→ s, resulting in the partial amplitude

Atree(1, 2, 4, 3) =
nu
u
− ns

s
. (1.28)

These two partial amplitudes are the ingredients needed on the right side of (1.12),

which then equals to

Atree(1, 2, 3, 4)Atree(1, 2, 4, 3) =
(ns
s
− nt

t

) (nu
u
− ns

s

)
=
nsnu
s u
− n2

s

s2
− ntnu

t u
+
ntns
s t

= −n
2
s

s2
− n2

t

s t
− n2

u

s u
− nt nu

(
1

s u
+

1

t u
+

1

s t

)
= −1

s

(
n2
s

s
+
n2
t

t
+
n2
u

u

)
.

(1.29)

The identity (1.17) has been used several times to achieve the final result. Direct

comparison between (1.18) and (1.29) yields

iMtree
4 =

(κ
2

)2
sAtree(1, 2, 3, 4)Atree(1, 2, 4, 3) ,

4At loop level, one needs to consider multi-trace structures also.
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recovering the map (1.12) and proving that the squaring of the kinematic factors yields

the same relation as the KLT relations.

1.1.3 Colour-kinematics duality and the BCJ double copy

In their full generality, the colour-kinematics duality and the BCJ double copy extend

the relations seen in the previous example to higher points, higher loops and more

general gauge theories. Although we will provide a review of their main ideas, more

comprehensive overviews of the double can be found in [15–17].

To be as general as possible, we will consider a generic m-point L-loop gauge theory

amplitude,

A(L)
m = iL−1 gm−2+2L

∑
i∈Γ

∫
dLd`

(2π)Ld
1

Si

ci ni
Pi

. (1.30)

Γ is the set of contributing cubic diagrams, d the spacetime dimension, ` is the loop

momenta, Si the symmetry factor associated with the i-th diagram and Pi contains the

propagator momenta of each diagram. Like in the tree-level example, the kinematic

factors contain momenta, polarisation vectors and spinors whereas the colour factors

contain structure constants and algebra generators.

In the previous section, we saw that the entire duality construction relies on the

existence of the kinematic Jacobi identity (1.17):

cs + ct + cu = 0 , ns + nt + nu = 0 .

It implied that the kinematic numerators could replace the colour factors while keeping

the amplitude gauge invariant. The colour-kinematics duality states that it is always

possible to rearrange the kinematic numerators ni in such a way that they satisfy the

same Lie-algebra identities than the corresponding colour factors ci [10].5 This not only

applies to YM but also to more general gauge theories that may include matter fields.

Checking the identity in our simple tree-level 4-point example did not require a lot of

work, because the kinematic factors obtained from the Feynman diagrams satisfied the

identity automatically. However, this is not always the case, because the numerators are

not unique. The non-uniqueness is a consequence of the invariance of the amplitudes

under generalised gauge transformations, which are of the form

ni → ni + ∆i (1.31)

5 There is a subtlety regarding colour factors beyond tree-level. One should not use information
about the gauge group to evaluate sums over colour indices. This would create relations between the
colour factors that are specific to the particular gauge group. All the algebraic relations must be kept
general for any gauge group, otherwise there would be no reason to expect those relations to hold
after replacing the colour algebra with the kinematic algebra. More intuitively, summing over colour
indices would be equivalent to integrating the loop momenta in the kinematic factors. Since we are not
integrating the loop momenta, the sums over colour factors should not be evaluated either.
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where the ∆i are such that

∑
i∈Γ

∫
dLd`

(2π)Ld
1

Si

ci ∆i

Pi
= 0 . (1.32)

For example, the amplitude (1.15) remains unchanged under

ns → ns + s∆(p, ε), nt → nt + t∆(p, ε), nu → nu + u∆(p, ε), (1.33)

with the arbitrary function ∆(p, ε).

Generically, transformations of this kind are required to put the numerators in

duality-ready form. This has been proven to be always possible at tree level [117,118].

At loop level, it remains a conjecture. A complete proof of the colour kinematics duality

would almost certainly require an understanding of the origin of the kinematic algebraic

structures. Despite some progress [18, 19], this is currently missing. A more complete

understanding is possible by restricting to the self-dual sector, where the kinematic

algebra can be identified with the algebra of area-preserving diffeomorphisms [20]. We

will explore this particular case in more detail in the next section. More recently,

[119] explored a duality between geometry and kinematics, relating theories of massless

bosons to the non-linear sigma model.

The most important application of the colour-kinematics duality is the double copy.

Whenever we have kinematic factors satisfying the colour-kinematics duality, we can

replace the colour factors with another set of the kinematic factors, which we will

denote by ñi, to obtain a diffeomorphic-invariant amplitude which corresponds to a

gravity theory [11]

M(L)
m = iL−1

(κ
2

)m−2+2L ∑
i∈Γ

∫
dLd`

(2π)Ld
1

Si

ñi ni
Pi

. (1.34)

The process of obtaining gravity by duplicating the kinematic degrees of freedom in

gauge theory is known as double copying. Conversely, we could replace one of the

kinematic factors in a given gravity amplitude with a colour factor to obtain a gauge

amplitude. This process is called single copying. Interestingly, one could go one step

further and replace the remaining kinematic factor with another colour factor. The

resulting theory is referred to as the zeroth copy and, in the case of Yang-Mills, it

corresponds to a bi-adjoint scalar field.

It turns out that the double copy map (1.34) is much more robust than it seems.

First of all, note that we can perform a generalised gauge transformation (1.31) on only

one of the sets of kinematic factors andM(L)
m will remain invariant. The reason is that

equation (1.32) also holds after the replacement ci → ñi as long as ñi are in colour-dual

form. Therefore, we only need one of the copies to be in colour-dual form.
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Moreover, note that the double copy does not require ñi to be equal to ni, only to

satisfy the same algebraic relations. In particular, ñi could be taken to be the kinematic

numerators from an amplitude with different external helicities. As a result, in d = 4,

the gravitational theory not only has states of helicity ±2, but also two scalars. The

explanation can be drawn again from string theory. We saw that at tree level the KLT

relations related closed-string amplitudes with open-string amplitudes. The massless

sector of the closed string includes not only the graviton, but also the dilaton and the

B-field present in (1.11). In the KLT relations, these types of insertions can be obtained

by combining gluon amplitudes with different helicities. Here, we are witnessing the

same phenomenon in the context of the BCJ double copy,

graviton±2 = gluon± ⊗ gluon± ,

{
dilaton

axion

}
= gluon± ⊗ gluon∓ , (1.35)

reminding us that the complete double copy of YM is not Einstein gravity, but NS-NS

gravity.

Another possibility is to take the kinematic numerators ñ from an amplitude from

a completely different theory. This is allowed as long as they are paired with the

equivalent colour factors. The combination of numerators from two different theories

creates an intricate web of relations among different theories. For example, N = 8

supergravity is the double copy of N = 4 super-Yang-Mills. The web of double copy-

constructible-theories was extensively reviewed in [15]. Although the concept of the

double copy is independent of the number of dimensions, for the most part of this

thesis we will work in d = 4.

1.1.4 Self-dual double copy

As previously mentioned, our most complete understanding of the double copy occurs

in the self-dual sectors of gauge theory and gravity. Imposing self-duality yields consis-

tent truncations of YM and general relativity, which keep a subset of interactions and

solutions. From the point of view of quantum field theory, self-dual YM and GR are fi-

nite and one-loop exact [120]. For both theories, all tree-level amplitudes vanish except

for a three-point amplitude. The physical interpretation of the self-duality condition is

the restriction to waves of a single helicity.

In self-dual YM, all solutions of the field equations must satisfy the condition

F a = i ?F a . (1.36)

In coordinates

ds2 = du dv − dw dw̄ (1.37)
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and light-cone gauge (Aau = 0), the self-dual condition implies that

Aw = 0 , Av = −1

4
∂wΦ , Aw̄ = −1

4
∂uΦ , (1.38)

where Φ is a Lie algebra-valued scalar field. The self-dual condition also implies the

equation of motion

�Φ + i g[∂wΦ, ∂uΦ] = 0 (1.39)

This equation can be solved perturbatively as g → 0 with a boundary condition that

encodes the sources. This process encodes a sum over tree amplitudes, where only one

external leg is off-shell. Then, one can easily read off the kinematic factors, which are

combinations of “kinematic structure constants”

Fp1p2
k = δ̂(p1 + p2 − k)(p1wp2u − p1up2w) , (1.40)

which have the same algebraic properties as the gauge structure constants fabc.

This already hints at the colour-kinematics duality. To confirm the duality, one

needs to follow the same procedure for self-dual GR,

Rµνρσ =
i

2
εµνδλR

δλ
ρσ .

This self-dual equation plays the same role as in YM. Using the metric

gµν = ηµν + κhµν , (1.41)

we find that the only non-vanishing components of hµν must be of the form

hvv = −1

4
∂2
wφ, hw̄w̄ = −1

4
∂2
uφ, hvw̄ = hw̄v = −1

4
∂w∂uφ (1.42)

where φ must satisfy the equation

�φ+ κ {∂wφ, ∂uφ} = 0 . (1.43)

The Poisson brackets are defined as

{f, g} ≡ (∂wf) (∂ug)− (∂uf) (∂wg) . (1.44)

Again, we can solve the equation perturbatively. The results are related order-by-order

to the ones obtained for the self-dual YM, replacing the colour structure constants

with more kinematic structure constants (without duplicating the delta functions).

This relation is the manifestation of the double copy in the self-dual sector.

The similarity with (1.39) is striking. In fact, the Poisson version of area-preserving
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diffeomorphisms in the (u,w) plane generates the kinematic structure constants Fp1p2
k.

This identifies the kinematic algebra in the self-dual sector [20]. There are other exam-

ples of known kinematic algebras, but perhaps not as well understood as the example

studied in this section. A recent example is the discovery of volume-preserving diffeo-

morphisms as part of the kinematic algebra of three-dimensional Chern-Simons theory

[121].

1.2 The KMOC formalism

In the last section, we have reviewed the double copy, and how it hints at hidden

similarities between gauge theory and gravity. This thesis aims to explore the classical

implications of the double copy. Therefore, we need a means of extracting meaningful

classical information from scattering amplitudes, which are inherently quantum objects.

The formalism developed by Kosower, Maybee and O’Connell (KMOC) serves this

need by giving a prescription for defining appropriate quantum observables in terms of

amplitudes and extracting their classical values [44,45].

At the heart of any classical limit is the ~ → 0 limit. However, the use of natural

units (~ = 1) hides all the powers of ~. Of course, they might be restored by dimensional

analysis, but there might not be a unique way to do it. For this reason, the goal of

any classical prescription is to set rules that fix the factors of ~ that yield the classical

observables of interest. In the KMOC formalism, these rules are

• We will adopt the convention that an n-point scattering amplitude in d = 4

has dimensions [M ]4−n, where [M ] denotes dimensions of mass. We will keep

relativistic natural units c = 1. This corresponds to having single-particle states

|p〉 =
√

2Ep a
†
p|0〉 with dimension [M ]−1.

• Both in electromagnetism and gravity, the coupling constants e and κ pick up a

factor of ~−1/2 on dimensional grounds. The negative power would suggest that

higher points and higher loops are more relevant in the classical limit. This is

compensated by the next point.

• When ~ = 1, the momentum of a particle pµ is equal to its wave-number p̄µ.

However, if ~ 6= 1, we must decide whether the classically relevant vector associ-

ated to each line is the momentum or the wave-number p̄µ = pµ/~. For massive

external particles, we will choose pµ to be the relevant variable at classical level,

remaining invariant as ~ → 0. However, for massless particles or momentum

transfers between massive lines, the wave-number will be fixed and the momen-

tum will decrease linearly with ~. This prescription cancels the divergent powers

of ~ that appear from the coupling constants and yields classically well-defined

observables.



CHAPTER 1. INTRODUCTION 24

Besides dimensional analysis, there is another point that requires attention when

defining observables with sensible classical limits. The KMOC formalism is often used

to study the classical behaviour or interactions of point particles. However, there is no

notion of a point particle in quantum field theory. Instead, initial and final states must

be regularised as wave-packets, with the appropriate properties to be identified with

point particles in the classical limit. For single-particle states, we model the particles

as states of a scalar field of mass m,

|ψ〉 =

∫
dΦ(p)ϕ(p) |p〉 , (1.45)

where we integrate over on-shell momentum with positive energy Ep

dΦ(p) = d̂4pΘ(Ep) δ̂(p
2 +m2) . (1.46)

In order to avoid cluttering expressions with factors of 2π, we use the hat notation

d̂x =
dx

2π
, δ̂(x) = 2π δ(x) . (1.47)

The wavefunction ϕ(p) has a characteristic spread in momentum space, which we

will denote `w, but it needs to have well-defined classical position and momenta for

|ψ〉 to act as a point particle classically. This puts certain requirements on the `w.

First of all, the Compton wavelength `c of the particle must be much smaller than `w,

such that quantum effects do not rule the evolution of the wave-packet. That is, the

dimensionless parameter

ξ :=

(
`c
`w

)2

(1.48)

must approach zero in the classical limit. As it does, ϕ(p) must become sharply peaked

around the classical value of the momentum p = muµ.

At the same time, whenever we have more than one particle, the spread must be

much smaller than the modulus of the impact parameter, to ensure that the particles are

well-separated and the internal details of the wave-packets do not affect the scattering.

In single-particle settings, the distance between the particle and the observer plays the

role of the impact parameter. The exhaustive description of the hierarchy of limits in

multi-particle states can be found in [44] and expanded to particles with spin in [45].

In summary, the different considerations on ϕ(p) motivate simplifications in the

quantum calculations that extract the classical information without the need for ex-

plicitly evaluating the wave-function.
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1.3 Spinors in electromagnetism and general relativity

Scattering amplitudes are the main building blocks to compute observables in quantum

field theory. They store information very efficiently thanks to their properties: their

gauge invariance means that they do not contain redundant degrees of freedom. More-

over, they are organised in terms of the helicities of the external particles, which are

physical degrees of freedom and in some cases are enough to uniquely determine the

amplitudes.6 On the other hand, classical field theory is written mainly in terms of

fields. Although they are more intuitive to work with, they are not as efficient. A gauge

potential, for example, contains gauge information that is not physical. To cure this,

one may resolve to use gauge-invariant curvatures, like the field strength tensor, but

they are still far from the neatness of scattering amplitudes. As with any covariant ten-

sor, curvatures are organised in terms of the components of their indices, which depend

on coordinate choices that do not hold physical meaning. We would like to organ-

ise the information on the classical curvatures in terms of coordinate-independent and

physically relevant degrees of freedom. The spinor formalism serves this very purpose.

Instead of storing the physical degrees of freedom scattered in the different components

of a tensor, spinors are naturally organised in terms of totally symmetric lower-rank

components. For the Weyl curvature and the field strength tensor, these components

naturally split the self-dual and anti-self-dual degrees of freedom. These parts can be

reduced to scalar components, that can be sorted according to their algebraic proper-

ties. As a result, the introduction of spinors in general relativity brought a natural way

to classify spacetimes in a coordinate independent manner.

As we shall see in due time, these similarities between spinors and scattering am-

plitudes are not mere coincidences. In fact, the classical limit of the amplitudes will

reveal that the spinors are their natural classical counterparts in position space. For

now, we will review the basics of the spinor formalism.

1.3.1 Fundamentals of the spinor formalism

The spinor formalism in general relativity [123] exploits the fact that the universal

covering group of SO(3, 1) is SL(2,C), whose fundamental and anti-fundamental rep-

resentations act on the two dimensional complex vector spaces W and W̄ respectively.

The map from W onto W̄ defines the complex conjugation. To avoid confusion with

the notation, we will use indices α, β, γ, ... for elements of W and α̇, β̇, γ̇ for W̄.

Tensors defined in these spaces are called spinors. Dotted and undotted indices live

in different spaces, so their relative ordering is irrelevant (e.g. Tαβ δ̇
γ = Tαβδ̇γ 6= T βα δ̇

γ

). The spaces of antisymmetric (0, 2) tensors over W or W̄ are one-dimensional and

6MHV amplitudes and the Parke-Taylor formula were the starting point of modern on-shell ampli-
tude methods [122].
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spanned by

εαβ =

(
0 −1

1 0

)
, εα̇β̇ =

(
0 −1

1 0

)
. (1.49)

Similarly, for the (2, 0) antisymmetric tensors, we choose

εαβ =

(
0 1

−1 0

)
, εα̇β̇ =

(
0 1

−1 0

)
. (1.50)

Note that ε is preserved by the action of Lαβ ∈ SL(2,C),

LαγL
β
δεαβε

γδ = −2 det(L) = −2 = εγδ ε
γδ

⇒ LαγL
β
δεαβ = εγδ .

(1.51)

Consequently, ε plays the role of a metric in a spinor space (W , ε). However, unlike a

normal metric, ε is antisymmetric and we need to specify conventions for raising and

lowering indices,

ξα = εαβ ξ
β , ξα = εαβξβ . (1.52)

The second identity follows from the first one and the fact that εαβεβγ = δαγ . Another

consequence of the antisymmetry of ε is that ξα ξα = 0 for any spinor ξα. The same

conventions apply to anti-fundamental indices.

Any two spinors, oα and ια such that oα ι
α = 1 define a basis in (W , ε). Together

with its conjugate basis, they define a real basis for the space of (1, 0; 1, 0) spinor

tensors.7

This space can be shown to be isomorphic to the tangent space to the Minkowski

spacetime by mapping the real spinor basis to a null tetrad in Minkowski. The map is

provided by the sigma matrices

σµαα̇ =
1√
2

(1, ~σ) , σ̃µα̇α =
1√
2

(1,−~σ) , (1.53)

where ~σ are the standard Pauli matrices.8 These matrices satisfy the Clifford algebra:

σµαα̇σ̃
να̇β + σναα̇σ̃

µα̇β = − ηµνδ β
α . (1.54)

The metric ηµν is the flat Minkowski metric, which indicates that the map only works

for flat space. However, one can define spinors in a general background by contracting

the matrices (1.53) by the vielbein of the metric. Then, the flat metric in the Clifford

algebra is replaced by the full curved metric. By doing so, one can obtain the spinor

7A tensor is said to be of type (i, j; k, l) if it has i contravariant fundamental indices, j covariant
fundamental indices, k contravariant anti-fundamental indices and l covariant anti-fundamental indices.

8The tilde is just a matter of notation, σ̃µ is the transpose (or complex conjugate) of the σµ with
the indices raised.
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representation of the metric

gµν = −1

2
(σµαα̇σ̃

να̇α + σναα̇σ̃
µα̇α)

= −σµαα̇σ
ναα̇ = σµαα̇σ

ν
ββ̇

(
−εαβεα̇β̇

)
.

The map defined by (1.53) also applies to derivatives. In flat space, the standard

derivative is defined with respect to a basis

∂αα̇ψ
β = σµαα̇

∂ ψβ

∂ xµ
. (1.55)

In curved spacetimes, the definition of the spinor analogous of the covariant derivative

is more involved. For a detailed discussion, see [124]. Basically, the spinor covariant

derivative ∇αα̇ is defined as a map that applies to any tensor T with any number of

dotted and undotted indices

∇ : T 7→ ∇αα̇T ,

with the following properties:

(i) Linearity: ∇αα̇ (a T + b U) = a∇αα̇T +b∇αα̇U , with U a tensor of the same type

as T and a, b constants.

(ii) Leibniz’s rule: ∇αα̇(T V ) = T ∇αα̇V + V ∇αα̇T , with V a tensor of any type.

(iii) Commutation with complex conjugation ∇̄αα̇ = ∇αα̇.

(iv) Preserves the ε tensor ∇αα̇ εβγ = 0.

(v) It is torsionless: (∇αα̇∇ββ̇ −∇ββ̇∇αα̇)φ = 0.

This connection is equivalent to the Levi-Civita connection in spinor space.

1.3.2 Spinors in electromagnetism

To expose the virtues of the spinors, let us apply them in the context of electromag-

netism. Any antisymmetric (0, 2) field strength tensor Fµν can be converted into a

(0, 2; 0, 2) spinor tensor Fαα̇ββ̇ using (1.53). However, the symmetries present in the

indices of Fµν translate into symmetries in the spinor indices,

Fαα̇ββ̇ =
1

2
(Fαα̇ββ̇ − Fββ̇αα̇) = F(αβ)[α̇β̇] + F[αβ](α̇β̇) .

At this point, we must recall that ε spans the space of antisymmetric (0, 2) spinor

tensors. That implies that the antisymmetrised indices can be replaced by ε times a

constant. Thus, all the degrees of freedom are in the symmetrised indices and can be
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factorised into spinors φαβ and φ̃α̇β̇

Fαα̇ββ̇ = φαβ εα̇β̇ + φ̃α̇β̇ εαβ . (1.56)

Hence, the spinor counterpart of the field strength tensor are the symmetric Maxwell

spinors φαβ and φ̃α̇β̇ . Instead of computing the Maxwell spinors from (1.56), it is often

more convenient to contract F with the SL(2,C) generators

σµναβ = −σ[µ
αα̇ σ̃

ν]α̇
β , (1.57)

φαβ =
1

2
Fµν σ

µν
αβ . (1.58)

More generally, the spinor formulation allows the decomposition of tensors into totally

symmetric spinors, which represent the irreducible components of the tensor.

In order to understand the physical meaning of the Maxwell spinors, let us define

the Hodge-dual electromagnetic tensor9

?Fµν =
1

2
εµνσρ F

σρ , (1.59)

where ε is the volume-form. Its spinor counterpart is also determined by its symmetries

εµνσρ 7→ εαα̇ββ̇γγ̇δδ̇ = i(εαγεβ̇δεα̇δ̇εβ̇γ̇ − εαδεβ̇γεα̇γ̇εβ̇δ̇) . (1.60)

The spinor representation of the dual field strength is obtained from (1.56), (1.59) and

(1.60),

?Fαα̇ββ̇ = i(εαγεβ̇δεα̇δ̇εβ̇γ̇ − εαδεβ̇γεα̇γ̇εβ̇δ̇)(φ
γδ εδ̇γ̇ + φ̃γ̇δ̇ εδγ)

= −iφαβ εα̇β̇ + iφ̃α̇β̇ εαβ . (1.61)

Hodge duality naturally decomposes any field strength tensor into a self-dual part F+

and an anti-self-dual part F− such that F = F+ + F− and

?F± = ±i F± . (1.62)

The spinor representation of the anti-self-dual and self-dual parts of the field strength

are then

F− =
1

2
(F + i ?F )→ φαβ εα̇β̇ , (1.63)

F+ =
1

2
(F − i ?F )→ φ̃α̇β̇ εαβ , (1.64)

9A comment on notation. In later chapters, we will also refer to the (Hodge) dual field strength
tensor as F̃ . This will be useful once we introduce the notion of dual Weyl tensor W̃µνρσ, which is not
the equivalent to Hodge duality because the Weyl tensor is not a form.
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implying that φαβ and φ̃α̇β̇ correspond to the anti-self-dual and the self-dual degrees

of freedom in F respectively. In particular, for real Fµν , the spinor φ̃α̇β̇ is the complex

conjugate of φαβ , which then uniquely determines Fµν .

Petrov classification of the Maxwell spinor

A major advantage of spinors is that they give rise to a natural classification of fields

according to their algebraic properties. This classification is based on the fact that any

completely symmetric spinor of rank n can be decomposed as the symmetrisation of n

principal spinors

ξα1...αn = α(α1
. . . γαn) . (1.65)

The proof follows from the fact that both sides of the identity are symmetric rank-

n expressions with the maximal number of degrees of freedom. ξ has n completely

symmetric 2-dimensional indices, so it has n+ 1 degrees of freedom. On the right side,

the degrees of freedom could be split up into an overall factor times n normalised spinors

with one degree of freedom each. The result is again n+1. Each of the principal spinors

defines a real null direction, which is referred to as principal null direction (PND).

If we apply (1.65) to the Maxwell spinor, we obtain two fundamental spinors

φαβ = α(α ββ) . (1.66)

We distinguish three scenarios

• Type I: the two principal spinors are independent, so φαβ = α(α ββ). These

solutions are algebraically general.

• Type II: the two principal spinors are proportional, so φαβ = αα αβ . These

solutions are algebraically special.

• Type O is the trivial case φαβ = 0.

The algebraic classification of the spinors in terms of the multiplicities of their principal

spinors receives the name of Petrov classification.

Maxwell equations

We have seen that the spinors reorganise the algebraic degrees of freedom of the field

strength tensor in a compact manner. We will now translate the Maxwell equations

∇µFµν = Jν , (1.67)

∇[µFνρ] = 0⇔ ∇µ ? Fµν = 0 (1.68)
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into spinor language. First, we note that Eq. (1.68) implies that

∇α
β̇
φαβ = ∇ α̇

β φ̃α̇β̇

and (1.67) that

∇α
β̇
φαβ +∇ α̇

β φ̃α̇β̇ = Jββ̇ .

Combining both expressions, we conclude that the spinor form of Maxwell’s equations

can be written as

∇α
β̇
φαβ =

1

2
Jββ̇ . (1.69)

In absence of sources the equation takes the simpler form

∇α
β̇
φαβ = 0 . (1.70)

1.3.3 Spinors in general relativity

Spinors offer similar advantages in the context of general relativity. From the definition

of the covariant derivative, we can define the Riemann tensor Rabcd → Rαα̇ββ̇γγ̇δδ̇. As

we did in (1.56), we would like to use symmetries to decompose the Riemann tensor

into lower rank spinors. Following this reasoning [124],

Rαα̇ββ̇γγ̇δδ̇ =Xαβγδ εα̇β̇ εγ̇δ̇ + φαβγ̇δ̇ εα̇β̇ εγδ

+ X̃α̇β̇γ̇δ̇ εαβ εγδ + φ̃α̇β̇γδ εαβ εγ̇δ̇ ,
(1.71)

where the curvature spinors

Xαβγδ =
1

4
R α̇ γ̇
αα̇β γγ̇δ =

1

4
Rµνρσ σ

µν
αβ σ

ρσ
γδ ,

φαβγ̇δ̇ =
1

4
R α̇ γ

αα̇β γγ̇ δ̇
=

1

4
Rµνρσ σ

µν
αβ σ̃

ρσ

γ̇δ̇
,

are the spinor equivalent of the Riemann tensor. They have the symmetries X(αβ)(γδ)

and φ(αβ)(γ̇δ̇). Additionally, the symmetry under exchange of pairs of indices Rµνρσ =

Rρσµν implies that

Xαβγδ = Xγδαβ , φαβα̇β̇ = φ̃α̇β̇αβ . (1.72)

Contraction of the relevant indices yields the spinor equivalent for the Ricci tensor

Rαα̇ββ̇ = −X γ
αγβ εα̇β̇ + φαββ̇α̇ − X̃

γ̇

α̇γ̇β̇
εαβ + φ̃α̇β̇βα .
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Similarly, the curvature scalar is

R = −24 Λ , Λ =
1

6
X αβ
αβ .

The first Bianchi identity Rµ[νρσ] = 0 implies that Λ = Λ̃. Finally, the – completely

symmetric – Weyl spinor is defined as Ψαβγδ = X(αβγδ). It is the spinor equivalent of

the Weyl tensor Wabcd

Wαα̇ββ̇γγ̇δδ̇ = Ψαβγδ εα̇β̇ εγ̇δ̇ + Ψ̃α̇β̇γ̇δ̇ εαβ εγ̇δ̇ . (1.73)

Hence, the Weyl spinor can also be computed as

Ψαβγδ =
1

4
Wµνρσσ

µν
αβσ

ρσ
γδ . (1.74)

The second Bianchi identity ∇[eRab]cd = 0 implies that the Weyl spinor must satisfy

∇αα̇Ψαβγδ = ∇β̇ (βφ
α̇

γδ)β̇
.

= 4π∇β̇ (βT
α̇

γδ)β̇
. (1.75)

In the last line we have used the Einstein equations to write φ in terms of the stress

energy tensor. In the vacuum, the equation simplifies to

∇αα̇Ψαβγδ = 0 . (1.76)

As a remark, notice that massless fields of different spin have very similar spinor equa-

tions of motion. Indeed, the equation we obtained for the Weyl spinor in (1.76) re-

sembles the Maxwell equation (1.70) and the massless Dirac equation for a spin-1/2

field.

Petrov classification of the Weyl spinor

Just as we did for the Maxwell spinor, we can classify the Weyl spinor according to the

multiplicity of its principal spinors

Ψαβγδ = α(αββγγδδ) . (1.77)

The Petrov types, in increasing algebraic speciality are

• Type I: Ψαβγδ = α(αββγγδδ), algebraically general.

• Type II: Ψαβγδ = α(ααββγγδ).

• Type D: Ψαβγδ = α(αββαγβδ). They have two principal null directions and corre-
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Petrov type NP scalars

Type I φ1 φ2

Type II φ2

Petrov type NP scalars

Type I Ψ1 Ψ2 Ψ3 Ψ4

Type II Ψ2 Ψ3 Ψ4

Type D Ψ2

Type III Ψ3 Ψ4

Type N Ψ4

Table 1.1: Non-vanisning NP scalars for the different types of Maxwell and Weyl spinors.

spond to isolated sources, including the Kerr-Taub-NUT family and the C-metric.

• Type III: Ψαβγδ = α(ααβαγβδ).

• Type N: Ψαβγδ = αααβαγαδ. Only one principal null direction, this is the most

special type and represents pure radiation.

• Type O: Ψαβγδ = 0 corresponds to flat space.

1.3.4 Newman-Penrose scalars and peeling theorem

Given a generic spinor basis {o, ι}, we can expand the Maxwell and Weyl spinors as

φαβ = φ0 ιαιβ − 2φ1 ι(αoβ) + φ2 oαoβ , (1.78)

Ψαβγδ = Ψ0 ιαιβιγιδ − 4 Ψ1 ι(αιβιγoδ)

+ 6 Ψ2 ι(αιβoγoδ) − 4 Ψ3 ι(αoβoγoδ) + Ψ4 oαoβoγoδ .
(1.79)

The sets of spin coefficients {φi} and {Ψi} are called Newman-Penrose (NP) scalars

[125]. Depending on the algebraic type of the spinor, aligning the spinor basis with the

principal spinors sets a subset of the NP scalar to zero. The remaining non-vanishing

scalars are listed on table 1.1. Trivially, all the coefficients vanish for type O solutions.

Remarkably, Type N and Type D spacetimes are characterised by a single NP scalar

and its dual.

In asymptotically flat spacetimes, the NP scalars have an important property known

as peeling [125, 126]. This is a hierarchy in their fall-off with large distance r between

the observer and the localised source, provided they admit an analytic expansion.10 In

electrodynamics, we have

φ0(x) = φ
(0)
0 (x̄)

1

r3
+O(1/r4) ,

φ1(x) = φ
(0)
1 (x̄)

1

r2
+O(1/r3) ,

φ2(x) = φ
(0)
2 (x̄)

1

r1
+O(1/r2) ,

(1.80)

10The nature of the coordinate r will be made more precise later in the text.
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where x̄ denotes non-radial dependence. Thus, the scalar φ2(x) is the dominant com-

ponent of the field at large distances: it describes the asymptotic radiation field. Mean-

while, φ1(x) is Coulombic. In gravity, the situation is very similar:

Ψ0(x) = Ψ
(0)
0 (x̄)

1

r5
+O(1/r6) ,

Ψ1(x) = Ψ
(0)
1 (x̄)

1

r4
+O(1/r5) ,

Ψ2(x) = Ψ
(0)
2 (x̄)

1

r3
+O(1/r4) ,

Ψ3(x) = Ψ
(0)
3 (x̄)

1

r2
+O(1/r3) ,

Ψ4(x) = Ψ
(0)
4 (x̄)

1

r1
+O(1/r2) .

(1.81)

As a consequence, asymptotic gravitational radiation is described by Ψ4(x), while Ψ2(x)

describes a potential-type contribution, as in Schwarzschild.

1.4 Outline

The remaining of this thesis is organised as follows. Chapters 2 and 3 are aimed at

deriving classical double copy results directly from amplitudes. In chapter 2 we show

how the KMOC formalism can be used to generate the classical electromagnetic fields

sourced by static particle charges from 3-point amplitudes. Section 2.3 reviews how

magnetic charge and angular momentum can be added to the amplitudes by simple

transformations, resulting in fields that correspond to the
√

Kerr-dyon solution. Mo-

mentum conservation implies that the 3-point amplitude vanishes for real momenta

in Lorentzian signature, an issue that we avoid by working in split (2,2) signature in

chapters 2 and 3.

In chapter 3, we apply the same tools to gravity. To make the double copy structure

explicit at the level of the fields, we introduce a Riemann-Cartan generalised connection

in section 3.1. This time, we double copy the gauge amplitudes to obtain seeds for

gravitational solutions, as section 3.2 demonstrates. The curvature spinors and tensors

of explicit solutions are obtained in section 3.3. Section 3.4 concludes the chapter by

exploring the double copy relations exhibited by the classical fields, identifying the

previously known Weyl, convolutional and Kerr-Schild prescriptions.

The first two chapters motivate a deeper exploration of the Weyl and Kerr-Schild

double copies in chapters 4 and 5. After reviewing the original formulation of the Weyl

double copy in section 4.1, we study the effect that the electromagnetic duality has

on the double copy. Then, we move on to generalise the Weyl double copy to type N

solutions in section 4.2. In the final section of the chapter, we explore the Weyl double

copy from future null infinity and study the relation between asymptotic symmetries
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in gravity and large diffeomorphisms in electromagnetism.

The Kerr-Schild double copy is the object of study in chapter 5. Again, we start by

reviewing its basics in section 5.1. Then, in section 5.2, we present a double field theory

generalisation that enables us to establish a non-perturbative double copy relation

between JNW and Coulomb.

We conclude with some final remarks and possible future directions in chapter 6.



Chapter 2

Classical point charges from

amplitudes

The renewed interest in gravitational wave physics has motivated the search for new

analytic computational methods in perturbative general relativity. Methods based on

scattering amplitudes have proven successful, although they require efficient prescrip-

tions to extract classical information from the quantum amplitudes. The KMOC for-

malism serves this purpose [44,45]. It starts with quantum observables written in terms

of amplitudes. Then, by following the criteria in section 1.2, it returns the associated

classical observables. The impulse and emmited radiation in two-body processes are

examples of observables that can be obtained by this technique [44–46,66,68,127–130],

but it extends to other applications [131–134]. A particularly relevant development for

gravitational wave physics was the calculation of waveforms from amplitudes [67] to

arbitrary order in perturbation theory.

This chapter demonstrates the process of extracting classical field configurations

from scattering amplitudes. More precisely, it shows how to apply the KMOC formalism

to a wave packet representing a charged static point particle to obtain the classical

electromagnetic fields. This also constitutes a prelude to the next chapter, where the

same concepts are applied in the context of gravity. In essence, the goal is to bridge two

worlds: quantum amplitudes and classical fields, which often speak different languages.

Although the spinor formulation will be an effective translator, there is an additional

point of friction that needs to be addressed.

Three-point scattering amplitudes are the atoms in our modern approach to com-

puting interactions between particles in quantum field theory. Using modern on-shell

methods, it is possible to construct the complete S-matrix for Yang-Mills theory and

(up to ultraviolet divergences) for general relativity from their respective three-point

amplitudes. This is done by recursively decreasing the number of loops thanks to

unitarity cuts [8,9] and applying BCFW recursions [7] to cut tree amplitudes down to

35
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three-point amplitudes. These amplitudes are gauge invariant and beautifully simple

objects, completely specified by the helicities of the massless gluons and gravitons [135].

This basic simplicity carries over to the case of massive particles, for any spin [136].

But despite all these virtues, three-point amplitudes have one big defect: they do not

exist in Minkowski space. As for any n-point amplitude, the external particles involved

in a three-point amplitude must all be on-shell. But there is no solution to the on-shell

conditions in Minkowski space for three particles with different momenta. This obstruc-

tion has prevented the three-point amplitude from receiving a classical interpretation

so far. A contrasting example is the four-point amplitude between massive particles in

gravity, which is closely related to the classical potential [137,138].

Of course, the fact that the three-point amplitude vanishes in Minkowski space is

no obstacle for the programme of determining more complicated amplitudes. BCFW

taught us a simple trick: we analytically continue the momenta so that the on-shell

conditions do have a solution. We can take the momenta to be complex-valued, or else

continue to a spacetime with metric signature (+,+,−,−).1 This second option has

some conceptual virtues from the point of view of spinors. The Lorentz group in split

signature is locally isomorphic to SL(2,R)⊗SL(2,R), and the spinor representations of

SO(2, 2) are the (real) two-dimensional fundamental representations of each SL(2,R)

factor. The upshot is that, instead of having two sets of spinors related by complex

conjugation, real solutions in split signature have two sets of independent, real spinors.

For related discussions of field theory in split signature, see [139–144].

