
A Study in Violinist Identification using

Short-term Note Features

Yudong Zhao

A thesis submitted in partial fulfillment of the requirements of the

Degree of Doctor of Philosophy

School of Electronic Engineering and Computer Science

Queen Mary University of London

United Kingdom

2022



Statement of Originality

I, Yudong Zhao, confirm that the research included within this thesis is my

own work or that where it has been carried out in collaboration with, or sup-

ported by others, that this is duly acknowledged below and my contribution

indicated. Previously published material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is

original, and does not to the best of my knowledge break any UK law, infringe

any third party’s copyright or other Intellectual Property Right, or contain

any confidential material.

I accept that the College has the right to use plagiarism detection software

to check the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of

a degree by this or any other university.

The copyright of this thesis rests with the author and no quotation from it

or information derived from it may be published without the prior written

consent of the author.

Signature:

Date:

1



Abstract

The perception of music expression and emotion are greatly influenced

by performer’s individual interpretation, thus modelling performer’s style is

important to music understanding, style transfer, music education and char-

acteristic music generation. This Thesis proposes approaches for modelling

and identifying musical instrumentalists, using violinist identification as a

case study.

In violin performance, vibrato and timbre play important roles in players’

emotional expression, and they are key factors of playing style while execu-

tion shows great diversity. To validate that these two factors are effective

to model violinists, we design and extract note-level vibrato features and

timbre features from isolated concerto music notes, then present a violinist

identification method based on the similarity of feature distributions, using

single feature as well as fused features. The result shows that vibrato features

are helpful for the violinist identification, and some timbre features perform

better than vibrato features. In addition, the accuracy obtained from fused

features is higher than using any single feature.

However, apart from performer, the timbre is also determined by musi-

cal instruments, recording conditions and other factors. Furthermore, the

common scenario for violinist identification is based on short music clips

rather than isolated notes. To solve these two problems, we further examine

the method using note-level timbre features to recognize violinists from seg-

mented solo music clips, then use it to identify master players from concerto

fragments. The results show that the designed features and method work

very well for both types of music. Another experiment is conducted to ex-

amine the influence of instrument on the features. Results suggest that the



selected timbre features can model performers’ individual playing reasonably

and objectively, regardless of the instrument they play.

Expressive timing is another key factor to reflect individual play styles.

This Thesis develops a novel onset time deviation feature, which is used to

model and identify master violinists on concerto fragments data. Results

show that it performs better than timbre features on the dataset.

To generalise the violinist identification method and further improve the

result, deep learning methods are proposed and investigated. We present a

transfer learning approach for violinist identification from pre-trained mu-

sic auto-tagging neural networks and singer identification models. We then

transfer pre-trained weights and fine-tune the models using violin datasets

and finally obtain violinist identification results. We compare our system

with state-of-the-art works, which shows that our model outperforms them

using our two datasets.
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Chapter 1

Introduction

1.1 Motivation

As explained in Britannica 1, music is defined as “art, concerned with combin-

ing vocal or instrumental sounds for beauty of form or emotional expression,

usually according to cultural standards of rhythm, melody, and, in most

Western music, harmony”. With the increasing diversity of music types and

styles, people’s music demands and preferences have become more individu-

alistic. For example, when people want to nap, a calming piece of music may

help them fall asleep quickly; when they feel down or stressed, listening to

rock music can make them feel refreshed again. Therefore, music expression

is essential in conveying emotion and resonating with listeners.

It is well-known that music expression is generally related to two inter-

dependent factors: the structure established by the composer and the in-

terpretation presented by the performer [1]. Generally, pitch and rhythm

created by music composers or producers are considered typical music struc-

tural characteristics, which determine the melody and tempo of a piece of

music. In classical music, composers rarely change the music structure after

1https://www.britannica.com/art/music (Accessed 20 August 2022)
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they publish the music. But, a particular piece’s expression and emotion can

vary due to differences in tempo, sound intensity and playing technique. For

example, although beat has been referred to above as a parameter of musical

structure, it can be sped up or slowed down by the performer in a very flexi-

ble manner. Apart from this, other individual cues also play essential roles in

music expressiveness, such as timbre, articulation, vibrato, tone attacks and

tone decays [2]. Adjusting these factors allows a given musical piece to be

performed in completely different styles; a lovely music piece can be played

dully, while a rousing piece can be played softly. From the author’s point

of view, the expressive factors are thus more decisive and influential in the

delivery of musical expression, where subtle emotional variations are often

introduced by the performers rather than composers.

It is challenging to characterise musical expressions from audio signals

due to the interplay of structural and interpretative factors. Still, the music

expression analysis is valuable in applications like automatic music transcrip-

tion, music playlist recommendation, computer-aided music education, and

expressive music generation. Since the expressive diversity of a given musical

piece mainly depends on parameters such as timbre, loudness or articula-

tion [3], which are usually determined by the interpretation of the performer,

an in-depth analysis of the performer’s style is essential to the musical ex-

pression study. Different performers will perform differently on the same

music piece since each has preferences, personality, educational background,

physical conditions, etc. The interpretations by performers lead to many

different versions of the same musical composition, giving the listener more

musical enjoyment.

Most listeners have their favoured instrumentalists or singers, meaning

that these performers have a unique and appealing style that makes their

performances popular and artistically valuable. Unfortunately, some virtuoso

performers have passed away, or their playing level has declined with age or

18



health problems. Listening to CD recordings or watching videos is the only

way to enjoy their performances, but it is a shame that if there is a piece

that a deceased performer never played during the lifetime, we will not be

able to hear that performer play it. For example, Heifetz never played the

famous Chinese piece ”Liang Zhu” during his lifetime, and we will never have

the opportunity to hear it played in Heifetz’s style. Therefore, to make up

for this regret to some extent, it is crucial to understand and describe the

style of virtuoso performers using objective music descriptors and then verify

the effectiveness of such descriptors by modelling and identifying performers.

After that, we can morph known playing styles into new music compositions

or transfer interpretation from one existing to another. In addition, if we

can obtain valid musical indicators to model the performers’ styles, it will be

helpful to reproduce the characteristics of different virtuoso performers on

any musical piece. Moreover, we can also make it possible to permutate and

combine various performances played by different performers into a single

music clip, which will be very useful for music editing and production.

In musical performances, singers create music with their singing voices,

while instrumentalists produce music with their instruments. Thus the lat-

ter’s performances are not so closely tied to performers as the former’s. More-

over, instrumentalists’ style modelling and identification are more challeng-

ing, which has received less attention than singer identification due to the

lack of large-scale public datasets. Among all instruments, the violin un-

doubtedly plays a vital role in both classical and modern music, and many

great violinists deserve to be studied in depth. If we could quantitatively

describe and model the characteristic style of the performer, it would help

music producers to produce violin pieces with a wide range of styles. We can

also measure the similarity of playing styles between a violin student and a

famous violinist, which can help improve the student’s playing skills.

Based on the above problems and conjectures, this Thesis proposes violin-
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ist modelling and identification approaches that apply to different scenarios.

We first construct two types of datasets containing solo music and concerto

music, respectively, to validate our proposed methods. Then, audio features

are designed and extracted based on the domain knowledge of violin play-

ing, which is used to describe the playing styles of violinists. Next, several

statistical models are used to model the style of violinists, and the similarity

of such models is calculated to identify violinists. In addition, considering

the strong performance of deep learning in other related fields, we also apply

deep learning methods to classify violinists to compensate for the lack of

generalisation and less-than-optimal results of the above mechanisms.

The next section will review the musical performer identification methods

in previous studies. The outline of this Thesis and associated publications

will be introduced in Section 1.3 and Section 1.4, respectively.

1.2 A Review of Performer Identification

Since a performer’s style greatly influences the expression of a given mu-

sic piece, style modelling and performer identification have been studied

for a long time. In the early days, the primary method of analysing per-

formers’ styles was statistical and mathematical modelling of audio features.

Repp [4] characterised temporal commonalities and differences among famous

pianists’ interpretations of a well-known piece using a variety of statistical

analyses and demonstrated the individuality of two legendary pianists. Sta-

matatos [5] presented a comparison of features for discriminating 22 pianists

playing the same piece based on a series of statistical experiments. The result

suggested that the “average performance” effectively recognises individual

performances, while “extreme” performances have the lowest discrimination.

Similarly, Bresin [6] analysed articulation strategies from five pianists’ per-

formances by measuring the mean and variance of inter-onset-interval (IOI)
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times.

In recent years, machine learning has been widely applied for performer

identification. Stamatatos and Widmer [7] proposed a set of features like time

deviation and melody lead [8] that capture aspects of pianists’ style, then il-

lustrated how a machine could distinguish and classify music performers by

their performance style. Saunders et al. [9] applied string kernels to the prob-

lem of recognising famous pianists by style. Performer playing characteristics

were obtained from changes in beat-level tempo and loudness, which derived

from a general performance alphabet and represented pianist’s performances.

Ramirez et al. [10] developed a machine learning approach to identify Jazz

saxophonists by analysing individual notes’ pitch, timing, amplitude and

timbre. Apart from instrumentalist identification, some works are also based

on singer recognition. Nadine Kroher [11] investigated a robust system of

modelling the singer’s typical performance style using vibrato, timbre and

statistical performance descriptors. Audio feature learning methods are also

frequently used for singer identification in many other researches [12, 13, 14].

Deep neural networks (DNN) greatly outperform hand-crafted feature

engineering methods for singer identification (SID) in this deep learning era.

Zhang [15] reported outstanding SID results with 0.99 f1-score using DNN on

the Artist20 [16] dataset. Also, Nasrullah [17] proposed a singer classification

method with convolutional recurrent neural networks. In addition, source

separation is applied on SID and showed good results [15, 18]. However,

there are not many instrumentalist identification systems implemented by

deep learning methods, possibly due to the lack of a large-scale training

dataset.

In addition, we propose methods based on subjective experiments to dis-

cuss the personal factors influencing performers’ styles. For example, Gin-

gras et.al [19] explored the influence of both listener and performer’s level of

expertise on performer identification, which suggested that the performer’s
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level of expertise had a more significant impact on the result. In addition,

the performer’s self-identification was also investigated in [20], and the results

showed that temporal cues are essential for performers to identify themselves.

In particular, there are prior works on violin expression analysis and vi-

olinist identification. Li et al. [21] developed a dataset containing 11 expres-

sive characteristics; features like duration, dynamics and vibrato features

are extracted to classify expressions using Support Vector Machine (SVM).

Ramirez et al. [22] built a Celtic violinist classifier using the machine learning

method. They extracted pitch, timing and amplitude features representing

both note-level characteristics and broader musical context. Molina et al. [23]

proposed an approach to identify violinists on monophonic audio recordings

using a musical trend-based model. Shih et al. [24] used articulation and en-

ergy features to compare the playing styles of Heifetz and Oistrakh, arguably

the most talented violinists in the world.

However, most previous studies are based on the dataset of solo music

rather than common violin performance scenarios (such as concertos, sonatas,

and repertoire), which limited their application and generalisation. In addi-

tion, previous studies have focused more on classifying professional perform-

ers or a limited number of virtuosos and less on identifying more than five

virtuosos. In addition, in earlier works, essential music descriptors such as

vibrato and expressive timing have rarely been used for violinist identifica-

tion. It isn’t easy to know how effective these descriptors are for identifying

violinists. Finally, although deep learning has been widely used in many

fields and has shown powerful capabilities, there is little research on violinist

identification based on deep learning methods. The approach presented in

this Thesis will attempt to address these issues and provide corresponding

conclusions based on our experiments.
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1.3 Thesis Structure and Contributions

Chapter 2 Background

This Chapter reviews the technical background of this Thesis. It starts

by introducing the concept of musical expression and the importance

of the performer’s interpretation of the musical expression. As a per-

former’s style is often achieved by personal application of instrumental

playing techniques, we introduce the fundamental skills of violin play-

ing. Next, since the main aim of this research is to develop a violinist

identification system, which involves procedures including audio feature

extraction, classification model construction and result evaluation, the

relevant background of each method is reviewed in detail in this Chap-

ter.

Chapter 3 Dataset Construction

This Chapter focuses on the datasets we constructed for evaluating the

proposed violinist identification algorithms. Based on the concertos

recordings of the master players, we have created a dataset of isolated

vibrato notes, a dataset of short selected music clips and a dataset of

constant violin concerto clips, which will be applied in Chapter 4, 6

and 7 respectively. In addition, another dataset based on solo violin

playing is constructed and presented in this Chapter, which not only

provides additional scenarios for violinist identification but also allows

us to verify the validity of the timbre features in Chapter 5.

Chapter 4 Violinist Identification Using Isolated Notes

This Chapter presents an original work on violinist identification using

isolated musical notes. Two categories of audio features, including vi-

brato features and timbre features, are designed and extracted, and the

global distribution of each feature is obtained to model the performer’s

style. After the violinist identification is achieved by using each feature,
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a feature fusion method is proposed for merging the discrete knowledge,

which is different kinds of audio features in our case, to yield a more

comprehensive representation of the performer’s characteristic playing.

Finally, the effectiveness of different statistical models for identifying

violinists is compared and discussed.

Chapter 5 The Effectiveness of Timbre Features for Identifying Violinists

This Chapter reveals the effectiveness of proposed timbre features for

modelling and identifying violinists. Although the previous Chapter’s

results show that timbre features perform well for classifying violinists,

musical timbre is intuitively influenced by other factors such as in-

struments or recording conditions. The timbre features are thus likely

to model the instrument’s characteristics or acoustic recording rather

than the performer’s style. To address this issue, we verify the ef-

fectiveness of timbre features in modelling players’ characteristics by

conducting violinist identification experiments and violin identification

experiments. The results show that the designed features are beneficial

in identifying violinists, regardless of which violin is played.

Chapter 6 Violinist Identification Using Short Music Clips

This Chapter proposes a violinist identification method based on short

music clips. It starts with the development of expressive timing fea-

tures, and their performances in recognising violinists are firstly evalu-

ated. Then, the timbre features presented in the previous chapters are

extracted from the short music clip dataset, and these features are ap-

plied to identify violinists. Finally, the two kinds of features are fused

to identify the violinist, producing better discrimination results than

using a single kind of feature.

Chapter 7 Transfer Learning for Violinist Identification

This Chapter aims to investigate a deep learning method for identi-
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fying violinists based on a limited dataset, which is the first time, to

our knowledge, that a deep learning method has been applied to the

field. We propose a transfer learning approach that uses pre-trained

models for other MIR tasks and then fine-tunes those models on our

constructed concerto and solo datasets. Comparing the results of trans-

fer learning and ‘training from scratch’ shows that transfer learning is

very effective for this task. This Chapter also compares the perfor-

mance of deep learning methods and those presented in the previous

Chapters.

Chapter 8 Conclusion

This Chapter concludes this Thesis and indicates some potential direc-

tions for future work.

1.4 Associated Publications

This Thesis covers the work carried out by the author between September

2017 and March 2022 at Queen Mary University of London. The majority

of the work presented in this Thesis has been published in peer-reviewed

conferences.

• Yudong Zhao, György Fazekas, and Mark Sandler. “Identifying Vio-

linist using note-level vibrato features,” 2019 SEMPRE Autumn Con-

ference, 2019.9.

• Yudong Zhao, György Fazekas, and Mark Sandler. “Identifying Master

Violinists Using Note-level Audio Features”, 17th Sound and Music

Computing Conference, 2020.7.

• Yudong Zhao, Changhong Wang, György Fazekas, Mark Sandler. “Vi-

olinist identification based on vibrato features”, European Signal Pro-

cessing Conference (EUSIPCO), 2021.
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• Yudong Zhao, György Fazekas, Mark Sandler, “Violinist identification

based on note-level timbre feature distribution”, International Confer-

ence on Acoustics, Speech, Signal Processing (ICASSP), 2022.

• Yudong Zhao, György Fazekas, Mark Sandler, “Transfer learning for

violinist identification”, European Signal Processing Conference (EU-

SIPCO), 2022
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Chapter 2

Background

2.1 Introduction

This Chapter reviews the technical background of this Thesis. The first sec-

tion is dedicated to introducing musical expression, followed by a detailed

description of the factors influencing it. Then we briefly introduce the vi-

olin structure and basic playing techniques in Section 2.3. Next, a special

focus is given in Section 2.4 on the audio features that have been used to

describe music characteristics, and common feature extraction methods are

reviewed. It is followed by an overview of statistical models and audio sim-

ilarity algorithms in Section 2.5, which are separately applied to represent

and analyse musical expressions. As this Thesis widely uses machine learning

methods, we discuss their definition and application on Music Information

Retrieval (MIR) in Section 2.6. Finally, the evaluation metrics are presented

in Section 2.7.
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2.2 Expressive Music Performance

One of the key reasons why music captivates listeners is that it can express

emotion and resonate with them [25]. How music evokes listeners’ feelings

have been studied from many perspectives, and it provides a rich field for

studying music perception and music production [26]. However, it is chal-

lenging to assess the exact contribution of individual musical factors (e.g.,

timbre, timing, dynamic etc.) to emotional expression because many of them

are intercorrelated. One method to address this problem is to manipulate the

cues in music by synthesising variants of given music independently and sys-

tematically [27]. However, the music expression generally depends on three

main factors: the structure established by the composer (e.g. mode, pitch, or

dissonance), the arrangement and sound effect produced by producers, and

the interpretation of the performer (e.g., speed, loudness) [1]. These three

factors are introduced separately in this section.

2.2.1 Music Structure and Production

Musical structure is broadly defined by the parameters of a musical piece

laid down in the score [26], and the most general structural characteristics of

Western music are pitch and rhythm. Schenker’s music theory [28] considers

the melodic and harmonic organisation as a progressively more complex series

of elaborations on a simple base, with musical expression arising gradually

from note to note. Furthermore, music without precise time control is con-

sidered deficient because it lacks the property of rhythm [29]. Some studies

provide evidence that ordinary listeners can accurately and immediately use

changes of mode and tempo to perceive music expressions and emotions [1].

What is commonly believed is that fast tempo and major mode always cor-

respond to happiness and cheeriness, whereas slow tempo and minor mode

frequently link to sadness or sorrow [30]. Dissonance is another essential
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structural parameter that correlates with the activity of human paracortical

and neocortical areas. It also reveals the neural basis of the human emotional

response to music [31].

In addition to the musical structure defined by the composer, musical

production greatly influences musical expression, especially in modern mu-

sic. The same song can be presented in various styles if produced by different

producers or mixed with different instruments. For example, both versions

of ′′Love Story′′ are sung by Taylor Swift, but different mixes and arrange-

ments present different sensations 1,2. The music production phase, which

includes “recording” and “editing”, focuses primarily on capturing the de-

sired sound quality and audio effects, which largely influence the musical

expression. In today’s music post-processing, digital audio effects play a cru-

cial role in shaping the desirable sound by varying timbre, dynamic range and

instrumentation to present different musical expressions and emotions [32].

2.2.2 Individual Styles of Performer

Although musical structure and production can influence music expression,

the expressive richness of a given musical piece strongly depends on the in-

terpretation of the performer [1]. Since most audiences learn about music by

listening to recordings or going to concerts without reading the scores before-

hand, the performer’s interpretations dominate people’s music perception to

a great extent. In addition, the performer introduces many micro-variations

of musical parameters (e.g., tempo, loudness, or articulation) to enhance

the emotional expression of the original musical score [33]. For example, al-

though pitch is a parameter of musical structure, the pitch of a long sustain

can be slightly altered (e.g., vibrato) by a performer to enhance the dynamics

of the music. The manipulation of these musical parameters appears to be

1https://www.youtube.com/watch?v=mNLVMDF9mUo (Accessed 20 August 2022)
2https://www.youtube.com/watch?v=etywYG4ZSvg (Accessed 20 August 2022)
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particularly important for musical expression.

Furthermore, professional performers, especially master instrumentalists,

prefer to interpret a given music excerpt in their styles. For instance, Jung [34]

analysed the playing styles of three master violinists: Jascha Heifetz, David

Oistrakh and Joseph Szigeti, and mentioned that the precision and fast tempo

in Heifetz’s performance give listeners the feeling of “cold” and “unemo-

tional.” In contrast, Oistrakh was described as “warm” and “capable of com-

municating emotional feelings.” Other important cues influencing musical

expression include sound level, pitch, articulation, timbre, vibrato, tonal at-

tack and decay [2]. These cues convey different kinds of expression intentions

and are decided mainly by how performers apply their playing styles.

In summary, although expressive musical performances are affected by

musical composition and production, the subtlety of musical expression is

generally given by the performer’s interpretation. The ambiguity in musical

notation gives the performer considerable freedom in deciding how to inter-

pret the content, allowing a specific music piece to be performed in various

styles by different performers. The interpretation also refers to performers’

individualistic preference of a clip according to their ideas and musical in-

tentions [35]. In violin performance, the applications of playing techniques

can produce various expressive styles. For example, vibrato is produced by

the movement of fingers on the fingerboard; different bowing gestures create

different timbres. Therefore in the next section, we will briefly introduce the

structure and basic violin playing techniques.

2.3 Brief Introduction of Violin Playing

Although discussing how to play the violin is beyond this Thesis’s scope,

the application of playing techniques heavily influences the characteristics of

violin playing. In this section, we first introduce the structural components
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of the violin and outline basic violin playing techniques.

2.3.1 Violin Structure

Scroll

Neck

Tailpiece

Fingerboard

Body

Bridge

Chin Rest

Fine Tuner

F-hole

Tuning Pegs

String

Frog

Stick

Hair

Tip

Figure 2.1: The parts of a violin(left) and a bow(right).

