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Abstract 

Background: Climate variability influences the population dynamics of the Aedes aegypti 

mosquito that transmits the viruses that cause dengue, chikungunya and Zika. In recent years 

these diseases have grown considerably. Dengue is now the fastest-growing mosquito-

transmitted disease worldwide, putting 40 per cent of the global population at risk. With no 

effective antiviral treatments or vaccines widely available, controlling mosquito population 

remains one of the most effective ways to prevent epidemics. This paper analyses the temporal 

and spatial dynamics of dengue in Mexico during 2000-2020 and that of chikungunya and Zika 

since they first appeared in the country in 2014 and 2015, respectively. This study aims to evaluate how 

seasonal climatological variability affects the potential risk of transmission of these mosquito-borne 

diseases. Mexico is among the world’s most endemic countries in terms of dengue.  Given its 

high incidence of other mosquito-borne diseases and its size and wide range of climates, it is a 

good case study. 
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Methods: We estimate the recently proposed mosquito-borne viral suitability index P, which 

measures the transmission potential of mosquito-borne pathogens. This index mathematically 

models how humidity, temperature and precipitation affect the number of new infections 

generated by a single infected adult female mosquito in a host population. We estimate this 

suitability index across all Mexico, at small-area level, on a daily basis during 2000-2020.  

 

Results: We find that the index P predicted risk transmission is strongly correlated with the 

areas and seasons with a high incidence of dengue within the country. This correlation is also 

high enough for chikungunya and Zika in Mexico. We also show the index P is sensitive to 

seasonal climatological variability, including extreme weather shocks. 

 

Conclusions: The paper shows the dynamics of dengue, chikungunya and Zika in Mexico are 

strongly associated with seasonal climatological variability and the index P. This potential risk 

of transmission index, therefore, is a valuable tool for surveillance for mosquito-borne diseases, 

particularly in settings with varied climates and limited entomological capacity.  
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Introduction 

Climate change and extreme weather events have imposed a significant threat to the growth and spread 

of climate-related diseases [1]. A clear example of this threat is mosquito-borne diseases which remain 

among the most important global health challenges [2]. For thousands of years, humans have cohabited 

with the Anopheles mosquitoes responsible for transmitting the parasite that causes malaria, and the 

Aedes mosquito, carrier of many arboviral diseases including dengue, and newly emerged viruses such 

as chikungunya and Zika. Because the Aedes mosquitoes live near and prefer to feed on the blood of 

humans, they are more likely to spread diseases, dengue being the most common. Approximately 2.5–

4 billion people, 40-60% of the world’s population, live in areas at risk of dengue [3]. Some studies 

estimate that the number of dengue cases increased from nearly 23 million in 1990 to 105 million in 

2017. Other studies suggest that these figures are conservative, and the real number of current infections 

is up to 390 million [4]. About one in four people infected with dengue get sick. Dengue symptoms are 

flu-like. The illness might progress to dengue haemorrhagic fever that manifests with vomiting, 

diarrhoea, and uncontrolled bleeding that might lead to system failure and can be fatal. During 1990-

2017, the number of annual deaths caused by dengue increased from nearly 17,000 to 40,467 [5]. 

The rapid expansion of dengue in recent years and other mosquito-borne diseases has been 

attributed to various complex interactions of social, economic and ecological factors, but remain 

strongly influenced by climatic conditions such as changes in rainfall, humidity and temperature [4]. 

Warmer temperatures and humidity improve the chances of larval development, adult mosquito 

emergence rate, lifespan and increase the chances of virus transmission. More rainfall boosts the number 

of breeding sites, whilst less rainfall can also increase mosquito population dynamics if people store 

water in containers, which serve as mosquito breeding sites [1].  

Over the last 50 years, dengue has undergone a geographic expansion and increased the number 

of infections in Latin America. This disease has remained the region’s most important arthropod-borne 

viral infection due to accelerated urban population growth and climate change [6–8]. Mexico is a clear 

example of the expansion of dengue, where the disease has become one of the most severe public health 

threats amid the ongoing COVID-19 pandemic.  In the country, the incidence rate of uncomplicated 
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dengue cases per 100,000 population increased from 1.72 in 2000 to 14.12 in 2011, with all ages 

affected but peaks in the age range of 10-20 [9]. By 2014, Mexico was the fourth most endemic country 

worldwide in confirmed dengue cases, behind Indonesia, Vietnam and Brazil [10,11]. Chikungunya 

and Zika are also locally transmitted in Latin America, mainly by the bite of infected Aedes 

aegypti [12]. The first local transmission of chikungunya in the region was detected in 2013, 

the same year as Zika is suspected to have arrived on the continent according to 

phylogeographic analysis [13].  These diseases are of the same family and share a vector with 

dengue. Thus, changes in mosquito population that favour dengue might also favour 

chikungunya and Zika [14]. Yet, the outbreak dynamics of these diseases do not need to 

conform to the same seasonal pattern [15]. Although chikungunya and Zika rarely cause death 

their symptoms can be debilitating, including fever, joint and muscle pain. Crucially, if Zika is 

transmitted to pregnant women the virus can be passed to the foetus with irreversible health 

consequences including microcephaly [16].  

The health risks are complex because there are no treatments for either of the three 

arboviruses discussed here. There are no approved vaccines for Zika and chikungunya 

yet. Although there is a vaccine to prevent dengue, licensed in December 2015, it has been approved 

in just 20 countries for people aged 9-45 that have prior laboratory-confirmed dengue infection [17]. 