Another virtue of a real spacetime with signature (+,+,−,−) is that real classical

equations exist in this spacetime and their solutions can be studied. In this chapter,

we find a classical interpretation for the three-point amplitude in a split-signature

spacetime: it computes the Newman-Penrose scalars for the classical solution that

is generated by the massive particle in the amplitude. For example, the three-point

amplitude between a massive scalar and a gauge boson computes the electromagnetic

field strength of a static point charge in split signature. In Einstein gravity, the three-

point amplitude between a massive scalar and a graviton computes the linearised Weyl

spinor of the split-signature analogue of the Schwarzschild solution. Solutions in split

signature which are determined by three-point amplitudes are, from the perspective of

scattering amplitudes, the simplest non-trivial classical solutions.

2.1 Initial and final states

Let us consider a static particle source in split signature. We will use coordinates

(t1, t2, x, y), with signature (+,+,−,−).2 Since we have two time directions, we should

1In our split signature conventions, the (+)-directions are timelike and the (−)-directions are space-
like.

2We will also denote two dimensional space-like vectors in bold, eg. x = (x, y).
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not causal

causal

particle

Figure 2.1: The left image shows the 4D light-cone in split signature. The “inner” part of
the cone contains all the events that are not causally connected to the vertex, whereas the
events in the “exterior” can be reached by causal curves. On the right, the diagram shows the
support of the Green’s function for our choice of t1-retarded boundary conditions. The point
particle trajectory is represented by the thick line moving along the t2 axis. The shaded surface
is t1 − |~x| = 0, which contains the radiation. The dashed lines enclose the region where the
retarded Green’s function is non-zero, i.e. the t1-future of the particle. The dotted volume is the
t1-past of the particle.

specify the worldline of the particle, which we choose to be the t2 axis with tangent

vector uµ = (0, 1, 0, 0). We will model this massive particle as a non-dynamical scalar

wave packet, following the KMOC prescription. The expectation value of the momen-

tum of the wave packet should then be 〈pµ〉 = muµ. We define the quantum state

as

|ψ〉 =

∫
dΦ(p)ϕ(p) |p〉, dΦ(p) = d̂4p δ̂(p2 −m2)Θ(E2) , (2.1)

where the wave function ϕ(p) is sharply-peaked around the classical momentum muµ.

Notice that the theta function inside dΦ(p) enforces positive energy along t2, the world-

line direction of the particle. The existence of the other time direction t1 implies that

there is another energy, E1.3

To connect three-point amplitudes to Newman-Penrose scalars, all that is needed

is a direct computation using the methods of quantum field theory. The first order of

business, then, is to couple the scalar particle to a quantum electromagnetic field. The

existence of two time dimensions implies that we need to specify boundary conditions

for the fields. We choose to impose that the “messenger” fields (photons and gravitons)

must be in a vacuum state for t1 → −∞.

This endows the (t1, x, y) codimension-1 space with a sense of time ordering in which

fields are sourced at t1 = 0 by the instantaneous appearance of the particle. Figure

2.1 diagrammatically represents the causal lightcone in split signature as well as the

domain of the gauge field for our boundary conditions. Accordingly, we use the mode

expansion for the gauge field operator

Aµ(x) =
∑
η=±

∫
dΦ(k) ~−

1
2

(
aη(k)εµη (k)e−i

k·x
~ + a†η(k)εµη (k)ei

k·x
~

)
, (2.2)

3Note that, in the KMOC formalism, the momentum carried by messengers is of order ~, so in the
classical limit our massive particle is indeed static.
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where this time the measure is

dΦ(k) = d̂4k δ̂(k2)Θ(E1) . (2.3)

Note that now the theta function enforces positive energy along the t1 direction. We

will assume from now on that dΦ(k) carries a Θ(E1) for the gauge field while dΦ(p)

carries Θ(E2) for the massive particle. The associated field strength tensor is

Fµν(x) = −2 i
∑
η=±

∫
dΦ(k)~−

3
2

(
aη(k)k[µεν]

η e
−i k·x~ − a†η(k)k[µεν]

η e
i k·x~

)
. (2.4)

We want to obtain the field sourced by our particle when it is coupled to the electromag-

netic field with a charge Q. For t1 < 0, we impose that there must be no messengers,

so the field vanishes,

〈ψ|Fµν |ψ〉 = 0 . (2.5)

For positive t1, the state evolves with

|ψout〉 = lim
t1→∞

U(−t1, t1)|ψ〉 = S|ψ〉, (2.6)

and the goal is to compute the expectation value of the field

〈Fµν〉 ≡ 〈ψ|S†FµνS|ψ〉 . (2.7)

Similarly, we can obtain the spinor counterpart of the field strength tensor

φαβ(x) = σµναβFµν(x) . (2.8)

In order to have real spinors in split signature, we must choose different conventions for

the sigma matrices. Appendix A reviews our split signature spinor conventions as well

as other particularities of the signature. In analogy with the spinor-helicity language

of scattering amplitudes, we introduce the notation

|k〉 ↔ λα , 〈k| ↔ λα , |k]↔ λ̃α̇ , [k| ↔ λ̃α̇ , (2.9)

to pass between momenta k and spinors λ, λ̃, where

k · σαα̇ = λαλ̃α̇ . (2.10)

2.1.1 Coherent final state

In the classical limit, the final state exhibits a dramatic simplification, which enables

us to compute the expectation values to all orders of the coupling. To show this, we
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start by expanding the S matrix

S|ψ〉 =
1

N
(1 + iT3 + iT4 + · · · )|ψ〉 , (2.11)

where N is a normalisation constant and the Tn are defined by

Tn+2 =
1

n!

∑
η1,...,ηn

∫
dΦ(p′)dΦ(p)

n∏
i=1

dΦ(ki)A(n+2)
−η1,...,−ηn(p→ p′, k1 · · · kn)

× δ̂4
(
p− p′ −

∑
ki

)
a†η1

(k1) · · · a†ηn(kn) a†(p′)a(p) .

(2.12)

That is, the Tn+2 are projections of the transition matrix T onto final states with n

photons, in addition to the massive particle. We denote the creation and annihilation

operators for the massive scalar state by a†(p′) and a(p), respectively, as opposed to

the photon creation operators a†ηi(ki). In our conventions, the helicity labels η are for

incoming messengers. Note that we include precisely one creation and one annihilation

operator for our scalar, which is consistent with treating it as a probe source. We omit

all terms in Tn+2 containing photon annihilation operators since these would annihilate

the initial state |ψ〉. The factor n! in equation (2.12) is a symmetry factor associated

with n identical photons in the final state.

We begin by computing the action of T3 and T4 on |ψ〉 explicitly. It will then be a

small step to the general case and the exponential structure. First, the case of T3 is

straightforward:

iT3|ψ〉 =
∑
η

∫
dΦ(p′)dΦ(p)dΦ(k)ϕ(p) iA−η(k)|p′, kη〉 δ̂4

(
p− p′ − k

)
=
∑
η

∫
dΦ(p)dΦ(k)ϕ(p+ k) Θ(E2 + k2)δ̂(2p · k) iA−η(k)|p, kη〉 ,

(2.13)

where, in the second line, we integrated over p with the help of a four-fold delta function,

and we relabelled p′ to p. This expression simplifies when we compute in the domain

of validity of the classical approximation. As argued by KMOC [44], the classical

approximation reviewed in section 1.2 is valid when the scales in our problem satisfy

x� `w � `c, where `w is the length scale associated with the finite size of the spatial

wave packet, which controls the quantum uncertainty in the position of our source

particle, while `c = ~/m is the (reduced) Compton wavelength of the particle.4 Working

in Fourier space, we require that k � 1/`w � m (where k is a messenger momentum).

It is only when these inequalities are satisfied that our classical expressions are valid.

We assume that the integrals appearing in the equations are defined (e.g. with cutoffs)

so that these inequalities are satisfied.

Taking advantage of the classical approximation, we can ignore the explicit theta

4Recall that the role of the observer position x was played by an impact parameter b.
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p− k
p

k, η

Figure 2.2: The three-point electromagnetic amplitude. Notice that the photon with polarization
η is incoming.

p′

p

k1, η1

k2, η2

+

p′

p

k2, η2

k1, η1

+

p′

p

k1, η1

k2, η2

Figure 2.3: The familiar Feynman diagrams for the four point scalar QED amplitude. In this
figure, the photons are outgoing.

function in equation (2.13), since k2 is a small momentum component compared to

the large, positive classical energy E2 of the massive particle, which is of order m.

Similarly, we can ignore the shift k in the wave function ϕ(p+ k) ' ϕ(p), because this

shift is small on the scale 1/`w of the wave function. Thus, we find

iT3|ψ〉 =
∑
η

∫
dΦ(p)dΦ(k)ϕ(p) δ̂(2p · k) iA−η(k) a†η(k)|p〉 . (2.14)

For our static charge in electromagnetism, the three-point amplitude is the scalar QED

vertex,

A−(k) = −2
Q√
~
p · ε−(k),

A+(k) = −2
Q√
~
p · ε+(k).

(2.15)

Notice that the amplitude depends on k only through the polarisation vector εη(k): it

therefore does not depend on whether we treat k as a momentum or as a wave vector.

The factor 1/
√
~ in the amplitude cancels out with other factors of ~ in the expec-

tation value of Fµν . This is obviously consistent with the computation of a classical

quantity. Since all factors of ~ will similarly disappear for classical quantities in the

remainder of the thesis, we will henceforth set ~ = 1, restoring it only when necessary.
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The four-point case requires a little more work on the actual amplitude. Working

at the textbook level of Feynman diagrams (using the notation in figure 2.3), we find

iA(4) = −iQ2 4p · ε−η1(k1) p′ · ε−η2(k2)

2k1 · p+ iε
+iQ2 4p · ε−η2(k2) p′ · ε−η1(k1)

2k1 · p′ − iε
+ 2iQ2ε−η1(k1) · ε−η2(k2) .

(2.16)

The superscript (4) emphasises that now this is a four-point amplitude. Now, of these

three terms, the last is suppressed relative to the other two in the classical approxi-

mation. The suppression factor is of order p · k/m2, which is of order the energy of a

single photon in units of the mass of the particle. (Equivalently, the suppression factor

is ~ k̄/m, where k̄ is a typical component of the wave vector of the photon. From this

perspective, the contact term is explicitly down by a factor ~.) Therefore, we neglect

the contact diagram. In terms of a more modern unitarity-based construction of the

amplitude, this means that we can simply “sew” three-point amplitudes to compute

the dominant part of the four-point amplitude relevant for this computation.5

We can make this sewing completely manifest in our four-point amplitude by writing

k1 · p′ = k1 · p+O(~) , p′ · ε(k) = p · ε(k) +O(~) , (2.17)

and neglecting the ~ corrections. (In dimensionless terms, these corrections are again

suppressed by factors of the photon energy over the particle mass.) It is then a matter

of algebra to see that

iA(4) = δ̂(2p · k1) (−2iQ p · ε−η1(k1))(−2iQ p · ε−η2(k2))

= δ̂(2p · k1) iA−η1(k1) iA−η2(k2) .
(2.18)

We picked up a delta function from the sum of two propagators. It is perhaps worth

pausing to note that the two photon emissions are completely uncorrelated from one

another.

Now we can compute the action of T4 on our initial state. Using the definition (2.12)

of T4 and the fact that

a(p)|ψ〉 = ϕ(p)|0〉 , (2.19)

we find

iT4|ψ〉 =
1

2

∑
η1,η2

∫
dΦ(p′)dΦ(p)dΦ(k1)dΦ(k2)ϕ(p) iA(4)

−η1,−η2
(p→ p′, kη1

1 k
η2
2 )

× δ̂4(p− p′ − k1 − k2)|p′ kη1
1 k

η2
2 〉 .

(2.20)

5It may be worth emphasising that a one-loop computation of a classical observable such as the
impulse also involves the four-point tree amplitude. But in that case, the contact term is absolutely
necessary to recover the correct classical result, and in fact the terms we are concentrating on cancel.
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The integration over the momentum p is trivial using the explicit four-fold delta func-

tion. The measure dΦ(p) contains a theta function, requiring that the E2 component

of p′ + k1 + k2 is positive. Since the dΦ(p′) measure already requires the relevant en-

ergy of p′ to be positive, and the photon energies are small compared to the mass,

we can ignore this theta function. We also encounter the wave function evaluated at

p′ + k1 + k2; since the photon energies are small compared to the width of the wave

function, we may approximate ϕ(p′ + k1 + k2) ' ϕ(p′). Finally, dΦ(p) contains a delta

function requiring

p2 = (p′ + k1 + k2)2 = m2 . (2.21)

Since p′2 = m2, this becomes a factor

δ̂(2p′ · (k1 + k2) + (k1 + k2)2)

in T4|ψ〉. Once again, we may neglect this shift of the delta function, as it is small

compared to the width of the broadened δ`w function resulting from integrating against

the wave function [44]. Neglecting this width `w, we find

iT4|ψ〉 =
1

2

∑
η1,η2

∫
dΦ(p)dΦ(k1)dΦ(k2)ϕ(p) iA(4)

−η1,−η2
(p+ k1 + k2 → p, k1k2)

× δ̂(2p · (k1 + k2))|p kη1
1 k

η2
2 〉 ,

(2.22)

where we relabelled the momentum p′ to p. Now we may use our result (2.18) for the

four-point amplitude, arriving at

iT4|ψ〉 =
1

2

∑
η1,η2

∫
dΦ(p)dΦ(k1)dΦ(k2)ϕ(p) δ̂(2p · k1)δ̂(2p · k2)

× iA−η1(k1) iA−η2(k2)|p kη1
1 k

η2
2 〉

=
1

2

∫
dΦ(p)ϕ(p)

(∑
η

∫
dΦ(k)δ̂(2p · k)iA−η(k)a†η(k)

)2

|p〉 ,

(2.23)

Note that we have obtained the same result as in (2.14), but with a factor of 1/2 and

the integrand squared.

Now we turn to the general term, evaluating Tn+2|ψ〉. We can make use of the

knowledge gained from the four-point example, including the fact that the leading term

in the (n+2)-point amplitude can be obtained by sewing n three-point amplitudes. We

must nevertheless sum over permutations of the external photon momenta as shown in
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p

p′

k1, η1

kn−1, ηn−1

kn, ηn

kπ(1), ηπ(1)

kπ(n−1), ηπ(n−1)

kπ(n), ηπ(n)

=
∑
π

p

p′

Figure 2.4: The dominant term in the n+ 2 point amplitude can be obtained by sewing n three-
point amplitudes. The full amplitude is obtained by summing over permutations π of the n
outgoing photon lines.

figure 2.4. The dominant term in the amplitude is

iA(n+2) =

(
n∏
i=1

iA−ηi(ki)

)∑
π

i

2p · kπ(1) + iε

i

2p · (kπ(1) + kπ(2)) + iε
· · ·

× i

2p · (kπ(1) + kπ(2) + · · · kπ(n−1)) + iε
.

(2.24)

The sum is over permutations π of the n final-state photons.

At four points, the sum over sewings led to a delta function, and the same happens

here. We can state the result most simply at the level of Tn+2|ψ〉, which can be written

as

iTn+2|ψ〉 =
1

n!

∑
η1,...,ηn

∫
dΦ(p)

n∏
i=1

dΦ(ki)ϕ(p) δ̂

2p ·
n∑
j=1

kj

 iA(n+2) |p kη1
1 · · · k

ηn
n 〉 ,

(2.25)

using the properties of the wave function, and neglecting terms suppressed in the clas-

sical region. We may now simplify the sum in equation (2.24) using the result

δ̂

(
n∑
i=1

ωi

)∑
π

i

ωπ(1) + iε

i

ωπ(1) + ωπ(2) + iε
· · · i

ωπ(1) + ωπ(2) + · · ·ωπ(n−1) + iε

= δ̂(ω1)δ̂(ω2) · · · δ̂(ωn) .

(2.26)

This result, which is an on-shell analogue of the eikonal identity, is proven (for example)

in appendix A of reference [69]. We find that

iTn+2|ψ〉 =
1

n!

∫
dΦ(p)ϕ(p)

(∑
η

∫
dΦ(k) δ̂(2p · k) iA−η(k) a†η(k)

)n
|p〉 , (2.27)

generalising the square found in (2.23). Performing the sum over n, we obtain an
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exponential structure in the final state

S|ψ〉 =
1

N

∫
dΦ(p)ϕ(p) exp

[∑
η

∫
dΦ(k) δ̂(2p · k) iA−η(k) a†η(k)

]
|p〉 , (2.28)

where N is the normalisation factor ensuring that 〈ψ|S†S|ψ〉 = 1. The exponential

structure of the state captures the intuition that the outgoing field contains a great

many photons. It is also consistent with the intuition that coherent states are the

natural description of classical wave phenomena in quantum field theory. The coherence

of the state could also be demonstrated by taking advantage of the linear coupling

between the gauge field Aµ and a massive probe source worldline, so it comes as no

surprise. However, it is satisfying to see that the state is completely controlled by the

on-shell three-point amplitude.

Now that we have seen that the final state is given by equation (2.28), let us return

to the evaluation of the expectation value of the field strength. The computation is

simplified when we recall that (as usual for a coherent state) the annihilation operator

acts as a derivative on the state:

aη(k)S|ψ〉 = δ̂(2p · k) iA−η(k)S|ψ〉

=
δ

δa†η(k)
S|ψ〉 .

(2.29)

As a result, annihilation operators can be replaced by amplitudes.

The field strength is therefore

〈ψ|S† Fµν(x)S|ψ〉 = −4 Re i
∑
η

∫
dΦ(k) 〈ψ|S† aη(k)S|ψ〉 k[µεν]

η e
−ik·x

=
2

m
Re
∑
η

∫
dΦ(k) δ̂(u · k)A−η(k) k[µεν]

η e
−ik·x .

(2.30)

Similarly, the Maxwell spinor is obtained making use of (A.8) and (A.9),

〈ψ|S† φαβ(x)S|ψ〉 = −
√

2

m
Re

∫
dΦ(k) δ̂(u · k) |k〉α|k〉β e−ik·xA+(k), (2.31)

while the conjugate one reads

〈ψ|S†φ̃α̇β̇(x)S|ψ〉 =

√
2

m
Re

∫
dΦ(k) δ̂(u · k) [k|α̇[k|β̇ e

−ik·xA−(k) . (2.32)

Equations (2.31) and (2.32) show a direct relation between the Maxwell spinors and

the 3-point amplitudes. The positive helicity amplitude controls the anti-self-dual part

of the electromagnetic field, while the negative helicity amplitude controls the self-dual
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part.

2.2 Coulomb potential

So far we have obtained the classical expectation values of the fields as on-shell mo-

mentum integrals of the three-point amplitudes. Such expressions have the attribute

of explicitly relating classical fields to amplitudes, but eventually we would like to per-

form the integrals to obtain position space solutions. Since we are dealing with a simple

static electric charge, we can expect to obtain a split signature analogue of the Coulomb

potential.

The first step towards this end is to evaluate the amplitudes in (2.30) with (2.15),

〈Fµν(x)〉 ≡ 〈ψ|S† Fµν(x)S|ψ〉

= −4QRe
∑
η

∫
dΦ(k) δ̂(k · u) e−ik·x k[µεν]

η ε−η · u .
(2.33)

This expression can be simplified by resolving the proper velocity onto a Newman-

Penrose-like basis of vectors given by kµ, εµ± and a gauge choice nµ, such that k ·n = 1

while n · ε± = 0. The metric can be then written as

ηµν = 2 k(µnν) − 2 ε
(µ
+ ε

ν)
− , . (2.34)

Since k · u = 0 on the support of the integration, the velocity can be written in the

tetrad basis as

uµ = (u · n) kµ − (ε− · u) εµ+ − (ε+ · u) εµ− . (2.35)

Consequently, the field strength is given by the simple formula

〈Fµν(x)〉 = 4QRe

∫
dΦ(k) δ̂(k · u) e−ik·x k[µuν] . (2.36)

Before we perform any integrations, let us pause to interpret this formula. Note

that we may write

〈Fµν(x)〉 = 4Q∂[µuν] Re i

∫
dΦ(k) δ̂(k · u) e−ik·x . (2.37)

We recognise the definition of the field strength as the (antisymmetrised) derivative of

the gauge potential,

〈Aµ(x)〉 = 2QRe i uµ
∫

dΦ(k) δ̂(k · u) e−ik·x . (2.38)
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Similarly, from the gauge potential we can recognise a scalar potential

〈Aµ(x)〉 = Quµ〈S(x)〉 , (2.39)

with

〈S(x)〉 = 2 Re i

∫
dΦ(k)δ̂(k · u)e−ik·x . (2.40)

= i

∫
d̂4k δ̂(k2

1 − k2)Θ(k1)δ̂(k · u)
(
e−ik·x − eik·x

)
. (2.41)

To interpret these formulas, it’s worth digressing briefly to discuss our situation from

a classical perspective.

2.2.1 Classical calculation

Although in this chapter we are attempting to compute classical fields using scattering

amplitudes, they can also be computed by solving their classical equations of motion.

For instance, consider solving the Maxwell equation with a static point charge

∂µF
µν(x) =

∫
dτ Quν δ4(x− uτ) , (2.42)

where uµ = (0, 1, 0, 0), with the boundary condition that the electromagnetic field

vanishes for t1 < 0. Choosing Lorenz gauge, we can write the solution as a familiar

Fourier integral:

Aµ(x) = −
∫

d̂4k δ̂(k · u) e−ik·x
1

k2
Quµ . (2.43)

As usual, we need to define the k integral taking our boundary conditions into ac-

count. These boundary conditions are also familiar: they are just traditional retarded

boundary conditions. The only novelty lies in the signature of the metric. But even

the unfamiliar pattern of signs in split signature disappears for the problem at hand,

because of the factor

δ̂(k · u) = δ̂(k2)

in the measure. Consequently, the second component of the wave vector kµ is guar-

anteed to be zero. We end up with an integral of Minkowskian type, but in 1 + 2

dimensions. This is a consequence of translation invariance in the t2 direction.

Treating the k integration as a contour integral, the only poles in the integration of

equation (2.43) occur when

(k1)2 = k2 , (2.44)

where k = (k3, k4) are the spatial components of the wave vector. Taking the sign of the

exponent in equation (2.43) into account, retarded boundary conditions are obtained
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by displacing the poles below the real axis:

1

k2
→ 1

k2
ret

=
1

(k1 + iε)2 + (k2)2 − (k3)2 − (k4)2
, (2.45)

while advanced boundary conditions correspond to

1

k2
→ 1

k2
adv

=
1

(k1 − iε)2 + (k2)2 − (k3)2 − (k4)2
. (2.46)

Notice that

1

k2
ret

− 1

k2
adv

=
1

k2 + i(k1)ε
− 1

k2 − i(k1)ε
= −i sign(k1)δ̂(k2) , (2.47)

where, in the first equality, we have written (k1) for the first component of the 4-vector

k and have freely rescaled ε by positive quantities (as is conventional, we take ε → 0

from above at the end of our calculation).

Returning to the gauge field of equation (2.43), we have

Aµ(x) = −
∫

d̂4k δ̂(k · u) e−ik·x
(
−i sign(k1)δ̂(k2) +

1

k2
adv

)
Quµ

= i

∫
d̂4k δ̂(k · u) e−ik·x sign(k1)δ̂(k2)Quµ

= i

∫
dΦ(k) δ̂(k · u)Quµ

(
e−ik·x − eik·x

)
.

(2.48)

We dropped the advanced term because, with our boundary conditions, the position x

has positive t1. But equation (2.48) is just the result we found from the quantum ex-

pectation (2.38). Thus, our quantum mechanical methods are computing the complete

gauge field, as expected.

Given that we have made contact with a classical situation, we can use classical intu-

ition to perform the Fourier integrals. The integrals to be performed in equation (2.43)

are the same as the integrals in the computation of the retarded Green’s function in

1 + 2 dimensions. We discuss this Green’s function in appendix A.2. We find

Aµ(x) =
Quµ

2π
Θ(t1)

Θ(x2 − (x · u)2)√
x2 − (x · u)2

. (2.49)

In many respects, this result is familiar: it is just the usual 1/‘distance’ fall-off. There

is no other possibility: the dimensional analysis requires this behaviour with distance.

Although the obtained the solution in split signature, it can be analytically continued

back to Minkowski space. The continuation requires a prescription to complexify the

contour that gives rise to our choice of propagator. The details of this process are spelt

out in A.3.
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2.3
√

Kerr dyon

In section 2.2, we only considered the most basic amplitude in QED for a static point

particle. In gauge theory, there exist two non-trivial deformations of the Coulomb

amplitude. The first of these introduces a eη θ factor in the amplitude,

Aη(k)→ Aη(k) eη θ , (2.50)

where η is the helicity of the photon [90]. Notice that the rotation parameter has

been continued from Lorentzian space θ → −iθ, as motivated in appendix A.4. This

deformation has the interpretation of an electric-magnetic duality rotation, allowing us

to introduce magnetic charges. The second deformation is slightly more complicated.

For a photon with momentum k, it introduces a factor ei ηk·a in the amplitude,

Aη(k)→ Aη(k) ei η k·a . (2.51)

The vector aµ is a four-vector parameter related to the classical angular momentum. It

will be taken to lie along the Wick rotated coordinate: aµ = (a, 0, 0, 0). Consequently,

the Lorentzian exponent −η k · a has been analytically continued to split signature as

i η k ·a. Rather remarkably, this deformation leads to an amplitude describing a particle

with large classical spin aµ interacting with a photon. It may be derived [88] by studying

the large spin limit of the “minimally coupled” amplitudes of Arkani-Hamed, Huang

and Huang [136], and is known to be a form of the Newman-Janis shift [145]. Both

the electromagnetic rotation and spin shift were previously considered in [146] in the

context of the double copy, but without the tools to compute curvatures from the

amplitudes directly. This can be done now thanks to the exponentiation leading to

the coherent state reviewed in section 2.1. The transformations do not obstruct the

derivation, and one just needs to replace the amplitudes following (2.50) and (2.51).

The next subsections are devoted to the effects of these deformations on the field

strength tensor and its spinors. Later on, these transformations will be carried over to

gravity via the double copy. The duality angle will be associated to the NUT charge

whereas a will be the Kerr angular momentum parameter. The transformation effects

on the electromagnetic field is summarised in table 2.1. The table also shows the effects

on the double copy, which are derived in the next chapter.

2.3.1 Deformed amplitude

Both transformations can be applied simultaneously to the same amplitude,

Aη → Aηe η (ik·a+θ) . (2.52)
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Transformation Gauge theory Pure gravity

None Coulomb Schwarzschild

EM rotation dyon Taub-NUT

Newman-Janis shift
√

Kerr Kerr

EM rotation + NJ shift spinning dyon Kerr-Taub-NUT

Table 2.1: Effect of the transformations (2.50) and (2.51).

Performing this replacement in (2.31) yields the transformed Maxwell spinor

〈φαβ(x)〉 = −Re

∫
dΦ(k) δ̂(2p · k) 2

√
2 |k〉α|k〉β A+(k) eik·a+θ e−ik·x . (2.53)

It is immediately clear that

〈φαβ(x)〉 = eθ〈φCoul.
αβ (x− a)〉 , (2.54)

where 〈φCoul.
αβ (x)〉 is the Maxwell spinor of the Coulomb solution. A similar expression

can be obtained for the conjugate spinor,

〈φ̃α̇β̇(x)〉 = e−θ〈φ̃Coul.
α̇β̇

(x+ a)〉 (2.55)

The interpretation of these transformations in terms of the Newman-Janis shift and of

electric-magnetic duality is now more manifest. This will be even more transparent if

we apply the transformation to the field strength tensor, which is our next goal.

Scalar potential

As a preliminary step, we will study the combined effect of the transformations on the

scalar potential

Sa,θ(x) := 2 Re i

∫
dΦ(k)δ̂(k · u) e−i k·(x−a)eθ

=
eθ

2π

Θ((t1 − a)2 − r2)√
(t1 − a)2 − r2

= eθS0,0(x− a)

(2.56)

where r is defined as the 2d radius
√
x2 + y2. The first line implies that the effect of

the spin vector aµ is merely a shift in the spacetime coordinates xµ along t1. The last

line was obtained by introducing an iε prescription for convergence, in the same sense

as in (A.15).
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Field strength tensor

The deformed classical field strength tensor can be obtained as the expectation value

〈Fµν(x)〉 ≡ 〈ψ|S† Fµν(x)S|ψ〉

= −4QRe
∑
η

∫
dΦ(k) δ̂(k · u) e−ik·(x+η a) k[µεν]

η e
−θ η ε−η · u .

(2.57)

In the second line, we have substituted the amplitude (2.52) into (2.30). The integrand

can be expanded as

〈Fµν(x)〉 = −4QRe

∫
dΦ(k) δ̂(k · u) e−ik·x

×
(
k[µε

ν]
+ e
−θ−i k·a ε− · u+ k[µε

ν]
− e

θ+i k·a ε+ · u
)
. (2.58)

Using the null tetrad (2.34) and (2.35), the above expression can be rearranged as

〈Fµν(x)〉 = 4QRe

∫
dΦ(k) δ̂(k · u) e−ik·x

×
(

cos(k · a− iθ) k[µuν] + i sin(k · a− iθ)
(
k[µε

ν]
+ ε− · u− k[µε

ν]
− ε+ · u

))
.

(2.59)

This can be further simplified to

〈Fµν(x)〉 = 4QRe

∫
dΦ(k) δ̂(k · u) e−ik·x

×
(

cos(k · a− iθ) k[µuν] − i sin(k · a− iθ)
2

εµνρσk[ρuσ]

)
,

(2.60)

making use of the identity

εµνρσkρ uσ = −2
(
ε− · u k[µε

ν]
+ − ε+ · u k[µε

ν]
−

)
. (2.61)

Expanding the sine and cosine and recalling the definition of Sa,θ(x), we obtain

〈Fµν(x)〉 = 2Q∂[µuν]

[
Sa,θ + S−a,−θ

2

]
−Qεµνρσ∂[ρuσ]

[
Sa,θ − S−a,−θ

2

]
. (2.62)

In this expression, the derivatives act on the terms in brackets, since uµ has constant

components. We have obtained the fields for generic a and θ but in the next two

subsections we will focus on each transformation individually.
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2.3.2 Newman-Janis shift

A pure Newman-Janis shift has θ = 0,

Sa,0(x) =
1

2π

Θ
(
(t1 − a)2 − r2

)√
(t1 − a)2 − r2

. (2.63)

It is worth commenting on some features of this field. First of all, it encodes the

complex zeroth copy of Kerr. This can be checked by rotating to (1,3) signature as

t1 → i z

(t1 − a)2 − r2 → (i z − a)2 − r2 = −(z + ia)2 − r2 = −
(
R̃+ i a cosϑ

)2
. (2.64)

The “Kerr radius” R̃ and polar angle ϑ are implicitly defined by

r2

R̃2 + a2
+
z2

R̃2
= 1 , cosϑ =

z

R̃
. (2.65)

Thus,
1√

(t1 − a)2 − r2
→ i

R̃+ i a cosϑ
(2.66)

which is proportional to the scalar (3.32) in [99]. The fact that we recover the complex

scalar supports the idea of associating the double copy for amplitudes in (2,2) signature

to the Weyl double copy.

Secondly, notice that the spin a appears only in the combination (t1 − a) in equa-

tion (2.63). This is the Newman-Janis shift at work: in (2,2) signature, the shift is a

real translation, in the t1 direction, at the level of the field strength. (The shift acts in

a more subtle way on the potential. At the level of the effective action, the shift can be

interpreted as replacing the usual worldline action with a worldsheet structure [108].)

To obtain the shifted field strength tensor, we just need to set θ = 0 in (2.62) and

find

〈Fµν(x)〉 = 2Q∂[µuν]

[
Sa,0 + S−a,0

2

]
−Qεµνρσ∂[ρuσ]

[
Sa,0 − S−a,0

2

]
. (2.67)

Note that in Minkowski signature the first bracket corresponds to the real part of S

while the second corresponds to the imaginary part.

The field (2.67) is the split signature equivalent of the
√

Kerr solution, the single

copy of the Kerr black hole [88,97]. Instead of checking this claim by direct comparison,

which would be tedious due to coordinate transformations, we can derive (2.60) with

θ = 0 in a purely classical way. To do so, we solve the Maxwell equations in the presence
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of a
√

Kerr source,

∂µF
µν(x) = Q

∫
dτ exp(a ∗ ∂)νρu

ρδ(4)(x− uτ) ≡ jν√
Kerr

(x),

(a ∗ b)µν := εµνρσa
ρbσ.

(2.68)

Note that the source for
√

Kerr is formally the one for Coulomb (see for instance [147]

or [108]) but acted upon by the differential operator exp(a ∗ ∂)νρ. We observe that the

exponential exp(a ∗∂) remains invariant under analytic continuation to split signature.

This is because the derivative picks up a factor of −i, which is cancelled out by the i

picked up by the volume form.

We solve (2.68) by Fourier transform with the boundary conditions outlined in sec-

tion 2.1. We get

Aµ(x) = 2QRe i

∫
dΦ(k) δ̂(k · u)e−ik·xexp(−ia ∗ k)µρu

ρ. (2.69)

The action of the exponential matrix can be further simplified. In fact, on the support

of the on-shell measure, it can be shown that

exp(−ia ∗ k)µρu
ρ = uµ cos a · k − iεµ(a, k, u)

sin a · k
a · k

, (2.70)

where we defined εµ(a, b, c) := εµαβγaαbβcγ . We obtain finally

Aµ(x) = 2QRe i

∫
dΦ(k) δ̂(k · u)e−ik·x

(
uµ cos a · k − iεµ(a, k, u)

sin a · k
a · k

)
. (2.71)

The Maxwell tensor is then easily computed,

Fµν(x) = 4QRe

∫
dΦ(k) δ̂(k · u)e−ik·x

(
k[µuν] cos a · k − i

2
εµνρσk[ρuσ] sin a · k

)
,

(2.72)

which is equal to the Fµν we had in the purely spinning case with θ = 0.

Furthermore, starting from (2.72) we can also confirm the expressions (2.54) and

(2.55) in the θ = 0 case. Projecting on a spinor basis, these are found to be

φ
√

Kerr
αβ (x) = σµναβFµν(x)

= 2
√

2Q Re

∫
dΦ(k)δ̂(k · u)e−ik·(x−a)ε+ · u |k〉α|k〉β

= φCoul.
αβ (x− a),

(2.73)
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we report the negative-helicity spinor too

φ̃
√

Kerr

α̇β̇
(x) = σ̃µνα̇β̇Fµν(x)

= −2
√

2Q Re

∫
dΦ(k)δ̂(k · u)e−ik·(x+a)ε− · u [k|α̇[k|β̇

= φ̃Coul.
α̇β̇

(x+ a),

(2.74)

matching the expressions first obtained in [108].

Notice again that the action of the Newman-Janis translation on the Maxwell spinors

is beautifully simple: φ
√

Kerr
αβ is a translation of φCoul.

αβ in one direction, while φ̃
√

Kerr

α̇β̇

is a translation of φ̃Coul.
α̇β̇

in the opposite direction. This is in contrast to the more

complicated structure at the level of the field strength (2.67). We see that the notion

of chirality is intimately related to the structure of the Newman-Janis shift.

2.3.3 Duality rotation

To investigate the effect of the EM rotation on the fields, we take a to zero,

〈Fµν(x)〉 = 2Q∂[µuν]

[
S0,θ + S0,−θ

2

]
−Qεµνρσ∂[ρuσ]

[
S0,θ − S0,−θ

2

]
. (2.75)

Substituting the value of the scalar integrals,

〈Fµν(x)〉 = 2Q cosh θ ∂[µuν]

[
Θ(ρ2)

2π ρ

]
−Q sinh θ εµνρσ∂[ρuσ]

[
Θ(ρ2)

2πρ

]
, (2.76)

where ρ2 ≡ x2 − (x · u)2. In the region ρ2 > 0, we can Wick-rotate back to Lorentzian

signature. The duality angle transforms as θ → iθ and so cosh θ → cos θ and sinh θ →
−i sin θ. This factor of i is absorbed by the continuation of the volume form to

Lorentzian signature, yielding

〈Fµν〉 = cos θ FµνCoul. + sin θ ?FµνCoul. . (2.77)

As expected from a electric-magnetic duality rotation, we find that (2.50) mixes the

field strength tensor with its Hodge dual. The result is a dyonic field where some of

the electric charge has been traded for magnetic charge.



Chapter 3

Black holes from the double copy

In the previous chapter, we saw how three-point amplitudes in QED give rise to the

classical electromagnetic fields. This serves us in two different ways. First, the argu-

ments used in electromagnetism will be translated into gravity in the present chapter,

exposing the relation between three-point amplitudes in gravity and the linearised grav-

itational field. Secondly, the gauge amplitudes and fields derived in the previous chapter

provide the necessary building blocks to obtain gravitational equivalents via the double

copy. At the amplitudes level, one can obtain the gravitational 3-point amplitudes

as simple products of 3-point electromagnetic amplitudes. The resulting amplitudes

represent gravitational fields in the classical limit. Consequently, the amplitudes dou-

ble copy will generate classical double copy relations at the level of the fields. Within

these classical relations, we can identify previously known classical double copy struc-

tures that had not been directly related to the amplitudes double copy. For example,

we provide an on-shell momentum space version of the convolutional prescription of

[70, 74, 75, 103–105]. Another natural question is why some solutions admit a double

copy interpretation that is local in position space (i.e. not written as a convolution),

as in the Kerr-Schild double copy [97] and the Weyl double copy [99]. We provide a

connection between the properties that allow some solutions to have local double copy

structures and their point particle nature.