Violin is a wooden string instrument commonly played by drawing a bow

across strings. Figure 2.1 depicted a standard modern violin and a bow from

the front view with labelled parts. The scroll is an important decoration

placed at the top of the violin and farthest from the performer. Immediately

below the scroll is the tuning box, with four tuning pegs housed in it, which

adjust the strings’ pitch. The black wood attached to the neck is the fin-

gerboard, and the player can press the strings at different positions on the

fingerboard to change the length of vibration of the strings and thus produce

different pitches. The other end of the strings is anchored on the tailpiece

through a bridge. The function of the bridge is to transmit the strings’ vi-

bration to the violin body and then spread the sound outside through the
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(a) (b)

Figure 2.2: Samples of press string by left hand (a) and bow hold by right
hand (b).

F-hole. There is also a fine tuner on the tailpiece, which is used to tune

strings subtly. Beginners typically use fine tuners on all strings, whereas ad-

vanced players only use fine tuners on the E-string [36]. The violin has four

strings, usually tuned in perfect fifths with notes G3, D4, A4, and E5. The

Chin Rest is clamped to the violin body and helps the player’s chin to hold

the violin properly.

The violin bow consists of a flexible wooden stick, and a bundle of horse-

hair fixed to each end of the stick. The performer’s near-end is named “frog”,

and the far end is called the “tip”. The player holds the bow at the frog and

controls the bowing gestures such as position, speed, and tilt on the string

to produce a different sound.

2.3.2 Basic Playing Technique

The violin is usually performed using both hands together (except for left-

hand pizzicato). The thumb of the left hand is placed on one side of the

fingerboard; the other four fingers can press the strings in different positions.

The pitch can be varied by changing the length of the string vibration. Plac-

ing the fingers closer to the player’s body will produce a higher pitch, while

pressing the string further away from the player will create a lower pitch.
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Players can also shift the entire left hand towards the body to reach much

higher pitches, called shifting. The common gesture of the left hand in a

neutral position is shown in Figure 2.2(a). The right hand is responsible

for drawing the bow over the strings, making the strings vibrate to produce

sound. The basic gesture of holding a bow is shown in Figure 2.2(b), but it

can be varied when playing different musical pieces.

In the following subsections, we will introduce a typical left-hand playing

technique (vibrato) and basic bowing techniques , which will help to under-

stand the designing of hand-crafted audio features that are used to model

the violinist’s playing style.

2.3.2.1 Vibrato

Figure 2.3: Finger movement when playing the vibrato.

One of the important left-hand techniques in violin playing is vibrato. It

is an expressive tool that enhances the mood of a note or phrase and creates

a warmth or richness of music. The performer creates vibrato by slightly

changing the length of the string, which is produced by rocking the finger
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from the wrist or arm (as shown in Figure 2.3). Itzhak Perlman, a famous

master violinist, classifies violin vibrato as arm vibrato, hand vibrato and

finger vibrato based on the origin of the gesture; or category it as slow vibrato,

narrow vibrato and wide vibrato based on the dynamics of the gesture 3. [37]

also illustrates the rates and widths are two critical elements of performing

vibratos, which are realised by modifying the speed and extent of the finger

moving. Performers can apply different vibrato styles to present their desired

sound by modifying the speed and amplitude of the vibrato. This property

will be used for the vibrato feature development, and further analysis will be

presented in Section 2.4.2.2.

2.3.2.2 Bowing Technique

Figure 2.4: The diagram of bowing gestures.

When playing the violin, players can adjust bowing gestures like bow

speed, bow downforce, tilt, and bow-bridge distance to produce their de-

3https://www.youtube.com/watch?v=SodZCoSBIR0 (Accessed 20 August 2022)
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manded sound in different timbre, volume, or tone quality [36]. As shown in

Figure 2.4, bow-bridge distance is the distance between the bridge and the

contact point of the hair and string. Bow downforce is given by the right

hand and arm, which can increase or decrease the amount of hair in contact

with the string. Bow tilt is the axial rotation of the bow, which is adjusted

to change the contact area. As for the bow speed, intuitively, it is the speed

at which the bow moves across the string. In practice, performers should

balance all factors to produce their desired sound. For example, too much

downforce at a low speed will sound crunchy, whereas too little pressure will

result in an unfocused sound as the bow slides across rather than grabbing

the string. Similarly, if the bow is too close to the bridge with heavy down-

force, it will make a boisterous sound. Advanced techniques like legato, spi-

caato, louré, or staccato are realised by adjusting bow speed, downforce and

bow-bridge distance together [38], which are applied to present more diverse

expressions. A particular piece of music can be performed in various timbres

and volumes when a performer applies the bowing gestures differently. Thus

the bowing parameters may help to describe the individual characteristics of

a player. However, measuring bowing gestures from audio recordings is not

directly feasible. One way to address this issue is to find relevant audio fea-

tures representing the gestures. We thus design and extract timbre features

validated for describing bowing gestures [39] to model players’ bowing char-

acteristics. The feature selection and calculation procedure are introduced

in Section 2.4.4, and the violinist identification method using these features

will be proposed in Section 4.2.

The more detailed definition of advanced violin playing techniques is be-

yond this Thesis’s scope, but they can be found and investigated in many

related books [40, 41].
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2.4 Audio Features for Analysing Performer’s

playing Style

In this Thesis, the aim of developing audio features is to find descriptors of

audio content relevant to the performer’s style. These descriptors are further

used to discriminate and identify violin performers. Therefore, the key to the

performance of the violinist identification approach is the features’ validity

and the correlation between the features and the playing style. This section

provides an overview of audio features previously and commonly used to

analyse musical expressions and model performers’ playing styles; the related

feature extraction methods are also reviewed.

Audio features are generally classified based on the level of the infor-

mation they describe. The low-level features reflect physical properties or

musical factors related to the signal, such as the root mean square (RMS)

energy and spectral centroid. The mid-level features generally summarise

or present the low-level features in statistical methods, such as tempogram.

The high-level features, sometimes also denoted as semantic features, reveal

aspects that are usually close to how humans perceive music [42]. In this

section, basic audio representation methods are firstly reviewed, followed by

three kinds of features that are considered at high-level, including pitch fea-

tures, timing features and timbre features.

2.4.1 Audio Representations

The common music signals produced by vibrating bodies (like strings on

music instruments) are approximately periodic for short durations, which is

also denoted as the repeat of sound pressure over time [43]. The intuitive

way to capture audio signal is by taking samples of the air pressure over time,

which is always presented as waveform. As Figure 2.5(a) shows, a waveform is

one-dimensional sequential data which consists of audio samples that specify
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the amplitudes at time-steps [44]. The sample rate can be varied, indicating

how many samples per second (commonly 44.1KHz, 22.5KHz, or 16KHz ).

In addition to amplitude, frequency is another important attribute of an

audio signal. The Fourier transform [45] is a mathematical function that

decomposes a signal into its frequencies and the frequency’s amplitude. To

further find the relationship between time series and frequency, the Short-

Time-Fourier-Transform (STFT) [46] is applied to provide a time-frequency

representation. The extended audio is first divided into short segments of

equal length, then computes the Fourier transform separately on each short

audio segment to obtain the results of STFT. A spectrogram is a visual

representation of the spectrum of frequencies of a signal as it varies with

time. It is commonly used to visualise the STFT result of an audio signal.

Figure 2.5(b) shows the spectrogram of the same audio that is demonstrated

in Figure 2.5(a).
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Figure 2.5: The different representations of an audio signal.

However, the STFT does not match the frequency resolution of the human

auditory system, so it is not the most popular choice in music analysis [44].

To address this problem, the Mel-spectrogram, which compresses the STFT

in the frequency axis into the Mel-band, can effectively retain the most crucial

perceptual information. There are many implementations of transferring the

natural frequency to mel-band, [47] suggests the formula as Equation 2.1,

where f denotes the original frequency and m means mel-frequency. An

example of a Mel-spectrogram is shown in Figure 2.5(c).
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m = 2595 log 10(1 +
f

700
) (2.1)

2.4.2 Pitch Features

All periodic tones (except sine wave) contain several frequency components

called Harmonics. The lowest harmonic component is named as fundamental

frequency (Hertz, [Hz]), also called f0, and the frequency of other harmonics

are integer multiples of the fundamental frequency. For example, the fun-

damental frequency of A440 is 440Hz, and it has other harmonics at 880Hz,

1320Hz or 1760Hz. The subjective psychological dimension of the fundamen-

tal frequency is called pitch, and the pitch is associated with and quantified

by fundamental frequency [48].

2.4.2.1 Pitch Estimation

Pitch is a critical perceptual attribute of music, an indicator of how “high”

or “low” a melody is [48], and has a significant impact on the listener’s

perception of music [49]. Earlier works focused on pitch estimation on a

single monophonic source, such as YIN [50] and PYIN [51] algorithm. Later

works extract the main melody or multiple pitches from polyphonic music [52,

53]. Recently, most approaches have used deep neural networks for pitch

tracking. For example, CREPE [54] is a monophonic pitch tracker built on a

convolutional recurrent neural network, outperforming the previous state-of-

the-art system. Rigaud and Radenen proposed a Bidirectional LSTM model

to extract melody from singing voice [55], where a multi-scale convolutional

architecture with a “harmonic” loss function is applied in this approach. For

multiple f0 estimation from polyphonic music, a multi-task learning method

is proposed and performed good results for various music sources [56].

The pitch estimation methods can be further applied for music transcrip-

tion [57, 58, 59], music expression analysis [60], and music perception anal-
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ysis [49]. However, it has been validated that compared with the individual

pitch of single notes, listeners are more sensitive to the pitch variances and

pitch tendency [49]. Therefore, features that reflect pitch variances attracted

much attention, such as pitch histogram [61] and vibrato. Since vibrato

is frequently applied in violin playing and is used in this Thesis to model

the violinist’s style, we will introduce the vibrato features in the following

sub-section.

2.4.2.2 Vibrato Features

The vibrato plays an important role in the performance of vocal, flute and

bowed string instruments, where it is often used to enhance selected notes

and make them more prominent [62].

Generally caused by a slight oscillation in pitch or volume, vibrato makes

a long sustained note more lively and energetic. For wind and brass instru-

ments, vibrato is produced by altering the outward flow of air, which results

in a small periodic change in volume [63]. For stringed instruments, vibrato

is created by changing the length of the string, which is done by moving the

finger back and forth. As this Thesis focuses on modelling the characteristic

of violin playing, the latter vibrato definition is more suitable in this case.

Assuming that the amount of pitch variation (defined as the “extent of vi-

brato”) and the speed of pitch variation (defined as the “rate of vibrato”)

can represent a player’s finger movement habits when playing a vibrato, these

two metrics are then used to model a violinist’s vibrato playing character-

istics. Based on this assumption, we design and extract vibrato features

and use them to identify violinists, the details of which will be presented in

Section 4.2.

In previous work, a popular method of estimating vibrato parameters is

to obtain the rate and extent from the location and values of the peaks and

troughs in the fundamental frequency trajectory [64, 65, 66, 67]. Another
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vibrato analysis method is to consider the fundamental frequency curve as

a time-domain signal and computes its Fourier transform to estimate the

vibrato parameters in the frequency domain [68, 69, 70]. In this Thesis,

to intuitively understand the vibrato characteristics among performers, we

extract vibrato features based on the pitch curve of music notes, which will

be presented in Section 4.2.1.

2.4.3 Timing Features

The general music timing is described as human capabilities for processing

temporal patterns [43, 71]. In particular, the timing presents the temporal

events and their organisations in music [42]. Most relevant descriptors are

extracted based on locating the note events, typically the note onsets. Higher

level rhythmic features, such as the beat and metrical structure, can be

obtained by measuring the periodicity of note onsets [72]. Figure 2.6 shows

a waveform of a music clip, as well as locations of note onsets and beat.

Audio signal in waveform.

The position of note onsets!

The position of beat.

The music score.

Figure 2.6: The location of beat and note onsets in a music clip.

Previous researches reveal that the timing features (e.g., duration of a

note or beat, tempo, and onset interval times) are greatly related to the mu-

sical expression, music emotion cognition and performers’ playing character-

istics [43, 73, 74]. It is therefore assumed that the timing features can describe
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the playing style of the violinist and thus can be used to distinguish violin-

ists. Although many researches developed automatic onset detection (AOD)

methods [75, 76, 77, 78, 79] and beat tracking algorithms [80, 81, 82], they

are not a straightforward procedure on violin audio. The glissando, bow di-

rection change and other issues frequently occur in violin performances would

bring noises to the violin onset detection results [83]. Therefore, we man-

ually annotate the note onset times and extract note-level timing features.

Section 3.2.3 will describe the data annotation strategy, and Section 6.2 will

introduce the timing feature extraction methods .

2.4.4 Timbre Features

The music’s timbre is known as tone colour or perceived tone quality, which

distinguishes different types of sound production. It enables listeners to iden-

tify musical instruments or recognise different singers or speakers. In signal

processing, timbre is described as a multi-dimensional attribute, mainly de-

termined by the frequency content of the sound in its time history [84, 85, 86].

Thus the spectral features of audio are widely used for analysing music tim-

bres in MIR studies.

In violin performance, due to different players have their preferred bow-

ing habits, the application of bowing gestures becomes a key factor in distin-

guishing violinists. However, measuring bowing gestures from audio signals

is not feasible. Previous research attempted to establish the relationship

between audio features and bowing gestures, so these features can be used

to measure bowing parameters. Several timbre features including bright-

ness, root-mean-square energy (RMS), spectral centroid, spectral contrast,

spectral flatness or skewness, have been strongly correlated with bowing ges-

tures [87, 88, 39]. Therefore the timbre features are assumed as important

cues to describe the performer’s bowing characteristic in this Thesis. We

extract six timbre features, including RMS, spectral centroid, spectral band-
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width, spectral contrast, Mel-frequency cepstral coefficients (MFCCs) and

Zero-crossing Rate (ZCR), to present the performer’s style, which will be

introduced separately. (Although RMS is not usually regarded as a timbre

feature, it is correlated with both volume and bowing force [89] and has been

used to characterise spectral and harmonic properties in MIR studies [90].

Therefore, we include RMS in the timbre feature set in this Thesis.)

• Root Mean Squared Energy. The energy envelope of an audio

signal is calculated using root-mean-square (RMS) energy on a short

time frame basis. The RMS is calculated using Equation 2.2, where

T is the frame size, and at is the amplitude of tth audio sample in the

frame.

RMS =

√√√√ 1

T

T−1∑
t=0

(at)2 (2.2)

• Spectral Centroid. Spectral centroid is a commonly used statistical

feature computed from the spectra. It indicates the centre of “gravity”

of the spectrum and is always connected with the “brightness” of the

sound [91]. The individual centroid of a spectral frame is defined as

the average frequency weighted by amplitudes, divided by the sum of

the amplitudes. The value of spectral centroid of the ith audio frame

Ci is defined as:

Ci =

∑K−1
k=0 fk ∗ Y (k)∑K−1

k=0 Y (k)
(2.3)

fk is the centre frequency of a Short-time Fourier transform (STFT)

bin, and Y (k) is the magnitude of bin k. Higher order moments such

as variance, skewness and kurtosis can also be defined to characterise

spectra.

42



• Spectral Bandwidth. The bandwidth of the spectrum is described

by the spectral spread [92], which is the spectrum’s second central mo-

ment. To compute the Bandwidth (Bi), one has to take the deviation

of the spectrum from the Spectral Centroid, according to Equation 2.4.

Bi =

∑K−1
k=0 (fk − Ci)

2 ∗ Y (k)∑K−1
k=0 Y (k)

(2.4)

• Spectral Contrast. The Spectral contrast is defined as the decibel

difference between peaks and valleys in the spectrum [93]. The Fast

Fourier Transform (FFT) is first applied to get the spectral compo-

nents of each frame and then divided into six octave-based sub-bands.

Finally, spectral contrast is estimated from each octave sub-band [94].

• Mel-frequency Cepstral Coefficients (MFCCs). The MFCCs of

a signal are a small set of features that concisely describe a spectral

envelope’s overall shape. The input audio is first segmented into short

frames, and the framed signal is converted to the frequency domain

using the Fast Fourier transform (FFT). The magnitude spectrum of

the transformed signal is passed through the Mel filterbank and then

converted to a logarithmic scale. The Mel warping is to convert the

frequency into a perceptually meaningful scale using the following equa-

tions: M(f) = 2595log10(1+f/700) or M(f) = 1127ln(1+f/700) [95],

where higher resolution is assigned to lower frequency components. Fi-

nally, the discrete cosine transform (DCT) [96] of the list of Mel log

powers are calculated, and the MFCCs are the amplitudes of the result-

ing spectrum. The “log-DCT” analysis, also referred to as the “cep-

stral” analysis, is commonly used to decorrelate convolved data for fea-

ture representation [42]. After referring to related papers [97, 98, 99],

and balancing the computational complexity and the spectral informa-

tion of the features, the first 13 Mel-frequency cepstral coefficients are

43



computed and applied in this Thesis.

• Zero-crossing Rate (ZCR). The zero-crossing rate indicates the

number of times a signal crosses the zero axis [100]; it occurs when

two successive samples have different signs. The discrete audio signal

x is first divided into I frames where {xi : 1 ≤ i ≤ I}. Then, for ith

frame, there are T samples in the frame, and the zero-crossing rate is

defined as:

Zi =
1

2T

T∑
t=1

sign|[xi(t− 1)− xi(t)]| (2.5)

where

sign(v) =

1, v > 0

0, otherwise

Since periodic sounds tend to have a small value of it, while noisy

sounds have a high value of it, the ZCR is frequently used in speech/-

music classification [101], instrument classification [102] and sounds

identification [103].

2.5 Statistical Models and Music Similarity

In this Thesis, we assume that the global distribution of audio features from

a performer’s all performances can be used to model this performer’s play-

ing style. Various statistical models are applied and compared to investigate

which model performs better in modelling violinist’s styles. Section 2.5.1

outlines the definition and application of three statistical models used in this

Thesis, including Histogram, Kernel Density Estimation (KDE) and Gaus-

sian Mixture Models (GMM). Next, since we propose methods for violinist

identification based on the calculation of musical similarity, Section 2.5.2
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reviews related research in music similarity.

2.5.1 Statistical Model

The statistical model is a mathematical representation that embodies a set of

statistical assumptions concerning the properties of sample data [104]. When

data analysts apply various statistical models to their investigative data, the

information can be understood and interpreted more strategically. Rather

than observing the raw data, this practice allows them to identify relation-

ships between variables (e.g. mean or variance of a series of variables), make

predictions about future data sets, and visualise data intuitively. In music

performance, it is difficult to reveal the relationship between the performer’s

style and audio features at note-level (or frame-level). Still, the feature dis-

tribution of hundreds or thousands of notes may indicate the performer’s

characteristics. This section will introduce the definition and calculation

method of three statistical models, including Histogram, KDE and GMM;

their applications in MIR research are also reviewed.

2.5.1.1 Histogram

Estimating probability density function (PDF) of a series of data points is a

central topic in statistical research, which is also called density estimation.

The histogram is perhaps the simplest way of density estimation and was

firstly introduced by Karl Pearson [105]. It is an approximate representation

of the numerical data’s distribution and gives a rough sense of the underlying

data distribution density.

The first step of constructing a histogram is to divide the entire range

of data into a series of bins (or intervals), and the width of a bin is called

“bin size”. The bins are usually specified as consecutive, non-overlapping

intervals of a variable, and they must be adjacent and are mostly in equal

size [106]. The number of samples that fall into each interval is denoted as
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“frequency”, displayed as a rectangle erected above the bin, and the rect-

angle’s height is proportional to the frequency. As the adjacent bins leave

no gaps, the rectangles of a histogram touch each other to indicate that the

original variable is continuous [107].

In MIR studies, the histogram is always used to obtain the audio feature

distribution of a music piece, from which high-level properties of the music

can be observed and captured. For example, pitch histograms depict the pitch

distribution of a song, and they can be applied to the musical genre classifica-

tion [61] and music repetition detection [108]. Moreover, the beat histogram

is related to rhythmic similarity [109]; multi-dimensional histograms using

multiple audio features are validated for music emotion recognition [108].

2.5.1.2 Kernel Density Estimation

The kernel density estimation uses a kernel to smooth frequencies over the

bins, which can accurately reflect the distribution of an underlying variable.

Compared with the histogram, the KDE is usually plotted as a curve rather

than a set of bars and yields a smoother probability density function. The

definition of KDE is shown in Equation 2.6,

p̂(x) =
1

jh

j∑
i=1

W

(
Xi − x
h

)
(2.6)

where W denotes the kernel function that is generally a smooth, symmet-

ric function (such as a Gaussian that is calculated using Equation 2.7), and

h > 0 is a smoothing parameter called the bandwidth. The (X1, X2, X3, X4, ...Xj)

are observation data points, and x is a linearly spaced series of data points

which houses the observation data points. The individual kernel value W (x)

is calculated using Equation 2.7 (if the kernel function is Gaussian). The

KDE smoothes each data point Xi into a small density bump and then sums

all these small bumps together to obtain the final density estimate result.
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W (x) =
1√
2π

exp(
−x2

2
). (2.7)

Due to its good performance in modelling and visualising data distri-

bution, KDE is used for music classification [110], emotion recognition [111,

112], or music similarity analysis [113] in previous research.Therefore, we also

applied KDE to obtain the audio feature distribution of performers, which is

used to describe the performer’s performance style, the details of which are

presented in Section 4.2.

2.5.1.3 Gaussian Mixture Model

Gaussian distribution is a widely used statistical model in many research

areas, which has a bell-shaped curve, with the data points symmetrically

distributed around the mean value. The probability density function of a

one dimensional Gaussian distribution p(x) is given by Equation 2.8:

p(x) =
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

(2.8)

where σ is the mean and µ2 is the variance. However, if a large data set

has more than one “peak” in its distribution, trying to fit it with a unimodal

model will usually result in a poor fit. An obvious way to model a multimodal

distribution is to assume it is generated from multiple unimodal distributions.