Thus, the only long-term protective strategy is to control the mosquito population and have 

adequate surveillance tools to identify areas and periods at risk of mosquito-borne pathogens 

transmission. The local risks of transmission depend on a complex interplay between changes 

in local climatic conditions [18], population movements [19,20], households’ socio-economic 

characteristics  [11], population density [21], and various other factors that increase 

opportunities for mosquitoes to breed  [22,23]. However, many developing countries lack the 

capacity to collect such a wide range of entomological, epidemiological, socio-economic data 

systematically across the whole territory. Releasing regular data on the incidence of these 

diseases helps to monitor risks. However trends of incidence of arboviral diseases do not 
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necessarily  highlight accurately where future outbreaks might emerge nor whether the trends 

of chikungunya or Zika will follow the same trends of dengue [15]. Thus, there is a need for 

better surveillance tools with the capacity to promptly measure the risk of transmission of 

mosquito-borne pathogens. 

In this paper we contribute to the literature in three ways. Our first contribution is to 

estimate the recently proposed mosquito-borne viral suitability index, known as index P, for 

Mexico during 2000-2020. Index P estimates the likely average number of new infections 

generated by a single adult female mosquito on a susceptible host population [17]. We argue 

that the index P can complement existing surveillance systems to promptly predict the amplitude 

of mosquito-borne viral transmission risk. A key advantage of the index P is that its estimation 

depends only on local humidity, temperature and precipitation data, all of which are readily available 

for most settings, at a small-area level and on a daily basis. We present the index P on a daily basis to 

illustrate how sensitive the index is to climatic fluctuations. We present this analysis during 2000-

2020 for three in-depth case studies: Acapulco, Cancún and Mexico City. On the one hand, Acapulco 

and Cancún are coastal cities that have markedly different climate seasonal patterns, are exposed to 

frequent hurricanes, and high levels of population mobility. As expected, the index P reveals markedly 

different seasonal patterns of mosquito-borne disease risk transmission for these cities. On the other 

hand, Mexico City, the second most populated city in Latin America, has always experienced very low 

levels of mosquito-borne diseases given its climate and high altitude which reduces the vector 

potential as it is harder for mosquitoes to breed. As expected, the index P for this case predicts 

a low risk of transmission [24].  

Our second contribution is to estimate the index P for the entire Mexican territory 

during 2000-2020 and present detailed graphical analysis of when the index P peaks regionally, 

focusing on 2010-2020. Although there are several alternative mosquito-borne viral suitability 

indices, these indices depend on information not always available or measured regularly such as on 

deforestation, human mobility [18,19], urbanisation [20], mosquito population, number of female 
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mosquitoes per human [21,22] and water management practices [10].  Our analysis helps us to illustrate 

the feasibility of the estimation of the index P for a country as vast as Mexico over a prolonged period.   

The index P has been estimated for a handful of other contexts and shown to correlate well with 

a few mosquito-borne diseases during limited period analyses. For instance, that is the case for Brazil 

for dengue during 2007-2012 [17], Israel for West Nile virus during 2016-2018 [23], and the Dominican 

Republic for dengue, chikungunya and Zika during 2012-2018 [13].  Our third contribution is to 

estimate the correlation between the index P and dengue across all 2,469 municipalities in Mexico 

during 2010-2020, and with chikungunya and Zika since they first were reported in the country 

in 2014 and 2015, respectively. Mexico has a high degree of climate diversity, coastal areas 

exposed to frequent hurricanes, a high level of domestic and international population 

movements, and high levels of inequality and poverty. To provide a view of such diversity, we 

also present nine case studies across Mexico, in the north (Ciudad Mante, Mexicali, 

Monterrey), centre (Mexico City), southeast (Campeche, Tuxtla Gutiérrez), and coasts 

(Acapulco, Cancún, Coatzacoalcos). Overall, our analysis contributes to understanding the 

strength of correlation between the index P and mosquito-borne diseases, and the value of the 

index P for entomological surveillance and disease prevention. 

Setting 

Over the last two decades, Mexico witnessed a sharp increase in severe and non-severe dengue 

incidence rates. The overall dengue rate per 100,000 population increased from 1.89 in 2000 to 64.07 

in 2020, experiencing clear ups and downs and sharp peaks in 2007, 2009, 2013, 2015 and 2019 (Figure 

1). In contrast, chikungunya and Zika reached the highest incidence a year after their introduction into 

the country in 2014 and 2015, respectively, and ever since have rapidly declined (Figure 2).  
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Fig. 1 

 

Annual dengue incidence rates during 2000-2020 

Fig. 2 

 

Annual chikungunya and Zika incidence rates during 2014-2020 

Spatially, dengue also rapidly spread in the country. In 2000, dengue affected about a dozen 

Mexican states. By 2020, at least one case of dengue had been reported across all 32 Mexican states, 

albeit the highest incidence concentrated on the Yucatán Peninsula, the Gulf, and the Pacific Coasts 

(Figure 3). The closer to the coastlines, the incidence of severe dengue intensified (Figure 4). Zika 

followed a very similar spatial distribution to that of dengue, clustered in coastal areas (Figure 5). 
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Chikungunya similarly was found along the coasts, but more sparsely clustered and particularly along 

the Pacific and the Yucatán Peninsula (Figure 6).  
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Fig. 3 

 

Distribution of dengue in Mexico in 2000, 2010, 2015 and 2020 
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Fig. 4 

 

Distribution of severe and non-severe dengue in Mexico during 2000-2020 
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Fig. 5 

 

Distribution of Zika in Mexico during 2015-2020 

Fig. 6 

 

Distribution of chikungunya in Mexico during 2014-2020 
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Method and data 