One difference with the previous chapter is that we will retrieve the gravitational

amplitude from the double copy. Our previous work showed how the electromagnetic

amplitude (2.52), which includes both spin and duality angle parameters, generates

classical fields sourced by isolated static point-like particles. Analogously, the dou-

ble copy of (2.52) yields the three-point gravitational amplitudes that seed linearised

gravity solutions sourced by static point-like objects. For three-point amplitudes, the

double copy takes a particularly simple form in which the gravity amplitude is the

ordinary product of two gauge amplitudes,

Gravity ∼ AηLe
ηL (ik·aL+θL) ×AηRe

ηR (ik·aR+θR) (3.1)

54
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Recall that, generically, the left and right copies can be different. In particular, the left

and right instances of (2.52) can have different helicities and different duality angles and

angular momentum, generating an interesting interplay of helicities and parameters. As

motivated in the introduction, the combination (ηL, ηR) = (±1,±1) corresponds to a

graviton emission amplitude and generates a linearised graviton field. If both helicities

contribute equally, the resulting field will be real. The mixed helicities, (ηL, ηR) =

(±1,∓1) source the dilaton and B-field. Since we will restrict to d = 4, the B-field can

be thought of as a pseudoscalar axion field σ that can be combined with the dilaton

into a complex scalar field.

There is one complication regarding the scalar fields. At linearised level, they de-

couple from the graviton meaning that they do not appear in the linearised Riemann

curvature tensor. In different words, the usual Riemann tensor misses half of the de-

grees of freedom in (3.1). We propose a solution which relies on encoding the dilaton

and axion as torsion degrees of freedom in a metric-affine connection. The resulting

connection gives rise to a Riemann tensor with fewer symmetries but which contains

all the NS-NS fields at linearised level. Intuitively, the prescription assigns a geometric

meaning to the scalar fields, putting them on the same footing as the graviton.

In a similar fashion to the gauge amplitude, the left and right duality and spin

parameters give rise to different transformations on the gravitational side. Let us define

ā = aL+aR and ∆a = aL−aR, and likewise θ̄ = θL+θR and ∆θ = θL−θR. Of these four

parameters appearing in the linearised gravity solution, only the parameters ā and θ̄

appear in the graviton components, whereas only the parameters ∆a and ∆θ appear in

the complex scalar and its conjugate. Due to the fact that A+A− is a constant (i.e. k-

independent), as we will review later, the complex scalar is generated by ei k·∆a+∆θ,

and its conjugate by e−i k·∆a−∆θ. Focusing on the duality parameters θ, the effect of θ̄

is to perform a gravitational Ehlers-type ‘electric-magnetic’ duality transformation of

the metric [6, 90, 148], whereas the effect of ∆θ is to perform an axion-dilaton duality

transformation, well known from supergravity. Likewise, ā performs a Newman-Janis

shift on the graviton, whereas ∆a performs a similar transformation to the complex

field.

We believe the notion of the double copy present in this chapter is the most faithful

representation of the double copy at a classical level (perhaps with the exception of

the self-dual double copy). Its quantum origin ensures agreement with the amplitude

formulations of the double copy. It admits dilaton and axion fields, which can be

sourced by picking different left and right single copies. Also, it can explain some of

the known examples of classical double copy procedures. Unfortunately, this notion of

classical double copy is limited by the class of point-particle solutions chosen, and the

fact that our exploration does not go beyond the linear level.
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3.1 Generalised curvature and NS-NS fields

As we have seen, the full double copy of Yang-Mills theory is not only pure Einstein

gravity, but NS-NS gravity. Besides the graviton, this theory includes a scalar field φ,

the dilaton, and a two-form field Bµν known as the B-field or the Kalb-Ramond field.

A complete classical double copy map should include all three fields on its gravitational

side. Examples of such maps have been found using double field theory, both for certain

exact solutions [5,149–152] and for perturbative solutions [153,154]. In all these studies,

the maps are written in terms of fields, in contrast to the Weyl double copy, where the

map relates curvatures, which are gauge invariant at the linearised level. In this section,

we will address this challenge by defining a generalised curvature that packages all the

NS-NS fields in geometric degrees of freedom, yielding a natural object from a double

copy perspective.

The standard notion of geometry in general relativity, a (pseudo-)Riemannian man-

ifold (M, g) endowed with the Levi-Civita connection ∇, can be generalised by relaxing

the requirements on the connection. If we allow the connection to have torsion, while

insisting on metric compatibility, the result is classified as a Riemann-Cartan geometry.

Consider a d-dimensional manifold M equipped with a metric gµν and an affine

connection D. In a coordinate basis, the covariant derivative acts on a vector V as

DνV
µ = ∂νV

µ + Γµνρ V
ρ . (3.2)

In general, the affine symbols Γµνρ do not have to be symmetric. Their anti-symmetric

part is the torsion tensor, Tµνρ ≡ 1
2(Γµνρ − Γµρν) = Γµ[νρ] . We will take (M, g,D) to

be a Riemann-Cartan manifold by requiring the connection to be metric-compatible,

Dλ gµν = 0 .

This condition constrains the affine symbols to take the form

Γµνρ =
{
µ
νρ

}
+Kµ

νρ , (3.3)

where the first term denotes the standard Christoffel symbols of the Levi-Civita con-

nection and the second, a tensor called contorsion, must satisfy Kµνρ = −Kρνµ . It can

be written uniquely in terms of the torsion as

Kµ
νρ =

1

2
gµλ

(
gντ T

τ
λρ + gρτ T

τ
λν + gλτ T

τ
νρ

)
. (3.4)

The generalised connection defines a generalised Riemann tensor, which in our conven-
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tions we write as

Rµνρ
λ = DνΓλµρ −DµΓλνρ + ΓλντΓτ µρ − ΓλµτΓτ νρ . (3.5)

It is important to note that this tensor does not have the symmetries of the usual

Riemann tensor. It satisfies Rµνρσ = R[µν]ρσ = Rµν[ρσ], but Rµνρσ 6= Rρσµν due to the

lack of symmetry in the last two indices of the contorsion. Using (3.3), it can be shown

that

Rµνρ
λ = Rµνρ

λ +∇νKλ
µρ −∇µKλ

νρ +Kλ
ντK

τ
µρ −Kλ

µτK
τ
νρ , (3.6)

where ∇ denotes the Levi-Civita connection and Rµνσ
λ its Riemann tensor. In gen-

eral, R will denote curvatures with torsion, whereas R is reserved for the standard

Riemannian curvatures of the metric.

Riemann-Cartan manifolds have extra geometrical degrees of freedom in the contor-

sion. These degrees of freedom can be used to accommodate the NS-NS fields, giving

them a geometric status in analogy with the metric. The dilaton is assigned to the

trace of the contorsion while the B-field is related to its fully antisymmetric component

Kµ
νρ =

κ

2
√

3
e−

4κφ
d−2 Hµ

νρ −
2κ

(d− 2)
√
d− 1

( δµν ∂ρφ − gνρ g
µσ ∂σφ) , (3.7)

where H = dB is the curvature of the B-field and κ is the gravitational coupling

constant. The contorsion (3.7) was chosen such that the Ricci scalar is

R = R− 4κ2

d− 2
∇µφ∇µφ−

κ2

12
e−

8κφ
d−2 HµνρH

µνρ +
4κ
√
d− 1

d− 2
∇µ∇µφ , (3.8)

the motivation being that
√
|g|R is equivalent to the usual NS-NS Lagrangian density

in the Einstein frame, up to a boundary term:

S =
2

κ2

∫
ddx
√
|g|
(
R− 4κ2

d− 2
∇µφ∇µφ−

κ2

12
e−

8κφ
d−2 HµνρH

µνρ

)
, (3.9)

=
2

κ2

∫
ddx
√
|g| R . (3.10)

Similar constructions have been proposed since the discovery of the NS-NS action [114].

Although the originally proposed connections were not metric compatible, they also

assigned connection degrees of freedom to the dilaton and B-fields. This motivated

a series of works trying to recast higher-order terms of the bosonic string Lagrangian

exclusively in terms of generalised curvature invariants [155–158]. A similar connection

is also used in the context of double field theory [159]. A metric-compatible connec-

tion was later introduced in [160], which, together with a non-parallel volume element,

reproduces the NS-NS Lagrangian in the string frame. Other generalised connections,

also metric-compatible, have been used to endow Einstein-dilaton gravity with a geo-
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metric interpretation [161,162]. A drawback of these geometric formulations of NS-NS

gravity is that, in order to obtain the correct equations of motion, one needs to im-

pose artificial constraints on the torsion [163]. For example, the totally antisymmetric

component, which we set proportional to Hµνρ, is not completely free, since H must be

exact. Hence, the geometric interpretation of the massless modes is not entirely clear

[164].

We are primarily interested in the curvature at linear order in the fields. Starting

from gµν = ηµν + κhµν , and expanding to linearised order, we obtain

Rµν
ρσ = −2κ ∂[µ∂

[ρhν]
σ] +

4κ

(d− 2)
√
d− 1

δ[µ
[ρ∂ν]∂

σ]φ+
2κ√

3
∂[µ∂

[ρBν]
σ] . (3.11)

In d = 4, the field redefinitions

φ→
√

3

2
φ , B →

√
3B , (3.12)

simplify the factors to reduce the linearised Riemann tensor to

Rµν
ρσ = −2κ

(
∂[µ∂

[ρhν]
σ] − δ[µ

[ρ∂ν]∂
σ]φ− ∂[µ∂

[ρBν]
σ]
)
. (3.13)

This expression highlights the fact that the generalised Riemann packages all the NS-

NS fields. At this order, the packaging can be taken one step further by using the ‘fat

graviton’ defined in [73] 1

Hµν = hµν −Bµν − P qµν (2φ+ h) , (3.14)

where hµν is the trace-reversed graviton and P qµν is a projector

hµν = hµν −
1

2
h ηµν , P qµν =

1

2

(
ηµν −

qµ∂ν + qν∂µ
q · ∂

)
. (3.15)

The constant auxiliary null vector qµ is related to gauge choices. In fact, the terms

involving qµ drop out of the gauge-invariant curvature, which can be written as the

compact expression

Rµν
ρσ = −2κ ∂[µ∂

[ρHν]
σ] . (3.16)

In this sense, our generalised curvature is the ‘fat Riemann’ associated with the ‘fat

graviton’.

There is yet another way to rewrite (3.13). In four dimensions, the two-form Bµν

can be traded for a pseudoscalar axion σ, defined by

Hµνρ = −e2
√

3φ εµνρσ∂
σσ . (3.17)

1Some factors differ from [73] due to different normalisation conventions.
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At linearised order, the exponential in the expression above equals 1, and the fat

Riemann is

Rµν
ρσ = −2κ

(
∂[µ∂

[ρhν]
σ] − δ[µ

[ρ∂ν]∂
σ]φ+ ερσλ[µ∂ν]∂λσ

)
. (3.18)

Later in the chapter, we will see how the different products of gauge theory am-

plitudes are related to the different components of the generalised curvature. We will

work in d = 4, where it is convenient to use the spinor-helicity formalism for the ampli-

tudes. The relation between the amplitudes and the generalised curvature is, therefore,

much clearer if we also express the latter spinorially. As described in appendix B, the

generalised Riemann tensor can be decomposed into spinors as

Rαα̇ββ̇γγ̇δδ̇ = Xαβγδ εα̇β̇ εγ̇δ̇ + X̃α̇β̇γ̇δ̇ εαβ εγδ

+ Φαβγ̇δ̇ εα̇β̇ εγδ + Φ̃α̇β̇γδ εαβ εγ̇δ̇ ,
(3.19)

where we use the bold typeface in order to distinguish the spinors from those of R.

The spinors Xαβγδ, Φαβγ̇δ̇ and their duals are symmetric in their first and second pairs

of indices. Recall that, generically, Rµνρσ 6= Rρσµν . This asymmetry implies that

Xαβγδ 6= Xγδαβ and Φαβγ̇δ̇ 6= Φ̃γ̇δ̇αβ . Since Xαβγδ is not completely symmetric, it can

be reduced further as

Xαβγδ = Ψαβγδ − 2
(
Σα(γ εδ)β + Σβ(γ εδ)α

)
+ Λ(εαγ εβδ + εαδ εβγ) , (3.20)

where Ψαβγδ and Σαβ are completely symmetric. A similar decomposition holds for

X̃α̇β̇γ̇δ̇ . Restricting to linearised level, we can compare the right-hand side of (3.19) to

the right-hand side of (3.13): the first line of the former corresponds to the graviton

contribution, whereas the second line corresponds to contributions from combinations

of the dilaton and the axion (which is the single degree of freedom of the B-field in

d = 4). We will make this more explicit in a later section.

3.2 Double copy map

Armed with the appropriate background on the geometry of the generalised connection,

we are ready to relate it to scattering amplitudes. Following the spirit of (3.1), the

gravitational amplitudes will be obtained from the double copy map for three-point

amplitudes

MηLηR = − κ

4Q2
cηLηR A

(L)
ηL
A(R)
ηR

, (3.21)

where there are four choices for (ηL, ηR):

(+,+) , (−,−) , (+,−) , (−,+) . (3.22)
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These correspond, respectively, to the gravity field being: positive-helicity graviton,

negative-helicity graviton, complex scalar (dilaton and axion), and conjugate complex

scalar. In general, we allow for four independent couplings cηLηR of our massive particle

to these gravity fields. Any choice of these couplings will lead to a linearised gravity

solution. In practice, we will be most interested in the case where the particle couples

equally to the two chiralities, in which case we take c++ = c−− and c+− = c−+.

The generalise curvature tensor will play the role that the field strength played in

gauge theory. The similarities between the two objects can be already seen from the

operator mode expansion

Rµνρσ = 4κ Re

∫
dΦ(k)

[ ∑
ηLηR

aηLηR ε
[µ
ηL

(k)kν]ε[ρ
ηR

(k)kσ]

]
e−ik·x . (3.23)

The operator version of the linearised spinor coefficients is computed by contracting

the curvature with the sigma matrices [165]

Xαβγδ = σµναβσ
ρσ
γδRµνρσ , X̃α̇β̇γ̇δ̇ = σ̃µν

α̇β̇
σ̃ρσ

γ̇δ̇
Rµνρσ , (3.24)

Φαβγ̇δ̇ = σµναβσ̃
ρσ

γ̇δ̇
Rµνρσ , Φ̃α̇β̇γδ = σ̃µν

α̇β̇
σρσγδRµνρσ . (3.25)

These contractions are easily computed applying (A.8) and (A.9). The resulting spinors

are

Xαβγδ = 2κ Re

∫
dΦ(k) a−−|k〉α|k〉β |k〉γ |k〉δ e−ik·x , (3.26)

X̃α̇β̇γ̇δ̇ = 2κ Re

∫
dΦ(k) a++[k|α̇[k|β̇ [k|γ̇ [k|δ̇ e

−ik·x , (3.27)

Φαβγ̇δ̇ = −2κ Re

∫
dΦ(k) a−+ |k〉α|k〉β [k|γ̇ [k|δ̇ e

−ik·x , (3.28)

Φ̃α̇β̇γδ = −2κ Re

∫
dΦ(k) a+− [k|α̇[k|β̇ |k〉γ |k〉δ e

−ik·x . (3.29)

To link these objects to the amplitudes (3.21), we would like to use the equivalent of

(2.29) for the NS-NS fields. Graviton self-interactions could spoil the exponentiation

present in electromagnetism. Clearly, there are additional diagrams in gravity, for
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example at four points we could encounter the diagram

which involves a graviton three-point interaction. However, self-interactions of gravi-

tons are suppressed compared to the dominant diagram

where the gravitons connect directly to the massive line. The reason is simply that

the graviton self-interaction involves powers of the momenta of the gravitons, while the

coupling to the massive line involves the particle mass. Since the particle mass is large

compared to the graviton momenta, we may neglect graviton self-interactions. We may

also neglect contact vertices (as in electromagnetism) for the same reason.

This does not mean that all self-interactions of the gravitational field are eliminated.

The metric quantum operator has a perturbative expansion which includes these self-

interactions. The expectation value of this all-order operator on our coherent state

reproduces the classical metric. Notice that the coherent state is gauge invariant, while

the quantum operator may not be (in quantum gravity, only asymptotic observables

may be associated with gauge-invariant operators). This procedure would allow us to

perturbatively construct the Schwarzschild metric, along the lines of [166–168] but in

a manifestly on-shell formalism; see also [31] for an alternative approach based on an

intermediate matching with an effective theory of sources coupled to gravitons. We

restrict ourselves to the first order and leave this programme for future work.

In conclusion, it can be shown that the same arguments described in section 2.1.1

apply also to linearised gravity [1, 3]. From this, it follows that the final state is also
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coherent,

S|ψ〉 =
1

N

∫
dΦ(p)ϕ(p) exp

[ ∫
dΦ(k) i δ̂(2p · k)

×

(∑
ηLηR

M−ηL,−ηR(k) a†ηLηR(k)

)]
|p〉 ,

(3.30)

which is analogous to (2.28). The exponentiation of the gravitational amplitude implies

that
aηLηR(k)S|ψ〉 = δ̂(2p · k) iM−ηL,−ηR(k)S|ψ〉

=
δ

δa†ηLηR(k)
S|ψ〉 .

(3.31)

Equation (3.31) implies that we can easily exchange annihilation operators for am-

plitudes inside expectation values, so that we find

〈Rµνρσ〉 = 4κ Re i

∫
dΦ(k)δ̂(2k · p)

[∑
η

M−ηL,−ηR ε
[µ
ηL

(k)kν]ε[ρ
ηR

(k)kσ]

]
e−ik·x .

(3.32)

The same can be done in the spinor coefficients. The application of the map (3.21)

results in

〈Xαβγδ〉 = −κ
2c++

2Q2
Re i

∫
dΦ(k)δ̂(2p · k)A(L)

+ A
(R)
+ |k〉A|k〉B|k〉C |k〉D e−ik·x , (3.33)

〈X̃α̇β̇γ̇δ̇〉 = −κ
2c−−
2Q2

Re i

∫
dΦ(k)δ̂(2p · k)A(L)

− A
(R)
− [k|α̇[k|β̇ [k|γ̇ [k|δ̇ e

−ik·x , (3.34)

〈Φαβγ̇δ̇〉 = +
κ2c+−
2Q2

Re i

∫
dΦ(k)δ̂(2p · k)A(L)

+ A
(R)
− |k〉A|k〉B[k|γ̇ [k|δ̇ e

−ik·x , (3.35)

〈Φ̃α̇β̇γδ〉 = +
κ2c−+

2Q2
Re i

∫
dΦ(k)δ̂(2p · k)A(L)

− A
(R)
+ [k|α̇[k|β̇ |k〉C |k〉D e

−ik·x . (3.36)

The above expressions make it clear that every quadratic term in the amplitudes sources

a different component of the spinor curvature. The double copy structure is remarkably

explicit when comparing with the gauge field spinors (2.31) and (2.32). Moreover, we

can obtain the equivalent of (2.54) and (2.55) by considering the gauge amplitudes

A(L)
η = −2Q(p · εη)eη(θL+ik·aL),

A(R)
η = −2Q(p · εη)eη(θR+ik·aR),

(3.37)
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which under the double copy map implies that

〈Xαβγδ(x)〉 = eθ̄〈XJNW
αβγδ(x− ā)〉 ,

〈X̃α̇β̇γ̇δ̇(x)〉 = e−θ̄〈X̃JNW
α̇β̇γ̇δ̇

(x+ ā)〉 ,

〈Φαβγ̇δ̇(x)〉 = e∆θ〈ΦJNW
αβγ̇δ̇

(x−∆a)〉 ,

〈Φ̃α̇β̇γδ(x)〉 = e−∆θ〈Φ̃JNW
α̇β̇γδ

(x+ ∆a)〉 ,

(3.38)

where we have defined

θ̄ := θL + θR , ∆θ := θL − θR , (3.39)

ā := aL + aR, ∆a := aL − aR . (3.40)

The superscript JNW refers to the solution where both single copies are Coulomb.2

Notice that, at linearised level, the first two spinors in (3.38) match those of the

Schwarzschild solution. The various parameters are elegantly distributed over the differ-

ent spinors. The parameter ā corresponds to the spin of Kerr, and appears as expected

via the Newman-Janis shift, while θ̄ corresponds to the split signature version of the

rotation between the mass and the NUT parameter; together, these two parameters

correspond to the Kerr-Taub-NUT solution. The interpretation of the spin parameter

as a translation, complex in Lorentzian signature, was discussed in more detail in [108].

Note that the limit θ̄ → ±∞ kills one of the chiralities of the Weyl spinor, and the

Weyl tensor becomes (anti-)self-dual.3 The same happens for the parameters θL,R of

the single copies. If one of the single copies, say the left one, has θL → ±∞, the double

copy will also be (anti-)self-dual unless θR scales in the opposite way.

The parameters ∆a and ∆θ correspond, respectively, to a novel type of Newman-

Janis shift for the axion and dilaton, and to the standard axion-dilaton supergravity

duality transformation.

The spinor language is better fitted for displaying the double copy, but it is instruc-

tive to think about the dilaton and axion. We can map (3.32) to the field degrees of

freedom using (3.13), together with the mode expansions of the fields

hµν = 2 Re
∑
η

∫
dΦ(k)aηη(k)εµη (k)ενη(k) e−ik·x , (3.41)

φ = 2 Re

∫
dΦ(k) aφ(k) e−ik·x , (3.42)

2The meaning of the superscript will become clear in section 3.3.
3Other parameters must be suitably scaled to keep the solution finite.
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Bµν = 2 Re

∫
dΦ(k) aB(k)

(
εµ+(k)εν−(k)− εµ−(k)εν+(k)

)
e−ik·x . (3.43)

Substituting in (3.13) implies that equation (3.32) can be re-expressed as

Rµνρσ = 4κ Re

∫
dΦ(k)

[∑
η

aηε
[µ
η (k)kν]ε[ρ

η (k)kσ]

+ aφ k
[µην][ρkσ] + aB k

[µ(ε
ν]
+ε

[ρ
− − ε

ν]
−ε

[ρ
+)kσ]

]
e−ik·x . (3.44)

The first term in the second line of (3.44) needs simplification. This is achieved by

expanding the flat metric in terms of the null tetrad

k[µην][ρkσ] = −k[µε
ν]
+ε

[ρ
−k

σ] − k[µε
ν]
−ε

[ρ
+k

σ] . (3.45)

Comparison to (3.23) implies the following relations between annihilation operators

a++ = a+ , a−+ = aφ + aB ,

a−− = a− , a−+ = aφ − aB ,
(3.46)

and consequently the gauge and gravity amplitudes are related by

Mηη = − κ

4Q2
cηηA(L)

η A(R)
η ,

Mφ = − κ

4Q2

1

2

(
c+−A(L)

+ A
(R)
− + c−+A(L)

− A
(R)
+

)
,

MB = − κ

4Q2

1

2

(
c+−A(L)

+ A
(R)
− − c−+A(L)

− A
(R)
+

)
.

(3.47)

In the next sections, this prescription will be put into practice to compute the classical

fields obtained by double copying the amplitudes discussed in section 2.3. From now on,

we will restrict to the case c++ = c−− and c+− = c−+ since these solutions naturally

continue to real solutions in Lorentzian signature.

3.3 Explicit solutions

3.3.1 Duality rotation

It is time to provide concrete example solutions. Consider left and right amplitudes

that differ in their EM duality angle,

A(L)
η = −2Q(p · εη)eθLη,

A(R)
η = −2Q(p · εη)eθRη,

(3.48)
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the effect of this difference will be a rotation between dilaton and axion. The double

copied amplitudes are obtained by applying the map (3.47),

Mη = −c++κm
2(u · εη)2 eθ̄η ,

Mφ =
κ c+−

2
p2 cosh ∆θ =

c̃ m

2
cosh ∆θ ,

MB =
κ c+−

2
p2 sinh ∆θ =

c̃ m

2
sinh ∆θ ,

(3.49)

where we use c̃ as a shorthand for κ c+−m. To test the effect of the rotation on the

metric, let us compute the transformed Weyl tensor,

〈W µνρσ(x)〉 = −4κ2 Re i c++m
2

∫
dΦ(k) δ̂(2k · p) e−ik·x

[
(ε+ · u)2k[µε

ν]
−k

[ρε
σ]
− e

θ̄

+(ε− · u)2k[µε
ν]
+k

[ρε
σ]
+ e−θ̄

]
.

(3.50)

A little algebra shows that this can be rewritten as

〈W µνρσ(x)〉 = −4κ2 Re i c++m
2

∫
dΦ(k) δ̂(2k · p) e−ik·x

×
[
cosh θ̄

(
k[µuν]k[ρuσ] +

1

2
k[µην][ρkσ]

)
−1

2
sinh θ̄ εµντλ

(
k[τuλ]k

[ρuσ] +
1

2
k[τδ

[ρ
λ]k

σ]

)]
.

(3.51)

The first term, with the hyperbolic cosine, corresponds to the Schwarzschild solution,

which we will denote Wµνρσ
Schw.. Making use of this notation leads to the compact result

〈W µνρσ〉 = cosh θ̄ Wµνρσ
Schw. − sinh θ̄

1

2
εµντλ W Schw. ρσ

τλ . (3.52)

The second term represents the dual of WSchw., in analogy with the result of section

2.3.3. We conclude that the angle θ̄ indeed rotates the mass and the NUT charge of

the solution [6, 90].

The Weyl tensor we have computed represents the graviton degrees of freedom in

Rµνρσ. The next step is to obtain the classical expectation value of the dilaton and axion

degrees of freedom. Instead of computing the corresponding components of Rµνρσ, we

will obtain the field profiles 〈φ〉 and 〈σ〉 directly.

Let us start with the classical expectation value of the dilaton field, 〈φ〉 = 〈ψ|S†φS|ψ〉.
The result is obtained by application of the field operator (3.42), together with the co-

herent state exponentiation (3.30) and the amplitude given in (3.49):

〈φ(x)〉 = c̃ m cosh ∆θ Re i

∫
dΦ(k) δ̂(2p · k)e−ik·x . (3.53)
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Performing the integration as in (2.56), we obtain

〈φ(x)〉 = c̃ cosh ∆θ
Θ(ρ2)

8π

1

ρ
. (3.54)

The axion field requires a bit more work. Recalling (3.43) and taking a derivative,

we quickly find

〈Hµνρ(x)〉 = 〈3 ∂[µBνρ](x)〉 = 3 c̃ sinh ∆θRe

∫
dΦ(k)δ̂(u · k)k[µε

+
ν ε
−
ρ] e
−ik·x . (3.55)

At this stage, it is very helpful to note that

εµνρσk[νε
+
ρ ε
−
σ] = 4! k[µnνερ+ε

σ]
−k[νε

+
ρ ε
−
σ] = − kµ . (3.56)

Hence,

⇒ 〈εµνρσHνρσ(x)〉 = −3 c̃ sinh ∆θ Re

∫
dΦ(k) δ̂(k · u) kµ e−ik·x

= −3 c̃ sinh ∆θ ∂µ
(

Θ(ρ2)

4π

1

ρ

)
.

(3.57)

This expression provides direct information on the axion σ. To see how, note from

equation (3.17), expanded to leading order, that the relation between H and σ is

simply

Hµνρ = −εµνρσ ∂σσ ⇒ εµνρσHνρσ = −3! ∂µσ . (3.58)

Comparing with the previous expression, we find

〈σ(x)〉 = c̃ sinh ∆θ
Θ(ρ2)

8π

1

ρ
. (3.59)

3.3.2 Newman-Janis shift

Now we turn our attention to the spin parameter. Just as we did in the previous

section, we can use the prescription (3.21) to source an axion and a dilaton. However,

we now consider products of gauge theory amplitudes with different spins

A(L)
η = −2Q(p · εη)ei η aL·k,

A(R)
η = −2Q(p · εη)ei η aR·k.

(3.60)

These yield the following gravity amplitudes

Mη = −κ c++m
2(u · εη)2 ei η ā·k ,

Mφ =
c̃ m

2
cos(∆a · k) ,

MB =
c̃ m

2
sin(∆a · k) .

(3.61)



CHAPTER 3. BLACK HOLES FROM THE DOUBLE COPY 67

Once more, the graviton components of the fat curvature tensor found in (3.32)

reduce to the Weyl tensor

Wµνρσ(x) = 4κ c++ Re i

∫
dΦ(k)δ̂(2k · p)e−ik·x

∑
η

Mηε
[µ
−ηk

ν]ε
[ρ
−ηk

σ]eiηk·ā. (3.62)

It is not difficult to see that this matches the classical computation with a spinning

source. The linearised equations of motion are

∂2hµν(x) = −κPµναβTαβ(x), Pµναβ = δ(µ
(αδ

ν)
β) −

1

2
ηµνηαβ , (3.63)

with the following stress-energy tensor for Kerr [108,147]

Tµν(x) = 4m

∫
dτ u(µexp(ā ∗ ∂)ν)

ρu
ρδ(4)(x− uτ) . (3.64)

Solving (3.63) with the usual boundary conditions, we find the linearised metric

hµν(x) = −2κm2Re i

∫
dΦ(k)δ̂(p · k)e−ik·x Pµναβ u

(αexp(−iā ∗ k)β)
ρu

ρ

= −κm2Re i

∫
dΦ(k)δ̂(p · k)e−ik·x

[(
uµuν − 1

2
ηµν
)

cos(ā · k)

− i u(µεν)(ā, k, u)
sin(ā · k)

ā · k

]
,

(3.65)

from which the curvature can be computed. After some tedious but straightforward

algebra one finds

Wµνρσ(x) = −4κ2m2Re i
∑
η

∫
dΦ(k)δ̂(2p · k)e−ik·x(εη · u)2k[µε

ν]
−ηk

[ρε
σ]
−ηe

iηk·ā. (3.66)

The result matches the one we obtained from amplitudes upon setting c++ = 1.

For the dilaton and the axion, the calculations are formally analogous to the ones out-

lined in 3.3.1, except that now we have momentum-dependent trigonometric functions

which characterise the spin mixing. For this reason, we omit the explicit computations

and report the final results. We find for the dilaton

〈φ(x)〉 =
c̃

2
Re i

∫
dΦ(k) δ̂(u · k)e−ik·x cos(∆a · k)

=
c̃

8
(S∆a,0(x) + S−∆a,0(x)) ,

(3.67)

referencing the definition of the scalar potential (2.56). The axion is instead given by

〈εµνρσHνρσ(x)〉 = −3 c̃ ∂µ Re i

∫
dΦ(k) δ̂(k · u) e−ik·x sin(∆a · k), (3.68)



CHAPTER 3. BLACK HOLES FROM THE DOUBLE COPY 68

telling us that the scalar σ is, at leading order,

〈σ(x)〉 =
c̃

2
Re i

∫
dΦ(k) δ̂(u · k)e−ik·x sin(∆a · k)

=
c̃

8
(S∆a,0(x)− S−∆a,0(x)) .

(3.69)

3.3.3 Comparison with known solutions

Some of the linearised solutions that we have found from double copying amplitudes

are known exactly in the literature.

When all four deformation parameters are zero, both single copies represent Coulomb

particles. The resulting gravitational solution has vanishing axion and NUT charge

and corresponds to a linearised Schwarzschild metric and a ‘1/distance’ dilaton profile.

The solution discovered by Janis, Newman and Winicour (JNW) [109] has the same

characteristics at linear level. The JNW solution is a static, spherically symmetric

deformation of the Schwarzschild black hole with a dilaton field.4 These characteristics

make JNW a natural candidate for the double copy of the point charge, a relation that

has been confirmed using a variety of perturbative methods [5,39,73,106]. In chapter 5

we will show how to establish an exact double copy relation between JNW and Coulomb

using tools from double field theory [5]. Additionally, the simplicity of JNW will prove

useful to check for the existence of a double copy relation in position space in section

3.4.

The linearised solution of subsection 3.3.1, which has generic θ̄ and ∆θ corresponds

to an axion-dilaton Taub-NUT black hole, which is known exactly; see (17), (19) in

[169]. It is instructive to check that our results agree with the linearisation of the known

solution. There, dilaton and axion are given as5

e−φ = (1 + ε2)
Λδ

ε2Λ2δ + 1
, σ =

ε(Λ2δ − 1)

ε2Λ2δ + 1
, (3.70)

where

Λ = 1− R0

R
,

δ R0 is the charge of the dilaton and ε is a duality rotation parameter between dilaton

and axion. Notice that R is the Lorentzian equivalent of ρ. At linearised level, the

fields decouple and the metric is equivalent to Taub-NUT. Expanding at linear order

the other fields and defining ε = − tan ∆θ
2 , we find

φ = cos ∆θ
δ R0

R
, σ = sin ∆θ

δ R0

R
. (3.71)

4Note that for non-vanishing dilaton charge the JNW spacetime contains a naked singularity. This
naked singularity is not surprising because the uniqueness theorems prevent a scalar-hair deformation
of the Schwarzschild solution.

5Ignoring factors of
√

3 that can be absorbed into δ at linear order.
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Our solution (3.54), (3.59) agrees with this up to an overall constant (c̃ = 16π δ R0).6

Then, ∆θ is just the parameter inside SL(2,R) that generates linear rotations between

dilaton and axion.

In the special case where θL = θR both single copies are identical, and we have no

mixing: ∆θ = 0. From (3.49), we see that this implies that the axion will vanish, leaving

a linearised solution that would be the equivalent to Taub-NUT plus the dilaton. In

[169], this corresponds to (17) and (18).

On the contrary, if θR = −θL, θ̄ vanishes and the resulting metric has vanishing

NUT charge. The result is a linearised Schwarzschild metric plus axion plus dilaton,

corresponding to the linearisation of (10) and (13) in [169].

The solutions considered in subsection 3.3.2 involving spin are not so well understood

in the literature. There have been attempts to apply a Newman-Janis shift to the JNW

solution, with the prospects of obtaining a spinning generalisation. However, these

claimed generalisations fail to satisfy the Einstein-dilaton equations of motion [170].

Although linear, our solution might help to find a satisfactory generalisation of the

JNW metric with spin. For pure Einstein gravity, ∆θ = ∆a = 0, the metric corresponds

to the linearised equivalent of the Kerr-Taub-NUT metric in split signature. Recently,

this metric was derived from the usual Lorentzian line element by a Wick rotation

[143,144].

3.4 The classical double copy in position space

3.4.1 Weyl double copy

We have found expressions that exhibit clear double copy relations in on-shell momen-

tum space, but we are interested in finding out whether these straightforward double

copy relations can be carried over to position space. In particular, our goal is to see

how the position-space Weyl double copy relations [99] emerge from amplitudes map

(3.21). In most of this section, we will set aL,R = θL,R = 0, since this simple scenario

is enough to illustrate most of the points. To simplify the discussion, each term in the

expectation value of (3.44) will be analysed individually. We will omit the axion term

since it vanishes when aL,R = θL,R = 0.

First, we shall consider the terms associated to the graviton amplitude, which we

will denote by R(h)
µνρσ. This is precisely the Schwarzschild Riemann (and Weyl) tensor

6After rotating back to Lorentzian signature, the hyperbolic trigonometric functions turn into stan-
dard trigonometric functions. Additionally, one has to continue σ → iσ due to its pseudo-scalar nature,
which cancels the factor of i from the sine. The factor of 16 takes into account a factor of 2 generated
by the analytic continuation of the propagator (A.25).



CHAPTER 3. BLACK HOLES FROM THE DOUBLE COPY 70

considered in [3]. It can be obtained from (3.51), setting θ̄ = 0,

〈R(h)µνρσ〉 = −4 Re im2κ2

∫
dΦ(k)δ̂(2k · p)e−ik·x

(
k[µuν]k[ρuσ] +

1

2
k[µην][ρkσ]

)
.

(3.72)

The second term in the brackets makes the expression traceless. Alternatively, we can

write

〈R(h)µνρσ〉 = −4Pµνρστληω Re im2κ2

∫
dΦ(k)δ̂(2k · p)e−ik·xk[τuλ]k[ηuω] , (3.73)

where Pµνρστληω projects out the trace, as in the definition of the Weyl tensor

Wµννρ = Pµνρστληω R
τληω ,

Pµνρστληω =
3

2

(
δµτ δ

ν
λδ
ρ
ηδ
σ
ω − δµτ δ

[ρ
λ δ

σ]
η δ

ν
ω

)
+ 2 gτηδ

[µ
λ g

ν][ρδσ]
ω +

1

3
gτη gλω g

µ[ρ gσ]ν .
(3.74)

Next, we can take the factors of k outside the integral as derivatives

〈R(h)µνρσ〉 = 4m2κ2 Pµνρστληω ∂
[τuλ]∂[ηuω] Re i

∫
dΦ(k)δ̂(2k · p)e−ik·x

= 2mκ2 Pµνρστληω ∂
[τuλ]∂[ηuω] Re i

∫
dΦ(k)δ̂(k · u)e−ik·x .