Motivated by this assumption, it is reasonable to model multimodal data

as a mixture of many unimodal Gaussian distributions, and the “Gaussian

mixture model” is then presented.

A Gaussian mixture model is parameterised by the weights of the mixture

component and the means and variances/covariances of each component.

For a Gaussian mixture model with C components, the cth component has

a mean value µc and variance value σc for the univariate case and a mean
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vector ~µc and covariance matrix Σc for the multivariate case. The mixture

component weights are defined as φc for component c with the constraint

that
∑C

c=1 φc = 1, so that the total probability distribution normalises to 1.

For the univariate case, the distribution p(x) is:

p(x) =
C∑
c=1

φcN(x|µc, σc) (2.9)

with

N(x|µc) =
1

σc
√

2π
exp

(
−(x− µc)

2

2σ2
c

)
(2.10)

If each component is a multi-variant gaussian function, and each com-

ponent density is a D-variate Gaussian function of the form, the probability

distribution function is described as:

p(~x) =
C∑
c=1

φcN(~x| ~µc,Σc) (2.11)

with

N(~x| ~µc,Σc) =
1√

(2π)D|Σc|
exp

{
−1

2
(~x− ~µc)

TΣ−1
c (~x− ~µc)

}
(2.12)

The GMM is mostly used for voice recognition and speaker recogni-

tion [114, 115, 116] with good performances. Particularly, in MIR research,

the GMM is applied for calculating music similarities [117], classifying music

genres [118] and recognising instruments [119, 120]. Thus we hypothesise the

GMM would help identify and model the style of instrumentalists, details of

which will be shown in Section 4.2.
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2.5.2 Music Similarity Analysis

Although there is little research using musical similarity methods to iden-

tify performers, prior work in related fields provides useful insight into this

Thesis’s topic. Music similarity is a broad area that has been studied for

a long time, and it has been applied to many MIR studies, such as playlist

generation [121], music recommendation [122], emotion recognition [123], mu-

sic genre classification [124] and instrument classification [125]. We roughly

summarise the three steps in assessing similarities between musical pieces.

First, it is assumed that some aspects of the audio signal are kept time-

invariant over a short period. Thus most audio features are designed and

extracted from a short time window (also called a “frame”) of the audio sig-

nal. Next, since audio features at the frame level are not representative of

structural or global musical characteristics, we need to analyse the audio fea-

tures statistically. If the feature distribution is known, it is straightforward

to calculate statistical parameters such as the mean and variance. If the

feature distribution is unknown or complex, it is necessary to develop more

sophisticated statistical models with parameters learned or trained from the

data [32]. Finally, the distance or divergence between feature distributions

can be calculated as an indicator of musical similarity estimation.

Previous music similarity calculation systems rely on statistical models

that are fitted on low, medium or high-level audio features [126]. For ex-

ample, MFCCs and histograms are applied to model timbre characteristics,

and Earth Movers Distance [127] is computed to measure music similari-

ties. Similarly, a GMM trained on spectral coefficients of each song has been

shown to represent musical characteristics well. The Kullback-Leibler (KL)

divergence is then calculated to evaluate music similarity between Gaussian

distributions [128].

The distance between feature distributions is a key parameter to represent

music similarity. KL divergence [129] is a common way to measure how one
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probability distribution is different from another, and the JS divergence [130]

is a symmetric version of the KL divergence. In terms of discrete probability

distributions, P and Q are defined on the same probability space, while P

represents the distribution of observation data, and Q represents a model,

or an approximation of P. Then the KL divergence can be calculated as:

DKL(P ||Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)
(2.13)

KL divergence is asymptotic to infinity when one of the distributions

tends to zero, which also allows it to be used successfully in many scenar-

ios [131]. Particularly, since the KL divergence between GMMs is not analyt-

ically tractable, we use matching-based approximation following the imple-

mentation in [132] in this Thesis. The KL-divergence between the Gaussians

N(µ1,Σ1) and N(µ2,Σ2) is defined as follows, and Tr means the trace of

matrix.

DKL =
1

2
(log
|Σ2|
|Σ1|

+ Tr(Σ−1
2 Σ1) + ( ~µ1 − ~µ2)TΣ−1

2 ( ~µ1 − ~µ2)) (2.14)

2.6 Machine Learning

Machine learning (ML) is a type of artificial intelligence (AI) that allows

algorithms to use historical data (also known as training data) as input to

predict new output values accurately. It is widely used for both classification

and regression tasks.

When training a machine learning model, the training data is a set of

data samples that are denoted as X = (X1, X2, ..., Xj) and Xj ∈ Rn where n

means the dimension of each data sample, and j means the number of training

samples. The corresponding output labels are denoted as Y = (Y1, Y2, ..., Yj).

The machine learning is generally categorised as supervised Learning, unsu-
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pervised learning and reinforcement learning. When a model is trained with

supervised learning, the data sample X and the corresponding label Y are

considered as input and the resulting model can predict Ŷ from the new

data point X̂. For unsupervised learning, on the other hand, the training

data contains only samples without any target labels, and the goal is to find

hidden patterns or relationships among such data by clustering or density

estimation. As for reinforcement learning, the algorithm needs to interact

with a dynamic environment and achieve a certain goal, such as driving a

car or playing a specific game.

In this Thesis, we only use supervised learning to identify violinists. Since

two machine learning models, including the K-Nearest Neighbour (KNN) and

the Support Vector Machine (SVM), are considered as baselines in Chap-

ter 4, their definitions and computations are first presented in this Section.

In addition, we will propose a transfer learning method for violinist recogni-

tion (see Chapter 7), where two categories of deep learning models are used,

including convolutional neural network (CNN) and convolutional recurrent

neural network (CRNN). We present the basic definitions of the two models

in Section 2.6.2, together with an overview of the transfer learning approach.

Other classification algorithms, such as Decision Trees and Hidden Markov

Models, are not included here due to this Thesis’s scope.

2.6.1 Machine Learning Models

2.6.1.1 K-Nearest Neighbours

The K-Nearest Neighbours algorithm (KNN) is a supervised learning method

which was first developed by Evelyn Fix and Joseph Hodges [133] and later

expanded by Thomas Cover [134]. It is used for both classification and

regression tasks. The input is K closest training examples in a dataset, and

the output is a class label for the classification task; or the value of an object’s
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property for the regression task.

As we discussed earlier, the training data are (X1, Y1), (X2, Y2), (X3, Y3)...

(Xj, Yj), each sample contains a multidimensional feature vector Xj with a

label Yj. The training phase of the KNN is implemented by storing the

feature vectors and labels of all training samples, and K is a constant that

users initialise. In the test phase, unlabeled feature vectors X̂ are set as test

data. For each X̂ i ∈ X̂, the distance between X̂ i and each training data

sample Xi ∈ X is firstly calculated, and the nearest K training samples from

the X̂ i can obtain. Finally, for classification tasks, the most frequent class

label in such K training samples is assigned as the predicted label Ŷ for the

X̂; for regression tasks, the mean of the K labels is returned as the predicted

value Ŷ .

Specifically, the distance between test data and each training data is

mostly measured by Euclidean distance [135]. For n-dimensional data vectors

p and q given by Cartesian coordinates in Euclidean space, the distance

d(p, q) between p and q is defined by:

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pi − qi)2 + · · ·+ (pn − qn)2

(2.15)

2.6.1.2 Support Vector Machine

Support Vector Machine (SVM) is another popular supervised learning model

for solving pattern recognition problems. It was introduced and developed by

Vapnik et al. [136, 72, 137], and then widely used for multi-class classification

and regression tasks.

In the training phase of SVM, the algorithm is performed by finding a

hyperplane in an n-dimensional space (n means the dimension of each input

sample vector) that separates the training data in different classes distinctly.
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Although many possible hyperplanes could be selected to classify data, our

objective is to find a plane with the maximum distance among data points

of any class. The distance is known as margin, so the SVM is also named as

Maximum Margin Classiffier.

If the data is linearly separable in the SVM classifier, we use a linear

kernel function to fit a linear hyperplane between two classes. The margin

is also called hard-margin [137]. If the data is non-linear separable, the soft-

margin method [137] and kernel trick [138] method are introduced to fit a

non-linear boundary between classes. Details of the mathematical process of

SVM are beyond this Thesis’s scope, but they can be checked in [139]. In

MIR research, the SVM is frequently used as a classifier to achieve emotion

recognition [140], music genre classification [141], and instrument classifi-

cation [142]. In particular, it is also used for performer identification and

works well [143, 144]. Therefore, SVM is used as a baseline to evaluate the

performance of our proposed method, details of which will be introduced in

Chapter 4.

2.6.2 Deep Neural Networks

Although audio features and statistical models (or machine learning meth-

ods) can be used for music classification or performer identification, they

require appropriate feature design to present audio properties, which de-

pends on domain knowledge and careful engineering work. To automatically

discover the needed representations to model and classify music expression,

deep neural networks (DNN) have become very popular in MIR research (e.g.

music classification, transcription, music generation) [145, 146, 147] in recent

years. This trend is even stronger in other fields, such as natural language

processing and computer vision. In this Thesis, to improve the performance

of violinist identification using a limited dataset, we will apply the transfer

learning method in Chapter 7. This section introduces a basic definition
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of deep learning architectures, including Convolutional Neural Network and

Convolutional Recurrent Neural Network, followed by an overview of the

transfer learning approach.

2.6.2.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is a class of deep learning architectures

commonly applied to analyse visual imagery [148]. CNN assumes features

in different hierarchical levels and can be extracted by convolutional ker-

nels. The hierarchical features are learned to achieve a high-level task during

supervised training [145]. A standard CNN consists of an input, hidden,

and output layer. In a convolutional neural network, the “convolution” is

typically performed in hidden layers, which implement a dot product of the

convolution kernel with the layer’s input feature matrix. This product is usu-

ally calculated by Frobenius inner product [149], and its activation function

is commonly Rectified Linear Unit (ReLU), which can be formulated using

g(z) = max(0, z). As the convolution kernel slides along the input matrix,

the convolution operation generates a feature map, contributing to the next

layer’s input. This is followed by other layers such as pooling layers, fully

connected layers, and normalisation layers [150].

Since CNN was originally designed for image inputs, mostly two-dimensional (2D)

signals per channel, it is difficult to apply CNN directly to audio signal (one-

dimensional sequential data) in early studies. To solve this problem, the

audio signal was converted to a 2D representation and the representation

was regarded as a visual image that contained audio characteristic infor-

mation. Then CNN could work well in this case. The two dimensions are

mostly frequency and time, popular representations like Constant-Q trans-

form (CQT) [151], Spectrogram [152], Mel-spectrogram [153], and Chroma-

gram [154] were explored and compared as inputs for training CNN [155].

The CNN uses these time-frequency representations to play a powerful role
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in tasks like music instrument recognition [156], music tagging [157], onset

detection [158] or fundamental frequency estimation [159, 160].

2.6.2.2 Convolutional Recurrent Neural Network

RNNs are a class of deep neural architectures which are often used to model

sequential data (e.g. audio signals or word sequences). They can use their

internal state (memory) to process variable length sequences of inputs [161],

which allows them to exhibit temporal dynamic behaviour. Hence the RNNs

are applicable to tasks such as handwriting recognition [162], machine trans-

lation [163] or speech recognition [164]. The more detailed knowledge of

RNNs is beyond this Thesis’s scope, but their fundamental principles and

application in MIR can be found in [165, 44].

A Convolutional Recurrent Neural Network (CRNN) is described as a

modified CNN by replacing the last convolutional layers with an RNN. The

CNN is a feature extractor, and RNN is used for temporal or structural in-

formation summariser [145]. This architecture was first proposed in [166] for

document modelling and classification, and later applied for image classifica-

tion [167], music transcription [59] and music classification [145]. Recently,

the CRNN has been further modified for music tagging and singer identifi-

cation (SID) with competitive results. For example, Minz Won et al. [168]

proposed a self-attention-based deep sequence model for music tagging, where

stacked transformer encoders follow the shallow convolutional layers. In this

Thesis, the pre-trained CNN and CRNN models are considered as source

tasks, and they are fine-tuned using a violin dataset to identify violinists (see

Chapter 7). This technique is also known as transfer learning, which will be

introduced in the following subsection.
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2.6.2.3 Transfer Learning

As we discussed above, deep learning models such as CNN, RNN or CRNN

perform powerfully for many tasks. However, a huge amount of labelled

data are required in the training phase of DNN, which is time-consuming

for data collection and labelling. Meanwhile, to ensure the performance of

DNN, the feature space and distribution of test data should be the same as

the training data, which leads to poor performance of a pre-trained model

working on other tasks. To solve these problems, researchers assume that

reusing knowledge from a task trained on a large dataset would help with a

different but related new study. The performance of new studies would be

maintained by tuning the pre-trained model. According to this assumption,

transfer learning methods have been proposed and developed, and they have

been highly successful in many fields [169, 170, 171]. It aims at improving

the performance of target models using a small dataset by transferring the

knowledge learned from source domains [172]. Tasks trained in the source

domain in the past are generally referred to as source task, while new tasks

are referred to as target task.

In CNN or other deep learning methods, the different levels of features are

hierarchically learned from early to later layers. Therefore, the basic idea of

transfer learning is that the learned low-level feature extractor can be trans-

ferred to target tasks in the source task. For example, in the computer vision

field, the rich basic visual information such as the basic shapes or prototypi-

cal templates of objects were captured when trained for image classification.

The learned knowledge can be transferred for target tasks like person re-

identification [173] or object detection [174]. In MIR research, when training

a model for music tagging, low-level information such as tempo, pitch, (local)

harmony or envelope can be captured in early layers [157, 175], which can

be transferred for other related tasks like music genre classification, emotion

prediction, or audio event classification [176].
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In this paper, due to our limited data, we propose a transfer learning

approach to identify violinists. To the best of our knowledge, there is no

publicly available dataset with the violinist’s ID and no pre-trained models

for instrumentalist classification. We therefore consider the neural networks

trained for other related tasks as source tasks, then transfer the learned

weights and fine-tune the models using our datasets to identify violinists.

Details of these methods will be presented in Chapter 7.

2.7 Evaluation Methods

To evaluate the performance of proposed violinist identification methods, we

use F-score and Confusion Matrix that have been universally used to assess

multi-class classification tasks. In addition, to reduce the bias caused by

splitting the dataset in a simple way, we apply cross-validation in this Thesis.

This section introduces the definition of mentioned evaluation metrics and

the process of cross-validation.

2.7.1 F-score

The F-score, also called the F-measure, is a evaluation metric of a model’s

performance. It is originally designed to evaluate binary classification sys-

tems, which classify examples into “positive” or “negative”. The negative

class label and positive class label are respectively represented as “0” and

“1”. For each test point, the ground-truth label and the predicted label

are denoted as (Yj) and (Ŷ j). The result is evaluated using precision (P ),
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recall (R) and F1-score (F1). They are defined as:

P =
Otp

Otp +Ofp

(2.16)

R =
Otp

Otp +Ofn

(2.17)

F1 = 2 ∗ P1 ∗R1

P1 +R1

(2.18)

where Otp, Ofp, Ofn and Otn are the numbers of true positives (TP), false

positives (FP), false negatives (FN) and true negatives (FN), respectively.

TP means a test point is correctly predicted as the positive class i.e., Yj =

Ŷ j = 1. Similarly, TN means a test point is correctly predicted as the

negative class i.e., Yj = Ŷ j = 0. FP means a test point is incorrectly

classified in the positive class, i.e., Yj = 0 while Ŷ j = 1. Additionally, FN

means a test point is incorrectly predicted as the negative class, i.e., Yj = 1

while Ŷ j = 0.

However, in multi-class classification tasks, the standard F-score is un-

suitable. To solve this problem, the macro F-score and micro F-score are

introduced [177] and frequently used in many relevant fields. The macro F-

score is defined in following equations, where Pz and Rz denote the precision

and recall of zth class, Z means the number of classes. The Macro Precision

and Macro Recall are computed by taking the average of the precision and

recall of the system on different classes, and the Fmacro is simply obtained by

calculating the harmonic mean of these two parameters.

Pmacro =
1

Z

Z∑
z

Pz (2.19)

Rmacro =
1

Z

Z∑
z

Rz (2.20)

Fmacro = 2 ∗ Pmacro ∗Rmacro

Pmacro +Rmacro

(2.21)
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In Micro-average method, the individual TP, FP, FN and TN of the sys-

tem are summed up for different classes and then applied to get the statistics.

The micro F-score is calculated using equations below.

Pmicro =

∑Z
z O

z
tp∑Z

z O
z
tp +

∑Z
z O

z
fp

(2.22)

Rmicro =

∑Z
z O

z
tp∑Z

z O
z
tp +

∑Z
z O

z
fn

(2.23)

Fmicro = 2 ∗ Pmicro ∗Rmicro

Pmicro +Rmicro

(2.24)

In sum, the Macro-average method can be used to measure how the sys-

tem performs across the sets of data, and the micro-average can be helpful

when the dataset varies in size for a different class. In this Thesis, the per-

formance of the whole system across the data from each performer is more

important, and the amount of data for each performer is equivalent. There-

fore, in our case, the macro-F1 is more suitable, and it is applied in the

following Chapters to evaluate the performances of our proposed methods.

2.7.2 Confusion Matrix

Although the macro-F1 can evaluate the performance of a classification

model, it hides the detailed results for each label. For example, with three or

more classes in the dataset and we obtain a macro-F1 of 80%, it is uncertain if

all classes are being predicted equally well, or if one or two categories are be-

ing neglected by the model. Therefore the confusion matrix is introduced to

solve this problem and has been widely used in many existing works [15, 176].

In a multi-classification task, if there are Z classes in the dataset, the

confusion matrix is a Z ∗Z-dimensional matrix, with each row corresponding

to a predicted class and each column corresponding to an actual class. The

diagonal elements represent the number of samples where the predicted labels
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are equal to the true labels. In contrast, the non-diagonal elements are those

samples mislabelled by the classifier. A higher diagonal value of the confusion

matrix indicates many correct predictions. In addition, the confusion matrix

can be visualised using the heat map function, where the shades of colour

can also mean the model’s performance.

In our case, we expect a violinist identification approach that works well

for recognising each performer in the dataset. Therefore, we apply the confu-

sion matrix in this Thesis to evaluate the method’s performance. An example

of a confusion matrix can be found in Section 4.3.2.4.

2.7.3 Cross-Validation

The dataset is usually split in machine learning experiments into a training

set and a test set, where the model is fitted on the training set and evaluated

on the test set. If we split the data in a simple way, the model could be biased

to the characteristics of the training set, resulting in overfitting or selection

bias problems [178]. To address this issue, cross-validation has been proposed

and is widely considered a better way to evaluate the performance of models.

The cross-validation is also called rotation estimation, and the general

procedure is shown as follows:

1. Shuffle the dataset randomly;

2. Split the dataset into k groups;

3. For each unique group of data:

1) Take the group as test data set;

2) Take the remaining groups as a training data set;

3) Fit a model on the training set and evaluate it on the test set;

4) Retain the evaluation score and discard the model;
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4. Average evaluation metrics are computed in the loop to obtain the

model performance.

There are many types of cross-validation like Leave one/P out cross-

validation, Leave one/P group(s) out cross-validation [179]. This Thesis uses

Leave one group out cross-validation(LOGOCV) to evaluate the performance

of the violinist identification system, where the dataset is split into groups

according to which music piece they are associated with.

2.8 Summary

This Chapter outlined the technical background of this Thesis. The music

expression and its influential factors are first presented in Section 2.2, where

the importance of performers’ interpretation of given music is also discussed.

Since this Thesis uses violinist identification as a case study for perform-

ers’ style modelling, the structure of the violin and fundamental playing

techniques are introduced in Section 2.3. Next, we reviewed the definitions

and applications of audio features, statistical models and music similarity

algorithms, which can be used to describe, model and measure music char-

acteristics. In Chapter 4, 5, and 6, such techniques will be applied to model

violinists’ characteristic and identify violinists. Finally, Section 2.6 and Sec-

tion 2.7 introduced the machine learning methods and corresponding evalu-

ation metrics, which will be applied to characterise violinists and assess the

performance of the proposed methods.

In the following Chapters, we will propose violinist identification meth-

ods applicable to different scenarios. However, before elaborating on these

methods, we need to build a set of violin datasets containing violinist labels

to evaluate these methods’ effectiveness. We will introduce the details of the

dataset construction procedure in Chapter 3.
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Chapter 3

Dataset Construction

3.1 Introduction

Violinist identification (VID) takes an audio signal as input and the ID or

name of the performer as output. A violin dataset containing multiple per-

former IDs is intuitively needed if we want to evaluate a VID approach. How-

ever, most existing open-access violin datasets have been built for expression

classification [21], instrument identification [180] or pitch estimation [181],

and these datasets do not contain the label of performer’s name (or ID). To

evaluate our approach presented in the following sections, we constructed two

groups of datasets, which are annotated from commercial concerto recordings

and solo scale recordings, respectively.

As the characteristic playing styles developed by virtuoso violinists are

favoured by most listeners and often imitated by many students, it is vital

to study how these styles are developed and which acoustic features can be

used to describe them. Therefore, three datasets are created from recordings

of commercial concertos performed by nine virtuoso violinists, which are

applied for different VID scenarios. Details of the recording selection and

dataset creation methods are presented in Section 3.2.
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However, the selected concertos are recorded in different environments,

which may introduce noises in modelling violinist’s playing styles. Suppose

we use timbre features to model a violinist’s style. In that case, such features

may not only reflect the violinist’s playing but also contain characteristics

of the orchestra accompaniment or the property of the instrument. To solve

this problem and validate the robustness of our methods, we construct an-

other group of datasets from solo violin recordings. Basic information about

the solo violin recordings is briefly described in Section 3.3.1, and the dataset

construction methods are subsequently presented in Section 3.3.2 and Sec-

tion 3.3.3.

