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Molecular sequences accumulate substitutions at an approximately constant rate in time 
(1). Thus, if we estimate an evolutionary tree using molecular data, it may be possible to 
calibrate the divergence events in the tree to geological time if we have temporal 
information about the nodes in the tree, for example, by using the fossil record, mutation 
rate estimates, or non-contemporaneous taxa with known sampling times (2–5). However, 
these sources of temporal information will have uncertainties associated with them, and 
ideally, these uncertainties should be taken into account in the analysis. The Bayesian 
method has gained popularity for molecular-clock dating of evolutionary trees because it 
allows incorporation of uncertainties from various sources as prior information in the 
analysis (6). The Bayesian method has now been used to date phylogenies from viruses (7) 
and prokaryotes (8, 9) to plants (10) and animals (11, 12). 
 
In this chapter I guide the user on how to use the computer program MCMCtree (13) to date 
microbial divergences using the Bayesian method. MCMCtree’s strength lies in the 
implementation of an approximation to the likelihood that can speed up the Bayesian 
computation over exact likelihood calculation (14). Because Bayesian molecular-clock dating 
relies on expensive MCMC sampling, the time savings obtained by using the approximation 
can be quite dramatic, up to 1,000x depending on the dataset (15). Thus, MCMCtree can be 
used to date evolutionary trees built using large molecular alignments or containing 
hundreds of taxa (8, 16–18). Other features of MCMCtree include the implementation of 
relaxed-clock models that allow the molecular clock to vary among the branches of a 
phylogeny (19); the use of flexible fossil calibration densities to specify the prior on node 
ages (20–22); models for dating phylogenies with taxa serially-sampled in time (23); and 
models for accommodating rate variation among alignment partitions (24). MCMCtree 
requires the topology of the phylogeny to be fixed.  Uncertainty in topological placements of 
taxa can be addressed by dating separate phylogenies encompassing the relevant 
topological rearrangements (16, 25). Other Bayesian molecular-clock dating software that 
can co-estimate divergence times and topology include MrBayes (26), PhyloBayes (27) and 
Beast (28). However, the likelihood approximation can not be used when co-estimating 
times and topology, and thus, time and topology co-estimation is computationally very 
expensive. 
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Here I illustrate how to use MCMCtree to date two phylogenies. In the first exercise, I show 
how to date a deep phylogeny of prokaryotes and eukaryotes by using fossil calibrations (8). 
In the second exercise, I show how to to date a large virus phylogeny in which the sampling 
times of the viruses is known (23). Both exercises use the likelihood approximation to speed 
up the analyses. Important issues in MCMC sampling such as convergence to the posterior 
distribution, diagnosing the MCMC output, and verification of the prior are discussed, as 
well as strategies for dating microbial phylogenies when neither fossil calibrations nor 
sampling times of taxa are available. In this chapter I assume the reader is familiar with 
phylogenetic methods to build evolutionary trees from molecular sequence alignments. 
Excellent introductions to phylogenetic tree reconstruction methods can be found in 
Felsenstein (29) and Yang (30) (see also (31)). Several excellent reviews on the theoretical 
aspects of Bayesian phylogenetics and Bayesian clock-dating are available elsewhere (32, 
33). 

Software and data 
To carry out the exercises in this chapter, you will need to install the MCMCTree, CODEML 
and BASEML programs from PAML’s software package for phylogenetic analysis (13). PAML 
is freely available from bit.ly/ziheng-paml. Please follow the instructions in PAML’s website 
to install the programs. In particular, you should add PAML’s executables to your system’s 
path. See PAML’s website for instructions on how to do this. The data files necessary for this 
tutorial are available from github.com/dosreislab/microdiv. Please download the data files 
and save them to a directory called microdiv in your computer. You are assumed to be 
familiar with the command line (also known as terminal, shell or prompt) from your 
operating system, as MCMCtree is a command line program. It is also useful (although not 
strictly necessary) if you install FigTree (useful for timetree visualization, 
tree.bio.ed.ac.uk/software/figtree/), and the R statistical environment (useful to diagnose 
the MCMC output, www.r-project.org). All exercises were tested with PAML version 4.9j. 

