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Abstract

We show that solution sets of systems of tropical differential equations
can be characterised in terms of monomial-freeness of an initial ideal.
We discuss a candidate definition of tropical differential basis and give a
nonexistence result for such bases in an example.
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1 Introduction

In [Gri17], Grigoriev introduced a tropical approach to differential equations.
He was interested in constraining the supports of power series solutions to a
system of differential equations in characteristic zero in an effective algorithmic
way, and found that tropical techniques give rise to some limitations on these
supports.

Aroca, Garay and Toghani [AGT16] extended this work, bringing to the
subject the point of view that tropical solution sets of differential systems can
be thought of as analogues to tropical varieties. Their main result was a Fun-
damental Theorem of Tropical Differential Geometry (the equivalence (i)⇔(ii)
of Theorem 3.9 below): a system of differential equations over a field K can be
tropicalised, and under mild assumptions, the solutions of this tropicalisation
agree with the tropicalisations of the K-valued solutions in Grigoriev’s sense.

In the non-differential setting of ideals in a polynomial ring, the heart of
the Fundamental Theorem of Tropical Geometry is the statement that taking
the solution set commutes with tropicalisation. But further equivalences can be
added to the theorem: notably, the statement in [MS15, Theorem 3.2.3] includes
a description in terms of initial ideals. In this paper, we add an initial ideal
characterisation to the Fundamental Theorem of Tropical Differential Geometry
(Theorem 3.9).

The datum needed to define an initial ideal of a differential polynomial f in
Grigoriev’s formalism is a set or tuple of sets S of natural numbers. A potential
solution to f is a datum S of the same kind, which represents the supports of
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power series. In both respects S takes the place of the weight vector in Rn used
in tropical (algebraic) geometry. In a 2019 preprint [HG19], Hu and Gao define
the S-initial part of a differential ideal with coefficients in the power series ring
K[[t]], denoting it inS(P ). We arrived at the definition independently, and as
such we formulate it in a mildly different way: in brief, our initial ideal InS(P )
has coefficients in the residue field K of K[[t]], whereas Hu and Gao retain
powers of t in the coefficients of their inS(P ). To distinguish the two we denote
our formulation as InS(P ), with a capital letter. See Remark 3.3 for a detailed
comparison.

Tropical bases are a central concept in tropical geometry, especially for com-
putational approaches. An ideal in a polynomial ring has a finite tropical ba-
sis(see [BJS+07, Theorem 2.9 ]). The subject of Section 4 of this paper is a
notion of tropical differential basis, Definition 4.1, which, although it might
look initially compelling, does not allow a comparably good finiteness result.
To be precise, we exhibit linear differential ideals with no finite basis of linear
forms in this sense. In the non-differential theory, tropical linear spaces have
finite tropical bases of linear forms, arising from circuits of valuated matroids
[MS15, Sec. 4.4]. Given how much simpler the theory of linear differential equa-
tions is than the general theory, a definition of basis which has to leave the
linear world must be considered lacking. Thus, we leave it as an open question
to find a better definition of basis for tropical differential ideals.

The main thrust of the work [HG19] is to introduce a notion of Gröbner basis
for tropical differential ideals. Tropical differential Gröbner bases are usually
infinite. But, just as there is no implicational relationship between tropical
bases and (universal) Gröbner bases for ideals in a polynomial ring, it is unclear
whether tropical differential Gröbner bases are of utility for answering our open
question.

Acknowledgments This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk lodowska-
Curie grant agreement No 792432. The authors would like to thank Fuensanta
Aroca, Cristhian Garay López, Jeff Giansiracusa, Dima Grigoriev, Yue Ren,
and Felipe Rincón for helpful conversations during its preparation.

2 Background

In this section we review definitions. Our notation is compatible with that
of [AGT16], although we deviate by introducing the multi-index notation.

2.1 Differential algebra

Let R be a commutative ring with unity. A derivation on R is a map d : R→ R
that satisfies d(a + b) = d(a) + d(b) and d(ab) = d(a)b + ad(b) for all a, b ∈ R.
The pair (R, d) is called a differential ring. An ideal I ⊂ R is said to be a
differential ideal when d(I) ⊂ I.
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Let (R, d) be a differential ring and let R{x1, . . . , xn} be the set of polynomi-
als with coefficients in R in the (differential) variables {xij : i = 1, . . . , n, j ≥
0}. An element of R is called a differential polynomial. The derivation d on
R can be extended to a derivation d of R{x1, . . . , xn} by setting d(xij) = xi(j+1)

for i = 1, . . . , n and j ≥ 0. The pair (R{x1, . . . , xn}, d) is a differential ring called
the ring of differential polynomials in n variables with coefficients in
R.