Climate-driven mosquito-borne viral suitability index P 

To identify the areas and seasons most at risk of mosquito-borne disease transmission, Obolski 

et al.  [18] derive a suitability index, called index P, by modelling the transmission potential of a 

pathogen. The mathematical derivation of such transmission potential is summarised in two key 

components: the basic (R0) and effective (Re) reproduction numbers. R0 represents the sum of the 

reproductive potential transmission of each adult female mosquito, P(u,t), over the number of female 

mosquitoes per human, M, among the susceptible host population (Eq. 1). Re also represents 

reproductive potential but considers the presence of immune hosts hampering transmission, with Sh, 

Sv  standing for the proportion of susceptible humans and mosquitoes (Eq. 2). The overall potential 

mosquito-borne transmission is summarised in index P, as shown in Eq. (3). 
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The estimation of R0 depends on defining priors for all the eight parameters. Four of these 

parameters are climate independent. These are the human life span 1/μh; the transmission probability 

from an infected human to mosquito per bite $ℎ→&; the human infectious period 1/σh; and the human 

incubation period 1/γh.  The other four parameters are climate dependent: the life span of adult 

mosquitoes 1/'
�",#�
& , the extrinsic incubation period 1/(

#
&, the daily biting rate )�"�

&  and the probability of 

transmission from an infected mosquito to human per bite $
�#�
&→ℎ. All these climate-dependent 

parameters are dependent on humidity (u) and temperature (t) and have been previously determined in 

experimental laboratory studies [18]. The climate-dependent parameters can also be extended to include 
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the role of precipitation, as done in this paper. In this case, precipitation replaces humidity in the effects 

over egg hatching success. 

R0, Re of a mosquito-borne virus have seasonal oscillations dependent on changes in climate 

conditions and other parameters such as the number of adult female mosquitoes per human (M). Obolski 

et al. [18] explain it is rare to have accurate estimations of M for regions or mosquito species of interest. 

However, theoretically, the potential for outbreaks is determined by the epidemic thresholds of R0 >1 

or Re >1. Thus, if at least one female mosquito exists per human (M>=1) and P(u,t)>1, then 

R0=MP(u,t)>1 and epidemic growth is possible. 

The index P, shown in Eq. (3), is derived by fitting a dynamic model within a Bayesian Markov 

chain Monte Carlo framework, assuming only one main human host. In this Bayesian model, the index 

P is estimated by defining eight priors in the expression of P(u,t) which establish the relationship between 

meteorological variables, mosquitoes, and host parameters such as viral incubation periods, adult 

mosquito lifespan, and mosquito bite rate. All these priors have been estimated in the literature. Table 

A.1 in the Appendix lists the systematic studies that Obolski et al. [18] sourced to determine these 

parameters along the distribution of parameters used as priors. Here, we use the same eight priors that 

Obolski et al. [18]  used to estimate the index P for Brazil. The four climate dependent parameters 

used in Eq. (3) have been determined in experimental laboratory studies and estimates of 

entomological data under various climate conditions [24–30]. The other climate independent 

parameters such as human incubation period and human infections that Obolski et al. [18] used 

were established based on systematic reviews of Latin American studies [27,31,32]. We did 

not change the parameter of human-life expectancy as this parameter, set for Brazil in the 

MVSE R package, is very similar to the one in Mexico. However, we did perform sensitivity 

analysis, and like other  recent studies, concluded that the index P is robust to a range of priors [15]. 

In the Results section we discuss this sensitivity analysis. 

The index P is a summary statistic that measures the transmission potential of an adult female 

mosquito. To put it simply, the index P is the likely average number of new infections generated by a 

single infected adult female in a susceptible host population. Thus, a key advantage, and difference 
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from other suitability indices not simply based on vectorial capacity [21,33], is that the numerical scale 

of the index P has a direct biological interpretation.  Moreover, in absolute value, the index P is 

informative for the timing and amplitude of potential transmission when assessed locally in time or 

between regions [18]. 

 

Estimating the suitability index P for Mexico  

Another advantage of the index P is that it can be estimated using readily available climate data and the 

freely available Mosquito-borne Viral Suitability Estimator (MVSE) R-package. We use the latest 

release of the MVSE R-package, version v1.01r. Detailed technical features of this R-package can be 

found in Obolski et al. [18]. These authors estimated their index P for Brazil using an earlier MVSE R-

package version (v0.33). In this paper, we use the most recent version of their R-package, version 

v1.01r, which, unlike previous versions, adds precipitation as one of the key components to estimate 

the index P. This package also allows the user to set the values of the priors depending of the host-

pathogen system analysed. 4  We used the default priors that  Obolski et al. [18] used, but as discussed 

in the Results section our results remain robust to using other priors.  

 

Data  

To estimate the index P for Mexico, we use daily data of temperature, relative humidity, and 

precipitation obtained from the 188 automatic meteorological stations of the National 

Meteorological Service of Mexico for 2000-2020. These stations take measurements of the 

 
4 The R-package also informs users about the acceptance rate to assess whether the Bayesian 

inference reached convergence of the estimated Markov Chain Monte Carlo (MCMC) chain. 

For our case, the mean acceptance rate is 28.65% for the index P estimations across all the 188 

automatic weather stations analysed during 2000-2020. In over 85.1% of the automatic stations, 

the acceptance rate reached the ideal 23% threshold or higher, suggesting that our study has a 

high acceptance rate of convergence.   
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meteorological variables automatically using electrical and mechanical devices that are later 

sent via satellite and collected by the personnel of the Meteorological Service. The stations are 

distributed across the country and the data they collect do not correspond to municipality 

administrative boundaries. However, the data available from these automatic statics allowed 

us to interpolate climatic data for all the 2,469 municipalities in the country.  