Bayesian molecular-clock dating with approximate 
likelihood 
The Bayesian method uses probability distributions to characterise the uncertainties in all 
unknowns in an inference problem (30). The Bayes theorem is then used to express the 
uncertainty in the estimated parameter values, known as the posterior distribution, as a 
function of our prior knowledge about the parameters and the likelihood of the data given 
the parameters. In molecular-clock dating, the posterior distribution of divergence times 
and rates, ! and ", (our parameters), given a molecular sequence alignment # (our data) is 
 

$(!, "|#) 	= 	+$(!)$("|!)$(#|", !), (1) 
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where $(!) is the prior on the divergence times, $("|!) is the prior on the molecular 
evolutionary rates (i.e. the molecular clock model), and $(#|", !) is the likelihood of the 
molecular sequence alignment as a function of the times and rates. The likelihood function 
is constructed from a model describing how nucleotides or amino acids change within 
sequences along evolutionary time (i.e. the substitution model, (30)). 

Constant + = 1/ ∫ $(!)$("|!)$(#|", !).".!, known as the marginal likelihood of the 
data, is necessary to guarantee the posterior is a proper statistical distribution that 
integrates to one. Unfortunately, in most molecular-clock dating problems, + cannot be 
calculated analytically. Thus, the MCMC algorithm, which does not require calculation of +,  
is used to obtain a random sample of times and rates from the posterior distribution (30, 
33). This random sample can then be summarised, for example, by computing histograms 
and sample means, giving approximations to the posterior distribution and the posterior 
means. 
 
In a typical molecular-clock dating MCMC, the software generates a random set of initial 
values for the times and rates, (!, "),  known as the initial state. The software then 
generates a random perturbation of one the values, say for !, to generate the proposed 
state, (! ∗, "). The proposal ratio 
 

0 = $(!∗,"|#)
$(!,"|#)

= $(!∗)$("|!∗)$(#|!∗,")
$(!)$("|!)$(#|!,")

,  (2)  

 
is then calculated (note constant + cancels out and thus is not needed). If the proposal, (! ∗
, "), increases the posterior (i.e. 0 > 1), it is accepted. Otherwise it is accepted with 
probability 0 (or rejected with probability 1 − 0). If it is accepted, we set (!, ") = 	 (! ∗, "), 
otherwise we set (!, ") = (!, "). The process is repeated to accept or reject perturbations 
for all the times and rates within a cycle. Then, 4 proposal cycles are carried out until a 
sufficiently large sample has been obtained. 
 
MCMC is computationally expensive because each proposal requires calculation of the prior 
times the likelihood (Eq. 2). Furthermore, the time it takes to compute the likelihood is 
proportional to the number of site patterns in the alignment (a site pattern is a unique 
configuration of nucleotides or amino acids in an alignment column). Thus, long alignments 
lead to computationally expensive MCMCs: Typical molecular-clock dating MCMCs can take 
from several days to months to compute. Fortunately, the likelihood can be approximated 
by its Taylor expansion (14, 34), and the approximation is virtually indistinguishable from 
exact calculation when using long alignments (14). In molecular-clock dating, the likelihood 
depends on the product of the times and rates, the branch length, 5 = !", and not on the 
times and rates separately, and thus we can write $(#|!, ") = $(#|5). The approximation is 
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found by Taylor expansion of 678 $(#|5)	around the maximum-likelihood estimates (MLEs) 
of the branch lengths 
 

678 $(#|5) ≈678 $(#|5:) + (5 − 5:)ʹ8+ 1

2
(5 − 5:)ʹ<(5 − 5:),  (3) 

 
where 5= are the MLEs, and 8 and < are the gradient vector and Hessian matrix of first and 
second derivatives of the log-likelihood evaluated at the MLEs. MCMCtree improves the 
accuracy of the Taylor approximation by using transformations of the branch lengths (14). 
 
Thus, to use the approximation, one first calculates the MLEs of the branch lengths and the 
gradient and Hessian on a fixed tree topology for a given molecular alignment. The 
substitution model is chosen at this step (because different substitution models generate 
different values of 5=, 8 and <). Then, MCMC sampling proceeds using Eq. (3) to 
approximate the likelihood during calculation of the proposal ratio (Eq. 2). The size of 8 and 
< depend on the number of taxa and not on the alignment length. Thus, approximate 
likelihood computation takes the same amount of time whatever the length of the original 
alignment. A detailed mathematical description of MCMC sampling in phylogenetics can be 
found in (30) and the full details of the approximation in (14).  

Dating an microbial phylogeny using fossil 
calibrations 
The data are an alignment of a DNA replication factor from 55 prokaryotic and eukaryotic taxa, with 
300 amino acid sites. This is a subset of the data analysed by Betts et al. (8) to date the origin of life 
and of the eukaryotic cell. File betts/data/dm_17.phy contains the alignment in phylip format 
and file betts/data/dm_17.tree contains the phylogeny with fossil calibrations. You can use a 
text editor (e.g. Notepad or TextEdit) to look at the contents of both files.  
 