Example 2.1. The polynomial P = tx3
12x23 + (1 + t2)x2

13 is a differential poly-
nomial with coefficients in power series ring K[[t]].

The theory of algebraic ordinary differential equations is concerned with
finding solutions to differential polynomials. A differential polynomial P ∈
R{x1, . . . , xn} can be evaluated at an n-tuple ϕ = (ϕ1, . . . , ϕn) ∈ Rn by eval-
uating each differential variable xij at djϕi. A solution (or a zero) of P is
an n-tuple ϕ ∈ Rn such that P (ϕ) = 0, solution is the primary word we use
throughout. An n-tuple ϕ ∈ Rn is a solution of A ⊂ R{x1, . . . , xn} when it is
a solution of every differential polynomial in Σ. That is,

Sol(A) := {ϕ ∈ Rn : P (ϕ) = 0,∀P ∈ A}.

A differential monomial in R{x1, . . . , xn} of order less than or equal to
r is an expression of the form

ϕM
∏

1≤i≤n
0≤j≤r

x
Mij

ij ,

where M = (Mij)1≤i≤n
0≤j≤r

is a matrix in Mn×(r+1)(Z≥0), r ∈ Z≥0, and ϕM ∈ R.

We will use multi-index notation and abbreviate the product
∏

1≤i≤n,0≤j≤r x
Mij

ij

as xM , so the differential monomial above can be written ϕMx
M . A differential

polynomial in R{x1, . . . , xn} has order less than or equal to r if it is of the form

P =
∑
M∈Λ

ϕMx
M , (2.1)

with Λ ⊂Mn×(r+1)(Z≥0) finite.

2.2 The power series ring

In what follows, we will work with the power series ring K[[t]] where K is a field
of characteristic zero. We fix the structure of a differential valued ring on K[[t]]
as follows. We can write the elements of K[[t]] in the form

ϕ =
∑
i∈Z≥0

ait
i

with ai ∈ K for i ∈ Z≥0. Given such an element ϕ, the support of ϕ is the set

supp(ϕ) := {i ∈ Z≥0 : ai 6= 0},
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Then the valuation on K[[t]] is given by

ν(ϕ) = min supp(ϕ)

and the derivation by

d : K[[t]] → K[[t]]
ϕ 7→

∑
i∈Z≥0

iait
i−1.

Iterating, we see that the j-th derivative of ϕ is

djϕ =
∑
i∈Z≥0

1

i!
ai+jt

i.

The mapping that sends each series in K[[t]] to its support set (a subset of
Z≥0) will be called the tropicalisation map

trop : K[[t]] → P(Z≥0)
ϕ 7→ supp(ϕ)

where P(Z≥0) denotes the power set of Z≥0. For fixed n, the mapping from
K[[t]]n to the n-fold product of P(Z≥0) will also be denoted by trop:

trop : K[[t]]n → P(Z≥0)
n

ϕ = (ϕ1, . . . , ϕn) 7→ trop(ϕ) = (supp(ϕ1), . . . , supp(ϕn)).

Given a subset T of K[[t]]n, the tropicalisation of T is its image under the
map trop:

trop(T ) := {trop(ϕ) : ϕ ∈ T} ⊂ P(Z≥0)
n
.

Example 2.2. We consider T = {(a + bt, t3, t + t2) : a, b ∈ K} ⊂ K[[t]]3. We
have

trop(T ) = {({0}, {3}, {1, 2}), ({1}, {3}, {1, 2}), ({0, 1}, {3}, {1, 2}),
({∞}, {3}, {1, 2})}.

The reader will note that the map trop remembers more information about
a power series than the non-archimedean valuation ν typically used in tropical
mathematics. The reason for this is to allow the derivation to have a well-defined
action on the target of trop. To wit, since K is of characteristic zero, for every
ϕ ∈ K[[t]], we have

trop
(
djϕ

)
= {i− j : i ∈ trop(ϕ) ∩ Z≥j}

and so
ν
(
djϕ

)
= min (trop(ϕ) ∩ Z≥j)− j.

Therefore trop(ϕ) determines the valuation of the derivatives of ϕ of all orders.
Our notation for these valuations is as follows.
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Definition 2.3. A subset S ⊆ Z≥0 induces a mapping ValS : Z≥0 → Z≥0∪{∞}
given by

ValS(j) :=

{
s− j, with s = min{α ∈ S : α ≥ j},
∞, when S ∩ Z≥j = ∅.

(2.2)

Example 2.4. Consider the set S := {0, 1, 2, 3, 7, 8}. We have ValS(4) =
min{s ∈ S | s ≥ 4} − 4 = 7− 4 = 3, while ValS(9) =∞.