3.2 Concerto Dataset Construction

3.2.1 Concerto Recording

Concerto is a musical work that focuses on a solo instrument, such as vio-

lin or piano, and is accompanied by an orchestra. It is paramount in the

repertoire of master violinists who perform concertos individually. In violin

performance, tempo, intensity and vibrato can vary from person to person

since each violinist brings a personal style to their playing.

In addition, most concertos contain a cadenza part. Performers can play

this without concern the coordination with the orchestra or obeying the

global tempo. Violinists therefore often exhibit their unique playing style

most expressively during the cadenza. Paying particular attention to the

cadenza is thus very useful for our research to understand how to model dif-

ferences in individual playing styles. In addition, we do not have to address

the influence of accompaniment and can focus on features extracted from the

solo performance.

We select five concertos written by five well-known composers: Beethoven,

Brahms, Mendelssohn, Tchaikovsky and Sibelius. These pieces have all been
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performed by nine violinists: Jascha Heifetz, Anne Sophie Mutter, David Ois-

trakh, Itzhak Perlman, Pinchas Zukerman, Isaac Stern, Salvatore Accardo,

Yehudi Menuhin and Maxim Vengerov, who are all leading master violin

players. All concerto repertoires are from commercial CD albums. Further

details of repertoires are listed in Table 3.1, while information about the

CD album is listed in the Appendix A. However, these concerto composi-

tions were recorded by various performers at separate times, and differences

in recording dates and conditions can introduce noise into the dataset con-

struction. To address these issues, we conduct data pre-processing in our

proposed violinist identification approaches, and try to select audio features

(e.g., vibrato, expressive timing) that are less disturbed by the recording

conditions.

Three datasets were constructed based on such concerto recordings to

evaluate proposed VID approaches in different scenarios. The first dataset

only contains isolated vibrato notes, and it will be used in Chapter 4 to assess

the effectiveness of vibrato features in identifying violinists. The second

dataset consists of selected short musical clips with onset annotations, which

will be applied in Chapter 6. The third dataset is constructed from all

concerto clips that contain violinists’ performances, which will be used for

research in Chapter 7. Each dataset’s audio selection and annotation strategy

will be separately presented in this section.

3.2.2 Isolated Vibrato Notes Dataset

To quantitatively investigate the importance of vibrato on a violinist’s char-

acteristic style, we annotate a certain number of vibrato notes from each

performer’s performance to build the Isolated Vibrato Notes (IVN) Dataset.

Since violin performance is always accompanied by orchestra in concertos,

to reduce the influence of accompaniment on vibrato features, we segment

solo notes containing vibrato or vibrato notes with very low accompaniment
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Figure 3.1: Vibrato notes segmentation (excerpt)

volume from original concerto recordings. We also sidestep the influence of

variation between music pieces, the same excerpts from each concerto for ev-

ery performer are thus segmented. This way, we can focus on the differences

in vibrato characteristics among performers.

Although there are automatic vibrato detectors [182, 183] to locate the

position of vibrato in a music piece, their accuracy for polyphonic violin

recordings (especially concertos) has not been validated yet.

While automatic vibrato detectors can be used to locate vibrato positions

in a music piece [182, 183], their accuracy for polyphonic violin recordings

(especially concerto data) has not been verified yet. Since we need to ensure

that vibrato features are extracted from vibrato notes, each vibrato note’s

onset and offset position must be accurately calibrated. Therefore, we man-

ually label the onset and offset time of each vibrato note, rather than using

automatic vibrato detectors. Sonic Visualiser [184] is used for data annota-

tion, together with the Match Vamp plugin [185] to align the performances,

guiding and improving the annotation performance. Figure 3.1 shows an ex-

ample of the interface used for annotation and an excerpt of the data with

several notes. Darker (purple) segments correspond to solo vibrato notes

in this plot. Vibrato note onset and offset times are shown as dark purple

vertical lines around segment boundaries.

The recordings and the amount of annotated data in each movement

are listed in Table 3.1. The total amount of vibrato annotations for each

performer is 248.
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Table 3.1: Concerto vibrato note dataset. We annotated the vibrato note
segments from the original recordings, ‘# annotations’ refers to the number
of vibrato note annotations in each movement.

Composer Concerto Name Movement # annotations

L. V. Beethoven Violin Concerto in D major, Op.61
I 21
II 26
III 4

J. Brahms Violin Concerto in D major, Op.77
I 11
II 6
III 4

F. Mendelssohn Violin Concerto in E minor, Op.64
I 13
II 47
III 3

P. I. Tchaikovsky Violin Concerto in D major, Op.35
I 26
II 7
III 17

J. Sibelius Violin Concerto in D minor, Op.47
I 23
II 24
III 16

3.2.3 Selected Concerto Clips Dataset

To identify the violinist from short music clips based on note-level features,

we divide the original recordings into several clips and then select some

clips to label the boundaries of each note to construct the Selected Con-

certo Clips (SCC) Dataset. The selection of concertos for this dataset is the

same as in the IVN dataset.

Since we want to analyse the audio features at the note level, the onset

position of each note must be precisely labelled. Although there are many

existing automatic onset detectors [156, 186], their accuracy in violin per-

formances has not been validated yet, thus they cannot be directly used for

our purposes. We manually label onset times using Sonic Visualiser, and

the overall data annotation procedure consists of three steps: music piece

selection, alignment, and onset time labelling.

The first step is music piece segmentation and selection. In concerto per-

formance, the violinist is not playing in the “Preludes” or “Interludes” (that

are performed by orchestra alone). In addition, the player’s performances
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are drowned out by the orchestra in some parts. Therefore we cut out the

parts of the music without the violin or where the violin cannot be heard

clearly so that the original concerto recordings are divided into several short

pieces. However, it is unfeasible to label all notes in five concertos manually.

We thus select some typical clips by considering the impact of the pieces and

note types. First, the tempo may be very different in different parts of a

concerto movement. For example, the start of a movement is always soft and

slow, while the middle part is more varied, and the ending is usually pas-

sionate. We assume performers use their preferable speeds when they play

music with a different tempo, which can be used as a feature to model and

classify performers. Second, different note types, such as semibreve, minim,

crotchet, quaver, dotted note, etc., also affect performers’ timing expression.

Therefore, we selected at least three different parts with different speeds and

covered as many note types as possible from each movement to ensure the

diversity of the data.

In the second step, to make the feature extraction easier, we align the

selected music pieces and the start of the first note is considered as 0 seconds

for each chosen clip. Therefore the deviation of note onsets in selected pieces

can be computed, and the onset feature extraction method will be proposed

in Section 6.2.1.1.

Figure 3.2: Note onset time annotations (excerpt)

The final step is onset time labelling. In practice, labelling short notes

with correct onset times is a substantial challenge. For example, it isn’t easy

to label performance with a quick succession of short sixteenth notes. To
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solve this, we slow down the music using the appropriate function provided

in Sonic Visualiser [184]. Figure 3.2 shows the interface used for onset time

annotation. The vertical line indicates the position of onset times. The

number of annotated onset times from each movement is listed in Table 3.2.

Table 3.2: Concerto note segmentation dataset. We first cut the original
recordings into several clips. We then select two or three clips from each
movement and annotate the note onset time.‘ annotations’ refers to the num-
ber of note annotations in each movement.

Composer Concerto Name Movement Onsets

L. V. Beethoven Violin Concerto in D major, Op.61
I 664
II 239
III 352

J. Brahms Violin Concerto in D major, Op.77
I 262
II 157
III 193

F. Mendelssohn Violin Concerto in E minor, Op.64
I 204
II 201
III 235

P. I. Tchaikovsky Violin Concerto in D major, Op.35
I 225
II 177
III 148

J. Sibelius Violin Concerto in D minor, Op.47
I 233
II 200
III 186

3.2.4 All Concerto Clips Dataset

To ease the workload of manual data annotation in the above section, we

selected a minimum of three segments from each movement to annotate the

note onset times. However, when training a deep learning model, a larger

dataset can help improve its accuracy and generalisation [187]. Furthermore,

if the input to the deep learning model were not musical notes, the onset

label of each note would not be needed (Chapter 7 will present information

about deep learning models). Thus, after removing the parts of the concerto

without the violin or where the violin cannot be heard clearly, the remaining

clips are all retained, forming the All Concerto Clips (ACC) Dataset, elim-
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inating the need for music clip selection and onset time annotation. Each

performer’s performance in this dataset is approximately two hours.

3.3 Solo Dataset Construction

To address the issues raised in Section 3.1, we find recordings of violin solos

played by 22 professional performers on 13 violins. We then annotate these

recordings according to our research requirements and construct two datasets.

The introduction of the solo recordings and the annotation method of each

dataset are presented in this section.

3.3.1 Violin Solo Recording

During the European Bilbao project1, 13 new (white) violins were designed

and built and then evaluated within a free categorisation task by 22 profes-

sional violinists [188]. All violinists were invited to play a musical scale on

each violin, and the musical scale contains around 37 notes. Moreover, all

performers finished the recording task in the same studio (a large rehearsal

room at the Bilbao conservatory) with the same equipment, and the distance

and angle between each and the microphone remained as identical as possible.

Under these circumstances, the recording condition and environment are well

controlled. The differences in timbre or other aspects of violin performance

are mainly affected by the instruments and the performer’s interpretation.

3.3.2 Selected Solo Clips Dataset

Since we analyse the violinist’s playing characteristics using note-level audio

features in the following chapters, the note onset times need to be annotated

precisely. However, to fairly compare the performance of a VID algorithm

1https://www.bele.es/en/bilbao-project-introduction
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on two datasets, the number of violinists in both datasets should be approx-

imately the same or comparable. Therefore, we selected performances from

10 of the 22 violinists, i.e. consisting of 10 × 13 musical scales in total,

and then manually annotated the onset position of each note in the selected

musical pieces using Sonic Visualiser. Together with the onset annotations,

these musical pieces constitute the Selected Solo Sessions (SSC) dataset.

3.3.3 All Solo Clips Dataset

Since we will use the violin dataset to train deep neural networks to identify

violinists in Chapter 7, we need as much training data as possible to improve

the DNN’s performance. Meanwhile, note onset labels are not required for

this task. Therefore, we remove the parts of the original recording that do

not contain violin performances (e.g., silent parts). The remaining violin

performances and the corresponding player IDs are included in the “All Solo

Clips” (ASC) dataset.

3.4 Summary

In this chapter, we present the method of violin dataset construction. Three

concerto datasets are built from commercial recordings to model the playing

style of master players. Considering that there are two scenarios for violinist

identification (isolated notes and musical clips), we first segment a certain

number of vibrato notes manually from each player’s performance to build

the IVN dataset, which will be used in Chapter 4. Then, we create a music

clip dataset from the concerto recordings and annotate the onset time of each

note. This dataset is named SCC and will be used in Chapter 4. Finally,

all the concerto clips containing the violinist’s performance are used to form

the ACC dataset, which will be used to train the deep neural network in

Chapter 7.
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In addition, to further evaluate our proposed VID methods and provide

another scenario for violinist identification, we construct two solo datasets

from scale recordings played by professional violinists. The SSC dataset will

be used to verify the effectiveness of timbre features on VID in Chapter 5,

and ASC will be used to train DNN in Chapter 7.

We summarise the attributes of all datasets in Table 3.3, which includes

the music source, name, corresponding violinist identification scenario, size

and label for each dataset.

Table 3.3: The Summary of all datasets and their attributes.

Music Source Dataset Name VID Scenario Size Label

Violin Concerto

Isolated Vibrato Notes (IVN) Individual Notes 248 Notes * 9 Onsets

Selected Concerto Clips (SCC) Music Clips 3676 Notes * 9 Onsets

All Concerto Clips (ACC) Constant Segments 2 hours * 9 None

Solo Musical Scale
Selected Solo Clips (SSC) Music Clips 0.5 hour * 10 Onsets

All Solo Clips (ASC) Constant Segments 0.5 hour * 22 None

Starting from the next chapter, we will present the proposed violinist

identification methods for different scenarios. It begins with the simplest

condition, i.e. violinist identification based on isolated notes, in Chapter 4.
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Chapter 4

Violinist Identification Using

Isolated Notes

4.1 Introduction

As the smallest unit in musical composition is the single note [189], we will

attempt to analyse and understand the style of violinists in terms of single

notes; note-level features are therefore used for music stylistic modelling. Al-

though it is not common in real life to identify performers based on discrete

notes, it could be a starting point for research and has practical applications

for specific groups of people. For example, violin students always explore how

to express a particular style by imitating the music played by virtuosos. It is

easier to start with individual notes rather than an entire piece of music. In

addition, it is well known that the variation of melody and rhythm produced

by a series of notes can affect the musical style, but whether individual notes

can express style remains a question that deserves to be investigated. More-

over, it is crucial for MIR researchers to find relationships between note-level

audio features and performer’s styles, which will help measure, modify or re-

produce musical styles and provide a reasonable basis for further hierarchical
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style analysis. To address these issues, this Chapter proposes a method for

identifying violinists using isolated notes using hand-crafted audio features

and statistical models.

Among the influential factors of music expressions, vibrato plays a vital

role in the performance of singing, flute and bowed-string instruments. It

is frequently used to enhance selected notes and make them more promi-

nent [62]. As we introduced in Section 2.4.2.2, in violin performance, the

property of vibrato is primarily determined by the player’s finger movement

on the fingerboard, and the rate and extent of vibrato can characterise it.

We therefore assume the vibrato extent and rate are good indicators to de-

scribe a player’s vibrato playing habit and also can be used to identify the

player. However, as we reviewed in Section 1.2, previous works attempted

violinist identification using pitch, timing or energy features. Such features

are generally considered essential for classification, while vibrato features are

seldom used for this task. Thus we choose vibrato features as distinguishing

factors to identify famous violinists, and the feature extraction method is

proposed in Section 4.2.1.2.

Apart from the left-hand playing techniques (such as vibrato), the vi-

olinist’s style is strongly affected by the bowing gestures such as bow ve-

locity, force, acceleration or bow-bridge distance. In most previous studies

[190, 191, 192], the bowing data were acquired and measured by hardware

equipment (like sensors). In this case, they can be captured accurately and in

real-time, but this usually involves using expensive sensing systems and com-

plex setups that are often intrusive in practice. Furthermore, using a hard-

ware system, it is not feasible to measure bowing parameters directly from

audio recordings. However, timbre features extracted from the audio signal

are shown to be related to the bowing parameters [39]. Moreover, unlike the

raw timbre features that may be influenced by many factors (e.g., instrument

or acoustic conditions), timbre variation within each note is more important
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for presenting the performer’s individual characteristics [193]. Therefore, this

Chapter extracts features which reflect note-level timbre variations to model

the violinist’s playing style and then uses these features to identify violinists.

This Chapter is organised as follows. Methods of feature extraction are

presented in Section 4.2, where feature distribution analysis and violinist

identification methods are also illustrated. VID experiments are then pro-

posed in Section 4.3, which also includes results and discussions. Finally, we

summarise this Chapter in Section 4.4.

4.2 Methods

Figure 4.1 shows the proposed method’s overview with four main stages. In

the first stage, data pre-processing is firstly applied, followed by audio feature

extraction from the IVN dataset. The methods of vibrato feature extraction

and timbre feature extraction are separately proposed in Section 4.2.1 as

well as 4.2.2. Next, we obtain the distributions of the features to represent

the performers’ characteristic styles. Such distributions are calculated using

three statistical models, respectively, which are shown and analysed in Sec-

tion 4.2.3. Finally, the similarities among feature distributions are computed

to identify performers based on single features and fused features, which will

be illustrated in Section 4.2.4.

4.2.1 Vibrato Feature Extraction

To capture vibrato features from polyphonic notes, the first step is obtain-

ing the main melody from the audio signal. We extract the predominant

melody from annotated notes using MELODIA [194], so that pitch change

within every note can be observed. To avoid noise interference and extract

all vibrato features from relevant vibrato data, the melody curve is smoothed

before feature extraction. These two steps are denoted preprocessing and de-
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Figure 4.1: Schematic overview of the proposed method for violinist identi-
fication using isolated notes.

tailed in Section 4.2.1.1, and the specific vibrato features are introduced in

Section 4.2.1.2.
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4.2.1.1 Data Pre-processing

MELODIA is an algorithm that outputs the fundamental frequency corre-

sponding to the pitch of the predominant melodic line of a piece of polyphonic

music [194]. To capture vibrato features from polyphonic notes, the first step

is obtaining the main melody from the audio signal. We extract the predom-

inant melody from annotated notes using MELODIA [194]. The “Predomi-

nantMelodia” function implemented in the Essentia library [195] is applied

to obtain the predominant melody of polyphonic musical notes. Moreover,

MELODIA designates segments without main melody as 0Hz, which are left

out from our analysis.

As shown in the middle of Figure 4.2, the curve exhibits noise and arte-

facts near the peaks and valleys. According to the definition of the rate

range and extent range of vibrato in violin playing, it is evident that these

high-frequency noises are not generated by vibrato and therefore need to be

removed as much as possible before extracting vibrato features. The signal

is consequently smoothed to obtain more reliable vibrato features using a

zero-phase Butterworth low-pass filter. This avoids the influence of phase

delay. The smoothed signal is shown at the bottom of Figure 4.2. But in

case of small fluctuations around the boundary, we will address this issue in

the following feature extraction process.

4.2.1.2 Feature Extraction

To characterise vibrato, we extract four note-level vibrato features: average

vibrato extent (AE), average vibrato rate (AR), standard deviation of vibrato

extent (SE), and standard deviation of vibrato rate (SR). All features are

computed from the extracted melody.

Vibrato Extent: In every period of the pitch curve, the instantaneous

vibrato extent is considered to be the distance of vertical components between

an adjacent peak and trough. The average and standard deviation of the
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Figure 4.2: Vibrato note pitch curve before and after smoothing.

vibrato extent are calculated from all instant vibrato extent values within a

note. First, we find the location of every peak and trough contained in the

pitch curve by locating maxima and minima in the smoothed melody data

in each period. We then calculate the absolute frequency distance between

successive peaks and troughs to obtain the instantaneous vibrato extent. The

collection of note-level instant vibrato extents is used to calculate the AE and

SE features for all annotated notes.

Vibrato Rate: After obtaining the locations of every peak and trough

in the pitch curve of a note, the vibrato rate features can be calculated.

We first find the times of peaks and troughs in the pitch curve. The interval

between adjacent peaks and troughs is a half period th, and the rough instant

vibrato rate in every half period is calculated using Equation 4.1. The note-

level average vibrato rate (VR) is considered as the mean value of all instant
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vibrato rates within a note.

VR = 1/(2 ∗ halfperiod). (4.1)

Despite the pitch curve being smoothed before feature extraction, oscillations

or noise which are not caused by vibrato remains a problem. We consider a

heuristic to eliminate the effect of this. In general, the range of the vibrato

rate is 2 Hz to 15 Hz, and the range of vibrato extent is between 9 cents

and 50 cents, which is also used in [66]. After extracting the rough instant

vibrato extent and rate at the note level, we discard values outside these

ranges.

4.2.2 Timbre Feature Extraction

In this section, we present the method of timbre feature extraction. The

data was pre-processed before feature extractions to reduce timbre differences

caused by different recording conditions. It includes silence removal and

loudness normalisation, which will be introduced in Section 4.2.2.1. The

timbre feature selection and extraction are then presented in Section 4.2.2.2.

However, in addition to the individual interpretation of performers, the

timbre features are influenced by many other factors (e.g. instrument, record-

ing conditions), and the fundamental frequency of a note impacts the values

of some features (e.g. spectral centroid). In this case, raw timbre features

are not necessarily comparable between performers. We therefore assume the

performer’s characteristic playing primarily produces the variation of timbre

features within a note. The method of calculating feature variation is pre-

sented in Section 4.2.2.3.
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4.2.2.1 Data Pre-processing

To make the extracted features more comparable among performers, we re-

move silent regions in each music clip, and then apply loudness normalisation

based on the EBU standard [196]. All steps were completed in Audacity1.

4.2.2.2 Feature Extraction

We select features that are either commonly used in the literature in re-

lated tasks, or have been validated in the context of violin bowing technique

recognition in [197].

Six timbre-related features are considered. One feature represents spec-

tral moments (Spectral Centroid), three features describe the shape of the

spectrum (Mel-Frequency Cepstral Coefficients, Spectral Bandwidth [198],

Spectral Contrast [94]), and two temporal features (RMS energy and Zero-

crossing rate). Details of these features were introduced in Section 2.4.4,

further details and discussion can be found in related papers [199, 200, 201,

202, 203].

The segmented notes in IVN dataset are first divided into short over-

lapping frames (fs=44.1 kHz, frame length = 2048, hop size = 512), and

all features are extracted at frame level and summarised at note level. For

each note, the note-level MFCCs and spectral contrast are multi-dimensional

vectors, whereas other features are single-dimensional.

4.2.2.3 Feature Standardisation

We calculate the z-score of each feature vector at the note level, which aims

to standardising features by removing the mean and scaling to unit variance.

The standard score z of each sample x in the feature vector is calculated

using Equation 4.2:

1https://www.audacityteam.org/
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z =
x− u
s

, (4.2)

where u is the mean value of the feature vector, and s is the standard de-

viation. For single-dimensional features like Spectral Centroid, RMS, ZCR

and Spectral Bandwidth, the feature vector can be standardised directly us-

ing this formula. But for multi-dimensional features like MFCCs and Spectral

Contrast, the feature vector is standardised at the dimension level, and the

original dimensionality remains unchanged before and after the standardisa-

tion.

For clarity, a summary of the features used in this Thesis and their ab-

breviations are listed in Table 4.1.