Table 1 shows the fossil calibrations used. MCMCtree implements a broad set of calibration densities 
to represent uncertainty in node ages. The two most commonly used calibrations are the “B” and “L” 
calibrations (see MCMCtree’s documentation for the full list of calibration densities and how to 
specify them). B calibrations use two bounds, !>?@  and !>AB , to specify a uniform distribution 
between the minimum and maximum age of the node. The bounds are soft, meaning the minimum 
and maximum bounds are allowed to be violated with probabilities C>?@  and C>AB respectively.  L 
calibrations are specified by using a soft minimum bound, !>?@  , and a truncated Cauchy 
distribution with a heavy-tail decaying back in time (21). B calibrations are suitable when 
information is available to specify both the minimum and maximum age of a node. Unfortunately, 
the fossil record is rather incomplete and absence of evidence is not evidence of absence, and thus 
specifying maximum bounds may be very difficult (4). In such cases, the L calibrations, which only 
need the minimum bound, may be more appropriate. 
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For example, for the root of the phylogeny (the last universal common ancestor, node 56, Table 1) 
Betts et al (8) suggest a minimum bound of !>?@ = 	3.347 billion years ago (Ba) based on 
stromatolite fossils of the Strelley Pool formation of Australia. For the maximum bound they suggest 
!>AB = 	4.52 Ba, based on the Moon-forming impact (Table 1). The Strelley formation has 
definitive evidence of cellular life and thus we assign a zero probability, C>?@ = 0, of the minimum 
bound being violated (in MCMCtree, C>?@ = 0, is specified as C>?@ = 10D300 which is a tiny 
number), whereas the  maximum is soft with C>AB = 0.025. Five further nodes have L calibrations 
(Table 1). For the ancestor of Rhodophyta (node 76, Table 1), a minimum of 1.033 Ba is used based 
on fossil Bangiomorpha. This minimum is slightly older than the strata containing the fossil and thus 
a soft minimum with C>?@ = 0.025 is used. The other four L calibrations use hard minima as they are 
based on uncontroversial fossil members of the corresponding groups. You can use the mcmc3r 
package in R (available from https://github.com/dosreislab/mcmc3r) to plot the L distributions. If 
the L calibration appears unreasonable, parameters E and C can be adjusted to control the mode 
and the length of the tail of the calibration (21). You can visualise the fossil calibrations by opening 
the tree file in a text editor or by plotting the tree with FigTree. 
 
Table 1. Fossil calibration densities used in the analysis of Betts et al. (8) phylogeny. The 
time unit is 100 Ma. 

Node Calibrationa 

56 B (33.4700, 45.2000,  1e-300, 0.025) 

76 L (10.3300,  0.1,  1,  0.025) 

80 L (4.2040,  0.1,  1,  1e-300) 

81 L (1.2500, 0.1,  1,  1e-300) 

94 L (5.5025,  0.1,  1,  1e-300) 

97 L (3.9210,  0.1,  1,  1e-300) 

a. B and L calibrations are specified in the tree file. B calibrations use the format 
B(!>?@, !>AB, C>?@, C>AB). L calibrations use the format L(!>?@, C, E, C>?@), where C and E control the 
position of the mode and the length of the tail of a truncated Cauchy distribution (21).  
 
The steps we will use to estimate the divergence times on the Betts et al. phylogeny using the 
approximate likelihood method are as follows: 

1. Estimate the MLEs of branch lengths, gradient vector and Hessian matrix using CODEML. 
2. Conduct MCMC sampling of the posterior of times and rates using MCMCtree and obtain 

summaries of the posterior distribution. 
3. Conduct diagnostic tests of MCMC convergence to the posterior distribution using R. 
4. Conduct MCMC sampling of the prior of times and rates using MCMCtree. 
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Estimation of the branch lengths MLEs, gradient and Hessian 
Go to the betts/gH directory and open file mcmctree-outBV.ctl using a suitable text editor. 
MCMCtree will use the information in this file to prepare input files for CODEML. We will then use 
CODEML to estimate the MLEs of branch lengths, gradient and Hessian using the LG+G amino acid 
substitution model (35, 36). The contents of the mcmctree-outBV.ctl file are shown in Figure 1. The 
first two lines give the name of the alignment and tree files respectively. Then ndata = 1 indicates 
the alignment is contained in one partition. This is important because if your alignment is divided 
into two one more partitions, then you need to calculate one set of branch length MLEs, gradient 
and Hessian for each partition. The next line indicates the type of alignment (amino acids) and then 
usedate = 3 indicates we want to estimate the necessary MLEs for approximate likelihood 
calculation. The MLEs will be stored in a file called out.BV. The remaining lines indicate we will use 
an empirical amino acid substitution matrix (the LG model stored in the lg.dat file) with a discrete 
gamma model of rate variation among sites (with 5 categories). 
 