2.3 Tropical differential algebra

We will denote by T≥0 the semiring T≥0 = (Z≥0 ∪ {∞},⊕,�), with a ⊕ b =
min{a, b} and a� b = a+ b. Later, in Section 4, we will also invoke the semiring
T = (R ∪ {∞},⊕,�) with the same operations.

Definition 2.5. A tropical differential polynomial in the variables x1, . . . , xn
of order less than or equal to r is an expression of the form

ϕ = ϕ(x1, . . . , xn) =
⊕
M∈Λ

aMx
�M , (2.3)

where M = (Mij)1≤i≤n
0≤j≤r

is a matrix in Mn×(r+1)(Z≥0), aM ∈ T≥0 and Λ ⊂

Mn×(r+1)(Z≥0) is a finite set.

Again the multi-index notation x�M stands for
⊙

1≤i≤n
0≤j≤r

xij
�Mij . The set of

tropical differential polynomials in x1, . . . , xn will be denoted by T{x1, . . . , xn}.
A tropical differential polynomial ϕ as in (2.3) induces an evaluation map-

ping from P(Z≥0)n to Z≥0 ∪ {∞} given by

ϕ(S) = min
M∈Λ
{aM +

∑
1≤i≤n
0≤j≤r

Mij ·ValSi
(j)}

where ValSi
(j) is defined as in (2.2).

Definition 2.6. An n-tuple S = (S1, . . . , Sn) ∈ P(Z≥0)n is said to be a solu-
tion of the tropical differential polynomial ϕ in (2.3) if either

(i) there exist M1,M2 ∈ Λ, M1 6= M2, such that ϕ(S) = aM1 � εM1(S) =
aM2
� εM2

(S); or

(ii) ϕ(S) =∞.

Let A ⊂ T≥0{x1, . . . , xn} be a system of tropical differential polynomials.
An n-tuple S ∈ P(Z≥0)n is a solution of A when it is a solution of every
tropical polynomial in A. We denote the set of solutions of A by

Sol(A) := {S ∈ (P(Z≥0))
n

: S is a solution of ϕ for every ϕ ∈ A} .

5



Example 2.7. Consider the tropical differential polynomial

ϕ = (x12)⊕ (2� x10)⊕ 1

A set S ∈ P(Z≥0) is a solution of ϕ if min{ValS(2), 2+ValS(0), 1} is attained
at least twice. This is equivalent, according to which pair of terms attain the
minimum, to one of the following conditions being true.

(i) ValS(2) = 2 + ValS(0) ≤ 1

(ii) ValS(2) = 1 ≤ 2 + ValS(0)

(iii) 2 + ValS(0) = 1 ≤ ValS(2).

The first and third conditions do not hold for any S, because ValS(0) ≥ 0. The
second condition holds if and only if 2 6∈ S and 3 ∈ S, so just these sets S are
the solutions of ϕ.

2.4 Tropicalisation of differential polynomials

Let P be a differential polynomial as in Equation (2.1). The tropicalisation
of P is the tropical differential polynomial

trop(P ) :=
⊕
M∈Λ

ν(ϕM )x�M .

Definition 2.8. Let I ⊂ K[[t]]{x1, . . . , xn} be a differential ideal. Its tropi-
calisation is the set of tropical differential polynomials trop(I) = {trop(P ) :
P ∈ I}.

Example 2.9. We consider the differential polynomial P = tx3
12x23+(1+t2)x2

13.
Its tropicalisation is

trop(P ) =
(
ν(t)� x�3

12 � x23

)
⊕
(
ν(1 + t2)� x�2

13

)
= min{1 + 3x12 + x23, 2x13}.

3 The initial part of a differential ideal

In this section we give definitions of S-initial parts of differential polynomials and
differential ideals. We then prove our extension of the Fundamental Theorem
of [AGT16] to include a criterion on monomial-free S-initial parts (Theorem 3.9).

Suppose that Q is a differential polynomial,

Q(x) =
∑
M∈Λ

ψMx
M ∈ K[[t]]{x1, . . . , xn},

and that S = (S1, . . . , Sn) ⊂ P(Z≥0)n. We define the differential polynomial
QS(x) by changing each variable xij to tValSi

(j)xij in Q, with the convention
that t∞ = 0.

QS(x) :=

{
t− trop(Q)(S)Q(tValSi

(j)xij)i,j , when trop(Q)(S) 6=∞,
0, when trop(Q)(S) =∞.
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Lemma 3.1. The polynomial QS(x) is in the ring K[[t]]{x1, . . . , xn}, i.e., its
coefficients have valuations greater than or equal to zero. Either QS(x) equals
zero or it has a coefficient of valuation zero.

Proof. Assume trop(Q)(S) 6=∞. We can write

QS(x) = t− trop(Q)(S)Q(tValSi
(j)xij)i,j

= t− trop(Q)(S)
∑
M∈Λ

ψM
∏
i,j

(
tValSi

(j)xij
)Mij

=
∑
M∈Λ

ψM t
− trop(Q)(S)+

∑
Mij ValSi

(j)xM .