Automatic meteorological stations are less densely distributed than alternative non-automatic 

meteorological stations and observatories. Nonetheless, automatic stations still offer excellent coverage 

of the country’s weather conditions at a small-area level. Moreover, the automatic stations are the only 

ones that measure the relative humidity on the surface, which is one of the key data required to estimate 

the index P. The relative humidity is captured even in different time intervals daily, which is ideal for 

the daily estimate of the index P in this study. Automatic stations also offer much wider data availability 

suitable for daily analysis than other databases that provide perhaps a broader spatial resolution but with 

limited-time series. WorldClim for instance does not have direct data on humidity, it only offers 

saturation vapour pressure information which could be used to infer the levels of relative 

humidity. Nonetheless this potential inference and wider spatial resolution could increase the 

measurement error and potential degree of uncertainty to the index P daily estimates. 

In the next section, we illustrate the dynamics of the index P for three relevant cities 

daily during the period 2000-2020. This daily analysis allows us to assess the index’s sensitivity 

to seasonal changes in climate conditions. Then, we provide a much broader picture of the 

distribution of the index P across all the Mexican territory by focusing on seasonal changes of 

the index P over time. In Table S.1, in the Online Appendix, we present the monthly index P 

for each automatic meteorological station, aggregated at state level, in the country during 2000-

2020. Our analysis is performed over a regular grid of Mexico, in which each pixel represents an area 

of approximately 50km2. This mesh results from the Inverse Distance Weighted (IDW) interpolation as 

calculated by the QGis package commonly used to interpolate climatic data. IDW determines cell values 

using a linear weighted combination of sample points, where the weight is a function of the inverse 
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distance raised to a mathematical power. Points closer to each other are given more weights as they are 

assumed to be more similar and more influential than those at a greater distance [34]. As power we set 

the default parameter in the QGis package, which is equal to two. The magnitude of this parameter is 

in practice not very important for our results because the robustness of interpolation depends more on 

the density of the data and the resolution of the geographic area analysed, in our case for the whole 

country. There are other methods, such as Kriging, but these are more suitable to interpolate other types 

of data.  

 

Results  

Index P dynamics in three case studies 

Before we present the trends of the index P and mosquito-borne diseases for the entire country, we 

pause to analyse in more detail three cities: Acapulco, Cancún and Mexico City. We focus on these 

three cities because they have important differences in climatic conditions, geographical location, 

arbovirus incidence and are subject to distinct and very high degrees of human migration patterns. These 

differences make these cities ideal for assessing the robustness of the index P in estimating transmission 

risks on a daily basis during 2000-2020.5 

Acapulco, on the east Pacific coast, has a tropical wet and dry climate characterised by high 

temperatures with minimal variation and variable levels of precipitation [35]. Cancún has a tropical 

savanna climate on the Yucatán Peninsula [36]. Both these cities are among the most important 

domestic and international tourism centres in the country, and have high dengue incidence, albeit with 

peaks in different seasons.  Mexico City, the capital and most populated city in the country, has a 

 
5 Some automatic meteorological stations break down from time to time, during which it is not 

possible to estimate weather data for a few days during the year. For instance, for Mexico City, 

there are missing weather data from 2016-05-27 to 2016-11-28; for Acapulco from 2006-02-

12 to 2006-09-21 and from 2007-07-12 to 2009-10-02; and for Cancún from 2005-10-22 to 

2007-01-16 and from 2010-09-23 to 2011-12-18.  



17 

 

subhumid mild climate. This city is a particularly interesting case to analyse because its high elevation, 

2,240 metres above sea level, is above the elevation ceiling that typically allows the Aedes mosquitoes 

to proliferate [37]. Nonetheless, climate warming could over time place high-elevation cities at 

increased risk of dengue transmission; and in the Americas the Aedes have been found in other similar 

high-altitude areas of 2,200 metres [38].  

For each of our three case studies, Figure 7 displays the daily climate patterns (temperature, 

humidity, and precipitation), the distribution of the entomological priors and the estimated index P.6 

Following the literature, we assume the entomological priors of the mosquito lifespan and incubation 

period to be the same across all the three cases [18]. As expected, Acapulco and Cancún have 

consistently higher indices P than Mexico City’s (with averages of 1.35, 1.32 and 0.54, respectively).  

These indices P predict that if there was one female mosquito per human, Acapulco and Cancún would 

be more susceptible to outbreaks of mosquito-borne diseases than Mexico City, where the index is less 

than one for most of the year. Acapulco and Cancún present higher levels of humidity and temperature 

and are subject to more irregular trends in all climate conditions than Mexico City. These patterns 

suggest that the daily index P for Acapulco and Cancún have more irregularities in their seasonal 

patterns. In contrast, Mexico City displays a more stable seasonal pattern during 2000-2020. These risks 

of transmission are well in line with the epidemiological profiles of each city. Acapulco, Cancún and 

Mexico City have a markedly different incidence of dengue per 100,000 inhabitants, with an average 

of 12.06, 8.98, and 0.015 respectively during 2000-2020. In fact, Acapulco has one of the most severe 

and persistent dengue-incidence profiles in the country, whilst Cancún has in recent years increased 

from medium to high levels of dengue [39]. Mexico City’s low index P also corresponds with its low 

incidence of dengue, chikungunya and Zika, typical of local climate conditions of high-altitude areas, 

which are not conducive to the endemic presence of Aedes mosquitoes. 

 
6 The index P depicted in Figure 7 is estimated using 1,000 simulations for each day during 2000-2020. To 

generate each of these simulations the MVSE R package uses Eq. (3) which relies on eight parameters as priors. 