                 seqfile = ../data/dm_17.phy  
      treefile = ../data/dm_17.tree 

 

         ndata = 1 

       seqtype = 2    * 0: nucleotides; 1:codons; 2:AAs 

       usedata = 3    * 0: no data (prior); 1:exact likelihood;  

                      * 2: approximate likelihood; 3:out.BV (in.BV) 

         model = 2    * 0: poisson; 1: proportional; 2:Empirical;  

                      * 3: Empirical+F; 6: FromCodon; 8: REVaa_0; 9: REVaa(nr=189)  

         alpha = 0.5  * alpha for gamma rates at sites 

         ncatG = 5    * No. categories in discrete gamma 

    aaRatefile = lg.dat * Amino acid substitution model rate matrix 

 

     cleandata = 0    * remove sites with ambiguity data (1:yes, 0:no)? 

 
Figure 1. The mcmctree-outBV.ctl file for calculation of branch length MLEs, gradient and 
Hessian. 
 
Open a terminal and, within the betts/gH directory, type 
 
$ mcmctree mcmctree-outBV.ctl 

 
Do not type in the $ sign as this represents the command prompt. If the command above does not 
work, it means you have not yet installed MCMCtree or you have not added PAML’s programs to 
your system’s path variable (see above). If the command is successful, MCMCtree will generate a set 
of special files (named with the tmp suffix), and then will call the CODEML program who will then 
calculate  5=, 8 and < by numerical optimization of the likelihood function. CODEML will write out 
the values of 5=, 8 and <to a file called rst2, and MCMCtre will rename this file as out.BV. 
CODEML will use the “simultaneous” algorithm of branch-length optimization, which is rather slow: 
In this case, it will take CODEML about 11 min (on an 2.8 GHz Intel Core i7) to do the calculations. If 
you want, you can kill CODEML (in Mac and Unix systems you may do this by pressing the CTL + C 
keys), and then open the tmp0001.ctl file (this is the control file MCMCtree created for CODEML) 
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and change the line method = 0 to method = 1. This changes to the “one-by-one” branch-length 
optimization algorithm which is much faster (37). Then in the terminal type 
 
$ codeml tmp0001.ctl  
 
Which calls CODEML using the modified tmp0001.ctl file. It should take about 40 sec for CODEML 
to obtain the estimates (on the 2.8 GHz Intel Core i7). You then need to rename file rst2 to 
out.BV. When analysing phylogenies with hundreds of species or very large alignments, it may be 
useful to use MCMCtree to prepare the tmp files, and then use these files to run CODEML (or 
BASEML in the case of nucleotide alignments, see below) in a high-performance computer cluster. 
 
Figure 2 shows the part of the contents of the out.BV file (you can use a text editor to open the file). 
The first line indicates the number of species, 55. Then we see the unrooted phylogeny, the vector of 
branch lengths, the gradient vector (the line of mostly zeroes), and the Hessian matrix. There are 2 × 
55 – 3 = 107 branches in the unrooted tree. Thus, the gradient vector has 107 elements, and the 
Hessian matrix is of size 107 x 107. 
 
55 
 
(Synechocystis_sp._PCC6803: 0.777504, (Clostridium_acetobutylicum: 0.738700, ((Treponema_pallidum:  
 
  0.777504  0.210891  0.738700  0.097101  0.115624  0.965066  0.136945  0.679848  0.875403  0.058785   
 
  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   
 
 
Hessian 
 
     -75.09     -51.11     -9.421     -26.96     -24.77     -16.27     -12.48     -8.463      -14.3      
     -51.11     -147.1     -12.11     -43.23      7.892     -12.16      3.393     -3.355     -9.761      
     -9.421     -12.11     -110.3     -54.15     -17.86     -9.572     -28.76     -9.087     -13.73      
     -26.96     -43.23     -54.15       -294     -27.06     -21.97     -11.18     -16.37     -22.33     
     -24.77      7.892     -17.86     -27.06     -454.9     -30.15     -87.68     -38.58      -30.3      
     -16.27     -12.16     -9.572     -21.97     -30.15     -77.94     -19.56     -5.906     -19.81      

 

 
Figure. 2. File out.BV containing the estimates of branch lengths, gradient and Hessian for the Betts 
et al. phylogeny obtained using the LG + G substitution model. 