Table 4.1: Summary of features and abbreviations

Original Feature Name Shortened Name
Average Vibrato Extent AE
Average Vibrato Rate AR
Standard Deviation Vibrato Extent SE
Standard Deviation Vibrato Rate SR
Combination of all Vibrato features VC
Spectral Centroid SC
Spectral Contrast SCT
Zero Crossing Rate ZCR
Spectral Bandwidth SB
Root Mean Square Energy RMS
Mel-Frequency Cepstral Coefficients MFCCs

4.2.3 Feature Distribution Estimation

When different performers play the same music piece, they typically ex-

press vibrato or timbre styles in their respective performances. Therefore, we

model the characteristics of each performer using the distribution of the ex-

tracted features. Three statistical models, including Histogram, Kernel Den-

sity Estimation (KDE) and Gaussian Mixture Model (GMM), are separately
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Figure 4.3: Distribution of two performer’s average vibrato extent

used to model these distributions, assuming that these provide compact rep-

resentations of the violinists’ style, which we can use later for identification.

Section 4.2.3.1 and Section 4.2.3.2 show distributions based on vibrato fea-

tures and timbre features, from which we can observe the characteristic of

performers’ feature distributions.

4.2.3.1 Vibrato Feature Distributions

Figure 4.3 shows how the global distribution of average vibrato extent for

Heifetz and Mutter differs, for example. We can easily see that the high-

est density of the vibrato extent distribution appears between 15 cents and

20 cents for Heifetz, but it is 20 cents to 25 cents and 29 to 30 cents in

Mutter’s performances. In addition, Heifetz’s performances have no vibrato

greater than 35 cents, whereas the maximum vibrato extent reaches above

40 cents in Mutter’s. This shows that Heifetz prefers to use the vibrato on

a smaller scale, but Mutter’s vibrato extents are broader. Based on similar

observations for several performers, we can assume that the feature reflects

an essential aspect of the vibrato characteristics of every performer.

In Figure 4.3, the red line shows the Gaussian kernel to estimate the

kernel density of average vibrato extent data from Heifetz and Mutter as
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well, and the curve of the two distributions shows similar properties to his-

tograms. We also train a 3-component Gaussian Mixture Model to estimate

the distribution of the data. Their PDF curves are shown in Figure 4.3 us-

ing continuous (green) lines. The number of components in these models is

selected using empirical observation, i.e., the distributions do not generally

exceed three modes, so the GMM represent the histograms and kernel den-

sities well. Given these curves, we can observe the continuous distributions

of features for each performer, and their differences should reflect individual

characteristics.

4.2.3.2 Timbre Feature Distributions

Followed by the observations above, Figure 4.4 compares the three timbre

feature distributions of Heifetz and Mutter using the three statistical models

mentioned above. Figure 4.4(a) and Figure 4.4(b) show the global distribu-

tions of “Standardised Spectral Centroid”, it is easy to notice that the general

shape of the two distributions is different, where the peak of the Heifetz’s

distribution appears on the left side, and it has a gentler slope to its right

side. In contrast, the entire distribution of Mutter looks closer to a symmet-

rical pattern, with the highest peak occurring near the point of origin in the

horizontal direction. A similar phenomenon can be found in Figures 4.4(c)

and 4.4(d), which represent the distribution of the ZCR features of the two

players. The bottom two figures compare the distributions of the 3rd co-

efficient of MFCCs (which is denoted as MFCCs(c3)) for two performers.

Although their discrepancies are not as easy to discover as the previous two

sets of plots, it is still possible to observe the differences between the two

distributions in terms of slope, width, etc.

Similar to what we mentioned in Section 4.2.3.1, the global feature dis-

tributions are assumed to represent the performer’s playing style, and differ-

ences among the distributions can be used for identifying performers.
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Figure 4.4: Distribution of two performers’ timbre features.
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4.2.4 Violinist Identification using Feature Distribu-

tions

4.2.4.1 Violinist Identification based on Single Feature

To quantify the differences among feature distributions, we calculate the

similarity of distributions of each given feature for all performers using the

Kullback-Leibler (KL) divergence [129] shown in Equation 4.3. This corre-

sponds to the likelihood ratio between two distributions and tells us how well

the probability distribution Q approximates the probability distribution P

by computing the cross entropy minus the entropy.

DKL(P ||Q)) =
∑
i

P (i)log(
P (i)

Q(i)
) (4.3)

For classification, the KL divergence can be calculated between each vi-

brato feature distribution or timbre feature distribution of an unknown per-

former and every known performer in the dataset. The smaller KL diver-

gence, the greater similarity. Therefore finding the minimum divergence be-

tween an unknown and known performer should help to identify the unknown

performer.

4.2.4.2 Violinist Identification based on Feature Fusion

Due to the low number of features, we sidestep the use of complex feature

selection methods. We use the linear combination with equal weights to fuse

similarity estimates for the distributions of different features summarised in

Table 4.1. During the evaluation, leave one group out cross-validation (LO-

GOCV) with 15 folds (movement level) or five folds (concerto level) is used

to calculate the KL divergence between the training set and test set for every

group of data. The similarity estimates of feature distributions in every fold

are combined for the different kinds of features using the approach shown in
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Equation 4.4:

DKLoverall
=

|Θ|∑
n=1

wnDKLΘn
(4.4)

where Θ = {V1, V2, V3, V4, T1, T2, T3, T4, T5, T6} with V1, ..., T6 denoting the

sets of feature distributions corresponding to four kinds of vibrato features

(AE,AR,SE,SR) and six kinds of timbre features (SC, MFCCs, ZCR, SCT,

SB, RMS) computed separately. DKLΘ
means the normalised KL divergence

values in each cross-validation process. All corresponding weights wn are

set to one in the current implementation. Moreover, how the features are

fused is not unique; we can combine any number of features to compute the

overall KL divergence. Next, we verify the applicability of this method to

the identification of violinists and test the accuracy for different performers.

The design of the experiment and the results are discussed in Section 4.3.

4.3 Experiments

We assess the proposed identification method using LOGOCV and show

the classification results using macro F-score and confusion matrices for all

performers. In this section, we first introduce the experiment setup and data

preparation. We then present the results of using different features to identify

violinists in Section 4.3.2. Finally, we discuss the result in Section 4.3.3.

4.3.1 Experimental Setup

To avoid overlapping music pieces between the training and test sets, we sep-

arately use movement-level and concerto-level LOGOCV in the classification

experiment. In each fold, we designate recordings of one movement or one

concerto played by all nine performers as the test set, while the remaining

recordings are placed into the training set. This eliminates piece overlap
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between the training and test sets (Each concerto in the test set includes

three movements). Single labels are assigned in the test set at also two lev-

els: concerto-level and movement-level. We then compute the KL divergence

between each feature’s distribution from the test performer and the same for

every performer in the training set. Similarity results based on distributions

of each feature are obtained between the test performer and every performer

in the training set.

4.3.2 Results

4.3.2.1 Baseline Methods

To assess our proposed feature and violinist identification method, we set

two groups of baseline methods. First, since KNN and SVM are frequently

used as classifiers in performer identification tasks [23, 144], we use these

two models as baseline methods based on the IVN dataset; the dataset is

randomly split into training set and test set at a ratio of 80% and 20%. In

the training phase, feature vectors of four vibrato features along with the

corresponding player ID in the training set are considered as input to train

the machine learning models. In the test phase, the feature vectors extracted

from the test set are used to evaluate the trained models, and the F-measure

results are shown in Table 4.2. Second, a vibrato feature extraction method

based on “wavelet scattering” is proposed, and the SVM is also applied to

identify violinists using this feature based on the IVN dataset. Due to the

scope of this Thesis, we simply place the corresponding experimental results

in Table 4.2 without presenting further details, but they can be checked

in [204].

It is observed that among these baseline methods, wavelet scattering gives

the best results, while KNN performs the worst. These results suggest that

the original vibrato feature vector and the direct use of machine learning
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Table 4.2: Violinist identification result using baseline models on vibrato
features.

Movement-level Concerto-level
Feature Precision Recall F1-score Precision Recall F1-score
KNN(n=3) 0.173 0.157 0.133 0.187 0.162 0.160
SVM 0.227 0.212 0.186 0.238 0.227 0.229
Wavelet Scattering 0.38 0.24 0.23 0.43 0.29 0.27

models cannot classify violinists well. In the following sections, we will

present detailed results of the proposed methods and compare them with

these baseline methods.

4.3.2.2 Results on Vibrato Features

As for our proposed method, we first designate a performer as test performer.

Then separate each performer’s data in movement level, so that for each test

player, we can get 15 distributions for each feature. Furthermore, since

there are four vibrato features, 60 distributions for one test performer can

be obtained to present vibrato characteristics. Similar mechanism can be

applied when the data are split at concerto level, where five distributions for

each feature can be obtained.

In this experiment, we first select the test performer, and then designate

all annotated notes from one movement (or one concerto) played by this

performer as the test data. The same movement (or concerto) that other

performers play is left out, whereas the remaining pieces from all perform-

ers (including the test performer) are placed in the training set. We then

compute the KL divergence between each feature’s distribution from test

data and the same features for every performer in the training data. The

similarity results for vibrato characteristics based on four features can be

separately obtained between the test performer and every performer in the

training set. The smaller the KL divergence, the greater the similarity, there-
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fore we treat the performer that corresponds to the minimum value as the

identified performer with each feature.

Finally, we obtain the result based on fused vibrato features, which is

computed by Equation 4.4 with Θ = {V1, V2, V3, V4}. These are denoted as

“combination vibrato features” (VC).

Table 4.3: Violinist identification results based on vibrato features using
different statistical models (Movement-level).

Model

F1-score Feature
VC AE AR SE SR

Histogram 0.312 0.123 0.216 0.117 0.152
KDE 0.338 0.140 0.175 0.155 0.156
GMM 0.298 0.123 0.206 0.173 0.168

Table 4.4: Violinist identification results based on vibrato features using
different statistical models (Concerto-level).

Model

F1-score Feature
VC AE AR SE SR

Histogram 0.313 0.129 0.215 0.073 0.194
KDE 0.426 0.262 0.162 0.100 0.210
GMM 0.364 0.144 0.135 0.137 0.150

Table 4.3 shows the violinist identification result in F1-score using three

statistical models separately when the data are split in movement level. At

the same time, Table 4.4 compares the results when the data are split at the

concerto level. The abbreviations of the Table can be checked in Table 4.1.

These results are better than the baselines shown in Table 4.2. Furthermore,

both results indicate that VC performs better than any single feature, while

KDE produces the best performance. Therefore, Table 4.5 shows the detailed

results obtained using KDE with the two data split methods.
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Table 4.5: Violinist identification results using vibrato feature KDE and two
data split methods.

Movement-level Concerto-level
Feature Precision Recall F1-score Precision Recall F1-score
VC 0.373 0.333 0.339 0.538 0.400 0.426
AE 0.162 0.170 0.140 0.277 0.289 0.262
AR 0.205 0.200 0.175 0.164 0.178 0.162
SE 0.156 0.170 0.155 0.113 0.111 0.100
SR 0.170 0.163 0.156 0.230 0.200 0.210

4.3.2.3 Results on Timbre Features

Next, we also assess the same method using timbre features on the IVN

dataset. Similarly, to avoid overlapping musical segments between the train-

ing and test, the data are split at movement and concerto levels, respectively.

We then compute the KL divergence between each feature’s distribution from

test data of test performer and training data of all performers, and LOGOCV

is also applied. The performer who obtained the minimum KL divergence in

the training set is considered as the target performer.

To validate the performance of different statistical models, we evaluate

the violinist identification methods using Histogram, KDE and GMM sep-

arately with two data split strategies, shown in Table 4.6 and Table 4.7.

The histogram outperformed the other two distributions on most features,

regardless of which data split method was used. Moreover, only when us-

ing MFCCs, the KDE outperform other models, but the advantage was not

significant, especially when the data was segmented at concerto level.

We therefore present detailed results in Table 4.8 to illustrate the perfor-

mance of violinist identification based on each timbre feature, when using his-

tograms to calculate the distribution. Among these features, SC and MFCCs

performed best in identifying violinists. SCT and SC also show promising

results in identifying violinists (higher than 0.5 in F1-score), which confirms

these features help identify violinists. In addition, the results based on SB
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Table 4.6: Violinist identification results based on timbre features using dif-
ferent statistical models (Movement-level)

Model

F1-score Feature
SC SCT SB MFCCs RMS ZCR

Histogram 0.608 0.539 0.470 0.547 0.466 0.191
KDE 0.372 0.306 0.351 0.628 0.286 0.136
GMM 0.182 0.153 0.122 0.151 0.120 0.081

Table 4.7: Violinist identification results based on timbre features using dif-
ferent statistical models (Concerto-level)

Model

F1-score Feature
SC SCT SB MFCCs RMS ZCR

Histogram 0.823 0.695 0.646 0.864 0.651 0.285
KDE 0.523 0.520 0.503 0.869 0.519 0.214
GMM 0.214 0.172 0.138 0.255 0.134 0.097

and RMS are also higher than the random baseline, suggesting that these fea-

tures can also help to distinguish performers. However, the ZCR performs

worst, which indicates it may not reflect the player’s playing style as good

as other timbre features.

Table 4.8: Violinist identification results using timbre feature distributions
(histogram) and two data split methods.

Movement-level Concerto-level
Feature Precision Recall F1-score Precision Recall F1-score
SB 0.478 0.474 0.470 0.685 0.644 0.646
SC 0.615 0.615 0.608 0.855 0.822 0.823
SCT 0.556 0.536 0.539 0.732 0.688 0.695
RMS 0.494 0.459 0.466 0.706 0.688 0.651
MFCCs 0.561 0.548 0.548 0.881 0.867 0.865
ZCR 0.211 0.194 0.191 0.243 0.230 0.232

Finally, we attempt to identify violinists by fusing 3 or 4 of the best-

performing timbre features using Equation 4.4. Four groups of features were

chosen, and their results are shown in Table 4.8. The first group consists of
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three features {SC, SCT,MFCCs}, denoted as TC3 (Timbre Combination 3);

the second group consists of four features {SB, SC, SCT,MFCCs}, denoted

as TC4 (Timbre Combination 4). In addition, TC5 and TC6 represent the

results of using a fusion of the best performing 5 and 6 timbre features to

identify violinists. The results based on these fused timbre features are shown

in Table 4.9. It is obvious that the performance of the proposed VID system

becomes more powerful as the number of fused features increases, and this

phenomenon is also independent of the data split strategy.

Table 4.9: Violinist identification results using fused timbre feature distribu-
tions (histogram) and with data split methods.

Movement-level Concerto-level
Feature Precision Recall F1-score Precision Recall F1-score
TC3 0.761 0.756 0.752 0.908 0.867 0.869
TC4 0.775 0.763 0.760 0.950 0.933 0.931
TC5 0.773 0.763 0.764 0.950 0.933 0.931
TC6 0.794 0.778 0.778 0.950 0.933 0.934

4.3.2.4 Results on Fused Features

After presenting results based on a single category of features, we fuse dif-

ferent categories of features to identify violinists. As we mentioned in Sec-

tion 4.2.4.2, the feature fusion method is not unique, so we can select any

feature from the extracted feature set. However, the performance of every

single feature should be considered to obtain better results. According to

the results above, VC performs better than any single vibrato feature, while

MFCCs and SC are more discriminative of the violinist’s playing style than

ZCR. Therefore, we will further evaluate the results for different combina-

tions of fused features.

To maintain the generalisation of the method, we prefer to use only one

statistical model to obtain the distribution of all features. In this experiment,

the histogram is chosen due to its best performance on most timbre features,

91



and its performance on vibrato features is also better than GMM. In addition,

the feature fusion is also computed using Equation 4.4.

Table 4.10: Violinist identification results using timbre feature histogram and
two data split methods.

Movement-level Concerto-level
Feature Precision Recall F1-score Precision Recall F1-score
3FF 0.772 0.763 0.762 0.900 0.889 0.887
4FF 0.806 0.800 0.798 0.918 0.889 0.889
5FF 0.796 0.792 0.792 0.937 0.933 0.933
6FF 0.778 0.770 0.771 0.963 0.956 0.955
7FF 0.820 0.807 0.806 0.963 0.956 0.956

We first combine VC with SCT and MFCCs together, whose result is

shown as “3 Feature Fusion (3FF )” in Table 4.10. Then, we fuse four features

consisting of VC, MFCCs, SCT and SC, denoted as 4FF ; VC combined with

MFCCs, SCT, SC, and RMS is then named 5FF . Finally, the VC fused with

MFCCs, SC, SCT, RMS, and SB are shown as 6FF in Table 4.10. The 7FF

means feature fusion with all extracted features together. We can observe

that regardless of the data split strategy applied, 7FF performs best in

terms of F1-score, and the violinist identification results become better as

the number of fused features increases.

To visualise the results intuitively, we present confusion matrices for vio-

linist identification using 7FF , where Figure 4.5(a) shows the results based

on movement-level data split, while Figure 4.5(b) shows the results from

concerto-level data split.

4.3.3 Discussion

We will discuss the above results in three aspects: the selection of features,

the data split strategy and the choice of statistical models. From the results of

Section 4.3.2.2, we find that the individual vibrato features do not show good

discrimination between violinists. But when the four vibrato features are
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(b) Data Split in Concerto-level

Figure 4.5: Violinists classification using 7FF .

fused, the results are much better. However, according to the results shown in

Section 4.3.2.3, we notice that all timbre features except ZCR show promising

results, especially Spectral Centroid and MFCCs. This suggests that the

designed timbre features are more helpful in describing the violinist’s style

than the vibrato features, and the fused timbre features perform better than

any single one. Moreover, we obtained a higher F1-score by fusing different

kinds of features, which further demonstrates that using more features helps

improve the algorithm’s performance.

Based on these observations, we notice that the single vibrato feature is

less discriminative for violinists, while fused vibrato features perform bet-

ter. One possible reason is that characterising vibrato is a complex process,

and using only one single feature cannot represent a player’s vibrato style.

Importantly, however, although the results are not very satisfactory, vibrato

can be used to identify violinists, suggesting that virtuoso performers play

vibrato with their individual style, and the style can be measured. Further-

more, the timbre characteristics are reasonable for identifying violinists, from

which we can learn that the timbre variation within notes is a good indicator

for representing the violinist’s style.
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In terms of the data split strategy, all data are split at the movement level

and concerto level separately, resulting in different folds for cross-validation

and a different amount of data for each fold. Not surprisingly, the results are

better when the data are split at the concerto level. One reason is that when

using 5-fold cross-validation, more data in the test set is used to calculate the

feature distribution, which makes it more representative of the performer’s

style and also reduces the chance of over-fitting. However, when using 15-

fold cross-validation, some movements only contain four annotated notes (see

Table 3.1). The distributions obtained based on these movements were not

sufficiently reflective of the player’s characteristics, and the corresponding

results are therefore less favourable.

We applied three statistical models, including histogram, KDE and GMM,

to model the distribution of features. As shown in Figure 4.3 and Figure 4.4,

the histogram and KDE provide a clearer picture of the differences between

performers, and they yield better results for the classification of violinists.

However, the GMM does not perform well when modelling the timbre feature

distributions. In Figure 4.4, the differences between players are not clearly

visible. This may be related to the parameters we set to fit the GMM (e.g.

the number of components), but due to the scope of this Thesis, this part

will be placed in future work. Finally, with more features being fused, time

cost of the algorithm is increased. Among the three distribution models,

histogram is the most time efficient, while the other two algorithms are more

time-consuming due to the complicated procedures of data fitting (as we

show in Section 2.5.1) and KL divergence calculation.

4.4 Summary

This Chapter investigates the influence of vibrato and timbre on violinist

recognition using the IVN dataset. We first design and extract four vibrato
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features, including AE, AR, SE and SR, to describe the performer’s vibrato

characteristics and then use three statistical models to obtain the distribution

of each feature to represent the individual playing style of the performer.

Next, the data are split at movement and concerto levels, respectively, and

the similarity between the training and test data distributions is calculated

to identify the violinists. Finally, a feature fusion method using these four

vibrato features is proposed, and the results show that the fused features

work better than any single vibrato feature.

Similarly, six timbre features are extracted to present the performer’s

timbre characteristic, and the distributions of these features are applied to

model and identify violinists. The results show that most of the timbre fea-

tures work better than vibrato features, and an F1-score of 0.865 is obtained

based on MFCCs, and 0.934 can be found based on TC6. Finally, feature fu-

sion methods are proposed, using two feature categories to identify violinists.

The best performance is obtained from FF7, which further suggests that our

proposed features and models are beneficial for identifying violinists, and the

results become better as the number of fused features increases.

Although timbre features perform very well in identifying violinists, some

uncertain questions still need to be answered. For example, since timbre

is intuitively influenced by recording conditions and instruments, can our

approach identify violinists based on the individual style of the performer

rather than on other factors? To address this problem, in the next Chapter,

we will verify the effectiveness of designed timbre features for describing the

violinist’s playing style.

95



Chapter 5

The Effectiveness of Timbre

Features for Identifying

Violinists

5.1 Introduction

In Chapter 4, we extract six note-level timbre features to model performers’

timbre characteristics. Although timbre features perform well in identify-

ing violinists based on isolated notes, it is unclear whether the designed

features reflect the stylistic characteristics of the performer, or the acous-

tic characteristics resulting from other factors. For example, professional or

well-known violinists generally have their preferred instruments, and early

research suggests that timbre features can be used to distinguish different vi-

olins [205]. To explore whether our timbre feature-based algorithm identifies

the performer’s style or the instrument’s characteristics, we will design and

conduct some experiments based on the SSC dataset in this Chapter. The

performance in this dataset is recorded by ten violinists on 13 violins, and

all performers were invited to complete the recording in the same studio, so
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that the influence of recording conditions could first be ignored. Next, two

experiments will be conducted, including violinist and violin identification,

to verify whether timbre features are primarily influenced by the performer’s

style or the instrument.