(3.75)

For positive t1, it can be checked that

Re i

∫
dΦ(k)δ̂(k · u)e−ik·x = −1

2

∫
d̂3k

e−ik·x

k2
. (3.76)

The integral on the right is performed over the three-dimensional subspace of momenta

orthogonal to the worldline k · u = 0, so kµ = (k1, 0, k3, k4). This prescription will

be used for the rest of this section. Additionally, the divergence is resolved by the iε

prescription (k)2 = (k1 + iε)2 − |~k|2, which selects the retarded contour. Substituting

in the Riemann tensor and taking the derivatives inside the integral, we get

〈R(h)µνρσ〉 = mκ2 Pµνρστληω

∫
d̂3k

e−ik·x

k2
k[τuλ]k[ηuω] . (3.77)

This already looks like a double copy of the field strength tensor

Fµν(x) = −2Q

∫
d̂3k

e−ik·x

k2
k[µuν] . (3.78)
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To obtain a concrete double copy expression, we introduce a delta function

〈R(h)µνρσ〉 = mκ2 Pµνρστληω

∫
d̂3k d̂3q δ̂3(k − q)e

−ik·x

k2
k[τuλ]q[ηuω]

= mκ2 Pµνρστληω

∫
d̂3k d̂3q d3y e−iy·(q−k) e

−ik·x

k2
k[τuλ]q[ηuω]

= −mκ2 Pµνρστληω

∫
d3y

∫
d̂3k

e−ik·(x−y)

k2
k[τuλ]

∫
d̂3q e−iy·qq[ηuω] .

(3.79)

The last line is already a convolution of F τλ with the integral in q. To complete the

calculation we will need the scalar field and its formal inverse

S(x) = −
∫

d̂3k
e−ik·x

k2
, S−1(x) = −

∫
d̂3k e−ik·x k2 , (3.80)

satisfying7 (
S ◦ S−1

)
(x) = δ(t1)δ2(x) . (3.81)

We emphasise that the expression for S−1 is only formal, due to the divergence of the

integral. S−1 is really defined distributionally, acting via the convolution. It will always

appear in convolutions where this divergence is cancelled, yielding a finite result. The

calculation can be carried out following a strategy similar to the previous one. Inserting

a delta function and a factor which equals 1 on its support, we have

〈R(h)µνρσ〉 = −mκ2 Pµνρστληω

∫
d3y

∫
d̂3k

e−ik·(x−y)

k2
k[τuλ]∫

d̂3q d̂3l δ̂(l − q) l
2

q2
e−iy·qq[ηuω]

= −mκ2 Pµνρστληω

∫
d3y d3z

∫
d̂3k

e−ik·(x−y)

k2
k[τuλ]∫

d̂3q
1

q2
e−iq·(y−z)q[ηuω]

∫
d̂3l l2 e−il·z .

(3.82)

Finally, we recognise another convolution,

〈R(h)µνρσ(x)〉 = − mκ2

4Q2
Pµνρστληω

(
F τλ ◦ S−1 ◦ F ηω

)
(x) . (3.83)

We conclude that this contribution of the Riemann tensor is the convolution of two

copies of the field strength tensor with an inverse power of the scalar field. We re-

mark that the convolutions are performed over a 3-dimensional subspace of spacetime,

reflecting the fact that all our solutions are independent of t2.

The convolution we have obtained is the most natural operation from the point of

7The symbol ◦ denotes convolution: (f ◦ g)(x) =
∫

dyf(y)g(x− y).
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view of the double copy [70, 74, 75, 103–105]. However, we know that for some cases

(like Schwarzschild) the relation must factorise in position space, turning convolutions

into ordinary products. In this factorisation, the projector plays an important role.

On its own, F ◦ S−1 ◦ F does not factorise, but the offending terms are pure traces

that are projected out by P, leaving a neat factorised expression. In order to gain a

better understanding of this, let us go back to (3.77) and take the derivatives out of

the integral:

〈R(h)µνρσ〉 = −mκ2 Pµνρστληω∂
[τuλ]∂[ηuω]

∫
d̂3k

e−ik·x

k2

= mκ2 Pµνρστληω∂
[τuλ]∂[ηuω] S(x) .

(3.84)

The crucial point now is that the double derivative acting on S(x) factorises into single

derivatives under the contraction of the projector P, in the sense to be described

below. This happens in the strict interior of the split signature light-cone, where the

curvature is non-vanishing and type D. It is simpler if we first perform an analytic

continuation to (1,3) signature. Then, the interpretation of Kerr-Schild vectors in the

context of radiating point particles (see [37,171]) provides the necessary tools to show

the factorisation. First, we note that the analytic continuation of the scalar S(x) is

S(x) =
1

4πR
, (3.85)

where R can be interpreted as the retarded null distance between a point xµ and a

static worldline yµ(τ) tangent to uµ. Then, the Kerr-Schild vector is defined as

Kµ =
[xµ − yµ(τ)]ret

R
. (3.86)

It is not hard to prove that

∂µR = uµ −Kµ , ∂µKν =
1

R
(ηµν +KµKν −Kµuν −Kνuµ) . (3.87)

These two identities imply

∂µS = −4π S2 (uµ −Kµ)

∂µ∂νS = 3(4π)2 S3 (uµ −Kµ)(uν −Kν) + (4π)2S3 (ηµν − uµuν) .
(3.88)

The last line can be rewritten as

∂µ∂νS = 3
∂µS ∂νS

S
+ (4π)2 S3 (ηµν − uµuν) . (3.89)

Upon substitution in (3.84), the contribution from the last term on the right-hand side
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of the expression above vanishes. Hence, we arrive at

Pµνρστληω∂
[τuλ]∂[ηuω] S(x) =

3

S(x)
Pµνρστληω

(
∂[τuλ]S(x)

)(
∂[ηuω]S(x)

)
. (3.90)

This expression completes the argument because the factors in parenthesis equal the

field strength tensor up to some constants,

〈R(h)µνρσ〉 =
3κ2m

4
Pµνρστληω

F τλF ηω

S
. (3.91)

This relation is very reminiscent of the double copy, as the gravitational object (the

Weyl curvature) is constructed as the product of two gauge theory objects (field strength

tensors). The scalar S plays the role of the propagators in the amplitude double copy

and is often referred to as the zeroth copy.8 The existence of such a simple relation

in position space implies that, at least for Schwarzschild, the double copy structure of

the amplitudes permeates to the classical solution. In fact, this double copy relation

was already discovered in the spinor structure of vacuum type D spacetimes [99] and

receives the name of Weyl double copy. Nonetheless, it had not been derived or linked

directly to the amplitudes double copy. It is worth remarking that, unlike for other

type D solutions, the Schwarzschild metric satisfies – a generalisation of – (3.91) in any

dimension, with the appropriate overall constant factor.

Above, we have presented the position space factorisation in the simplest example,

where the deformation parameters θ̄ and ā are set to zero. Since the Kerr-Taub-NUT

solution is also type D, it satisfies the Weyl double copy and a similar factorisation must

happen for generic θ̄ and ā. The proof is rather straightforward. The key observation

is that (3.90) holds also for Sā,θ̄, since the effects of ā and θ̄ are a translation and a

constant scaling respectively. Then, after some algebra, one can prove that

〈R(h)µνρσ〉 =
3κ2m

4
Pµνρστληω

(
F τλ− F ηω−
Sā,θ̄

+
F τλ+ F ηω+

S−ā,−θ̄

)
, (3.92)

where F+ and F− are the self-dual and anti-self-dual parts of the field strength as

defined in (A.29). The result (3.92) is equivalent to the original Weyl double copy but

written in terms of curvature tensors instead of spinors. The tensorial formulation of

the Weyl double copy was also studied in [6, 172].

Having seen how the graviton degrees of freedom in the curvature factorise in position

space, one might ask whether these similar position-space relations exist for the dilaton

8 As mentioned in the introduction, the zeroth copy is a bi-adjoint scalar field, but since we are
considering the linearised theory it corresponds to a bi-Abelian bi-adjoint field.
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contribution, which reads

〈R(φ)µνρσ(x)〉 = 2 c̃ mκ Re i

∫
dΦ(k)δ̂(2k · p)e−ik·xk[µην][ρkσ] . (3.93)

On the support of the delta functions, we can write this as

〈R(φ)µνρσ(x)〉 = −2 c̃ mκ Re i

∫
dΦ(k)δ̂(2k · p)e−ik·xfλ[µην][ρfσ]

λ , (3.94)

where fµν = 2 k[µuν]. We can follow the same steps as before to obtain a position space

convolutional double copy

〈R(φ)µν
ρσ(x)〉 = − c̃ κ

2Q2

(
F λ[µ ◦ S−1 ◦ Fλ[ρ

)
(x) δν]

σ] . (3.95)

In contrast to what happened for the graviton contribution, these convolutions cannot

be turned into products. To understand why, we could proceed as for the graviton and

rewrite (3.94) as a second order differential operator acting on the Lorentz continuation

of S(x). Then, we would like to use (3.89) to accomplish the factorisation. The result

would be

〈R(φ)µν
ρσ(x)〉 =

c̃ κ

2

3
F λ[µ δ

ν]
[ρ Fσ]λ

S
+ (4π)2S3

(
δ

[µ
[ρ δ

ν]
σ] − δ

[µ
[ρu

ν] uσ]

) . (3.96)

While the first term exhibits a local position-space double copy form, the others do

not. Thus, the double copy of the dilatonic contribution is natural only in terms of

convolutions and it is non-local in position space. Interestingly, the JNW solution

admits an exact double copy interpretation in position space, based on a Kerr-Schild-

like construction in double field theory that we will review in chapter 5 [5]. However,

unlike the Kerr-Schild double copy for Schwarzschild, the dilatonic deformation makes

the relation non-local in position space.

3.4.2 Kerr-Schild double copy

Since we have performed a linearised gravity calculation, one might expect the classical

double copy relations obtained in the previous subsection to hold only at first order.

This is probably the case in the most general scenarios, when the axion and dilaton

are non-zero. However, if the scalar fields are set to zero, the Weyl double copy is

promoted to an exact statement for the Kerr-Taub-NUT family. The reason is that

the Kerr-Taub-NUT is part of a special class of metrics that linearises the equations

of motion. Hence, the linear solution is exact and all our linearised statements can

be regarded as exact. At the same time, this class of metrics exhibit a prominent

classical double copy structure, known as the Kerr-Schild double copy. Whereas the
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Weyl double copy applies to curvature tensors, the Kerr-Schild double copy applies

to the metric and the gauge potential. Once again, we will unveil the double copy

structure in the simplest example first, Schwarzschild.

The first step is to compare the linearised Weyl tensor (3.72) with (3.13) to deduce

the linearised metric in de Donder gauge

gµν = ηµν + κhµν ,

hµν = −κm Re i

∫
dΦ(k) δ̂(k · u) e−ik·x

(
uµuν −

1

2
ηµν

)
= −κm

2
S

(
uµuν −

1

2
ηµν

)
.

(3.97)

Recall that S contains a Heaviside theta function Θ(t1 − r) which determines the

physically meaningful region. We will restrict ourselves to the strict interior of this

region to avoid spurious divergences at the boundary. Under that consideration, S is

replaced by

Ŝ =
1

2π
√
t21 − x2 − y2

. (3.98)

Then, we apply the diffeomorphism generated by

ξ = −κ
2m

16π

(
d
√
t21 − x2 − y2 − i log

t21 − x2 − y2

r2
0

dt2

)
, (3.99)

where r0 is a constant needed for dimensional purposes. This complex diffeomorphism

is acceptable as a means of putting the metric in our desired form, but one can always

choose coordinates where the metric is real. The result is the linear metric

t1 >
√
x2 + y2 : gµν = ηµν −

κ2m

4
Ŝ LL , (3.100)

where

L = dt2 + i
t1dt1 − xdx− ydy√

t21 − x2 − y2
. (3.101)

The vector L has the properties of being null and geodesic with respect to ηµν (and

hence also gµν). Spacetimes of the form (3.100) with L null and geodesic are known

as Kerr-Schild spacetimes. Their most important characteristic is that they linearise

the Einstein equation. Hence, (3.100) solves the Einstein equations exactly because

higher-order corrections vanish identically.
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Alternatively, the exact metric can be expressed in terms of real coordinates as

t1 >
√
x2 + y2 :

ds2 =

(
1− κ2m

4
Ŝ

)
dt′2

2 + dt21 − dx2 − dy2 +
κ2m

4 Ŝ

1− κ2m
4 Ŝ

(t1dt1 − xdx− ydy)2

t21 − x2 − y2
,

(3.102)

using

dt′2 = dt2 − i
κ2m

4 Ŝ

1− κ2m
4 Ŝ

t1dt1 − xdx− ydy√
t21 − x2 − y2

. (3.103)

Now it is clear how to extend the solution beyond t1 >
√
x2 + y2 ,

ds2 =

(
1− κ2m

4
S

)
dt′2

2 +dt21−dx2−dy2 +
κ2m

4 S

1− κ2m
4 S

(t1dt1 − xdx− ydy)2

t21 − x2 − y2
. (3.104)

This gives us the final answer of the exact gravity solution, which represents the split

signature equivalent of the Schwarzschild black hole.9

The gauge potential can be put in a gauge resembling (3.100). Recall that in the

previous chapter it was found that

Aµ(x) = Quµ S(x) . (3.107)

Then, a complex gauge transformation inside the three-dimensional lightcone takes us

to ‘Kerr-Schid’ gauge

t1 >
√
x2 + y2 : A(KS) = Q Ŝ dt2 −

Q

2πi
d log

√
t21 − x2 − y2

r0
(3.108)

= Q Ŝ L , (3.109)

where L is the same vector that appears in the Kerr-Schild metric (3.101).

There is a clear parallelism between (3.100) and (3.109). By doubling the vector L

and changing the coupling constants of the gauge potential one obtains the second term

9We could also write the line element in coordinates analogous to the Schwarzschild spherical coor-
dinates, but would have to split into spacetime regions. Inside the light-cone, with χ =

√
t21 − x2 − y2

and Ŝ = (2πχ)−1, we pick t1 = χ coshψ inside the future light-cone and t1 = −χ coshψ inside the past
light-cone, obtaining

t21 > x2 + y2 : ds2 =

(
1− κ2m

4
Θ(t1)Ŝ

)
dt′2

2 +
dχ2

1− κ2m
4

Θ(t1)Ŝ
− χ2(dψ2 + sinh2 ψ dφ2) . (3.105)

Outside the light-cone, with χ̃ =
√
x2 + y2 − t21, we can write

t21 < x2 + y2 : ds2 = dt′2
2 − dχ̃2 + χ̃2(−dψ̃2 + sin2 ψ̃ dφ2) . (3.106)
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of the Kerr-Schild metric. In this sense, we obtain the double copy of the Coulomb

potential by doubling the kinematic information (represented by L). This is an example

of another instance of the (exact) classical double copy, the Kerr-Schild double copy,

which applies not only to Schwarzschild/Coulomb but to more general (multi-)Kerr-

Schild solutions [97,173]. Like the Weyl double copy, these classical relations have been

known for some years, but they had not been connected directly to the amplitudes

double copy. Here, we have derived the Coulomb/Schwarzschild example from the

double copy of the corresponding three-point amplitudes. An equivalent argument

would hold for the Kerr-Taub-NUT family, which is of complex double-Kerr-Schild

type. That means that there are two Kerr-Schild terms in the metric, with different

null vectors, but the equations still linearise.

3.5 Summary and outlook

Chapters 2 and 3 explored the classical limit of the double copy certain three-point am-

plitudes in split signature. The KMOC prescription was used to compute the classical

electromagnetic field of a
√

Kerr-dyon particle from the simple photon emission ampli-

tude with massive scalar legs. Then, the double copied amplitude (3.21) was used in

tandem with a metric-affine connection to produce linearised axion-dilaton Kerr-Taub-

NUT solutions. Although we performed the calculation in split signature to avoid the

cancellation of the three-point amplitudes in real kinematics, the final solutions can

be traced back to Lorentzian signature, matching previously known solutions. More

importantly, the double copy relation at the level of the amplitudes implies double

copy relations at the level of the classical fields. In particular, we identified two types

of classical double copies that are local in position space, the Weyl double copy and

the Kerr-Schild double copy. Importantly, in the absence of dilaton and axion, both

prescriptions can be promoted to exact relations owing to the existence of Kerr-Schild

coordinates. Both exact classical double copy prescriptions were available in the liter-

ature, but we have shown a precise connection to the amplitudes double copy for the

first time, pinning down the properties that explain the unexpected locality in position

space.

The remaining of this thesis is devoted to exploring the classical double copy. Our

previous findings motivate us to review the Weyl and Kerr-Schild double copies and

expand their domains of applicability. In this chapter, we derived the Weyl double

copy for Kerr-Taub-NUT spacetime, but it also holds for other type-D spacetimes.

The C-metric is another example, which we use to investigate the nature of the Weyl

double copy map in the vicinity of future null infinity. Moreover, we show how the

relation can be extended to non-twisting type N solutions, which represent radiation

spacetimes. In chapter 5, we review the Kerr-Schild double copy. As already mentioned,
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the original formulation holds exclusively in the absence of matter fields. To extend

the Kerr-Schild double copy to the entire NS-NS spectrum, the formulation of Double

Field Theory (DFT) is helpful. In this setting, we obtain an exact Kerr-Schild double

copy relation for JNW.



Chapter 4

The Weyl double copy

In the previous chapter, we saw how the Weyl spinors of certain spacetimes have a

clear double copy structure in momentum space. This structure extends to position

space, where we wrote the Kerr-Taub-NUT Weyl tensor as a sum of quadratic terms

in field strength tensors. The quadratic relation between the Weyl tensors of certain

classes of spacetimes and field strength tensors is known as the Weyl double copy, and

it was originally shown to apply exactly to all type D vacuum solutions and pp-waves

[99]. The original formulation was written in spinor language, which clears out all the

redundant index contractions and symmetrisations to yield much simpler expressions.

It also provides tools to prove that the gauge fields that stem from the Weyl tensors

automatically satisfy the Maxwell equations. In this chapter, we study the Weyl double

copy from a purely classical point of view. From this point on, the signature of the

metrics will be Lorentzian (−,+,+,+), as there will be no more 3-point amplitudes

involved.

The origins of the Weyl double copy date back to the golden age of general relativ-

ity, when Walker and Penrose discovered that all vacuum type D solutions admitted a

Killing rank-two spinor [174]. Together with Hughston and Sommers, the same authors

showed that the Killing spinor could be used to generate a non-backreacting electro-

magnetic field on the curved background [175]. These facts were revisited and given

a double copy interpretation much more recently [99], where the electromagnetic field

was moved to a flat background. At the same time, the prescription was extended to

the Eguchi-Hanson instanton (see also [176]) and pp-waves, which also exhibit a Killing

spinor. The generalisation to all non-twisting type N solutions was provided in [4]. Ex-

tensions to non-vacuum solutions were given in [94,177]. In [178] the Weyl double copy

was applied to fluid mechanics; specifically to flow configurations that are associated

with algebraically special spacetimes under the fluid-gravity duality.

The search for a deeper understanding of the Weyl double copy led to its reformu-

lation in twistorial language [100–102,144,179]. This construction, which relies on the

properties of the Penrose transform, is able to extend the Weyl double copy beyond

79
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type D and type N solutions, yet only at linearised level.

Although the spinor and twistor languages expose the structure of the double copy

more clearly, they also have limitations. One of them is their dimensional dependency,

making the generalisation beyond four dimensions not straightforward. Some steps were

given in this direction in [180], where an algebraic classification of higher-dimensional

spacetimes based on spinors was proposed. There have also been recent developments in

three dimensions, where the vanishing of the Weyl tensor brings extra challenges. The

solution found by the authors of [181,182] was to use the Cotton tensor as the analogue

of the Weyl tensor in topologically massive gravity. Ref. [181] followed an approach

very similar to the one described in chapter 3, deriving the double copy relation from

the squaring of 3-point amplitudes. The authors of [182] followed a purely classical

approach instead, providing a derivation along the lines of this chapter. The Cotton

double copy is closer in spirit to the original double copy than some earlier attempts

at the double copy in three dimensions [183], despite applying to topologically massive

gravity. Additionally, it might provide useful insight for formulating a Weyl double copy

in higher dimensions. However, it would be helpful to understand to what extent the

Cotton double copy is just a consequence of the Weyl double copy under dimensional

reduction.

Our next goal will be to review and explore the limits of the Weyl double copy from

the point of view of classical general relativity. After reviewing the basic aspects of

the map, we provide a more complete picture of what are the effects of the electric-

magnetic duality under the double copy. On the gravity side, it corresponds to an Ehlers

transformation, a solution-generating transformation that rotates and rescales the mass

and charge parameters [6]. We will also follow [4] to extend the Weyl double copy to

type N solutions. The subjects of radiation and symmetries intersect in the study

of asymptotic boundaries. In the last part of this chapter, we will explore the Weyl

double copy in the vicinity of future null infinity. The asymptotic expansion provides

an alternative perturbation scheme for the double copy which extends its domain of

applicability to less special solutions [2]. At the same time, it enables the study of

asymptotic symmetries and their relation to large gauge transformations. To answer

this question, we will focus on the C-metric, a type D solution that can be regarded

as a superrotation for large retarded times. The single copy of the C-metric is the

Liénard-Wiechert potential generated by an uniformly accelerated charge, and contains

a large gauge transformation in a similar sense, giving a precise relation between both

transformations.
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4.1 Type D

4.1.1 Spinor calculus

Consider a Type D metric. According to (1.79) and table 1.1, its Weyl spinor can be

written as

Ψαβγδ = ψ o(αιβoγιδ) , (4.1)

where ψ = 6Ψ2 and o, ι are chosen to be a normalised (oαι
α = 1) dyad basis.

First, consider that our spacetime is a vacuum solution and impose the Bianchi

identity (1.76)

∇αα̇(ψ o(αιβoγιδ)) = 0 . (4.2)

This has to hold for every component in the (o, ι) basis. In particular, it must hold for

the projection

2ιβoγoδ∇αα̇Ψαβγδ =ιβoγoδ∇αα̇(ψoαo(βιγιδ) + ψιαo(βoγιδ))

=
1

3
∇αα̇(ψoα) + ιβoγoδψ[oα∇αα̇(o(βιγιδ)) + ια∇αα̇(o(βoγιδ))]

=
1

3
∇αα̇(ψoα) +

1

3
ψ[ιβoα∇αα̇oβ − 2 oβoα∇αα̇ιβ − 2 oβια∇αα̇oβ ] ,

expanding and using the identities

εαβ = ιαoβ − oαιβ ,

εαβ = oαιβ − ιαoβ ,

δαβ = ιαoβ − oαιβ ,

(4.3)

we find that

1

3
oα∇αα̇ψ − ψιαoβ∇αα̇oβ = 0 . (4.4)

The component obtained by contraction with ιβιγoδ gives

1

3
ια∇αα̇ψ + ψoαι

β∇αα̇ιβ = 0 . (4.5)

The components obtained projecting by oβoγoδ and ιβιγιδ imply

oαoβ∇αα̇oβ = 0 , ιαιβ∇αα̇ιβ = 0 , (4.6)

which mean that the principal directions are tangent to shear-free null geodesic con-

gruences, as expected from the Goldberg-Sachs theorem [184].
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Consider now a Maxwell spinor of the form

φαβ = ψno(αιβ) . (4.7)

Let us compute the oβ component of the vacuum Maxwell equations (1.70),

oβ∇αα̇(ψno(αιβ)) = −n
2
ψn−1oα∇αα̇ψ +

1

2
ψnoβ∇αα̇(oαιβ + oβια)

= −n
2
ψn−1 oα∇αα̇ψ + ψn ια o

β∇αα̇oβ = 0 . (4.8)

Comparing (4.4) and (4.8) we conclude that they are equivalent if n = 2/3. Similarly,

the ιβ component of the Maxwell equation is equivalent to (4.5) for n = 2/3.

The conclusion is that

∇αα̇(ψ o(αιβoγιδ)) = 0 ⇒ ∇αα̇(ψ2/3 o(αιβ)) = 0 . (4.9)

Based on this fact, it is natural to decompose the Weyl spinor as

Ψαβγδ =
1

S
φ(αβφγδ) , (4.10)

where S = ψ1/3. This complex scalar is associated to the zeroth copy, a solution of the

linearised bi-adjoint scalar theory. At linear level, the bi-adjoint scalar theory becomes

Abelian, and the equation of motion reduces to the wave equation. It can be checked

that S is a solution:

�ψ1/3 =
1

3
∇αα̇(ψ−2/3εαβ∇βα̇ψ) (4.11)

= ∇αα̇[ψ1/3ιαιβo
γ∇βα̇oγ + (o↔ ι)] , (4.12)

where we have used (4.3), (4.4) and (4.5). The same equations reduce the expanded

expression to

�ψ1/3 = ψ1/3

[
2 (oβια∇αα̇oβ)(ιδoγ∇γα̇ιδ)

+
(
∇αα̇(ιαιβo

γ)∇βα̇oγ + ιαιβo
γ∇αα̇∇βα̇oγ + (o↔ ι)

)] (4.13)

It can be shown, by application of (4.3) and (4.6) that

∇αα̇(ιαιβo
γ)∇βα̇oγ + (o↔ ι) = −2 (oβια∇αα̇oβ)(ιδoγ∇γα̇ιδ) . (4.14)

Thus, defining

∇(α|α̇∇β)
α̇ := �αβ (4.15)
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we can write

�ψ1/3 = −ιαιβoγ�αβoγ − oαoβιγ�αβιγ . (4.16)

For a generic spinor ξα, we have – (4.9.8) in [124] –

�αβξγ = Xαβγδ ξ
δ , (4.17)

where Xαβγδ is the curvature spinor of the underlying space. Hence, in the flat space

limit Xαβγδ = 0 and we find

�S = 0 . (4.18)

Let us explain what is meant by the ‘flat space limit’. The double copy maps objects

from a theory with gravity (spacetime curvature) to a gauge theory on a flat back-

ground. Hence, for this spinor map to be considered a double copy, the Maxwell and

wave equations should be understood to hold on a flat background. This requires the

existence of a limit where the metric becomes flat, keeping the spinor basis invariant.

The simplest example is the massless limit of Schwarzschild. To prove that the Maxwell

spinor equations hold, we only required that the basis (o, ι) was tangent to share-free

null congruences, which also holds in the flat space limit. As a result, φαβ solves the

Maxwell equations both on the curved and flat backgrounds. The ‘flat’ field strength

tensor is obtained by contracting φαβ with the Pauli matrices and the flat-limit vielbein.

However, to prove that S solves the wave equation we needed to set the background

curvature to zero, implying that generically it is only a solution on the flat background.

What lies behind these relations is the existence of the well-known hidden symmetry

for type D vacuum solutions: the existence of a Killing 2-spinor [174,175,185], defined

as a solution of

∇(α
α̇χβγ) = 0 . (4.19)

The presence of the Killing spinor is a consequence of the integrability properties of

the solutions under consideration, whose Weyl spinor can be written as

Ψαβγδ = [χ]−5χ(αβχγδ) , where [χ] =
(
χαβχ

αβ
)1/2

. (4.20)

One can also formulate the Maxwell spinor and scalar in terms of this object

φαβ = [χ]−3χαβ , S = [χ]−1. (4.21)

See [6, 94,98,172,176,178,186–192] for related works.

The double copy structure of (4.10) is rather transparent. The Weyl spinor of any

vacuum type D spacetime can be decomposed into two copies of a Maxwell spinor and a

massless scalar field, which play the role of the single and zeroth copies. This structure

was already present in the momentum-space integrals of chapter 3, from which the
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position-space relation originates.

4.1.2 The Plebanski-Demianski metric

Although in [99] this prescription was also successfully applied to pp-waves and the self-

dual Eguchi-Hanson instanton, the main domain of application of (4.10) is real type D

solutions of the vacuum Einstein equation without cosmological constant. Surprisingly,

all the members of this family can be derived as limits of a single metric [193], known as

the Plebanski-Demianski solution.1 Using a complex change of coordinates, the metric

can be written in double-Kerr-Schild form [99]:

ds2 =
1

(1− pq)2

[
2i(du+ q2dv)dp− 2(du− p2dv)dq

+
P (p)

p2 + q2
(du+ q2dv)2 − Q(q)

p2 + q2
(du− p2dv)2

]
, (4.22)

with

P (p) = γ(1− p4) + 2np− εp2 + 2mp3 ,

Q(q) = γ(1− q4)− 2mq + εq2 − 2nq3 , (4.23)

where the parameters m,n, γ, ε are related to the mass, NUT charge, angular momen-

tum and acceleration (see [194] for a discussion of the various limits and definitions

which enable the identifications in different cases). In particular, different scaling lim-

its turn (4.22) into the Kerr-Taub-NUT family or the C-metric, whose single copy is the

Liénard-Wiechert potential. The latter metric was not obtained from the amplitudes

double copy in chapter (3), but will prove useful to study the properties of the Weyl

double copy close to the asymptotic boundary. A double-Kerr-Schild metric is a gen-

eralisation of the Kerr-Schild metric mentioned in section 3.4.2. The main difference is

that it has two “Kerr-Schild terms” instead of just one. The double-Kerr-Schild form

of the Plebanski-Demianski metric also linearises the field equations.

The metric (4.22) justifies the flat space limit mentioned above. The Kerr-Schild

vectors

K = du+ q2dv , L = du− p2dv (4.24)

are the principal null directions. The associated spinor basis does not depend on the

parameters m,n, γ, ε, in particular they are independent of the dynamical parameters

m and n. These parameters, related to mass and NUT charge, generate the geometric

curvature. Therefore, the flat limit m→ 0, n→ 0 provides a valid background for the

1The general Plebanski-Demianski family extends to solutions of the Einstein-Maxwell equations
with a cosmological constant.
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gauge and scalar equations of motion.

4.1.3 Tensorial Weyl double copy

The spinor expression (4.10) is remarkably compact compared to the tensorial relation

(3.92). Nonetheless, a tensorial expression has some advantages. First of all, it avoids

the need for explicitly computing the tetrad, which can be somewhat tedious for non-

diagonal metrics. Secondly, a tensorial expression is much easier to generalise to higher

dimensions. This will motivate us to study the tensorial map (3.92) in more detail.

Instead of directly deriving the tensorial expression from the spinor Weyl double

copy, it will prove easier to bootstrap it. From (4.10), we know that we are looking for

an expression for the Weyl tensor as a sum of terms involving two copies of the field

strength. The absence of traces and the index symmetries (including Wµ[νρσ] = 0) of the

Weyl tensor constrain the possible quadratic combinations of the field strength tensor

that can appear. Keeping these in mind, in four dimensions there are two independent

expressions that one can write down:

Cµνρσ[F ] = Fµν Fρσ − Fµ[ρ Fσ]ν + 1
2gµ[ρ gσ]ν F

2 + 3Fλ[µgν][ρF
λ
σ] , (4.25)

Dµνρσ[F ] = 3
4(Fµν F̃ρσ + F̃µν Fρσ)− 1

4gµ[ρ gσ]ν F̃
αβ Fαβ − 1

8εµνρσ F
2 , (4.26)

where F 2 = F λδFλδ and F̃ = ?F . In d dimensions there is no equivalent of Dµνρσ[F ]

and one just has

C(d)
µνρσ[F ] = Fµν Fρσ − Fµ[ρ Fσ]ν

+
3

(d− 1)(d− 2)
gµ[ρ gσ]ν F

2 +
6

d− 2
Fλ[µgν][ρF

λ
σ] .

(4.27)

This higher-dimensional structure is enough to capture the higher dimensional gener-

alisation of Schwarzschild, although it cannot be applied to less symmetric spacetimes

like a Myers-Perry black hole.

In d = 4, the Weyl double copy must involve a linear sum of the two expressions

Cµνρσ and Dµνρσ, with suitable coefficients which will generically be functions of the

coordinates and constants. We note some useful properties of these expressions:

Cµνρσ[F̃ ] = −Cµνρσ[F ] , (4.28)

Dµνρσ[F̃ ] = −Dµνρσ[F ] , (4.29)

C̃µνρσ[F ] = Dµνρσ[F ] , (4.30)

D̃µνρσ[F ] = −Cµνρσ[F ] (4.31)

and

Cµνρσ[aF + b F̃ ] = (a2 − b2)Cµνρσ[F ] + 2 a bDµνρσ[F ] , (4.32)
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where the dual of a rank-four tensor with Weyl symmetries was defined as

W̃µνρσ = 1
2 εµναβW

αβ
ρσ . (4.33)

As a consequence, there is a unique linear combination of Cµνρσ[F ] and Dµνρσ[F ]

that is (anti-)self-dual. Those combinations must determine the corresponding chiral

components of the Weyl tensor up to a proportionality factor:

W±µνρσ =
c

S±
(Cµνρσ[F ]∓ iDµνρσ[F ]) =

2 c

S±
Cµνρσ[F±] . (4.34)

The – possibly complex – functional coefficients S± are related to the complex scalar

field S in (4.10). Matching by chiralities, we find that S− = S and S+ = S̄. The overall

proportionality constant c, which was not explicitly written in (4.10), replaces gauge

couplings and charges by their gravitational counterparts. It is also simple to check

that (4.34) is equivalent to (3.92), since

Cµνρσ[F ] =
3

2
Pµνρστληω F

τλ F ηω . (4.35)

Although in general c/S is complex, it is real in some cases, like Schwarzschild and

the C-metric, where one has

Wµνρσ =
c

S

{
2Fµν Fρσ − 2Fµ[ρ Fσ]ν + gµ[ρ gσ]ν F

2 + 6Fλ[µgν][ρF
λ
σ]

}
. (4.36)

4.1.4 The Ehlers group and EM duality

The tensorial form of the Weyl double copy is particularly suited to study how sym-

metries in gravity are mapped to symmetries in electromagnetism. An example of a

symmetry mapping was given in section 3.3.1, where we saw the effect of turning on an

electric-magnetic duality rotation in the single copy. For the gauge field, this rotates

the electric and magnetic charges of a dyon. When double copied, the effect is to ro-

tate the mass and NUT parameters of the Taub-NUT solution. One can ask what this

transformation corresponds to in the general relativity literature. Our proposal is that

it corresponds to an Ehlers transformation [195].

The Ehlers transformation can be best described in the context of the projection

formalism developed by Geroch [196]. This formalism defines a map from a stationary

spacetime to a three-dimensional manifold using the trajectories of the timelike Killing

vector ξµ. This decomposition provides advantageous simplifications at the level of the

field equations. It also highlights symmetries of the solution on the lower dimensional

space, that can be used to generate new stationary spacetimes. In particular, the Ehlers

transformation is a one-parameter transformation that maps static vacuum solutions

to stationary vacuum solutions. In general, the transformed spacetime suffers from a
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NUT-like singularity.2

The original Ehlers transformation is limited to spacetimes admitting a Killing vec-

tor field that is timelike everywhere. This limits its applicability to the outside region

of rotating black holes, for example. There exists a generalisation of the Ehlers pre-

scription that bypasses the projection formalism and allows for more general Killing

vector fields: the spacetime Ehlers group [197], which we now summarise briefly.

Given a Killing vector field ξ = ξµ∂µ and one-form W = Wµdx
µ on a Lorentzian

manifold with metric gµν , satisfying the vacuum Einstein equations, the spacetime

Ehlers group is defined in [197] by the transformation

gµν → Ω2gµν − 2ξ(µWν) −
λ

Ω2
WµWν , (4.37)

where Ω2 ≡ ξµWµ + 1 ≥ 1, and the inequality holds over the whole geometry. Define

the two-form Fµν = 2 ∂[µξν] (note that we have a factor of 2 here, and a factor of 1/2 in

the definitions of the (anti-)self-dual parts of F , in comparison with [197]). Define also

the twist potential ωµ = εµνσρξ
ν∇σξρ and the Killing vector norm λ = −ξµξµ. Then

the Ernst one-form

σµ := 2ξνF+
νµ = ∇µλ− iωµ (4.38)

is closed, following from the vanishing of the Ricci tensor, and so locally σµ = ∇µσ for

some complex function σ called Ernst scalar potential. To define the spacetime Ehlers

group we need this to hold also globally.