MCMC sampling from the posterior distribution 
Go into directory betts/mcmc. Copy the out.BV file into this directory and rename it to in.BV. In 
this directory you will see file mcmctree.ctl, which contains the instructions for the MCMC 
sampling. Figure 3 shows the contents of the file. Note the line with usedata = 2,  this tells 
MCMCtree that we will conduct MCMC sampling of the posterior distribution using approximate 
likelihood. Line clock = 2 indicates the independent rates model will be used (other options are 
the strict clock and the autocorrelated rates model (19)). MCMCtree uses a birth-death process to 
specify the prior on node ages without fossil calibrations (20). Here we use BDparas = 1 1 0, 
which specifies a uniform prior. Lines rgene_gamma and sigma2_gamma specify the gamma prior 
on the mean evolutionary rate and on the rate dispersion parameter of the relaxed-clock models 
(19). It is important to specify a sensible rate prior. If the mean on the prior rate is too high or too 
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low, it will be in conflict with the fossil calibrations and may affect the posterior distribution of times. 
Here we use rgene_gamma = 2 40 1, which specifies a gamma distribution with mean = 2/40 = 
0.05 amino acid substitutions per 100 million years, which is within the order of magnitude expected 
in ancient phylogenies (25). The last three lines control MCMC sampling. The initial state of the 
MCMC is usually far from the region of high probability mass in the posterior distribution. Thus, the 
MCMC will initially move from an area of very low probability to the high probability areas as 
sampling progresses. This initial movement of the MCMC is known as the burn-in, as samples 
obtained in this phase are usually discarded. Here we use burnin = 1000, which means we will 
discard the first 1,000 samples collected. Lines sampfreq = 2 and nsample = 20000 indicate we 
will obtain a sample of size 20,000 sampled every 2 iterations. Thus, the total number of cycles in 
our MCMC will be N = 1000 + 2 × 20000 = 41000. 
 

          seed = -1        
 
       seqfile = ../data/dm_17.phy 
      treefile = ../data/dm_17.tree 
      mcmcfile = mcmc.txt 
       outfile = out.txt 
 
         ndata = 1 
       seqtype = 2    * 0: nucleotides; 1:codons; 2:AAs 
       usedata = 2    * 0: no data (prior); 1:exact likelihood; 
                      * 2: approximate likelihood; 3:out.BV (in.BV) 
         clock = 2    * 1: global clock; 2: independent rates; 3: correlated rates 
 
         BDparas = 1 1 0   * birth, death, sampling 
     kappa_gamma = 6 2     * gamma prior for kappa 
     alpha_gamma = 1 1     * gamma prior for alpha 
 
     rgene_gamma = 2 40 1   * gammaDir prior for rate for genes 
    sigma2_gamma = 1 10 1   * gammaDir prior for sigma^2     (for clock=2 or 3) 
 
           print = 1   * 0: no mcmc sample; 1: everything except branch rates 2: all 
          burnin = 1000 
        sampfreq = 2 
         nsample = 20000 

 
Figure 3. The mcmctree.ctl file for MCMC sampling of the posterior distribution of times and 
rates. 
 
In the terminal type 
 
$ mcmctree 

 
This will initiate the MCMC sampling of the posterior. MCMCtree will print a lot of information to the 
screen as the MCMC progresses. It should take 1-2 min for MCMCtree to complete the sampling. 
Once MCMCtree is finished, you will see several new files have been created. File out.txt contains 
a summary of the analysis. You can open this file in a text editor and examine it. At the beginning of 
the file, you will see the alignment compressed into site patterns and other statistics on the 
sequences. You will then see three Newick trees. The first one simply has the species names and all 
internal nodes are labelled with numbers. These numbers correspond to the node ages in the 
output. The next two trees are calibrated to geological time and thus the branch lengths are given in 
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time units, but the last tree also has the 95% credibility intervals (CI) of node ages. At the bottom of 
the file you will see a table with all the node ages, named with a t_ suffix followed by the node 
number. For each node you will see the posterior mean age, the 95% equal-tail CI, the 95% highest-
posterior density (HPD) CI, and the HPD CI width. You will then see summary statistics for the 
posterior mean of the rate (mu), and the relaxed-clock parameter (sigma2), as well as for the log-
likelihood. Table 2 shows example values of these parameters. File FigTre.tre contains the dated 
phylogeny, suitable for plotting with FigTree (Fig. 4). Finally, file mcmc.txt contains the raw MCMC 
sample: each column corresponds to a parameter and each row to a sampling cycle. Note by default, 
MCMCtree does not collect the samples of the rates for branches, only the mean rate is collected. If 
you are interested in the branch rates, set print = 2 in the mcmctree.ctl file. 
 