We first introduce the timbre feature extraction method in Section 5.2.

Next, Section 5.3 illustrates the experiments and results. Finally, the chapter

is summed in Section 5.4.

5.2 Methods

The proposed method in this chapter is outlined in Figure 5.1. To avoid the

influence of recording conditions, the data are pre-processed before the timbre

feature extraction, which will be illustrated in Section 5.2.1. Next, we ob-

tained the distribution of each feature for each performer, and some examples

of distribution plots are shown in Section 5.2.2 to facilitate our observation of

the differences among performers’ characteristic playing. Finally, we conduct

two experiments, including violinist identification and violin identification,

to investigate the effectiveness of the designed timbre features for identifying

violinists, which will be presented in Section 5.2.3 and Section 5.2.4.

5.2.1 Feature Extraction

Although all performances in the SSC dataset were recorded in the same

studio and with the same microphone, it is difficult to guarantee that the

distance and orientation between each performer and the microphone will re-

main constant. Therefore, to make the extracted features comparable among

performers, we remove silent regions in each music clip, and then normalise

loudness based on the EBU standard [196]. All steps were completed in

Audacity 1.

1https://www.audacityteam.org/

97

https://www.audacityteam.org/


Solo Musical 

Scale

Timbre Feature 

Extraction

Result 

Evaluation

Global Feature 

Distribution

Violinist 

Identification

Violin 

Identification

Data Split and 

Similarity 

Calculation

Result 

Evaluation

Note 

Segmentation

Data Pre-

processing

Data Split and 

Similarity 

Calculation

Figure 5.1: The outline of timbre feature validation method based on SSC
dataset.
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To make the number of violinists comparable with that in the concerto

dataset, we select music recordings played by ten violinists and then annotate

the onset times of each note from the solo dataset (See Section 3.3). The

segmented notes are firstly divided into short overlapping frames (fs=44.1

kHz, frame length = 2048, hop size = 512). The timbre features are extracted

from each frame and grouped at the note level. For each frame, we extract six

timbre features, including Spectral Bandwidth (SB), Spectral Centroid (SC),

Spectral Contrast (SCT), RMS Energy (RMS), Mel-Spectral Cepstral Coef-

ficients (MFCCs), and Zero-crossing Rate (ZCR). The calculation method of

each feature is described in Section 2.4.4.

However, we care about the timbre variation within a note rather than

raw timbre features. Hence the feature standardisation is also applied at the

note level, which is the same as presented in Section 4.2.2.3.

5.2.2 Feature Distribution

Due to the histogram performing well in modelling violinist’s timbre charac-

teristics in Chapter 4, we also use the histogram to calculate timbre feature

distributions. For multi-dimensional features, we use multi histograms to

model such data distributions at the dimension level. For example, since the

MFCC is 12-dimensional, there are 12 histogram distributions to present one

performer’s style based on the MFCC feature.

Figure 5.2 shows the global distribution of the RMS and 3rd MFCC co-

efficient (MFCC(c3)) features for four performers in the solo dataset. At

the same time, the x-axis means the range of standardised features, and the

y-axis presents the frequency. We abbreviate “Perfomer1” as “P1”, and the

same abbreviation is applied to all ten performers. The shapes of such dis-

tributions are different, as seen in the figure. For example, the histogram

of standardised RMS features for “P1” is less sharp than that of P3. The

skew and the mass centre of the distributions also differ, which can be seen
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(h) P5-MFCC(c3)

Figure 5.2: Distribution of four performers’ standardised RMS and
MFCC(c3) feature in the solo dataset.
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in the differences between “P4” and “P1” and “P3”. The number of modes

may also be different, which can be seen with “P5”, for example, where there

are two peaks in the histogram. This indicates the performer might prefer

to play each note using more flexible dynamics. The histogram in Figure

5.2(e)-5.2(h) present the MFCC(c3) distributions from the same four per-

formers. The sharpness, position of the highest bar, and slope differ among

such distributions. Based on similar observations across different perform-

ers and features, we assume that such features indeed reflect an important

aspect of the performer’s timbre characteristics.

5.2.3 Violinist Identification using Timbre Features

To quantify these differences, we calculate the similarity of distributions

of each feature for all performers using the Kullback-Leibler (KL) diver-

gence [129], presented as DKL(P ||Q). This corresponds to the likelihood

ratio between two distributions and tells us how well the probability distri-

bution Q approximates the probability distribution P .

DKL(P ||Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)
(5.1)

For classification, the KL divergence is calculated between each timbre

feature distribution of an unknown performer and every known performer in

the dataset. Minimum divergence identifies the unknown performer. Classi-

fication experiments using this approach are presented in Section 5.3.1.

5.2.4 Violin Identification using Timbre Features

Next, we classify violins based on proposed feature distributions to inves-

tigate the influence of music instruments on timbre features. Since there

are 13 violins and each violin is played by all ten performers, we divide the

whole dataset into 13 groups. Each group contains ten music pieces played
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on each violin. Then the KL divergence between each timbre feature distri-

butions from an unknown violin and every known violin in the dataset. The

minimum divergence is also applied to identify the unknown violin, and the

detailed experiment process is proposed in Section 5.3.2.

5.3 Experiments

In this section, we first investigate how the method performs for identifying

violinists using music scales. Next, we conduct violin identification using a

similar approach to verify whether violins influence the distribution of timbre

features. For each experiment, we assess the proposed method using leave

one group out cross-validation. Macro F-score is used as an evaluation metric

for all performers or violins in the dataset.

5.3.1 Violinist Identification

In the SSC dataset, a musical scale (which contains approximate 37 notes)

by each performer plays on each violin, and there are 130 (10 violinists × 13

violins) musical scale recordings in total. In the experiment, we firstly select

a random performer as the test performer, then designate one musical scale

that played with a random violin from such performer as test data. Other

musical pieces played with this test violin from other performers are left out,

and the remaining pieces from all performers (including the test performer)

are placed in the training set.

Then, we compute the KL divergence between each feature’s distribution

from the test performer and the same features for every performer in the

training data. The similarity results for timbre characteristics based on six

features can be obtained between the test performer and every performer in

the training set. The smaller the KL divergence, the greater the similarity,

therefore we treat the performer that corresponds to the minimum value as
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the identified performer with each feature.
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Figure 5.3: Normalised confusion matrix for violinist identification using
standardised MFCC feature distributions.

Based on the leave one group out cross-validation (LOGOCV), we get the

similarity of timbre features between every two performers in the dataset and

the performer identification result using each feature. Table 5.1 shows the

macro F-score result of violinist identification using each feature distribution

separately. MFCC work best among all features, which suggests the feature

has good discrimination power on performers. The confusion matrix is shown

in Figure 5.3 corroborating our observation. It can be seen in Table 5.1 that

the classification result based on Spectral Contrast is the second best, which

shows 0.908 in F1-score. RMS performs best among time domain features,

whereas the zero-crossing rate is less helpful for identifying violinists.
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Table 5.1: Violinist identification results based on each timbre feature using
solo dataset.

Feature Precision Recall F1-score
Spectral Centroid 0.459 0.438 0.439
RMS 0.789 0.777 0.781
Spectral Bandwidth 0.370 0.369 0.365
Zero-crossing rate 0.243 0.246 0.235
Spectral Contrast 0.918 0.908 0.908
MFCC 0.941 0.938 0.937

5.3.2 Violin Identification

Similarly, to identify violins, we first select a test violin and then designate

one musical scale played by a random performer on this violin as test data,

other music recordings played by the same performer are all left out. Next,

the remaining music pieces are put into the training set and split into 13

groups according to the violin index of the music recordings.

Each type of standardised timbre feature is used separately to build a

histogram, and the KL divergence between the test data and training data

from each violin is then calculated. Since there are 13 violins in total, the KL

divergence is calculated 13 times, and the violin corresponding to the smallest

value is considered as the result of recognition. In addition, 10-fold leave one

group out cross-validation is applied because there are ten performers in each

group of training data. Finally, the violin identification results are obtained

and shown in Table 5.2.

From the violin identification results, we find that the F1-scores are

around or under 0.1, close to the random baseline. Figure 5.4 shows the

confusion matrix of the violin classification based on MFCC feature distribu-

tions, which presents that no classes of violins can be identified correctly by

using the proposed features and approach. These results further verify that

our designed feature and classification approach can characterise performers’

styles rather than the properties of the violins.
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Table 5.2: Violin identification results based on each timbre feature using
solo dataset.

Feature Precision Recall F1-score
Spectral Centroid 0.096 0.108 0.097
RMS 0.109 0.092 0.056
Spectral Bandwidth 0.043 0.135 0.062
Zero-crossing rate 0.117 0.115 0.114
Spectral Contrast 0.076 0.085 0.076
MFCC 0.123 0.108 0.083

Although it is suggested that timbre is related to the violin’s structure and

sound quality [206], the timbre features proposed in this Thesis are primarily

determined by the violinist rather than the violin. It is mainly because

the features demonstrate the note-level variation of timbre rather than the

original timbre characteristics in the musical performance. Generally, the

timbre variation within a note is primarily produced by the player, and it is

not strongly related to the instrument’s characteristics, which allows us to

use this characteristic to model the player’s style.

5.4 Summary

In this chapter, two experiments are designed to explore whether the pro-

posed timbre features and the VID method (presented in the previous chap-

ter) identify violinists based on their individual playing styles or the instru-

ment’s characteristics. The results show that our proposed features and

methods perform well in identifying performers, but they do not help dis-

tinguish instruments. However, the more common performer identification

scenario is based on short musical clips rather than isolated notes. How to

identify violinists in this case? In the next Chapter, we will propose a new

feature to identify violinists from short musical clips, while validated timbre

features are also used to model performer characteristics.
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Figure 5.4: Normalised confusion matrix for violin identification using stan-
dardised MFCC feature distributions.
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Chapter 6

Violinist Identification Using

Short Music Clips

6.1 Introduction

In Chapter 4, four vibrato features and six timbre features are extracted

to model the characteristic playing style of violinists. The selected timbre

features are then validated in Chapter 5, and the results show that such

features can reasonably and objectively model performers’ individual playing,

regardless of the instrument they play. However, for most listeners, a more

common and practical scenario for identifying performers is using musical

segments rather than isolated notes. Therefore, this Chapter will present a

method for identifying violinists based on short music clips using the SCC

dataset.

Although timing characteristics among different performers’ performances

have been investigated in previous work [24], it is unclear how useful these

features are in quantitatively describing and identifying a performer’s style.

Therefore, in this chapter, two timing features are devised to describe the

temporal preferences of violinists, and then are used to identify them. The
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feature extraction method and the corresponding VID experiments are shown

in Section 6.2.1 and Section 6.2.2 respectively.

Furthermore, as the effectiveness of designed timbre features in identifying

violinists has been verified in previous chapters, we will extract the same

features and evaluate their performance based on the SCC dataset. Finally,

we will fuse these two types of features, and the violinist identification results

and discussion will be presented in Section 6.3.3.

6.2 Methods

Although each piece of music has its own rhythmic and emotional charac-

teristic, performers can vary the note duration and tempo according to their

preferences. For example, some players slow down the tempo for a fast-paced

piece to make each note intelligible, while others may increase the speed to

enhance the emotional expression. It is commonly believed that “note” is the

smallest unit in a music piece, but the duration of a single note is random

and has little meaning in describing a player’s timing preference. We assume

that when performers play a given music piece and the onset time of the

first note is set as “0s”, other notes’ onsets would be different. These dif-

ferences are accumulated and superimposed as the music progresses, which

provides a good presentation of performers’ global expressive timing char-

acteristics. Therefore we design and extract two note-level features: Onset

Time Deviation (OTD) and Note Duration (ND), then analyse the timing

feature distributions across music pieces to model the performer’s timing

characteristics.

Figure 6.1 shows the outline of this chapter. We first present methods

of timing feature extraction, including feature calculation and normalisation.

Next, the feature distributions are shown and analysed in Section 6.2.2. In

addition, six validated timbre features are extracted separately from the SCC
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dataset, and the distributions of these features are shown and illustrated in

Section 6.2.2.3. Finally, these two types of features are fused to distinguish

violinists, which will be presented in Section 6.2.3.

6.2.1 Feature Extraction

6.2.1.1 Onset time deviation

For a given music piece, to calculate the deviation of note onset times among

different performers, the reference onset time of each note should be first

obtained. There are two possible approaches to getting reference: score-

based note onset times, or mean note onset times across all performances.

The former method provides a standard reference that is not influenced by

any existing performances. For the latter, we can assume that averaging

removes most of the performers’ expressive timing and individual interpreta-

tion, except for a generally accepted interpretation of the piece, where such

interpretation exists. This method also avoids the need to align the audio

with the score. We apply both methods in this Thesis to investigate which

method better captures the performer’s characteristics.

We first use the average note onset time as the reference time to illustrate

the feature extraction method. For each selected music clip, as Figure 6.2

shows, the first note is aligned in time, which is all set as 0s. The alignment

is then applied to other notes, and the mean onset time of each note from

all violinists’ performances can be calculated as the reference time. This

is followed by calculating onset time deviations from this reference for each

performer to characterise expressive timing. For example, a score is shown at

the top of Figure 6.2. The different vertical bars indicate note duration from

different performers. The vertical dashed lines are the average onset times

of each note in this piece, which are regarded as the “reference onset time”.

Then the time distance between each actual onset time and the reference time

110



is the onset time deviation. However, the onsets are conditional to previous

notes and to the general phrases for a single performer. We therefore apply

a “0-1” normalisation to all onset time deviations for each performer using

the Equation 6.1, where Onseti is the raw onset deviation of the ith note,

OnsetNormi is the normalised onset deviation, max and min denote the

maximum and minimum values of all onset deviations of the performer.

OnsetNormi =
onseti −min
max−min

(6.1)

Performer 1

Performer 2

Performer 3

Performer 9

.

.

.

.

Note Onset 

Deviation (+)

Note Onset 

Deviation (-)

Figure 6.2: Expressive timing feature extraction

A similar mechanism is used to calculate the OTD feature based on the

reference time obtained from the music score. To find the note onsets, we first

download audio files of concerto synthesised from the score1 and then split

the music into short segments identical to those in the SCC dataset. Next,

we manually annotated the onset time of each note, and these annotations

are used as the reference times. Finally, each performer’s OTD feature can

be calculated using the method presented above. To distinguish two OTD

1https://musescore.com/

111



features calculated base on different reference times, the one using “average

time” as reference is abbreviated as “OTD AVG”, and the other is named

“OTD Score”.

6.2.1.2 Note Duration

Apart from the onset deviation, the note duration (ND) is also considered

as a feature to describe the performer’s style. Although the note duration

highly depends on the music pieces as well as note types, the same note can

be performed in different duration by different performers. This feature is

computed by Equation 6.2.1.2, where Ti means the duration of the ith note,

and the Onseti+1 and Onseti denote the time stamp of the onset times of

the ith note and the (i+ 1)th note, respectively.

Ti = Onseti+1 −Onseti

6.2.2 Feature Distribution

Following the idea of previous chapters, we assume that the global distribu-

tion of audio features across musical pieces can characterise certain aspects

of a performer’s playing style. This section presents the characteristic dis-

tributions of OTD and ND, and analyses the temporal characteristics of the

performers observed from these distributions. In addition, the distribution

of timbre features is also shown and discussed, which will be illustrated in

Section 6.2.2.3.

As the histogram performed better in previous chapters for feature sta-

tistical modelling, in this Chapter, all distributions are obtained using his-

tograms, which also allows us to focus more on discussing and observing the

performance of each feature for violinist identification.
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Figure 6.3: Distribution of four performers’ OTD AVG features.

6.2.2.1 OTD Distribution

Figure 6.3 shows the OTD AVG feature distributions of four violinists using

the histogram. There is a skewed right histogram for feature distribution from

Heifetz’s performance, showing that the actual note onset times in Heifetz’s

performance are mostly earlier than the reference time, indicating he prefers

to play the music much faster than the average speed. However, opposite

phenomena can be observed in Mutter’s performance, which illustrates that

Mutter usually plays the music at a slower tempo. Although the Bell-shaped

histograms can be observed from distributions of Accardo and Menuhin, the

skew and centre of their highest bar are different. This shows that the two

performers might prefer to play each note at dynamic but different speeds.
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Figure 6.4: Distribution of four performer’s OTD Score features.

Based on similar observations from distributions from other performers, it is

clear that the distribution of OTD AVG features shows excellent discrimina-

tion among performers.

Next, we show the distribution of Onset Score from the mentioned four

performers. As can be seen in Figure 6.4, most bars frequently occur on

the right side, which indicates the actual note onset times are always slower

than the reference time of the score. The highest bar is observed on 0.8 at

the x-axis from Accardo’s histogram, whereas the peaks of the other three

histograms are seen at 0.9 or 1.0. However, the differences between the

distribution from Menuhin and Mutter are not as significant as observed in

Figure 6.3.
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Figure 6.5: Distribution of four performers’ ND features.

6.2.2.2 ND Distribution

The distributions of ND features are presented in Figure 6.5, where the x-axis

means the duration time and the y-axis denotes the density. It can be seen

that all of the histograms are skewed to the right, which makes us cannot

detect the differences among performers’ timing preferences based on these

distributions. Nevertheless, we will examine the performance of this feature

in identifying violinists in Section 6.3.2.1.

6.2.2.3 Timbre Feature Distribution

In addition to timing features, we also extracted timbre features that ef-

fectively identified violinists in the previous Chapters. Six note-level fea-
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tures including Spectral Centroid (SC), Spectral Bandwidth (SB), Spectral

Contrast (SCT), Root Mean Squared Energy (RMS), Mel-frequency cepstral

coefficients (MFCCs) and Zero-crossing Rate (ZCR) are extracted in frame

level, and then standardised in note level. The feature calculation methods

are introduced in Section 2.4.4, and the feature standardisation method is

presented in Section 4.2.2

Figure 6.6 shows the distribution of two timbre features separately. Fig-

ure 6.6(a)-6.6(d) exhibit the global distributions of the standardised spectral

centroid based on the performance data from four players, with different

colours used to indicate different players for better differentiation. The gen-

eral shape of these distributions is very similar, but it can be found that

Accardo’s distribution shape is the most kurtic, while Heifetz’s is less sharp,

and the kurtosis for Menuhin’s is the smallest. In addition, the shape of

Mutter’s distribution, especially the right-hand slope, is slightly different

from the other three, which indicates her playing characteristics. On the

other hand, the histogram in Figure 6.6(e)-6.6(h) present the distributions of

3rd coefficient of MFCCs (denote as MFCCs (c3)) from four performers, the

sharpness, position of the highest bar, and slope are slightly different among

such distributions. Based on similar observations across different performers

and features, we assume that such features can also reflect the performer’s

individual timbre characteristics based on the SCC dataset.

6.2.3 Violinist Identification

In order to quantify these differences, we calculate the similarity of distri-

butions of each feature for all performers using the Kullback-Leibler (KL)

divergence [129], presented as DKL(P ||Q). This corresponds to the likeli-

hood ratio between two distributions and tells us how well the probability

distribution Q approximates the probability distribution P .
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Figure 6.6: Distribution of four performers’ Timbre features.
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DKL(P ||Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)
(6.2)

For classification, the KL divergence is calculated between each feature

distribution of an unknown performer and every known performer in the

dataset, and the minimum divergence identifies the unknown performer. De-

tails of the VID method are described in Section 4.2.4, and experiments using

this method on the SCC dataset are described in Section 6.3.

6.3 Experiments

In this section, we first apply the violinist identification method using our

designed timing features, investigating how they perform for identifying play-

ers using the SCC dataset. Next, to verify whether the timbre feature dis-

tributions help classify violinists using the same dataset, we use the timbre

feature distribution to model and identify violinists, which will be presented

in Section 6.3.2.2. Finally, the two categories of features are fused into dif-

ferent groups, and the corresponding results are shown and discussed in Sec-

tion 6.3.2.3.

In this section, we first identify violinists using the designed timing fea-

tures to understand how they perform on the SCC dataset. Next, to verify

whether the timbre feature distributions also contribute to the violinist iden-

tification on this dataset, the results of applying the timbre features are also

presented in Section 6.3.2.2. Finally, we fuse these two types of features

in different ways, and the corresponding results for VID are presented and

discussed in Section 6.3.2.3.

We assess the proposed method for each experiment using leave one group

out cross-validation (LOGOCV) and evaluate the classification results using

the macro F-score metric.
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Table 6.1: Violinist identification results using timing feature distributions
with two data split methods.

Movement-level Concerto-level
Feature Precision Recall F1-score Precision Recall F1-score
OTD AVG 0.739 0.726 0.730 0.836 0.800 0.797
OTD Score 0.353 0.385 0.356 0.367 0.363 0.365
ND 0.119 0.148 0.124 0.117 0.178 0.100

6.3.1 Experimental Setup

In this experiment, the dataset is split in movement and concerto levels, the

same as we mentioned in Section 4.3.1. Therefore, different data strategies

are applied to assess the violinist identification approach, where 15-fold LO-

GOCV is used when data is split at movement level, and 5-fold LOGOCV is

used when data is split at concerto level.

6.3.2 Results

6.3.2.1 Violinist Identification on Timing Feature Distributions

Table 6.1 shows the results of violinist identification using three timing fea-

tures. It is noticed that OTD AVG performs the best, achieving F1-scores

of 0.730 and 0.797 when the data is segmented in movement level and con-

certo level, respectively. In addition, OTD Score does not perform as good

as OTD AVG, but it also has a certain ability to discriminate performers,

obtaining F1-scores of around 0.36 with either data split method. However,

ND performs the worst, yielding an F1 score of only around 0.1, close to the

random baseline. It suggests that this feature is practically unable to identify

violinists in this case.