There is a second global integrability condition. Consider the two-form

− 4γ Re[(γσ̄ + iδ)F+
µν , (4.39)

where the bar denotes complex conjugation, and γ and δ are non-simultaneously van-

ishing real constants. This form is closed by construction, but it must be globally exact

for any value of γ and δ. That is, we require the existence of a form W satisfying

2∇[µWν] = −4γ Re[(γσ̄ + iδ)F+
µν ] , (4.40a)

Ω2 := ξµWµ + 1 = (iγσ + δ)(−iγσ̄ + δ) , (4.40b)

where γ and δ, as a pair, fix the gauge of W . After repeated action, the transformation

2There is not a global agreement in the literature regarding what is referred to as Ehlers trans-
formation. Some authors prefer to reserve the term for the transformation that applies exclusively
to vacuum solutions, while others also include transformations for electrovac solutions. We refer the
reader to section 34.1 of [171] for a more complete discussion.
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defines an SL(2,R) group action on the Ernst scalar by the Möbius map

σ → ασ + iβ

iγσ + δ
, where βγ + αδ = 1. (4.41)

The self-dual part of the Killing tensor transforms as

F+
µν →

1

(iγσ + δ)2

(
Ω2F+

µν −W[µσν]

)
, (4.42)

where W,σ are the one-forms defined above. The self-dual part of the Weyl tensor

transforms as

W+
µνρσ →

1

(iγσ + δ)2
Pαβµν P

γδ
ρσ

(
W+
αβγδ −

6iγ

iγσ + δ

(
F+
αβF

+
γδ −

1

3
Iαβγδ(F

+)2
))

, (4.43)

where in our conventions Iµνρσ = 1
4(gµρgνσ − gνρgµσ + εµνρσ) is the canonical metric

in the space of self-dual two-forms and Pαβµν = Ω2δαµδ
β
ν − δαµξβWν − ξαWµδ

β
ν . This

formalism can be used to check that the Kerr-Taub-NUT family is invariant under the

Ehlers group [197].

Taub-NUT black holes

Let us now consider applying these arguments in the context of the Weyl double copy

described earlier. Let us start from the Taub-NUT metric, in the real form

ds2 = −f(r)(dt− 2N cos θdφ)2 + f(r)−1dr2 + (r2 +N2)dΩ2
(2), (4.44)

where

f(r) =
(r − r+)(r − r−)

r2 +N2
, r± = M ± r0, r2

0 = M2 +N2. (4.45)

Next, consider the Killing vector ξ = ∂t. Its associated two-form Fµν = 2 ∂[µξν] is

F =
2M

(
r2 −N2

)
+ 4N2r

(N2 + r2)2 dt ∧ dr +
4N cos(θ)

(
M
(
r2 −N2

)
+ 2N2r

)
(N2 + r2)2 dr ∧ dφ

(4.46)

+
2N sin(θ)

(
r(2M − r) +N2

)
N2 + r2

dθ ∧ dφ .

This solves the Maxwell equations on the Taub-NUT background. In the flat limit, it

gives the single copy of Taub-NUT, found in [99, 173] and solves the flat-background

Maxwell equations. The Ernst one-form is obtained from its definition

σµ := 2ξνF+
νµ =

2(M − iN)

(r − iN)2
δrµ . (4.47)
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In [197], it was proven that the Ernst one-form is exact, σµ = ∂µσ, and the integration

constant can be chosen such that Re(σ) = −ξµξµ, giving

σ = 1− 2(N + iM)

N + i r
. (4.48)

Additionally, the fact that (4.44) has a Weyl double copy structure implies that

W+
αβγδ = − 6

c− σ

(
F+
αβF

+
γδ −

(F+)2

3
Iαβγδ

)
,

(F+)2 = A(c− σ)4 ,

(4.49)

with c = 1 and A = −(4(M − iN))−1. Next, W is found by solving (4.40). After this,

we can transform the original metric into (4.37)

g′µν = Ω2 gµν − 2ξ(µWν) +
ξσξσ
Ω2

WµWν . (4.50)

In order to interpret this new metric, it is convenient to define polar coordinates in the

parameter space

ρ =
√
δ2 + γ2 , tan ζ =

δ

γ
. (4.51)

Performing a charge redefinition and a change of coordinates(
M ′

N ′

)
=

(
cos 2ζ − sin 2ζ

sin 2ζ cos 2ζ

)(
ρM

ρN

)
,

t′ =
t

ρ
, r′ = ρ r +M ′(1− cos 2ζ)−N ′ sin 2ζ ,

(4.52)

the metric simplifies to

ds′2 = −f(r′)(dt′ − 2N ′ cos θ dφ)2 +
dr′2

f(r′)
+ (r′2 +N ′2)dΩ2

2 ,

f(r′) =
r′2 − 2M ′ r′ −N ′2

r′2 +N ′2
.

(4.53)

Hence, it is still a member of the Taub-NUT family. The self-dual part of Fµν transforms

as (4.42). The integrated Ernst one-form transforms as

σ′ =
1

δ2 + γ2

δσ + i γ

iγσ + δ
. (4.54)

After the transformation, (4.49) also holds with

c′ =
1

γ2 + δ2
A′ = − (δ + i γ)4

4(M − iN)
, (4.55)
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in agreement with (54) in [197].

Let us now study the implications for the single copy. The single copy of (4.44) can

be written in flat spherical coordinates (t̃, r̃, θ, φ)

Fsc = −M
r̃2
dt̃ ∧ dr̃ −N sin θ dθ ∧ dφ . (4.56)

Hence, the single copy of the transformed space-time, on the same background reads

F ′sc = −M
′

r̃2
dt̃ ∧ dr̃ −N ′ sin θ dθ ∧ dφ . (4.57)

Using (4.52), it can be checked that the transformation in terms of the Ehlers group

parameters is

F ′sc = ρ cos(2ζ)Fsc + ρ sin(2ζ) ?Fsc . (4.58)

This corresponds to an electric-magnetic duality rotation and a rescaling by ρ. Both

transformations are contained in the electric-magnetic duality, where the rescaling can

be interpreted as the transformation of the gauge coupling [198].

The zeroth copy is affected similarly, transforming using M →M ′, N → N ′, mean-

ing that the Weyl double copy relation

W+
µνρσ =

2

σ+
Cµνρσ[F+] , (4.59)

where σ+ = σ − c = −2(N + iM)/(N + ir), is preserved: (4.59) transforms directly to

the double copy in the transformed spacetime

W
′+
µνρσ =

2

σ+′
Cµνρσ[F

′+] , (4.60)

where F+ is the self-dual part of the single-copy Killing tensor, now defined using the

shifted metric (and the same Killing vector, although note of course that the co-vector

differs in the new spacetime), and the transformed Ernst scalar is

σ
′+ = − 2(M − iN)

(γ − iδ)(2γM +N(δ − iγ) + r(iδ − γ))
. (4.61)

We see that in terms of the action on the fields, a restricted set of the SL(2,R) trans-

formations act in this case, and the orbit is within the Taub-NUT class of metrics.

The two degrees of freedom are realised by the rotation parameter ζ and scaling ρ.

This result reproduces the behaviour observed in section 3.3.1 for ρ = 1 and generalises

it for more general electromagnetic transformations. In [6], the authors discuss the

action of the Ehlers group on more general type D examples, as well as a self-dual
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solution. In all cases, the double copy structure is preserved under the transformation.

Reference [90] also studies the effects of the electric-magnetic duality on the double

copy. Asymptotically, their findings suggest that it induces a supertranslation on the

spacetime, which results in the same rotation between mass and NUT charge present in

the Ehlers transformation. More recently, [199] proposed a new notion of gravitational

duality that might extend the scope of the Ehlers transformation beyond the space of

metrics that admit a Killing vector.

4.2 Type N

Type N spacetimes are another class of algebraically special metrics with prominent

physical significance, as they describe the radiation region of isolated gravitational sys-

tems. As a necessary step in applying the classical double copy tools to gravitational-

wave physics, we provide a systematic understanding of the status of the double copy

for type-N radiative solutions, beyond the most special example of pp-waves. More

precisely, we extend the curved Weyl double copy relation to most type N vacuum so-

lutions, for which we show that Ψαβγδ = S−1φ(αβφγδ); φαβ being a degenerate Maxwell

spinor and S a scalar that satisfies the wave equation. Interestingly, this construction

does not lead to a unique Maxwell field, since there is functional freedom associated

with the scalar S.

For non-twisting radiative spacetimes, the Maxwell field and the scalar field solve

the Maxwell equation and the wave equation, respectively, on Minkowski spacetime.

This extends the Weyl double copy for this large class of spacetimes.

For twisting spacetimes, the Maxwell field and the scalar depend generically on the

metric functions. Hence, they are solutions only on the curved spacetime. However,

the standard double copy interpretation applies at the linearised level. This may be

indicative of the fact that twisting solutions have an intrinsic non-Abelian nature, as

one needs to go beyond linear (i.e. Abelianised) gauge solutions to capture the full

metric. This is a speculative statement, as we lack a non-Abelian extension of the

Weyl double copy to prove it.

Note that, while the double copy for scattering amplitudes involves two copies of

non-Abelian gauge theory, the first step in that procedure is to consider the double copy

of the asymptotic states, which for linearised gauge theory are solutions to the Maxwell

equation. The fact that certain exact gravity solutions can be interpreted as a double

copy of a Maxwell field means that they should be interpreted as coherent states, an

exact extension of the linearised asymptotic states in scattering amplitudes. We saw

how this works for a subfamily of type D spacetimes, but this reasoning indicates that

a similar description should be possible for type N examples.
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4.2.1 Spinor calculus

A lot of the intuition for the type D Weyl double copy came from the fact that the

Weyl spinor has two principal spinors, both of them with multiplicity two. Each of

the multiplicities corresponds to a copy of the Maxwell spinor. Type N can be seen as

a degeneration of type D where the principal spinors align, yielding a single principal

spinor with multiplicity four and one principal null direction kµ ∼ oαōα̇. Choosing a

spinor basis adapted to the principal null direction, the Newman-Penrose Weyl scalars

all vanish except Ψ4, and the Weyl spinor takes the simple form

Ψαβγδ = Ψ4 oαoβoγoδ. (4.62)

In spinor language, the curved background Weyl double copy relation is

Ψαβγδ =
1

S
φ(αβφγδ), (4.63)

for some scalar S and Maxwell spinor φαβ . Note that φαβ satisfies the Maxwell equation

(1.70) in the fixed curved background metric, but it is viewed as a test field that does

not back-react on the geometry. From (4.62), it follows that the NP Maxwell scalars all

vanish except φ2, and we have φαβ = φ2 o(αoβ). Thus the type N double copy relation

is

Ψ4 =
1

S
(φ2)2. (4.64)

The Maxwell 2-spinor is degenerate, which means that the electromagnetic field is null,

i.e. the electric and magnetic fields are perpendicular and of equal magnitude. An

example of a null electromagnetic field is that of a plane electromagnetic wave in flat

spacetime. Now we must consider whether such a relation (4.63) exists. Expanding out

the Bianchi identity (1.76) by substituting (4.62) gives two equations:

oα∇αα̇ log Ψ4 + 4 oαι
β∇αα̇oβ − ιαoβ∇αα̇oβ = 0 (4.65)

and oαo
β∇αα̇oβ = 0. The second equation is again the statement that the null congru-

ence generated by the PND is geodesic and shear-free, i.e. κ = σ = 0, which follows

from the Goldberg-Sachs theorem.3 Expanding out the Maxwell equation in a similar

fashion gives

oα∇αα̇ log φ2 + 2oαι
β∇αα̇oβ − ιαoβ∇αα̇oβ = 0, (4.66)

as well as the same equation above that is equivalent to κ = σ = 0. Now, substituting

3 For later convenience, let us introduce the NP spin coefficients κ, σ, τ and ρ [125]

κ = oαoβ õα̇∇αα̇oβ , σ = oαoβ ι̃α̇∇αα̇oβ ,

ρ = oαιβ õα̇∇αα̇oβ , τ = oαιβ ι̃α̇∇αα̇oβ .
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Ψ4 = (φ2)2/S into (4.65) and simplifying this using (4.66) gives

oα∇αα̇ logS − ιαoβ∇αα̇oβ = 0. (4.67)

There is a clear structure in equations (4.65)–(4.67), where the coefficient of the middle

term is the rank of the respective spinor. Equation (4.67) translates to

k · ∇ logS − ρ = 0, m · ∇ logS − τ = 0, (4.68)

where (k, n,m, m̄) form an NP null frame. A simple calculation shows that the inte-

grability condition on equations (4.68) are satisfied, which means that they are simple

integral equations that can always be solved. Thus, we are guaranteed the existence of

a scalar S satisfying these equations, which then gives a Maxwell field φ2 =
√

Ψ4 S. In

tensor language, this Maxwell spinor translates to a field strength (the single copy) of

the form4

F = φ2 k
[ ∧m[ + φ̄2 k

[ ∧ m̄[. (4.69)

This establishes the curved Weyl double copy relation for type N vacuum solutions.

Furthermore, it is simple to show using (4.67) that S solves the wave equation. First,

we write

�S = ∇αα̇∇αα̇S = εαβ∇αα̇∇βα̇S = 2 ιαoβ∇αα̇∇βα̇S. (4.70)

Then, we can integrate by parts to obtain

�S = 2 ια∇αα̇(S ιβo
γ∇βα̇oγ)− 2 ια∇αα̇oβ ∇βα̇S , (4.71)

where in the first term we have applied (4.67). Expanding the derivative and using

(4.3) in the second term

�S = 2S
[
− ιαιβoγ�αβoγ + (ια∇αα̇oγ)(ιβ∇βα̇oγ)

+ (ια∇αα̇ιγ)(oβ∇γα̇oβ)− (ιαι
β∇αα̇oβ)(oδ∇δα̇S)

]
.

(4.72)

The last three terms cancel out upon application of (4.67) in the last term and (4.3) in

the second and third terms to expand the contractions with index γ. Finally, making

use of of (4.17), we find

�S = −2S Xαβγδι
αιβoγoδ . (4.73)

Following the type D Weyl double copy, we might want to solve the wave equation on

a flat background. In that case, Xαβγδ = 0. However, we could also choose the type N

4The musical notation emphasises that k[ is the covector (or one-form) with components k[µ = gµνk
ν .
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Type D

∇αα̇Ψαβγδ = 0

⇓
∇αα̇φαβ = 0 (flat and curved)

�S = 0 (flat)

Type N

∇αα̇Ψαβγδ = 0

oα∇αα̇S = ιαo
β∇αα̇oβ

⇓
∇αα̇φαβ = 0 (flat* and curved)

�S = 0 (flat* and curved)

Figure 4.1: Comparison between the Weyl double copy for type D and type N solutions. For type
D, a Weyl spinor satisfying the Bianchi identity determines a Maxwell spinor and a harmonic
scalar field, whereas for type N the extra condition (4.67) makes the relation non-unique.
*There is no flat background interpretation for twisting type N solutions.

background Xαβγδ = Ψ4oαoβoγoδ.
5 In either case, we obtain that

�S = 0 . (4.74)

These results mirror those that exist for type D solutions, see figure 4.1 for a comparison.

Although the double copy formula (4.10) holds for both type D and type N solutions,

there are some differences. A type D Weyl spinor uniquely determines a Maxwell spinor

and a scalar field. On the other hand, a type N Weyl spinor only determines a Maxwell

spinor once we specify a scalar field satisfying (4.67). This introduces a non-uniqueness

which will be discussed at the end of the section.

Another difference is that the type N scalar solves both the flat and curved wave

equations, whereas its type D counterpart is only valid on flat space. However, it is not

guaranteed that there exists an appropriate flat background for all type N solutions.

In the next section, we will study all subclasses of type N solutions to check the double

copy more explicitly and discuss the flat space interpretation.

4.2.2 Type N vacuum solutions

Type N vacuum solutions are classified in terms of the optical properties of the con-

gruence generated by the PND. We have that κ = σ = 0; the properties that remain

are parametrised by ρ = −(Θ + i ω) with Θ denoting the expansion of the congruence

and ω denoting its twist. The different cases lead to three distinct classes of solutions:

• Kundt solutions: Θ = 0, which implies that ω = 0 6.

• Robinson-Trautman solutions: Θ 6= 0, ω = 0.

• Twisting solutions: Θ 6= 0, ω 6= 0.

5We are assuming that there is no cosmological constant.
6Substituting Θ = σ = Rµν = 0 into the Raychaudhuri equation k·∇Θ−ω2+Θ2+σσ̄+ 1

2
Rµνk

µkν = 0
gives ω = 0.
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Choosing a null frame for which k is the PND, so that Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0, we

consider each case separately.

Kundt solutions

There are two kinds of type N Kundt solutions, both corresponding to plane-fronted

wave solutions 7. Plane-fronted waves with parallel propagation (pp-waves) are given

by the metric

ds2 = −2du (dv +Hdu) + 2dzdz̄, (4.75)

with H(u, z, z̄) = f(u, z) + f̄(u, z̄) for general functions f . Choosing

k = ∂v, n = ∂u −H ∂v, m = ∂z, (4.76)

one has ρ = τ = 0 and so (4.68) implies S = S(u, z̄), while the Weyl scalar Ψ4 = ∂2
z̄ f̄ ,

so (4.64) implies that

φ2 =
√
∂2
z̄ f̄ S(u, z̄). (4.77)

The other class of plane-fronted waves is given by

ds2 = −2du
(

dv +Wdz + W̄dz̄ +Hdu
)

+ 2dzdz̄, (4.78)

with W (v, z, z̄) = −2v (z + z̄)−1 and

H(u, v, z, z̄) =
[
f(u, z) + f̄(u, z̄)

]
(z + z̄)− v2

(z + z̄)2
;

again f(u, z) is arbitrary. Choosing

k = ∂v, n = ∂u − (H +WW̄ ) ∂v + W̄∂z +W∂z̄, m = ∂z,

one has ρ = 0, τ = 2β = −(z + z̄)−1, so (4.68) gives S = ζ(u, z̄)/(z + z̄). The Weyl

scalar Ψ4 = (z + z̄) ∂2
z̄ f̄ , so (4.64) implies that

φ2 =
√
∂2
z̄ f̄ ζ(u, z̄). (4.79)

Given that the only non-zero components of Fµν are for µν = [uz] and [uz̄], the

simple form of the relevant components of gµν and the fact that g = 1 give

∇νFµν =
1√
|g|
∂ν

(√
|g| gµρgνσFρσ

)
= ∂ν (ηµρηνσFρσ) = 0. (4.80)

7See Theorem 31.2 of [171].
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On the other hand, S does not depend on f(u, z) or f̄(u, z̄), meaning that it must

solve the wave equation on any member of the family. In particular, it solves the wave

equation on Minkowski spacetime. This implies that the Maxwell and the scalar fields

also satisfy their equations on Minkowski spacetime, establishing the Weyl double copy

for type N Kundt solutions.

Robinson-Trautman solutions

Type N Robinson-Trautman solutions take the form 8

ds2 = −H du2 − 2du dr +
2r2

P 2
dz dz̄ , (4.81)

with H(u, r, z, z̄) = K − 2r ∂u logP (where K = 0,±1) and 2P 2∂z∂z̄ logP (u, z, z̄) = K.

Choosing

k = ∂r, n = ∂u − 1
2H∂r, m = −P

r
∂z, (4.82)

one has ρ = −r−1, τ = 0, so (4.68) gives S = −ζ(u, z̄)/r. Now Ψ4 = −P 2

r ∂u

(
∂2
z̄P
P

)
, so

(4.64) determines that

φ2 =
P

r

√
ζ(u, z̄) ∂u

(
∂2
z̄P/P

)
. (4.83)

As an example, consider Robinson-Trautman solutions with K = 0 in (4.81). Writing

P = eW we have ∂z∂z̄W = 0 and hence W = w(u, z) + w̄(u, z̄), implying that Ψ4 =

−P 2/r ∂u[∂2
z̄ w̄(u, z̄) + (∂z̄w̄(u, z̄)2]. We can obtain type N solutions of the Maxwell

equation in the Robinson-Trautman background by taking

A = γ(u, z, z̄) du, (4.84)

where ∂z∂z̄ γ = 0 and hence γ = h(u, z) + h̄(u, z̄). Thus from (4.69) we have φ2 =

−P/r ∂z̄ h̄(u, z̄). Plugging into (4.64) we have

∂u[∂2
z̄ w̄(u, z̄) +

(
∂z̄w̄(u, z̄)

)2
] = − 1

rS

(
∂z̄h̄(u, z̄)

)2
, (4.85)

and so indeed we have that S = −ζ/r, where ζ is a function only of u and z̄, as required

in the general result stated above.

As with Kundt solutions, the only non-zero components of Fµν are for µν = [uz]

and [uz̄]. As before, using the fact that
√
|g| = r2/P 2 and the relevant components of

gµν , it can be shown that (4.80) holds. Once again, S is independent of P and solves

the wave equation on any member of the family (4.81), including Minkowski. Hence,

both Fµν and S satisfy their equations also on the flat background, establishing the

Weyl double copy for Robinson-Trautman solutions.

8See Theorem 28.1 and Section 28.1.2 of [171].
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Twisting solutions

Type N solutions with non-vanishing twist are more complicated, with only one explicit

solution known [200]. The general metric is given by 9

ds2 = −2(du+ L dz + L̄ dz̄)
[
dr +Wdz + W̄dz̄ (4.86)

+H
(
du+ L dz + L̄ dz̄

) ]
+

2

P 2|ρ|2
dzdz̄,

ρ−1 = −(r + iΣ), 2iΣ(u, z, z̄) = P 2(∂̄L− ∂L̄),

W (u, r, z, z̄) = ρ−1 ∂uL+ i∂Σ, ∂ = ∂z − L∂u,

H(u, r, z, z̄) =
1

2
K − r∂u logP,

with K = 2P 2 Re
[
∂(∂̄ logP − ∂uL̄)

]
. There exists a residual gauge freedom to choose

P = 1, but we shall not yet impose this choice. The solution is determined by the

complex scalar L, for which the field equations and type N condition impose

ΣK + P 2 Re
[
∂∂̄Σ− 2∂uL̄∂Σ− Σ∂u∂L̄

]
= 0, ∂I = 0,

and ∂uI 6= 0, with I = ∂̄(∂̄ logP − ∂uL̄) + (∂̄ logP − ∂uL̄)2. Choosing

k = ∂r, n = ∂u −H ∂r, m = −P ρ̄ (∂ −W∂r), (4.87)

ρ is as defined above, while τ = 0. Equation (4.68) then implies that S = ρχ(u, z, z̄),

with χ satisfying

∂χ− ∂uLχ = 0. (4.88)

Defining new coordinates (v, w) = (I, z), the above equation can be solved using the

method of characteristics (I = constant correspond to the characteristics)

χ(v, w) = ζ(I) e
∫ [( ∂I(u,z)

∂u

)
(v,w′)× ∂L(v,w′)

∂v

]
dw′
, (4.89)

with ζ(I) arbitrary. The Weyl scalar Ψ4 = ρP 2 ∂uI, and so (4.64) implies

φ2 = ρP
√
∂uI χ(u, z, z̄). (4.90)

Only one twisting type N solution, found by Hauser [200], is known explicitly. It

lacks a clear physical interpretation as it is not asymptotically flat and can not be

9See Chapter 29 of Ref. [171].
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interpreted as the radiation of an isolated source. The metric functions are given by

P = (z + z̄)3/2 f(t), t ≡ u

(z + z̄)2
, L = 2i(z + z̄),

where f satisfies 16(1 + t2)f ′′(t) + 3f(t) = 0, which is a hypergeometric equation, and

I turns out to be given by

I =
3

2[(z + z̄)2 − iu]
. (4.91)

The solution to (4.68) is

S = ρ ζ(I) , (4.92)

where ζ(I) is arbitrary. As expected, this is consistent with the general result (4.89).

The Weyl scalar is Ψ4 = (2i/3) ρP 2 I2, implying that

φ2 = ρP I

√
2 i ζ(I)

3
. (4.93)

As a further remark about the twisting type N solutions, we note that if the gauge

freedom to set P = 1 is employed, the metric is specified purely in terms of the function

L(u, z, z̄), and the type N and Ricci flat conditions may be succinctly condensed down

to just

∂I = 0, Im(∂̄∂̄∂∂L) = 0, where I = −∂u∂̄L̄. (4.94)

The Weyl curvature is given by Ψ4 = ρ ∂uI.

In contrast to non-twisting solutions, the second equality in (4.80) does not hold for

twisting solutions. Therefore, while there is a curved Weyl double copy relation, in this

case it does not translate to a relation where the Maxwell field and the scalar can be

thought of as Minkowski fields, unless we consider all the fields (gravity, Maxwell and

scalar) at the linearised level. This may be indicative of the fact that twisting solutions

have an intrinsic non-Abelian nature.

4.2.3 Non-uniqueness

In all the cases above, neither the Maxwell field nor the scalar field are uniquely de-

termined. They are fixed only up to an arbitrary function of some of the coordinates,

which we are free to choose. This contrasts with the Weyl double copy for vacuum type

D solutions, for which, in a spinor basis adapted to the principal null directions, we

have S3 ∝ (φ2)3/2 ∝ Ψ4, where the proportionality is up to complex parameters [99];

hence the Maxwell and scalar fields are functionally fixed. This feature is related to

the fact that vacuum type D spacetimes are fully determined up to a few parameters,

whereas vacuum type N spacetimes (of any class, as seen above) have functional free-

dom. By analogy, there is additional freedom in the Maxwell and scalar fields in the
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curved background.

In considering a special choice, we may ask whether it is possible to choose φ2 and

S to be given by specific powers of Ψ4, as in the type D case, i.e. there exists some

constant a such that φ2 ∝ (Ψ4)a and S ∝ (Ψ4)2a−1. The functional dependence of the

results above implies that this possibility holds only for Kundt solutions. For pp-waves,

the power is actually undetermined, i.e. the relation above holds for any a. A simple

choice is a = 1/2, where S is constant, and in fact this choice implies that Maxwell

plane waves double copy to gravitational plane waves (φ2 and Ψ4 are functions of u

only). For the other plane-fronted Kundt solutions, such a relation is possible for a = 0,

in which case S ∝ (Ψ4)−1. Analogously simple choices for the other type N classes are:

S ∝ 1/r for Robinson-Trautman solutions and S ∝ ρ for twisting solutions.

Interestingly, pp-waves are the only type N solutions admitting a Killing 2-spinor

[201], another feature that they share with type D solutions.

4.3 Asymptotic formulation of the Weyl double copy

In recent years there has been a surge in the interest in asymptotic symmetries in gauge

theory and gravity. Particularly, since the developments reviewed in [202], which relate

asymptotic symmetries to soft theorems and the memory effect. Given a particular

family of metrics, with specific fall-off conditions near the conformal boundary, an

asymptotic symmetry is a diffeomorphism that acts tangentially to the family. Although

the usual diffeomorphisms do not have physical significance, asymptotic symmetries

change the asymptotic data, modifying the boundary data of the characteristic value

formulation of general relativity. Asymptotic symmetries also provide a way to define

charges in general relativity. For asymptotically flat spacetimes, the standard boundary

conditions are specified using Bondi coordinates. The group of diffeomorphisms that

preserve the Bondi metric is bigger than the Poincaré group. It is denoted as the

BMS group and contains supertranslations and superrotations. Supertransaltions are

redefinitions of the retarded (or advanced) time coordinate on the celestial 2-sphere.

On the other hand, superrotations correspond to conformal Killing generators of the

2-sphere that are not globally well-defined. Consequently, they relate different locally

asymptotically flat backgrounds. Physically speaking, we will see that their effect can

be interpreted as the appearance/snapping of cosmic strings.

Some relations between asymptotic symmetries and the double copy have been ex-

plored in the literature. Supertranslations have been related via the double copy to

electric-magnetic duality [90,189]. Large diffeomorphisms in self-dual gravity and large

gauge transformations in self-dual gauge theory have also been related [203], based on

the fact that the self-dual theories provide a simple setting for the double copy [20].

The notions of celestial operators and amplitudes that arose recently are also revealing
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their own versions of the double copy [204–206]. Closer to the approach to be taken

here, the double copy has been seen to arise in the characteristic value formulation of

general relativity, particularly in the example of the Taub-NUT spacetime [189]. In

[189], it was shown that the Dirac monopole solution can be viewed as a seed solution

for the Taub-NUT spacetime in a characteristic value formulation and, moreover, that

the proper and large gauge transformations of the monopole solution map onto proper

and asymptotic diffeomorphisms of the Taub-NUT solution. More recently, [179] pre-

sented two prescriptions for realising the double copy asymptotically. The first one

applies to radiative fields (Yang-Mills and NS-NS gravity fields), which are fully deter-

mined by characteristic data at null infinity. The second one is based on the dynamics

of asymptotically flat solutions, deriving a map between the asymptotic Maxwell equa-

tions to the asymptotic Einstein equations. This map is motivated by the squaring of

the 3-point amplitude seen in chapter 3, which makes it more closely related to the

amplitudes double copy.

In this section, we will explore aspects of the classical double copy as seen asymptot-

ically, near null infinity, to gain new insights into the connections between these various

subjects. Instead of deriving a new double copy map, we will be guided by the asymp-

totic form of the Weyl double copy. We will see how the Weyl double copy relates in

a simple manner various quantities that are familiar from the literature on asymptotic

symmetries and the characteristic value formulation. While the Weyl double copy has

only been successfully applied to certain algebraically special spacetimes, the fact that

a much wider class of spacetimes is asymptotically special allows to extend its applica-

tion, albeit in a restricted asymptotic framework.10 An example of this was presented

in [2], where the authors considered rotating STU supergravity black holes [207], which

are algebraically general but asymptotically of type D; the Kerr-Newman solution with

equal dyonic charges is a particular case. While a double copy interpretation of STU

supergravity is not known, the asymptotic properties of these solutions were sufficient

to show the presence of the double copy asymptotically.

We will study in detail the C-metric, which is exactly type D, so the Weyl double

copy applies directly [99]. The metric can be interpreted as describing a pair of black

holes uniformly accelerated in opposite directions. The double copy relates the C-metric

to the Liénard-Wiechert field for uniformly accelerated point charges. The Kerr-Schild

double copy is insufficient to deal on its own with this example (even in the multi-Kerr-

Schild framework) due to its time dependence, but the Weyl double copy provides a

complete prescription. Here, we will revisit the C-metric example of the double copy as

seen asymptotically, based on Bondi coordinates, whose construction for the C-metric

is not straightforward. Our study is also motivated by the interpretation of the C-

metric as a non-linear solution associated to a superrotation [208]. This suggests that

10By asymptotically special we mean solutions which are algebraically special in the vicinity of null
infinity, up to a given order in the Bondi expansion.
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its single copy can be interpreted analogously as a large gauge transformation, a result

that we are able to confirm.

4.3.1 Weyl double copy in Bondi coordinates

In the previous sections of this chapter, we argued that for type D and N vacuum

solutions the Weyl double copy takes the form,11

Ψαβγδ =
3c

S
φ(αβ φγδ), (4.95)

where we have introduced the proportionality constant c of section 4.1.3, designed to

absorb parameters. In the type D case

S

3
= (−2φαβφαβ)1/4 , (4.96)

which only satisfies the wave equation in a (at least locally) flat spacetime, rather than

the curved background. For type N spacetimes, S solves the wave equation on the

curved background, and also the wave equation on a Minkowski background in the case

of non-twisting solutions.

We may introduce a Newman-Penrose null frame [125] (k, n,m, m̄), where k and n

are null vectors such that k · n = −1 and m is a complex null vector, orthogonal to

k and n, that parametrises the remaining two spacelike directions, so that m · m̄ = 1.

Therefore,

gµν = −2 k(µnν) + 2m(µm̄ν), (4.97)

or, in vielbein language

gµν = EaµE
b
ν ηab, ηab =


0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

 (4.98)

with

E0 = −n[, E1 = −k[, Em = m̄[, Em̄ = m[. (4.99)

Equivalently,

E0 = k, E1 = n, Em = m, Em̄ = m̄ , (4.100)

where Ea = Eaµ dxµ and n[ = nµ dxµ, etc., and Ea = Eµa ∂µ and n = nµ ∂µ, etc. For

convenience, we can use the above notation to project any tensor into this null frame.

11Some type III examples, in the linearised approximation, were discussed in [100,101].
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For example, for any 1-form X,

X0 ≡ kµXµ = −X1, X1 ≡ nµXµ = −X0,

Xm ≡ mµXµ = Xm̄, Xm̄ ≡ m̄µXµ = Xm.
(4.101)

A corresponding spinor basis (o, ι) may be constructed, so that

k ∼ oαōα̇, n ∼ ιαῑα̇, m ∼ oαῑα̇. (4.102)

Note that this time we will not require the spinor basis to be aligned with principal null

directions. In such a null frame, Maxwell and Weyl scalars may be defined by projecting

the Maxwell field strength and the Weyl tensor into the null frame. In particular, we

have

φ0 = F0m = φαβ o
α oβ , φ1 = 1

2(F01 − Fmm̄) = φαβ o
α ιβ ,

φ2 = Fm̄1 = φαβ ι
α ιβ (4.103)

and the Weyl scalars as

Ψ0 = C0m0m = Ψαβγδ o
α oβ oγ oδ , Ψ1 = C010m = Ψαβγδ o

α oβ oγ ιδ ,

Ψ2 = C0mm̄1 = Ψαβγδ o
α oβ ιγ ιδ , (4.104)

Ψ3 = C101m̄ = Ψαβγδ o
α ιβ ιγ ιδ , Ψ4 = C1m̄1m̄ = Ψαβγδ ι

α ιβ ιγ ιδ .

Therefore, translating the Weyl double copy equation (4.95) into the null frame con-

structed above gives

Ψ0 = 3c
(φ0)2

S
, Ψ1 = 3c

φ0 φ1

S
, Ψ2 = c

φ0 φ2 + 2(φ1)2

S
,

Ψ3 = 3c
φ1 φ2

S
, Ψ4 = 3c

(φ2)2

S
. (4.105)

Having re-expressed the Weyl double copy equation in a generic null frame, we

choose coordinates that will provide a direct relation to a characteristic value formu-

lation of the Einstein equation. We begin by assuming that the spacetime is locally

asymptotically flat. 12 Locally asymptotically flat spacetimes provide a mathematical

model of an isolated gravitational system that may be emitting radiation that is mea-

sured by an observer at infinity. We choose Bondi coordinates (u, r, xI = {θ, φ}), where

12By locally asymptotically flat we mean spacetimes that can be put into a Bondi form as described
below, but with metric components that are not necessarily regular on the 2-sphere. Examples where
there are singularities on the sphere include the Taub-NUT solution and the C-metric.
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u is a timelike coordinate, r is a radial null coordinate and xI correspond to angular

coordinates. In such a coordinate system, the metric takes the Bondi form 13

ds2 = −Fe2βdu2 − 2e2βdudr + r2hIJ(dxI − CIdu)(dxJ − CJdu), (4.106)

where we assume the following large-r fall-off conditions for the metric components:

F (u, r, xI) = 1 +

∞∑
i=0

Fi(u, x
I)

ri+1
, β(u, r, xI) =

∞∑
i=0

βi(u, x
I)

ri+2
, (4.107)

CI(u, r, xI) =
∞∑
i=0

CIi (u, xI)

ri+2
, hIJ(u, r, xI) = ωIJ +

CIJ
r

+
C2 ωIJ

4 r2
+
∞∑
i=1

D
(i)
IJ (u, xI)

ri+2

with ωIJ the metric on the round 2-sphere. Note that C2 = CIJC
IJ , where we always

lower/raise indices on tensors defined on the 2-sphere using ωIJ and its inverse. Fur-

thermore, we fix a residual coordinate freedom in the definition of the radial coordinate

r by requiring that

det(hIJ) = det(ωIJ) = sin2 θ. (4.108)

Following Ref. [209], we may choose a parametrisation of hIJ that is adapted to this

gauge choice

2hIJdxIdxJ = (e2f+e2g)dθ2+4 sin θ sinh(f−g)dθdφ+sin2 θ(e−2f+e−2g)dφ2, (4.109)

where

f(u, r, xI) =
f0(u, xI)

r
+
∞∑
i=2

fi(u, x
I)

ri+1
, g(u, r, xI) =

g0(u, xI)

r
+
∞∑
i=2

gi(u, x
I)

ri+1
.

(4.110)

The tensor CIJ is parametrised by f0 and g0, while the higher fi, gi (with i ≥ 2)

parametrise the D
(i−2)
IJ (u, xI) tensors.

Assuming appropriate fall-off conditions for the energy-momentum tensor, there

are equations relating the various metric tensor components; see Ref. [211]. However,

here we will keep the discussion general by not assuming any fall-off conditions on the

energy-momentum tensor.

Above, we have assumed an analytic expansion in the metric components. This is

a consistent assumption from an initial value problem perspective, in the sense that

assuming an analytic fall-off for initial data will guarantee that the evolved solution

will remain analytic [209]. However, it does preclude some physically interesting cases

13In fact, this form of the metric is due to Sachs [209]. The form of the metric that appears in [210]
is restricted to axisymmetric solutions. Moreover, the choice of coordinates that was made in [210] is
not well-adapted to solutions with angular momentum. Therefore, except in section 4.3.2, we shall use
the Sachs form even when dealing with axisymmetric solutions.
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[212–214]. Another more general class of consistent fall-offs that one may consider are

polyhomogenous spacetimes [215–218]. Nevertheless, the analytic expansion we assume

here will be sufficient for our purposes.