Then, for every year, we determine in which day the index P peaked for each of the simulations. 
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Fig. 7 

                      

                                    

a) Mexico City 

             

                                    

b) Acapulco 
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c) Cancún 

Climate, entomological priors, index P and 95% confidence intervals for Mexico City, Acapulco, and 

Cancún 2000-2020 

 

The timing of when the index P reaches its maximum can be used to determine the timing of 

the highest mosquito-borne disease transmission potential.  For visual simplification, Figure 8 shows 

the month for which the index P reached its peak across all the simulations for the years, 2000, 2005, 

2010, 2015 and 2019. Over this sub-period analysed, the index P in Mexico City tended to peak in June, 

reflecting very marked seasonal behaviour. For Acapulco and Cancún, their indices P tended to reach 

their maximums in June and October, respectively. Nonetheless, the timing of when the index P peaked 

displayed a high degree of variance. 
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Fig. 8 

             

            a) Mexico City                              b) Acapulco                            c) Cancún 

Peak distribution of the index P 

 

Another key feature of the MVSE R-package is that it offers a visual representation of the 

sensitivity of the estimated index P to changes in climate conditions. Figure 9 depicts the humidity and 

temperature on the x- and y-axis, respectively, for all the combinations in the climate data. The different 

colours in Figure 9 represent different values of the index P. The dots that form a ring shape within the 

figure represent the average values of the climate data for each month. The floating circles with numbers 

ranging from one to twelve indicate what month the average values refer to. Figure 9 shows that 

suitability in Mexico City follows a clear and gradual trend along the months in a year, while Cancún 

presents abrupt changes reflecting lower stationarity. The lower stationarity hinders the identification 

of the month of highest transmission risk. Acapulco behaves somewhere in between the other two case 

studies. 
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Fig. 9 

                

          a) Mexico City                        b) Acapulco 

 

                       c) Cancún 

Each point represents a humidity-temperature combination recorded in the climate data used 

as input for the index estimation. Temperature is measured in degrees Celsius. The white dots 

over the black link mark the mean for each month, while the floating circles indicate which 

month it refers to. 

As mentioned earlier, the estimation of the index P relies on defining priors for eight 

parameters. To assess how robust the index P is to these priors, we performed sensitivity 

analysis. We changed the value of some of our initial priors, taken from Obolski et al. [18] for the 

prior of  human incubation period (from mean=5.8, sd=1, to mean=5.0, sd=1), or the mosquito life 

expectancy (from mean=12, sd=2, to mean=14, sd=3), or both these priors simultaneously. We 
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changed the value of these priors as there is also support in the literature for these parameters 

which have been used recently in the estimation of the index P for the Dominican Republic 

[15]. In our sensitivity analysis we found no statistically significant differences with respect to 

the set of priors we used originally, as shown in Figure A.1 in the Appendix. This figure shows 

the value of index P using our original priors and the value of the index P when changing the 

human incubation period (left-hand side panel), or the mosquito life expectancy (middle panel), 

or both these parameters simultaneously (right-hand side panel). Figure A.1 also shows the 

resulting 95% confidence intervals for the estimated indices P. In most cases, the only 

noticeable change, is a slight increase in the upper confidence interval, particularly when we 

change the mosquito life expectancy parameter.   

 

Index P spatiotemporal characterisation across Mexico 
 

In this section, we provide a broader picture of the distribution of the index P across all the 

Mexican territory. As mentioned earlier, automatic meteorological stations offer the key advantage 

of measuring on the ground local climate conditions daily. Our choice of using these automatic 

measurements comes at a cost. Unfortunately, not all regions in the country had an automatic 

meteorological station nearby during 2000-2010.7 Nonetheless, the number of automatic stations 

 
7 Some automatic meteorological stations sometimes did not report climate data for a few hours or 

days, presumably due to breakdowns. Thus, for the national analysis, we include automatic 

meteorological stations with: i) no more than 30% of missing values in a month (otherwise that month 

was discarded) and; ii) with valid months (according to condition i) for a whole year (otherwise, that 

year was excluded). This approach yields all the 188 automatic meteorological stations available. As 

a robustness check, we used other criteria to clean the weather data, and deal with missing values which 

yield nearly identical indices P, to the ones presented here.  
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sharply increased after 2010, achieving good national coverage during 2010-2020.  For this reason, in 

this section and the next one, we restrict our analysis to 2010-2020. In Table S.1, in the Online 

Appendix, we present the index P for all available automatic meteorological stations, aggregated at 

state level, during 2000-2020. 

Figure 10, panel a, shows the average index P across all the Mexican territory during 2010-

2020. This figure depicts the values of the index P by quintiles. As mentioned earlier, the risk of 

transmission increases when the index P takes a value greater than one, and the risk decreases when the 

index P takes the value of less than one. The regions with the highest index P (index > 1.16, shown in 

red) are in the southeast (Tabasco and the Yucatán peninsula), the Pacific coast, and in some northern 

states (Sonora, Chihuahua and Coahuila). The intermediate values of the index P (index between 0.98 

and 1.16, shown in yellow and orange) are located in the Tehuantepec Isthmus and in some northern 

states. The index P with its lowest value (index <0.98, blue and green), hence with the lowest 

transmission potential, is found in the centre of the country and the peninsula of Baja California. 

The month where the index P reaches its maximum value is shown in Figure 10, panel b. It 

stands out that the maximum peak per month does not always occur in the same regions, as it is mainly 

influenced by temperature variability. The index P peaks in July in the centre and centre east. For most 

of the rest of the country, the index P reaches its maximum value in August or September, where the 

transition from summer to autumn begins.  