The valuation of the coefficient of xM is

ν(ψM t
− trop(Q)(S)+

∑
Mij ValSi

(j))

= ν(ψM )− trop(Q)(S) +
∑

Mij ValSi(j)

≥ ν(ψM )− ν(ψM ) = 0.

It follows from the definition of trop(Q)(S) as a minimum both that the last
inequality is true for all M and that there is some M making it tight (there is
at least one term in the minimum because trop(Q)(S) 6=∞).

Let QS(x) be the image of QS in the ring K{x1, . . . , xn}, under the map
sending each coefficient ψ ∈ K[[t]] to its image in the residue field K. Then
Lemma 3.1 implies that QS is well-defined.

Let P (x) =
∑
M∈Λ ϕMx

M be a differential polynomial in K[[t]]{x1, . . . , xn}.
The S-initial part of P is

InS(P ) :=

{
PS(x), when trop(P )(S) 6=∞,
0, when trop(P )(S) =∞.

(3.1)

In the first case we have

InS(P ) = PS(x)

=
∑
M∈Λ

ϕM t
− trop(P )(S)+

∑
Mij ValSixM

=
∑
M∈Υ

ϕM t−ν(ϕM )xM ,

where Υ = {M ∈ Λ | trop(P )(S) = ν(ϕM ) +
∑
i,jMij ValSi

(j)}.

Example 3.2. We exemplify the second case of equation (3.1). Consider the
differential polynomial

P (x) = tx14 + t2x15,

and take S = {1, 2, 3}. We have trop(P )(S) =∞, so InS(P ) = 0.
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Remark 3.3. Consider a differential polynomial P and a tuple S ∈ (P(Z≥0))n.
Let InS(P ) be the S-initial part of P as defined above, and inS(P ) the S-initial
part of P as defined by Hu and Gao [HG19]. We show that these two initial
parts carry the same information. On one hand, we have the relation

InS(P ) = inS(P )|t=1.

On the other, given InS(P ), we can recover inS(P ) up to a global factor of
form ti by multiplying each monomial by a suitable power of t. Concretely, if
InS(P ) =

∑
M∈Λ aMx

M for scalars aM ∈ K, then

inS(P ) = tb
∑
M∈Λ

t−
∑
Mij ValSi

(j)aMx
M

for some b ∈ Z, namely b = trop(P )(S). Infinite exponents will not arise in this
sum.

Example 3.4. Consider the differential polynomial

P (x) = tx11 + t2x13 + t3 ∈ K[[t]]{x1}.

Take the set S = {2, 3} ⊂ Z≥0. We obtain

trop(P )(S) = trop(tx11)(S) = trop(t2x13)(S) = 2.

The S-initial part of P equals

InS(P ) = t−1tx11 + t2t−2x13 = x11 + x13 ∈ K{x1}.

Compare this with the S-initial part of P defined by Hu and Gao:

inS(P ) = tx11 + t2x13 ∈ K[[t]]{x1}.

The next example shows that, in general,

InS(d(P )) 6= d(InS(P )),

when P ∈ K[[t]]{x1, . . . , xn} is a differential polynomial.

Example 3.5. Let P be the polynomial of Example 3.4. The derivative of P
is

d(P ) = tx12 + x11 + t2x14 + 2tx13 + 3t2.

We have

InS(d(P )) = x11 + 2x13 and d(InS(P )) = x12 + x14

from which we see d(InS(P )) 6= InS(d(P )).

Lemma 3.6. Let P1, P2 ∈ K[[t]]{x1, . . . , xn} be two differential polynomials.
We have

InS(P1P2) = InS(P1) InS(P2).
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Proof. This is true since trop(P1P2)(S) = trop(P1)(S) + trop(P2)(S).

Observation 3.7. Let P ∈ K[[t]]{x1, . . . , xn} be a differential polynomial and
a ∈ Z. We have

InS(taP ) = InS(P ).

Let I ⊂ K[[t]]{x1, . . . , xn} be a differential ideal. Its S-initial ideal is

InS(I) = 〈InS(P ) | P ∈ I〉 ⊂ K{x1, . . . , xn}.

The next lemma is an equality appearing in the proof of [HG19, Lemma 2.6].
We repeat the proof of this equality for self-containedness.

Lemma 3.8. Let I ⊂ K[[t]]{x1, . . . , xn} be a differential ideal. For every G ∈
InS(I) there exists g ∈ I such that InS(g) = G.