 
 
Figure 4. The dated phylogeny of Betts et al. as plotted by FigTree. The horizontal bars are the 95% 
HPD CI of node ages. Nodes are plotted at their posterior means. Time unit is 1 million years.  
 
Table 2. Posterior summary of some parameters in Betts et al. phylogeny. Because the MCMC 
algorithm is stochastic, your values will be similar but different to those shown here. Time unit is 100 
My. 
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Parameter Posterior mean 95% Equal-tail CI 95% HPD CI HPD width 

t_56 (root age) 38.5 (33.7, 45.0) (33.5, 44.6) 11.1 

mu 0.0372 (0.0268, 0.0508) (0.0263, 0.0499) 0.0236 

sigma2 0.437 (0.300, 0.610) (0.286,  0.594) 0.308 

Log L –49.14 (–63.39, –36.69) (–63.03, –36.42) 26.61 

MCMC diagnostics 
An MCMC sample is guaranteed to converge to the posterior distribution as the size of 
sample approaches infinity. In practice, however, there is no guarantee that an MCMC chain 
has run long enough, and thus an actual MCMC sample may be too short and thus a poor 
approximation to the posterior. Because in practical problems we do not know what the 
posterior is supposed to look like, the way to guard against poor MCMC samples is to run 
the analysis several times and compare the results. If results from many runs are very 
similar, then we can have some confidence that the MCMCs have converged to the posterior 
distribution. 
 
Rename files mcmc.txt, out.txt and FigTree.tre to mcmc1.txt, out1.txt and 
FigTree1.tre. Then in the terminal type 
 
$ mcmctree 

 
This will run the analysis again. By default, MCMCtree uses the current system’s time as the 
random seed, and thus the random sampling will be different. Once the run has finished, 
rename the resulting files as mcmc2.txt, out2.txt and FigTree2.txt.  
 
Many software packages exist to conduct MCMC diagnostics. In phylogenetics, the Tracer 
program (www.beast2.org/tracer-2/) is very popular and easy to use. MCMCtree’s mcmc.txt 
files are compatible with Tracer. Here we will use R as it provides fine grain control over the 
diagnostics. Go into the R/ directory and start R. If you use Rstudio, you can open file 
R.Rproj instead, and this will start R within Rstudio. The R commands to carry out the 
diagnostics are in file betts.R. You can open this file in a text editor or in a Rstudio. In R 
type 
 
> mc1 <- read.table("../betts/mcmc/mcmc1.txt", head=TRUE) 

> mc2 <- read.table("../betts/mcmc/mcmc2.txt", head=TRUE) 

 
Do not type in the > character as this represents the R prompt.  The MCMC samples are 
now loaded into R. We will now calculate the posterior means of times for each MCMC and 
plot them against each other: 
 
> # posterior means: 

> ti <- grep("t_", names(mc1)) 

> t.mean1 <- colMeans(mc1[,ti]) 
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> t.mean2 <- colMeans(mc2[,ti]) 

> plot(t.mean1, t.mean2, main="(a) Posterior means") 

> abline(0, 1) 

 
As you can see (Fig. 5a), the posterior means are similar between the two MCMC runs, but 
the dots do not quite fall on the F = G line. This suggests running the MCMCs for longer 
would be appropriate to improve convergence. We will now plot the histograms, traces and 
autocorrelation for the root age sample: 
 
> # density histograms: 

> ri <- which(names(mc1) == "t_n56") 

> plot(density(mc1[,ri]), main = "(b) Density histograms of root age") 

> lines(density(mc2[,ri]), lty=2) 

 

> # trace plot for the root age: 

> plot(mc1[,ri], ty='l', main = "(c) Trace plot of root age") 

 

> # autocorrelation plot for root age: 

> acf(mc1[,ri], main="(d) Autocorrelation of root age") 

 
 

 
 
Figure 5. MCMC diagnostics for the Betts et al dataset. 
 