Figure 11 shows the monthly average of the index P during 2010-2020 for selected 

months. During January, the southeast, Tehuantepec Isthmus and the coasts of Michoacán and 

Guerrero stand out with the highest transmission potential. In May, the highest transmission 

potential occurs in the northeast region. In July, the highest transmission risk shifts to the 

northwest of the country, standing out the states of Sonora and Chihuahua. In September, the 

highest transmission risk is for northeast states, particularly Coahuila, Nuevo León, and 

Tamaulipas, as well as Yucatán in the southeast. 
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Fig. 10 

 

a) Mean yearly index P during 2010-2020 

 

b) Month of maximal index P in Mexico per pixel, during 2010-2020 

Spatial-temporal characterisation of the index P in Mexico per pixel, during 2010-2020 
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Fig. 11 

 

Mean of index P during 2010-2020 in January, May, July and September 

Correlation between the index P and mosquito-borne diseases in Mexico 

In addition to practicality, good suitability indices must also be correlated to the phenomenon 

they intend to measure. Thus, next we assess the degree of correlation between dengue, chikungunya 

and Zika incidence and the index P for all the 2,469 municipalities in Mexico and for nine selected 

cities during 2010-2020. These nine cities have been selected to provide a granular view across the 

territory, given their varying levels of arboviral infections and differences in socio-economic 

characteristics. These cities are in the north of the country (Ciudad Mante, Mexicali, and 

Monterrey), centre (Mexico City), southeast (Campeche and Tuxtla Gutiérrez), and various 

coasts (Acapulco, Cancún, and Coatzacoalcos). The geographical location of these nine cities is 

shown in Figure 10. For each of these nine cities we estimate the Pearson correlation between 

the index P and dengue, Zika and chikungunya during 2010-2020. Like Obolski et al. [18], for each 

city, we  estimate its Pearson correlation coefficient between the average index P for each month 

during 2010-2020 and its monthly average incidence of each arboviral disease (measured in 

natural logarithm) during 2010-2020.  
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Figure 12 depicts for each of the nine cities its monthly average index P, its monthly incidence 

of dengue (measured in logarithm) during 2010-2020, as well as the Pearson correlation between these 

variables. This correlation index is positive and ranges between 0.25 (Cancún) and 0.86 

(Campeche). The correlation is much higher for southern and coastal cities that tend to have a 

high incidence of dengue, with the exception of Cancún perhaps due its very high flow of 

international and domestic tourism. The correlation is lower for northern cities that typically 

have low levels of dengue (Mexicali and Monterrey). These results suggest there might be other 

relevant factors, such as population mobility, density and socio-economic characteristics that 

explain the low incidence of dengue in some cities, which the index P does not consider. 

Nonetheless, overall the correlation between the index P and dengue are similar to the results 

obtained by Obolski et al. [18] for several cities in Brazil.  

To analyse further the transmission risk potential predicted by the index P, Figures A.2 and 

A.3, in the Appendix, show the correlation between the index P and chikungunya and Zika for the nine 

selected cities since they appeared in the country in 2014 and 2015 respectively. The incidence of both 

diseases has rapidly declined and is more clustered in specific regions. However, in the cities where 

there is chikungunya or Zika or both, and where it is possible to estimate the correlation with the index 

P, the correlation is relatively strong. For chiungunya the correlation ranges from -0.44 (Ciudad Mante) 

to 0.86 (Tuxtla Gutiérrez). For Zika the correlation with the index P ranges from 0.01 (Monterrey) to 

0.92 (Mexico City).  

There is substantial variability in the presence of Zika and chikungunya across the nine 

cities as these diseases are not widespread but concentrated in certain parts of the country only. 

This partly explains why the correlation coefficient between the index P and the rate of Zika 

and chikungunya shows wider range than the correlation between the index P and dengue. 

Moreover, the sporadic and scant incidence of Zika and chikungunya provides us with 

insufficient power to detect a statistically significant correlation between the index P and these 

arboviruses for each of these nine case studies.   
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To provide a more global view, Table 1 presents the Pearson correlation between the 

index P, dengue, Zika and chikungunya for two different scenarios: one considering all the nine 

cities together, and another considering all the 2,469 municipalities in the Mexican territory 

during 2010-2020. We find that the correlation between the index P and dengue is 0.46 when 

considering together the data from the nine case studies. This correlation is statistically 

significant, and higher than when estimating the correlation for all the 2,469 municipalities in 

the country (0.29) as the selected nine case studies tend to have high incidence of dengue (with 

the exception of Mexico City).  

Table 1 also shows that the correlation between the index P and dengue for all the 2,469 

municipalities in the country (0.29) is of similar magnitude to that of Zika (0.23) and 

chikungunya (0.25). All these correlations between the index P, dengue, Zika and chikungunya 

are statistically significant, and sufficiently powered with large number of observations, when 

considering the data across all the municipalities in the country.  
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Fig. 12 

 

Correlation of index P and dengue incidence for selected nine cities. Monthly averages of the index 

P are shown in blue and average incidence is shown in the dotted pink line. Shaded areas 

correspond to the 95% confidence intervals of the index. Pearson’s correlation is shown in each 

subplot. 