We choose the following null frame associated with the metric (4.106): [211]

k =
∂

∂r
, n = e−2β

[
∂

∂u
− 1

2
F
∂

∂r
+ CI

∂

∂xI

]
, m =

m̂I

r

∂

∂xI
, (4.111)

where

2 m̂(I ¯̂mJ) = hIJ (4.112)

with hIJ the matrix inverse of hIJ . In particular, here, we choose

m̂ =
(e−f + i e−g)

2
∂θ −

i(ef + i eg)

2 sin θ
∂φ. (4.113)

In this formulation, the Einstein equation divides into three sets of equations (see,

for example, [125, 189]): hypersurface equations, which hold in each u = constant

hypersurface, evolution equations, which are first order equations in time derivatives,

and finally conservation equations that are satisfied on r = constant hypersurfaces.

One major advantage of the characteristic formulation of the Einstein equation is that

there are no constraint equations, unlike the situation in the initial value formulation.

CIJ(u, xI) constitutes free data, while F0(u0, X
I), CI1 (u0, x

I) and D
(i)
IJ (u0, x

I) are un-

constrained initial data with associated evolution equations. All other metric functions

can then be solved from these functions and their form at time step u0 + ∆u, derived

via their evolution equations; see [211,219–222].

The frame (4.111) provides a precise formulation of the peeling property mentioned

in section 1.3.4. In such a frame, the Weyl scalars can be written in a 1/r expansion,

where they take the form

Ψi = O
(

1

r5−i

)
. (4.114)

More precisely, given our assumptions of analyticity, one has the expansions

Ψi =
∑
j≥0

Ψ
(j)
i

1

r5+j−i . (4.115)



CHAPTER 4. THE WEYL DOUBLE COPY 105

The Ψi have the form

Ψ0 =

[
−3(1 + i)(f2 + ig2)− 3

2
σ0[(σ0)2 + |σ0|2 − (σ̄0)2] +

1

2
(σ̄0)3

]
1

r5

− [6(1 + i)(f3 + ig3)]
1

r6
+O(

1

r7
)

Ψ1 =

[
3(1 + i)

4
(Cθ1 − i sin θCφ1 ) +

3

4
ð|σ0|2 + 3σ0ðσ̄0

]
1

r4
+O(

1

r5
),

Ψ2 =
1

2

[
F0 − 2σ0∂uσ̄

0 + ð̄2σ0 − ð2σ̄2
] 1

r3
+
[
F1 +

(1 + i)

2
ð̄(Cθ1 − i sin θ Cφ1 )

− (1− i)
4

ð(Cθ1 + i sin θ Cφ1 )− 3

4
ð(σ̄0ð̄σ0) +

9

4
σ0ð̄ðσ̄0 +

1

4
ð̄σ̄0ðσ0

] 1

r4
+O(

1

r5
),

Ψ3 =ð∂uσ̄0 1

r2
+O(

1

r3
),

Ψ4 =− ∂2
uσ̄

0 1

r
+ ð̄ð∂uσ̄0 1

r2
+O(

1

r3
), (4.116)

where

σ0 =
(1 + i)

2
(f0 + ig0) . (4.117)

Acting on a scalar of spin n, we have

ðη = −(1 + i)

2
sinn θ

(
∂

∂θ
− i

sin θ

∂

∂φ

)( η

sinn θ

)
. (4.118)

In a similar fashion, we may consider a 1/r expansion of the gauge potential com-

ponents, which for physically reasonable matter take the form

Au(u, r, xI) =

∞∑
i=0

A
(i)
u (u, xI)

ri+1
, Ar(u, r, x

I) =

∞∑
i=0

A
(i)
r (u, xI)

ri+2
,

AI(u, r, x
I) =

∞∑
i=0

A
(i)
I (u, xI)

ri
, (4.119)

where, again, we assume an analytic form for the dependence of the gauge fields on

1/r. The analogue of the Bondi gauge in this case is to use gauge freedom to set Ar to

zero:

A→ A− dΛ, Λ =

∫ ∞
r

Ar(u, r
′, xI)dr′ + λ(xI). (4.120)
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In this gauge, we have

Au(u, r, xI) =

∞∑
i=0

A
(i)
u (u, xI)

ri+1
, Ar(u, r, x

I) = 0, AI(u, r, x
I) =

∞∑
i=0

A
(i)
I (u, xI)

ri
,

(4.121)

with a residual gauge freedom parametrised by λ(xI), which corresponds to a so-called

large gauge transformation. This large gauge transformation is the single copy analogue

of the gravitational BMS generator; a statement that we shall make more precise in

section 4.3.3.

The corresponding Maxwell field strengths are of the form

Fur = −∂rAu =
A

(0)
u

r2
+O(1/r3), FuI = ∂uAI − ∂IAu = ∂uA

(0)
I +O(1/r),

FrI = ∂rAI = −
A

(1)
I

r2
+O(1/r3), FIJ = 2∂[IAJ ] = 2∂[IA

(0)
J ] +O(1/r). (4.122)

The Bianchi identity dF = 0 is trivially satisfied, while the Maxwell equation

d ?F = 0 (4.123)

is equivalent to

∂µ(
√
−g gµρgνσFρσ) = 0. (4.124)

In Bondi coordinates
√
−g = r2e2β√ω, (4.125)

while the inverse metric takes the form

gµν =

 0 −e−2β 0

−e−2β e−2βF −e−2βCJ

0 −e−2βCI r−2hIJ

 . (4.126)

In fact, for type D and for non-twisting type N solutions, the Maxwell field appearing

in the Weyl double copy satisfies the Maxwell equation also on Minkowski spacetime

[4, 99].

Using equations (4.103), (4.111), (4.113) and (4.122), we can derive the appropriate

Maxwell scalars φ0, φ1 and φ2 in a 1/r expansion. For type D solutions, the scalar S is

then given by
S

3
=
√

2
(
φ2

1 − φ0φ2

)1/4
= O(1/r). (4.127)

Comparing the 1/r expansions of the Weyl scalars (4.116) with the Maxwell scalars

and the scalar given by (4.127) via the double copy relations (4.105) gives an asymptotic
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formulation of the Weyl double copy.

It is important to stress that in formulating the Weyl double copy in the characteris-

tic value formulation, the single copy must be expressed in Bondi coordinates on a flat

Minkowski background. However, the Maxwell scalars must be defined with respect to

the curved null frame.

4.3.2 C-metric and the Liénard-Wiechert solution

In this section, we demonstrate the conclusions of the previous section using the C-

metric as an example. The C-metric is a type D solution that can be interpreted as

a pair of causally disconnected black holes accelerating in opposite directions. The

Schwarzschild-like metric

ds2 =
1

(1− αr̂ cos θ̂)2

[
−f(r̂)dt̂2 +

dr̂2

f(r̂)
+ r̂2

(
dθ̂

g(θ̂)
+ g(θ̂) sin2 θ̂ dφ̂2

)]
,

f(r̂) =

(
1− 2m

r̂

)
(1− α2r̂2) , g(θ̂) = 1− 2αm cos θ̂

(4.128)

describes a patch corresponding to one of the black holes. The parameters m and α are

related to the total mass and the acceleration of the black holes. In the α = 0 limit, we

recover the standard Schwarzschild metric. There is an acceleration horizon at r̂ = 1/α

and an event horizon at r̂ = 2m. Note that whenever αm 6= 0 there must be a conical

deficit along the vertical axis. As we will see, the periodicity of the axial coordinate

can be chosen such that the conical deficit stretches from each black hole to infinity,

but leaves the segment between the black holes singularity-free. In that scenario, the

conical singularities could be viewed as cosmic strings pulling the black holes towards

null infinity. The metric (4.128) is useful to interpret the C-metric, but it is not the

most appropriate for the purpose of this chapter. Its major drawback is that its domain

patch does not include the entirety of the null asymptotic boundary. To overcome this,

we will resort to another common, yet less intuitive, form of the C-metric (C.1). For

a detailed review of the different patches, maximal extension and interpretation of the

C-metric see [223].

The single copy of the C-metric is the analogous Liénard-Wiechert solution [99],

describing an accelerated electric charge. Following the prescription given above, we

need to transform the coordinates for the C-metric to Bondi coordinates and also

transform the coordinates for the Liénard-Wiechert solution to those corresponding to

Minkowski in accelerated coordinates (i.e. the C-metric with the mass parameter m set

to zero). In appendix C, we derive the Bondi form of the C-metric. In the original

C-metric coordinates in which the metric takes the form (C.1), the Liénard-Wiechert

gauge potential reads

A = Qy dt, (4.129)
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which can be easily checked to solve the Maxwell equations. In particular, this remains

true if we turn off the mass parameter, so that the metric just describes Minkowski

spacetime in accelerating coordinates. Thus A has the interpretation of being the

Liénard-Wiechert potential for an accelerating charge. After rewriting it in terms of

our new Bondi coordinates (see appendix C), we will simply have that A is given by

A = Q
( 1

Ωα
− x− T

)(
dw − dy

F (y)

)
, (4.130)

where we then implement the various substitutions and expansions detailed in appendix

C. After doing this we find that

Au = −Qx cos θ

r sin2 θ
+O

( 1

r2

)
, Ar =

QxGj(x) cos θ

α r2 sin θ
+O

( 1

r3

)
,

Aθ = −Qx csc θ +O
(1

r

)
, Aφ = 0 . (4.131)

After a compensating gauge transformation to restore the Ar = 0 gauge choice, we

have

Au =
Q cos θ

r sin2 θ

(
1− x+G3/2Gj

)
+O

( 1

r2

)
, Ar = 0 ,

Aθ = −Qx csc θ +O
(1

r

)
, Aφ = 0 . (4.132)

These expressions are valid in the general C-metric, but we actually want them just in

the flat spacetime limit, which can be obtained by setting m to zero in the expressions

in appendix C.1. Thus x and Gj(x) are then just given by the expansions in (C.19)

and (C.20) with m set to 0, and so we have

Au =
Q cos θ

r sin2 θ

(
1− u3α3

(u2α2 + sin2 θ)3/2

)
+O

( 1

r2

)
, Ar = 0 ,

Aθ = − Quα√
u2α2 + sin2 θ sin θ

+O
(1

r

)
, Aφ = 0 . (4.133)

Defining the null tetrad (k, n,m) and the scalar components of the Weyl tensor

as before, we find that for the C-metric written in Bondi coordinates as described in
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appendix C, we have

Ψ0 =
i(1− cos2 θ GGj2)2

√
GG′′′

16α3 sin3 θ r5
+O(r−6) ,

Ψ1 =
(1 + i) cos θ (1− cos2 θ GGj2)G3/2Gj G′′′

16α2 sin3 θ r4
+O(r−5) ,

Ψ2 = −(1− 3 cos2 θ GGj2)G3/2G′′′

24α sin3 θ r3
+O(r−4) ,

Ψ3 = −(1− i) cos θ G5/2Gj G′′′

8 sin3 θ r2
+O(r−3) , Ψ4 = − iαG

5/2G′′′

4 sin3 θ r
+O(r−2) .

(4.134)

We now make the small-m expansion described in the appendix to give the leading-

order terms in the expansions of the Weyl tensor in (4.134):

Ψ
(0)
0 = −3im sin2 θ (u2α2 + 1)2

4α2 (u2α2 + sin2 θ)5/2
+O(m2) ,

Ψ
(0)
1 = −3(1 + i)mu sin θ cos θ (u2α2 + 1)

4(u2α2 + sin2 θ)5/2
+O(m2) ,

Ψ
(0)
2 =

m [(3u2α2 + 1) sin2 θ − 2u2α2]

2(u2α2 + sin2 θ)5/2
+O(m2) ,

Ψ
(0)
3 =

3(1− i)muα2 sin θ cos θ

2(u2α2 + sin2 θ)5/2
+O(m2) , Ψ

(0)
4 =

3imα2 sin2 θ

(u2α2 + sin2 θ)5/2
+O(m2) .

(4.135)

(See eqn (4.115) for the definition of the Ψ
(j)
i .)

Now we calculate also the field strength for the Liénard-Wiechert potential, and

thence the Newman-Penrose scalars

φ0 = Fµν k
µmν , φ1 = 1

2Fµν (kµ nν + m̄µmν) , φ2 = Fµν m̄
µ nν . (4.136)

We find that at leading order in the 1/r expansion, these are given by

φ0 = −(1 + i)Q (1− cos2 θ GGj2)
√
G

4α sin2 θ r3
+O(r−4) ,

φ1 = −Q cos θ G3/2Gj

2 sin2 θ r2
+O(r−3) , φ2 =

(1− i) αQG3/2

2 sin2 θ r
+O(r−2) . (4.137)

As with the Weyl scalars, the expressions can be made more explicit in a small-m

expansion in which

G(x) = 1− x2 +O(m), Gj(x) = x (1− x2)−1/2 +O(m),

x = uα (u2α2 + sin2 θ)−1/2 +O(m). (4.138)
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Thus we have

φ0 = −(1 + i)Q sin θ (u2α2 + 1)

4αr3 (u2α2 + sin2 θ)3/2
+O(r−4) , (4.139)

φ1 = − αQu cos θ

2r2 (u2α2 + sin2 θ)3/2
+O(r−3) , φ2 =

(1− i)αQ sin θ

2r (u2α2 + sin2 θ)3/2
+O(r−2) .

We can see from the results for the Weyl scalars in (4.135) and the Maxwell scalars

in (4.139) that a relation of the form seen in (4.105) holds. If we define

R0 =
φ2

0

Ψ0
, R1 =

φ0 φ1

Ψ1
, R2 =

φ0 φ2 + 2φ2
1

3Ψ2
, R3 =

φ1 φ2

Ψ3
, R4 =

φ2
2

Ψ4
, (4.140)

then to leading order in 1/r these are all the same:

Ra =
S

3c
= − Q2

6mr(u2α2 + sin2 θ)1/2
+O(r−2) , for all a . (4.141)

From the Weyl double copy, we know that the scalar potential is [99]

S = Q̃ (x̂+ y) (4.142)

for some constant Q̃. In Bondi coordinates this has the large-r expansion

S =
Q̃
√
G

α sin θ r
− Q̃ (2

√
GGj + cos2 θ GG′Gj2)

4α2 sin2 θ r2
+O(r−3) (4.143)

and in the Minkowski background, it reduces to

S =
Q̃

αr (u2α2 + sin2 θ)1/2
+O(r−2) . (4.144)

Comparing this expression with (4.141), we find that the two expressions agree once

we choose

c = −2mQ̃

αQ2
. (4.145)

Let us make a clarifying remark. We used the asymptotic Weyl scalars with coef-

ficients given in (4.135), which correspond to the linearised order in m. On the other

hand, the Weyl double copy interpretation of the C-metric is exact [99]. The lineari-

sation in m is actually equivalent to an alternative, but exact, procedure. In [99],

double-Kerr-Schild coordinates were used for the exact double copy, and in these co-

ordinates the Weyl spinor is proportional to m. The advantage of multi-Kerr-Schild

coordinates for the double copy is that they allow us to map the gravitational curved

spacetime to a flat spacetime where the gauge field and the scalar live. Asymptotically,

however, we are interested in using the Bondi coordinates. So the alternative procedure
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would be to start with double-Kerr-Schild coordinates for gravity, and then transform

these into ‘flat spacetime Bondi coordinates’, which we are using for the gauge field

and the scalar. In this way, the Weyl coefficients will indeed be linear in m. We chose

to proceed as in (4.135) for brevity.

Axisymmetric Weyl double copy

We have discussed above how to express the Weyl double copy (4.105) asymptotically

starting from the Bondi form of the metric (4.106). The relation becomes lengthy if one

attempts to write it down in terms of the 1/r expansions for the metric and the gauge

field described in that section. For illustrative purposes, particularly regarding the

discussion of the next section, we will now consider the restriction to the axisymmetric

case, which simplifies the map considerably. The original axisymmetric Bondi metric

reads [210]

ds2 = −
(
V

r
e2β − U2r2e2γ

)
du2 − 2e2βdudr

−2Ur2e2γdudθ + r2(e2γdθ2 + e−2γ sin2 θ dφ2) ,

(4.146)

with fall-off conditions

γ(u, r, xI) =
c(u, xI)

r
+O(r−3) , (4.147)

β(u, r, xI) = −c(u, x
I)2

4 r2
+O(r−3) , (4.148)

U(u, r, xI) = −(c,θ + 2c cot θ)
1

r2
+ (2N(u, xI) + 3c c,θ + 4c2 cot θ)

1

r3
+O(r−4) ,

(4.149)

V (u, r, xI) = r − 2MB(u, xI) +O(r−1) . (4.150)

This Bondi form is a subclass of the more general form (4.106), to which it is related

by

F =
V

r
⇒ F0 = −2MB , (4.151)

CI = (U, 0) , (4.152)

hIJ =

(
e2γ 0

0 e−2γ sin2 θ

)
⇒ Cθθ = 2 c . (4.153)

For the gauge field, the axial symmetry allows us to set Aφ = 0 in (4.121). Finally,

we introduce an additional simplification, by taking the scalar S to be real in (4.34),
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which leads to (4.36); this applies for instance to the C-metric.14 We can plug these

expressions directly into (4.36) and compare the components to obtain the neat relations

(A
(0)
θ,u)2

2S
= −c,uu , (4.154a)

A
(0)
θ,uA

(1)
u

2S
= −∂θ(sin

2 θ c,u)

sin2 θ
, (4.154b)

(A
(1)
u )2 +A

(1)
θ A

(0)
θ,u

6S
= −M − c c,u , (4.154c)

A
(1)
u A

(1)
θ

6S
= N . (4.154d)

In principle, these expressions could be used to obtain (up to constants of integration)

a metric tensor from any axisymmetric gauge potential in Bondi gauge. However, the

system (4.154) is over-complete, which gives rise to the integrability condition

∂u

A(1)
u A

(0)
θ,u

S

 =
1

sin2 θ
∂θ

sin2 θ
(A

(0)
θ,u)2

S

 . (4.155)

Alternatively, this equation can be obtained by imposing the vacuum Bianchi identities,

∇µWµνρσ = 0, on (4.36), assuming that the gauge field satisfies the Maxwell equations.

The expressions above can easily be checked to hold for the example of the C-metric.

4.3.3 Asymptotic symmetries and the Weyl double copy

The classical double copy is fundamentally about relating solutions in gravity and

gauge theory. An important aspect of both gravitational and gauge theories is their

symmetry structure. In gravity, this is given by diffeomorphisms, while in gauge theory

it is gauge transformations. Proper diffeomorphisms and gauge transformations, while

not physical in the sense that they parametrise redundancies in the description of

the same physics, are important aspects of the theories. In addition, there exist also

improper transformations, which generally change boundary conditions and hence are

physical. Any claim towards a new understanding of such theories ought to give some

insight into how the respective symmetry structures arise and how they relate to one

another. No fully general relation has been found yet, but much progress has been

made on both global and linearised local symmetries, e.g. [70, 74, 224–226], and more

14We also assume here the reality of the couplings-absorbing constant c in (4.36). It should not be
confused with the metric function c in the present section, so here we will choose that constant to take
the numerical value 1/3.
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Figure 4.2: Representation of a superrotation generator acting on S2. Both images show the
same transformation, seen from the front and the back. Darker arrows indicate bigger modulus.
The black rod corresponds to the vertical axis (θ = 0, π). The diffeomorphism vanishes at the
contraction point seen in the first image. Note the singular points along on the poles and dashed
line.

recently on asymptotic symmetries [6, 90,148,179,189,203,206].

The difficulty arises from the nature of the Weyl double copy due to its gauge

independence. The leading-order asymptotic Weyl double copy is completely insensitive

to symmetry transformations. This can be easily checked for the simplified case of axial

symmetry and real scalar considered in (4.154).

Despite these challenges, some progress has been made on improper or asymptotic

transformations. In [189], it was shown that (proper and improper) supertranslations

on the Taub-NUT background correspond to (proper and improper/large) gauge trans-

formations of the Dirac monopole field. This relation, which has been explored also in

[6, 90], relied heavily on the time-independence of the background. Recently, a more

general relation has been given in the context of the self-dual sectors of the respective

theories in a light-cone formulation [203]. Within the self-dual sector, all fields within

both the gravitational and Yang-Mills theory can be described in terms of scalars, and

this formulation helps in relating the symmetries; in fact, it is known to help make the

double copy fully manifest at the level of the equations of motion or the Lagrangian

[20]. It is not clear how similar ideas can be used more generally.

In this section, we study this problem by focusing on the particular example of the

C-metric and its single copy, the associated Liénard-Wiechert solution. In [208], it

was argued that there is a superrotation embedded in the C-metric. From a double

copy perspective, this result indicates that there ought to be an analogous large gauge

transformation embedded in the Liénard-Wiechert potential. Indeed, we find that the

superrotation on the gravitational side maps to a large residual gauge transformation

at leading order.
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The C-metric as a superrotation

First, we review the results of [208], where it is argued that superrotations are to

be viewed as a “memory effect” related to the appearance/disappearance of cosmic

strings piercing null infinity. The intuition behind this lies in the singular nature of the

superrotations, which are elements of the BMS group which are generated by conformal

Killing vectors of the celestial sphere that are not well defined globally. Therefore,

superrotations relate spacetimes that are only locally asymptotically flat. Figure 4.2

depicts the flow generated by a superrotation generator that preserves axial symmetry.

Note how the transformation ‘unwraps’ the sphere, creating an infinitesimal conical

deficit, and conical singularities at the poles. The appearance of the conical deficit and

singularities can be interpreted as the formation of a cosmic string. The C-metric, as

an exact solution, provides a non-linear realisation for such a process; see figure 4.3.

Cosmic string

Minkowski

news related by
superrotation

C-metric

news related by
superrotation

Figure 4.3: A portion of the Penrose diagram for the snapping cosmic string considered in [208]
is shown on the left. The green area represents the infinite cosmic string metric, which is glued
to a Minkowski patch (in blue) along u = 0. The trajectory of the endpoints is represented by
the thick line. On the right is the corresponding picture for the (linearised) C-metric. In this
case, we have radiation approaching I +. Note that the true Penrose diagram for the C-metric
is more involved [223].

Consider the Bondi news of the C-metric 15

Nθθ ≡ ∂uCθθ = − 1

4 sin2 θ

(
4 + 2κ2G(x)G′′(x)− κ2G′(x)2

)
, (4.156)

15In [208], the solution chosen was the charged C-metric, since it admits a thermodynamic interpre-
tation: a relation between α and q can be imposed such that the event and acceleration horizons have
equal surface gravities, hence equal temperatures. This is not needed for our purposes. In fact, we will
set q = 0 since the Weyl double copy is only known to apply in vacuum. On the other hand, the single
copy gauge field to be considered later, which lives in flat spacetime, coincides precisely with the gauge
field of the charged C-metric after taking m→ 0.
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where κ parametrises the deficit angle. Note that in appendix C, we have normalised

κ to one. The expression above can be derived by making the κ dependence explicit in

the metric (C.1), i.e. multiplying the dφ2 term by κ2, and using equations (C.10) and

(C.11), as well as the expression for Cθθ in (C.18).

We are interested in the limits u → ±∞. Recall that x is implicitly defined in

(C.10) in terms of the Bondi u and θ coordinates. Using the parametrisation for G(x)

porposed by Hong and Teo [227] in equation (C.4), these limits correspond simply to

x = ±1. The asymptotic structure of (C.10) gives

x→ 1− sin2 θ

2α2κ2 (1 + 2αm)3

1

u2
+O(u−4) as u→∞ , (4.157)

x→ −1 +
sin2 θ

2α2κ2 (1− 2αm)3

1

u2
+O(u−4) as u→ −∞ . (4.158)

Fixing κ so that the segment between the two black holes is regular gives

κ =
2

|G′(1)|
=

1

1 + 2αm
. (4.159)

This then implies that

lim
u→−∞

Nθθ = − 8αm

(1 + 2αm)2

1

sin2 θ
, (4.160a)

lim
u→+∞

Nθθ = 0 . (4.160b)

The u → ±∞ limits of the Bondi news, (4.160b) and (4.160a), are related by a

superrotation. To show this, we start from a Minkowski background, for which Nθθ =

0. Superrotations are generated by 2-dimensional vector fields Y I that are conformal

Killing vectors of the celestial sphere and independent of u and r.16 We are interested

in the subgroup that preserves ∂φ as a Killing vector of the metric. This restricts the

superrotations to a three-parameter subgroup

Y θ =

(
β + µ ln tan

θ

2

)
sin θ , Y φ = µφ+ ϑ . (4.161)

Setting ϑ = 0 and β = 0, the effect on the Bondi news of the flat Minkowski metric

is 17

Nθθ → −µ
1

sin2 θ
. (4.162)

16In other words, they must generate transformations of the type

z → f(z) , z = eiφ cot
θ

2
,

with f(z) a holomorphic function.
17ϑ generates a standard φ-rotation and β a boost along the z-axis.
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A comparison with (4.160a) reveals that the two limits of the Bondi news of the C-

metric (4.160) are related by the superrotation

Y θ =
8αm

(1 + 2αm)2
sin θ ln tan

θ

2
, Y φ =

8αm

(1 + 2αm)2
φ . (4.163)

The Liénard-Wiechert potential as a large gauge transformation

Having made the case for the C-metric as a superrotation, it is reasonable to expect

that its single copy, the Liénard-Wiechert potential, has a similar interpretation in

terms of a large gauge transformation.

To investigate this, we need to put the Liénard-Wiechert potential on a background

in which Minkowski spacetime is written in Bondi coordinates and in a gauge in which

Ar = 0. We have already done this in section 4.3.2, with the appropriate expression

given by (4.133). In these coordinates, a large gauge transformation corresponds to

A
(0)
θ → A

(0)
θ − ∂θλ(θ) . (4.164)

These gauge transformations are the electromagnetic analogues of the BMS asymptotic

symmetries [228,229].

As we did in the previous section, we will compare the two limits of the gauge

potential

A± := lim
u→±∞

A . (4.165)

Taking this limit in the expression for the gauge potential (4.133) gives

A+ = O(r−3) du+

(
− Q

sin θ
+O(r−2)

)
dθ , (4.166a)

A− = O(r−3) du+

(
Q

sin θ
+O(r−2)

)
dθ , (4.166b)

Taking the difference between these gauge potentials we find that

A+ −A−
∣∣∣
r0

= − 2Q

sin θ
dθ = dλ(θ) , (4.167)

where

λ(θ) = −2Q ln tan
θ

2
. (4.168)

This is indeed a large gauge transformation; compare with (4.164). Note the similarities

between (4.163) and (4.168): it is not just that the solutions can be thought of as large

diffeomorphisms or gauge transformations, but the corresponding parameters are also

related. It would be interesting to find a fully general relation, beyond the example

studied here.



Chapter 5

Kerr-Schild double copy

At the end of chapter 3 we touched on how the Kerr-Schild (KS) nature of the Schwarzschild

metric provided a base for the prescription of another classical double copy relation.

Far from being a particularity of Schwarzschild, this relation extends to a broader class

of stationary spacetimes in what is called the Kerr-Schild double copy, and constituted

the first exact classical formulation of the double copy [97].

Since its discovery, the KS double copy has been extended to some multi-KS space-

times [173] and curved backgrounds [230–232]. The KS ansatz is dimension-agnostic,

but the lack of propagating gravitational degrees of freedom in three dimensions has in-

teresting consequences for the double copy [183,233,234]. The KS double copy has been

applied to a wide range of solutions, including static spherically-symmetric solutions

[235], radiating particles [37], Kerr-Schild-Kundt spacetimes [236], self-dual solutions

[187, 237], Born-Infeld point charges [238], non-singular black holes [239, 240], shock-

waves and monopoles [190]. Besides mapping solutions, the KS double copy can also

be used to understand how properties of the gravitational solutions map to gauge the-

ory. The exact nature of the map allowed the authors of [191] to study Wilson line

operators and non-trivial topologies, shedding some light on the global aspects of the

double copy. The behaviour of homotopy and the Ricci flow under the double copy

were also studied in [241,242]. Another example is the extension of the KS double copy

for probe-particle geodesics in a Kerr background formulated in [243].

One of the limitations of the original KS double copy is that it is limited to Einstein

gravity, while we know that the complete double copy of Yang-Mills also includes

dilaton and B-field. An extension of the KS class of solutions that is well suited to

deal with these fields was proposed in [149], based on the formalism of double field

theory (DFT) [159,244–249]. This DFT KS prescription applies to solutions with non-

trivial configurations for the dilaton and the B-field. Similarly, there are extensions to

other gravitational theories, which include heterotic gravity [150, 250] and exceptional

field theory [151, 251]. These developments clearly demonstrate that the ‘double’ in

double copy and double field theory are indeed related; see [252,253] for earlier insights

117
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and [154] for a more recent connection at Lagrangian level. Moreover, the double field

theory approach explicitly relates the left-/right-moving factorisation in string theory,

which is at the origin of the double copy, to the KS ansatz.

In chapter 3 we saw that the most general double copy of a Coulomb charge was

the JNW spacetime. Since this solution has a non-vanishing dilaton field, the original

KS double copy can not reach its entire parameter space. Hence, in order to reproduce

the result using an exact classical double copy, we must employ a DFT generalisation.

Unfortunately, the JNW fields do not satisfy the DFT KS ansatz provided in [149].

In the present chapter, we relax the requirements of the DFT KS ansatz to capture

the JNW metric. By inspecting the equations of motion, we will identify the Maxwell

equations for its single copy, the Coulomb potential [5]. This argument provides a

purely classical alternative to the double copy of the three-point amplitudes studied

in chapter 3. Moreover, in contrast with the calculation resulting from amplitudes,

the DFT KS double copy is exact.1 Our calculation will complement other works that

identified JNW as the double copy of Coulomb using perturbative methods [5, 39, 73],

also confirmed in the context of the convolutional double copy [106].

5.1 Kerr-Schild spacetimes

As a first step, we will review the KS double copy prescription outlined in [97]. This

will generalise the example seen in section 3.4.2 and provide an explanation from the

point of view of the equations of motion.

Writing the metric in KS form is a crucial step in making the double/single copy

manifest. A solution is Kerr-Schild if it is possible to find a set of coordinates such that

the spacetime metric gµν is put in the form

gµν = ηµν + ϕkµkν , (5.1)

where ϕ is a scalar field and kµ is a co-vector satisfying

ηµνkµkν = 0 = gµνkµkν , (5.2)

i.e. it is null with respect to both the full and background metric. Note that (5.1) is

a full, non-perturbative metric, where the second term does not need to be small. The

inverse metric then takes the form

gµν = ηµν − ϕkµkν . (5.3)

1 Recall that the (standard) multi-KS form of the Kerr-Taub-NUT implied that the classical double
copy map from the 3-point amplitudes was also exact. However, the JNW solution does not satisfy the
KS ansatz and the relation to the Coulomb solution that originates only from the 3-point amplitudes
must be regarded as a first-order approximation.
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The co-vector must also be geodesic with respect to the background metric kν∂νkµ = 0,

which also implies that it is geodesic with respect to the Levi-Civita connection of g:

kν∇νkµ = 0.

In terms of the scalar field ϕ and co-vector kµ, the Ricci tensor and Ricci scalar are

Rµν =
1

2
(∂µ∂α(ϕkαkν) + ∂ν∂

α(ϕkαk
µ)− ∂2(ϕkµkν)) ,

R = ∂µ∂ν(ϕkµkν) ,
(5.4)

where ∂µ = ηµν∂ν . In the stationary spacetime case (∂0ϕ = ∂0k
µ = 0) one may take

the time component of the KS vector as k0 = 1. Then, the time-time component is

completely determined by ϕ. As a consequence, the components of the Ricci tensor

simplify to

R0
0 =

1

2
∂i∂i ϕ , (5.5)

Ri0 = −1

2
∂j [∂

i(ϕkj)− ∂j(ϕki)] , (5.6)

Rij =
1

2
∂l[∂

i(ϕklkj) + ∂j(ϕk
lki)− ∂l(ϕkikj)] , (5.7)

R = ∂i∂j(ϕk
ikj) , (5.8)

where Latin indices indicate the spatial components.

Now define a gauge field Aµ = ϕkµ, with the Maxwell field strength Fµν = ∂µAν −
∂µAν . If the metric satisfies the vacuum Einstein equations Rµν = 0, (5.5) and (5.6)

imply that the gauge field automatically satisfies the Abelian Maxwell equations

∂µF
µν = ∂µ(∂µ(ϕkν)− ∂ν(ϕkµ)) = 0 . (5.9)

One could also obtain a non-Abelian gauge field Aaµ with the gauge group index a,

from the double copy prescription. The recipe is to take the quantity ϕkµkν of a given

gravity solution, strip off one of the KS vectors, and dress it with a gauge group vector

to get the corresponding gauge field Aaµ = caϕkµ. Thus, the basic statement of the

double/single copy we will be applying is: If gµν = ηµν +ϕkµkν is a stationary solution

of Einstein’s equations, then Aaµ = caϕkµ is a solution of the Yang-Mills equations

(linearised by the factorisation of the colour index in the constant vector ca).

It is worth noting the role of the scalar ϕ. In analogy to the complex scalar S in

the Weyl double copy, it satisfies the wave equation on the flat background (5.5). In

fact, ϕ corresponds to the real part of S [99]. The scalar field ϕ can be interpreted as

the zeroth copy: if we were to repeat the double copy procedure to Aaµ, and replace the

remaining kinematic vector with another colour vector, we would obtain

Φaa′ = ca c̃a
′
ϕ , (5.10)
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where the primed indices could correspond to a different colour group. The field Φaa′

is a solution of the linearised (i.e. Abelian) equations of motion of the biadjoint scalar

theory [76,254–256].

For illustrative purposes, we can revisit the simplest example, Schwarzschild, but

this time in Lorentzian signature. In ingoing Eddington-Finkelstein coordinates, the

metric reads

ds2 = −dv2 + 2dvdr + r2dΩ2
2 +

2m

r
dv2 . (5.11)

Comparing to (5.1), the first three terms represent the flat metric and from the last

one we deduce

k[ = dv , ϕ =
2m

r
. (5.12)

Under the KS map, we then find the Coulomb gauge potential

Aa =
Qca

r
dv , (5.13)

where the Schwarzschild radius has been replaced by a charge parameter. A gauge

transformation can be introduced to recast Aa in a more familiar way by replacing dv

with dt.

It is also worth mentioning that the self-dual sectors also exhibit useful properties

in this context [97,187]. In self-dual solutions, kµ can be promoted to be a differential

operator in position space kµ → k̂µ, and the metric can be written as

gµν = ηµν + k̂µk̂ν(φ) . (5.14)

This description is more closely related to the amplitudes double copy, given the mo-

mentum space nature of the operator k̂µ.

5.2 JNW as the double copy of Coulomb

We have seen how the KS double copy relates the Schwarzschild solution to the Coulomb

potential. However, previous chapters have pointed at the JNW solution as the com-

plete double copy of Coulomb. The JNW solution is a static, spherically symmet-

ric, asymptotically flat deformation of Schwarzschild with a minimally coupled dilaton

field [109]. Due to the presence of the dilaton, the standard KS prescription described

in the previous section does not apply. In the present section, we will discuss how to

define an exact double-copy map based on double field theory (DFT). To this end, we

introduce an ansatz for the generalised metric in DFT, by relaxing the null condition

in the KS formalism, and derive a pair of Maxwell solutions as the two factors in the

double copy. We apply this general formalism to the JNW case and show that both

Maxwell solutions are the Coulomb potential, which is therefore the single copy of



CHAPTER 5. KERR-SCHILD DOUBLE COPY 121

JNW.

5.2.1 The JNW solution

As a preliminary step, we review the JNW metric and proceed to put in in a form that

will be useful later on. In Einstein frame, the JNW metric is

ds2 = −
(

1− r0

r

) a
r0 dt2 +

(
1− r0

r

)− a
r0 dr2 +

(
1− r0

r

)1− a
r0 r2dΩ2

2, (5.15)

with the dilaton field

φ =
1

2

b

r0
log
(

1− r0

r

)
, (5.16)

where

r0 =
√
a2 + b2 . (5.17)

The two parameters a and b parametrise the mass and the dilaton charge respectively.

The special case for which b = 0 and a > 0 is the Schwarzschild solution. If a > 0 and

the dilaton field is non-vanishing (i.e., |b| > 0), the solution is still asymptotically flat,

but there is a naked singularity at zero radius, which corresponds to r = r0 since the

2-sphere factor vanishes in the line element. This naked singularity is not surprising

because the uniqueness theorems prevent a scalar-hair deformation of the Schwarzschild

solution.

We have introduced the JNW metric that solves the Einstein-dilaton equations of

motion in the Einstein frame. However, for the remaining sections it will be more

convenient to work in the string frame. This is achieved by performing the following

field redefinition
gEµν → gSµν = e2(φ−φ0)gEµν ,

φ0 = lim
r→∞

φ .
(5.18)

In this section, since we are not working in perturbation theory, we suppress the cou-

pling constant κ, and use instead a common string-frame normalisation convention for

the fields. The action in the string frame then reads

S = 2

∫
d4x
√
−gSe−2φ

(
R− 1

12
HµνρH

µνρ + 4 ∂µφ∂
µφ

)
, (5.19)

which corresponds to the low energy effective action of string theory. In the string

frame, the JNW metric is given by

ds2 = e2φ

[
−
(

1− r0

r

) a
r0 dt2 +

(
1− r0

r

)−a
r0
(
dr2 + r(r − r0) dΩ2

2

)]
,

e2φ =
(

1− r0

r

) b
r0 , r0 =

√
a2 + b2 .