Proof. We can write G =
∑
k,M αk,Mx

M InS(Gk) with Gk ∈ I where k ranges
over an arbitrary finite index set Λ1. Take

Ak,M = trop(Gk)(S) +
∑
i,j

Mij ValSi
(j), g =

∑
k,M

ψk,M t
−Ak,MxMGk,

where ψk,M = αk,M and ν(ψk,M ) = 0. We calculate

InS(g) = gS(x) = t− trop(g)(S)g(tValSi
(j)xij)

= t0
∑
k,M

ψk,M t−Ak,M

∏
i,j

(tValSi
(j)xij)Mi,jGk(tValSi

(j)xij)

=
∑
k,M

ψk,M t−Ak,M

(∏
i,j

(tValSi
(j))Mi,j

)
xMGk(tValSi

(j)xij)

=
∑
k,M

ψk,M t− trop(Gk)(S)xMGk(tValSi
(j)xij)

=
∑
k,M

ψk,Mx
M t− trop(Gk)(S)Gk(tValSi

(j)xij)

=
∑
k,M

αk,Mx
M InS(Gk).

We choose A = maxk,M{Ak,M} and take H = tAg ∈ I. By Observation 3.7 we
have

InS(H) = InS(tAg) = InS(g) = G.

Theorem 3.9. Let K be an uncountable algebraically closed field of character-
istic zero. Let I ⊂ K[[t]]{x1, . . . , xn} be a differential ideal. Then the following
three subsets of (P(Z≥0))

n
coincide:

(i) trop(Sol(I)),

(ii) Sol(trop(I)),
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(iii) A = {S ⊂ (P(Z≥0))
n | InS(I) does not contain a monomial }.

Proof. Set (i) is contained in set (ii) by Proposition 5.2 of [AGT16]. We
now prove that set (ii) is contained in set (iii). Let S ∈ Sol(trop(I)). Then
for any polynomial P =

∑
M∈Λ ϕMx

M ∈ I the minimum of trop(P )(S) =
min{

∑
i,jMij ValSi(j) + ν(ϕM ) |M ∈ Λ} is achieved twice or is ∞. The terms

attaining this minimum are the terms that make up InS(P ), so in neither case
is InS(P ) monomial. This implies that InS(I) contains no monomial, because
if it did, say the monomial G ∈ InS(I), then Lemma 3.8 provides H ∈ I such
that InS(H) = G. So the containment of set 2 in set 3 is proved.

Finally, set (iii) is contained in set (i). Let S = (S1, . . . , Sn) ∈ A, and
suppose S /∈ trop(Sol(I)). In the proof of Theorem 8.1 in [AGT16] one exhibits
a polynomial g in I, say

g =
∏

0≤i≤n,
j∈Si, j≤Nm

(xij)
α + h+ tλ ∈ I

where h ∈ 〈xij , j /∈ Si, j ≤ Nm〉 and λ ∈ K[[t]]{x0, . . . , xn}, such that we have
trop(g)(S) = 0 and the minimum in this tropicalisation is attained only at the
first monomial on the right hand side. Then InS(g), the initial part of g, is a
monomial. This contradicts S ∈ A.

4 Nonexistence of certain bases

This section is dedicated to bases of tropical differential ideals. We first recall
the notion from non-differential tropical geometry which we wish to generalise.

If L is a valued field, then for each element of the polynomial ring f ∈
L[x1, . . . , xn] we can define a tropical hypersurface Vtrop(f) ⊆ Tn as the set
of x ∈ Rn for which the minimum is achieved at least twice in trop(f)(x). In
other words, Vtrop(f) is the corner locus of the convex piecewise-linear function
trop(f). Then if I ⊆ L[x1, . . . , xn] is an ideal, its tropical variety is defined
to be

Vtrop(I) =
⋂
f∈I

Vtrop(f). (4.1)

A tropical basis for I is a subset of I which can replace I as the set over which
the intersection is taken in equation (4.1). Crucially, every ideal I has a finite
tropical basis [BJS+07, Thm 11].

4.1 Motivation

We begin by comparing tropical solutions according to Grigoriev’s definition
(Definition 2.6) with points of tropical varieties. Let I be a nonzero differential
ideal in K[[t]]{x1, . . . , xn}. For each natural number r we can define the (non-
differential) elimination ideal,

Ir = I ∩K[[t]][xij | 1 ≤ i ≤ n, 0 ≤ j ≤ r]
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which we will call a truncation. We form its tropical variety Vtrop(Ir), taking
the valued field L to be K((t)) with its t-adic valuation ν. If s ≥ r is another
natural number, then there is a projection map Vtrop(Is) → Vtrop(Ir). Let
V∞(I) ⊆ Tn(Z≥0) be the inverse limit of this system of maps. By the ambient
space Tn(Z≥0) we mean the Cartesian product of a countable number of copies
of T, one for each pair of indices (i, j) of a variable xij .