To further investigate the performance of OTD AVG and OTD Score,

we present the confusion matrix of violinist identification based on those

two features in Figure 6.7. Although Table 6.1 shows a reasonable result
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of OTD Score, the confusion matrix based on this feature indicates that its

recognition for different players is highly variable, i.e. it is not a feature that

is consistent enough to be effective for VID. For example, the discrimination

of OTD Score is good for Accardo and Perlman, but very poor (even with

random baselines) for other players. However, the confusion matrix based on

the OTD AVG distribution gives an entirely different result, which presents

good discrimination for most players. Based on these observations, we find

that the selection of reference note onset time is essential when calculating

the OTD, which determines the generalisation of the feature. As shown in

Figure 6.4, the OTD Score distributions for all three players except Accardo

is generally a left-skewed histogram, which indicates that their actual note

onset times are often much slower than the reference, referring not a good

differentiator among the performances of these performers. When the average

note onset time is used as the reference time, the players’ differences are

magnified, making it easier to identify violinists. Nevertheless, it is easy

to discover that Menuhin’s performance is confused with Oistrakh’s, which

means they have similar timing feature distributions. Therefore, we can

conclude that this approach based on timing features is promising, as it

works well for identifying most performers in our dataset, but it may still

produce some confusion between certain performers.

6.3.2.2 Violinist Identification based on Timbre Feature Distribu-

tions

In addition to timing features, we also evaluate the performance of violin-

ist identification based on timbre features. Table 6.2 shows the F-measure

results based on six timbre features separately, where MFCCs perform best

no matter whether the data is split in movement-level or concerto-level, with

corresponding F1-scores of 0.326 and 0.351. The SCT is the second best,

where F1-scores of 0.258 and 0.274 are observed. However, the worst results
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(b) OTD Score

Figure 6.7: The Confusion Matrices of Violinist Identification based on
OTD AVG Distribution and OTD Score Distribution.

are obtained based on SB, with F1-scores of 0.140 and 0.133, showing the

feature distributions do not help characterise violinists. The F1-scores of

other features such as SC, RMS and ZCR are mostly clustered around 0.2,

suggesting that they can classify violinists’ playing to some extent, but their

effects are limited.

Table 6.2: Violinist identification results using timbre feature distributions
(histogram) and two data split methods.

Movement-level Concerto-level
Feature Precision Recall F1-score Precision Recall F1-score
SB 0.179 0.194 0.170 0.130 0.178 0.140
SC 0.235 0.236 0.235 0.226 0.215 0.214
RMS 0.170 0.167 0.165 0.207 0.193 0.192
ZCR 0.226 0.207 0.198 0.137 0.135 0.136
SCT 0.324 0.283 0.302 0.306 0.282 0.274
MFCCs 0.341 0.333 0.326 0.352 0.363 0.351
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6.3.2.3 Violinist Identification based on Fused Feature Distribu-

tions

Finally, we conduct a violinist identification experiment using fused features.

The feature fusion method was introduced in Section 4.2.4.2, which is cal-

culated using the Equation 4.4. After evaluating the performance of every

feature in the above sections, we select the best timing feature OTD AVG

and the best three timbre features, including MFCCs, SCT, and SC, into the

feature fusion group, and the results are shown in Table 6.3. We firstly com-

bine the OTD AVG feature with MFCCs and SCT, and the result is shown

as “Feature Fusion 3 (FF3)”. Then, we fuse the OTD AVG with MFCCs,

SCT and SC, whose results are presented FF4 in Table 6.3. Finally, all tim-

bre features and OTD AVG are fused to identify violinist, whose results are

illustrated as “FF7” in Table 6.3 as well.

Table 6.3: Violinist identification results using fused feature distributions
(histogram) and two data split methods.

Movement-level Concerto-level
Feature Precision Recall F1-score Precision Recall F1-score
FF3 0.692 0.659 0.668 0.701 0.644 0.642
FF4 0.654 0.622 0.630 0.648 0.600 0.597
FF7 0.639 0.615 0.618 0.604 0.622 0.590

It can be seen that the F1-score and precision of FF3 are the best, and

the corresponding confusion matrix is shown in Figure 6.8. According to the

Figure, each performer can be correctly classified. Although the overall F-

measure results are a bit lower than using OTD AVG, the discrimination for

every performer is higher than using this timing feature only (e.g., Menuhin

and Oistrakh are confused with each other in Figure 6.8(a), but in Figure 6.8

the issue is mitigated). So there is a noticeable improvement in discrimina-

tion using the feature fusion. However, the results of FF7 are much worse

than FF3, suggesting that it is not the case that the more features that are
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fused, the better the results for VID. The main reason is that the designed

timbre features may be influenced by factors such as accompaniment based

on the SCC dataset, which does not accurately reflect the player’s style and

introduce noise into the violinist identification results. In addition, as more

features are fused, the computational cost becomes more expensive.
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(b) Concerto-level

Figure 6.8: The Confusion Matrices of Violinist Identification based on FF3
Distribution using two data split strategies.

6.3.3 Discussions

According to the results presented by the above experiments, we can discuss

them in two aspects. Firstly, with respect to the feature selection, we find

that OTD AVG is the best performing timing feature for violinist identifica-

tion, while OTD Score is the second best, and ND is the worst. However,

based on the observation of the confusion matrix in Figure 6.8(b), we found

that when using OTD Score to identify violinists, the identification results for

different performers varied considerably, which also indicates the feature has

poor generalisation on VID. Furthermore, although the OTD AVG has better

discrimination for each performer, there is still some confusion between spe-

cific performers. On the other hand, according to the results in Table 6.2, we
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find that the timbre features perform much worse than OTD AVG. Among

these timbre features, MFCCs and SCT are the best, while SB is hardly

helpful for identifying violinists. This is inconsistent with the results we ob-

tained in the previous two chapters, which may be due to the influence of

the accompaniment on the extraction of timbre features, making the features

describe not only the characteristics of the violinist’s performance, but also

the characteristics of the timbre variation in the accompaniment. Finally, it

is not the case that the more features are fused, the better results can be ob-

tained. The designed timbre features cannot describe the violinist’s playing

characteristics well (although it still helps) and do not serve to increase the

amount of distinguishing information of performers when these features are

fused.

Secondly, in Chapter 4, we found better results for concerto-level-based

data splits than for movement-level-based ones, but this conclusion is no

longer applicable in this chapter. Compared with the IVN dataset, the SCC

dataset contains a substantially larger amount of data, allowing reliable fea-

ture distributions to be obtained in each fold of the cross-validated test set,

regardless of which strategy is used to segment the data. It makes the re-

sults obtained by the movement-based data split method better. However,

as the same performer collaborates with different orchestras when they per-

form different concertos (See the Appendix A), it is likely to make the timbre

differences among concertos greater. Moreover, as each concerto comes from

a different composer who wrote them in a different style and era, it makes

the music of each concerto very different. Furthermore, since our dataset

contains only five concertos and each test set contains only music clips from

one concerto, it is not a good indication of performers’ global characteristics.

Therefore, the concerto-based data split method yields worse VID results.
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6.4 Summary

This Chapter proposes a method for identifying violinists from short concerto

films. Two expressive timing features are designed and extracted, and the

global distribution of such features across all performances is obtained to

present the performer’s style. Moreover, the timbre features validated in

previous chapters are also applied to model performers’ timbre characteristics

based on the SCC dataset. The two categories of audio features are separately

used and then fused to classify violinists. The results show that OTD features

perform better, while ND feature performs poorly. In addition, the timbre

features are helpful to recognise violinists from the SCC dataset, although

the results are somewhat less convincing. Finally, the fusion of features (such

as OTD and MFCCs) can achieve better discrimination of each performer

than using any single timbre feature.

Based on the observations in this chapter, the timbre features do not

model the performer’s style very well on the SCC dataset, possibly due to

the orchestral accompaniment introducing noise into the feature extraction

process. Furthermore, due to the high time cost of the data annotation pro-

cess and the unexpected noise generated by manual annotation, the perfor-

mance of the method depends heavily on the quality of the data annotation,

which leads to poor generalisation to other unlabelled datasets. Using any

musical composition to identify performers without complex data annotation

remains a problem. To address these issues, the next Chapter will present

deep learning algorithms to acquire a more accurate and generalised approach

for violinist identification.
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Chapter 7

Transfer Learning for Violinist

Identification

7.1 Introduction

In previous Chapters, the hand-crafted feature development and statistical

modelling method are applied to describe the violinist’s characteristic style,

and the similarity among feature distributions are calculated to identify per-

formers. Although such methods achieve good performance in violinist iden-

tification based on several datasets, it is highly likely that hand-crafted audio

features cannot fully reflect the violinist’s playing style, which also leads to

suboptimal recognition results. In addition, the complicated note onset la-

belling is expensive in terms of time cost and results in poor generalisation

on other unlabelled datasets. Therefore, we should explore other violinist

identification (VID) methods to address these problems.

In recent years, deep neural networks (DNN) have been widely applied

and shown great success in music information retrieval (MIR) research [44].

In music classification, instead of fitting a machine learning or statistical

model using hand-crafted audio features, the deep learning approaches have
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multiple trainable layers which learn the complicated relationship between

the input and the output to predict the target label [44]. In addition, in

polyphonic music like concerto or sonata, there is a risk that the accom-

paniment may bring noise to the hand-crafted audio features, so that they

cannot accurately reflect the violinist’s style. However, in a deep neural net-

work, if the training and test data have the same distribution, the DNN

can automatically learn features that reflect the violinist’s style and use the

learned features to identify the violinist. Furthermore, regarding the training

phase of the DNN for recognising performers, the performer’s ID is almost

the only information that needs to be annotated, and no other complicated

annotations are required. Therefore, we hypothesise that the deep learning

method can work well in recognising performers and addressing the problem

mentioned in the above paragraph.

However, although DNNs are very powerful in many MIR areas like music

classification [207], music tagging [155], music emotion recognition [208] and

music generation [209], there are not many works that use them to identify

instrumentalists to our knowledge. One of the main reasons is that not many

large-scale datasets contain performer information of each music piece. Ex-

isting music datasets like MagnaTagATune (MTAT) [210], the Million Song

Dataset (MSD) [211], Jamendo [212] and GTZAN [213] are mostly designed

for music tagging or classification. Moreover, training on a limited dataset

tends to overfit the training set, leading to poor generalisation performance

and unreliable results [214].

In order to solve the problem of insufficient datasets for training DNNs,

the idea of transfer learning has been increasingly applied. Small datasets can

train neural networks by transferring pre-trained weights, and achieve good

performance in MIR tasks [176, 215, 216, 176, 217, 218]. Cramer [219] also

found that pre-training a model on a large amount of data resulted in models

that could be fine-tuned to downstream tasks with little data. Although the
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deep learning method is rarely applied for identifying instrumentalists due to

the lack of large-scale datasets, there are works in the related areas that can

be considered source tasks. For example, the DNN trained for music auto-

tagging [220, 145] is a reasonable source task due to many available large

datasets published for this task, and its rich label set covers various aspects

of music, e.g., genre, mood, era, and instrumentation. It is also considered a

combination of multiple tasks such as genre classification, emotion recogni-

tion and instrument identification, which contributes to learning the relation

between tags and audio content. In addition, DNN is applied for recognising

individual styles of different singers from music performances, which is similar

to instrumentalist identification. Some research has focused on singer recog-

nition based on DNN [17, 18, 15], and some available large-scale datasets (e.g.

artist20) are already published. Therefore singer recognition is regarded as

another source task in our research. Since transfer learning can be used for

different music classification and regression tasks [176], we hypothesise that

pre-trained models for music tagging and singer identification (SID) can help

identify instrumental players.

In this Chapter, we propose a method for violinist identification using

the transfer learning method, which is based on pre-trained music tagging

and singer identification models. We choose seven deep neural networks

for music tagging and three neural networks for singer identification, then

train them using corresponding source datasets to obtain pre-trained weights.

Next, we retrain the selected models on two violin datasets (ASC, ACC)

separately, and use pre-trained weights during initialisation. Details of the

transfer learning method will be proposed in Section 7.2, and the results

obtained from different pre-trained models and datasets are compared and

discussed in Section 7.3.2.
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7.2 Methods

In this section, the approach of violinist identification using transfer learning

is presented. We first train seven music tagging models using three datasets:

MSD, MTAT and Jamendo, respectively. Next, three singer identification

models are trained using the artist20 dataset. These models are regarded as

source tasks, which are introduced in Section 7.2.1. Then, we modify the

model architecture and fine-tune the models on the ACC and ASC datasets

separately, which will be presented in Section 7.2.2.

7.2.1 Source tasks

7.2.1.1 Music auto tagging

We select seven music tagging models as source task, including a fully con-

volutional network (FCN) [221], short-chunk CNN with Residual connec-

tions [220], Sample-level CNN [222], Musicnn [223], Harmonic CNN [224],

Convolutional Recurrent Neural Network (CRNN) [145], and self-attention-

based CRNN (self-attention-CRNN) [168]. The architecture of these models

is introduced below.

The FCN consists of 4 convolutional layers and 4 max-pooling layers. It

takes a log-amplitude Mel-spectrogram as input and predicts a 50-dimensional

tag vector [221]. Similarly, another FCN with 7-layer CNN and a fully-

connected layer and its extension with residual connections (named as short-

chunk CNN) are validated in [220], which shows outstanding performance.

Sample-level CNN [222] is an end-to-end model that takes raw audio wave-

forms as its inputs. It consists of ten 1D convolutional layers with 1 × 3

filters and 1 × 3 max-poolings, simpler and deeper than Mel spectrogram-

based approaches [220]. Since a variation of Sample-level CNN with squeeze-

and-excitation (SE) [225] blocks performs better than the original one, we

use this model in our paper. Musicnn [223] is different from previously pro-
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posed models, although it also uses Mel spectrograms as input. It is designed

to rely on music domain knowledge. Harmonic CNN [224] takes advantage

of trainable band-pass filters and harmonically stacked time-frequency rep-

resentation inputs. The number of frequency bands is set to 128, and the

number of harmonics is six.

Due to CRNN being widely used for music auto tagging [145], models

like CRNN and self-attention-CRNN are taken into account. CRNN is a

combination of CNNs and RNNs, where the CNN front-end extracts local

features and the RNN back-end summarises them temporally. The architec-

ture of self-attention-CRNN is similar to CRNN, and the only difference is

that a self-attentive mechanism instead of RNN is used as temporal sum-

marisation back-end [168]. The inputs of these two CRNN-based models are

Mel-spectrograms.

We train these models using the MSD, MTAT and Jamendo datasets

separately. All Mel-spectrogram-based approaches use 512-point FFT with

a 50% overlap, and the frequency bins are all set as 128. Table 7.1 lists

details of input for each model. When training these models, the audio re-

sampling rate is set as 16000 Hz, which is kept the same as the original

work [220] suggested. We also used an optimisation method that combines

scheduled ADAM [226] and stochastic gradient descent (SGD) [227], which

is also proposed in [168].

7.2.1.2 Singer Identification

Since the CRNN-based models have recently been used for singer identifi-

cation and present good results [17, 18, 15], we select three CRNN-based

models trained for singer identification as source tasks.

The first model is CRNNM [18], which extends original CRNN model [17]

for SID. The input features of CRNNM are Mel-spectrogram and melody

contour, where the melody contour is extracted using CREPE [54]. There
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Table 7.1: The details of source tasks in our transfer learning experiment.

Task Dataset Models
Input

Length Input Feature Classes

Music
Tagging

MSD/

MTAT/
Jamendo

FCN 29.1s Mel-spectrogram 50
Musicnn 3s Mel-spectrogram 50

Harmonic CNN 5s
Stacked harmonic

tensor 50
Sample-level CNN 3.69s Raw Waveform 50
Short-chunk CNN 3.69s Mel-spectrogram 50
CRNN 29.1s Mel-spectrogram 50
CRNN-self-attention 15s Mel-spectrogram 50

Singer
Identification

Artist20
CRNNM 5s

Mel-spectrogram
& Melody contour 20

CRNN-attention 5s Mel-spectrogram 20
CRNN-attention-KNN 5s Mel-Spectrogram 20

are two branches of CNN layers in the CRNNM model, each containing

four convolutional layers. These two branches extract local timbre features

based on two inputs separately, and the obtained feature maps are then

concatenated together. Two GRU layers are followed to extract time-domain

features on the concatenated features. Finally, a dense layer is applied to

obtain desired singer label, where the cross entropy loss function is used.

Another two models, Attention-CRNN and Attention-CRNN-KNN are

proposed in [15], which perform best in existing SID works using the artist20

dataset. Similar to the CRNN architecture in [17], there are also 4 CNN layers

as well as 2 GRU layers. The CRNN model is followed by an attention layer

and a dense layer in Attention-CRNN. Nevertheless, in Attention-CRNN-

KNN, the CRNN model is followed by an attention layer and a KNN classifier.

Therefore, we train CRNNM, Attention-CRNN and Attention-CRNN-

KNN using the artist20 dataset, following the same training setup (i.e., data

split method, filters numbers, kernel sizes, optimiser, learning rate, activation

functions, loss function) described in the original works. The audio input

length of each model is set as 5s, and Mel-spectrogram bins are all set as

128, using 512-point FFT with a 50% overlap. We use ADAM for learning

rate control and cross entropy is applied as a loss function. Meanwhile, the
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early stopping [228] is also applied, which is the same as suggested by [145].

7.2.2 Target tasks

After training all models in the source task on source datasets, the weight of

each layer in pre-trained models is obtained. In order to adapt the demand

of the target task on different violin datasets, we change the final dense layer

of each pre-trained model, which outputs probabilities of violinists instead

of original labels or singers. Next, we retrain these models separately using

weights from each pre-trained model during initialisation, and the best model

is selected based on validation loss. Finally, the violinist classification results

from each model can be obtained.

Since music tagging is a multi-label classification task, the Binary Cross

Entropy Loss is used as loss function in original models [222]. However, the

performer identification is a single-label classification task (in our case), and

cross entropy loss is suitable and widely used in similar tasks [229]. Thus

we use cross entropy as loss function to retrain all music tagging models on

violin datasets. As the singer identification is also a single-label classification

task, the loss function is cross entropy, which does not need to be changed

further. Nevertheless, the dimension of output labels of each pre-trained

model should be matched with the number of violinists in each dataset.

As an example, the transfer learning process using a pre-trained Musicnn

model to identify violinists on the ACC dataset is shown in Figure 7.1. We

transfer the learned knowledge from the pre-trained music tagging network,

then modify the output layer and fine-tune the model using ACC data to

obtain violinist identification results.
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Figure 7.1: Transfer learning process using pre-trained Musicnn model on
ACC dataset.

7.3 Experiments

In this section, we first introduce the data preparation, including data split

and segmentation procedures. Then we present implementation details of the

experiment in Section 7.3.1.2. Finally, we show the results in Section 7.3.2.

7.3.1 Experimental Setup

7.3.1.1 Dataset preparation

In the ACC dataset, to decrease the influence of orchestra accompaniment,

original concerto recordings are first segmented into several short clips, in-

troduced in Section 3.2.4. However, to adapt the requirement of input length

for each model, the pre-segmented audio clips must be further divided into

different lengths. To adapt the requirement of different input lengths for each

model, we segment the audio for each performer in lengths of 29.1s, 15s, 5s,

3.69s and 3s separately without overlaps after re-sampling the audio using

Fs = 16000Hz, which is kept same as we did in the training phase of all source

tasks. For all audio segments of each performer, we randomly shuffle them

into training, validation and test sets using a ratio of 6:2:2, which avoids an

unbalanced amount of data for each performer in different sets.
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7.3.1.2 Estimation metric and baseline method

In order to evaluate and compare the violinist identification performance of

the proposed model, the macro F1-score is used as the evaluation metric.

To validate the effectiveness of our proposed transfer learning method and

compare its performance with the methods in previous chapters, we consider

the results in Chapter 4-6 as baselines.

7.3.2 Results

Table 7.2 and Table 7.3 summarise the results obtained by our proposed

method, with the test F1-score based on the ACC and ASC datasets, re-

spectively. To compare the differences in results with and without transfer

learning, we first show the results trained from scratch (using random ini-

tialisation) for each model, corresponding to the “Scratch” column in each

Table. The evaluation of violinist identification based on different source

datasets and pre-trained models is then shown separately. To make the re-

sults can be observed intuitively, we also show them in Figure 7.2. The top

bar chart shows the result using the ACC dataset, while the bottom shows

the F1-score using the ASC dataset.

Table 7.2: Violinist identification results using ACC dataset.

Models Scratch MTAT MSD Jamendo Artist20

FCN 0.950 0.958 0.969 0.981 −
Musicnn 0.905 0.913 0.932 0.907 −
Harmonic CNN 0.955 0.964 0.973 0.962 −
Sample-level CNN 0.908 0.934 0.956 0.924 −
Short-chunk CNN 0.976 0.978 0.978 0.991 −
CRNN 0.548 0.927 0.789 0.625 −
CRNN-self-attention 0.937 0.977 0.942 0.976 −
CRNNM 0.479 − − − 0.492

CRNN-attention 0.755 − − − 0.809

CRNN-attention-KNN 0.745 − − − 0.776
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Table 7.3: Violinist identification results using ASC dataset.

Models Scratch MTAT MSD Jamendo Artist20

FCN 0.850 0.855 0.873 0.874 −
Musicnn 0.960 0.971 0.980 0.962 −
Harmonic CNN 0.981 0.988 0.988 0.984 −
Sample-level CNN 0.786 0.913 0.953 0.925 −
Short-chunk CNN 0.953 0.965 0.972 0.981 −
CRNN 0.513 0.648 0.564 0.611 −
CRNN-self-attention 0.978 0.926 0.811 0.884 −
CRNNM 0.546 − − − 0.539

CRNN-attention 0.825 − − − 0.830

CRNN-attention-KNN 0.793 − − − 0.822

It can be seen in the Table that knowledge transfer is beneficial for improv-

ing violinist identification performance. Short-chunk CNN and Harmonic

CNN showed the best results for both target datasets, no matter which source

datasets were used for pre-training. The Short-chunk CNN obtains the best

F1-score on the ACC dataset pre-trained on the Jamendo dataset, which is

0.991; the best solo violinists identification performance is 0.988 in F1-score,

which is obtained by Harmonic CNN pre-trained on the MSD dataset.