(5.20)
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While JNW does not admit KS coordinates, we can express it in a similar manner,

inspired by the generalised KS form of double field theory [149]. We start by defining

the area-radius coordinate

R2 = e2φ
(

1− r0

r

)−a
r0 r(r − r0) , (5.21)

such that the metric reads

ds2 = −ft(r) dt2 + fR(r) dR2 +R2 dΩ2
2 ,

ft(r) =
(

1− r0

r

)a+b
r0 , fR(r) =

4r(r − r0)

(2 r − a+ b− r0)2
.

(5.22)

Changing to ingoing Eddington-Finkelstein coordinates,

dv = dt+

√
fR(r)

ft(r)
dR ,

ds2 = −dv2 + 2
√
ft(r) fR(r) dv dR+R2 dΩ2

2 ,

= −dv2 + 2dvdR+R2 dΩ2
2 + (1− ft(r))dv

(
dv +

2
√
ft(r) fR(r)

1− ft(r)
dR

)
, (5.23)

where the first three terms are the flat background metric. Let us define two auxiliary

variables and another change of coordinates:

v = T +R ,

V := 1− ft(r) = 1−
(

1− r0

r

)a+b
r0 , (5.24)

ω := 1− 2

V

(
1−

√
ft(r)fR(r)

)
= 1− 2

V

[
1−

(
1− r0

r

) r0+a+b
r0

(
1− r0 + a− b

2r

)−1
]
. (5.25)

The line element is transformed into

ds2 = −dT 2 + dR2 +R2 dΩ2
2 + V l[ l̄[ ,

l[ = dT + dR , l̄[ = dT + ω dR ,
(5.26)

which is reminiscent of KS. Note, however, that only in the Schwarzschild case (i.e.,

b = 0, ω = 1) do l and l̄ coincide, and we recover the standard KS form of Schwarschild.

Moreover, the metric does not even admit the DFT generalisation of the KS metric

[149], because l̄ is not null unless a = 0 or b = 0. A relaxation of the DFT KS form is
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therefore required. Some of the properties of the vectors still hold:

lµlµ = 0 , l̄µ∂µlν = 0 , l̄µ∂ν lµ = 0 , (5.27)

lµ l̄µ 6= 0 , lµ∂µlν = 0 , lµ∂ν lµ = 0 , (5.28)

where we have used the flat metric to contract indices. Finally, we can express it in

Cartesian coordinates,

ds2 = −dT 2 + dXi dXi + V l[ l̄[ ,

l[ = dT +
Xi

R
dXi , l̄[ = dT + ω

Xi

R
dXi .

(5.29)

Setting

ϕ = −V
(

1− r0

r

)− r0+a+b
2r0

(
1− r0 + a− b

2 r

)
, (5.30)

the metric can be written in the form

ds2 = −dT 2 + dXi dXi −
ϕ

1 + ϕ
2 (l · l̄)

l[ l̄[ , (5.31)

which obeys the KS-like ansatz (5.46) to be used in section 5.2.2. In this coordinate

system the following relations also hold

det g = −
(
V (1− ω)

2
− 1

)2

, (5.32)

ϕ = − V√
− det g

, (5.33)

ω = 1− 2 (V −1 + ϕ−1) . (5.34)

5.2.2 Double field theory and the relaxed Kerr-Schild ansatz

Double field theory is a closed string effective field theory in D spacetime dimensions

with manifest T-duality, where the latter is expressed by O(D,D) covariance in a

‘doubled spacetime’ where points are labelled as (xµ, x̃µ) [159, 244–249]. It provides

a unified geometric framework for the entire massless NS-NS sector, encoded in an

O(D,D) covariant manner in the DFT fields, which are the generalised metric HMN

and the DFT dilaton d.

Throughout this chapter, M,N, . . . = 1, . . . , 2D are O(D,D) vector indices.

The generalised metric is a symmetric rank-2 O(D,D) tensor satisfying the O(D,D)

constraint,

HMPJ PQHQN = JMN , (5.35)
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where JMN is the O(D,D) metric

JMN =

(
0 δµν

δµ
ν 0

)
, JMN =

(
0 δµ

ν

δµν 0

)
, (5.36)

which defines the inner product and raises and lowers the O(D,D) vector indices. One

can solve the O(D,D) constraint such that the generalised metric H and the DFT

dilaton d encode the usual string-frame massless NS-NS fields as follows:

HMN =

(
gµν −gµρBρν

Bµρg
ρν gµν −BµρgρσBσν

)
, e−2d =

√
−ge−2φ . (5.37)

In general, O(D,D) vectors unify a D-dimensional vector and form field pair into a

single object. For example, an arbitrary O(D,D) vector VM is parametrised in terms

of a D-dimensional vector vµ and a form field kµ as

VM =

(
vµ

kµ

)
, and VM = JMNVN =

(
kµ

vµ

)
. (5.38)

An important feature of DFT related to the double copy is the doubled local Lorentz

group, O(1, D − 1)L × O(1, D − 1)R, which is the maximally compact subgroup of

O(D,D) including the Lorentz group. The doubled local Lorentz group originates in

the left-right mode decomposition of the closed string, and shares the same origin as the

KLT relations [12] in string scattering amplitudes, which underlie the double copy. This

structure is transparent if we introduce a chiral and anti-chiral basis in the doubled

vector space. One may recast the O(D,D) constraint as HMPHPN = δM
N , and it

defines a pair of projection operators,

PM
N =

1

2

(
δM

N +HMN
)
, P̄M

N =
1

2

(
δM

N −HMN
)
. (5.39)

These project the doubled vector space into chiral and anti-chiral sectors which corre-

spond to the left- and right-moving sectors, respectively.

Motivated by the KS-like form of the JNW metric (5.29), we introduce an ansatz

for H and d in terms of two O(D,D) vectors, KM and K̄M , where K is null but K̄

does not have to be null in general,

KMK
M = 0 , K̄MK̄

M 6= 0 . (5.40)

Let us consider a flat background, g0µν = ηµν , Bµν = 0 and φ = constant, and denote
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the corresponding background DFT fields as H0 and d0, where

H0MN =

(
ηµν 0

0 ηµν

)
, d0 = constant . (5.41)

We associate to H0 a pair of background projection operators P0 and P̄0 via (5.39). As

we have described above, the chiralities are closely related to the underlying structure

of the double copy, hence we require definite chiralities on KM and K̄M for the manifest

left and right mode decomposition,

P0M
NKN = KM , P̄0M

NK̄N = K̄M . (5.42)

This implies that K and K̄ are orthogonal, KMK̄
M = 0. One may solve the above

chirality conditions explicitly using (5.41), which yields

KM =
1√
2

(
lµ

ηµν l
ν

)
, K̄M =

1√
2

(
l̄µ

−ηµν l̄ν

)
. (5.43)

Now we are ready to write down a KS-like ansatz for the generalised metric:

HMN = H0MN + κϕ
(
KMK̄N +KNK̄M

)
− κ2

2
ϕ2K̄2KMKN ,

d = d0 + κf ,

(5.44)

where κ is an expansion parameter. We refer to this form as the ‘relaxed KS ansatz’

because the null condition for the DFT KS ansatz of [149] is partially relaxed; the latter

is recovered when K̄ is a null vector. Though the null condition is relaxed, the new

ansatz satisfies the O(D,D) constraint (5.35) automatically without further truncation.

Substituting the parametrisation of K and K̄ in (5.43) into (5.40), we obtain conditions

on l and l̄:

lµl
µ = 0 , l̄µ l̄

µ 6= 0 , lµ l̄
µ 6= 0 , (5.45)

which are consistent with the JNW geometry as expressed in (5.29). Interestingly, the

feature of the partially relaxed null condition is analogous to previous studies such as the

‘extended’ KS ansatz [257] and the heterotic KS ansatz [250]. From the parametrisation

of H, we can easily read off the corresponding ansatz for the metric and Kalb-Ramond

field:
gµν = ηµν −

κϕ

1 + κϕ
2 (l · l̄)

l(µ l̄ν) ,

gµν = ηµν + κϕl(µ l̄ν) +
κ2ϕ2 l̄2

4
lµlν ,

Bµν =
κϕ

1 + κϕ
2 (l · l̄)

l[µ l̄ν] .

(5.46)
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It can easily be seen that the JNW solution fits this ansatz. The JNW metric was

written precisely in this form in (5.31); we kept κ 6= 1 here for clarity. As for the

Kalb-Ramond field, given the JNW expressions for ϕ, l and l̄, it is of the form B =

B(r) dR ∧ dT . Since r is a function of R only, Bµν is pure gauge and it can be set to

zero.

5.2.3 DFT equations of motion and the single copy

The field equations of DFT are given by the generalised curvatures, analogously to

general relativity.2 The generalised curvature scalar R and tensor RMN defined in

(D.10) are the equations of motion of the DFT dilaton and the generalised metric,

respectively,

R = 0 , Rµν = 0 , (5.47)

where Rµν is a pullback of RMN into the D-dimensional spacetime. Note that Rµν
is not symmetric nor antisymmetric: the symmetric and antisymmetric parts are the

equations of motion for the metric and the Kalb-Ramond field, respectively. These

reproduce the supergravity equations of motion for the massless NS-NS fields in the

string frame,

Rµν + 2∇µ∇νφ−
1

4
HµρσH

ρσ
ν = 0 ,

R+ 4�φ− 4∇µφ∇µφ−
1

12
HµνρH

µνσ = 0 , (5.48)

∇ρHρµν − 2Hρµν∇ρφ = 0 ,

which follow from the action (5.19).

Let us now discuss the field equations subject to the relaxed KS ansatz (5.44).

Recall that, in the KS ansatz, an additional constraint is required in order to linearise

the equations of motion, which in the case of general relativity is the geodesic condition

on the null vector field. Such a constraint is obtained by contracting the null vectors

with the free indices of the (generalised) curvature tensor. In the case of our relaxed

KS ansatz, however, it is very cumbersome to work with this constraint. Therefore, we

will assume a stronger constraint, which is satisfied in a class of solutions that includes

JNW. We impose

K̄M∂MKN = 0 , (5.49)

which reduces to the second equation of (5.27). Note that, while the analogous con-

dition also appeared in the KS ansatz of DFT [149], in our ansatz we allow for

KM∂MK̄N 6= 0. Given the null condition on l and the constraint (5.49), the gen-

2See appendix D for a concise review of the equations of motion in DFT.
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eralised curvature tensor reduces to

Rµν =
1

4
e2κf∂ρ

[
e−2κf

(
∂ρ
(
κϕlµ l̄ν

)
− ∂µ

(
κϕlρ l̄ν

)
− ∂ν

(
κϕlµ l̄ρ

)
− κ2ϕ2lµl

σ l̄[ν∂|σ| l̄ρ]

) ]
+ κ∂µ∂νf +

κ2

2

(
ϕlρ l̄ν∂µ∂ρf + ϕlµ l̄

ρ∂ν∂ρf
)
− κ2

8
ϕ2 l̄2∂µlρ∂ν l

ρ

+
κ2

4
∂ρ
(
ϕ2 l̄2l[µ∂|ν|lρ]

)
− κ2

8
ϕlµ l̄

σ∂ν∂ρ(ϕl
ρ l̄σ) +

κ3

4
ϕlρ l̄σ∂ν

(
ϕlµ l̄σ∂ρf

)
= 0 .

(5.50)

We now discuss how to extract the single copy from Rµν . By carrying out the same

procedure described in the conventional KS formalism, it can be shown that one obtains

the Maxwell equations from the gravity equations of motion. Suppose that the relaxed

KS geometry admits at least one Killing vector ξ. We also assume that the Killing

vector is constant in our choice of coordinates, and satisfies ξν∂νFµ1···µn = 0, where

Fµ1···µn is an arbitrary tensor field. We will be interested in the timelike Killing vector

ξ = ∂T for JNW. The single copy can be realised by contracting the Killing vector ξ

with one of the free indices of the field equations of the generalised metric, Rµν . We

further require that l, l̄ and ξ are normalised as ξ · l = ξ · l̄ = 1, which is directly the case

for JNW in (5.29). Such normalisation is always possible since the KS form is preserved

under the rescaling of l and l̄. Recall that Rµν is not symmetric nor antisymmetric,

thus there are two distinct equations:

ξνRµν =
1

4
e2f∂ρ

[
2∂[ρ(ϕ̃lµ]) + 4ϕ̃l[µ∂ρ]f −

1

2
e2f ϕ̃2lσlµ∂σ l̄ρ

) ]
+

1

2
e2f ϕ̃lρ∂ρ∂µf ,

ξµRµν =
1

4
e2f
[
∂ρ
(
2∂[ρ(ϕ̃l̄ν]) + 4ϕ̃l̄[ν∂ρ]f − e2f ϕ̃2lσ l̄[ν∂|σ| l̄ρ]

)
+ 2ϕ̃l̄σ∂σ∂νf

+
1

2
ϕ̃l̄σ
(
∂ρ(e

2f ϕ̃l̄σ)∂ν l
ρ − ∂ρ(∂ν(e2f ϕ̃l̄σ)lρ) + 2lρ∂ν(e2f ϕ̃l̄σ∂ρf)

)]
,

(5.51)

where we defined ϕ̃ = e−2fϕ and we set κ = 1 for simplicity.

It is not immediately obvious how to extract the single copy from (5.51) due to

the higher-order terms in κ, as opposed to the simpler case of the DFT KS ansatz.

However, the terms linear in κ in overlap with the analogous computation in the DFT

KS case. Thus one may guess that the higher-order terms would be extra contributions

over the KS single copy relation, where the two gauge fields are proportional to lµ and

l̄µ. Let us collect the higher-order terms, and express them with the help of a pair of

auxiliary vector fields Cµ and C̄µ, obeying

∂ρ∂[ρCµ] = −∂ρ
(1

4
e2f ϕ̃2lµl

σ∂σ l̄ρ − 2ϕ̃l[µ∂ρ]f
)

+ ϕ̃lρ∂ρ∂µf ,

∂ρ∂[ρC̄µ] = −∂ρ
(1

2
e2f ϕ̃2lσ l̄[ν∂|σ| l̄ρ] − 2ϕ̃l̄[ν∂ρ]f

)
+ ϕ̃l̄σ∂σ∂νf

+
1

4
ϕ̃l̄σ
(
∂ρ(e

2f ϕ̃l̄σ)∂ν l
ρ − ∂ρ

(
∂ν(e2f ϕ̃l̄σ)lρ

)
+ 2lρ∂ν(e2f ϕ̃l̄σ∂ρf)

)
.

(5.52)
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Notice that these definitions are possible because the currents on the right-hand side

are conserved, by virtue of the equations of motion, i.e., ∂µ∂ρ∂[ρCµ] = ∂µ∂ρ∂[ρC̄µ] =

0. Even though the equations look rather complicated to solve, the Killing direction

components can be easily integrated as

∂ρ
(
∂ρCξ +

1

2
e2f ϕ̃2lσ∂σ l̄ρ − 2ϕ̃∂ρf

)
= 0 ,

∂ρ
(
∂ρC̄ξ +

1

2
e2f ϕ̃2lσ∂σ l̄ρ − 2ϕ̃∂ρf

)
= 0 ,

(5.53)

where Cξ = ξµCµ and C̄ξ = ξµC̄µ, and we have used the normalisation, lξ = l̄ξ = 1.

This indicates that Cξ and C̄ξ should be identified; indeed, that will be required by the

uniqueness of the ‘zeroth’ copy to be discussed shortly. As for the other components

of C and C̄, we have to treat them case by case. We will discuss the JNW example in

the next subsection.

Making the use of the auxiliary fields, (5.51) reduces to the following compact form,

4e−2fξνRµν = ∂ρ
[
∂ρ(ϕ̃lµ + Cµ)− ∂µ(ϕ̃lρ + Cρ)

]
= 0 ,

4e−2fξµRµν = ∂ρ
[
∂ρ(ϕ̃l̄ν + C̄ν)− ∂ν(ϕ̃l̄ρ + C̄ρ)

]
= 0 .

(5.54)

This can be interpreted as a pair of Maxwell equations

∂µFµν = 0 , ∂µF̄µν = 0 , (5.55)

by identifying the gauge fields as the single copy

Aµ = ϕ̃ lµ + Cµ , Āµ = ϕ̃ l̄µ + C̄µ . (5.56)

Here, Fµν and F̄µν are the field strengths of the Aµ and Āµ respectively. This ensures

that solutions of (5.48) with the form of (5.46), subject to the constraint (5.49) and

the stationary condition, can be represented by a pair of Maxwell gauge fields.

Finally, we can consider also the ‘zeroth copy’. It is obtained in our formalism by

contracting the Killing vector into both free indices of Rµν , leading to a scalar equation

of motion. One may use the result of (5.54) to get a pair of d’Alembertian equations,

�(ϕ̃+ Cξ) = 0 , �(ϕ̃+ C̄ξ) = 0 . (5.57)

As we mentioned, Cξ and C̄ξ should be identified. The zeroth copy can therefore be

recognised as

Φ = ϕ̃+ Cξ = ϕ̃+ C̄ξ . (5.58)
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5.2.4 JNW and Coloumb

So far we have considered a general construction of the single copy for the relaxed

KS ansatz (5.46). We now apply the previous formalism to the JNW case and show

that the corresponding single copy is the Coulomb potential (i.e., both Aµ and Āµ are

Coulomb). As noted before, we need to determine the auxiliary vector fields Cµ and

C̄µ to spell out the single copy. Since the JNW geometry is static, with timelike Killing

vector ξ = ∂T , CT and C̄T can be solved straightforwardly from (5.53). If we substitute

all the necessary data, we get

∂rCT (r) = ∂rC̄T (r) = −e−2f
(ϕ2

V 2
∂rV + ∂rϕ+ 2e−2f∂rf

)
(5.59)

in the asymptotically decaying case. The field strengths associated to (5.56) satisfy

FiT = F̄iT = (a+ b)r−2
(

1− r0

r

)−r0+a−b
r0 li =

a+ b

R2
li =

(a+ b)

R3
Xi . (5.60)

These are nothing but the electric field for the Coulomb potential, and it turns out

that all other components of the field strengths vanish. In particular, we can easily

show that the spatial components of the static, spherically symmetric gauge fields Aµ

and Āµ are pure gauge. This is better seen in spherical coordinates, where the only

non-vanishing spatial component of l, l̄, C or C̄ is the radial one, and it only depends

on the radial coordinate, which is also the case for ϕ̃. Therefore, the relevant spatial

vector fields are all curl-free,

∂[i(ϕ̃lj]) = ∂[i(ϕ̃l̄j]) = ∂[iCj] = ∂[iC̄j] = 0 . (5.61)

Hence, Ai and Āi are pure gauge, and only AT and ĀT contribute to the field strength.

This shows that the single copy for the JNW solution is given by a point electric

charge as expected. The corresponding electric charge parameter is associated to the

linear sum of the mass and dilaton coupling in the string frame, a+b. As argued earlier,

the two parameters in gravity reduce to one via the single copy.

One interesting point is that the single copy exists and is the same whether the

gravity solution is a naked singularity (b 6= 0) or the Schwarzschild solution (b = 0).

This highlights the fact that the single copy does not reflect the causal structure of

the gravity solution. Some reflection indicates, however, that this is to be expected.

The single copy does not apply to the full metric, but only to the deviation from the

Minkowski metric. It is from the interplay between the Minkowski metric and the

deviation that the causal structure arises.

Finally, using (5.58), it is straightforward to consider the zeroth copy. As expected,
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the associated linearised bi-adjoint field for the JNW solution is a Coulombic potential,

Φ = ϕ̃+ CT =
a+ b

R
, (5.62)

which is the static, spherically symmetric solution that decays asymptotically.

Therefore, both the single and zeroth copies for the JNW solution coincide with

those of the Schwarzschild solution, up to irrelevant constant factors, as anticipated at

linear level in chapter 3. The standard KS procedure can only explore the region of

the parameter space where the dilaton vanishes. One remarkable feature of the DFT

approach is that it exhibits the double copy origin of Kerr-Schild-type maps of solutions

between gravity and gauge theory, by associating the pair of Kerr-Schild-type vectors

to left- and right-movers in closed string theory. Moreover, it shows that, when the

dilaton is turned on, the exact double copy is best expressed in the string frame, rather

than the Einstein frame. These features are reminders of the string theory origin of the

KLT relations and the double copy.



Chapter 6

Concluding remarks

The nature of the double copy is truly fascinating. It is the manifestation of the secrets

gravity stubbornly holds back from us. All the evidence in its favour, contrasted with

our inability to prove it, is an indication of the gaps that we might be missing something

about gravity. That on its own is a very good reason to carry on exploring the double

copy, but not the only one. In its relatively short life, the double copy has found

applications in many other fields, from state-of-the-art gravitational wave calculations

(e.g. [258]) to fluid dynamics [178,259]. The journey of this thesis has also shown how

the implications of the double copy span from the most fundamental interactions of

quantum field theory to black holes.

Classical from quantum

Let us summarise our results in more detail. We used the building block of the on-

shell approach to scattering amplitudes, the three-point amplitude, to study classical

solutions in electromagnetism and gravity. The three-point amplitudes studied cor-

respond to the emission of a messenger (photon or graviton) by a charged/massive

particle, and the classical solutions are precisely the solutions sourced by the massive

particle. In order for the three-point amplitude to be non-trivial, we worked with a

split-signature spacetime. The alternative would have been to consider complexified

momenta in Lorentzian signature, as often done in the scattering amplitudes litera-

ture, but we found the split-signature choice more straightforward, given that relevant

quantities like spinors are real. Moreover, split signature is interesting in its own right,

particularly regarding boundary conditions and the meaning of causality. We discussed

how our results are related via analytic continuation to Lorentzian signature.

Building on the KMOC formalism [44], we used the three-point amplitude to deter-

mine the coherent state generated by the massive particle, which is associated to the

split-signature versions of
√

Kerr-dyon and axion-dilaton Kerr-Taub-NUT solutions, for

electromagnetism and NS-NS gravity respectively.

131
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We described how to extract from that a classical field, namely via the expecta-

tion value of a quantum operator on the coherent state. As operators, we considered

the ‘curvatures’: the field strength in electromagnetism and the generalised spacetime

curvature in NS-NS gravity. These are gauge-invariant quantities (for gravity, in the

linearised approximation). We found that the vacuum expectation value of these cur-

vatures is an on-shell Fourier transform of the corresponding three-point amplitudes.

This is easier to verify when we express the curvatures in terms of spinors, namely the

Maxwell and Weyl spinors. As anticipated by previous work on the classical double

copy [90, 97, 99, 146, 173], we saw that magnetic charge in gauge theory indeed double

copies to NUT charge in gravity. Furthermore, our methods confirmed the three-point

amplitudes associated by more indirect arguments [90,146] to Taub-NUT and its spin-

ning generalisation, Kerr-Taub-NUT. Indeed a split-signature form of Kerr-Taub-NUT

and its scattering amplitude also appeared in [143,144].

The expressions we obtained for the Maxwell and Weyl spinors exhibit a Weyl-type

classical double copy in on-shell momentum space. Although many previous results

support these ideas, we have provided here the ultimate connection to the double copy

of scattering amplitudes. The Weyl double copy in on-shell momentum space is the

amplitudes double copy. The simplicity of the map, together with its neat connection

to the amplitudes double copy allowed us to clarify the role of the axion and dilaton

on the classical double copy.

The most basic example of a classical double copy relates a Coulomb charge to a

Schwarzschild black hole [97]. However, the literature also contains a different double

copy of Coulomb: namely the JNW solution [39,73]. The origin of this non-uniqueness

was discussed in [5], where a Kerr-Schild-type exact double copy interpretation of JNW

was also presented, and in [106], where an off-shell convolutional approach based on

the BRST formulation (including Fadeev-Popov ghosts) [74] was used. We were able

to understand the origin of the non-uniqueness using the framework introduced in

[1]. It arises directly from choices inherent in the standard double copy of scattering

amplitudes. At the level of amplitudes, it is always possible to define the gravitational

theory by declaring that its three-point amplitudes are either the double copy of two

same-helicity gluons (resulting in Einstein gravity) or the double copy of two same-

helicity gluons and two opposite-helicity gluons (resulting in NS-NS gravity). Making

the former choice, the double copy of Coulomb is indeed Schwarzschild. The latter

choice, by contrast, leads to the JNW solution. So we are free to choose the couplings

of the massive particle.

It is fascinating that the Kerr solution and its single copy,
√

Kerr, correspond to

particularly simple three-point amplitudes [88]. Clearly, this fact is related to the

Newman-Janis shift, which is an all-orders property of Kerr [145]. Turning on a mag-

netic charge in addition to the spin leads to a spinning dyonic solution which is, to date,



CHAPTER 6. CONCLUDING REMARKS 133

the most general known three-point amplitude in pure gauge theory. The double copy

of this amplitude in pure gravity is the Kerr-Taub-NUT solution [146]. However, it is

also possible to perform the double copy of these amplitudes in NS-NS gravity where,

as we have seen, the resulting class of solutions is of the type Kerr-Taub-NUT-dilaton-

axion. This generalises the previous discussion of the double copy from Coulomb to

the JNW solution to the more general three-point amplitudes.

We showed that our double copy prescription is formally equivalent to the convo-

lutional double copy [70, 75, 106], but with the advantage, from our perspective, of

being supported on on-shell momentum space, with a direct connection to scattering

amplitudes. It also leads to the previously known Weyl double copy in position space,

clarifying another apparent mystery in the classical double copy. For scattering am-

plitudes, the double copy is clearly a creature of momentum space: it is local in that

context. Yet the classical double copy is frequently presented in position space – the

question is then how does locality in position space somehow become locality in mo-

mentum space? In section 3.4, we showed that this locality arises non-trivially only

in specific cases which include the Kerr-Taub-NUT solution. Finally, the Kerr-Schild

nature of some of the solutions allowed us to promote the linearised expressions to exact

relations. We illustrated this point with the split signature equivalent of Schwarzschild.

Despite this progress, there is still much to be understood. The classical double copy

obviously applies to solutions which are not (yet) connected to scattering amplitudes.

An important example is the (A)dS-Schwarzschild metric, which is related by the Kerr-

Schild double copy to an electromagnetic solution with a point charge immersed in

a background of constant charge density [173]. Given that the classical double copy

connects to scattering amplitudes as well as configurations with a cosmological constant,

perhaps it can lead to some insight into the amplitudes double copy in the presence of

a cosmological constant.

Another topic that deserves more research is the characterisation of spacetimes that

admit a local, position-space double copy. Although we explored the reasons behind

locality in the Kerr-Taub-NUT family, we know that more solutions exhibit local maps.

That being said, it is not realistic to expect a local map that works for any solution.

We argued, for example, that the JNW metric does not exhibit a local double copy

map. A more realistic expectation would be a momentum space double copy that

works for all solutions that can be described by amplitudes. This map does not need

to be one-to-one. From our discussion, it is simple to see that different combinations

of single copy amplitudes can lead to the same gravity amplitude. Still, finding a

general rule to achieve this would mean having a direct link between classical and

quantum maps, and unifying all the different prescriptions present in the literature.

It could also help understand which of the many classical maps do not agree with

the amplitudes double copy. There are known examples of maps between classical
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solutions in electromagnetism and gravity that disagree with the amplitudes double

copy [179,260].

There are several obvious and exciting avenues for future research. The most obvious

one is the consideration of self-interactions in gravity, i.e. going beyond linear order,

using the on-shell formalism of the coherent state. This will be particularly illuminating

in the cases of non-vanishing axion and dilaton, where the Kerr-Schild linearisation of

the equations of motion does not apply. It will be interesting to explore this result

better in position space, without resorting to Kerr-Schild coordinates beyond linearised

order, to understand what the Kerr-Schild condition means from the point of view of

amplitudes.

From our work, it would seem like the existence of an exact classical double copy

is tightly linked to Kerr-Schild metrics. However, as we saw in chapter 4, type N

solutions also exhibit exact classical double copy structures. This might indicate that

the Kerr-Schild nature of the solutions obtained from amplitudes is a consequence of

the point-particle source and not a necessary feature for the exact classical double copy.

Perhaps the most interesting avenue would be to extend our results beyond static point

particles. There are related KMOC formulations in the literature linking coherent

states to radiation fields [67]. Obtaining amplitude representations of the type N Weyl

double copy would provide a novel understanding of the double copy beyond linearised

level.

Weyl double copy

The Weyl double copy was first introduced [99] as a procedure to decompose the Weyl

spinors of vacuum Type D spacetimes into Maxwell spinors. This map is completely

on-shell, which means that the resulting Maxwell spinors automatically satisfy their

equations of motion. We confirmed that the Weyl map obtained from amplitudes

coincides with the standard Weyl double copy. This was done by expressing the Weyl

double copy directly in terms of tensors. The tensorial map also provided an intuitive

way to study how the amplitude transformations of the first chapter translate into

the exact language of the classical double copy. We showed how the Ehlers group

transforms the mass parameter and NUT charges. This induced an electromagnetic

duality transformation in the single copy, indicating the θ̄ parameter introduced in the

amplitude double copy map generates a linearised Ehlers rotation.

Our argument was limited to a single example, which was not able to explore all

the freedom of the Ehlers group. Therefore, it would be interesting to apply the trans-

formation to other solutions to obtain more general results. Very recently, another

transformation between mass and NUT parameter was proposed [199]. This transfor-

mation does not require the existence of a Killing vector, and it is isomorphic to U(1),

making it a candidate for the double copy of electromagnetic duality rotations in less
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symmetric spacetimes.

Another of our goals was to generalise the Weyl double copy beyond type D solutions.

The authors of [99] already hinted at this by considering pp-waves. We showed that

other vacuum type N solutions also exhibit double copy relations. For any non-twisting

solution, both the Maxwell field and the scalar satisfy their equations of motion on flat

backgrounds, establishing a traditional double copy relation. We performed explicit

checks for Kundt and Robinson-Trautman solutions. The main difference with respect

to type D metrics is that there is a non-uniqueness in the splitting between the scalar

field and the Maxwell spinor. We argued that this was a consequence of the functional

degrees of freedom in type N solutions, as opposed to the parametric degrees of freedom

of type D solutions. Type N solutions with twist are more complicated. The lack of an

appropriate flat space limit implies that the gauge field does not satisfy flat Maxwell

equations, hindering the standard double copy interpretation. However, the map is still

valid if one keeps the fields on the curved background. At linearised level, these fields

live on Minkowski space, but the map is no longer exact.

We have also taken steps toward providing an asymptotic understanding of the

classical double copy. We have shown how the Weyl double copy can be formulated

asymptotically in the neighbourhood of null infinity, where it applies to a wider class

of spacetimes, including algebraically general ones [2]. Our study of the asymptotic

symmetries could help to make connections with recent advances in celestial (i.e. flat-

space) holography. We showed how the Weyl double copy of the C-metric provides a

link between superrotations and large gauge transformations. This extends the known

relations between them beyond the self-dual sector [203].

The next natural step would be to understand this formulation at sub-leading orders,

i.e. moving from asymptotic infinity into the bulk. This may assist us in generalising the

Weyl double copy beyond algebraically special solutions in an appropriate expansion.

It would also be interesting to understand how our formulation fits in with the

story of conformally primary metrics on the celestial sphere and their double copy

interpretation [206], where the C-metric still provides a puzzling example.

Kerr-Schild double copy

The last chapter was devoted to the Kerr-Schild double copy. We showed that the most

general double copy of the Coulomb solution is the JNW solution, which includes a mass

parameter and a dilaton parameter. This is consistent with previous perturbative works

[5, 39, 73, 106]. However, we provide exact evidence, extending the double field theory

Kerr-Schild ansatz of [149]. One remarkable feature of our approach is that it exhibits

the double copy origin of Kerr-Schild-type maps of solutions between gravity and gauge

theory, by associating the pair of Kerr-Schild-type vectors to left and right movers in

closed string theory.
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Our method was only applied to JNW, a special case of the more general linearised

solution obtained from amplitudes in chapter 3. An extension of this analysis would

allow us to study the double copy interpretation of the most general known static,

spherically symmetric and asymptotically flat solution to NS-NS gravity [169]. It is

more general than the JNW solution, in that it admits a B-field whose field strength is

spherically symmetric. The ‘single copy’ is not, however, the Coulomb solution, since

two distinct gauge-theory solutions are required to introduce the antisymmetric B-field

via the double copy.

On a similar note, it might be possible to use this formalism to obtain a rotating

JNW solution, which is currently unknown. The linearised version of the solution was

obtained in chapter 3 already, and it could be used in conjunction with the generalised

DFT ansatz to generate the new solution.

Another interesting point is the connection between the double field theory and

the double copy. In particular, double field theory could provide an interpretation

for the generalised connection of section 3.1 in terms of DFT generalised curvatures.

The absence of an analogue of the Weyl tensor in double field theory makes this point

particularly intriguing.

Final words

During the last four years, we have witnessed how the classical double copy became a

dominant field attracting interest from the scattering amplitudes and general relativity

communities. As a consequence, it has been developed at an incredible pace, giving

birth to a growing number of relations and prescriptions. This work has tried to blur the

edges between some of them. Although the proliferation of so many different schemes

might be at times dizzying, it might be regarded as evidence for a more general structure

that is yet to be discovered. Hopefully, a complete description of the kinematic algebra

will be achieved, getting a handle on the inner workings of the duality. This would also

help to understand which theories admit a double copy description and which do not.

On the classical side, it would be desirable to understand how to relate more classical

solutions to amplitudes, in a way that allows us to apply the double copy, also beyond

linear level. Even if a one-to-one local map is not a realistic expectation, a more general

position space map would already help understand the duality better and learn more

about gravity.



Appendix A

Split signature

A.1 Spinor conventions in split signature

In coordinates (t1, t2, x1, x2), we work with a metric of signature (+1,+1,−1,−1). Since

this signature may be unfamiliar, we gather here a list of spinor-helicity conventions

appropriate for working in this signature.

The Clifford algebra is

σµσ̃ν + σν σ̃µ = ηµν1 . (A.1)

In our signature, it is possible to choose a real basis of σµ matrices. Our choice is

σµ =
1√
2

(1, iσy, σz, σx) (A.2)

where σx,y,z are the usual Pauli matrices. The σ̃µ are obtained by raising spinor indices,

as usual:

σ̃µα̇α = εαβεα̇β̇σµ
ββ̇
. (A.3)

The conventions for ε and raising/lowering indices are kept the same as in Lorentzian

signature, (1.49), (1.50) and (1.52).

To pass between momenta k and spinors λ, λ̃, we define

k · σαα̇ = λαλ̃α̇ . (A.4)

In analogy with the spinor-helicity formalism, we use the symbols |k〉, 〈k|, [k|, and |k]

to indicate the spinors with the indices in various positions as follows:

|k〉 ↔ λα , 〈k| ↔ λα , |k]↔ λ̃α̇ , [k| ↔ λ̃α̇ . (A.5)

As usual, we choose a basis of polarisation vectors of definite helicity η = ±. Unlike

the Minkowski case, these vectors can be chosen to be real, and we make such a choice.
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Given a momentum k and gauge choice q satisfying k · q 6= 0, k2 = 0 = q2, we define

εµ− = −〈k|σ
µ|q]

[kq]
, εµ+ =

[k|σ̃µ|q〉
〈kq〉

. (A.6)

These polarisation vectors have the properties:

(εµh(k))∗ = εµh(k) ,

ε2
±(k) = 0 ,

ε+(k) · ε−(k) = −1 ,

(A.7)

assuming that both k and q are real.

A plane wave with negative polarisation has a self-dual field strength in our conven-

tions:

σµν k
[µε

ν]
− = − 1√

2
|k〉〈k| ,

σ̃µν k
[µε

ν]
− = 0 .

(A.8)

Meanwhile, a positive helicity plane wave has anti-self dual field strength given by

σµν k
[µε

ν]
+ = 0 ,

σ̃µν k
[µε

ν]
+ =

1√
2
|k][k| .

(A.9)

A.2 The retarded Green’s function in 1 + 2 dimensions

Because of the translation symmetry in the t2 direction, much of our discussion really

takes place in a three-dimensional space with signature (+,−,−). In this appendix, we

compute the retarded Green’s function (for the wave operator) in this space. We use

the familiar notation x = (t, ~x) for points in this spacetime, and write wave vectors as

k = (E,~k).