Let ϕ ∈ K[[t]]n be a solution of I. By the Fundamental Theorem of (non-
differential) Tropical Geometry, the vector (ν(djϕi) : 1 ≤ i ≤ n, 0 ≤ j ≤ r)
lies in Vtrop(Ir) for each r. Therefore (ν(djϕi) : 1 ≤ i ≤ n, j ≥ 0) is an
element of V∞(I). We warn the reader that the converse does not hold in
general! See Appendix A for an example: the appendix describes an element
(ν(djϕi) : 1 ≤ i ≤ n, j ≥ 0) ∈ V∞(I), but Sol(I) is empty.

Define the map

Val : (P(Z≥0))n → Tn(Z≥0)

S = (S1, . . . , Sn) 7→ (ValSi
(j))i,j .

The map Val translates from Grigoriev’s set-valued solutions to the infinite
tropical vectors above, so we have

Val(supp(ϕ)) = (ν(djϕi) : 1 ≤ i ≤ n, j ≥ 0) ∈ V∞(I).

By Theorem 3.9, we conclude that Val(Sol(trop(I))) ⊆ V∞(I).
Each ideal Ir has a finite tropical basis. Intersection of disjoint polyhedra is

subadditive in codimension, so the cardinality of a tropical basis for Ir is not less
than its codimension. By the theory of Kolchin dimension polynomials [Kol64],
the codimension of Ir eventually grows linearly with r, and therefore tropical
bases grow at least this fast.

Whatever a basis B for a tropical differential ideal I should be, one should
be able to extract from it a tropical basis for Ir for any given r ∈ N≥0. By
the above discussion, this means one should be able to produce from B a set of
elements of Ir of size Ω(r). Any polynomial f ∈ I, say of order exactly m, has
r − m derivatives f, df, . . . , dr−mf lying in Ir, for each r ≥ m. This suggests
that finite bases in the sense of the following definition may exist.

Definition 4.1. In this section, we will call a subset G of I a tropical differ-
ential basis for I if

Sol(trop(I)) =
⋂
g∈G

∞⋂
k=0

Sol(trop(dkg)).

Observe that the containment

Sol(trop(I)) ⊆
⋂
g∈G

∞⋂
k=0

Sol(trop(dkg)).

is true for any G ⊂ I.
Some sufficiently simple differential ideals do have tropical bases in the sense

of Definition 4.1.
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Example 4.2. Consider the differential ideal I = 〈f〉d, where f = x10 + x11 +
x12. Its solutions are

Sol(I) = {a
( ∞∑
k=0

t3k − t3k+2
)

+ b
( ∞∑
k=0

t3k+1 − t3k+2
)

: a, b ∈ K}.

Theorem 8.1 in [AGT16] implies that Sol(trop(I)) = trop(Sol(I)), from which
we can compute Sol(trop(I)):

trop(Sol(I)) = {∅, Z≥0,

Z≥0 \ {3k : k ≥ 0}, Z≥0 \ {3k + 1 : k ≥ 0}, Z≥0 \ {3k + 2 : k ≥ 0}}.

Now let g = f − f ′ = x10 − x13 ∈ I. If S ∈ P(Z≥0) is a solution of
trop(dkg) = x1k ⊕ x1(k+3) then ValS(k) = ValS(k + 3). So if S is any element

of
⋂r
k=0 Sol(trop(dkg)), then ValS is a periodic function on Z≥0 of period 3,

implying that S = {j − 3 : j ∈ S, j ≥ 3}. There are 23 such sets S. It is
then just a matter of checking which of these are solutions to each trop(dkf) =
x1k ⊕ x1(k+1) ⊕ x1(k+2) to see that

∞⋂
k=0

Sol(trop(dkf)) ∩
∞⋂
k=0

Sol(trop(dkg)) = {∅, Z≥0,

Z≥0 \ {3k : k ≥ 0}, Z≥0 \ {3k + 1 : k ≥ 0}, Z≥0 \ {3k + 2 : k ≥ 0}}
= Sol(trop(I)).

We conclude that the set {f, g} meets our definition for a tropical differential
basis of I. On the other hand, {f} is not a tropical differential basis of I
because Z≥0 \ {1} is an element of

⋂∞
k=0 Sol(trop(dkf)) but not an element of

Sol(trop(I)).

4.2 Linear differential ideals

This section is dedicated to an example. Consider the differential ideal I =
〈x12 + sx11 + x10〉d ⊂ K[[t]]{x1} where s is a very general element of K. (Any
transcendental over Q ⊆ K will suffice. For a more precise statement see [FGG,
Section 6.2].) Let I = 〈f〉d. For any r ≥ 2, the ideal Ir is generated by the
polynomials di(x12 + sx11 + x10) for i = 0, 1, . . . , r − 2. So it is linear in the
differential variables.