For the CRNN models, self-attention mechanisms can improve the perfor-

mance, no matter which pre-trained model is used. It can be observed that

the results obtained in Table 7.3 show that “Scratch” outperforms other

source datasets. It may be because the attention layer can capture the char-

acteristic style of violin solo performers when training from scratch, while the

pre-trained weights do not help identify those performers due to the gap be-

tween the source dataset and target dataset. However, the results obtained

from pre-trained SID networks are generally inferior. One possible reason

is that the characteristic features of singers are not directly transferable to

identify the results obtained from pre-trained SID networks. CRNNM per-

forms worst no matter which target dataset is trained on, which denotes its

input branch of the main melody contour may bring noise to the violinist
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(b) Results based on ASC dataset.

Figure 7.2: Violinist identification results based on two violin datasets using
different pre-trained models and source datasets.

identification in our case.

In previous chapters, based on datasets constructed from solo recordings,

Chapter 5 reports a 0.94 in F1-score when using MFCCs. In addition, based

on datasets built from concerto recordings, the best F1-score is 0.956, which

was observed using the IVN dataset with seven fused audio features, and

0.797 in the F1-score is found when using the OTD AVG feature on the SCC

dataset. It is easy to find that the best results obtained from the previous

chapters are worse than those obtained with the transfer learning method,

which indicates it is highly effective for identifying violinists.

7.3.3 Discussion

In general, the pre-trained music tagging networks perform better than SID

models. It is probably because the former models were pre-trained on datasets

containing a broader set of musical styles, and the models were designed to fa-

cilitate the output of 50 broad music labels belonging to different categories.
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Therefore music tagging models can learn more detailed musical features,

which may include feature spaces suitable for characterising violinists’ styles.

In contrast, the source dataset of the latter task (artist20) contains human

voices, and the corresponding SID models were designed to find stylistic fea-

tures of vocal performances, which is somewhat different from our target

task.

Among the pre-trained music tagging results, models trained on shorter

music clips (short-chunk CNN, sample-level CNN, harmonic CNN and Mu-

sicnn) outperformed models trained on longer music clips (FCN, CRNN).

Intuitively, when the models are trained on short inputs, there are a larger

number of samples during the training process, and the performer’s style

can likely be identified within a few seconds, which brings good performance

to these models. Moreover, FCN and CRNN perform better on the ACC

dataset than the ASC dataset, suggesting that when the data amount is rel-

atively small, longer input brings a smaller number of samples, leading to

weaker results.

Finally, comparing transfer learning with methods proposed in previous

Chapters, it can be found that transfer learning performs much better in VID

results. There may be several reasons for this. First, the features learned in

deep learning layers are intended to fit the output better, providing a more

comprehensive representation of the player’s style in the audio signal than

hand-crafted audio features. Second, due to the limited size of the violin

dataset we constructed and the fact that some players have similar playing

habits and preferences, the distribution of hand-crafted features is very sim-

ilar between some players, which makes these features less discriminatory.

In transfer learning, however, the weights obtained from pre-trained models

on large-scale source datasets are already good at extracting basic audio fea-

tures, and subsequent retraining can focus more on the differences between

performers, making more effective use of the dataset.
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Although we used multiple source datasets to train different source tasks,

the pre-trained neural network can identify violinists based on different music

scenarios, and the amount of data used to fine-tune the model does not need

to be large. This dramatically improves the generalisation capability of the

method, without the need to design different audio features to adjust different

scenarios. Also, the method does not require complicated note onset labels,

which reduces much workload in data annotation and pre-processing.

However, transfer learning also has its shortcomings. First, it is not easy

to analytically explore and understand which specific perceptual musical fea-

tures work well to distinguish violinists. All deep learning models applied in

this Thesis are end-to-end, and all feature extraction and learning processes

are implemented in the hidden layers. Thus it is not easy to gain a new un-

derstanding of music theory on performers’ styles. In addition, the training

process is time-consuming, both in the training phase of source tasks and

target tasks. In particular, training needs to be restarted when the model is

modified, which significantly increases the time cost.

Furthermore, although the fine-tuning of transfer learning does not re-

quire much data, it still requires a certain amount of data to retrain the

models, which limits its application for some conditions. For example, it is

not feasible to identify performers based on only 20 individual notes in a con-

certo movement, but the method proposed in Chapter 4 makes it possible.

Finally, although transfer learning can avoid overfitting to some extent, there

is still a risk of overfitting when fine-tuning the neural network on a small

dataset. To address this issue, one possible approach would be to evaluate

the performance of pre-trained neural networks using an utterly new violin-

ist dataset. If the results are also reasonably well, it would indicate that the

overfitting is not severe. However, as there is no publicly available dataset,

this work will be placed in future work.
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7.4 Summary

In this Chapter, we propose a transfer learning-based method for violinist

identification. First, several deep neural networks applied to music tagging

and singer identification are regarded as source tasks, and their architecture

and basic parameter settings are introduced in Section 7.2.1. These mod-

els are first trained separately based on their corresponding source datasets,

and the pre-training implementation is then presented in Section 7.2.1. Next,

we modify the structure of these models to suit the requirement of violinist

identification based on our datasets, details of which are illustrated in Sec-

tion 7.3. Then, these pre-trained models are fine-tuned on ASC and ACC

datasets, and the results of violinist identification are obtained and discussed

in Section 7.3.2. The results show that the pre-trained models can be success-

fully adapted to the target task and exceed the previous Chapters’ methods,

achieving high performance on both datasets. Finally, the advantages and

shortcomings of the transfer learning method are discussed in Section 7.3.3.
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Chapter 8

Conclusion

This Thesis presents the research process involved in designing and evaluat-

ing violinist identification (VID) approaches. This Chapter summarises the

main contributions and draws fundamental conclusions from the system de-

sign and experiments described throughout the Thesis. The possible future

development of this research is also included in the end.

8.1 Summary of Contributions

The significant contributions of this Thesis can be summarised in four as-

pects: i) novel violinist datasets construction; ii) audio features develop-

ment for describing violinist’s playing style; iii) comprehensive statistical al-

gorithms for modelling and identifying violinist’s style; iv) a transfer learning

approach for violinist identification.

8.1.1 Dataset Construction

Most existing violin datasets are constructed for music expression analysis or

instrument recognition, whereas the performer information is rarely included.

In Chapter 3, we constructed three concerto datasets from concerto perfor-
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mances recorded by nine famous violinists, which is applied for evaluating

our proposed VID methods on master performers’ performance. First, vi-

brato notes are manually segmented to compose an “Isolated Vibrato Notes”

(IVN) dataset by labelling their onset and offset positions, which contains

250 notes for each performer. Next, to avoid the influence of orchestra ac-

companiment, we remove the parts of the music without violin (e.g. prelude,

interlude) or where the violin cannot be heard clearly. The remaining music

clips are included to form the “all concerto clips” (ACC) dataset. It is used

to train deep learning models in Chapter 7. Finally, we selected some clips

from the ACC dataset and annotated the onset positions of each note. The

selected music clips, as well as the annotations, are taken to constitute the

“selected concerto clips” (SCC) dataset, and it is applied for assessing the

proposed methods in Chapter 6.

In addition, to further investigate the effectiveness of designed VID meth-

ods and provide a solo music-based scenario for the VID, we built two datasets

from solo musical scale recordings from the Bilbao project. A “selected solo

clips” (SSC) dataset consists of scales played by ten selected performers,

annotating each note’s onset time. This dataset was then used in Chapter 5

to measure the effectiveness of timbre features in describing a violinist’s style.

In addition, all scales in the original recordings played by the 22 performers

were manually labelled with the performer’s label, which was named “all solo

clips” (ASC) dataset. This dataset is used to train deep learning models, as

described in Chapter 7.

Establishing the above dataset provides a basis for assessing the pro-

posed violinist identification methods. It can also be used for other relevant

tasks (e.g. violin style analysis, style transfer) in the MIR community.
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8.1.2 Audio Feature Development

We designed and extracted three categories of note-level audio features to

investigate which audio factors can describe a violinist’s style. In Chapter 4,

as vibrato plays an essential role in violin playing, four features have been

developed to describe the habits and characteristics of the performer’s vi-

brato: Average Vibrato Extent, Average Vibrato Rate, Standard Deviation of

Vibrato Extent and Standard Deviation of Vibrato Rate. All vibrato features

are extracted based on the main melody of the note, which is obtained using

the “MELODIA” algorithm.

In addition to the vibrato features which reflect the characteristics of

left-hand playing, six note-level timbre features (including Spectral Centroid,

Spectral Bandwidth, Spectral Contrast, RMS Energy, MFCCs, Zero-Crossing

Rate) have been designed to describe the right-hand playing habits and pref-

erences. However, the raw timbre features are not only influenced by the

performer’s interpretation, but also by recording conditions, instruments or

other factors. To address these problems, we extract standardised features

at note level to model the timbre variations in each note, rather than the

original feature values.

In addition, in Chapter 5, to explore whether timbre features are influ-

enced by instrument, we design two experiments based on the SSC dataset,

including violinist identification as well as violin identification, respectively.

The results show that those features do not help identify violins, but they

perform very well in identifying violinists, further validating the effectiveness

and robustness of the designed timbre features for identifying violinists.

Finally, in Chapter 6, we developed two features to represent performer’s

expressive timing characteristic, including Onset Time Deviation (OTD) and

Note Duration (ND). Corresponding feature extraction methods and compar-

ing these features are also proposed in Chapter 6.
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8.1.3 Violinist Identification using Statistical Distribu-

tions

We propose a violinist identification method based on similarity calculation

among audio feature distributions. For each violinist, the global distribution

of audio features is considered to describe the performer’s style. Then, the

similarity between feature distributions of different performers can be cal-

culated and regarded as violinist identification results. In Chapter 4, three

distributions (including Histogram, Kernel Density Estimation (KDE), and

Gaussian Mixture Model (GMM)) are applied, and methods of violinist iden-

tification based on each model are presented and compared. The results show

that the distribution selection does not significantly affect the results, while

the KDE performs best on most vibrato features, while the histogram per-

forms best on most timbre features. In addition, these methods are also com-

pared with standard machine learning models (e.g. KNN, SVM), which are

frequently used for similar MIR tasks, which suggests our proposed method

performs better than those models.

The VID performance of each feature is also compared. In Chapter 4, we

attempt to identify violinists based on vibrato features and timbre features,

which are evaluated using the IVN dataset. Results show that Average Vi-

brato Rate is the best vibrato feature to distinguish violinists, whereas Stan-

dard Deviation of Vibrato Extent performs the worst. In addition, among

timbre features, the MFCCs can identify violinists well (F1-score is 0.865),

while ZCR is not very helpful in distinguishing violinists. Next, in Chap-

ter 5, we evaluate the timbre features on the SSC dataset to validate their

effectiveness for identifying violin players, where 0.941 and 0.917 (F1-score)

are given based on MFCCs and Spectral Contrast, and the worst is ZCR

as well. However, the results of violin identification with these features are

poor, approximately the same as the random baseline, indicating the features
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cannot represent the violin’s property well. Finally, the VID based on short

music clips is achieved in Chapter 6, using timing and timbre features on the

SCC dataset. The observed results show that the 0.797 in F1-score was found

using the OTD AVG, which is better than using any other single feature on

the same dataset. However, the timbre features perform much worse on the

SCC dataset than on the IVN and SSC dataset, which indicates that the

accompaniment may greatly influence such features’ violinist style modelling

capacity.

Furthermore, we present a method to fuse different features to identify

violinists. It is observed that feature fusion helps to improve the discrimina-

tion of some individual performers significantly, but the overall VID results

are not improved.

8.1.4 Transfer Learning for Violinist Identification

In order to improve the generalisation of the VID method and to further

improve the accuracy of violinist identification, we propose a deep learning

approach in Chapter 7. Due to the limited amount of data, transfer learning

is considered. The source tasks are music tagging and singer identification.

Seven CNN-based models are trained for music tagging on datasets including

MSD, MTAT and Jamendo separately, and these models are then retrained

using weights from each pre-trained model during initialisation. A similar

mechanism can be found when using singer identification as source task,

where three models are pre-trained on the Artist20 dataset, and the trained

models are then fine-tuned for violinist identification. Finally, the violinist

classification results obtained for each model are compared. The best result

on ACC dataset is obtained by the Short chunk CNN pre-trained on the

Jamendo dataset, which is 0.991; the best performance on the ASC dataset is

0.988, which is obtained by Harmonic CNN pre-trained on the MSD dataset.

The VID performances are significantly improved compared to the methods
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proposed above.

The transfer learning method gives better results than the methods men-

tioned in the previous Chapters and does not require complicated data pre-

processing processes. However, as we have discussed before, the method is

not very interpretable, and it is unclear what valuable features are ‘learned’

by the neural networks. Therefore its contribution to the development of

musicology is limited.

8.2 Future Perspectives

8.2.1 Dataset Optimisation

As the author creates the datasets used in this Thesis, the amount of data

is limited due to the massive workload of data annotation. In the future,

we can try to enlarge the dataset by labelling more performers’ recordings

and verify the reliability of our proposed method on the larger dataset. In

addition, in Chapter 6, it is evident that the timbre features are less able

to discriminate violinists based on the concerto recordings than on the solo

recordings. This is primarily due to the influence of the accompaniment in the

concerto, which introduces noise into the extracted timbre features, making

them not solely represent the timbre variations of the violinist’s playing.

To avoid the influence of accompaniment, we may apply source separation

to isolate the violin performance from polyphonic music in the future, and

the audio features and distributions would potentially model the performers’

individual playing styles better.

In addition, the data pre-processing applied in Chapter 4, 5 and 6 are

not automatic; the loudness normalisation, zero-phase filtering and silence

removal are done separately, which require complicated parameter tuning

and limits the application to other tasks. In the future, an automatic data

pre-processing method for multiple scenarios should be proposed, such as
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automatic detection of silences and automatic adjustment of filter parame-

ters. Integrating these pre-processing modules into a whole will help optimise

machine learning models’ subsequent optimisation and selection.

8.2.2 New Features Exploration

By combining multiple audio descriptors, hand-crafted features are used to

describe different aspects of the music (e.g., vibrato, timbre, timing), which

can objectively represent the violinist’s style. An intuitive future direction

is to develop new audio features to characterise violinist’s playing better.

In addition to the design of hand-crafted features, feature learning methods

can be applied, which may allow more information relevant to the style of

performance can be captured from the audio signal.

Furthermore, the features presented in this Thesis are at note level, which

is chosen because it balances the complexity of the analysis with the integrity

of musical expression. However, higher level features (such as bar level or

beat level) are also essential to fully characterise the performer’s performance.

In future work, we intend to extract different hierarchical audio features to

identify violinists based on musical structure analysis.

8.2.3 Model Optimisation

We present a violinist identification approach based on feature distributions

and similarity calculation. Although this method performs better than com-

monly used machine learning models (like KNN and SVM), the results based

on the SCC dataset are not convincing, where the F-score metrics are all

below 0.9. Further research could be carried out using more complicated

statistical models to obtain audio feature distributions, enabling better iden-

tification of violinists.

In addition, ten deep neural networks pre-trained for other MIR tasks are
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considered source tasks, then fine-tuned on our proposed violin datasets to

identify violinists. In order to explore the effectiveness of transfer learning,

the basic structure of these models is largely retained, and no extensive

modifications are applied to them. In the future, the model architecture could

be optimised to obtain better performance (e.g. the number of layers, the

loss function or kernel design), and we can evaluate the models’ performance

on the new violin dataset.

8.2.4 Performer Identification for Wider Scenarios

The violinist identification methods explored in this Thesis have been evalu-

ated on known performers and compositions in the dataset, but their validity

has not been verified for unknown musical pieces and performers. In further

research, we could first apply the proposed method to unknown performances

played by known violinists. Alternatively, we could add more performers and

corresponding performances to the dataset and evaluate the effectiveness of

different audio features and classifiers based on a larger dataset.

On the other hand, the methods proposed in this Thesis aim to iden-

tify violinists, but they can identify performers who play other instruments.

For example, the developed vibrato features could be attempted to charac-

terise viola players, cellists or performers playing other stringed instruments.

Moreover, in Chapter 7, the pre-trained models are fine-tuned on our violinist

datasets and show promising results for violinist identification. If these pre-

trained models were retrained on other datasets (e.g., piano or flute dataset),

would they be able to classify pianists or flute players? This remains a ques-

tion and worth to be explored in the future.
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Appendix A

Dataset Details

As mentioned in Chpater 3, we constructed two groups of datasets to evaluate

violinist identification algorithms proposed in this Thesis. Although Table 3.1

shows the selection of concertos, the specific information about the albums

is not explained in detail. To give readers a clearer picture of our research

and to make it easier to reproduce our work, the information of each album

is presented in Table A.1, including the performer name, repertoire, ASIN

code, and original release date. Since all albums are bought from Amazon,

the specific CD album can be reached from https://amazon-asin.com/

with the corresponding ASIN code.
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Table A.1: The details of selected CD albums.

Performer Manufacturer Repertoire ASIN Code Date

Accardo Decca Beethoven Violin Concerto Op.61 B01JTRQ1N4 2016

Accardo Decca Brahms Violin Concerto Op.77 B01KHURU5U 2016

Accardo Decca Mendelssohn Violin Concerto Op.64 B01KHUQ7W2 2016

Accardo Philips Sibelius Violin Concerto Op.47 B01M6YE2XM 2016

Accardo Philips Tchaikovsky Violin Concerto Op.35 B01M6YE2XM 2016

Heifetz SONY Beethoven Violin Concerto Op.61 B006XOBFHO 2012

Heifetz SONY Brahms Violin Concerto Op.77 B00E00GXWA 2003

Heifetz SONY Mendelssohn Violin Concerto Op.64 B00E00GXWA 2003

Heifetz EMI Classics Sibelius Violin Concerto Op.47 B000002S2U 1991

Heifetz SONY Tchaikovsky Violin Concerto Op.35 B00E00GXWA 2003

Menuhin Documents Beethoven Violin Concerto Op.61 B0113A5ASC 2015

Menuhin Documents Brahms Violin Concerto Op.77 B0113A5ASC 2015

Menuhin Deutsche Grammophon Mendelssohn Violin Concerto Op.64 B00R74MXP2 2015

Menuhin Documents Sibelius Violin Concerto Op.47 B0113A5ASC 2015

Menuhin Deutsche Grammophon Tchaikovsky Violin Concerto Op.35 B00R74MXP2 2015

Mutter Deutsche Grammophon Beethoven Violin Concerto Op.61 B000W99IKW 2007

Mutter Deutsche Grammophon Brahms Violin Concerto Op.77 B000001GNG 1995

Mutter Deutsche Grammophon Mendelssohn Violin Concerto Op.64 B000001GNG 1995

Mutter Deutsche Grammophon Sibelius Violin Concerto Op.47 B000001GRK 1996

Mutter Deutsche Grammophon Tchaikovsky Violin Concerto Op.35 B0002U9G7G 2004

Oistrakh Deutsche Grammophon Beethoven Violin Concerto Op.61 B003GW1P1C 2010

Oistrakh Deutsche Grammophon Brahms Violin Concerto Op.77 B000001GQI 1996

Oistrakh Naxos Historical Mendelssohn Violin Concerto Op.64 B000M2DNU0 2007

Oistrakh SONY Sibelius Violin Concerto Op.47 B004NSHBCK 2014

Oistrakh Deutsche Grammophon Tchaikovsky Violin Concerto Op.35 B000001GQI 1996

Perlman Warner Classics Beethoven Violin Concerto Op.61 B010FULJVS 2015

Perlman EMI Classics Brahms Violin Concerto Op.77 B0000AF1LM 1992

Perlman Warner Classics Mendelssohn Violin Concerto Op.64 B010DUTTLC 1992

Perlman Red Seal Sibelius Violin Concerto Op.47 B0001TSWMI 2004

Perlman Red Seal Tchaikovsky Violin Concerto Op.35 B0001TSWMI 2004

Stern SONY Beethoven Violin Concerto Op.61 B000026QSW 1993

Stern SONY Brahms Violin Concerto Op.77 B00KV192M0 2014

Stern SONY Mendelssohn Violin Concerto Op.64 B0000025JL 1990

Stern SONY Sibelius Violin Concerto Op.47 B000002AXW 2012

Stern SONY Tchaikovsky Violin Concerto Op.35 B000002AXW 2012

Vengerov EMI Classics Beethoven Violin Concerto Op.61 B000B63IDO 2005

Vengerov TELDEC Brahms Violin Concerto Op.77 B00000HZOB 1999

Vengerov Warner Classics Mendelssohn Violin Concerto Op.64 B00006IWQ8 2002

Vengerov TELDEC Sibelius Violin Concerto Op.47 B005CNKTCO 2011

Vengerov Warner Classics Tchaikovsky Violin Concerto Op.35 B00006IWQ8 2002

Zukerman Decca Beethoven Violin Concerto Op.61 B000025KBO 2008

Zukerman Deutsche Grammophon Brahms Violin Concerto Op.77 B00LWIK8ZQ 2014

Zukerman Decca Mendelssohn Violin Concerto Op.64 B000025KBO 2008

Zukerman Deutsche Grammophon Sibelius Violin Concerto Op.47 B00LWIK8ZQ 2014

Zukerman Decca Tchaikovsky Violin Concerto Op.35 B000025KBO 2008
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