The density histograms show noticeable differences (Fig. 5b) and the trace plot is not dense 
(Fig. 5c). This confirms convergence has not been fully achieved. MCMC samples are 
autocorrelated because an MCMC state is either equal to the previous state, or a 
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modification of the previous state. Inefficient chains have high autocorrelation and thus 
require longer runs to achieve a good approximation to the posterior. The high 
autocorrelation in this analysis can be appreciated in Fig. 5d. You can use the coda package 
in R to calculate the effective sample size of the MCMC, which is the equivalent sample size 
of an independent sample with the same sampling variance. In R  
 
# calculate effective sample sizes 

# note you need to have the coda package installed 

coda::effectiveSize(mc1[,ri]) 

 
The effective size for the root age is 200. This is only 1% of the total sample size. To 
improve convergence and increase the effective size, we need to run the MCMC chains for 
much longer. Change line nsample = 2 to nsample = 100 in the mcmctree.ctl file. This will 
increase the total number of iterations in the MCMC to over two million. Then run MCMCtree 
twice to generate two independent MCMC samples. Note the new chains will require over an 
hour of computation time each. Once the two MCMC chains have completed, re-calculate 
the diagnostics and compare them to the previous results. 
 
If you’re keen on learning the practical details of MCMC sampling, you can do the MCMC 
tutorial in R prepared by Nascimento et al. (33). 

Sampling from the prior 
In a phylogeny, nodes are constrained to be older than their daughter nodes. These 
constraints must be applied during MCMC sampling when node ages are proposed, and this 
results in truncation of the fossil calibration densities used (21, 38). In other words, the 
calibration density applied to a node may be very different to the marginal prior used during 
MCMC sampling after truncation (39). Thus, it is advisable to run an MCMC with “no data” to 
sample from the prior and thus verify that the actual prior on node ages is sensible (39). Go 
into the betts/prior directory. File mcmctree-prior.ctl has one line changed, usedata = 0, 
which tells MCMCtree to carry out sampling from the prior. In the terminal 
 
> mcmctree mcmctree-prior.ctl 

 
Once MCMCtree has finished you will see files mcmc.txt, out.txt and FigTree.tre which 
in this case contain the prior sample and prior summaries. We will use R to plot the 
calibration densities and the marginal prior. Using the R session you started in the R/ 
directory, type 
 
# load prior sample: 

pmc <- read.table("../betts/prior/mcmc.txt", head=TRUE) 

 

# plot prior root age: 

plot(density(pmc[,ri]), lty=2, xlim=c(30, 50)) 

# add the calibration density on the root: 

curve(mcmc3r::dB(x, 33.47, 45.2, 1e-300, .025), n=5e2, add=TRUE) 

# add prior and calibrations for other nodes: 
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lines(density(pmc[,ni]), lty=2) 

curve(mcmc3r::dL(x, 10.33, 0.1, 1, 1e-300), n=5e2, add=TRUE) 

 

This will generate the plot seen in Figure 6. You can see the marginal prior on the root and 
Rhodophyta’s age (dashed lines) are similar to the calibration densities (solid lines). 
However, the small differences observed between prior and calibration are due to slight 
truncation effects due to the long tail of the L calibrations. As an exercise, you may try 
plotting the calibration and prior densities for the other four calibrated nodes of Table 1. 
 

 
 
Figure 6. Marginal prior and fossil calibration density on the ages of the root and 
Rhodophyta in Betts et al. phylogeny. 

Dating a phylogeny with serially-sampled taxa 
Some microbes have their sampling dates recorded. For example, ancient DNA sequencing 
technologies allow the study of bacteria from ancient human remains (40, 41), while dated 
samples from environmental microbiology can be used to date and track disease spread 
(42). Influenza viruses from the 1918’s to the present have had their genomes sequenced 
(43), while HIV genome sequences from mid-20th century isolates have been used to date 
the origin of the HIV pandemic (44). These serially sampled taxa with known sampling times 
have much information for molecular-clock dating (3, 45). When selecting serially-sampled 
taxa, it is important to have relatively old samples in the analysis. If the phylogeny to be 
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dated has “shallow” tips (i.e. the taxa have been recently sampled with respect to the age of 
the root), there may be relatively little information to date the phylogeny and time estimates 
may have large uncertainties (3). 
 