The tropical variety of a linear ideal J is the Bergman fan of the matroid of
its variety V (J), seen as a linear subspace [MS15, Theorem 4.1.11]. In our case,
V (Ir) is cut out by the vanishing of the entries of the matrix-vector product
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A (x10, x11, . . . , x1r)
T, where A is the (r + 1)× (r − 1) band matrix

A =



1 0 . . . 0
s 1 0
1 s 0
0 1 0
...

. . .
...

0 0 1
0 0 s
0 0 . . . 1


.

By the assumption on s, the matrix A has no vanishing (r−1)× (r−1) minors.
So the matroid of V (Ir) is the uniform matroid U2,r+1 of rank 2 on the elements
{x10, x11, . . . , x1r}, whose nonempty proper flats are just its singletons {x1i}.
The Bergman fan Vtrop(Ir) ⊂ Tr+1 is then the set of all vectors (a0, a1, . . . , ar)
in which all of the ai are equal to some constant b except for perhaps one of
them, say aj , and we have aj ≥ b [MS15, Definition 4.1.9].

Proposition 4.3. The above ideal I has no finite tropical differential basis
of linear forms in the sense of Definition 4.1(To be precise, we exhibit linear
differential ideals with no finite basis of linear forms in this sens).

We do not know whether I has a finite tropical differential basis in general.
For a nonzero linear form f =

∑∞
j=0 fjx1j , let us write

suppmin f := argmin∞j=0 ν(fj)

for the set of indices of coefficients of minimal valuation in f .

Lemma 4.4. Let f ∈ K[[t]]{x1} be nonzero. Suppose that there exists N ∈ N
such that | suppmin(dkf)| ≤ N for infinitely many k ∈ N. Then there exists a
finite set L ⊂ Z such that

suppmin(dkf) = {k + l : l ∈ L}

for all but finitely many k ∈ N.

Proof. The summand of

dj(tix10) =

j∑
k=0

i! j!

k! (j − k)! (i− j + k)!
ti−j+kx1k

of largest differential order is a nonzero scalar times tix1j , and these summands
are linearly dependent as (i, j) vary, the dj(tix10) are a generating family for
the space of linear forms in K[[t]]{x1}, and so f can be written uniquely as

f =

∞∑
i=0

j∗∑
j=0

ci,jd
j(tix10)
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for scalars ci,j ∈ K and some j∗ ∈ N. There are no issues of convergence in K,
since each scalar coefficient of each power series in f is a linear combination of
finitely many ci,j . Then in

dkf =

∞∑
i=0

j∗∑
j=0

cijd
j+k(tix10),

the K[[t]]-valued coefficient of x1(k+l) for any l ∈ N has constant term

j∗∑
j=0

(j + k)!

(k + l)!
cj−l,j .

Regarding l as fixed, this sum lies in the field of rational functions K(k), so if
it is nonzero for any k then it is zero for a finite number of k. Therefore, the
K[[t]]-valued coefficient of x1(k+l) in dkf has valuation zero for all l in

L = {l ∈ N : cj−l,j 6= 0 for some j ∈ N},

for all but finitely many k ∈ N. This implies the lemma for the above choice
of L, which is a finite set by the assumption that suppmin(dkf) ≤ N infinitely
often.

Proof of Proposition 4.3. Suppose towards a contradiction that G is a finite
tropical differential basis of linear forms for I. For convenience, write d∗G :=
{dkg : k ∈ N, g ∈ G}.

We show that if f ∈ I is nonzero, then | suppmin f | ≥ 3. Let l = min{ν(fj) :
j ∈ N} and choose r to be the differential order of f . Then f can be written
vA (x10, x11, . . . , x1r)

T for some row vector v ∈ K[[t]]r−1. If | suppmin f | ≤ 2,
then suppmin f is disjoint from a set S ⊆ {0, . . . , r} of size r − 1, so that fj ∈
tl+1K[[t]] for all j ∈ S. Since the submatrix of A on row set S is an invertible
matrix over K, this implies that all entries of v lie in tl+1K[[t]]. But then all
coefficients of f lie in tl+1K[[t]] as well, contradicting the choice of l.

Consider the sets

Gr =
{
f ∈ d∗G : | suppmin(f)| = 3, suppmin(f) ∩ {0, . . . , r} 6= ∅

}
.

For a fixed g ∈ G, if | suppmin(dkg)| = 3 infinitely often, then by Lemma 4.4
there is a set L, in this case necessarily of size 3, such that suppmin(dkg) =
{k + l : l ∈ L} for all but finitely many k. So, aside from a finite number
of exceptions, the derivatives dkg cease to lie in Gr once k + minL > r. If
| suppmin(dkg)| = 3 only finitely often then of course dkg ∈ Gr only finitely
often. It follows that |Gr| is bounded above by a linear function of r.