Table 1. Correlation between Index P, dengue, Zika and chikungunya incidence for case 

study and all municipalities in the country 2010-2020 

 

Dengue Zika Chikungunya

correlation coefficient 0.46 0.20 0.01

p-value 0.00 0.34 0.96

number of observations 103 78 73

correlation coefficient 0.29 0.23 0.25

p-value 0.00 0.00 0.00

number of observations 12411 3542 3381

Nine selected cities in Mexico

All 2,469 municipalities in the country
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The nine selected cities in Mexico are: Acapulco, Campeche, Cancún, Ciudad Mante, 

Coatzacoalcos, Mexicali, Mexico City, Monterrey, and Tuxtla Gutiérrez. The number of 

observations is the number of areas considered multiplied by twelve (as the correlation 

considers the average rate of mosquito-borne disease for each of the 12 months over the period 

2010-2020). Some areas do not report mosquito-borne diseases for some months. For these 

missing cases the number of observations is reduced, as it is particularly the case for Zika and 

Chikungunya.  

 

Hurricane Manuel and index P 

Our analysis suggests that the index P offers valuable information on the potential dynamics 

of mosquito-borne risk transmission during a given year or for a long-time series.  Another 

possible application of the index P could be to assess changes in transmission potential due to sudden 

weather shocks such as hurricanes. Adult mosquitoes do not generally survive during the high wind 

speed associated with hurricanes. However, a disease outbreak of dengue, Zika, and chikungunya might 

follow as hurricanes might cause significant property damage and increase precipitation that makes 

it more likely for mosquitoes to breed  [40–42].  To assess to what extent hurricanes affect the index P, 

Table 2 shows the changes in monthly average index P, temperature (Celsius), monthly average 

humidity (a percentage that ranges between 0 and 100), and the monthly average precipitation (in 

millimetres), associated with Hurricane Manuel that affected Mexico in September 2013. Manuel was 

the first eastern North Pacific tropical cyclone to make landfall in mainland Mexico, redevelop over 

water, and then become a hurricane. Manuel brought heavy rains and floods to large parts of the Pacific 

coast, resulting in 123 deaths and 4.2 billion US dollars in damage, with the biggest impacts in Guerrero 

[43]. Over 30,000 homes were damaged in that state alone, and 46 rivers overflowed. Table 2 shows 
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the sharp increase in rainfall that Acapulco in Guerrero experienced during September 2013.8 The index 

P, as a result, increased during September 2013. This increase in the index P also coincided with the 

rise of dengue incidence in Acapulco during that month. This evidence suggests that the index P 

reasonably predicts how climate changes can lead to changes in potential transmission. It is worth noting 

that the index P seems to be more sensitive to changes in temperature and humidity. For instance, in 

September 2012, Acapulco did not experience a hurricane in the previous year. Nonetheless, there were 

statistically significant higher levels of humidity and temperature reflected in a higher index P and 

higher dengue incidence than the ones experienced in September 2013 where Hurricane Manuel 

affected Guerrero.  

Our evidence suggests that the index P is a good tool to assess increased risk of 

transmission which could alert policymakers which months, seasons, and areas could be at 

increased risk of mosquito-borne diseases due to changes in climatic factors. However, some 

cities and months can have higher correlation between the index P and incidence of arbovirus disease 

that will not necessarily be expected in other periods or space. That is, although increases in the index 

P suggest a rise in the risk of mosquito-borne transmission, such an increase in risk of transmission is 

not necessarily linear. In Table 2, for instance, the index P increased from 2.23 to 2.24, that is 0.82%, 

between September and October of 2012. During that period the incidence of dengue increased by 

79.4%.  A year later, when hurricane Manuel hit Guerrero, the index P increased from 1.84 to 1.95 

between September and October of 2013. This increase of 5.74% in the index P was reflected in a 

substantial increase in the incidence of dengue of 186.8%. The rise in dengue was not as high as the 

one we would have expected had the index P and risk transmission followed a linear relationship. There 

 
8 The MVSE R package estimates the index P using climatic variables. This package applies a 

smoothing filter to these variables and standardises humidity and precipitation for numerical 

stability. We carried out this filter and standardisation using the same MVSE R package. In 

Table 2, we present all the climate variables without such a filter or standardisation, in raw 

units, merely to help appreciate the levels of these climatic variables in these two periods. 
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are many reasons for this finding. As mentioned earlier, the incidence of mosquito-borne diseases 

depends on more factors not considered in the index P such as population mobility, opportunities 

for the mosquito population to breed, deforestation, etc.  Still, the index P provides a good tool 

to assess increased risk of mosquito-borne disease transmission. 

 

Table 2. Climate conditions, Index P and dengue incidence in Acapulco during July-

November 2012 and 2013 

 

 

Discussion 

Even though transmitted by the same vector, we showed that dengue, chikungunya and Zika can follow 

different spatial outbreak dynamics. Among all these diseases, dengue is the most widely spread in the 

country and its epidemiological spectrum remains a mix of epidemic, endemic, and hyperendemic areas. 

Over half of dengue cases are concentrated in about 65 municipalities in coastal, particularly by the 

Gulf, tropical areas and the Yucatán peninsula, all of which are important tourism and trade centres [9]. 

The annual economic impact of dengue in Mexico is estimated to be 130 million US dollars. Roughly 

30% of these costs are in terms of direct medical costs and remaining in terms of patients’ economic 

costs [44]. Thus, it is paramount that timely surveillance tools are designed to help health authorities 

and scholars determine the seasons and areas most at risk of mosquito-borne diseases. 