Here we will date an influenza phylogeny (46) using the birth-death sequential sampling 
(BDSS) prior implemented in MCMCtree (23). The phylogeny and alignment of the H1 
protein-coding gene for 289 influenza isolates are available in files flu/data/flu.tree and 
flu/data/H1.tree. Open the alignment file in a text editor. You will notice the isolates have 
the sampling year at the end of their name. For example, the oldest isolate is 
1_Human_H1N1_USA_1918. MCMCtree will use the sampling year to calibrate the tree in 
the analysis. 
 
Go into the flu/gH directory. In the terminal type 
 
$ mcmctree mcmctree-gH.ctl 

 
This will initiate calculation of the gradient and Hessian. MCMCtree will prepare the 
necessary tmp files and, because this is a DNA alignment, will call the BASEML program to 
carry out the calculations. The substitution model is HKY + G (36, 47). 
 
Once the gradient and Hessian calculations are done, change to the flu/mcmc directory and 
copy flu/gH/out.BV into the directory and rename it to in.BV. Open the mcmctree.ctl file 
in a text editor. The file has a similar format to the one in the previous analysis but note the 
following lines:  
 
TipDate = 1 100  * TipDate (1) & time unit 

 
This tells MCMCtree that we will be activating tip dating with a time unit of 100 years.  
 
RootAge = B(1, 5, .001, .001)  * used if no fossil for root 

 
This is the calibration on the root age, to be from 100 to 500 years before the youngest 
isolate, which dates from 2009. This means the root age is calibrated between 1909 and 
1509. MCMCtree always requires a calibration on the root, because both the BDS and 
BDSS processes are conditioned on the age of the root.  
 
BDparas = 2 1 0 1.8  * lambda, mu, rho, psi for BDSS model 

 
This specifies the parameters for the BDSS prior on node ages, which were chosen to 
produce a sensible prior density (23). You should make sure this prior is reasonable in your 
own analysis. The best way to verify this, is to run MCMCtree with no data and check that 
the prior node ages are sensible. 
 
In the terminal type 
 
$ mcmctree 
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MCMC sampling of the posterior distribution using approximate likelihood will take place. 
This analysis will take about 40 min depending on the computer system. As before, 
MCMCtree will generate files mcmc.txt, out.txt and FigTre.tree. Figure 7 shows the 
dated phylogeny plotted with FigTree.  
 
 

 
 
Figure 7. The dated influenza phylogeny as plotted by FigTree. Time unit is 1 year.  
 
As an exercise, repeat the MCMC posterior sampling, then use the commands in file 
R/flu.R to carry out the MCMC diagnostics. You should also go into the flu/prior 
directory and conduct MCMC sampling from the prior as described above. 

Dating microbial phylogenies without fossil calibrations nor 
sampling times 
Some microbial groups have scant or no fossil records and may not have taxa with known 
sampling dates. Dating such microbial phylogenies is a difficult task. At least two approaches 
appear possible. If a microbial group, with a fossil record, has exchanged genetic material by 
horizontal transfer with another group, that has no fossil record, then it may be possible to 
conduct molecular-clock dating using the horizontally-transferred loci and the appropriate 
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fossil calibration for the outgroup (48). This approach has been used to, for example, date 
the origin of methanobacteria (9) and cyanobacteria, fungi and archaea (49). Chapter XX in 
this volume discusses how to date microbial phylogenies with this method. A second 
plausible approach is to use experimental estimates of bacteria mutation rates (50). For 

example, suppose the spontaneous mutation rate estimate for a bacterial group is 0.05 substitutions per 100 

My (or 5 ⨉ 10

–10
 substitutions per site per year) with a ± 10% error on the estimate. We can construct a 

gamma prior on the rate in MCMCtree using 0.05 as the mean, and a standard deviation of 0.05 * 0.1 / 2 = 

2.5 ⨉ 10

–3. The gamma distribution with parameters 0 and I has mean 0/I and variance 
0/IJ. Thus, we can use the gamma prior with 0 = 400and I = 8000, which results in the 
desired mean and standard deviation. This prior can then be specified in the control file as 
rgene_gamma = 400 8000. A diffuse prior on the root age would still be required. However, 
using such spontaneous mutation rates to date phylogenies is challenging. Different loci in 
the genome may evolve at vastly different rates and thus the spontaneous rate estimate may 
not be a good proxy for the rate of a particular locus. Also, the spontaneous rate estimated 
for a bacterial group may be very different to other related groups, and thus such a prior may 
not be appropriate for dating phylogenies with distantly related groups. 
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