The Green’s function is defined to satisfy

∂2Gret(x) = δ(3)(x) , (A.10)

with the boundary condition that

Gret(x) = 0 , t < 0 . (A.11)

It is easy to express the Green’s function in Fourier space as

Gret(x) = −
∫

d̂3k e−ik·x
1

k2
ret

. (A.12)

The instruction ‘ret’ indicates that we must define the integral to enforce the retarded
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boundary condition (A.11). As usual, we interpret the integral over the first component

E of kµ as a contour integral, and (as in the main text) we impose the boundary

condition by displacing the poles below the real E axis. It is easy to compute the value

of the E integral using the residue theorem, with the result that

Gret(x) =
−i
8π2

Θ(t)

∫
d2k ei

~k·~x e
i|~k|t − e−i|~k|t

|~k|

=
−i
8π2

Θ(t)

∫ ∞
0

dk

∫ 2π

0
dθ eikr cos θ

(
eikt − e−ikt

)
,

(A.13)

where, in the second equality, we defined r = |~x| and introduced polar coordinates for

the ~k integration.

Our integral is still not completely well-defined. Notice that if we perform the k

integral in equation (A.13) first, we encounter oscillatory factors which do not converge.

The solution is again familiar: we introduce ikε convergence factors in the exponents,

adjusting the signs to make the integrals well-defined. The result is

Gret(x) =
−i
8π2

Θ(t)

∫ ∞
0

dk

∫ 2π

0
dθ eikr cos θ

(
eik(t+iε) − e−ik(t−iε)

)
. (A.14)

Recognising the definition of the Bessel function, it is easy to perform the θ integra-

tion next, yielding

Gret(x) =
−i
4π

Θ(t)

∫ ∞
0

dk J0(kr)
(
eik(t+iε) − e−ik(t−iε)

)
. (A.15)

We can perform the final integral using the result∫ ∞
0

duJ0(u)eiuv =
1√

1− v2
, (A.16)

so that

Gret(x) =
i

4π
Θ(t)

(
1√

r2 − t2 + iε
− 1√

r2 − t2 − iε

)
. (A.17)

At this point, the iε factors come into their own. Evidently, the Green’s function

vanishes when we can ignore the ε’s: this occurs when r2 − t2 is positive. But when

r2− t2 < 0, then the ε’s control which side of the branch cut in the square root function
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we must choose. We have

Gret(x) =
i

4π
Θ(t)Θ(t2 − r2)

(
1√

−|t2 − r2|+ iε
− 1√

−|t2 − r2| − iε

)

=
i

4π
Θ(t)Θ(t2 − r2)

(
1

i
√
|t2 − r2|

− 1

(−i)
√
|t2 − r2|

)
=

1

2π
Θ(t)Θ(t2 − r2)

1√
t2 − r2

.

(A.18)

As discussed in more detail in section 2.2, this Green’s function is a Lorentzian version

of the familiar Euclidean Green’s function ∼ 1/r. The theta functions are a result of

our boundary conditions.

A.3 Analytic continuation of propagators

All the classical fields we have obtained are written as integrals of three-point ampli-

tudes over on-shell momentum space. Therefore, these integrals have no support in

Lorentzian signature for real kinematics. We have avoided this problem by using split

signature. Alternatively, we could have proceeded in Lorentzian signature provided

that we integrate over complex momenta. To illustrate these two alternatives, consider

the scalar potential introduced in (2.40). It can be shown that the scalar potential is

related to the retarded and advanced Green’s functions,

S(x) = Gret(x)−Gadv(x) , (A.19)

where

Gret(x) = −
∫

d̂4k
e−i k·xδ̂(k · u)

(k1 + iε)2 − k2
=

Θ(t1)Θ(t21 − r2)

2π
√
t21 − r2

,

Gadv(x) = −
∫

d̂4k
e−i k·xδ̂(k · u)

(k1 − iε)2 − k2
=

Θ(−t1)Θ(t21 − r2)

2π
√
t21 − r2

.

(A.20)

The existence of different Green’s functions is linked to the freedom to choose boundary

conditions. Our choice is that the field should vanish for t1 < 0, which selects the

retarded propagator. Hence, under these boundary conditions, we can write

S(x) = 0 for t1 < 0 , S(x) = Gret(x) for t1 > 0 . (A.21)

In Lorentzian signature, the time coordinate t1 is replaced by another space coordi-

nate, z, dual to k1. Now, all three coordinates orthogonal to t2 have the same signature

and no iε prescription is needed. Consequently, the only Green’s function is

G(x) = −
∫

d̂4k δ̂(k · u)
e−ik·x

k2
=

1

4π
√
r2 + z2

. (A.22)



APPENDIX A. SPLIT SIGNATURE 141

Figure A.1: Analytical continuation of the split signature contour to Minkowski signature.

Figure A.2: Contour of the different Green’s functions. From left to right: retarded, advanced,
Feynman and the last one corresponds to Lorentzian signature.

Analogously to the split signature case, we can recast this Green’s function into an

integral of the form (2.40). However, the Lorentzian delta function δ̂(k2
1 + k2) has no

roots on the real line of k1. As a result, the integration contour on k1 must be deformed

in the complex plane. The appropriate contour is

S(x) = −Θ(z) Re i

∫ 0

−i∞
d̂k1

∫
d̂2k δ̂(k2

1 + k2)e−ik·x

−Θ(−z) Re i

∫ i∞

0
d̂k1

∫
d̂2k δ̂(k2

1 + k2)e−ik·x .

(A.23)

The prescription to analytically continue the retarded term in (2.40) to Lorentzian

signature is summarised in figure A.1. The splitting or doubling of the contour might

seem surprising. Ultimately, it is a reminder that the correct split signature propagator

to analytically continue to Lorentzian signature is the Feynman propagator,

GF = −
∫

d̂4k
e−i k·x δ̂(k · u)

k2
1 − k2 + iε

, (A.24)

which is time-symmetric. This is shown graphically in figure A.2, where only the

Feynman propagator contour can be deformed into the Lorentzian contour without

crossing the poles. In position space, the correct analytic continuation of the scalar

potential is 1

Θ(t1)Θ(t21 − r2)

2π
√
t21 − r2

→ 1

4π
√
r2 + z2

. (A.25)

1This statement is explained more extensively in section 5 of [3].
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A.4 Electromagnetic duality

Another difference in Lorentzian and split signature appears in the electromagnetic

duality. In (1,3) signature, we defined the self-dual and anti-self-dual electromagnetic

tensors as

F+
µν =

1

2
(Fµν − i ?Fµν) ,

F−µν =
1

2
(Fµν + i ?Fµν) ,

(A.26)

such that ?F±µν = ±iF±µν . The electromagnetic stress-energy tensor can be expressed as

Tµ
ν = F+

µρ F
−ρν + F−µρ F

+ρν . (A.27)

Under electromagnetic duality with parameter θ,

Fµν → cos θ Fµν + sin θ ?Fµν ,

?Fµν → cos θ ?Fµν − sin θ Fµν .
(A.28)

The self-dual and anti-self-dual tensors pick up a phase, F±µν → e±iθF±µν , implying that

the stress-energy tensor is preserved.

In split signature, however, the self-dual and anti-self-dual field strength tensors are

F+
µν =

1

2
(Fµν + ?Fµν) ,

F−µν =
1

2
(Fµν − ?Fµν) ,

(A.29)

such that ?F±µν = ±F±µν . The stress-energy tensor is still (A.27). On this occasion, to

keep it invariant we need to have

Fµν → cosh θ Fµν + sinh θ ?Fµν ,

?Fµν → cosh θ ?Fµν + sinh θ Fµν ,
(A.30)

such that F±µν → e±θF±µν . This difference in duality transformations (A.28) and (A.30)

can be interpreted as θ → −iθ under analytic continuation.



Appendix B

2-Spinors in Riemann-Cartan

geometries

In this appendix, we will study the Riemann-Cartan objects defined in section 3.1 under

the light of the 2-spinor formalism. The generalisation of spinors to spacetimes with

torsion was also addressed in [124,165].

The procedure to define the spinor structure does not differ from the Riemannian

case. Tensors are mapped to spinors using the Pauli matrices (also called Infeld-van der

Waerden symbols) σµ
αα̇ and σ̃ α̇α

µ . The metric on spinor space is the anti-symmetric

two by two matrix εαβ (and εα̇β̇). The conventions for raising and lowering spinors are

ξα = εαβξβ , ξα = ξβεβα , (B.1)

εαγεγβ = εαβ = δαβ , εγαεγβ = εβ
α = −δαβ . (B.2)

Similar expressions hold for εα̇β̇ . For conciseness, the σ-matrices will be used implicitly

every time indices are translated from the spacetime tangent bundle to the spinor

bundles. In this way, we write

Kµνρ → Kαα̇ββ̇γγ̇ . (B.3)

In going to spinor space, we lengthen the list of indices, but we gain extra simplification

power. This is because tensor symmetries imply that the spinor counterparts must

decompose into lower-rank symmetric spinors and epsilon matrices. Moreover, since

every pair of indices is the sum of their symmetrisation plus their antisymmetrisation,

any spinor can be expressed as a sum of totally symmetric spinors combined with

epsilon matrices. The most famous example is the reduction of the Riemann spinor to

143



APPENDIX B. 2-SPINORS IN RIEMANN-CARTAN GEOMETRIES 144

its irreducible components

Rαα̇ββ̇γγ̇δδ̇ = Ψαβγδεα̇β̇εγ̇δ̇ + Ψ̃α̇β̇γ̇δ̇εαβεγδ

+ Φαβγ̇δ̇εα̇β̇εγδ + Φ̃α̇β̇γδεαβεγ̇δ̇

+ 2Λ (εαγ εβδ εα̇γ̇ εβ̇δ̇ − εαδ εβγ εα̇δ̇ εβ̇γ̇) .

(B.4)

The symmetry under the exchange of pairs of indices and the first Bianchi identity

impose Φ̃α̇β̇γδ = Φγδα̇β̇ and Λ̃ = Λ respectively.

However, this result does not hold for Riemann-Cartan manifolds. One of our goals

is to see explicitly how the above expression changes in the presence of contorsion. As

a preliminary step, we have to study the contorsion itself from the point of view of

spinors.

B.1 Contorsion spinors

The natural first step for decomposing the contorsion spinor is to exploit the antisym-

metry of Kµνρ in the first and third indices,

Kαα̇ββ̇γγ̇ = Θαβγβ̇εα̇γ̇ + Θ̃α̇β̇γ̇βεαγ , (B.5)

where Θαβγβ̇ = Θ(α|β|γ)β̇ . The resulting spinor is still not totally symmetric, implying

that it can be separated into two irreducible parts

Θαβγβ̇ = Ξγβ̇ εαβ + Ξαβ̇ εγβ + Ωαβγβ̇ , (B.6)

where Ωαβγβ̇ = Ω(αβγ)β̇ . The spinors Ξαβ̇ and Ωαβγβ̇ constitute the irreducible spinor

decomposition of the contorsion.

Now that we have pinned down the spinor degrees of freedom of the contorsion, we

can map them to the tensor degrees of freedom. These tensor degrees of freedom are

arranged into three components: a completely antisymmetric tensor K̆µνρ, a trace K̄µ

and a traceless tensor K̂µνρ

K̆µνρ = K[µνρ] , (B.7a)

K̄µ = Kν
νµ , (B.7b)

K̂µνρ =
2

3
(K(µν)ρ +Kµ(νρ))−

1

3
gµν K

σ
σρ +

1

3
gνρK

σ
σµ . (B.7c)

For completeness, the inverse relation is

Kµνρ = K̆µνρ + K̂µνρ +
1

3
gµν K̄ρ −

1

3
gνρ K̄µ . (B.8)



APPENDIX B. 2-SPINORS IN RIEMANN-CARTAN GEOMETRIES 145

Tensor components Spinor components d.o.f

Antisymmetric K̆µνρ Ξαα̇ − Ξ̃α̇α 4

Trace K̄µ Ξαα̇ + Ξ̃α̇α 4

Traceless K̂µνρ Ωαβγα̇ , Ω̃α̇β̇γ̇α 16

Table B.1: d.o.f in the different components of the contorsion.

Upon applying the sigma matrices to the right hand side of (B.7), we obtain1

K̆µνρ → (εαγεβζεα̇ζ̇ εβ̇· − εαζεβγεα̇γ̇εβ̇ζ̇)(Ξ
ζζ̇ − Ξ̃ζ̇ζ)

= −i εαβγζα̇β̇γ̇ζ̇ (Ξζζ̇ − Ξ̃ζ̇ζ)
, (B.9a)

K̄µ → 3(Ξαα̇ + Ξ̃α̇α) , (B.9b)

K̂µνρ → εα̇γ̇ Ωαβγβ̇ + εαγ Ω̃α̇β̇γ̇β . (B.9c)

The factor of i in (B.9a) appears in Lorentzian signature only. The rest of this section

is signature agnostic. Table B.1 summarises the share of degrees of freedom among the

different tensor and spinor components. Under the map (3.7), Ωαβγγ̇ = Ω̃α̇β̇γ̇β = 0,

Ξαα̇ + Ξ̃α̇α is related to ∂µφ and Ξαα̇ − Ξ̃α̇α to ∂µσ.

B.2 Riemann spinors

A similar process can be followed to decompose the spinor equivalent of Rµνρσ. First, we

will exhaust the – now smaller – symmetry group of the tensor to identify its irreducible

spinor components. Then, employing (3.6), we will relate the newly found spinors to

the contorsion spinors and the usual curvature spinors of Rµνρσ.

We begin the spinoral reduction of the generalised Riemann tensor by implementing

its only symmetries: the antisymmetry of both pairs of indices

Rαα̇ββ̇γγ̇δδ̇ = Xαβγδεα̇β̇εγ̇δ̇ + X̃α̇β̇γ̇δ̇εαβεγδ

+ Φαβγ̇δ̇εα̇β̇εγδ + Φ̃α̇β̇γδεαβεγ̇δ̇ .
(B.10)

The curvature spinors of R are printed in bold typeface in order to distinguish them

from those of R. Recall that Rµνρσ 6= Rρσµν . The lack of this symmetry implies that

Xαβγδ 6= Xγδαβ and Φαβγ̇δ̇ 6= Φ̃γ̇δ̇αβ in general. The spinor Xαβγδ is not completely

symmetric and must be further reduced

Xαβγδ = Ψαβγδ − 2
(
Σα(γεδ)β + Σβ(γεδ)α

)
+ Λ(εαγεβδ + εαδεβγ) , (B.11)

1The identity εα[βεγδ] = 0 is needed to simplify the result of the calculation.
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Spinor component Rµνρσ Rµνρσ

Ψ, Ψ̃ 2× 5 2× 5

Σ, Σ̃ 2× 4 0

Λ, Λ̃ 2× 1 1

Φ, Φ̃ 2× 9 9

Total 38 20

Table B.2: d.o.f counting for the curvature spinnors.

where Ψαβγδ and Σαβ are completely symmetric. Putting tildes and dots yields the

analogous expression for X̃α̇β̇γ̇δ̇. It might be worth remarking that Λ̃ 6= Λ, because

Rµ[νρσ] 6= 0. All the remaining spinors are completely symmetric and hence irreducible.

Table B.2 shows how the degrees of freedom encoded in the irreducible spinors add up

to 36, the number of independent (real) components of Rµνρσ [165]. These degrees of

freedom also include the Ricci tensor and the Ricci scalar, which can be obtained from

the same spinor components

Rµρν
ρ → −Φαβα̇β̇ − Φ̃α̇β̇αβ + 4(Σαβεα̇β̇ + Σ̃α̇β̇εαδ) + 3(Λ + Λ̃)εαβεα̇β̇ (B.12)

Rµν
µν = 12(Λ + Λ̃) . (B.13)

The inverse spinor identities

Φαβγ̇δ̇ =
1

4
Rαα̇β

α̇
γγ̇
γ
δ̇ , (B.14)

Xαβγδ =
1

4
Rαα̇β

α̇
γγ̇δ

γ̇ , (B.15)

Ψαβγδ = X(αβγδ) , (B.16)

Σαβ =
1

4
X(α|γ|β)

γ , (B.17)

Λ =
1

6
Xαβ

αβ , (B.18)

are better suited expressions for computing the spinors of a given solution.

So far, we have identified the irreducible parts that make up the contorsion and the

Riemann tensor. However, the Riemann tensor and the contorsion are not independent.

Their relation is made explicit in equation (3.6). Hence, the bold curvature spinors must

be functions of the contorsion spinors and the usual curvature spinors. The procedure

to establish these relations is straightforward. First, the spinor equivalent of the right-

hand side of (3.6) must be obtained. Then, applying (B.14)–(B.18) yields the desired
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expressions:

Φαβγ̇δ̇ = Φαβγ̇δ̇ +
1

4
∇(α|α̇Θ̃γ̇

α̇
δ̇|β) −

1

4
Θ̃γ̇

α̇ε̇
(α| Θ̃δ̇α̇ε̇|β)

= Φαβγ̇δ̇ +∇(α|α̇Ω̃γ̇
α̇
δ̇|β) +∇α(γ̇Ξ̃δ̇)β +∇β(γ̇Ξ̃δ̇)α

− 4 Ξ̃γ̇(α|Ξ̃δ̇|β) − 2 Ξ̃α̇(α|Ω̃γ̇δ̇α̇|β) − Ω̃γ̇
α̇ε̇

(α|Ω̃δ̇α̇ε̇|β) ,
(B.19)

Ψαβγδ = Ψαβγδ +∇α̇(αΘβγδ)
α̇ −Θ(αβ

εα̇Θγδ)εα̇

= Ψαβγδ +∇α̇(αΩβγδ)
α̇ + 2 Ξ(α

α̇ Ωβγδ)α̇ − Ω(αβ
εα̇ Ωγδ)εα̇ (B.20)

Σαβ = −1

2
∇α̇(αΞβ)

α̇ +
1

8
∇γα̇ Ωαβ

γα̇ +
3

4
Ξ γα̇ Ωαβγα̇ , (B.21)

Λ = Λ +
1

6
∇βα̇Θα

α
βα̇ +

1

12
Θαβγα̇ Θαβγα̇ +

1

12
Θα

α
βα̇ Θβ

ε
εα̇

= Λ− 1

2
∇αα̇Ξαα̇ − Ξαα̇ Ξαα̇ +

1

12
Ωαβγα̇ Ωαβγα̇ . (B.22)



Appendix C

C-metric in Bondi coordinates

In this appendix, we shall derive the Bondi form of the C-metric. There exists a variety

of papers addressing the radiative properties of the C-metric in the literature. An early

attempt to study the C-metric using the Bondi method was carried out by Bičák [261],

who gave an expression for the Bondi news (see also [262–264]). Other studies of

the asymptotic properties of the C-metric include [223, 265–268]. Here, we provide a

systematic procedure for deriving Bondi coordinates for the C-metric to any desired

order in a 1/r expansion.

The most common form of the C-metric is

ds2 =
1

α2(x+ y)2

[
−F (y)dt2 +

dy2

F (y)
+

dx2

G(x)
+G(x)dφ2

]
, (C.1)

where

G(x) = 1− x2 − 2mαx3 , F (y) = −G(−y) . (C.2)

Here, 0 < 2αm < 1, y ∈ (−x,∞) and x ∈ (x2, x3), with x2 and x3 the largest two

roots of G(x). The periodicity of the coordinate φ determines the location of the conical

singularity. The coordinate domain φ ∈ (0, 2π κ) is equivalent to setting φ ∈ (0, 2π) and

replacing dφ → κ dφ in the metric. For simplicity, we will set κ = 1 in this appendix,

but we will reintroduce it in the main text.

An alternative form of the C-metric, given by Hong and Teo [227], has the same

metric (C.1) but with a different form for the functions F (y) and G(x) with a simplified

root structure:

G(x) = (1− x2)(1 + 2mαx) , F (y) = −G(−y) , (C.3)

where y ∈ (−x,∞) and x ∈ (−1, 1), G(x) > 0. This patch covers both the static and

asymptotic regions, which is given by the limit x→ −y [223].

In addition, the charged C-metric solution is given by same metric (C.1), but now
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with

G(x) = (1− x2)(1 + r+ αx)(1 + r− αx) , F (y) = −G(−y) , (C.4)

where r± = m ±
√
m2 − q2 and 0 < r−α < r+α < 1. The coordinate ranges are the

same as those of the uncharged Hong-Teo coordinate system.

Given the fact that the form of the metric is the same in both coordinate systems,

one can derive a Bondi form from both coordinate systems in one go; this is what we

now proceed to do. We begin by relabelling x as x̂ and defining coordinates Ω and w

by

Ω =
1

α(x̂+ y)
, w = t+

∫
dy/F (y) . (C.5)

The metric now takes the form

ds2 = Ω2

[
−F (y)dw2 − 2

αΩ2
dwdΩ− 2dwdx̂+

dx̂2

G(x̂)
+G(x̂)dφ2

]
, (C.6)

with the understanding that y is given in terms of x̂ and Ω by

y = −x̂+
1

αΩ
. (C.7)

Now, replacing x̂ by α, with

dx̂

G(x̂)
= dw − dα

sinα
(C.8)

gives

ds2 = −Ω2 [F (y) +G(x̂)] dw2 − 2dw dΩ

α
+

Ω2G(x̂)

sin2 α
(dα2 + sin2 α dφ2) . (C.9)

To summarise, we have transformed the C-metric into coordinates given by (w,Ω, α, φ)

with an auxiliary coordinate x̂ given implicitly in terms of the other coordinates via

equation (C.8).

We can now proceed perturbatively, order by order in an inverse distance expansion,

to put the metric into the Bondi form with coordinates (u, r, θ, φ). However, before we

do this, it will prove useful to define a new auxiliary coordinate x implicitly in terms

of the new coordinates u and θ by

u =
Gj(x) sin θ

α
, (C.10)

where

Gj(x) ≡
∫ x dx′

G(x′)3/2
. (C.11)

The coordinate transformation will define the old coordinates in terms of the new
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coordinates, i.e. we have

w = w(u, r, θ), Ω = Ω(u, r, θ), α = α(u, r, θ) (C.12)

as well as a relation between the old auxiliary coordinate x̂ and the new coordinates

x̂ = x+ T (r, x, θ) . (C.13)

Writing these relations in terms of 1/r expansions

Ω = ḡ1(x, θ) r + g0(x, θ) +
g1(x, θ)

r
+
g2(x, θ)

r2
+ · · · ,

α = θ +
h̄1(x, θ)

r
+
h0(x, θ)

r2
+
h1(x, θ)

r3
+ · · ·

w = f̄1(x, θ) +
f0(x, θ)

r
+
f1(x, θ)

r2
+
f2(x, θ)

r3
+ · · ·

T =
k0(x, θ)

r
+
k2(x, θ)

r2
+
k3(x, θ)

r3
+ · · · , (C.14)

we proceed in a systematic manner, requiring that the metric expressed in terms of

the new coordinates (u, r, θ, φ) have the Bondi form (4.106) and satisfying the fall-offs

(4.107) as well as the gauge condition (4.108). Note that in addition, we have the

constraint that the old auxiliary coordinate x̂ must satisfy equation (C.8).

We have chosen to define x so that it is equal to x̂ up to a perturbative correction

T = O(1/r), as can be seen from eqns (C.13) and (C.14). This means that G(x̂) and

G(y) can simply be written in terms of x using a Taylor expansion. In particular,

G(x̂) = G(x) + TG′(x) +
1

2
T 2G′′(x) +

1

6
T 3G(3)(x) +

1

24
T 4G(4)(x), (C.15)

where primes denote derivatives with respect to x, and we have used the fact that G is

a quartic polynomial in its argument.

We now proceed order by order in inverse powers of r, by plugging the expansions

(C.14) into the metric (C.9) and the constraint (C.8). First, we solve equation (C.8)

at order r0, obtaining first-order differential equations for f̄1(x, θ) whose solution is

f̄1(x, θ) = Gi(x) + log tan 1
2θ , Gi(x) ≡

∫ x dx′

G(x′)
. (C.16)

From this point on, all the expansion coefficients can be solved purely algebraically,

according to the following scheme:

(a) Solve equation (4.108) at order r0 for ḡ1(x, θ).

(b) Solve grθ = 0 at order r0 for h̄1(x, θ).
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(c) Solve grr = 0 at order r−2 for f0(x, θ).

(d) Solve the dr component of equation (C.8) at order r−2 for k0(x, θ). (Note that

the differential equations for k0(x, θ) that arise in the dx and dθ components of

equation (C.8) at the preceding order r−1 are now automatically satisfied.)

One then proceeds by iterating steps (a)–(d) at the next order, solving algebraically

for g0(x, θ), h0(x, θ), f1(x, θ), and k1(x, θ), and so on ad infinitum. The results for the

first few expansion coefficients are:

f̄1 = Gi+ log tan 1
2θ , ḡ1 =

sin θ√
G
, h̄1 =

√
GGj cos θ − 1

α
√
G

,

f0 = − [
√
GGj cos θ − 1]2

2α
√
G sin θ

, k0 =

√
G [1−GGj2 cos2 θ]

2A sin θ
,

g0 =
[2 +

√
GG′Gj cos2 θ]Gj

4α
√
G(x)

,

h0 =
[1−

√
GGj cos θ][2 cos θ +

√
GG′Gj cos θ + 2

√
GGj sin2 θ]

4α2G sin θ
,

f1 =
[1−

√
GGj cos θ]2 [4

√
GGj −G′ + 2

√
GG′Gj cos θ +GG′Gj2 cos2 θ]

16α2G sin2 θ
,

k1 =
[GGj2 cos2 θ − 1][4

√
GGj −G′ + 3GG′Gj2 cos2 θ]

16α2 sin2 θ
,

g1 =
[2
√
GGj +G′]2 − 2[GGj2 cos2 θ − 1]2GG′′

32α2G3/2 sin θ
, (C.17)

where the arguments of G, G′, G′′, Gj and Gi are all x, defined implicitly in terms of u

and θ by equation (C.10). We have obtained explicit results also for (h1, f2, k2, g2, h2, f3, k3, g3, h3).
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The first few terms in the expansions (4.107) are given by

Cθ0 =
[2G′ +

√
GG′2Gj − 2G3/2G′′Gj] cos θ

8α
√
G sin2 θ

, Cφ0 = 0 ,

Cθ1 =
G′2 cos θ

16α2G sin3 θ
+
Gj [9G′2 − 6G′ (2 + 3GG′′) + 8G2G′′′] cos θ

96α2
√
G sin3 θ

+
Gj2 (3G′2 − 6GG′′ − 8) cos θ

16α2 sin3 θ
+
Gj3G5/2G′′′ cos3 θ

12α2 sin3 θ
.

Cφ1 = 0 ,

Cθθ = −2
√
GGj +G′

2α
√
G sin θ

, Cθφ = 0 , Cφφ =
2
√
GGj +G′

2α
√
G

sin θ , (C.18)

D
(1)
θθ = −Gj

4G5/2G′′′ cos4 θ

48α3 sin3 θ
− Gj3

8α3 sin3 θ
+
Gj2 (2G2G′′′ cos2 θ − 9G′)

48α3
√
G sin3 θ

− 3Gj G′2

32α3G sin3 θ
− 3G′3 + 4G2G′′′

192α3G3/2 sin3 θ
,

D
(1)
φφ = −D(1)

θθ sin2 θ , D
(1)
θφ = 0 ,

F0 =
12G3G′′′Gj2 cos2 θ + 6

√
G [4−G′2 + 2GG′′]Gj + 6G′ (2 +GG′′)− 3G′3 − 4G2G′′′

48α
√
G sin3 θ

.

C.1 Small mass expansion

It is hard to gain much insight from these expressions as they stand, since x is defined

implicitly in terms of u and θ by equation (C.10). One thing we can do is to consider

an expansion in powers of the mass parameter m (or, to be precise, in powers of the

small dimensionless quantity mα). Expanding the integrand G−3/2 in equation (C.11)

in powers of m and then integrating term by term, we then have

Gj(x) =
x√

1− x2
+
mα (3x2 − 2)

(1− x2)3/2
+O(m2) . (C.19)

Conversely, we can then express x perturbatively in m, in terms of u and θ, finding

x =
uα√

u2α2 + sin2 θ
+
mα(u2α2 − 2 sin2 θ)

u2α2 + sin2 θ
+O(m2) . (C.20)

It is now straightforward to expand the expressions in (C.18) for CI0 , CIJ and F0 in

powers of m. In particular, we find

Cθ0 = − m sin θ cos θ

(u2A2 + sin2 θ)3/2
+O(m2) . (C.21)



APPENDIX C. C-METRIC IN BONDI COORDINATES 153

The expansion coefficient F0, which is related to the Bondi mass aspect, is given by

F0 =
m [(3u2α2 + 1) sin2 θ − 2u2α2]

(u2α2 + sin2 θ)5/2
+O(m2) . (C.22)

We also have

Cθθ =
2m(2u2α2 + sin2 θ)√
u2α2 + sin2 θ sin2 θ

+O(m2) , Cφφ = −Cθθ sin2 θ . (C.23)



Appendix D

Equations of motion in double

field theory

We review here the derivation of the double field theory (DFT) equations of motion.

The covariant derivative and its curvature tensors are defined with respect to the so-

called generalised Lie derivative or generalised diffeomorphism. It plays the role of

gauge symmetry in DFT, and acts on the DFT field content as

(L̂XH)MN = XP∂PHMN + (∂MX
P − ∂PXM )HPN + (∂NX

P − ∂PXN )HMP ,

L̂Xd = XM∂Md−
1

2
∂MX

M ,
(D.1)

where, with respect to the generalised Lie derivative, the generalised metric H is a

rank-2 tensor and the DFT dilaton d is a scalar density. The gauge parameter XM

combines the diffeomorphism parameter ξµ and the one-form gauge parameter Λµ for

the Kalb-Ramond field in an O(D,D) covariant manner

XM = {ξµ ,Λµ} . (D.2)

For closure of the algebra of generalised diffeomorphisms (i.e., the Jacobi identity for

L̂), we have to impose the section condition

∂M∂
MF1 = 0 , ∂MF1∂

MF2 = 0 , (D.3)

where F1 and F2 are arbitrary functions on doubled space. The section condition is

equivalent to ignoring the winding coordinate x̃ dependence,

∂M =

(
∂̃µ

∂µ

)
=

(
0

∂µ

)
. (D.4)

As for the covariant differential operator of the generalised Lie derivative (D.1), we

154
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define the covariant derivative acting on an O(D,D) tensor as

DMTN1N2···Nn = ∂MTN1N2···Nn +
n∑
i=1

ΓMNi
PTN1···P ···Nn , (D.5)

where ΓMNP is the DFT connection [269, 270]. One may try to obtain the DFT con-

nection using the compatibility and torsion-free conditions, analogously to Riemannian

geometry. However, it turns out that these conditions are sufficient for determining

all the components. Fortunately, one can project out the undetermined part using the

projection operators (5.39), and the determined part is

ΓPMN =2(P∂PPP̄ )[MN ] + 2(P̄[M
QP̄N ]

R − P[M
QPN ]

R)∂QPRP

− 4

D − 1

(
P̄P [M P̄N ]

Q + PP [MPN ]
Q)
(
∂Qd+ (P∂RPP̄ )[RQ]

)
.

(D.6)

Let us turn to the curvature tensors R and RMN in terms of the DFT connection

(D.6). First, we introduce the 4-index object SMNPQ defined as

SMNPQ =
1

2

(
RMNPQ +RPQMN − ΓRMNΓRPQ

)
, (D.7)

where RMNPQ is defined from the standard commutator of the covariant derivatives

RMNPQ = ∂MΓNPQ − ∂NΓMPQ + ΓMP
RΓNRQ − ΓNP

RΓMRQ . (D.8)

One can show that SMNPQ satisfies similar symmetry properties as the Riemann tensor,

namely SMNPQ = S[MN ][PQ] = S[PQ][MN ] as well as the Bianchi identity

SM [NPQ] = 0 . (D.9)

However, it is not a tensor with respect to the generalised Lie derivative and cannot be a

physically meaningful object. Instead, we can obtain meaningful tensors by contracting

SMNPQ with the projection operators. The generalised curvature tensor and scalar are

defined as

RMN = 2P(M
P P̄N)

QPRSSRPSQ , R = 2PMNPPQSMPNQ , (D.10)

and one can show that these are covariant under O(D,D), as well as under generalised

diffeomorphisms. Substituting the parametrisations (5.37), the equations of motion

reduce to the conventional supergravity equations of motion (5.48). The generalized

curvatures satisfy an similar identity as the Einstein tensor, ∇µGµν = 0,

DM
(
4PMP P̄NQRPQ − P̄MNR

)
= 0 , DM

(
4P̄MPPNQRPQ + PMNR

)
= 0 .

(D.11)
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Bending of Light in Quantum Gravity, Phys. Rev. Lett. 114 (2015) 061301

[1410.7590].

https://doi.org/10.1007/JHEP12(2014)036
https://arxiv.org/abs/1408.2818
https://doi.org/10.1016/j.physletb.2015.11.084
https://arxiv.org/abs/1507.07532
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://doi.org/10.1007/JHEP04(2019)156
https://arxiv.org/abs/1812.08752
https://doi.org/10.1007/JHEP09(2020)074
https://arxiv.org/abs/1908.08463
https://doi.org/10.1103/PhysRevD.104.065014
https://doi.org/10.1103/PhysRevD.104.065014
https://arxiv.org/abs/2005.03071
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://arxiv.org/abs/1304.7263
https://doi.org/10.1103/PhysRevLett.121.251101
https://doi.org/10.1103/PhysRevLett.121.251101
https://arxiv.org/abs/1808.02489
https://doi.org/10.1007/JHEP10(2019)206
https://doi.org/10.1007/JHEP10(2019)206
https://arxiv.org/abs/1908.01493
https://doi.org/10.1103/PhysRevLett.122.201603
https://arxiv.org/abs/1901.04424
https://doi.org/10.1007/JHEP02(2014)111
https://arxiv.org/abs/1309.0804
https://doi.org/10.1103/PhysRevLett.114.061301
https://arxiv.org/abs/1410.7590


BIBLIOGRAPHY 159

[37] A. Luna, R. Monteiro, I. Nicholson, D. O’Connell and C.D. White, The double

copy: Bremsstrahlung and accelerating black holes, JHEP 06 (2016) 023

[1603.05737].

[38] T. Damour, Gravitational scattering, post-Minkowskian approximation and

Effective One-Body theory, Phys. Rev. D94 (2016) 104015 [1609.00354].

[39] W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for

color charges, Phys. Rev. D 95 (2017) 125010 [1611.03493].

[40] F. Cachazo and A. Guevara, Leading Singularities and Classical Gravitational

Scattering, JHEP 02 (2020) 181 [1705.10262].

[41] A. Guevara, Holomorphic Classical Limit for Spin Effects in Gravitational and

Electromagnetic Scattering, JHEP 04 (2019) 033 [1706.02314].

[42] T. Damour, High-energy gravitational scattering and the general relativistic

two-body problem, Phys. Rev. D97 (2018) 044038 [1710.10599].

[43] A. Luna, I. Nicholson, D. O’Connell and C.D. White, Inelastic Black Hole

Scattering from Charged Scalar Amplitudes, JHEP 03 (2018) 044 [1711.03901].

[44] D.A. Kosower, B. Maybee and D. O’Connell, Amplitudes, Observables, and

Classical Scattering, JHEP 02 (2019) 137 [1811.10950].

[45] B. Maybee, D. O’Connell and J. Vines, Observables and amplitudes for spinning

particles and black holes, JHEP 12 (2019) 156 [1906.09260].

[46] R. Aoude and A. Ochirov, Classical observables from coherent-spin amplitudes,

JHEP 10 (2021) 008 [2108.01649].

[47] A. Laddha and A. Sen, Gravity Waves from Soft Theorem in General

Dimensions, JHEP 09 (2018) 105 [1801.07719].

[48] A. Laddha and A. Sen, Observational Signature of the Logarithmic Terms in the

Soft Graviton Theorem, Phys. Rev. D 100 (2019) 024009 [1806.01872].

[49] N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove,
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[182] M.C. González, A. Momeni and J. Rumbutis, Cotton Double Copy for

Gravitational Waves, 2202.10476.

https://doi.org/10.1016/S0550-3213(95)00090-9
https://arxiv.org/abs/hep-th/9410142
https://doi.org/10.1103/PhysRevD.102.124006
https://arxiv.org/abs/2001.02936
https://doi.org/10.1017/CBO9780511535185
https://doi.org/10.1007/JHEP09(2020)127
https://arxiv.org/abs/2007.03264
https://doi.org/10.1016/j.physletb.2015.09.021
https://arxiv.org/abs/1507.01869
https://doi.org/10.1007/BF01649445
https://doi.org/10.1007/BF01645517
https://doi.org/10.1007/BF01645517
https://doi.org/10.1007/JHEP07(2019)004
https://arxiv.org/abs/1904.06030
https://arxiv.org/abs/2110.02293
https://doi.org/10.1007/JHEP08(2020)147
https://arxiv.org/abs/2005.04242
https://arxiv.org/abs/2109.07832
https://doi.org/10.1088/1361-6382/ab03df
https://doi.org/10.1088/1361-6382/ab03df
https://arxiv.org/abs/1809.03906
https://arxiv.org/abs/2202.10499
https://arxiv.org/abs/2202.10476


BIBLIOGRAPHY 169
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