We also showed that the index P provides a reliable tool to estimate the transmission potential 

of mosquito-borne diseases. That is, the index P reveals quite well which areas are most at risk of 

transmission and crucially when. The index P also provides important insights into transmission 

during a wide range of climatic patterns and following extreme weather shocks including 

hurricanes.  Although there are various alternative mosquito-borne potential transmission indices 

Month
Temperature 

Celsius
% Humidity

Rain 

Millimetres
Index P

Dengue 

incidence

Temperature 

Celsius
% Humidity

Rain 

Millimetres
Index P

Dengue 

incidence

July 28.64 91.67 0.01 2.07 10.92 27.05 90.19 0.05 1.62 8.99

August 27.91 94.21 0.05 2.18 35.36 27.03 89.64 0.05 1.65 9.85

September 27.90 94.94 0.04 2.23 35.49 25.97 95.98 0.23 1.84 9.36

October 27.91 95.80 0.03 2.24 63.65 26.66 95.06 0.08 1.95 26.84

November 26.38 89.71 0.01 1.52 37.72 26.43 95.36 0.00 1.91 8.62

Year 2012 Year 2013
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(such as water-associated diseases, and R0 mosquito-borne pathogens [11,45]) these earlier indices rely 

on the complex interplay between social, economic, viral and entomological factors that are difficult to 

parameterise or model regularly and across broad regions [18].  It is rarely the case to have optimal 

mosquito populations or epidemiological data across the country and over time. Instead, the 

index P has the main advantage of relying exclusively on local humidity, temperature, and 

precipitation data, and a few vectors and human prior parameters already established in 

scientific literature. We showed that this analysis can be done with climate data that is usually readily 

available daily and of fine spatial scale. Timely information like this is vital to detect the highest viral 

transmission potential in each location and potential public health interventions to slow down the 

transmission of mosquito-borne viruses.  

We acknowledge that our analysis has some limitations. Because of the simplicity of the index 

P, our study has not considered other potential important factors that could affect the transmission 

potential of mosquito-borne viruses such as existing public interventions to control mosquito 

population, socio-economic characteristics of the population, quality of housing conditions, among 

others. This limitation might explain why the index P has a lower correlation with mosquito-borne 

diseases in the north than in the south of the country. The north compared to the south is significantly 

wealthier, with better housing conditions, and subjected to distinct migration patterns.  Thus, although 

the index P can be an important tool to promptly anticipate risks of transmission, effective surveillance 

systems are required to collect other vital epidemiological, ecological, entomological information. Still, 

the index P can serve as a baseline for the extent to which the climate alone contributes to risk of 

transmission. This is a powerful tool that can be used in future studies to measure the impact of 

interventions that seek to reduce mosquito population.  

Future studies could also estimate the index P for much longer time periods than ours. This type 

of analysis could help assess to what extent climate change alone has affected the transmission risk of 

mosquito-borne diseases. Other studies could also use the index P and estimate for more recent periods 

how climatic variables alone affected the risks of transmission before and after population movement 

restrictions were implemented to contain the COVID-19 pandemic.   
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Conclusions 

Over the last fifty years, arboviral diseases have dramatically spread, in particular dengue which 

increased thirty-fold and remains the most important and fastest-growing mosquito-borne viral disease 

worldwide. Mosquito-borne diseases can be reduced by adopting better surveillance tools for outbreak 

prediction, detection, and prompt controlling of mosquito populations. In this paper, we put into practice 

the recently proposed mosquito-borne viral suitability index P. This index estimates the transmission 

potential of mosquito-borne diseases such as dengue, chikungunya and Zika, identifying the areas and 

seasons most at risk.   

Our analysis offered two important insights. First, our analysis revealed the index P to 

be strongly correlated with the incidence of dengue, its peaks during the year and spatial 

distribution within the country. Second, this correlation was also high enough for chikungunya 

and Zika to serve as an additional surveillance tool for these diseases in as vast a country as Mexico.  

Thus, our analysis suggests the index P can serve as an additional tool for surveillance systems 

in the country and in settings that have limited entomological information, epidemiological 

capacity, and exposed to rapidly changing climatic conditions. It is only with detailed analysis like this 

that policymakers and researchers can unravel the extent to which changing climate conditions affect 

the spread of mosquito-borne diseases and act promptly. 

 

Availability of data and materials 

The datasets analysed during the current study and the replication code are available from the 

corresponding authors on reasonable request. 
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MVSE: Mosquito-borne Viral Suitability Estimator  

IDW: Inverse Distance Weighted  

HIP: Human Incubation Period  

MLE: Mosquito Life Expectancy 
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Appendix 

Table A.1. Prior distribution used to estimate index P  

 

Source: Obolski et al. [18]  
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Fig. A.1 

 

The blue solid line shows the average monthly index P and its 95% confidence interval (upper 

and lower thresholds) during 2010-2020 when using the same priors as Obolski et al. [18]. The 

pink dashed line shows these estimates changing two parameters to the values used by Petrone 

et al. [15]. The left-hand side panel shows the estimation when changing the Human Incubation 

Period (HIP) parameter. The middle panel shows the estimations when changing the Mosquito 

Life Expectancy (MLE) parameter. The right-hand side parameter shows the estimation when 

changing both these parameters simultaneously. 
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Fig. A.2 

 

Correlation between index P and chikungunya. Monthly averages of index P are shown in blue, 

and the average incidence of chikungunya is shown in pink. Shaded areas correspond to the 

95% confidence intervals for the index. For each city, the index averages are computed for any 

year between 2010 and 2020 for which climate data is available. The geographical localisation 

of these cities is shown in Figure 10. Pearson’s correlation is shown in each subplot.  
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Fig. A.3 

 

Correlation between index P and Zika. Monthly averages of index P are shown in blue, and the 

average incidence of Zika is shown in pink. Shaded areas correspond to the 95% confidence 

intervals for the index. For each city, the index averages are computed for any year between 

2010 and 2020 for which climate data is available. The geographical localisation of these cities 

is shown in Figure 10. Pearson’s correlation is shown in each subplot.  
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