For each pair of nonnegative integers a, b with b− a ≥ 2, let qab ∈ TN be the
point all of whose coordinates are 0 except that its ath and bth coordinates are 1.
Observe that qab is in the image of Val, and the truncation ((qab)j : j = 0, . . . , r)
lies outside Vtrop(Ir) for any r ≥ b. So G must provide a witness that qab is not a
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solution of I, namely a polynomial f =
∑
fjx1j ∈ d∗G such that qab 6∈ Vtrop(f).

Since | suppmin(f)| ≥ 3, there must be some j ∈ suppmin(f) \ {a, b}. Then
ν(fj) + (qab)j = ν(fj) + 0 is a term of trop(f)(qab) attaining the minimum. In
order for trop(f)(qab) not to vanish, there must be only one such j, that is,
suppmin(f) = {a, b, j}. Therefore, {suppmin(f) : f ∈ Gr} contains at least one
superset of each of the

(
r+1

2

)
− r sets {a, b} ⊂ {0, . . . , r} with b − a ≥ 2. Since

each 3-element set is a superset of only three 2-element sets, it follows that

|Gr| ≥ |{suppmin(f) : f ∈ Gr}| ≥
(
r+1

2

)
− r

3
.

This is a contradiction.

A A differential ideal with tropical solutions but
no solutions over a field

In this appendix we repeat an example due to Denef and Lipshitz [DL84, Remark
2.12]. The example is a differential ideal with a tropical solution and with no
solutions over a field K of characteristic zero, and such that the nonexistence of
the latter solutions cannot be detected by truncation to any finite order. The
field K is not algebraically closed, so that [AGT16, Theorem 8.1] fails to apply,
but the example is of interest in that the obstruction to lifting the tropical
solution is not the simple unavailability of a coefficient in K satisfying a certain
polynomial equation.

Example A.1. We begin by considering the differential ideal

I = 〈tx11 − (x20 + t)x10 − 1, x21〉d ⊆ K[[t]]{x1, x2}. (A.1)

The differential polynomial x21 vanishes at x = ϕ ∈ K[[t]]2 only when ϕ2 is a
scalar. In this case solving for the coefficients of ϕ1 recursively shows that its
only possible value is

ϕ1 =

∞∑
j=0

tj∏j
k=0(k − ϕ2)

. (A.2)

This ϕ1 is a well-defined element of K[[t]] unless one of its coefficients features
a division by zero. That is, I has a solution if and only if the scalar ϕ2 lies in
K \ N under the canonical inclusion N ⊆ K.

We now specify K = k(s) to be the field of rational functions in one indeter-
minate, where k is a formally real field of characteristic zero, that is, where −1 is
not a sum of squares in k. Then N is a polynomially definable set overK [Den78].
Let J ⊆ K[x2, . . . , xn] be an ideal such that the projection of V (J) ⊂ Kn−1

onto the x2 coordinate is N. Then the solution set of the differential ideal

J ′ = 〈J〉d + 〈x21, . . . , xn1〉d

is V (J) ⊂ K[[t]]n−1 via the inclusion of Kn−1 in K[[t]]n−1 as tuples of constant
power series, the equations xi1 constraining each coordinate to be a scalar.
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It follows that Sol(I + J ′) = Sol(I) ∩ Sol(J ′) = ∅, because no value of ϕ2 is
consistent both with I and with J ′.

However, for any r ∈ Z≥0, any truncation (I+J ′)r has solutions ϕ ∈ K[[t]]n,
one for each natural value of ϕ2 strictly greater than r, since then all of the
coefficients in (A.2) are well-defined elements of K. The usual Fundamental
Theorem of Tropical Geometry implies that Vtrop(Ir) contains (ν(djϕi) : 1 ≤
i ≤ n, 0 ≤ j ≤ r). The series (A.2) has no coefficients equal to zero, and ϕi must
be a scalar for i ≥ 2, implying that ν(djϕ1) = 0 for all j ≥ 0 and ν(djϕi) =∞
for all i = 2, . . . , n and j ≥ 1, while ν(d0ϕi) ∈ {0,∞} for i = 2, . . . , n. There are
finitely many choices for these last valuations. Therefore there exists an n-tuple
of sets S = (Z≥0, S2, . . . , Sn), where Si ⊆ {0} for i = 2, . . . , n, so that

(ValSi
(j) : 1 ≤ i ≤ n, 0 ≤ j ≤ r) = (ν(djϕi) : 1 ≤ i ≤ n, 0 ≤ j ≤ r)

for infinitely many r. This implies that S ∈ Sol(trop(I + J ′)).
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